TECH SOLUTIONS 602.0 STYROFOAM[™] BRAND HIGHLOAD INSULATION FOR BURIED UTILITY LINES

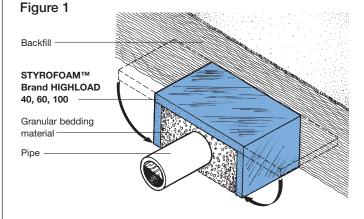
BELOW-GROUND PROTECTION AND COST SAVINGS

Buried water and utility lines are normally installed below the maximum expected depth of frost penetration to protect them from freezing. This depth depends on regional climate, ground cover and the type of soil in which the pipe is buried. Such utility lines typically need to be installed 1-4 metres below grade in order to protect them from freezing.

An alternative is to use STYROFOAM[™] Brand HIGHLOAD 40, 60 or 100 Extruded Polystyrene Insulation – above the utility line. The insulation layer is a winter barrier against heat loss from the soil region surrounding the utility line. The appropriate thickness and width of STYROFOAM[™] Brand HIGHLOAD Insulation allows the utility line to be installed above the frost depth. Using this method, significant cost savings in installation and maintenance of utility lines can be realized.

Use this information sheet as a guide for selection of the appropriate thickness and width of STYROFOAM[™] Brand HIGHLOAD Insulation necessary for buried utility line freeze protection in any Canadian region.

To choose the proper thickness and width of STYROFOAM[™] Brand HIGHLOAD Insulation, first determine the following information:


- 1. Location of project (the local climate will determine the design frost depth penetration)
- 2. Type of soil surrounding the pipe (soil, like climate, determines the frost penetration)
- Amount of backfill to be used on top of the insulation (this determines the thickness of insulation necessary)
- 4. Pipe diameter
- 5. Depth at which the insulation is to be placed (this determines the insulation width to be used)

Tables 1 and 2 and Figure 2 can be used to obtain the above information.

The Utility Line Insulation Worksheet can be used to summarize the project information and determine the total insulation width required to protect the utility line. In some field conditions and designs it may be difficult to horizontally install the entire width of STYROFOAM[™] Brand HIGHLOAD Insulation. In such instances, an inverted "U" configuration can be used (Figure 1). The sum widths of both vertical legs and top portion of the insulation must total the design insulation width (W) as determined by the formulas in the worksheet.

Samples of STYROFOAM[™] Brand HIGHLOAD Insulation recovered from various runway, highway and railroad test installations over the years have shown little increase in water absorption or loss of thermal resistance. In all cases, the insulation's structural integrity was retained.

STYROFOAM[™] Brand HIGHLOAD Insulation is durable, versatile and reusable – making it a preferred choice for a variety of high-load applications.

®™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

TECH SOLUTIONS 602.0

STYROFOAM[™] BRAND HIGHLOAD INSULATION FOR BURIED UTILITY LINES

TABLE 1: DESIGN FREEZING INDEX(°C-DAYS) FOR CANADIAN LOCATIONS					
	Design Index				
British Columbia					
Abbotsford A ⁽¹⁾	303				
Armstrong	719				
Bavine Lake	1796				
Beatton River A	2718				
Chilliwak	303				
Comox A	609				
Cranbrook A	1286				
Dawson Creek	2144				
Dog Creek A					
0	1365				
Fernie	1293				
Fort Nelson	3068				
Fort St. John A	2138				
Golden	1458				
Норе	313				
Kamloops A	613				
Kelowna	631				
Kimberley A	1352				
Kitimat	502				
New Westminster					
	297				
Penticton A	452				
Port Hardy A	296				
Prince George A	1483				
Prince Rupert A	313				
Princeton A	1173				
Quesnel A	1365				
Revelstoke	696				
Salmon Arm	688				
Sandspit A	297				
Smith River A	3259				
Smithers A					
	1388				
Terrace A	632				
Tofino A	289				
Vancouver A	295				
Vernon	604				
Victoria A	293				
Williams Lake A	767				
Yukon Territory					
Aishihik A	3355				
Dawson	3986				
Haines Junction					
	3055				
Mayo	3585				
Snag A	4154				
Teslin A	2641				
Watson Lake A	3287				
Whitehorse	2541				
Northwest Territories					
Baker Lake	5728				
Cambridge Bay A	1146				
Cape Dyer A	4477				
Coral Harbour A	5307				
Fort McPherson					
	4859				
Frobisher Bay A	4459				
Hay River A	3618				
Inuvik A	5236				
Norman Wells A	4459				
Resolute Bay A	6759				
Tuktoyaktuk	5475				
Yellowknife A	4170				

	Design Index			
Alberta	Design index			
Athabasca	2358			
Banff	1646			
Brooks	1793			
Calgary A	1551			
Camrose	2157			
Cold Lake A	2319			
Cowley A	1341			
Edmonton A	1996			
Edson	1990			
Embarras A	3022			
Fort MacMurray	2791			
Grande Prairie A	2204			
	1603			
Jasper				
Lake Louise	2117			
Lethbridge A	1292			
Medicine Hat A	1561			
Olds	1695			
Peace River A	2669			
Penhold A	1992			
Red Deer	1879			
Suffield A	1811			
Vermillion A	2346			
Newfoundland				
Grand Falls	2394			
St. John's	1148			
Stepenville	1425			
Wabush Lake	5688			
Saskatchewan				
Broadview A	2358			
Dafoe A	2623			
Estevan A	2026			
Moose Jaw A	1975			
Nipawin	2682			
North Battleford A	2432			
Prince Albert A	2633			
Regina A	2319			
Saskatoon A	2380			
Swift Current A	2402			
Uranium City A	3639			
Yorkton A	2535			
Manitoba				
Brandon A	2438			
Churchill A	4277			
Flin Flon	2933			
Gimli A	2454			
MacDonald A	22434			
Morden	21243			
Neepawa A	2379			
Portage La Prairie A	2379			
Rivers A				
	2397			
Shilo	2362			
Souris	2236			
The Pas A	2913			
Winnipeg A	2362			
New Brunswick				
Bathurst	1623			
Campbelleton	1601			
Chatham	1482			

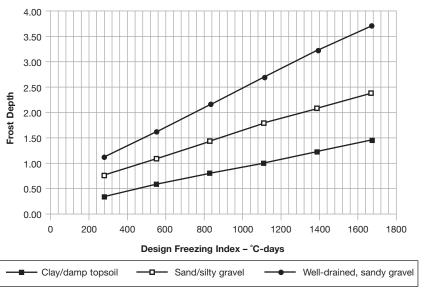
	Design Index
New Brunswick – continued	
Edmunston	1788
Fredericton A	1423
Gagetown	1269
Moncton A	1332
Pennfield Ridge A	1210
Sackville	1208
Saint John	1112
Saint John A	1187
St. George	1175
Sussex	1298
Woodstock	1501
Ontario	1001
Algonquin Park	1748
Belleville	1191
Brampton	1126
Brantford	717
Chalk River	1720
Chatham	573
Cochrane	2394
Collingwood	819
Dryden	2442
Georgetown	1158
Guelph	1142
Hamilton	646
Huntsville	1476
Iroquois Falls	2438
Kapuskasing A	2466
Kenora A	2318
Kingston	1233
Kirkland Lake	2358
Kitchener	824
Lindsay	1358
London A	757
Moosonee	2823
Niagara Falls	658
North Bay	1783
Orangeville	1346
Orillia	1386
Ottawa A	1572
Owen Sound	831
Parry Sound	1398
Peterborough	1314
Thunder Bay	1967
St. Catharines	559
St. Thomas	672
Sarnia	650
Sault Ste. Marie A	1479
Simco	695
Sioux Lookout A	2472
Stratford	1151
Sudbury A	1889
Timmins A	2311
Toronto	627
Toronto A	776
White River	2413
Windsor A	592
	794

continued on next page

Yellowknife A (1) A indicates an airport data station.

 $\circledast^{\ensuremath{\mathsf{TM}}}\ensuremath{\mathsf{Trademark}}$ of The Dow Chemical Company ("Dow") or an affiliated company of Dow

TECH SOLUTIONS 602.0


STYROFOAM[™] BRAND HIGHLOAD INSULATION FOR BURIED UTILITY LINES

	Dooign Inclas		
	Design Index		
Québec Amos	2434		
Bagotville A	2148		
Bagotville A Baie-Comeau A	1954		
Beauceville	1656		
Brome	1524		
Cap-Madeleine	1559		
Chapais	2622		
Chicoutimi	1964		
Donnacona	1727		
Drummondville	1571		
Gagnon	2898		
Gaspé	1673		
Joliette	1666		
Kenogami	2116		
La Malbaie	1691		
La Naibale La Pocatière	1691		
La Focallere La Tuque	1901		
La Tuque Lac Mégantic	1669		
Lac Megantic	1554		
Magog Maniwaki	1495		
	1809		
Mont Joli	1680		
Mont Laurier	1847		
Montebello	1638		
Montréal A	1435		
Québec	1568		
Québec A	1699		
Roberval	1854		
Sept-Iles	2081		
Shawinigan	1785		
Sherbrooke	1434		
Sorel	1665		
St. Agathe des Monts	1821		
St. Hyacinthe	1537		
St. Jérôme	1738		
SteAnne-de-la-Pérade	1745		
Tadoussac	1688		
Thedford Mines	2056		
Trois Rivières	1744		
Val-d'Or	2293		
Victoriaville	1681		
Nova Scotia			
Annapolis Royal	1093		
Cheticamp	1455		
Debert A	2136		
Digby	984		
Greenwood A	1315		
Halifax	1056		
Halifax A	1356		
Ingonish Beach	1328		
Liverpool	953		
Shearwater A	1199		
Springfield	1433		
Sydney	1311		
Truro	2025		
Yarmouth A	915		
Prince Edward Island			
Alliston	2000		
Charlottetown A	2201		
Summerside A	2242		

TABLE 2: INSULATION THICKNESS (MM) SELECTION

Design Freezing Index (°C-days)						
850	1125	1400	1675	1950	2225	2500
50	65	75	90	100	115	125
40	50	65	75	90	100	115
25	40	50	65	75	90	100
25	25	40	50	65	75	90
25	25	25	40	50	65	75
		25	25	40	50	65
			25	25	40	50
				25	25	40
					25	25
	50 40 25 25	850 1125 50 65 40 50 25 40 25 25	850 1125 1400 50 65 75 40 50 65 25 40 50 25 25 40 25 25 25 25 25 25	850 1125 1400 1675 50 65 75 90 40 50 65 75 25 40 50 65 25 25 40 50 25 25 40 50 25 25 25 40 25 25 25 25 25 25 25 25	850 1125 1400 1675 1950 50 65 75 90 100 40 50 65 75 90 25 40 50 65 75 25 25 40 50 65 25 25 40 50 65 25 25 25 40 50 25 25 25 40 50 25 25 25 40 50 25 25 25 40 50 25 25 25 25 40 25 25 25 25 25 40 25 25 25 25	850 1125 1400 1675 1950 2225 50 65 75 90 100 115 40 50 65 75 90 100 25 40 50 65 75 90 25 25 40 50 65 75 90 25 25 40 50 65 75 90 25 25 25 40 50 65 75 25 25 25 40 50 65 75 25 25 25 40 50 65 - 25 25 40 50 65 - 25 25 40 50 65 - 25 25 40 50 65 - 25 25 40 50 50

Figure 2: Design Frost Depth (metres)

For actual indices over 560 °C-days: Design freezing index = Actual freezing index + 560 °C-days

For actual indices under 560 °C-days: Design freezing index = Actual freezing index + 280 °C-days

Actual freezing index: "Normal Freezing and Thawing Degree-Days for Canada 1931-1960" by D.W. Boyd, Environment Canada – Atmospheric Environment CLI 4-73

®™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

TECH SOLUTIONS 602.0

STYROFOAM[™] BRAND HIGHLOAD INSULATION

FOR BURIED UTILITY LINES

UTILITY LINE INSULATION	ON WORKSHEET	
Date:		
For:	Tel:	Fax:
From:	Tel:	Fax:
Project:		
Project Location:		
Design Freezing Index (Table 1):	°C-days	Soil Type:
Design Frost Depth (Figure 2):		metres
Pipe Diameter: m	etres	
Insulation Depth: m	etres Backfill Ov	er Insulation*: metres
Recommended Insulation Thickne	ss (Table 2):	mm
Formula for Insulation Width:	W = D + 2 (F - X) - 0.3 (me	tres)
	W = total insulation width (m) D = pipe diameter (m)	3 1 (<i>i</i>)
UTILITY LINE INSULATION	ON SUMMARY	
Insulation type*:		
Total width of insulation (m):		
Insulation thickness (mm):		
Insulation depth (m):		
Backfill depth*(m):		

*When backfill over the insulation is less than 0.6 metres, contact your Dow representative to help determine the proper choice of insulation type. Surface loading may influence strength of insulation required.

> For Technical Information: 1-866-583-BLUE (2583) (English) 1-800-363-6210 (French) For Sales Information: 1-800-232-2436 (English) 1-800-565-1255 (French) DOW CHEMICAL CANADA ULC . Dow Building Solutions . 450 – 1st St. SW . Suite 2100 . Calgary, AB T2P 5H1 www.dowbuildingsolutions.com

NOTICE: No freedom from any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. Dow assumes no obligation or liability for the information in this document. NO EXPRESS WARRANTIES ARE GIVEN EXCEPT FOR ANY APPLICABLE WRITTEN WARRANTIES SPECIFICALLY PROVIDED BY DOW. ALL IMPLIED WARRANTIES INCLUDING THOSE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

CAUTION: This product is combustible. Protect from high heat sources. A protective barrier or thermal barrier may be required as specified in the appropriate building code. For more information, consult MSDS, call Dow at 1-866-583-BLUE (2583) or contact your local building inspector. In an emergency, call 1-519-339-3711.

Building and/or construction practices unrelated to building materials could greatly affect moisture and the potential for mould formation. No material supplier including Dow can give assurance that mould will not develop in any specific system.

Republished November 2008

