Manufacturing Facilities
City of Industry, CA
Denver, CO
Ft. Worth, TX
Pittsburg, CA

400VXS144-22 VIPER-X INTERIOR STUD

Geometric Properties

$4^{\prime \prime} \times 1-7 / 16^{\prime \prime}$ flange, Viper-X Studs are manufactured from standard G40 hot-dipped galvanized steel. G60 and G90 coatings are available through special order, and may require up-charges and extended lead times.

Steel Thickness

Member	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Web Sizes (in)	Coating4,5	Flange (in)	Return Lip (in)
$400 \mathrm{VXS144-22}$	0.0235	0.0223	57	4	$G 40$	$1-7 / 16$	$3 / 8$

Notes: 1. Uncoated steel thickness. Thickness is for carbon sheet steel. 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness. 3. Knockout size for $1-5 / 8^{\prime \prime}$ Stud is $3 / 4^{\prime \prime} \times 2^{\prime \prime}$. 4. Per ASTM C645 \& A1003, Table 1. 5. G 60 and G 90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): Pink \& Black

ASTM \& Code Standards:

■ ASTM A653/A653M, A924/A924M, A1003/1003, C645 \& C754, E119

- IAPMO ER-0524
- IBC: 2012, 2015, 2018, 2021

CBC: 2013, 2016, 2019

- AISI: S100, S220

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning

■ MR Credit: Construction and Demolition Waste Management.
■ MR Credit: Building Product Disclosure and Optimization - Sourcing of Raw Materials, Option 2.

- MR Credit: Building Product Disclosure and Optimization - Environmental Product Declarations, Options $1 \& 2$.
- MR Credit: Building Product Disclosure and Optimization - Material Ingredients, Option 1.

■ MR Credit: Building Life-Cycle Impact Reduction, Option 4.
CEMCO cold-formed steel framing products contain 30\% to 37\% recycled steel.
■ Total Recycled Content: 36.9\%
■ Post-Consumer: 19.8\%
Pre-Consumer: 14.4\%

Structural Engineering/Design
1001-A Pittsburgh Antioch Hwy
Pittsburg, CA 94565
Phone: 800.775.2362
Fax: 626.330.7598

Technical Services
13191 Crossroads Pkwy N., Ste 325
City of Industry, CA 91746
Phone: 800.416.2278
Fax: 626.249.5004

CSI Division: 09.22.16 - Non-Structural Metal Framing

400VXS144-22 Viper-X Section and Structural Properties

			Gross Properties						Effective Properties					Torsional Properties					Critical Unbraced Length, Lu (in)
Yield Stress (ksi)	Web Height, h (in)	\qquad	Weight (lb/ft)	Area (in ${ }^{2}$)	$\begin{gathered} 1 \mathrm{x} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{aligned} & \text { Rx } \\ & \text { (in) } \end{aligned}$	$\underset{\left(\mathrm{in}^{4}\right)}{\mathrm{ly}}$	Ry (in)	$\begin{aligned} & \text { Ixe } \\ & \left(\text { in }^{4}\right) \end{aligned}$	Sxe (in ${ }^{3}$)	$\begin{aligned} & \text { Ma-I } \\ & \text { (k-in) } \end{aligned}$	$\begin{aligned} & \text { Ma-d } \\ & \text { (k-in) } \end{aligned}$	Vag (k)	$\begin{gathered} \mathrm{J} \\ \left(\times 10^{-6}\right) \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} \text { Cw } \\ \left(\text { in }^{6}\right) \end{gathered}$	$\begin{gathered} \text { Xo } \\ \text { (in-k) } \end{gathered}$	$\begin{aligned} & \text { Ro } \\ & \text { (in-k) } \end{aligned}$	B	
57	4.000	0.0235	0.597	0.176	0.435	1.574	0.046	0.512	0.423	0.159	5.355	4.611	0.686	32.341	0.153	-0.970	1.918	0.744	26.76

Notes: 1. Web height to thickness ratio (h/t) exceeds 200. Web stiffeners required at all support points and concentrated loads. 2. Members having a web height to thickness ratio (h / t) value exceeding 260 will not have effective properties listed, only gross properties will be listed. 3. Web height value (h) used for h / t
calculation is the flat width of the web. For (S) members, this is the out to out member size, minus twice the thickness, minus twice the inside bend radius. 4. Members having a flange width to thickness ratio (b/t) value exceeding 60 must be considered for use with the limitations described in AISI S100 \& S220 section B1. 5. Flange

Non-Composite Limiting Heights - Braced at 48" O.C.

Depth (in)	Member	Yield (ksi)	Design Thickness (in)	Spacing O.C. (in)	5 PSF			7.5 PSF			10 PSF		
					L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
4	400VXS144-22	57	0.0235	12	$22^{\prime \prime} 4^{\prime \prime}$	17' 9"	15' 6 "	19'6"	15' 6 "	13' 6 "	17' 2'f $^{\text {f }}$	14' 1"	12' 4"
	400VXS144-22	57	0.0235	16	20'5"	16'3"	14' 2 "	17' $3^{\prime \prime} \mathrm{f}$	14' ${ }^{\prime \prime}$	12' 5"	14' 11" f	12' $11{ }^{\prime \prime}$	11'3"
	400VXS144-22	57	0.0235	24	17' 2" f	14'1"	12'4"	14' 0" f	12'3"	10' 9"	12' 2'f $^{\prime}$	11' ${ }^{\prime \prime}$	9' 9"

Notes: 1. Web height to thickness ratio (h/t) exceeds 200. Web stiffeners required at all support points and concentrated loads. 2. Lateral loads of $5 \mathrm{psf}, 7.5 \mathrm{psf}$, and 10 psf have NOT been reduced for strength or deflection checks. Full lateral load is applied. 3. Limiting heights are in accordance with AISI S100 \& S220 using
all steel non-composite design. 4. Limiting heights are established by considering flexure (f), web crippling (w) and deflection. $\mathbf{5}$. Allowable moment is the lesser of Mal and Mad. Stud distortional buckling based on an assumed $K \Phi=0$. 6. For bending, studs are assumed to be adequately braced to develop full allowable moment.
7. Web crippling check is based on AISI S100 \& S220 section C3.4.2 Condition 1: End One-Flange Loading with $1^{\prime \prime}$ end bearing.

Technical Services

13191 Crossroads Pkwy N., Ste 325
City of Industry, CA 91746
Phone: 800.416.2278
Fax: 626.249.5004

400VXS144-22 VIPER-X INTERIOR STUD

Non-Composite Limiting Heights - Fully Braced

Depth (in)	Member	Design (in)	$\underset{\text { (in) }}{\underset{\text { Min }}{ }}$	Yield (ksi)	Spacing (о.c.)	5 PSF			7.5 PSF			10 PSF		
						L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
4	400VXS144-22	0.0235	0.0223	57	12	22' 4"	17' 8"	$15^{\prime} 6{ }^{\prime \prime}$	19' 6"	15^{\prime} 6"	$13^{\prime} 6^{\prime \prime}$	17' 6" f	14'1"	12' ${ }^{\prime \prime}$
	400VXS144-22	0.0235	0.0223	57	16	20' 5"	16'3"	14' 2"	17' 6"f	14' ${ }^{\prime \prime}$	12' ${ }^{\prime \prime}$	15' 2 " f	12' 11"	11' 3"
	400VXS144-22	0.0235	0.0223	57	24	17' 6" f	14'1"	12' ${ }^{\prime \prime}$	14' $3^{\prime \prime} \mathrm{f}$	12'3"	10' 9"	12' 4" f	11' ${ }^{\prime \prime}$	9' 9"

Notes: 1. Web height to thickness ratio (h/t) exceeds 200. Web stiffeners required at all support points and concentrated loads. 2. Lateral loads of $5 \mathrm{psf}, 7.5 \mathrm{psf}$, and 10 psf have NOT been reduced for strength or deflection checks. Full lateral load is applied. 3. Limiting heights are in accordance with AISI S100 \& S220 using all steel non-composite design. 4. Limiting heights are established by
considering flexure (f), web crippling (w) and deflection. 5. Allowable moment is the lesser of Mal and Mad. Stud distortional buckling based on an assumed $K \Phi=0$. 6. For bending, studs are assumed to be adequately braced to develop full allowable moment. 7. Studs are fully braced when unbraced length is less than Lu. See section properties table for Lu values. 8. Web crippling check is based on

Allowable Composite Heights for Non-Load Bearing Walls

Depth (in)	Member	Design (in)	Min (in)	Yield (ksi)	Spacing (o.c.)	5 PSF			7.5 PSF			10 PSF		
						L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
4	400VXS144-22	0.0235	0.0223	57	12	24'-9"	19'-8"	17'-2"	21'-8"	19'-0"	15'-0"	19'-8"	15'-7"	13'-8"
	400VXS144-22	0.0235	0.0223	57	16	22'-6"	17'-11"	15'-8"	19'-8"	15'-8"	13'-8"	17'-9"	14'-2"	12'-5"
	400VXS144-22	0.0235	0.0223	57	24	19'-8"	15'-7"	13'-8"	16'-11"	13'-8"	11'-11"	15'-0"	12'-5"	10'-8"

Notes: 1. Viper composite limiting heights are based on testing in accordance with ICC-ES acceptance criteria AC86. 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection. 3. Mechanical fastening of gypsum panel to the stud and
track is required, except when installing a minimum 30 mil slotted track with 2-1/2" legs in lieu of standard track. 4. Viper-X composite limiting heights based on a single layer of $5 / 8^{\prime \prime}$ type X gypsum board applied vertically to both sides of the wall over full height. $5 / 8^{\prime \prime}$

AISI S100 \& S220 section C3.4.2 Condition 1: End One-Flange Loading with $1^{\prime \prime}$ end bearing

Screw Allowable Loads (lbs.)

Member	Design Thickness (in)	Min. Thickness (in)	Fy Yield (ksi)	$\stackrel{\mathrm{Fu}}{\text { Tensile }}$ (ksi)	\#6 SCREW (0.138" Dia; 0.25 " Head)		$\begin{gathered} \text { \#8 SCREW } \\ \text { (0.164" Dia; } \\ 0.3125^{\prime \prime} \text { Head) } \end{gathered}$		\#10 SCREW (0.190" Dia; 0.340" Head)		\#12 SCREW (0.216" Dia; 0.340 " Head)	
					Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension
400VXS144-22	0.0235	0.0223	57	65	$174{ }^{1}$	60	$184{ }^{1}$	71	$236{ }^{1}$	82	152	93

Notes: 1. Shear values are tested per AISI S100, S220 \& S905 procedure. 2. Capacities are based on section E4 of the AISI S100 \& S220 Specification. 3. Capacities are based on Allowable Strength Design (ASD). 4. Screw pull-out capacities are based on listed head diameter. 5. Two sheets of equal thickness and tensile strength are assumed in tabulated values. 6. When materials of different steel
thickness and tensile strength are connected, use the lowest value for shear capacity (tilting and bearing), for pull-out capacity use sheet closest to screw tip and for pull-over capacity use sheet closest to screw head. 7. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter. 8. Screws are assumed to have a center-of-screw
to edge-of-steel dimension of at least 1.5 times the nominal diameter of the screw. $\mathbf{9}$. When screws are subjected to combination of shear and tension forces, interaction equation of AISI S100 \& S220 Specification section E4.5 shall be used.

