

FASTER. EASIER. BETTER.

FrameAll ${ }^{\text {TM }}$ Drywall Grid installs faster than traditional methods, which helps you complete jobs under cost and ahead of schedule.

FrameAll Drywall Systems are manufactured to meet or exceed ASTM standards and code requirements and are engineered to provide economical alternatives to stud and track construction.

We provide pre-engineered solutions for direct-todeck installations, vertical drops, and short spans. This makes Armstrong ShortSpan ${ }^{\circledR}$ Drywall Framing perfect for use in corridors, small room configurations, restrooms, and storage closets.

FRAMEALL ${ }^{\text {TM }}$ Drywall Grid

Code Compliance You Can Trust

Meets: • City of LA - RR 25348

- ASTM C645
- ASTM C840
- ASTM C754
- ICC Evaluation Report Number ESR-1289
- Department of State Architect - DSA PA105

Performance

- PeakForm ${ }^{\circledR}$ patented profile increases strength and stability for improved performance during installation
- XL ${ }^{\circledR}$ (staked-on end detail) cross tees provide secure locked connection; fast and easy to install
- SuperLock ${ }^{\text {TM }}$ main beam clip is engineered for a strong secure connection and fast accurate alignment confirmed with an audible click; easy to remove and relocate

TABLE OF CONTENTS

2 Code Compliance

2-3 Performance
4 Componenets
5-6 Moldings
6 Wire Load
7 Stucco/Plaster Grid Suspension Installation
8-9 Stucco/Plaster Details
10 Wind Load
11 Exterior Wind Load Bracing to Concrete Slab
12-14 Exterior Wind Load Bracing to Meet
Metal Bar Joists
15-16 Making a Template
16 Wind Load and Impact
17 Radius Chart

Corrosion Prevention

Corrosion prevention is an essential factor in the economical utilization of galvanized sheet metal for ceiling grid. Armstrong provides G40 for standard construction per ASTM C645. When conditions include exposure to extreme moisture and salt water, G90 is available per ASTM A653.

COMPONENTS

MAIN BEAMS

Item Number Length		Face Dimension	Profile Height	Duty Load	Fire Rated	Routs	Load Test Data (Lbs./LF)						Perspective	
							L/360 wires at			L/240 wires at				
								2^{\prime}	$3 '$	4'	2'	31		4'
$\begin{aligned} & \text { HD8906 } \\ & \text { HD8906G90 } \\ & \text { HD8906HRC } \end{aligned}$	144"	1-1/2"	1-11/16"	Heavy Duty	Yes	51 routs starting 2-1/4" from each end ${ }^{\dagger}$	95.5	35.8	18.76	139.85	52.24	28.14		

\dagger Type F fixture compatible

CROSS TEES

Item Number	Length	Face Dimension	Profile Height	Fire Rated		Load Test Data (Lbs./LF)						Perspective
					Routs	L/360 wires at			L/240 wires at			
						50°			50°			
$\begin{aligned} & \text { XL8947P } \\ & \text { XL8947PG90* } \end{aligned}$	50"	1-1/2"	1-1/2"	Yes	$8 \text { routs - starting 10" }$ from each end ${ }^{\dagger}$	31.3			31.3			
						2^{\prime}	3^{\prime}	4'	2^{\prime}	3^{\prime}	4^{1}	0 on?
$\begin{aligned} & \text { XL8945P } \\ & \text { XL8945PG90* } \\ & \text { XL8945HRC } \end{aligned}$	50"	1-1/2"	1-1/2"	Yes	2 routs - 12" from each end ${ }^{\dagger}$	-		15.0			22.5	
XL7936G90*	$36 "$	1-1/2"	1-1/2"	No	none		33.3				50.0	
$\begin{aligned} & \text { XL8925 } \\ & \text { XL8925G90* } \end{aligned}$	$26^{\prime \prime}$	1-1/2"	1-1/2"	Yes	2 routs - $12^{\prime \prime}$ from each end ${ }^{\dagger}$	98.0				117.0		
$\begin{aligned} & \text { XL8926 } \\ & \text { XL8926G90* } \end{aligned}$	$24 "$	1-1/2"	1-1/2"	Yes	3 routs - center rout and 10" from each end ${ }^{\dagger}$	129.0				158.0		

NOTE: All items available in High Recycled Content (HRC) as special order.
\dagger Type F fixture compatible

* G90 Cross Tees are not manufactured with knurled ridges

WALL MOLDING

Item Number	Length	Description	Profile	Perspective
7858	144"	Reverse Angle Molding nominal $1-9 / 16^{\prime \prime} \times 15 / 16^{\prime \prime}$		\square
KAM10	120"	Knurled Angle Molding nominal $1-1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$		
KAM12 KAM12G90 KAM12HRC	144"	Knurled Angle Molding nominal $1-1 / 4 " \times 1-1 / 4 "$		
KAM1510 KAM1512 KAM151020 KAM151020EQ	$\begin{aligned} & 120 " \\ & 144^{\prime \prime} \end{aligned}$	Knurled Angle Molding nominal $1-1 / 2^{\prime \prime} \times 1-1 / 2^{\prime \prime}$ (KAM1510 \& KAM1512-25 ga.; KAM151020-20 ga.; KAM151020EQ - 22 ga.)		
KAM21020 KAM21025 KAM21020EQ	$\begin{aligned} & 120 " \\ & 144^{\prime \prime} \end{aligned}$	Knurled Angle Molding nominal 2" x 2" (20 ga.) (KAM21020-20 ga.; KAM21025-25 ga.; KAM21020EQ 22 ga.)	$T_{1-1 / 4^{\prime \prime}}$	
LAM12 LAM12G90 LAM12HRC LAM151220E	144"	Locking Angle Molding nominal $1-1 / 4 " \times 1-1 / 4^{\prime \prime}$	+ Fand	
$\begin{aligned} & \text { SC151220EQ } \\ & \text { SC151225 } \\ & \text { SC21220EQ } \\ & \text { SC21225 } \end{aligned}$	$\begin{aligned} & 148 " \\ & 148^{\prime \prime} \\ & 148^{\prime \prime} \\ & 148^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { SimpleCurve™ Knurled Angle Molding } \\ & \text { (SC151220EQ 12' x 1.5" \& SC21220EQ 12' } \times 2^{\prime \prime} \text { - } \\ & 20 \text { ga.; SC151225 12' } \times 1.5^{\prime \prime} \& \\ & \text { SC21225 12' } \times 2^{\prime \prime}-25 \text { ga.) } \end{aligned}$		

NOTE: All items available in High Recycled Content (HRC) as special order.

WIRE LOAD DETAILS

12 Gauge Wire Breaking Strength and Technical Data

STUCCO/PLASTER
 INSTALLATION AND DETAILS

STUCCO/PLASTER GRID SUSPENSION INSTALLATION

1 For wind speed less than 60 MPH , install main beams 48" 0.C. For wind speed over 60 MPH , see page 9 for main beam spacing.
2 Use either track positively attached, metal angle or main beam for isolation from wall. When located near salt water, use 9 gauge wire.
3 Install cross tees 16" 0.C.
4 Install vertical brace at required locations for wind loading on suspension system. See chart page 9.
5 Install substrate gypsum board (water resistant) with screw spacing 6" to 8" O.C. Cement board can also be used on exterior. Use lower RPM $(1,000-2,500)$ screw gun to install cement board screws with intermittent pressure.
6 Install finish system per manufacturers recommendation.
7 Use plastic vented starter, stops or casing beads with holes to allow moisture to escape from system.

8 Install vent strips where necessary in plenum to handle air pressure and moisture.
9 Install both control joints and expansion joints to control movement in system, in accordance with ASTM C840.

10 Synthetic bonding agents are the responsibility of each individual manufacturer of EIFS and is not the responsibility of the suspension system manufacturer.
11 The suspension system manufacturer's responsibility is to furnish a smooth and level surface in accordance with C645 and C754 for the proper weight loading.

For further information, contact your local representative or TechLine at 8772767876.

DETAILS OF STUCCO/PLASTER SYSTEMS

Vent Strip

Non-Modular Cut and Screw

Uninsulated

Control Joint

Exterior Wind Loaded (See chart on page 6)

DETAILS OF STUCCO/PLASTER SYSTEMS

Rock Lath and Plaster

Security Metal Lath and Plaster

EIFS SYSTEM EXTERIOR WIND LOAD DESIGN FOR NORTH AMERICA

$\begin{aligned} & \text { Plenum } \\ & \text { Height } \\ & (\mathrm{Ft}-\mathrm{In}) \end{aligned}$	Design Wind Velocity (MPH)	Design Wind Pressure (PSF)	Compression Post Size (Inch)	Compression Post Gauge (Ga. No.)	Sheathing Membrane Substrate 5/8" Drywall Sheet Densglass Gold G-P	Compression Post Spacing (ft.-in.)	Main Runner Spacing (Inch)	Cross Tee Length (Inch)	Hanger Wire Spacing (ft.-in.)	Cross Tee Length (Feet)	Compression Post Load (Lbs.)
	15	5.07	$21 / 2^{\prime \prime} \mathrm{CWN}$	20	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	$4^{\prime}-2^{\prime \prime}$	$48{ }^{\prime \prime}$	16 "	4^{\prime}	4'	18
	30	2.03	$21 / 2$ CWN	20	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	3'-10"	481	16 "	$4{ }^{\prime}$	$4 '$	49
	45	4.56	$21 / 2^{\prime \prime}$ CWN	20	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	$3^{\prime}-6{ }^{\prime \prime}$	48"	$16^{\prime \prime}$	4^{\prime}	4'	96
	60	8.1	$21 / 2^{\prime \prime}$ CWN	20	$5 / 8^{\prime \prime}$ G.P. Densglass \& 1/4"-3/8" EIFS	$3^{\prime \prime}$ - ${ }^{\prime \prime}$	$36{ }^{\prime \prime}$	$16^{\prime \prime}$	4^{\prime}	3^{\prime}	125
	90	18.24	$21 / 2^{\prime \prime} \mathrm{CWN}$	20	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	2' - 9"	$36{ }^{\prime \prime}$	$16^{\prime \prime}$	3^{\prime}	31	229
	120	32.43	$21 / 2^{\prime \prime}$ CWN	20	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	2' - 8"	24 "	$16^{\prime \prime}$	$2^{\prime \prime}$ - ${ }^{\prime \prime}$	2^{\prime}	266
	140	44.14	$21 / 2^{\prime \prime} \mathrm{CWN}$	18	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	$2^{\prime}-4$ "	24 "	$16^{\prime \prime}$	$2^{\prime \prime}$ - ${ }^{\prime \prime}$	2^{\prime}	331
	172	75	$21 / 2$ " CSJ	18	See NOA 12-0314.05 Design	2^{\prime}	24 "	16 "	2^{\prime}	2^{\prime}	445
	172	75	$21 / 2^{\prime \prime}$ CJS	18	See NOA 12-0314.04 Design	$2^{\prime \prime}$ - ${ }^{\prime \prime}$	$36{ }^{\prime \prime}$	$16^{\prime \prime}$	$2^{\prime \prime}$ - ${ }^{\prime \prime}$	31	565
	15	5.07	$21 / 2^{\prime \prime}$ CSJ	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	4' - 2"	48"	$16{ }^{\prime \prime}$	4^{\prime}	$4{ }^{\prime}$	18
	30	2.03	$21 / 2^{\prime \prime}$ CSJ	18	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	3'-10"	48 "	$16^{\prime \prime}$	4'	4'	49
	45	4.56	$21 / 2^{\prime \prime}$ CSJ	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	$3^{\prime}-6{ }^{\prime \prime}$	48"	16 "	4'	$4{ }^{\prime}$	96
	60	8.1	$21 / 2^{\prime \prime}$ CSJ	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	3' - 6"	$36{ }^{\prime \prime}$	16 "	$4{ }^{\prime}$	3'	125
	90	18.24	$21 / 2^{\prime \prime}$ CSJ	18	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	2' - 9"	36 "	16 "	$3{ }^{\prime}$	3'	229
	120	32.43	$21 / 2^{\prime \prime}$ CSJ	18	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	2' - 8"	24 "	$16^{\prime \prime}$	$2^{\prime \prime}$ - ${ }^{\prime \prime}$	2^{\prime}	266
	140	44.14	$21 / 2^{\prime \prime}$ CSJ	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	2' - 4"	24 "	16 "	$2^{\prime}-6{ }^{\prime \prime}$	2^{\prime}	331
	172	75	$21 / 2^{\prime \prime}$ CSJ	18	See NOA 12-0314.05 Design	2^{\prime}	24 "	$16^{\prime \prime}$	2^{\prime}	2^{\prime}	445
	172	75	$21 / 2$ CJS	18	See NOA 12-0314.04 Design	$2^{\prime \prime}$ - ${ }^{\prime \prime}$	36 "	$16{ }^{\prime \prime}$	$2^{\prime \prime}$ - ${ }^{\prime \prime}$	3'	565
$\left.\right\|_{15^{\prime}} ^{10^{\prime \prime}}$	*15	5.07	$21 / 2^{\prime \prime}$ CSJ	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	4' - 2"	481	16 "	$4{ }^{\prime}$	$4 '$	18
	*30	2.03	$21 / 2^{\prime \prime}$ CSJ	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	3'-10"	48"	16 "	4'	4'	49
	*45	4.56	$21 / 2^{\prime \prime}$ CSJ	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	$3^{\prime}-6{ }^{\prime \prime}$	48"	$16{ }^{\prime \prime}$	$4{ }^{\prime}$	$4{ }^{\prime}$	96
	*60	8.1	$21 / 2^{\prime \prime} \mathrm{CSJ}$	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	3' - 6"	$36{ }^{\prime \prime}$	$16^{\prime \prime}$	4^{\prime}	3'	125
	*90	18.24	$21 / 2^{\prime \prime}$ CSJ	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	2' - 9"	$36{ }^{\prime \prime}$	$16^{\prime \prime}$	3'	$3{ }^{\prime}$	229
	*120	32.43	$21 / 2^{\prime \prime} \mathrm{CSJ}$	18	5/8" G.P. Densglass \& 1/4"-3/8" EIFS	2' - 8"	24 "	$16{ }^{\prime \prime}$	$2^{\prime \prime}$-6"	$2 '$	266
	*140	44.14	$21 / 2^{\prime \prime} \mathrm{CSJ}$	18	$5 / 8$ " G.P. Densglass \& 1/4"-3/8" EIFS	2'-4"	24 "	16 "	2' - 6"	$2 '$	331
	*172	75	$21 / 2^{\prime \prime}$ CSJ	18	See NOA 12-0314.05 Design	2^{\prime}	$24 "$	$16^{\prime \prime}$	2^{\prime}	2^{\prime}	445
	${ }^{*} 172$	75	$21 / 2^{\prime \prime}$ CJS	18	See NOA 12-0314.04 Design	2' - 6"	36 "	$16 "$	$2^{\prime \prime}$-6"	3^{\prime}	565
15'1"	**15	5.07	$35 / 8{ }^{\prime \prime}$ CSJ	18	5/8"G.P. Densglass \& 1/4"-3/8" EIFS	$4^{\prime}-2^{\prime \prime}$	$48^{\prime \prime}$	$16^{\prime \prime}$	4^{\prime}	4^{\prime}	18
	**30	2.03	$35 / 8{ }^{\prime \prime}$ CSJ	18	5/8"G.P. Densglass \& 1/4"-3/8" EIFS	$3^{\prime}-10^{\prime \prime}$	48"	$16^{\prime \prime}$	4^{\prime}	4'	49
	**45	4.56	$35 / 8$ " CSJ	18	5/8"G.P. Densglass \& 1/4"-3/8" EIFS	$3^{\prime}-6{ }^{\prime \prime}$	48"	$16^{\prime \prime}$	4^{\prime}	4^{\prime}	96
	**60	8.1	$35 / 8{ }^{\prime \prime}$ CSJ	18	5/8"G.P. Densglass \& 1/4"-3/8" EIFS	3' - 6"	$36 "$	$16 "$	4^{\prime}	3^{\prime}	125
	**90	18.24	$35 / 8$ " CSJ	18	5/8"G.P. Densglass \& 1/4"-3/8" EIFS	2' - 9"	$36 "$	16 "	3'	3'	229
$\text { 20' } 0 \text { " }$$\star \star \star \star$	**120	32.43	$35 / 8{ }^{\prime \prime}$ CSJ	18	5/8"G.P. Densglass \& 1/4"-3/8" EIFS	2' - 8"	24 "	$16^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	2^{\prime}	266
	${ }^{* *} 140$	44.14	$35 / 8{ }^{\prime \prime}$ CSJ	18	5/8"G.P. Densglass \& 1/4"-3/8" EIFS	$2^{\prime}-4{ }^{\prime \prime}$	24 "	$16^{\prime \prime}$	$2^{\prime \prime}$ - ${ }^{\prime \prime}$	2^{\prime}	331
	**172	75	3 5/8" CSJ	18	See NOA 12-0314.05 Design	2^{\prime}	24 "	16 "	2^{\prime}	2^{\prime}	445
	**172	75	$35 / 8$ " CSJ	18	See NOA 12-0314.04 Design	$2^{\prime \prime}$-6"	$36 "$	$16^{\prime \prime}$	$2^{\prime \prime}$-6"	3^{\prime}	565

Ceiling System = HD 8906-G90 Main Runner 12 ft . / XL 8945P-G90 Cross Runner 4 ft . / XL 7936-G90 Cross Runner 3 ft . / XL 8926-G90 Cross Runner 2 ft / / \#9 Ga. H.D.G. Hanger Wire

* Note $1-1 / 2^{\prime \prime} 16 \mathrm{ga}$. U-Channel Bridging required at Mid Span for $10^{\prime} 4^{\prime \prime}$ up to $15^{\prime} \mathbf{\prime}^{\prime \prime}$ ".
** Note $1-1 / 2^{\prime \prime} 16 \mathrm{ga}$. U-Channel Bridging required at $1 / 3$ rd Points for $15^{\prime} 1$ " up to $20^{\prime} 0^{\prime \prime}$.
*** Compression Post and Ceiling system tested at the plenum design depth shown here for positive and negative wind speed pressure loads as listed.
**** Compression Post Assemblies at this plenum design depth calculated by Dietrich Design Group.

Control Joints / Expansion Joints

Control joints minimize cracking caused by stresses in the surface material attached to a metal suspension system. Materials have different rates of expansion and control joints are placed 35 ' to 50 ' apart to control bucking and cracking of surface. Control joints are also used to minimize stresses in monolithic ceiling membrane that occur at columns, access doors, light fixtures, inside and

For building heights over 20 feet refer to ASCE 7-10 chapter 6 Wind Loads Non-Impact Miami/Dade County EIFS Exterior Celing Design NOA 12-0314.05 Hurricane Zone Approved.

Impact Rated EIFS Exterior Ceiling Design with 5/8" F/R plywood added to membrane Miami/Dade County See NOA 12-0314.04 Hurricane Zone Approved.Stud Products and Properties Based on Dietrich Industries Inc. outside corners and other unusual penetrations in ceilings. Ceiling expansion joints are installed to separate the metal suspension system when expansion joints occur in buildings, ceiling span is over 100' or when metal changes direction. Expansion joints are required to separate a system in T, H, L, and U or Circle shaped buildings to eliminate cracking from expansion. Both expansion and control joints look similar but perform different functions.

EXTERIOR WIND LOAD BRACING TO CONCRETE SLAB

Notes:

1 Positive attach with \#10-16 screw - clip to stud.
2 Positive attach with Clip to Bar Joist with 2 .145" Dia. x 1/2" long.
3 Screws: \#10-16 TEKS/ 3 Buildex or equal.
4 Power activated Fasteners: . 145 Dia. x 1/2" long (X-DNI) Hilti pins.
5 Clips: All Clips to be made of 50 KSI material. Spans up to $70^{\prime \prime}$ use angle $2^{\prime \prime} \times 5^{\prime \prime} \times 12$ gauge $\times 0-4$ " long. Spans $72^{\prime \prime} \times 120^{\prime \prime}$ use angle $2^{\prime \prime} \times 5$ " $\times 10$ gauge $\times 0-5$ " long. For studs up to 4 ", use $3^{\prime \prime}$ flange in lieu of 5 ".

6 All spans based on single span.
7 Wind load - 75 PSF
8 Dead load - 10 PSF
9 Spans of 120" require bridging on top flange at midspan. Use 1-1/2 CRC 16 gauge attached with (1) \#10-16 to top flange. 10 In some cases, angles may need to be welded to structure.

Steel Stud Bracing 2' 0.C. ASTMC - 645

Span Length	3-5/8"	Gauge	4"	Gauge	$6{ }^{\prime \prime}$	Gauge	8"	Gauge
48"	362 - CSJ	20						
$54 "$	362 - CSJ	20	4 - CSJ	20				
60 "	362 - CSJ	18	4 - CSJ	18				
$66 "$	362 - CSJ	16	4 - CSJ	16				
70"	362-CSJ	14			6 - CSJ	20		
72"			4 - CSJ	14				
76"					6 - CSJ	18		
80"							8 - CSJ	18
82"					6 - CSJ	16		
86"							8-CSJ	18
88"					6 - CSJ	14		
92"							8 - CSJ	16
96"							8 - CSJ	14
120"	(For 120" Length Bridging Required @ Midspan (See Note 9)						8 - CSJ	16

Notes:

1 Positive attach with \#10-16 screw - clip to stud.
2 Positive attach with Clip to Bar Joist with 2 .145" Dia. x 1/2" long.
3 Screws: \#10-16 TEKS/ 3 Buildex or equal.
4 Power activated Fasteners: . 145 Dia. x 1/2" long (X-DNI) Hilti pins.
5 Clips: All Clips to be made of 50 KSI material. Spans up to 70 " use angle $2^{\prime \prime} \times 5^{\prime \prime} \times 12$ gauge $\times 0-4$ " long. Spans $72^{\prime \prime} \times$ 120 " use angle $2^{\prime \prime} \times 5$ " $\times 10$ gauge $\times 0-5$ " long. For studs up to 4 ", use $3^{\prime \prime}$ flange in lieu of $5^{\prime \prime}$.

6 All spans based on single span.
7 Wind load - 75 PSF
8 Dead load - 10 PSF
9 Spans of 120" require bridging on top flange at midspan. Use 1-1/2 CRC 16 gauge attached with (1) \#10-16 to top flange.
10 In some cases, angles may need to be welded to structure.

EXTERIOR WIND LOAD BRACING TO METAL BAR JOISTS

Notes:
1 Positive Attachment Top and Bottom.
222 Gauge 2-1/2" Studs 2' 0.C.
3 Main Beams 2' 0.C. / Cross Tees 16" O.C 2' Long.
4 Hanger Wire 4' O.C.
5 Vertical Drop 0-6' Minimum 22 Gauge. Not shown on drawing. (See Chart)

Notes:

1 1-1/2 \#16 Gauge U Channel Bracing Required at Mid Span for 10' - 15' Vertical Drop.
2 Positive Attachment Top and Bottom.
318 Gauge 2-1/2" Stud 2' O.C.
4 Main Beams 2' 0.C. / Cross Tees 16" O.C 2' Long.
5 Hanger Wire 4' O.C.

EXTERIOR WIND LOAD BRACING TO METAL BAR JOISTS

Notes:

$11-1 / 2$ \#16 Gauge U Channel Bracing Required at $1 / 3$ Points.
2 Positive Attachment Top and Bottom.
318 Gauge 3-5/8" Studs 2' 0.C.
4 Main Beams 2' 0.C. / Cross Tees 16" 0.C 2' Long.
5 Hanger Wire 4' O.C.

1 Draw radius on template (plywood, gypsum board, etc.).
2 Establish a center line.
3 Mark 2' increments on line perpendicular to center line.

4 At 2' marks, identify points of arc below perpendicular line (maintain consistent spacing of point). See radius charts on page 17.
5 Connect points to form a smooth arc.

Example: 43^{1} arc using chart on page 17

COMPLETING THE TEMPLATE - OPTION 1

1 Cut along the arc and remove section of template.
2 Cut main beam as required and position along the cut radius on the template (use chart on page 17).

3 Screw RC2 clips to faceted main beam at all knockout locations. *
4 On the template, mark a rout location reference point to maintain consistent rout location.

1 Draw radius on board.
2 Screw flex track to board along radius line.
3 Cut main beams as required and position along the flex track on the template.
4 Screw RC2* clips to faceted main beam at all knockout locations.

5 On the template, mark a rout location reference point to maintain consistent rout location.

Contractors' efficiency and understanding of the suspended grid system construction provides performance benefits and cost savings.

- An unlimited range of vaults and valleys can be constructed using faceted main beams made on the job to meet design needs.
- Single and multiple curved ceilings can be framed quickly and easily.

Radius Dimension																
.		10' 0 "	11' 0"	12' 0 "	$13^{\prime} 0$	14' 0 "	15' 0 "	16' 0 "	17' 0 "	18' 0 "	19'0"	20' 0 "	21' 0 "	22' 0 "	$23^{\prime \prime} 0$	24' 0 "
	2'	2 "	2-1/4"	2 "	1-7/8"	1-3/4"	1-5/8"	1-1/2"	1-1/2"	1-3/8"	1-1/4"	1-1/4"	1-1/8"	1-1/8"	1-1/8"	$1{ }^{\prime \prime}$
	4	10"	9-1/8"	8-1/4"	7-5/8"	$7{ }^{\prime \prime}$	6-1/2"	6-1/8"	5-3/4"	5-3/8"	5-1/8"	4-7/8"	4-5/8"	4-3/8"	4-1/4"	$4 "$
	$6{ }^{\prime}$	2'0"	1'9-3/8'	1'7-3/8'	1'5-5/8"	1'4-1/4"	1'3"	1'2'	1'1-1/8"	1'0-3/8"	11-3/4"	11-1/8"	10-1/2"	10"	9-5/8"	9-1/8"
틍	8'	$4^{\prime} 0^{\prime \prime}$	3'5-5/8"	3'0-3/4"	2'9-1/8"	2'6-1/8"	2'3-3/4"	2'1-3/4"	2'0"	1'10-1/2"	1'9-1/4'	1'8-1/8"	1'7"	1'6-1/8"	1'5-1/4"	1'4-1/2"
		25'0'	$26^{\prime} 0{ }^{\prime \prime}$	27'0'	28'0"	29'0"	30' 0 "	31' 0 "	32' 0 "	33' $0^{\prime \prime}$	34' 0"	35' 0 "	36'0"	37' 0 "	38'0'	39'0'
	2^{\prime}	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	7/8"	7/8"	7/8"	7/8"	$3 / 4 "$	3/4"	$3 / 4 "$	$3 / 4$ "	3/4"	3/4"	5/8"	5/8"	5/8"
	4'	3-7/8"	3-3/4"	35/8"	3-1/2"	3-3/8"	3-1/4"	3-1/8"	$3 "$	3"	2-7/8"	2-3/4"	2-3/4"	2-5/8"	2-5/8"	2-1/2"
	$6{ }^{\prime}$	8-3/4"	8-1/2"	81/2"	7-7/8"	7-1/2"	7-1/4"	7-1/8"	6-7/8"	6-5/8"	6-3/8"	6-1/4"	6-1/8"	5-7/8"	5-3/4"	5-5/8"
	8'	1'3-3/4"	1'3-1/8"	1'25/8"	1'2'	1'2-1/2'	1'1-1/8"	1'0-5/8"	1'0-1/4'	11-1/2"	11-1/2"	11-1/8"	10-7/8"	10-1/2"	10-1/4"	$10^{\prime \prime}$
$\bar{\sim}$		40' 0 "	41'0"	42' 0 "	$43^{\prime \prime} 0$	44'0"	45' 0 "	$46^{\prime} 0{ }^{\prime \prime}$	47'0"	48'0"	49'0"	50' 0 "	51' 0"	52' 0 "	53' 0 "	54' 0"
	$2 '$	5/8"	5/8"	5/8"	5/8"	5/8"	5/8"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"
	4'	2-3/8"	2-3/8"	2-3/8"	2-1/4"	2-1/8"	2-1/8"	2-1/8"	2-1/8"	2 "	2"	2 "	1-7/8"	1-7/8"	1-3/4"	1-3/4"
	$6{ }^{\prime}$	5-1/2"	5-3/8"	5-1/4"	5-1/8"	$5{ }^{\prime \prime}$	4-7/8"	4-3/4"	4-5/8"	4-1/2"	4-1/2"	4-3/8"	4-1/4"	4-1/4"	4-1/4"	$4 "$
	8^{\prime}	9-3/4"	9-1/2"	9-1/4"	$9 "$	8-7/8"	8-5/8"	8-1/2"	8-1/4 "	8-1/8"	7-7/8"	7-3/4"	7-5/8"	7-1/2"	7-3/8"	7-1/8"
		$55^{\prime \prime} 0$	56' 0"	$57^{\prime \prime} 0^{\prime \prime}$	$58^{\prime \prime} 0$	59'0"	$60^{\prime \prime} 0$	61' 0 "	$62^{\prime \prime} 0$	$63^{\prime \prime} 0^{\prime \prime}$	64' 0 "	$65^{\prime \prime} 0$	66' $0^{\prime \prime}$	$67^{\prime \prime}$	$68^{\prime \prime} 0$	69'0"
	2'	1/2"	1/2"	1/2"	1/2"	1/2"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"
	4'	1-3/4"	1-3/4"	1-3/4"	1-3/4"	1-5/8"	1-5/8"	1-5/8"	1-5/8"	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-3/8"
	$6{ }^{\prime}$	$4 "$	3-7/8"	3-7/8"	3-3/4"	3-3/4"	3-5/8"	3-5/8"	3-1/2"	3-1/2"	3-3/8"	3-3/8"	3-1/4"	3-1/4"	3-1/4"	3-1/8"
	8'	$7{ }^{\prime \prime}$	6-7/8"	6-3/4"	6-5/8"	6-5/8"	6-1/2"	6-3/8"	6-1/4"	6-1/8"	$6 "$	$6 "$	5-7/8"	5-3/4"	5-3/4"	5-5/8"
		70' $0^{\prime \prime}$	71' 0"	$72^{\prime} 0{ }^{\prime \prime}$	$73^{\prime} 0{ }^{\prime \prime}$	$74^{\prime} 0{ }^{\prime \prime}$	75' 0"	$76^{\prime} 0{ }^{\prime \prime}$	77' $0^{\prime \prime}$	78' $0^{\prime \prime}$	79'0'	80' $0^{\prime \prime}$	81' 0 "	82' 0 "	83' $0^{\prime \prime}$	84' 0 "
	2'	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"
	4^{\prime}	1-3/8"	1-3/8"	1-3/8"	1-3/8"	1-3/8"	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/8"
	$6{ }^{\prime}$	3-1/8"	$3-1 / 8^{\prime \prime}$	3 "	3 "	$3{ }^{\prime \prime}$	2-7/8"	2-7/8"	2-7/8"	2-3/4"	2-3/4"	2-3/4"	2-3/4"	2-5/8"	2-5/8"	2-5/8"
	8^{\prime}	5-1/2"	5-1/2"	5-3/8"	5-1/4"	5-1/4"	5-1/8"	5-1/8"	$5{ }^{\prime \prime}$	$5{ }^{\prime \prime}$	4-7/8"	4-7/8"	4-3/4"	4-3/4"	4-5/8"	4-5/8"
		85' $0^{\prime \prime}$	86' 0 "	87' 0 "	88' 0 "	89' 0 "	90' $0^{\prime \prime}$	91' $0^{\prime \prime}$	$92^{\prime} 0{ }^{\prime \prime}$	93' $0^{\prime \prime}$	94' 0 "	$95^{\prime} 0{ }^{\prime \prime}$	96' 0 "	97' $0^{\prime \prime}$	98' $0^{\prime \prime}$	99'0"
	$2 '$	3/8"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"
	4^{\prime}	1-1/8"	1-1/8"	1-1/8"	1-1/8"	1-1/8"	1-1/8"	1-1/8"	1-1/8"	1-1/8"	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	$1 "$	1"	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$
	$6{ }^{\prime}$	2-5/8"	2-1/2"	2-1/2"	2-1/2"	2-1/2"	2-3/8"	2-3/8"	2-3/8"	2-3/8"	2-3/8"	2-1/4"	2-1/4"	2-1/4"	2-1/4"	2-1/4"
	8^{\prime}	4-1/2"	4-1/2"	4-1/2"	4-3/8"	4-3/8"	4-1/4"	4-1/4"	4-1/4"	4-1/8"	4-1/8"	4-1/8"	4"	$4{ }^{\prime \prime}$	$4{ }^{\prime \prime}$	3-7/8"
		100' 0 "	$105{ }^{\prime \prime}$	110' 0 "	$115{ }^{\prime \prime} 0$	$120{ }^{\prime \prime}$	$125^{\prime \prime} 0$	$130{ }^{\prime \prime} 0^{\prime \prime}$	13510	$140^{\prime \prime} 0$	145' 0 "	$150{ }^{\prime \prime} 0$	155' 0 "	160' 0 "	$165{ }^{\prime} 0$ "	170' 0 "
	2^{\prime}	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	$1 / 8{ }^{\prime \prime}$	1/8"	1/8"
	4	$1 "$	$1 "$	7/8"	7/8"	7/8"	3/4"	$3 / 4 "$	3/4"	3/4"	3/4"	5/8"	5/8"	5/8"	5/8"	5/8"
	$6{ }^{\prime}$	2-1/4"	2-1/8"	2 "	1-7/8"	1-7/8"	1-3/4"	1-3/4"	1-5/8"	1-5/8"	1-1/2"	1-1/2"	1-3/8"	1-3/8"	1-3/8"	1-1/4"
	8'	3-7/8"	3-3/4"	3-1/2"	3-3/8"	3-1/4"	3-1/8"	$3{ }^{\prime \prime}$	2-7/8"	2-3/4"	2-3/4"	2-5/8"	2-1/2"	2-3/8"	2-3/8"	2-1/4"
		$175{ }^{\prime} 0$	180' 0 "	185' 0 "	190' 0"	195' 0"	$20010{ }^{\prime \prime}$	210' 0 "	220' 0 "	230' 0"	240' 0 "	250' 0 "				
	2^{\prime}	1/8"	1/8"	1/8"	1/8"	1/8"	1/8"	1/8"	1/8"	1/8"	1/8"	1/8"				
	4	5/8"	5/8"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	3/8"	3/8"	3/8"				
	61	1-1/4"	1-1/4"	1-1/4"	1-1/8"	1-1/8"	1-1/8"	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	7/8"	7/8"				
	8'	2-1/4"	2-1/8"	2-1/8"	2 "	2 "	2 "	1-7/8"	1-3/4"	1-5/8"	1-5/8"	1-1/2"				

1877 276-7876

Customer Service Representatives
7:45 a.m. to 5:00 p.m. EST
Monday through Friday
TechLine - Technical information, detail drawings, CAD design assistance, installation information, other technical services - 8:00 a.m. to 5:30 p.m. EST, Monday through Friday. FAX 18005728324 or email: techline@armstrongceilings.com
armstrongceilings.com/commercial
Latest product news
Standard and custom product information
Online catalog
CAD, Revit®, SketchUp ${ }^{\circledR}$ files
A Ceiling for Every Space ${ }^{\circledR}$ Visual Selection Tool
Product literature and samples - express service or regular delivery
Contacts - reps, where to buy, who will install

户ProjectWorks"

armstrongceilings.com/projectworks
The power of PROJECTWORKS® Design and Pre-Construction Service

Mix and match different sizes, shapes, colors, and materials to reinvent your standard, specialty, or custom ceiling.

Visit our pattern gallery online to see ideas for your next project. armstrongceilings.com/patterngallery
Contact your local representative to get a design started! Not sure who your local rep is? Visit armstrongceilings.com/findarep

