

Corporate Headquarters 13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598 www.eemcosteel.com

250VS125-30 VIPERSTUD

Geometric Properties

2-1/2" x 1-1/4" flange, 30 mil ViperStuds are manufactured from standard G40 hot-dipped galvanized steel. G60 and G90 coatings are available through special order, and may require up-charges and extended lead times.

Manufacturing Facilities

City of Industry, CA

Denver, CO

Ft. Worth, TX

Pittsburg, CA

Steel Thickness

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	"W" Web Sizes (in)	Coating ^{4,5}	Flange (in)	"L" Return Lip (in)
250VS125-30	0.0312	0.0296	33	2-1/2	G40	1-1/4	1/4

Notes: 1. Uncoated steel thickness. Thickness is for carbon sheet steel. 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness. 3. Knockout size for 2-1/2" Stud is 3/4" x 1-3/4".
4. Per ASTM C645 & A1003, Table 1.
5. G60 and G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 30 mil: Pink

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C645 & C754
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-2620 CBC: 2013, 2016, 2019
- IBC: 2012, 2015, 2018, 2021 AISI: S100, S220
- LEED v4 for Building and Design Construction
- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.

Gross Properties

rx

(in)

0.161 0.166 1.020 0.032 0.448

ly

(in⁴)

ry

(in)

- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

250VS125-30 ViperStud Properties

Weight

(lb/ft)

0.55

Notes: 1. Nominal Moments for Viper25 are based on testing.

Allowable moment (Ma) is calculated with safety factor of 1.81

in accordance with chapter F of AISI S100-16/S2-20 specification.

2. Nominal moment for Viper20, Viper 30mil, Viper 33mil and

Design

(in)

0.0312 0.0296

Min

(in)

Yield

(ksi)

33

Area

 (in^2)

lx

(in4)

conventional studs are based on calculations per AISI S100-16/S2-20. 3. Section properties are in accordance with AISI S100-16/S2-20. 4. Web depth-to-thickness ratio exceeds 200. 5. Web depth-to-

Sx

(in³)

0.120

Effective Properties

lxd

(in⁴)

0.163

thickness ratio exceeds 260. 6. ViperStud is considered fully braced

Allowable

Moment

Ma (in-k)

2.31

when the unbraced length is less than listed Lu. 7. $\mbox{K}\Phi$ assumed to be zero for distortional buckling moments.

Nominal Moment

for Conventional

Studs³

Mn (in-k)

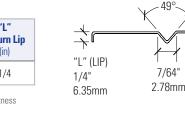
3.49 (30 mil)

Critical

Unbraced

Length⁷

Lu (in)


30.1

Non-Composite Limiting Heights – Braced at 48" O.C.

Depth		Member Designation	Design (in)	Min (in)	Yield (ksi)	Spacing (o.c.)	5 PSF			7.5 PSF			10 PSF		
(in)	Gauge						L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
		250VS125-30	0.0312	0.0296	33	12	16'-4"	12'-11"	11'-4"	13'-7" f	11'-4"	9'-11"	11'-10" f	10'-4"	9'-0"
2-1/2	20	250VS125-30	0.0312	0.0296	33	16	14'-5" f	11'-8"	10'-4"	11'-10" f	10'-4"	9'-0"	10'-2" f	9'-4"	8'-1"
		250VS125-30	0.0312	0.0296	33	24	11'-10" f	10'-4"	9'-0"	9'-7" f	9'-0"	7'-10"	8'-4" f	8'-1"	7'-1"

Notes: 1. Limiting heights are in accordance with AISI S100-16/ S2-20 using all steel non-composite design. 2. Limiting heights are established by considering flexure, shear, web crippling and deflection. 3. Lateral-Torsional buckling moments are based on section F of AISI S100-16/S2-20, with max discrete bracing of 48" o.c. 4. For web crippling, when h/ts 200, the web crippling values are computed based on section G6 of AISI S100-16/S2-20, when h/t>200, the web crippling values are based on testing with a bearing length of 1". 5. No web stiffeners are required for studs with h/t < 200, web crippling and shear values have been confirmed by testing. 6. The factory punchouts are in accordance with AISI standards. The distance from the center of the last punchout to the end of the stud is 12". 7. Use non-composite tables when 1/2 inch gypsum board, horizontal board, RC channel, furring channel, or sound clips are used. 8. Review fire rated assemblies for additional requirements.

"f" - flexure controls; "s" - shear controls; "w" - web crippling controls. No letter next to the number means deflection controls.

Moment

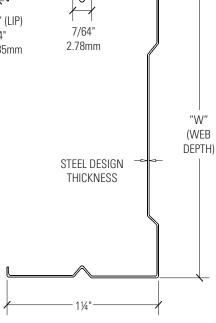
Distortional

Buckling Nominal

Moment² Viper

Mnd (in-k)

3.86


Local Buckling

Nominal Moment²

Viper

Mnl (in-k)

3.96

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598 www.cemcoengineering.com Technical Services 13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.416.2278

Fax: 626.249.5004

This technical information reflects the most current information available and supersedes any and all previous publications effective September 25, 2023.

Expanding Your Solutions

250VS125-30 VIPERSTUD

Corporate Headquarters 13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Denver, CO

Manufacturing Facilities City of Industry, CA Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598 www.cemcoengineering.com

Technical Services

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.416.2278 Fax: 626.249.5004

PAGE 2

Non-Composite Limiting Heights – Fully Braced

Phone: 800.775.2362

www.cemcosteel.com

Fax: 626.330.7598

Depth		Member Designation	Design (in)	Min (in)	Yield (ksi)	Spacing (o.c.)	5 PSF			7.5 PSF			10 PSF		
(in)	Gauge						L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
		250VS125-30	0.0312	0.0296	33	12	16'-2"	12'-11"	11'-4"	14'-2"	11'-4"	9'-10"	12'-5" f	10'-2"	8'-11"
2-1/2	20	250VS125-30	0.0312	0.0296	33	16	14'-8"	11'-8"	10'-2"	12'-5" f	10'-2"	8'-11"	10'-8" f	9'-4"	8'-1"
		250VS125-30	0.0312	0.0296	33	24	12'-5" f	10'-2"	8'-11"	10'-1" f	8'-11"	7'-10"	8'-10" f	8'-1"	7'-1"

Notes: 1. Limiting heights are in accordance with AISI S100-16/S2-20 using all steel non-composite design. 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection. 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less the Lu. See section properties table on page 5 for Lu values. 4. For web crippling, when $h/t \le 200$, the web crippling values are computed based on section G6 of AISI S100-16/S2-20, when h/t > 200, the web crippling values are based on testing with a bearing length of 1". 5. No web stiffeners are required for studs with h/t < 200, web crippling and shear values have been confirmed by testing. 6. The factory punchouts are in accordance with AISI standards. The distance from the center of the last punchout to the end of the stud is 12". 7. Use non-composite tables when 1/2 inch gypsum board, horizontal board, RC channel, furring channel, or sound clips are used. 8. Review fire rated assemblies for additional requirements.

"f" - flexure controls; "s" - shear controls; "w" - web crippling controls. No letter next to the number means deflection controls.

Allowable Composite Heights for Non-Load Bearing Walls

Depth		Member Designation	Design (in)	Min	Yield (ksi)	Spacing (o.c.)	5 PSF			7.5 PSF			10 PSF		
(in)	Gauge			(in)			L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
		250VS125-30	0.0312	0.0296	33	12	18'-9"	14'-10"	13'-0"	16'-4"	13'-0"	11'-4"	14'-10"	11'-10"	10'-4"
2-1/2	20	250VS125-30	0.0312	0.0296	33	16	17'-0"	13'-6"	11'-10"	14'-10"	11'-10"	10'-4"	13'-6"	10'-9"	9'-3"
		250VS125-30	0.0312	0.0296	33	24	14'-10"	11'-10"	10'-4"	12'-9"	10'-4"	8'-10"	11'-0"	9'-3"	

Notes: 1. Sheathing, as specified in Section 3.2.2, must be attached to both faces of the wall for the full height of the wall with the long dimension parallel to the studs. 2. Sheathing must be fastened to the studs with fasteners as specified in Section 3.2.3 and installed per Section 4.2.1. 3. Placement of joints in the gypsum sheathing must be in accordance with Sections 4.6.3 and 4.6.4 of GA-216 or Section 7.5 of ASTM C840. 4. The bottom and top tracks are xxxVT125 (solid flange

track). A minimum 30 mil slotted flange track (xxxCST250 or xxxSLT250) may be used for the top track. 5. End-bearing must be a minimum of 1 inch for xxxVT125 (solid flange track) and 1-5/8 inches for xxxCST250 or xxxSLT250 (slotted flange track). 6. Notes 1, 2, & 3 are referenced in ICC ESR 2620 page 5. 7. For any other top tracks not listed in note 4, please contact technical services for assistance

Allowable Ceiling Spans

L/240		4 PSF Lateral Support of Compression Flange							6 PSF Lateral Support of Compression Flange						
Member	Fy ksi	Unsupp	oorted Joist S (in.) O.C.	Spacing	Mids	pan Joist Sp (in.) O.C.	acing	Unsupported Joist Spacing Midspan Joist (in.) 0.C. (in.) 0.C					pacing		
		12	16	24	12	16	24	12	16	24	12	16	24		
250VS125-30	33	10'-4"f	9'-6"f	8'-6"f	13'-11	12'-8″	11'-1″	9′-2″f	8'-6"f	7′-7″f	12'-2"	11'-1″	9'-8"		

L/360		4 PSF Lateral Support of Compression Flange						6 PSF Lateral Support of Compression Flange						
Member	Fy ksi	Unsupp	oorted Joist S (in.) O.C.	Spacing	Mids	Midspan Joist Spacing (in.) O.C.			Unsupported Joist Spacing (in.) O.C.			Midspan Joist Spacing (in.) O.C.		
		12	16	24	12	16	24	12	16	24	12	16	24	
250VS125-30	33	10'-4"f	9'-6"f	8'-6"f	12'-2″	11'-1'	9'-8"f	9′-2″f	8'-6"f	7′-7″f	10'-8″	9'-8″	8'-5"	

Notes: 1. Ceiling Spans are in accordance with AISI S100-16/S2-20 using all steel non-composite design. 2. Ceiling Spans are established by considering flexure, shear, web crippling and deflection. 3. For web crippling, when $h/t \le 200$, the web crippling values are computed based on G6 of AISI S100-16/S2-20. When h/t > 200, the web crippling values are based on testing with a bearing length of 1". 4. No web stiffeners are required for studs with h/t < 200, web crippling and shear values have been confirmed by testing. 5. All values are for simple spans, with compression flange either unbraced or braced at midspan. 6. Ceiling spans are based on total load of assembly, not including storage or live load for accessible ceilings. 7. The factory punchouts are in accordance with AISI standards. The distance from the center of last punchout to the end of the stud is 12"

"f" - flexure controls; "s" - shear controls; "w" - web crippling controls. No letter next to the number means deflection controls

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9% ■ Post-Consumer: 19.8%

Pre-Consumer: 14.4%

CSI Division:

09.22.16 – Non-Structural Metal Framing

Check the updated list of Certified Production Facilities at Intertek's website at http://www.intertek.com/building/sfia

This technical information reflects the most current information available and supersedes any and all previous publications effective September 25, 2023. 09-25-23 AT