SUSTAINABLE INSULATION®

UNFACED AND KRAFT FACED BATTS

Sustainable Insulation is proven fiber glass technology with 21st century renewable and recycled ingredients.

CertainTeed Corporation is the leading North American manufacturer of interior building materials including gypsum, ceilings, and insulation as well as exterior building materials including roofing, vinyl siding, trim, fence, railing, and decking products.

All CertainTeed insulation products improve building energy efficiency, helping to lower energy costs throughout the life of the structure. A typical pound of fiber glass like CertainTeed's Sustainable Insulation saves 12 times as much energy in its first year in place as the energy used to produce it. Then, it continues to conserve energy for the life of the building with no additional maintenance required. Sustainable Insulation can also improve overall occupant comfort through the reduced noise and privacy of increased acoustical performance.

For more, visit: www.certainteed.com/insulation

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically

address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environement						
DECLARATION HOLDER	CertainTeed Insulation						
DECLARATION NUMBER	4788647002.101.1						
DECLARED PRODUCT	Sustainable Insulation® Unfaced and	d Kraft Faced Batts					
REFERENCE PCR	UL Part B for Building Envelope Ther	mal Insulation v. 2.0 April 2018					
REFERENCE PCR	x EN 15804 (2012)						
STANDARD	☐ ISO 21930 (2007)						
017111071110	x ISO 21930 (2017)						
DATE OF ISSUE	January 1, 2019	January 1, 2019					
PERIOD OF VALIDITY	5 Years						
	Product definition and information ab	Product definition and information about building physics					
	Information about basic material and the material's origin						
	Description of the product's manufacture						
CONTENTS OF THE DECLARATION	Indication of product processing						
	Information about the in-use conditions						
	Life cycle assessment results						
	Testing results and verifications						
The PCR review was conducte	ed pv.	UL Environment					
The Fortiew was somewas	ou by.	PCR Peer Review Panel					
		Chair: Thomas Gloria, PhD					
This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories		Grant R. Martin					
☐ INTERNAL	⊠ EXTERNAL	Grant R. Martin, UL Environment					
This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:		Jane A. Nellert.					
		James Mellentine , Ramboll					

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Product Definition and Information

Description of Company

CertainTeed manufacturing facilities that produce Sustainable Insulation batts and are included in this EPD are:

Athens, GA	Chowchilla, CA
425 Athena Drive, Athens, GA 30601	17775 Ave 23½, Chowchilla, CA 93610

CertainTeed Insulation has well-established Environmental, Health, and Safety (EHS) and product stewardship programs, which help to enforce proper evaluation and monitoring of chemicals chosen to manufacture products. These programs ensure that all environmental and OSHA requirements are met or exceeded to ensure the health and safety of all employees and contractors. Both of the manufacturing facilities used in this assessment have ISO 9001 quality and ISO 14001 environmental management systems in place.

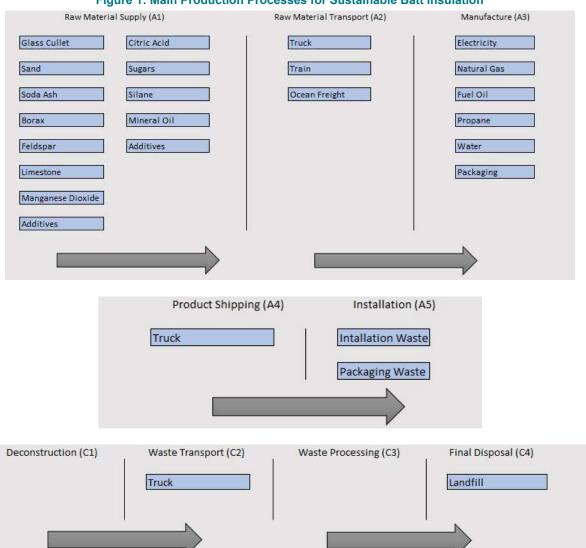
Product Description

CertainTeed is dedicated to Building Responsibly™ with fiber glass insulation products that are engineered, produced, and shipped with a commitment to minimizing environmental impact and improving energy savings. The CertainTeed Unfaced and Kraft Faced Sustainable Insulation® batt product line is an insulation material made of fiber glass that consists of renewable content, a high percentage of recycled glass, and a new plant-based binder that has no formaldehyde, harsh acrylics, dyes or unnecessary fire retardants added. The Kraft Faced batts also have one side covered with kraft paper, which is adhered with asphalt. Batt sizes R-8-38 are included in this EPD.

Features and Benefits

Sustainable Batt Insulation is ideal for floors, walls and ceilings in residential, commercial and institutional settings.

- Made in the USA
- Made using a renewable plant-based binder
- Made with recycled content (GreenCircle Certified)
- Helps create a healthy indoor environment (GREENGUARD certified)
- Fire-retardant and hightemperature resistant
- Durable, easy to install, zero maintenance



Sustainable Insulation® Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Product Flow Diagram

Figure 1: Main Production Processes for Sustainable Batt Insulation

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Product Average

The Athens and Chowchilla facilities are only two of the locations that produce the Sustainable Batt Insulation for CertainTeed in the United States. However, the Sustainable Batt Insulation is not the only product produced at these locations. Allocation of the product average was conducted based on the production mass data provided by the facilities as a percentage of the overall production mass at each facility.

Application and Uses

Sustainable Insulation is for residental, commercial, and institutional use. CertainTeed Sustainable Batt Insulation is available in both Unfaced and Kraft Faced insulation in a variety of R-values ranging from 8-38 with thicknesses ranging from 2 ½ to 12 inches. CertainTeed Sustainable Batt Insulation acts as both thermal and acoustical insulation in ceilings, walls, and floors.

The Kraft Faced Sustainable Batt Insulation products act as a vapor retarder to prevent the movement of vapor to colder surfaces where it can condense to water.

Methodological Framework

This is a cradle-to-grave EPD, with the use phase benefits reported separately as required by the product category rule.

Technical Requirements

Table 1: Technical Requirements for Sustainable Batt Insulation

Applicable Standards							
	Model Building Codes						
ICC		California quality	standards				
	Material S	tandards					
ASTM C533	ASTM C665		GREENGUARD®				
Type I, II	Type I, unfaced		Children & Schools Certified				
	C, Category 1,						
	Fire Res	istance					
Fire Hazard Classification:	Critical Radiant	Flux	Noncombustibility:				
ASTM E84 / Class A Fire Rated		ASTM E136					

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Product Delivery Properties

Sustainable Insulation is delivered to the site of installation compressed in packaging. Once removed from the packaging for installation, the product will decompress to the required thickness to deliver the stated R-value.

Material Composition

Table 2: Sustainable Batt Insulation Product Specifications

Component	Weight Percent	Weight Percent Resource Resource Renewable		Renewable	Origin	Transportation Distance (km)				
	Glass Batch									
Cullet	25% - 50%	Y			North America	50 - 700				
Sand	5% - 30%		Y		North America	100 - 400				
Soda Ash	5% - 15%		Y		North America	400 - 3000				
Borates	5% - 15%		Y		North America and Turkey	300 – 11,000				
Feldspar	5% - 20%		Υ		North America	100 - 300				
Limestone	<10%		Y		North America	200 - 2000				
Manganese Dioxide	<2%		Y		North America	450 - 3500				
Sodium Sulfate	<1%				North America	200 - 500				
Sodium Nitrate	<1%				China	7,000 – 10,000				
Fuel Oil	<1%				North America	50 - 150				
		Bi	nder	'						
Citric Acid	<30%			Y	North America	50 - 1000				
Sugars	40%-60%			Y	North America	50 – 1500				
Mineral Oil	10% - 20%				North America and China	1000 – 10,000				
Silane	<5%				North America	50 - 1000				
Additives	<5%				North America	50 - 500				
		·	acing	•						
Asphalt Coating	10% - 30%				North America	750 – 5,000				
Kraft Paper	10% - 40%			Υ	North America	750 – 5,000				

The main components of insulation are fiber glass, binder, and if applicable, facing. Fiber glass is primarily made from a variety of inorganic minerals. CertainTeed's Green Binder is organic and plant based. The binder contains no added formaldehyde, harsh acrylics, dyes or unnecessary fire retardant chemicals.

Sustainable Insulation® Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Manufacturing

To produce batt insulation, the glass component raw materials are melted and formed into the final product. The binder component raw materials are mixed and injected into the process, after which the product with the combined components is cured, sized, and then packaged.

RAW MATERIALS GLASS MELTING BATCH MIXING FROM TRUCK **FURNACE** AND TRAIN FIBERIZING AND FORMING HOOD FORMING CHAIN **BINDER** EDGE TRIM WITH BINDER **CURING OVEN** COOLING SLITTING CHOPPING **FACING ROLL UP PACKAGING** SHIPPING

Figure 2: Manufacturing Processes for Sustainable Batt Insulation

Packaging

The product is packaged in a plastic bags or sleeves, paper labels are affixed, then the packages are stacked, and the stack is wrapped in stretch wrap before final shipping

Transportation

Final products are transported on trucks throughout North America via standard freight trailers. An average distance of 1100 miles (1770 km) was used for this study.

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Installation

All CertainTeed
Sustainable Batt Insulation
is made for easy handling
and installation. For small
or irregularly shaped
spaces, all trimming can
be simply accomplished
with a utility knife. For
cathedral ceiling
installation, an air space
between the insulation and
the roof sheathing,
ventalated at ridge and
soffit is desirable.

Unfaced Sustainable Batt Insulation is made to be easily installed by pressure fitting between framing, with no fastening required.

Kraft Faced Sustainable Batt Insulation fits between wooden studs and joists with facing material toward the interior of the building.

and is then meant to be pulled taut and stapled every 8-12 inches. Between metal studs, faced insulation in friction fit, and stapling flanges should be folded in, or SpeedyR™ tabless batts should be used.

Health, Safety, and Environmental Aspects during Installation

Fiber glass insulation may cause temporary skin and respiratory irritation. During installation it is recommended that eye protection, disposable dust masks, gloves, hats, long sleeves and long pants are worn.

Use

During its service life, insulation significantly reduces the energy use in a building, reducing the overall impact on the environment. The environmental benefits of the use-phase of insulation can be significant, and the exclusion of such benefits would severely underestimate the benefits that insulation has on the environment. The energy savings benefits of Sustainable Insulation are reported separately.

Once installed Sustainable Insulation requires no maintenance, repair, replacement, or refurbishment.

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Reference Service Life

The Reference Service Life of Sustainable Batt Insulation is 75 years, which is also the Estimated Building Service Life.

Re-Use Phase

At this time there are no scenarios for re-use or recycling of batt insulation at the end of its useful life.

Disposal

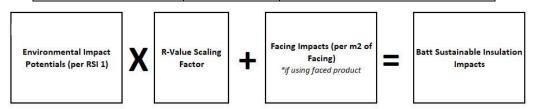
Sustainable Insulation is usually deconstructed and loaded onto a truck or dumpster at the decomissioning of a building. The product is modeled as being disposed of in a landfill. There are currently no end-of-life recycling programs formally established across the industry.

Extraordinary Effects

There are no extraordinary effects or environmental impacts associated with the destruction of Sustainable Insulation by fire, water, or mechanical destruction.

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804


LCA Calculation

Functional Unit

Environmental impacts are reported per functional unit of a product and the functional unit is the basis for comparison in an LCA. For building insulation, the functional unit is defined as 1 m^2 of installed insulation material with a thinckness that gives an average thermal resistance RSI = 1 m^2 K/W and with a buildind service life of 75 years (packaging included).

Table 3: Functional Unit for Sustainable Insulation

	Value	Unit
Functional Unit		ion with a thickness that gives an all resistance RSI = 1 m²K/W
Mass	0.488	kg
Thickness to achieve	2.699	in
Functional Unit	6.856	cm
	0.069	m

Scaling factors can be used to determine the impacts of each R-value of batt insulation. The scaling factors are based on the density and thickness of the CertainTeed Batt Sustainable Insulation products produced in the United States and can be used to determine the impacts for each R-value based on the functional unit. To calculate the environmental impact potentials per square meter of product, simply multiply the results presented for the base functional unit RSI 1 value by the scaling factor shown for the specific R-value. If the product includes facing material, add the environmental impact potentials per square meter of facing to the results.

R-Value	Thickness	Scaling Factor
R-8	6.35 cm (2.5 in)	1.334
R-11	8.89 cm (3.5 in)	1.665
R-13	8.89 cm (3.5 in)	2.360
R-15	8.89 cm (3.5 in)	4.136
R-19	15.875 cm (6.25 in)	2.588
R-20	13.97 cm (5.5 in)	3.904
R-21	13.97 cm (5.5 in)	4.003
R-22	16.51 cm (6.5 in)	3.562
R-25	20.32 cm (8 in)	3.772
R-30	25.4 cm (10 in)	4.136
R-30	20.955 cm (8.25 in)	4.882
R-38	30.48 cm (12 in)	5.481
R-38	26.035 cm (10.25 in)	6.727

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

System Boundary

The life cycle analysis for the production of batt insulation comprises the life cycle stages from cradle-to-grave. It begins with the production of batt insulation (extraction of raw materials, product manufacturing and packaging), product shipping, installation and use, and end-of-life stages.

Table 4: System Boundary for Sustainable Batt Insulation LCA

	Description of the System Boundary (X=included in LCA: MND=module not declared)															
Produ	uct Sta	ge	Construction Process Stage Use Stage End of			Jse Stage					End of Life Stage			Benefits & Loads Beyond System Boundaries		
Raw Material Supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	esna	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-construction demolition	Transport	Waste Processing	Disposal	Reuse-Recover-Recycling Potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	X	Χ	Х	Χ	Х	Χ	X	MND	MND	X	Х	Х	Х	MND

Assumptions

Life cycle assessment requires that assumptions are made to constrain the project boundary or model processes when little to no data is available. In this study of Sustainable Batt Insulation, the following asumptions were made:

- 40% water evaporation rate during production
- Truck transportation of manufacturing waste to landfill 50 miles
- 1% installation waste, since installers commonly use scrap pieces to fill other gaps such that very little scrap remains
- Installation is done by hand, requiring no external energy input

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Cut-Off Rules

Processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. The sum of the neglected processes may not exceed 5% by mass of the considered impact categories, for that a documented assumption is admissible.

For hazardous substances, as defined by the U.S. Resource Conservation and Recovery Act (RCRA), the following requirements apply:

- The Life Cycle Inventory (LCI) of hazardous substances will be included, if the inventory is available.
- If the LCI for a hazardous substance is not available, the substance will appear as an input in the LCI of the product, if its mass represents more than 0.1% of the product composition.
- If the LCI of a hazardous substance is approximated by modeling another substance, documentation will be provided.

This EPD is in compliance with the cut-off criteria since no known processes were neglected or excluded from this analysis. Capital items for the production processes (machines, buildings, etc.) were not taken into consideration.

Data Sources and Quality

For the data used in this LCA, the data quality is considered to be of good quality. The data and data sets cover all relevant process steps and technologies over the supply chain of the represented Sustainable Batt Insulation products. The majority of secondary data sets are from the Thinkstep GaBi 8.2 database, with additional inputs from USLCI and Ecoinvent v3 when necessary. Wherever secondary data are used, the study adopts critically reviewed data where ever possible for consistency, precision, and reproducibility to limit uncertainty. The data used are complete and representative of North America in terms of geographic and technological coverage and is of a recent vintage, i.e. ess than ten years old.

Period Under Review

The data used in the study refer to the production processes of the Athens, GA and Chowchilla, CA facilities from January 2017 through December 2017.

Allocation

Energy and water allocation for this study were based on the production mass volume at each facility. Both facilities produce sustainable insulation. Results were calculted based on a weighted average of the facilities.

Environment

Sustainable Insulation® Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

LCA Scenarios and Additional Technical Information

Table 5: Transport to the Building Site (A4)

Transport to the Building Site	Unit	Value
Fuel type	-	Diesel
Liters of fuel	l/100km	30
Vehicle type	-	Standard Freight Trailer
Transport Distance	km	1770
Capacity utilization	%	40
Gross density of product transported	kg/m³	24.79

Table 6: Installation into the Building (A5)

Installation into the Building	Unit	Value
Ancillary materials	kg	0
Net freshwater consumption	m ³	0
Other resources	kg	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Product loss per functional unit	kg	0.007
Waste materials at the construction site before waste processing, generated by product installation	kg	0
Output materials resulting from on-site waste processing	kg	0
Biogenic carbon contained in packaging	kg CO ₂	n/a
Direct emissions to ambient air, soil, and water	kg	0
VOC content	mg/m³	< 0.22

Sustainable Insulation® Unfaced and Kraft Faced Batts

Table 7: Reference Service Life

Parameter	Unit	Value
RSL	Years	75
Declared product properties		Thermal fiberglass insulation
Design application parameters	-	N/A
An assumed quality of work wen installed in accordance with manufacturer's instructions	-	N/A
Outdoor environment	-	N/A
Indoor environment	-	N/A
Use conditions	-	Interior use only
Maintenance	-	None required

Table 8: Maintenance (B2)

Parameter	Unit	Value
Maintenance process information	-	None required
Maintenance cycle	Number/RSL	0
Maintenance cycle	Number/ESL	0
New freshwater consumption	m ³	0
Ancillary materials	kg	0
Other resources	kg	0
Energy input	kWh	0
Other energy carriers	kWh	0
Power output of equipment	kW	0
Waste materials from maintenance	kg	0
Direct emissions to ambient air, soil, and water	kg	0
Further assumptions	-	N/A

Sustainable Insulation® Unfaced and Kraft Faced Batts

Table 9: Repair (B3)

Parameter	Unit	Value
Repair process information	-	None required
Inspection process information	-	None required
Repair cycle	Number/RSL	0
Repair cycle	Number/ESL	0
Net freshwater consumption	m ³	0
Ancillary materials	kg	0
Energy input	kWh	0
Waste materials from repair	kg	0
Direct emissions to ambient air, soil, and water	kg	0
Further assumptions	-	N/A

Table 10: Replacement (B4)

Parameter	Unit	Value
Replacement cycle	Number/RSL	0
Replacement cycle	Number/ESL	0
Energy input	kWh	0
New freshwater consumption	m ³	0
Ancillary materials	kg	0
Replacement of worn parts	kg	0
Direct emissions to ambient air, soil, and water	kg	0
Further assumptions	-	N/A

Sustainable Insulation® Unfaced and Kraft Faced Batts

Table 11: Refurbishment (B5)

Parameter	Unit	Value
Refurbishment process description	-	None required
Replacement cycle	Number/RSL	0
Replacement cycle	Number/ESL	0
Energy input	kWh	0
Net freshwater consumption	m ³	0
Material input for refurbishment	kg	0
Waste material	kg	0
Direct emissions to ambient air, soil, and water	kg	0
Further assumptions	-	N/A

Table 12: End of Life (C1-C4)

Parameter		Unit	Value		
Assumptions for s	Assumptions for scenario development		Deconstruction by hand, disposal inert in landfill transported by truck		
	Collected separately (w/o facing)	kg	0.732		
Collection process	Collected separately (w/ facing)	kg	0.981		
	Collected with mixed construction waste	kg	0		
	Reuse	kg	0		
	Recycling	kg	0		
Recovery	Landfill	kg	0		
recovery	Incineration	kg	0		
	Incinerations with energy recovery	kg	0		
	Energy conversion efficiency rate	-	0		
	Product or material for final deposition (w/o facing)	kg	0.732		
Disposal	Product or material for final deposition (w/ facing)	kg	0.981		
	Removals of biogenic carbon (excluding packaging)	kg CO ₂	0		

Sustainable Insulation® Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

LCA Results

Use of Material and Energy Resources

Table 13: Primary Energy & Material Resource Use for Sustainable Batt Insulation

Table 1011 Illinary Energy a material resource essenti			
Parameter	Unit	Batt Insulation w/o Facing	Batt Insulation w/ Facing
RPR _E : Renewable primary energy used as energy carrier (fuel)	MJ	1.63E+00	5.26E+00
RPR _M : Renewable primary resources with energy content used as material	MJ	4.88E-03	4.78E-02
RPR _T : Total use of renewable primary resources with energy content	MJ	1.64E+00	5.31E+00
NRPR _E : Non-renewable primary resources used as an energy carrier (fuel)	MJ	1.79E+01	2.63E+01
NRPR _M : Non-renewable primary resources with energy content used as material	MJ	1.98E-04	3.29E-04
NRPR _T : Total use of non-renewable primary resources with energy content	MJ	1.79E+01	2.63E+01
SM: Secondary materials	kg	3.61E-01	3.61E-01
RSF: Renewable secondary fuels	MJ	0.00E+00	0.00E+00
NRSF: Non-renewable secondary fuels	MJ	0.00E+00	0.00E+00
RE: Recovered energy	MJ	0.00E+00	0.00E+00
FW: Use of net fresh water resources	m ³	7.32E-03	9.22E-03

Figure 3: Renewable Energy by Source for Unfaced Batts

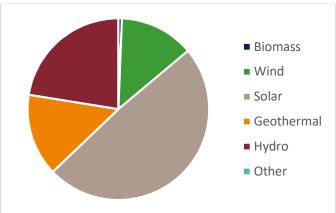
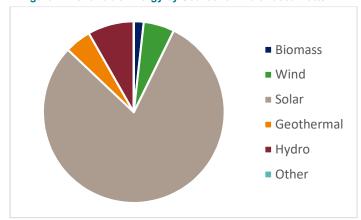



Figure 4: Renewable Energy by Source for Kraft Faced Batts

Sustainable Insulation® Unfaced and Kraft Faced Batts

Figure 5: Non-Renewable Energy by Source for Unfaced Batts

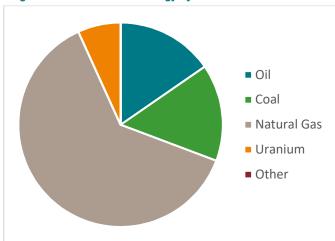


Figure 6: Non-Renewable Energy by Source for Kraft Faced Batts

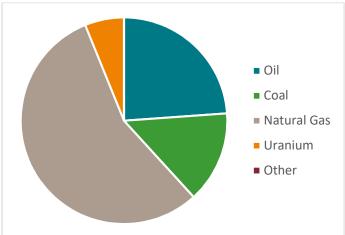


Figure 7: Primary Energy by Life Cycle Stage for Unfaced Batt Insulation

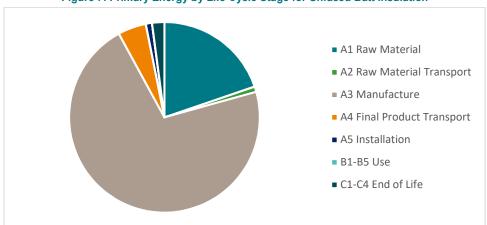
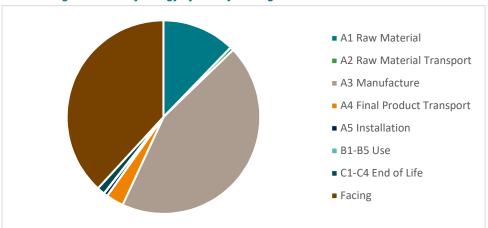



Figure 8: Primary Energy by Life Cycle Stage for Kraft Faced Batt Insulation

Sustainable Insulation® Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Output Flows and Waste Categories

Table 14: Output Flows and Waste Categories for Sustainable Batt Insulation

Parameter	Unit	Batt Insulation w/o Facing	Batt Insulation w/ Facing
Hazardous waste disposed	kg	1.75E-08	6.58E-08
Non-hazardous waste disposed	kg	5.57E-01	8.15E-01
High level radioactive waste, conditioned, to final repository	kg	4.57E-04	5.72E-04
Intermediate and low level radioactive waste, conditioned, to final repository	kg	0.00E+00	0.00E+00
Components for re-use	kg	0.00E+00	0.00E+00
Materials for recycling	kg	0.00E+00	0.00E+00
Materials for energy recovery	kg	0.00E+00	0.00E+00
Exported energy	MJ	0.00E+00	0.00E+00

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Life Cycle Impact Assessment

Table 15: TRACI Environmental Impact Potentials for Unfaced Sustainable Batt Insulation (North America)

Impact Category	Unit	Raw Materials	Raw Material Transport	Manufacture	Final Product Shipping	Installation	End of Life Transport	End of Life Disposal	Additional Facing
		A1	A2	A3	A4	A5	C2	C4	
GWP (T)	kg CO ₂ eq	2.02E-01	1.69E-02	7.21E-01	6.42E-02	1.11E-02	2.92E-03	2.18E-02	5.19E-01
ODP (T)	kg CFC 11 eq	2.15E-09	1.41E-13	1.22E-10	5.69E-13	2.27E-11	2.58E-14	3.34E-13	2.45E-09
AP (T)	kg SO₂ eq	9.69E-04	2.18E-04	1.61E-03	2.99E-04	3.14E-05	1.36E-05	9.98E-05	1.94E-03
EP (T)	kg N eq	1.85E-04	1.03E-05	9.63E-05	2.46E-05	3.12E-06	1.12E-06	5.07E-06	2.25E-04
POCP (T)	kg O₃ eq	1.03E-02	5.04E-03	3.36E-02	9.90E-03	5.40E-04	4.50E-04	1.97E-03	3.32E-02
ADP _{fossil} (T)	MJ	3.38E-01	3.12E-02	1.53E+00	1.22E-01	2.23E-02	5.55E-03	4.29E-02	1.01E+00

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Table 16: CML Environmental Impact Potentials for Unfaced Sustainable Batt Insulation (Europe)

Impact Category	Unit	Raw Materials	Raw Material Transport	Manufacture	Final Product Shipping	Installation	End of Life Transport	End of Life Disposal	Additional Facing
		A1	A2	A3	A4	A5	C2	C4	
GWP (C)	kg CO₂ eq	2.03E-01	1.69E-02	7.27E-01	6.44E-02	1.12E-02	2.93E-03	2.19E-02	5.18E-01
ODP (C)	kg CFC 11 eq	1.78E-09	1.33E-13	1.14E-10	5.35E-13	1.89E-11	2.43E-14	3.14E-13	1.91E-09
AP (C)	kg SO ₂ eq	8.94E-04	1.94E-04	1.41E-03	2.23E-04	2.83E-05	1.01E-05	9.22E-05	1.76E-03
EP (C)	kg (PO4)3 eq	1.59E-04	2.81E-05	1.98E-04	5.98E-05	4.26E-06	2.72E-06	1.18E-05	3.03E-04
POCP (C)	kg ethane eq	6.81E-05	1.29E-05	1.38E-04	2.29E-05	2.36E-06	1.04E-06	7.90E-06	1.76E-04
ADP _{elements} (C)	kg Sb eq	6.79E-05	2.75E-09	3.30E-07	1.10E-08	6.83E-07	5.00E-10	8.89E-09	9.47E-06
ADP _{fossil} (C)	MJ	3.15E+00	2.31E-01	1.19E+01	9.07E-01	1.78E-01	4.12E-02	3.34E-01	5.18E-01

Sustainable Insulation® Unfaced and Kraft Faced Batts

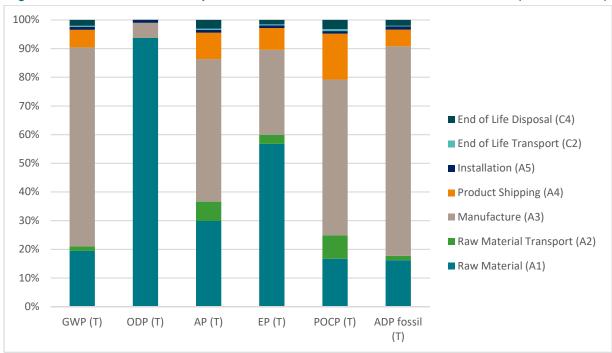
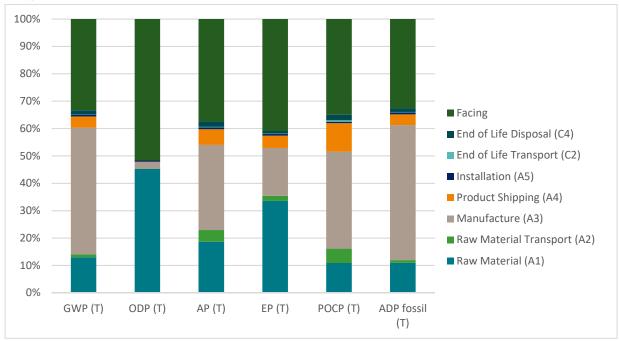
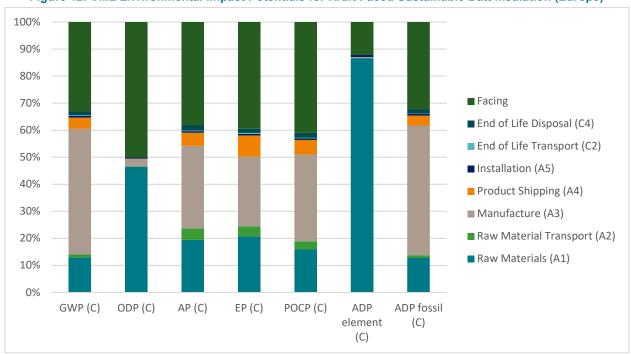



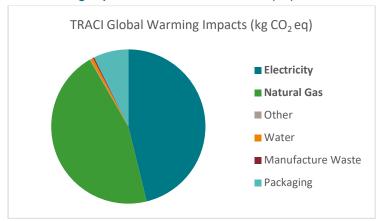
Figure 9: TRACI Environmental Impact Potentials for Unfaced Sustainable Batt Insulation (North America)



Sustainable Insulation® Unfaced and Kraft Faced Batts

100% 90% 80% 70% ■ End of Life Disposal (C4) 60% ■ End of Life Transport (C2) 50% ■ Installation (A5) ■ Product Shipping (A4) 40% ■ Manufacture (A3) 30% ■ Raw Material Transport (A2) 20% ■ Raw Materials (A1) 10% 0% GWP (C) EP (C) ADP fossil ODP (C) AP (C) POCP (C) ADP element (C) (C)

Figure 11: CML Environmental Impact Potentials for Unfaced Sustainable Batt Insulation (North America)


Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

LCA Interpretation

The life cycle impacts are strongly driven by the manufacturing process and raw materials, Modules A1-A3. This is due to the high energy use needed for the melting of the glass used in the fiberglass process.

Figure 13: Global Warming Impacts within the Manufacture (A3) Process for Batt Insulation

In addition, if using insulation with facing, the impacts of the facing material show a significant contribution to the overall impact of the product.

TRACI Global Warming Impacts (kg CO₂ eq)

■ Insulation Material

■ Facing Material

Figure 14: Illustration of Global Warming Impacts of Insulation Material vs Facing Material

Sustainable Insulation® Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Optional Environmental Information

- GREEN GUARD Gold
- Green Circle Certified
- National Green Building Standard certified by the Home Innovation Research Center
- Sustainable Forestry Initiative (SFI) Certification
- CertainTeed is an Energy Star Seal and Insulate Preferred Product

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

Building Use Stage Benefits

Sustainble Insulation requires no additional energy or maintenance in order to perform during the service life. In addition, insulation reduces the energy burden associated with heating and cooling a building. To demonstrate the use stage benefits of CertainTeed Sustainable Insulation, an energy analysis was conducted using the Home Energy Saver (HES) web-based energy audit tool developed by the U.S. Department of Energy's Lawrence Berkeley National Laboratory. The cities analyzed were Houston, TX, Richmond, VA, and Minneapolis, MN. The following table shows the projected annual and 75 year use phase whole house energy savings and global warming savings when installing CertainTeed Sustainable Insulation in a two-story, 2400 square foot house.

Table 17: Use Stage Analysis for Sustainable Batt Insulation

Tuble 17. One diago Analysis for dustantable Batt insulation							
	Houston, TX	Richmond, VA	Minneapolis, MN				
Annual Energy Savings (MJ)	4.01E+04	4.19E+04	1.60E+05				
Annual Global Warming Savings (kg CO₂ eq)	2.94E+03	5.47E+03	8.87E+03				
Energy Savings over 75 year Use Phase (MJ)	3.01E+06	3.15E+06	1.20E+07				
Global Warming Savings over 75 year Use Phase (kg CO ₂ eq)	2.20E+05	4.10E+05	6.66E+05				
Total Life Cycle Energy for Insulation Used (MJ)	1.83E+04	1.83E+04	1.83E+04				
Total Life Cycle Global Warming Potential for Insulation Used (kg CO ₂ eq)	9.71E+02	9.71E+02	9.71E+02				
Overall Energy Savings (MJ)	2.99E+06	3.13E+06	1.20E+07				
Overall Global Warming Savings (kg CO2 eq)	2.20E+05	4.10E+05	6.65E+05				

Sustainable Insulation®
Unfaced and Kraft Faced Batts

According to ISO 14025, ISO 21930:2017, and EN 15804

References

- Product Category Rules for Building-Related Product and Services: Part A Life Cycle Assessment Calculation Rules and Report Requirements, Version 3.2 2018. UL Environment.
- Product Category Rule Guidance for Building Related Products and Services: Part B Building Envelope Thermal Insulation EPD Requirements. Version 2.0, 2018. UL Environment.
- ISO 14040: 2006 Series Environmental Management Life Cycle Assessment
- ISO 21930:2017

 Sustainability in building construction

 Environmental declaration of building products
- EN 15804 Sustainability of construction works Environmental Product Declarations Core rules for the product category of construction products
- Home Energy Saver, US. Department of Energy: http://hes.lbl.gov/
- ASTM Standard Specification C553 11 Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications
- ASTM Standard Specification C665 12 Standard Specification for Mineral Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing
- ASTM Standard Specification E84 12 Standard Test Method for Surface Burning Characteristics of Building Materials
- ASTM Standard Specification E790 08 Standard Test Method for Residual Moisture in a Refuse-Derived Fuel Analysis Sample
- ASTM Standard Specificiation E136 12 Standard Tesh Method for Behavior of Materials in a Vertical Tube Furnace at 750°C
- ASMT Standard Specification C518-10 Standard Test Method for Steady-State Thermal Transmission properties of means of Heat Flow Meter Apparatus

LCA Development

This EPD and the corresponding LCA were prepared by Saint-Gobain North America in Malvern, PA

Contact CertainTeed

For more information, please visit http://www.certainteed.com/insulation

