ADHESIVES

GENERAL INFORMATION

AC100+ GOLD®

Vinylester Injection Adhesive Anchoring System

PRODUCT DESCRIPTION

The AC100+ Gold is a two-component vinylester adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The adhesive is designed for bonding threaded rod and reinforcing bar elements into drilled holes in concrete and masonry base materials. It can be considered for use in solid base materials as well as hollow base materials with screen tubes.

GENERAL APPLICATIONS AND USES

- Bonding threaded rod and reinforcing bar into hardened concrete and masonry
- Evaluated for use in drv and water-saturated concrete (including water filled holes)
- Suitable to resist loads in cracked or uncracked concrete base materials
- Adhesive system can be installed in a wide range of base material temperatures: qualified for anchoring applications as low as 14°F (-10°C)
- Tested and gualified for wind and seismic loading (SDC A F)

FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Consistent performance in low and high strength concrete
- + Evaluated and recognized for freeze/thaw performance and sustained loading
- + Evaluated and recognized for a range of embedments
- + Versatile low odor formula with optimized cure time
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Universal product for concrete and masonry (hollow and solid base materials)

APPROVALS AND LISTIN

- International Code Council, Evaluation Service (ICC-ES) ESR-2582 for concrete
- International Code Council, Evaluation Service (ICC-ES) ESR-3200 for masonry
- International Code Council, Evaluation Service (ICC-ES) ESR-4105 for Unreinforced Masonry (URM)
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ASTM E488 / ACI 355.4 and ICC-ES AC308 for use in structural concrete with design according to ACI 318 (-19 & -14) Chapter 17 and ACI 318 Appendix D
- Tested in accordance with ICC-ES AC58 and ICC-ES AC60 for use in masonry walls
- Compliant with NSF/ANSI Standard 61 for drinking water system components health effects
- Compliant to California DPH for VOC emissions and South Coast AQMD for VOC content (LEED v4.1)
- Conforms to requirements of ASTM C881 including C882 and AASHTO M235, Types I, II, IV and V, Grade 3, Class A and conforms to requirements of ASTM C881 Types I and IV, Grade 3, Class B
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

GUIDE SPECIFICATION

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Adhesive anchoring system shall be AC100+ Gold as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

1-800-4 DEWALT

IIRM

SECTION CONTENTS

General Information1
Installation Specifications2
Performance Data (ASD)3
Strength Design Information 10
Design Strength Tables (SD)15
Installation Instructions (Solid Base Materials)19
Installation Instructions (Unreinforced Masonry [URM Walls] and Hollow Base Materials)20
Reference Installation Tables21
Ordering Information22

AC100+ GOLD ADHESIVE IN CARTRIDGE (STANDARD THREADED ROD AND REBAR STEEL SUPPLIED BY OTHERS)

PACKAGING (10:1 MIX RATIO)

Coaxial Cartridge

- 9.5 fl. oz. (280 mL or 17.1 in³)
- 14 fl. oz. (420 mL or 25.6 in³)

Dual Cartridge (side-by-side)

• 28 fl. oz. (825 mL or 50.3 in³)

STORAGE LIFE & CONDITIONS

Eighteen months in a dry, dark environment with temperature ranging from 32°F and 86°F (-0°C to 30°C)

ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete
- Grouted concrete masonry (CMU)
- Hollow concrete masonry (CMU)
- Hollow core concrete
- Brick masonry
- Unreinforced Masonry (URM Walls)

PERMISSIBLE INSTALLATION **CONDITIONS (ADHESIVE)**

- Dry concrete
- Water-saturated concrete (wet)
- Water-filled holes (flooded)

TECHNICAL GUIDE – ADHESIVES © 2024 DEWALT – REV.

INSTALLATION SPECIFICATIONS

Installation Table for AC100+ Gold (Solid Concrete Base Materials)

Parameter	Symbol	Units	Fractional Nominal Rod Diameter (Inch) / Reinforcing Bar Size									
Falantet	Syllinoi		3/8 or #3	1/2	#4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4	#10
Threaded rod outside diameter	da (d)	inch (mm)	0.375 (9.5)	0.5 (12	600 2.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	-	1.250 (31.8)	-
Rebar nominal outside diameter	da (d)	inch (mm)	0.375 (9.5)	0.5 (12		0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	-	1.250 (31.8)
Nominal drill bit size (ANSI) ⁶	d₀ (dbit)	inch	7/16	9/16	5/8	11/16 or 3/4	7/8	1	1-1/8	1-3/8	1-3/8	1-1/2
Minimum embedment ¹	hef,min	inch (mm)	2-3/8 (60)	2-3 (7		3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)	5 (127)
Maximum embedment ¹	hef,max	inch (mm)	4-1/2 (114)	6 (15		7-1/2 (191)	9 (229)	10-1/2 (267)	12 (305)	13-1/2 (343)	15 (381)	15 (381)
Minimum member thickness	hmin	inch (mm)		- 1-1/4 + 30)					hef + 2d₀			
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2-1 (6		3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Minimum edge distance (up to 100% T _{max})	Cmin	inch (mm)	1-7/8 (48)	2-1 (6		3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Max. rod torque ²	T _{max}	ft-lbs	15	3	3	60	105	125	165	-	280	-
Minimum edge distance, reduced ^{4,5}	Cmin,red	inch (mm)	1-3/4 (45)	1-3 (4		1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)	2-3/4 (70)
Max. torque ^{2,3} (low strength rods)	Tmax,ls-rod	ft-lbs	7	2	0	40	60	100	165	-	280	-

 $\label{eq:source} \mbox{For pound-inch units: 1 mm} = 0.03937 \mbox{ inch, 1 N-m} = 0.7375 \mbox{ ft-lbf. For Sl: 1 inch} = 25.4 \mbox{ mm, 1 ft-lbf} = 1.356 \mbox{ N-m}.$

1. Embedment range qualified for use with the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D as applicable and ICC-ES AC308, and ESR-2582.

2. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

3. These torque values apply to ASTM A36 / F1554 Grade 36 carbon steel threaded rods and ASTM A193 Grade B8/B8M (Class 1) stainless steel threaded rods.

4. For installation below the minimum edge distance, cmin, down to the reduced minimum edge distance, cmin,red, the reduced maximum torque is 0.45*Tmax.

5. For installations down to the reduced minimum edge distance, $_{\text{Cmin,red}}$, the minimum anchor spacing, $_{\text{Smin}}$, is 5da.

6. The listed drill bit sizes are also applicable to installations into grouted concrete masonry.

Installation Table for AC100+ Gold (Hollow Base Material with Screen Tube)

Symbol	ol Units Nominal Tube Size - Stainless Steel Nominal Tube Size -									- Plastic
-	in.	1/4	3/8	1/2	5/8	3.	/4	3/8	1/2	5/8
d	in.	0.250	0.375	0.500	0.625	0.7	0.750		0.500	0.625
-	No.	-	-	#3	#4	#5	#6	-	-	-
d	in.	-	-	0.375	0.500	0.625	0.750	-	-	-
-	in.	1/4	3/8	1/2	5/8	3/4	15/16	3/8	1/2	5/8
dbit	in.	3/8	1/2	5/8	3/4	7/8	1	9/16	3/4	7/8
T _{max}	ft-lbs	3	6	10	10	10	10	5	8	8
	- d - d - d bit	- in. d in. - No. d in. - in. dut in.	- in. 1/4 d in. 0.250 - No. - d in. - d in. 1/4 d_bit in. 3/8	- in. 1/4 3/8 d in. 0.250 0.375 - No. - - d in. - - d in. - - d in. 1/4 3/8 d in. 1/4 3/8 dbit in. 3/8 1/2	- in. 1/4 3/8 1/2 d in. 0.250 0.375 0.500 - No. - - #3 d in. - - 0.375 - No. - - 0.375 d in. - - 0.375 - in. 1/4 3/8 1/2 dbit in. 3/8 1/2 5/8	- in. 1/4 3/8 1/2 5/8 d in. 0.250 0.375 0.500 0.625 . No. - - #3 #4 d in. - - 0.375 0.500 - No. - - #3 #4 d in. - - 0.375 0.500 - in. 1/4 3/8 1/2 5/8 d _{oit} in. 3/8 1/2 5/8 3/4	- in. 1/4 3/8 1/2 5/8 3. d in. 0.250 0.375 0.500 0.625 0.7 - No. - - #3 #4 #5 d in. - - 0.375 0.500 0.625 - No. - - #3 #4 #5 d in. - - 0.375 0.500 0.625 - in. 1/4 3/8 1/2 5/8 3/4 dbit in. 3/8 1/2 5/8 3/4 7/8	- in. 1/4 3/8 1/2 5/8 3/4 d in. 0.250 0.375 0.500 0.625 0.750 - No. - - #3 #4 #5 #6 d in. - - 0.375 0.500 0.625 0.750 - No. - - #3 #4 #5 #6 d in. - - 0.375 0.500 0.625 0.750 - in. 1/4 3/8 1/2 5/8 3/4 15/16 dbit in. 3/8 1/2 5/8 3/4 7/8 1	- in. 1/4 3/8 1/2 5/8 3/4 3/8 d in. 0.250 0.375 0.500 0.625 0.75∪ 0.375 . No. - - #3 #4 #5 #6 - d in. - - 0.375 0.500 0.625 0.750 - d in. - - #3 #4 #5 #6 - d in. - - 0.375 0.500 0.625 0.750 - - in. 1/4 3/8 1/2 5/8 3/4 15/16 3/8 dbit in. 3/8 1/2 5/8 3/4 7/8 1 9/16	- in. 1/4 3/8 1/2 5/8 3/4 3/8 1/2 d in. 0.250 0.375 0.500 0.625 0.750 0.375 0.500 . No. - - #3 #4 #5 #6 - - d in. - - 0.375 0.500 0.625 0.750 - - d in. - - #3 #4 #5 #6 - - d in. - - 0.375 0.500 0.625 0.750 - - - in. 1/4 3/8 1/2 5/8 3/4 15/16 3/8 1/2 dbit in. 3/8 1/2 5/8 3/4 7/8 1 9/16 3/4

1. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

For Unreinforced Masonry (URM Walls) see separate installation details and information in these tech pages for 'Retrofit Bolt Anchors in URM Walls'.

Detail of Steel Hardware Elements used with Injection Adhesive System

11011101	loiutui o		
da (d)	= Diameter of anchor	S	= Spacing of anchor
do (dbit)	= Diameter of drilled hole	С	= Edge distance
h	 Base material thickness 	Tmax	= Maximum torque
hnom (hef)	= Embedment depth		

Threaded Rod and	Deformed Re	inforcing Ba	r Material	Properties

Steel Description (General)	Steel Specification (ASTM)	Nominal Anchor Size (inch/No.)	Minimum Yield Strength, fy (psi)	Minimum Ultimate Strength, fu (psi)
	ASTM A36 and F1554 Grade 36	3/8 through 1-1/4	36,000	58,000
	ASTM F1554 Grade 55	3/8 through 1-1/4	55,000	75,000
Carbon rod	ASTM A449	3/8 through 1	92,000	120,000
	A31WI A449	1-1/4	81,000	105,000
	ASTM A193 Grade B7 and F1554 Grade 105	3/8 through 1-1/4	105,000	125,000
	ASTM F593 Condition CW	3/8 through 5/8	65,000	100,000
	ASTIVI F595 CONULION CW	3/4 through 1-1/4	45,000	85,000
Stainless rod (Alloy 304/316)	ASTM A193 Grade B8/B8M, Class 1	3/8 through 1-1/4	30,000	75,000
	ASTM A193 Grade B8/B8M2, Class 2B	3/8 through 1-1/4	75,000	95,000
	ASTM A615/A706, Grade 80	#3 through #10	80,000	100,000
Reinforcing Bar	ASTM A615, Grade 75	#3 through #10	75,000	100,000
neimoruny dai	ASTM A615/A706, Grade 60	#3 through #10	60,000	80,000
	ASTM A615, Grade 40	#3 through #6	40,000	60,000
	properties are provided for reference; oth ically are bare, zinc coated or galvanized			considered.

ADHESIVES

AşD

PERFORMANCE DATA (ASD)

Ultimate and Allowable Load Capacities for AC100+ Gold Installed into Normal Weight Concrete with Threaded Rod and Reinforcing Bar (based on bond strength/concrete capacity)^{1,2,3,4,5,6}

				Min	imum Concrete C	ompressive Stre	ngth		
Nominal Rod	Minimum	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 5,	000 psi	f'c = 6,	000 psi
Diameter or Rebar Size d in. or No.	Embedment Depth hnom in.	Ultimate Tension Load Capacity Ibs (kN)	Allowable Tension Load Capacity Ibs (kN)						
	2-3/8	4,840 (21.5)	1,210 (5.4)	5,040 (22.4)	1,260 (5.6)	5,180 (23.0)	1,295 (5.8)	5,320 (23.7)	1,330 (5.9)
3/8 or #3	3-1/2	7,140 (31.8)	1,785 (7.9)	7,420 (33.0)	1,855 (8.3)	7,640 (34.0)	1,910 (8.5)	7,820 (34.8)	1,955 (8.7)
	4-1/2	9,180 (40.8)	2,295 (10.2)	9,540 (42.4)	2,385 (10.6)	9,820 (43.7)	2,455 (10.9)	10,060 (44.7)	2,515 (11.2)
	2-3/4	7,980 (35.5)	1,995 (8.9)	8,280 (36.8)	2,070 (9.2)	8,540 (38.0)	2,135 (9.5)	8,740 (38.9)	2,185 (9.7)
1/2 or #4	4-3/8	12,720 (56.6)	3,180 (14.1)	13,200 (58.7)	3,300 (14.7)	13,580 (60.4)	3,395 (15.1)	13,900 (61.8)	3,475 (15.5)
	6	17,420 (77.5)	4,355 (19.4)	18,100 (80.5)	4,525 (20.1)	18,620 (82.8)	4,655 (20.7)	19,080 (84.9)	4,770 (21.2)
	3-1/8	11,220 (49.9)	2,805 (12.5)	11,660 (51.9)	2,915 (13.0)	12,000 (53.4)	3,000 (13.3)	12,300 (54.7)	3,075 (13.7)
5/8 or #5	5-1/4	19,200 (85.4)	4,800 (21.4)	19,960 (88.8)	4,990 (22.2)	20,540 (91.4)	5,135 (22.8)	21,020 (93.5)	5,255 (23.4)
	7-1/2	27,660 (123.0)	6,915 (30.8)	28,720 (127.8)	7,180 (31.9)	29,560 (131.5)	7,390 (32.9)	30,280 (134.7)	7,570 (33.7)
	3-1/2	13,320 (59.3)	3,330 (14.8)	13,820 (61.5)	3,455 (15.4)	14,220 (63.3)	3,555 (15.8)	14,560 (64.8)	3,640 (16.2)
3/4 or #6	6-1/4	26,880 (119.6)	6,720 (29.9)	27,900 (124.1)	6,975 (31.0)	28,720 (127.8)	7,180 (31.9)	29,420 (130.9)	7,355 (32.7)
	9	40,440 (179.9)	10,110 (45.0)	42,000 (186.8)	10,500 (46.7)	43,220 (192.3)	10,805 (48.1)	44,260 (196.9)	11,065 (49.2)
	3-1/2	13,320 (59.3)	3,330 (14.8)	13,820 (61.5)	3,455 (15.4)	14,220 (63.3)	3,555 (15.8)	14,560 (64.8)	3,640 (16.2)
7/8 or #7	7	36,680 (163.2)	9,170 (40.8)	38,080 (169.4)	9,520 (42.3)	39,200 (174.4)	9,800 (43.6)	40,140 (178.6)	10,035 (44.6)
	10-1/2	60,040 (267.1)	15,010 (66.8)	62,340 (277.3)	15,585 (69.3)	64,180 (285.5)	16,045 (71.4)	65,700 (292.2)	16,425 (73.1)
	4	16,260 (72.3)	4,065 (18.1)	16,880 (75.1)	4,220 (18.8)	17,380 (77.3)	4,345 (19.3)	17,800 (79.2)	4,450 (19.8)
1 or #8	8	46,540 (207.0)	11,635 (51.8)	48,300 (214.8)	12,075 (53.7)	49,740 (221.3)	12,435 (55.3)	50,920 (226.5)	12,730 (56.6)
	12	76,820 (341.7)	19,205 (85.4)	79,740 (354.7)	19,935 (88.7)	82,080 (365.1)	20,520 (91.3)	84,060 (373.9)	21,015 (93.5)
	5	22,740 (101.2)	5,685 (25.3)	23,600 (105.0)	5,900 (26.2)	24,300 (108.1)	6,075 (27.0)	24,880 (110.7)	6,220 (27.7)
1-1/4 or #10	10	65,880 (293.0)	16,470 (73.3)	68,400 (304.3)	17,100 (76.1)	70,420 (313.2)	17,605 (78.3)	72,100 (320.7)	18,025 (80.2)
	15	93,775 (417.1)	23,445 (104.3)	97,350 (433.1)	24,340 (108.3)	100,225 (445.8)	25,055 (111.5)	102,615 (456.5)	25,655 (114.1)

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances of 3 times embedment and where the minimum member thickness is the greater of [hnom + 1-1/4] and [hnom + 2dbit].

4. The tabulated load values are applicable for dry uncracked concrete installed into holes drilled with a hammer drill and an ANSI carbide drill bit. Installations into saturated (wet) concrete or water-filled holes require a reduction in capacity for tabulated values of 15 percent, respectively.

5. Adhesives experience reductions in capacity at elevated temperatures. See the In-Service Temperature chart for allowable loads capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

ADHESIVES

Steel Elements - Threaded Rod and Reinforcing Bar																	
				F593, CW (SS)		ASTM A615 Grade 40 Rebar		ASTM A615 Grade 60 Rebar		ASTM A706 Grade 60 Rebar		ASTM A615 Grade 75 / Grade 80 Rebar		ASTM A706 Grade 80 Rebar			
Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)
2,115 (9.4)	1,090 (4.8)	2,735 (12.2)	1,410 (6.3)	4,555 (20.3)	2,345 (10.4)	3,645 (16.2)	1,880 (8.4)	2,210 (9.8)	1,125 (5.0)	2,650 (11.8)	1,500 (6.7)	2,650 (11.8)	1,500 (6.7)	2,650 (11.8)	1,875 (8.3)	2,650 (11.8)	1,875 (8.3)
3,760 (16.7)	1,935 (8.6)	4,860 (21.6)	2,505 (11.1)	8,100 (36.0)	4,170 (18.5)	6,480 (28.8)	3,340 (14.9)	3,925 (17.5)	2,005 (8.9)	4,710 (21.0)	2,670 (11.9)	4,710 (21.0)	2,670 (11.9)	4,710 (21.0)	3,335 (14.8)	4,710 (21.0)	3,335 (14.8)
5,870 (26.1)	3,025 (13.5)	7,595 (33.8)	3,910 (17.4)	12,655 (56.3)	6,520 (29.0)	10,125 (45.0)	5,215 (23.2)	6,135 (27.3)	3,130 (13.9)	7,365 (32.8)	4,170 (18.5)	7,365 (32.8)	4,170 (18.5)	7,365 (32.8)	5,215 (23.2)	7,365 (32.8)	5,215 (23.2)
8,455 (37.6)	4,355 (19.4)	10,935 (48.6)	5,635 (25.1)	18,225 (81.1)	9,390 (41.8)	12,390 (55.1)	6,385 (28.4)	8,835 (39.3)	4,505 (20.0)	10,605 (47.2)	6,010 (26.7)	10,605 (47.2)	6,010 (26.7)	10,605 (47.2)	7,510 (33.4)	10,605 (47.2)	7,510 (33.4)
11,510 (51.2)	5,930 (26.4)	14,885 (66.2)			12,780 (56.8)	16,865 (75.0)	8,690 (38.7)	-	-	14,430 (64.2)	8,180 (36.4)	14,430 (64.2)	8,180 (36.4)	14,430 (64.2)	10,220 (45.5)	14,430 (64.2)	10,220 (45.5)
15,035 (66.9)	7,745 (34.5)	19,440 (86.5)			16,690 (74.2)	22,030 (98.0)	11,350 (50.5)	-	-	18,850 (83.8)	10,680 (47.5)	18,850 (83.8)	10,680 (47.5)	18,850 (83.8)	13,350 (59.4)	18,850 (83.8)	13,350 (59.4)
-	-	-	-	-	-	-	-	-	-	23,985 (106.7)					16,990 (75.6)	23,985 (106.7)	16,990 (75.6)
23,490 (104.5)	12,100 (53.8)						17,735 (78.9)	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	30,405 (135.2)							21,535 (95.8)
	Grad Tension Ibs. (kN) 2,115 (9.4) 3,760 (16.7) 5,870 (26.1) 8,455 (37.6) 11,510 (51.2) 15,035 (66.9) - 23,490	Grade 36 Tensis. (kN) Shear ibs (kN) 2,115 1,090 (9.4) (kN) 3,760 1,935 (16.7) (8.6) 5,870 3,025 (26.1) (13.5) 8,455 4,355 (19.4) (13.5) 8,455 4,355 (19.4) (14.6) 11,510 5,930 (26.4) (24.6) 15,035 7,745 (34.5) (34.5) - - - 23,490 12,100 -	Grade Shear ibs. (kN) Grade Tension (kN) Shear (kN) Tension ibs. (kN) 2,115 1,090 2,735 (9.4) 1,093 2,835 3,760 1,935 4,860 (16.7) (8.6) (21.6) 5,870 3,025 7,595 (26.1) (13.5) 10,935 8,455 4,355 10,935 (37.6) 19,430 (4.8) (1,510) 5,930 14,885 (51.2) (26.4) (66.2) 15,035 7,745 19,440 (66.9) - - 23,490 12,100 30,375	Grade 36 Grade 55 Tension Ibs. (kt)) Shear Ibs. (kt) Tension Ibs. (kt) Shear Ibs. (kt) 2,115 1,090 2,735 1,410 (9.4) 1,935 4,860 2,505 (16.7) (8.6) (21.6) (11.1) 5,870 3,025 7,595 3,910 (26.1) (13.5) 10,935 5,635 (37.6) 4,855 4,355 10,935 (37.6) 1,935 4,860 2,505 (16.7) (3.25) 7,595 3,910 (26.1) (13.5) 10,935 5,635 (37.6) 10,935 5,635 (37.6) (19.4) 4(8.6) (25.1) 11,510 5,930 14,885 7,665 (51.2) (26.4) 18,455 (44.5) 15,035 7,745 19,440 10,015 (66.9) 12,100 30,375 15,645	ASS of restance BS of restance B7 or Grade Grade Shear Tension Ibs. (kN) Shear Tension Ibs. (kN) Shear Tension Ibs. (kN) Shear Tension Ibs. (kN) 2,115 1,090 2,735 1,410 4,555 (9.4) (4.8) (12.2) (6.3) (20.3) 3,760 1,935 4,860 2,505 8,100 (16.7) (8.6) (21.6) (11.1) (36.0) 5,870 3,025 7,595 3,910 (26.5) (26.1) (13.5) (33.8) (17.4) (56.3) 3,455 4,355 10,935 5,635 18,225 (37.6) (19.4) (48.6) (25.1) 18,111 1,510 5,930 14,885 7,665 24,805 (51.2) (26.4) (66.2) (34.1) (11.0) 15,035 7,745 19,440 10,015 32,400 (66.9) (34.5) 46.65) 44.65 44.41.1)	Sorial P1354, Grade 55 B7 or F1554, Grade 55 B7 or F1554, Grade 105 Tension Ibs. (KN) Shear Ibs. (KN) Tension Ibs. (KN) Shear Ibs. (KN) Tension Ibs. (KN) Shear Ibs. (KN) 2,115 1,090 2,735 1,410 4,555 2,345 (9.4) 1,935 4,860 2,505 8,100 4,170 (16.7) (8.6) (21.6) (11.1) 3(36.0) (18.5) 5,870 3,025 7,595 3,910 (26.5) (25.1) (81.1) 3,455 (13.5) 10,935 5,635 12,825 9,390 (37.6) (19.4) (48.6) (25.1) (81.1) (41.8) 11,510 5,930 14,885 7,665 24,805 12,780 (51.2) (26.4) (86.5) (44.5) (144.1) (74.2) - - - - - - - 2,3490 12,100 30,375 15,645 50,620 26,808	A36 or F1554, Grade 36 A36 or F1554, Grade 55 A193, Grade B7 or F1554, Grade 105 F593, C Tension Ibs. (kN) Shear Ibs. (kN) Tension Ibs. (kN) Tension Ibs. (k1) Tension Ibs. (k5) Tension Ibs. (k5) Tension Ib	A36 or F1554, Grade 36 A36 or F1554, Grade 55 A193, Grade B7 or F1554, Grade 105 F593, W (SS) Tension Ibs. (kN) Shear Ibs. (kN) Tension Ibs. (kN) Tension Ibs. (kN) Shear Ibs. (kN) Tension Ibs. (kN) Shear Ibs. (kN) Tension Ibs. (kN) Ten	A36 or F1554, Grade 36 A36 or F1554, Grade 55 A193, Grade Grade 105 F593, \mathcal{V} (SS) ASTM Grade Ref Tension lbs. (kN) Shear (kN) Tension lbs. (kN) Shear lbs. (kN) Tension lbs. (kN) 2,115 (9.4) 1,090 (4.8) 2,735 (12.2) 1,410 (4.8) 4,555 (20.3) 3,645 (16.2) 1,880 (4.8) 2,210 (17.5) 5,870 (16.7) 1,935 (3.6) 4,860 (21.6) 2,505 (3.8) 8,100 (16.3) 4,170 (48.0) 6,480 (28.2) 3,340 (48.9) 3,925 (17.5) 5,215 (23.2) 6,135 (23.2) 6,135 (23.2) 6,135 (23.2) 5,215 (28.4) 6,385 (39.3) 3,340 (23.2) 3,340 (28.4) 3,340	A36 or F1554, Grade 36 A36 or F1554, Grade 5 A193, Grade 15, Grade 5 F593, W (SS) ASTM A615 Reade 10 Tension Ibs. (KN) Shear (KN) Tension (KN) Shear (KN) Shea (Shea (Shea) Shear (Shea (Shea)	A36 or F1554, Grade 36 A36 or F1554, Grade 55 A36 or F1554, Grade 55 A193, Grade 105 F593, W (SS) ASTM A615 Grade 40 (Rebar ASTM Rebar Tension Ibs. (KN) Ibs (KN) Tension (KN) Shear (KN) Tension (S.0 Shear (KN) Tension (S.0 Shear (KN) Tension (S.0 Shear (KN) Tension (S.0 Tension (S.0	A36 or F1554, Grade 36 A36 or F1554, Grade 55 A193, Grade B7 or F1554, (kN) F593, CW (SS) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar Tension (kN) Shear (kN) 2,115 (9.4) 1,090 (4.8) 2,735 (12.2) 1,410 (6.3) 4,555 (20.3) 2,445 (16.2) 1,880 (3.40 3,925 (2.10) 2,650 (11.8) 1,500 (11.9) 3,760 (16.7) 1,935 (3.2) 4,860 (21.6) 2,505 (11.1) 8,100 (14.5) 4,170 (28.8) 3,340 (14.9) 3,925 (27.3) 2,005 (13.9) 4,710 (28.8) 5,870 (26.1) 3,025 (13.5) 7,595 (19.4) 3,910 (25.1) 12,6	A36 or F1554, Grade 36 A36 or F1554, Grade 55 A33 or F1554, Grade 55 A193, Grade B7 or F1554, Grade 105 F593, CW (S) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Grade 40 Rebar ASTM A615 Rebar ASTM A615 Rebar ASTM A615 Rebar ASTM A615 Rebar ASTM A615 Rebar ASTM A615 Rebar <td>A36 or F1554, Grade 36 A36 or F1554, Grade 55 A193, Grade B7 or F1554, Grade 105 F593, CW (SS) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Grade 60 Rebar tension (kN) Shear (kN) Tension (kN) Shear Tension (kN) Tension (kN) Tension (kN) Tension (kN) Tension (kN) Tension (kN) Tension</td> <td>A36 or F1554, Grade 36 A36 or F1554, Grade 55 A193, Grade B7 or F1554, Grade 105 F593, CW (SS) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Gr</td> <td>A36 or F1554, Grade 105 A193, Grade br or F1554, (kN) A193, Grade Grade 105 F593, CW (SS) ASTM A615 Grade 40 ASTM A615 Grade 40 ASTM A615 Grade 60 Rebar ASTM A615 Grade 60 ASTM A615 Grade 70 ASTM A615 ASTM A615<td>A36 or F1554, Grade 55 A36 or F1554, Grade 105 A193, Grade B7 or F1554, Grade 105 F593, CW (S) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Grade 70 2115 10.905 1</td></td>	A36 or F1554, Grade 36 A36 or F1554, Grade 55 A193, Grade B7 or F1554, Grade 105 F593, CW (SS) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Grade 60 Rebar tension (kN) Shear (kN) Tension (kN) Shear Tension (kN) Tension (kN) Tension (kN) Tension (kN) Tension (kN) Tension (kN) Tension	A36 or F1554, Grade 36 A36 or F1554, Grade 55 A193, Grade B7 or F1554, Grade 105 F593, CW (SS) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Gr	A36 or F1554, Grade 105 A193, Grade br or F1554, (kN) A193, Grade Grade 105 F593, CW (SS) ASTM A615 Grade 40 ASTM A615 Grade 40 ASTM A615 Grade 60 Rebar ASTM A615 Grade 60 ASTM A615 Grade 70 ASTM A615 ASTM A615 <td>A36 or F1554, Grade 55 A36 or F1554, Grade 105 A193, Grade B7 or F1554, Grade 105 F593, CW (S) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Grade 70 2115 10.905 1</td>	A36 or F1554, Grade 55 A36 or F1554, Grade 105 A193, Grade B7 or F1554, Grade 105 F593, CW (S) ASTM A615 Grade 40 Rebar ASTM A615 Grade 60 Rebar ASTM A615 Grade 70 2115 10.905 1

1. AISC defined steel strength (ASD) for threaded rod: Tensile = 0.33 \bullet Fu \bullet Anom, Shear = 0.17 \bullet Fu \bullet Anom

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

In-Service Temperature Chart For Allowable Load Capacities Base Materials Masonry Units

Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Grout-Filled Concrete Masonry (Based on Bond Strength/Masonry Strength)^{1,2,3,7,9,12}

Anchor Diameter d inch	Minimum Embedment h inch	Critical Spacing Distance େ inch	Minimum Edge Distance Cmin inch	Minimum End Distance Cmin inch	Tension Load Ibs	Direction of Shear Loading	Shear Load Ibs				
		And	hor installed into Gr	outed Masonry Wall	Faces4,5,6,8,10,11,13						
			3	3	015	Towards Edge/End	275				
0./0	0		3	3	615	Away From Edge/End	340				
3/8	3	6	3	4	735	Any	490				
			12	12	960	Any	855				
			3	3	700	Towards Edge/End	430				
			3	3	720	Away From Edge/End	1320				
1/0			4	4		Any	655				
1/2	4	8	12	12	960	Towards Edge/End	1430				
			12	12		Away From Edge/End	1760				
			7-3/4 (Bed Joint)	3	935	Load To Edge	460				
			3	3		Towards Edge/End	460				
			3	3	710	Away From Edge/End	1410				
5/8	5	10	12	12	1005	Towards Edge/End	1530				
	-		12	12	1095	Away From Edge/End	1880				
			7-3/4 (Bed Joint)	3	1030	Load To Edge	590				
			4	4		Towards Edge/End	630				
			4	4	755	Away From Edge/End	1450				
3/4	6	12	12	12	12	12	12	12		Towards Edge/End	1570
0, 1	Ū		12	12	1160	Away From Edge/End	1930				
			7-3/4 (Bed Joint)	4	945	Load To Edge	565				
	L	An	ichor Installed Into To	ops of Grouted Maso		Loud to Lugo	000				
chor Diameter d inch	Minimum Embedment hnom inch	Minimum Spacing Distance	Minimum Edge Distance Cmin inch	Minimum End Distance Cmin inch	Tension Load Ibs	Direction of Shear Loading	Shear Load Ibs				
	2-3/4			4	595	Any	300				
	4	1 anchor per cell		3	520	Load To Edge	190				
1/2	4			3	520	Load To End	300				
	10	1 anabar par black	1-3/4	10-1/2	1670	Load To Edge	190				
	10	1 anchor per block		10-1/2	1670	Load To End	300				
	5	1 anchor per cell		3	745	Load To Edge	240				
5/8	5			3	/40	Load To End	300				
J/Q	12-1/2	1 opener per black		10-1/2	2005	Load To Edge	240				
	12-1/2	1 anchor per block	1-3/4	10-1/2	2095	Load To End	300				
2/4	6	1 opobor per cell	1-3/4	4	1000	Load To Edge	410				
3/4	6	1 anchor per cell		4	1260	Load To End	490				

 Tabulated load values are for anchors installed in nominal 8-inch wide (203 mm) Grade N, Type II, lightweight, medium-weight or normal-weight grout filled concrete masonry units with a minimum masonry strength, f'm, of 1,500 psi (10.3 MPa) conforming to ASTM C90. If the specified compressive strength of the masonry, f'm, is 2,000 psi (13.8 MPa) minimum the tabulated values may be increased by 4 percent (multiplied by 1.04).

2. Allowable bond or masonry strengths in tension and shear are calculated using a safety factor of 5.0 and must be checked against the allowable tension and shear capacities for threaded rod based on steel strength to determine the controlling factor. See allowable load table based on steel strength.

3. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

4. Anchors may be installed in the grouted cells, cell webs and bed joints not closer than 1-1/2-inch from the vertical mortar joint (head joint) provided the minimum edge and end distances are maintained. Anchors may be placed in the head joint if the vertical joint is mortared full-depth.

5. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements.

6. The critical spacing, s_{cr}, for use with the anchor values shown in this table is 16 anchor diameters. The critical spacing, s_{cr}, distance is the distance where the full load values in the table may be used. The minimum spacing distance, s_{min}, is the minimum anchor spacing for which values are available and installation is permitted. For 3/8-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.70 and a shear reduction factor of 0.45. For 1/2-inch and 5/8-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.85 and a shear reduction factor of 0.45. For 3/4-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.85 and a shear reduction factor of 0.45. For 3/4-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.45.

7. Spacing distance is measured from the centerline to centerline between two anchors.

8. The minimum edge or end distance, cmin, is the minimum distance for which values are available and installation is permitted.

9. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

10. Linear interpolation of load values between the minimum spacing, smin, and critical spacing, scr, distances and between minimum edge or end distance, cmin is permitted.

11. The tabulated values are applicable for anchors in the ends of grout-filled concrete masonry units where minimum edge and end distances are maintained.

12. The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

13. Concrete masonry width (wall thickness) must be equal to or greater than 1.5 times the anchor embedment depth (e.g. 3/8-inch and 1/2-inch diameter anchors are permitted in nominally 6-inch-thick concrete masonry). The 5/8-inch and 3/4-inch diameter anchors must be installed in minimum nominally 8-inch-thck concrete masonry.

14. Anchors must be installed into the grouted cell; anchors are not permitted to be installed in a head joint, flange or web of the concrete masonry unit.

15. Allowable shear loads parallel or perpendicular to the edge of a masonry wall may be applied in or out of plane.

AC100+ Gold Adhesive Anchors Installed into Grouted Concrete Masonry Wall

AC100+ Gold Adhesive Anchors Installed into Hollow Concrete Masonry Wall

AC100+ Gold Adhesive Anchors Installed into Top of Grouted Concrete Masonry Wall

- 1. Shear load parallel to Edge and perpendicular to End
- Shear load parallel to End and perpendicular to Edge
 Shear load parallel to Edge and perpendicular away from End
- 4. Shear load parallel to End and perpendicular to opposite Edge

Direction of Shear Loading in Relation to Edge and End of Masonry Wall

- 1. Shear load parallel to Edge and perpendicular to End
- 2. Shear load parallel to End and perpendicular to Edge
- 3. Shear load parallel to Edge and perpendicular away from End
- 4. Shear load parallel to End and perpendicular away from Edge

Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Hollow Concrete Masonry Walls with Stainless Steel and Plastic Screen Tubes^{1,2,3,4,5,6,7,8,9,10,11,12,13}

			Critical				Allowable Load	
Anchor Diameter d inch	Screen Tube type	Minimum Embedment hoom inch	Spacing Distance Sar inch	Minimum Edge Distance Cmin inch	Minimum End Distance Cmin inch	Tension Load Ibs	Direction of Shear Loading	Shear Load Ibs
	1			1-1/2	1-1/2	280	Towards Edge/End	140
1/4	Stainless Steel	1-1/4	4	1-1/2	1-1/2	200	Away From Edge/End	235
1/4	Stall liess Steel	1-1/4	4	3	3	350	Towards Edge/End	275
				3	3	300	Away From Edge/End	465
				1-7/8	1-7/8	200	Towards Edge/End	145
	Stainless Steel	1-1/4	6	1-7/8	1-7/8	320	Away From Edge/End	245
3/8	Stall liess Steel	1-1/4	0	3-3/4	3-3/4	400	Towards Edge/End	290
5/0				3-3/4	3-3/4	400	Away From Edge/End	490
	Plastic	1-1/4	1 anchor per cell	3	3	140	Towards Edge/End	235
				3-3/4	3-3/4	380	Towards Edge/End	215
	Stainless Steel	1-1/4	8	3-3/4	3-3/4	380	Away From Edge/End	365
1/2	Stall liess Steel	1-1/4	0	11-1/4	11-1/4	400	Towards Edge/End	430
1/2				11-1/4	11-1/4	- 400	Away From Edge/End	730
	Plastic	1-1/4	1 anchor per cell	3	3	150	Towards Edge/End	215
				3-3/4	3-3/4	380	Towards Edge/End	215
	Stainless Steel	1-1/4	8	3-3/4	3-3/4	300	Away From Edge/End	365
5/8	Stall liess Steel	1-1/4	0	11-1/4	11-1/4	400	Towards Edge/End	430
5/0				11-1/4	11-1/4	400	Away From Edge/End	730
	Plastic	1-1/4	1 anchor per cell	3	3	150	Towards Edge/End	215
				3-3/4	3-3/4	200	Towards Edge/End	215
3/4	Stainless Steel	1-1/4	0	3-3/4	3-3/4	380	Away From Edge/End	365
3/4	Stall liess Steel	1-1/4	8	11-1/4	11-1/4	400	Towards Edge/End	430
				11-1/4	11-1/4	400	Away From Edge/End	730

1. Tabulated load values are for anchors installed in hollow concrete masonry with minimum masonry strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be lightweight, medium-weight or normal-weight conforming to ASTM C90. Allowable loads have been calculated using a safety factor of 5.0.

2. Anchors must be installed into the hollow cell; anchors are not permitted to be installed in a mortar joint, flange or web of the concrete masonry unit.

3. A maximum of two anchor may be installed in a single masonry cell in accordance with the spacing and edge distance requirements, except as noted in the table.

4. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

5. Edge or end distance is measured from anchor centerline to the closest unrestrained edge of the CMU block.

6. The critical spacing, s_{cr}, for use with the anchor values shown in this table is 16 anchor diameters, except as noted in the table. The critical spacing, s_{cr}, distance is the distance where the full load values in the table may be used. The minimum spacing distance, s_{min}, is the minimum anchor spacing for which values are available and installation is permitted. The spacing may be reduced to 8 anchor diameters by multiplying the tension load value by a reduction factor of 0.60 and multiplying the shear load value by a reduction factor of 0.45.

7. Spacing distance is measured from the centerline to centerline between two anchors.

8. Linear interpolation of load values between the minimum spacing, smin, and critical spacing, scr, distances and between minimum edge or end distance, cmin, is permitted if applicable.

9. Concrete masonry width (wall thickness) may be minimum nominal 6-inch-thick provided the minimum embedment (i.e. face shell thickness) is maintained.

10. The tabulated values are applicable for anchors in the ends of hollow concrete masonry units where minimum face shell thickness, minimum edge and end distances are maintained.

11. Anchors are recognized to resist dead, live and wind loads.

12. Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values.

13. The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

Ultimate and Allowable Load Capacities for AC100+ Gold into Precast Hollow Core Concrete with Threaded Rod and Stainless Steel Screen Tubes^{1,2,3,4,5,6,7}

Iel

Anchor	Drill Bit	Minimum	Minimum End	Minimum Edge	Ultima	te Load	Allowable Load		
Diameter d in.	Diameter dbit in.	Embedment hnom in. (mm)	Distance in. (mm)	Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
1/4	3/8	1-1/2 (38)	4 (102)	4 (102)	900 (4.0)	1,550 (6.9)	180 (0.8)	310 (1.4)	
3/8	1/2	1-1/2 (38)	6 (152)	6 (152)	1,975 (8.8)	3,650 (16.2)	395 (1.8)	730 (3.2)	
1/2	5/8	1-1/2 (38)	8 (203)	8 (203)	4,400 (19.6)	5,875 (26.1)	880 (3.9)	1,175 (5.2)	

1. Tabulated load values are for anchors installed in precast hollow core concrete with minimum strength, f'm, of 5,000 psi (34.5 MPa). Allowable loads have been calculated using a safety factor of 5.0. The allowable load capacities may be increased by a factor of (f 'c / 5000)ⁿ¹³ for concrete compressive strength between 5,000 psi and 8000 psi.

2. Anchors must be installed into the hollow core; anchors are not permitted to be installed in a cell web of the hollow core concrete member.

3. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

4. Edge or end distance is measured from anchor centerline to the closest unrestrained edge of the concrete member.

5. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distance is measured from the centerline between two anchors.

6. Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values.

7. The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

Ultimate and Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Brick Masonry Walls^{12,3,4}

Anchor	Drill	Minimum Embedment	Minimum End	Minimum Edge	Ultimat	e Load	Allowab	le Load
Diameter d in.	Diameter hnom dbit in. in. (mm)		Distance in. (mm)	Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	^·		Anchors Installed	into the Face of Br	ck Masonry Walls		· · · · · · · · · · · · · · · · · · ·	
		3-1/2 (89)	2-1/2 (64)	2-1/2 (64)	3,600 (16.0)	4,505 (20.0)	720 (3.2)	900 (4.0)
3/8	1/2	3-1/2 (89)	6 (152)	6 (152)	5,845 (26.0)	4,580 (20.4)	1,170 (5.2)	915 (4.1)
		6 (152)	6 (152)	6 (152)	10,420 (46.4)	4,580 (20.4)	2,085 (9.3)	915 (4.1)
1/2	5/8	6 (152)	8 (203)	8 (203)	11,500 (51.2)	9,300 (41.4)	2,300 (10.2)	1,860 (8.3)
E /0	3/4	3-1/8 (79)	9-1/2 (241)	9-1/2 (241)	4,715 (21.0)	7,700 (34.3)	945 (4.2)	1,540 (6.6)
5/8	3/4	6 (152)	9-1/2 (241)	9-1/2 (241)	9,925 (44.2)	7,700 (34.3)	1,985 (8.8)	1,540 (6.6)
			Anchors Installed	into the Top of Bri	ck Masonry Walls		· · · · · ·	
3/8	1/2	3-1/2 (89)	2-1/2 (64)	2-1/2 (64)	3,665 (16.3)	2,435 (10.8)	735 (3.3)	485 (2.2)

1. Tabulated load values are for anchors installed in minimum 2 wythe, Grade SW, solid clay brick masonry conforming to ASTM C 62. Mortar and minimum mortar strength must meet Type N, S or M.

2. Allowable loads are calculated using an applied safety factor or 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

Allowable loads apply to installations in the face of brick or mortar joint. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity.
 The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

AC100+ GOLD[®] Vinylester Injection Adhesive Anchoring System

Allowable Load Capacities AC100+ Gold with for Threaded Rods and Reinforcing Bars or Rebar Dowel Installed in Unreinforced Masonry Walls with Stainless Steel Screen Tubes^{1,2} (Retrofit Bolt Anchors in URM Walls with Low Minimum Mortar Strengths)

Shear Anchor - Configuration A (See Figure 1)

Varies	8" <u> </u>	/	Shear Anchor 3/4" Diameter Min. Grade A36/A307 Threaded Rod Rebar Dowel No. 4, No. 5, or No. 6 Min. Grade 40 Rebar
		b	15/16" Diameter Screen Tube in 1" Diameter Hole

Figure 1

Rod Dia. or Rebar Size d in.	Minimum Embed. hoom in. (mm)	Minimum Wall Thickness in. (mm)	Allowable Tension Ibs. (KN)	Allowable Shear Ibs. (KN)
3/4	8 (203)	13 (330)	See note 3	1,000 (4.5)
No. 4	8 (203)	13 (330)	See note 3	500 (2.3)
No. 5	8 (203)	13 (330)	See note 3	750 (3.4)
No. 6	8 (203)	13 (330)	See note 3	1,000 (4.5)
1 Allowable load value	o oro opplicable oply whore	in place about tosts india	ato minimum mortor atrong	th of 25 pai pat

Allowable load values are applicable only where in-place shear tests indicate minimum mortar strength of 35 psi net.
 These retrofit anchors installed in unreinforced brick walls are limited to resisting seismic or wind loads only.

3. Tension loading for these anchors is outside the scope of ICC-ES ESR-4105 and AC60.

22-1/2° Combination Anchor – Configuration B (See Figure 2)

			(000 :	
Rod Dia. d in.	Minimum Embed. hom in. (mm)	Minimum Wall Thickness in. (mm)	Allowable Tension Ibs. (KN)	Allowable Shear Ibs. (KN)
3/4	Within 1 inch (25mm) of opposite wall surface	13 (330)	1,200 (5.4)	1,000 (4.5)

Figure 2

Allowable load values are applicable only where in-place shear tests indicate minimum mortar strength of 35 psi net.
 These retrofit anchors installed in unreinforced brick walls are limited to resisting seismic or wind loads only.

Retrofit Anchor Description	Minimum Vertical Spacing in.	Minimum Horizontal Spacing in.	Minimum Edge Distance in.
Shear Anchor - Configuration A (See Figure 1)	16	16	16
22-1/2° Combination Anchor - Configuration B (See Figure 2)	16	16	16

ADHESIVES

STRENGTH DESIGN INFORMATION

Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete

						Nominal	Rod Diamete	er ¹ (inch)		
	Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Threaded rod	nominal outside diameter	da	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)
Threaded rod	effective cross-sectional area	Ase	inch ² (mm ²)	0.0775 (50)	0.1419 (92)	0.2260	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.969 (625)
		Nsa	lbf (kN)	4,495 (20.0)	8,230 (36.6)	13,110	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,21
ASTM A36 and	Nominal strength as governed by steel strength (for a single anchor)	Vsa	lbf	2,695	4,940	(58.3) 7,860	11,640	16,070	21,080	(250.0 33,72
ASTM F1554	Reduction factor for seismic shear	<i>O</i> V,seis	(kN)	(12.0)	(22.0)	(35.0) 0.80	(51.8) 0.80	(71.4) 0.80	(93.8) 0.80	(150.0
Grade 36	Strength reduction factor for tension ²	φ	-	0.00	0.00	0.00	0.75	0.00	0.00	0.00
	Strength reduction factor for shear ²	φ	-	1			0.65			
	Nominal strength as governed by	Nsa	lbf (kN)	5,810 (25.9)	10,640 (47.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.0)	72,68 (323.3
ASTM F1554	steel strength(for a single anchor)	Vsa	lbf (kN)	3,485 (15.5)	6,385 (28.4)	10,170 (45.2)	15,050 (67.0)	20,775 (92.4)	27,255 (121.2)	43,61 (194.0
Grade 55	Reduction factor for seismic shear	OlV,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ²	φ	-	0.005	17 705		0.65			
ASTM A193	Nominal strength as governed by	Nsa	lbf (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,13 (538.8
Grade B7 and	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.1)	72,68
ASTM F1554 Grade 105	Reduction factor for seismic shear Strength reduction factor for tension ²	O V,seis ϕ	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for shear ²	ϕ	-				0.65			
	Nominal strength as	Nsa	lbf (kN)	9,300 (41.4)	17,025 (75.7)	27,120 (120.6)	40,140 (178.5)	55,905 (248.7)	72,685 (323.3)	101,7
ASTM A449	governed by steel strength (for a single anchor)	Vsa	lbf (kN)	5,580 (24.8)	10,215 (45.4)	16,270 (72.4)	24,085 (107.1)	33,540 (149.2)	43,610 (194.0)	61,05 (271.0
	Reduction factor for seismic shear	<i>O</i> V,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ²	φ	-	7 750	14100	00.000	0.65	00.045	E1 405	00.07
ASTM F593	Nominal strength as governed by steel strength (for a single anchor)	N _{sa}	lbf (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,37 (366.4
CW Stainless (Types 304	Reduction factor for seismic shear	Vsa	lbf (kN)	4,650 (20.7) 0.70	8,515 (37.9) 0.70	13,560 (60.3) 0.80	17,060 (75.9) 0.80	23,545 (104.7) 0.80	30,890 (137.4) 0.80	49,42 (219.3 0.80
and 316)	Strength reduction factor for tension ³	Olv,seis Ø	-	0.70	0.70	0.00	0.65	0.00	0.00	0.00
	Strength reduction factor for shear ³	φ	-				0.60			
ASTM A193	Nominal strength as governed by	N _{sa}	lbf (kN)	4,420 (19.7)	8,090 (36.0)	12,880 (57.3)	19,065 (84.8)	26,315 (117.1)	34,525 (153.6)	55,24 (245.
Grade B8/B8M, Class 1 Stainless	steel strength (for a single anchor)4	Vsa	lbf (kN)	2,650 (11.8)	4,855 (21.6)	7,730 (34.4)	11,440 (50.9)	15,790 (70.2)	20,715 (92.1)	33,14 (147.4
(Types 304	Reduction factor for seismic shear Strength reduction factor for tension ²	OV,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
and 316)	Strength reduction factor for shear ²	ϕ ϕ	-				0.75			
ASTM A193	Nominal strength as governed by	P N _{sa}	lbf (kN)	7,365 (32.8)	13,480 (60.0)	21,470 (95.5)	31,775 (141.3)	43,860 (195.1)	57,545 (256.0)	92,06 (409.
Grade B8/ B8M2, Class 2B	steel strength (for a single anchor)	Vsa	lbf (kN)	4,420 (19.7)	8,085 (36.0)	12,880 (57.3)	19,065 (84.8)	26,315 (117.1)	34,525 (153.6)	55,24 (245.)
Stainless (Types 304	Reduction factor for seismic shear	OV,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
and 316)	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ² 5.4 mm, 1 lbf = 4.448 N. For pound-inch units:	φ	-				0.65			

Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements.

The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-11 4.7.3.3 or ACI 318-11 0.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 0.4.4. Values correspond to brittle steel elements

4. In accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/B8M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9fy or 57,000 psi (393 MPa).

ADHESIVES

AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete

ICC-ES ESR-2582	\bigcirc
-----------------	------------

						Nomina	I Reinforcin	ig Bar Size	(Rebar) ¹				
	Design Information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10		
Rebar nomir	nal outside diameter	da	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)		
Rebar effect	ive cross-sectional area	A _{se}	inch ² (mm ²)	0.110 (71.0)	0.200 (129.0)	0.310 (200.0)	0.440 (283.9)	0.600 (387.1)	0.790 (509.7)	1.000 (645.2)	1.270 (819.4)		
	Nominal strength as governed by	Nsa	lbf (kN)	11,000 (48.9)	20,000 (89.0)	31,000 (137.9)	44,000 (195.7)	60,000 (266.9)	79,000 (351.4)	100,000 (444.8)	127,000 (564.9)		
ASTM A615	steel strength (for a single anchor)	Vsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	36,000 (160.1)	47,400 (210.8)	60,000 (266.9)	76,200 (338.9)		
Grade 75 / Grade 80	Reduction factor for seismic shear	∕∕ V,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80		
	Strength reduction factor for tension ³	ϕ	-		0.65								
	Strength reduction factor for shear ³	ϕ	-				0.	60					
	Nominal strength as governed by	N _{sa}	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (451.9)		
ASTM A615 Grade 60	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (93.9)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)		
Grade 60	Reduction factor for seismic shear	∕∕ V,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80		
	Strength reduction factor for tension ³	ϕ	-	- 0.65									
	Strength reduction factor for shear ³	ϕ	-	0.60									
	Nominal strength as governed by	Nsa	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)		
ASTM A706	steel strength (for a single anchor)	Vsa	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)		
Grade 60	Reduction factor for seismic shear	<i>O</i> ℓV,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80		
	Strength reduction factor for tension ²	ϕ	-				0.	75					
	Strength reduction factor for shear ²	ϕ	-			-	0.	65					
	Nominal strength as governed by	Nsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	In accord	ance with A	STM A 615.	Grade 40		
ASTM A615	steel strength (for a single anchor)	Vsa	lbf (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	In accordance with ASTM A 615, Grade 4 bars are furnished only in sizes No. 3 through No. 6					
Grade 40	Reduction factor for seismic shear	<i>O</i> ℓV,seis	-	0.70	0.70	0.80	0.80						
	Strength reduction factor for tension ³	ϕ	-				0.	.65					
	Strength reduction factor for shear ³	ϕ	-				0.	60					

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements. In accordance with ACI 318-19 17.10.5.3(a)(vi), ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)6, as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-19 20.2.2, ACI 318-14 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.

3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.

DEWALT

Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars

					Nominal Roo	l Diameter (in	ch) / Reinford	ing Bar Size		
Design Information	Symbol	Units	3/8 or #3	1/2 or #4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4 or #10
Effectiveness factor for cracked concrete	k _{c,cr}	- (SI)	Not Applicable				17 (7.1)			~
Effectiveness factor for uncracked concrete	k _{c,uncr}	- (SI)					4).0)			
Minimum embedment	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)
Maximum embedment	h _{ef,max}	inch (mm)	4-1/2 (114)	6 (152)	7-1/2 (191)	9 (229)	10-1/2 (267)	12 (305)	13-1/2 (343)	15 (381)
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2-1/2 (64)	3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)
Minimum edge distance ²	Cmin	inch (mm)			5 <i>d</i> where <i>d</i> is	s nominal outs	side diameter	of the anchor		
Minimum edge distance, reduced ² (45% T _{max})	Cmin,red	inch (mm)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)
Minimum member thickness	h _{min}	inch (mm)	h _{ef} + (h _{ef} ⊣	1-1/4 ⊦ 30)		h _{ef} -	⊦ 2d₀ where d	₀ is hole diam	eter;	^
Critical edge distance—splitting		inch			Cac	$= h_{ef} \cdot (\frac{ au_{uncr}}{1160})$	º.₄ · [3.1-0.7 ¦	n _{lef}]		
(for uncracked concrete only) ³	Cac	(mm)			Cac	$= h_{ef} \cdot (\frac{\tau_{uncr}}{8})$	^{0.4} · [3.1-0.7	n]		
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	φ	-				0.	65			
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	φ	-				0.	70			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, Cmin, and the reduced minimum edge distance, Cmin, ed, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. $\tau_{k,unor}$ need not be taken as greater than: $\tau_{k,unor} = \frac{k_{unor} \cdot \sqrt{h_{ef} \cdot f_C}}{\pi \cdot d}$ and $\frac{h}{h_{ef}}$ need not be taken as larger than 2.4.

π • d
 Act and the condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Threaded Rods

DEWALI

ANCHORS & FASTENERS

Docia	n Information	Symbol	Units		Nomin	al Rod Diame	eter (Inch) / I	Reinforcing B	ar Size	
Desigi	monnation	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Minimu	m embedment	hef,min	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	5 (127)
Maximu	ım embedment	h _{ef,max}	inch (mm)	4-1/2 (114)	6 (152)	7-1/2 (191)	9 (229)	10-1/2 (267)	12 (305)	15 (381)
	Characteristic bond strength in cracked concrete ^{4,6}	$ au_{ extsf{k,cr}}$	psi (N/mm²)	Not Applicable	545 (3.8)	568 (3.9)	568 (3.9)	568 (3.9)	575 (4.0)	575 (4.0)
Temperature Range	Characteristic bond strength in cracked concrete, short-term loads only ⁶	$ au_{ extsf{k,cr}}$	psi (N/mm²)	Not Applicable	779 (5.4)	811 (5.6)	811 (5.6)	811 (5.6)	821 (5.7)	821 (5.7)
110°F (43.3°C) Maximum long-term service temperature;	Characteristic bond strength in uncracked concrete4.7	$ au_{ ext{k,uncr}}$	psi (N/mm²)	902 (6.2)	902 (6.2)	902 (6.2)	902 (6.2)	902 (6.2)	815 (5.6) Not app	645 (4.4) licable in
140°F (60°C) maximum short-term				(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	water-filled h	ole installation dition
service temperature ³	Characteristic bond strength in uncracked concrete, short-term	auk,uncr	psi (N/mm²)	1,288 (8.9)	1,288 (8.9)	1,288 (8.9)	1,288 (8.9)	1,288 (8.9)	1,164 (8.0) Not app	921 (6.4) licable in
	loads only ⁷		(10/11/11)			, í			water-fi installatior	lled hole 1 condition
	Characteristic bond strength in cracked concrete ^{4,6}	$ au_{ extsf{k,cr}}$	psi (N/mm²)	Not Applicable	498 (3.4)	519 (3.6)	519 (3.6)	519 (3.6)	519 (3.6)	525 (3.6)
Temperature Range	Characteristic bond strength in cracked concrete, short-term loads only ⁶	$ au_{ extsf{k,cr}}$	psi (N/mm²)	Not Applicable	712 (4.9)	742 (5.1)	742 (5.1)	742 (5.1)	742 (5.1)	751 (5.2)
122°F (50°C) Maximum Long-Term Service Temperature;	Characteristic bond strength in	~	psi	823	823	823	823	823	743 (5.1)	588 (4.1)
176°F (80°C) Maximum Short-Term	uncracked concrete4.7	$ au_{k,uncr}$	(N/mm²)	(5.7)	(5.7)	(5.7)	(5.7)	(5.7)	Not app water-fi installatior	licable in lled hole n condition
Service Temperature ^{3,4}	Characteristic bond strength in uncracked concrete, short-term	τ	psi	1,177	1,177	1,177	1,177	1,177	1,062 (7.3)	841 (5.8)
	loads only ⁷	T _{k,uncr}	(N/mm²)	(8.1)	(8.1)	(8.1)	(8.1)	(8.1)	installation	licable in lled hole n condition
	Characteristic bond strength in cracked concrete ^{4,6}	$ au_{k,cr}$	psi (N/mm²)	Not Applicable	245 (1.7)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)
Temperature Range 162°F (72°C)	Characteristic bond strength in cracked concrete, short-term loads only ⁶	$ au_{ extsf{k,cr}}$	psi (N/mm²)	Not Applicable	544 (3.7)	566 (3.9)	566 (3.9)	566 (3.9)	566 (3.9)	566 (3.9)
Maximum Long-Term Service Temperature;	Characteristic bond strength in	~	psi	405	405	405	405	405 (2.8)	366 (2.5)	Not
248°F (120°C) Maximum Short-Term	uncracked concrete ^{4,7}	auk,uncr	(N/mm²)	(2.8)	(2.8)	(2.8)	(2.8)	water-fi	licable in lled hole condition	Applicable
Service Temperature ^{3,4}	Characteristic bond strength in uncracked concrete, short-term	Ŧ	psi	899	899	899	899	899 (6.2)	813 (5.6)	Not
	loads only ⁷	$ au_{k,uncr}$	(N/mm²)	(6.2)	(6.2)	(6.2)	(6.2)	water-fi installatior	licable in lled hole n condition	Applicable
	Dry concrete	Anchor Category	-				1			
		$\phi_{ m d}$	-			1			2	
Permissible installation	Water-saturated concrete	Anchor Category	-		0.	65			0.55	
conditions ⁶		Anchor	-				0.55			
	Water-filled hole (flooded)	Category $\phi_{\rm wf}$	-	0.45						
		Ψwt Kwf		0.45					0.67	
Deduction feet	or for seismic tension	C/N,seis	-		0.		0.95	0.70	0.00	0.07

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa) and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)⁶¹³ [For SI: (f'c / 17.2)⁶¹³].

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-19 17.2.4.1, ACI 318-14 17.2.6 where applicable.

3. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 9.1, Temperature Category A.

4. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

5. Characteristic bond strengths are for sustained loads including dead and live loads. Characteristic bond strengths are also applicable to short-term loading. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased by 43 percent for Temperature Range A and 122 percent for Temperature Range B.

6. Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

7. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete must be adjusted by an additional reduction factor, Odv.seis, as given in this table.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

Bond Strength Design Information for Reinforcing Bar

Desim	- Information	Complet	Haite		Nor	ninal Rod D)iameter (In	ch) / Reinf	orcing Bar	Size	
Desigi	n Information	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minimu	m embedment	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)
Maximu	im embedment	h _{ef,max}	inch (mm)	4-1/2 (114)	6 (152)	7-1/2 (191)	9 (229)	10-1/2 (267)	12 (305)	13-1/2 (343)	15 (381)
	Characteristic bond strength in cracked concrete ^{4,6}	$ au_{ ext{k,cr}}$	psi (N/mm²)	Not Applicable	361 (2.5)	376 (2.6)	376 (2.6)	376 (2.6)	381 (2.6)	381 (2.6)	381 (2.6)
Temperature Range 110°F (43.3°C) Maximum long-term	Characteristic bond strength in cracked concrete, short-term loads only ⁶	$ au_{ m k,cr}$	psi (N/mm²)	Not Applicable	516 (3.6)	538 (3.7)	538 (3.7)	538 (3.7)	544 (3.8)	544 (3.8)	544 (3.8)
140°F (60°C) maximum short-term service temperature3	Characteristic bond strength in uncracked concrete ^{4,7}	\mathcal{T} k,uncr	psi (N/mm²)	902 (6.2)	902 (6.2)	902 (6.2)	902 (6.2)	902 (6.2)	815 (5.6) Not appl hole in	732 (5.0) licable in wa	645 (4.4) ater-filled
	Characteristic bond strength in uncracked concrete, short-term loads only ⁷	auk,uncr	psi (N/mm²)	1,288 (8.9)	1,288 (8.9)	1,288 (8.9)	1,288 (8.9)	1,288 (8.9)	1,164 (8.0) Not appl hole in	1,046 (7.2) licable in wa	921 (6.4) ater-filled
	Characteristic bond strength in cracked concrete ^{4,6}	$ au_{ ext{k,cr}}$	psi (N/mm²)	Not Applicable	331 (2.3)	345 (2.4)	345 (2.4)	345 (2.4)	345 (2.4)	349 (2.4)	349 (2.4)
Temperature Range 122°F (50°C)	Characteristic bond strength in cracked concrete, short-term loads only ⁶	T k,cr	psi (N/mm²)	Not Applicable	473 (3.3)	493 (3.4)	493 (3.4)	493 (3.4)	493 (3.4)	499 (3.4)	499 (3.4)
Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term	Characteristic bond strength in uncracked concrete47	$ au_{k,uncr}$	psi (N/mm²)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)		655 (4.5) licable in wa	
Service Temperature ^{3,4}	Characteristic bond strength in uncracked concrete, short-term loads only ⁷	auk,uncr	psi (N/mm²)	1,117 (8.1)	1,117 (8.1)	1,117 (8.1)	1,117 (8.1)	1,117 (8.1)		951 (6.6) licable in wa	
	Characteristic bond strength in cracked concrete ^{4,6}	$ au_{ ext{k,cr}}$	psi (N/mm²)	Not Applicable	163 (1.1)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2
Temperature Range	Characteristic bond strength in cracked concrete, short-term loads only ⁶	$ au_{ extsf{k,cr}}$	psi (N/mm²)	Not Applicable	362 (2.5)	377 (2.6)	377 (2.6)	377 (2.6)	377 (2.6)	382 (2.6)	382 (2.6)
162°F (72°C) Maximum Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ³⁴	Characteristic bond strength in uncracked concrete*7	$ au_{k,uncr}$	psi (N/mm²)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)		366 (2.5) icable in was stallation co		Not Applica
Service remperature	Characteristic bond strength in uncracked concrete, short-term loads only ⁷	$ au_{ ext{k,uncr}}$	psi (N/mm²)	899 (6.2)	899 (6.2)	899 (6.2)	899 (6.2)	899 (6.2) Not appl hole in	813 (5.6) icable in wastallation co	730 (5.0) ater-filled ondition	Not Applica
	Dry concrete	Anchor Category	-					1			
	Watan ask up to discussed	<i>∲</i> d Anchor Category	-		1		0.	65	2		
Permissible installation conditions ⁶	Water-saturated concrete	фws	-		0.65				0.55		
	Water-filled hole (flooded)	Anchor Category	-					3			
		∲wf <i>K</i> wf	-		0	78	0.	45 0.70	0.69	0.68	0.6
Beduction fact	or for seismic tension	<i>C</i> IN,seis	-		0.	-	1	.0		1	1 0.07

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

Bond strength values correspond to a normal-weight concrete compressive strength f¹c = 2,500 psi (17.2 MPa). For concrete compressive strength, f¹c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f¹c / 2,500)⁰¹³ [For SI: (f¹c / 17.2)⁰¹³].

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-19 17.2.4.1, ACI 318-14 17.2.6 where applicable.

3. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 9.1, Temperature Category A.

4. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

5. Characteristic bond strengths are for sustained loads including dead and live loads. Characteristic bond strengths are also applicable to short-term loading. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased by 43 percent for Temperature Range A and 122 percent for Temperature Range B.

6. Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

7. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete must be adjusted by an additional reduction factor, CALSER, as given in this table.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

ADHESIVES

Ð

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strength for Threaded Rod and Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43.3°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

					Minim	um Concrete C	ompressive St	trength			
Nominal	Embed.	f'c = 2,5	500 (psi)	f'c = 3,0)00 (psi)	f'c = 4,0)00 (psi)	f'c = 6,0)00 (psi)	f'c = 8,0)00 (psi)
Rod/Rebar Size (in. or #)	Depth hef (in.)	<i>Φ</i> Ν₀ or <i>Φ</i> Ν₄ Tension (lbs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)	∲N☆ or ØNª Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)	<i>Φ</i> Ν₀ or <i>Φ</i> Ν₄ Tension (lbs.)	ΦVcb or ΦVcp Shear (Ibs.)	<i>Φ</i> Ν₀ or <i>Φ</i> Ν₄ Tension (lbs.)	ΦVcb or ΦVcp Shear (Ibs.)	∲N☆ or ØNª Tension (Ibs.)	∳V∞ or <i>Φ</i> V∞ Shear (Ibs.)
	2-3/8	1,640	1,765	1,680	1,810	1,745	1,880	1,840	1,980	1,910	2,055
3/8 or #3	3	2,070	3,065	2,120	3,390	2,205	3,975	2,320	4,970	2,410	5,190
	4-1/2	3,110	5,595	3,185	6,185	3,305	7,115	3,485	7,500	3,615	7,785
	2-3/4	2,535	2,885	2,595	3,190	2,690	3,740	2,840	4,675	2,945	5,480
1/2 or #4	4	3,685	5,425	3,770	6,000	3,915	7,035	4,130	8,800	4,285	9,230
	6	5,525	9,885	5,660	10,930	5,875	12,650	6,190	13,335	6,430	13,845
	3-1/8	3,595	3,830	3,685	4,235	3,825	4,965	4,030	6,210	4,185	7,280
5/8 or #5	5	5,755	8,455	5,895	9,350	6,120	10,960	6,450	13,710	6,695	14,420
	7-1/2	8,635	15,405	8,840	17,035	9,180	19,770	9,675	20,840	10,045	21,630
	3-1/2	4,665	4,905	4,765	5,425	4,935	6,360	5,180	7,955	5,360	9,325
3/4 or #6	6	8,290	11,940	8,485	13,205	8,810	15,480	9,290	19,365	9,640	20,765
	9	12,435	21,750	12,730	24,055	13,215	28,195	13,930	30,005	14,460	31,150
	3-1/2	4,640	4,930	4,830	5,605	5,045	6,650	5,300	8,320	5,490	9,750
7/8 or #7	7	11,280	15,045	11,550	16,635	11,995	19,500	12,640	24,390	13,125	28,265
	10-1/2	16,925	27,400	17,330	30,300	17,990	35,515	18,960	40,840	19,685	42,400
	4	5,575	6,115	5,805	6,935	6,010	8,130	6,315	10,170	6,535	11,920
1 or #8	8	13,315	17,645	13,635	19,510	14,155	22,870	14,920	28,605	15,485	33,360
	12	19,970	32,135	20,450	35,535	21,230	41,650	22,380	48,200	23,230	50,035
	4.5	6,400	7,110	6,570	7,915	6,800	9,275	7,145	11,605	7,395	13,600
#9	9	15,135	20,200	15,500	22,340	16,090	26,185	16,960	32,750	17,605	37,920
	13.5	22,700	36,795	23,245	40,690	24,130	47,695	25,440	54,790	26,410	56,880
	5	7,160	7,985	7,320	8,830	7,580	10,350	7,960	12,950	8,240	15,175
1-1/4	10	16,465	22,445	16,860	24,820	17,500	29,090	18,450	36,390	19,150	41,250
	15	24,695	40,875	25,290	45,205	26,250	52,985	27,675	59,605	28,725	61,875
	5	7,075	7,975	7,230	8,815	7,485	10,335	7,865	12,925	8,140	15,150
#10	10	16,465	22,485	16,860	24,865	17,500	29,140	18,450	36,450	19,150	41,250
	15	24,695	40,950	25,290	45,285	26,250	53,080	27,675	59,605	28,725	61,875

🔲 - Concrete Breakout Strength 📃 - Bond Strength/Pryout Strength

 Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness, h_a = h_{min}, and with the following conditions:

- Cat is greater than or equal to the critical edge distance, Cac

- Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318 (-19 or -14), Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14), Ch.17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14), Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14), Ch.17 and ICC-ES AC308 and ESR-2582.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

Tension and Shear Design Strength for Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 110°F (43.3°C) Maximum Long-Term ServiceTemperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

		Minimum Concrete Compressive Strength									
Nominal	Embed.	f'c = 2,5	f'c = 2,500 (psi)		f'c = 3,000 (psi) f'c = 4,00		000 (psi) f ⁱ c = 6,000 (psi)		f'c = 8,000 (psi)		
Rod/Rebar Size (in.)	Depth hef (in.)	<i>Φ</i> Ν☆ or <i>Φ</i> Ν₄ Tension (lbs.)	ΦVcb or ΦVcp Shear (lbs.)	∲N☆ or ∲Nª Tension (lbs.)	ΦVcb or ΦVcp Shear (lbs.)	$\phi_{N_{cb}}$ or ϕ_{Na} Tension (Ibs.)	ΦVcb or ΦVcp Shear (lbs.)	∲N☆ or ∲Nª Tension (lbs.)	ΦVcb or ΦVcp Shear (Ibs.)	<i>Φ</i> Ν∞ or <i>Φ</i> Νa Tension (lbs.)	ΦVcb or ΦVcp Shear (Ibs.)
	2-3/4	1,530	2,060	1,565	2,280	1,625	2,670	1,715	3,340	1,780	3,835
1/2	4	2,225	3,875	2,280	4,285	2,365	5,025	2,495	5,370	2,590	5,575
	6	3,340	7,060	3,420	7,365	3,550	7,645	3,740	8,060	3,885	8,365
	3-1/8	2,265	2,735	2,320	3,025	2,410	3,545	2,540	4,435	2,635	5,200
5/8	5	3,625	6,040	3,710	6,680	3,855	7,830	4,060	8,750	4,215	9,080
	7-1/2	5,435	11,000	5,565	11,990	5,780	12,450	6,090	13,120	6,325	13,620
	3-1/2	2,935	3,505	3,000	3,875	3,105	4,545	3,260	5,680	3,375	6,660
3/4	6	5,220	8,530	5,345	9,435	5,550	11,055	5,850	12,595	6,070	13,075
	9	7,830	15,535	8,015	17,180	8,320	17,925	8,775	18,895	9,105	19,615
	3-1/2	2,920	3,525	3,040	4,000	3,180	4,750	3,335	5,945	3,455	6,965
7/8	7	7,105	10,745	7,275	11,885	7,550	13,930	7,960	17,145	8,265	17,800
	10-1/2	10,655	19,570	10,910	21,640	11,330	24,400	11,940	25,720	12,395	26,700
	4	3,935	4,365	4,095	4,955	4,240	5,810	4,455	7,265	4,610	8,515
1	8	9,395	12,600	9,620	13,935	9,985	16,335	10,525	20,430	10,925	23,535
	12	14,090	22,950	14,430	25,380	14,980	29,750	15,790	34,005	16,390	35,300
	5	6,175	5,705	6,525	6,310	6,760	7,395	7,095	9,250	7,350	10,840
1-1/4	10	14,675	16,030	15,030	17,730	15,600	20,780	16,445	25,990	17,075	30,465
	15	22,015	29,195	22,545	32,290	23,405	37,845	24,670	47,340	25,610	55,160

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

- Gaz is greater than or equal to 1.5 times can.

2. Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (\$\phi\$) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-2582.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength requires an additional reduction factor applied for seismic tension (*Causeis*), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (\$\phi\$) for bond strength in the determination of controlling design strength values, as applicable.

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 110°F (43.3°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,5	i00 (psi)	f'c = 3,0)00 (psi)	f'c = 4,0)00 (psi)	f'c = 6,0	000 (psi)	f'c = 8,0	00 (psi)
Rod/Rebar Size (#)	Depth hef (in.)	<i>∲</i> N₀ or <i>∲</i> Nª Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)	<i>∲</i> N₀ or <i>∲</i> Nª Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)	ØNcb or ØNa Tension (Ibs.)	φV₀ or φV₀ Shear (Ibs.)	<i>Φ</i> N₀₀ or <i>Φ</i> Na Tension (lbs.)	ΦVcb or ΦVcp Shear (Ibs.)	ØNcb or ØNa Tension (Ibs.)	$\phi_{\mathbf{V}_{\mathrm{cb}}}$ or $\phi_{\mathbf{V}_{\mathrm{cp}}}$ Shear (Ibs.)
	2-3/4	1,015	2,060	1,040	2,235	1,075	2,320	1,135	2,445	1,180	2,540
#4	4	1,475	3,175	1,510	3,250	1,565	3,375	1,650	3,560	1,715	3,695
	6	2,210	4,765	2,265	4,880	2,350	5,065	2,480	5,335	2,575	5,540
	3-1/8	1,500	2,735	1,535	3,025	1,595	3,435	1,680	3,620	1,745	3,755
#5	5	2,400	5,170	2,455	5,290	2,550	5,495	2,690	5,790	2,790	6,010
	7-1/2	3,600	7,750	3,685	7,940	3,825	8,240	4,035	8,685	4,185	9,015
	3-1/2	1,945	3,505	1,985	3,875	2,055	4,430	2,160	4,650	2,235	4,815
#6	6	3,455	7,440	3,540	7,620	3,675	7,910	3,870	8,340	4,020	8,655
	9	5,185	11,165	5,305	11,430	5,510	11,865	5,805	12,510	6,030	12,985
	3-1/2	1,935	3,525	2,015	4,000	2,105	4,530	2,210	4,760	2,290	4,925
#7	7	4,705	10,130	4,815	10,370	5,000	10,765	5,270	11,350	5,470	11,785
	10-1/2	7,055	15,195	7,225	15,560	7,500	16,150	7,905	17,025	8,205	17,675
	4	2,605	4,365	2,715	4,955	2,810	5,810	2,950	6,355	3,055	6,580
#8	8	6,225	12,600	6,375	13,725	6,615	14,250	6,975	15,020	7,240	15,595
	12	9,335	20,110	9,560	20,590	9,925	21,375	10,460	22,535	10,860	23,390
	4.5	3,330	5,080	3,420	5,655	3,540	6,625	3,720	8,010	3,850	8,295
#9	9	7,875	14,430	8,065	15,955	8,375	18,035	8,825	19,010	9,165	19,735
	13.5	11,815	25,450	12,100	26,060	12,560	27,055	13,240	28,520	13,745	29,605
	5	4,180	5,695	4,270	6,300	4,420	7,380	4,645	9,235	4,810	10,355
#10	10	9,725	16,060	9,960	17,760	10,340	20,815	10,895	23,470	11,315	24,365
	15	14,590	29,250	14,940	32,175	15,505	33,400	16,345	35,205	16,970	36,550

🔲 - Concrete Breakout Strength 📃 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- Ca2 is greater than or equal to 1.5 times Ca1.

ANCHORS & FASTENERS

 Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

- 3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.
- 4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.
- 5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information
- included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-2582.
 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.
- 10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.
- 11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength requires an additional reduction factor applied for seismic tension (*Classis*), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

Tension Design of Steel Elements (Steel Strength)^{1,2}

	Steel Elements - Threaded Rod and Reinforcing Bar										
Nomina Rod/Ret Size	bar	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 / Grade 80 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
(in. or N	0.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)
3/8 or ‡	#3	3,370	4,360	7,265	5,040	3,315	5,525	7,150	5,720	6,600	4,290
1/2 or ‡	¥4	6,175	7,980	13,300	9,225	6,070	10,110	13,000	10,400	12,000	7,800
5/8 or ‡	#5	9,835	12,715	21,190	14,690	9,660	16,105	20,150	16,120	18,600	12,090
3/4 or ‡	#6	14,550	18,815	31,360	18,480	14,300	23,830	28,600	22,880	26,400	17,160
7/8 or ‡	¥7	20,085	25,970	43,285	25,510	19,735	32,895	39,000	31,200	36,000	
1 or #8	8	26,350	34,070	56,785	33,465	25,895	43,160	51,350	41,080	47,400	
#9								65,000	52,000	60,000	
1-1/4 or	#10	42,160	54,510	90,850	53,540	41,430	69,050	82,550	66,040	76,200	

- Steel Strength

1. Steel tensile design strength according to ACI 318 (-19 or -14) Ch.17 or ACI 318 Appendix D, $\phi_{Nsa} = \phi \bullet_{Ase,N} \bullet_{futa.}$

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode,

the lowest load level controls.

Shear Design of Steel Elements (Steel Strength)^{1,2,3}

	Steel Elements - Threaded Rod and Reinforcing Bar									
Nominal Rod/Rebar Size (in ar No)	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
(in. or No.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØV₅a Shear (lbs.)	ØVଛ Shear (Ibs.)	ØVଛ Shear (Ibs.)	ØV₅a Shear (lbs.)	ØVsa Shear (Ibs.)
3/8 or #3	1,755	2,265	3,775	2,790	1,725	2,870	3,960	3,170	3,430	2,375
1/2 or #4	3,210	4,150	6,915	5,110	3,155	5,255	7,200	5,760	6,240	4,320
5/8 or #5	5,115	6,610	11,020	8,135	5,025	8,375	11,160	8,930	9,670	6,695
3/4 or #6	7,565	9,785	16,305	10,235	7,435	12,390	15,840	12,670	13,730	9,505
7/8 or #7	10,445	13,505	22,505	14,130	10,265	17,105	21,600	17,280	18,720	-
1 or #8	13,700	17,715	29,525	18,535	13,465	22,445	28,440	22,750	24,650	-
#9							36,000	28,800	31,200	-
1-1/4 or #10	21,920	28,345	47,240	29,655	21,545	35,905	45,720	36,575	39,625	-

- Steel Strength

1. Steel shear design strength according to ACI 318 (-19 or -14) Ch.17 or ACI 318 Appendix D, ϕ /sa = $\phi \cdot 0.60 \cdot A_{se,V} \cdot f_{uta.}$

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

3. In the determination of the shear design strength values in cracked concrete, the steel strength requires an additional reduction factor applied for seismic shear (Cleseis), where seismic design is applicable.

– REV. J

INSTALLATION INSTRUCTIONS (SOLID BASE MATERIALS)

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal (see optional dust extraction equipment supplied by DEWALT to minimize dust emission).
- INCTR

Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

- Drilling in dry base material is necessary when using hollow drill bits (vacuum must be on); not for use in wet concrete or masonry.
- GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" DRILLING AND CLEANING SYSTEM: OTHERWISE GO TO STEP 2A. 2a- Starting from the bottom or back of the anchor hole, blow the hole clean using a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz.) supplied by DEWALT) a minimum of four times (4x). Use a compressed air nozzle or a hand pump for anchor rod diameters 3/8" to 3/4" or reinforcing bar (rebar) sizes #3 to #6. • **4X** Use a compressed air nozzle for anchor rod diameter 7/8" to 1-1/4" and rebar sizes #7 to #10. Do not use a hand pump for these sizes. 2b- Determine wire brush diameter (see installation specifications) and attach the brush with adaptor to a rotary drill tool or battery screwgun. Brush the hole with the selected wire brush a minimum of four times (4x). A brush extension (supplied by DEWALT) should be used for holes drilled deeper than the listed brush length. **4X** Note! The wire brush diameter should be checked periodically during use. The brush should resist insertion into the drilled hole and come into contact with the sides of the drilled hole. If not the brush is too small and must be replaced. 2c- Finally, blow the hole clean again using a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl.oz.) supplied by DEWALT a minimum of four times (4x). • Use a compressed air nozzle or a hand pump for anchor rod diameters 3/8" to 3/4" or reinforcing bar (rebar) sizes #3 to #6. 4X Use a compressed air nozzle for anchor rod diameters 7/8" to 1-1/4" and rebar sizes #7 to #10. Do not use a hand pump for these sizes. When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material. PREPARIN 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 23°F to 95°F (-5°C to 35°C) when in use for concrete unless otherwise noted. Cartridge temperature must be between 41°F to 95°F (5°C to 35°C) when in use for masonry. Review gel (working) and cure time table. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. Remove cap from cartridge. Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way. Make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool. Note! Use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive 4- Prior to inserting the anchor rod or rebar into the drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage. 5- Adhesive must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color. Unless otherwise noted, do not attach a used nozzle when changing to a new cartridge. 3X | Review and note the published working and cure times (see gel time and curing time table) prior to injection of the mixed adhesive into the TTTTTTTTT cleaned anchor hole. STALLATI 6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. If the bottom or back of the anchor hole is not reached with the mixing nozzle only, a plastic extension tube supplied by DEWALT must be used with the mixing nozzle (see reference tables for installation). Piston plugs must be used with and attached to mixing nozzle and extension tube for overhead (i.e. upwardly inclined) installations and horizontal WITH PISTON PLUG: installations with anchor sizes as indicated in the piston plug selection table. Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure. V .A Attention! Do not install anchors overhead without proper training and installation hardware provided by DEWALT. Contact DEWALT for details. 7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time. 8- Be sure the rod or rebar is fully seated at the bottom of the hole to the specified embedment. Adhesive must completely fill the annular gap between the anchor and the base material. Protect exposed anchor threads from fouling with adhesive. For all installations the anchor must be restrained from movement throughout the specified curing period (as necessary) where necessary through the use of temporary wedges, external supports, or other methods. Minor adjustments to the position of the anchor element may be performed during the gel (working) time only. 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table). 68°F · Do not disturb, torque or load the anchor until it is fully cured.

- 10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference gel time and curing table) by using a calibrated torque wrench.
- Note! Take care not to exceed the maximum torque for the selected anchor.

ADHESIVES

REFERENCE INSTALLATION TABLES

Gel (working) Time and Curing Table

der (nernang) mile and ear								
Temperature	of Base Material	Gel (working) Time	Full Curing Time					
°F	°C							
14	-10	90 minutes	24 hours					
23	-5	90 minutes	14 hours					
32	0	45 minutes	7 hours					
41	5	25 minutes	2 hours					
50	10	15 minutes	90 minutes					
68	20	6 minutes	45 minutes					
86	30	4 minutes	25 minutes					
95	35	2 minutes	20 minutes					
104	40	1.5 minutes	15 minutes					

Cartridge temperature must be between 23°F to 95°F (-5°C to 35°C) when in use for concrete except for installations in base material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge temperature must be conditioned to between 68°F and 95°F (20°C - 35°C). Cartridge temperature must be between 41°F to 95°F (5°C to 35°C) when in use for masonry.

Wire Brush Selection Table for AC100+ Gold^{1,2}

Nominal Wire Brush Size (inch)	ANSI Drill Bit Diameter (inch)	Brush Length (inches)	Steel Wire Brush (Cat. #)	Blowout Tool
	· · · · · · · · · · · · · · · · · · ·	Solid Base Material		·
7/16	7/16	7	08284-PWR	
9/16	9/16	7	08285-PWR	Hand-pump
5/8	5/8	7	08275-PWR	(Cat #08280-PWR)
11/16	11/16	9	08286-PWR	or compressed
3/4	3/4	9	08278-PWR	air nozzle
7/8	7/8	9	08287-PWR	
1	1	11	08288-PWR	
1-1/8	1-1/8	11	08289-PWR	Compressed air
1-3/8	1-3/8	11	08290-PWR	nozzle only
1-1/2	1-1/2	11	08291-PWR	
	Hol	ow Base Material (with Screen Tul	be)	
3/8	3/8 (SS screen)	7	08284-PWR	
1/2	1/2 (SS screen)	7	08284-PWR	
9/16	9/16 (plastic screen)	7	08285-PWR	
5/8	5/8 (SS screen)	7	08275-PWR	Hand pump
3/4	3/4 (plastic screen)	9	08278-PWR	(Cat# 08280-PWR) c
3/4	3/4 (SS screen)	9	08278-PWR	compressed air nozzl
7/8	7/8 (plastic screen)	9	08287-PWR	
7/8	7/8 (SS screen)	9	08287-PWR	
1	1 (SS screen)	11	08288-PWR	7

1. An SDS-plus adaptor (Cat. #08283-PWR) or Jacobs chuck style adaptor (Cat. #08296-PWR) is available to attach a steel wire brush to the drill tool.

2. A brush extension (Cat. #08282-PWR) must be used for holes drilled deeper than the listed brush length.

For Retrofit Bolt Anchors in URM Walls, including separate installation details, see the table in this tech section entitled "Allowable Load Capacities for AC100+ Gold with Threaded Rods and Reinforcing Bars or Rebar Dowel Installed in Unreinforced Masonry Walls with Stainless Steel Screen Tubes".

Piston Plug Selection Table for Adhesive Anchors^{1,2,3,4}

Drill Bit Diameter (inch)	Plug Size (inch)	Piston Plug (Cat. #)	Premium Piston Plug (Cat. #)
11/16	11/16	08258-PWR	PFC1691515
3/4	3/4	08259-PWR	PFC1691520
7/8	7/8	08300-PWR	PFC1691530
1	1	08301-PWR	PFC1691540
1-1/8	1-1/8	08303-PWR	PFC1691550
1-1/4	1-1/4	08307-PWR	PFC1691555
1-3/8	1-3/8	08305-PWR	PFC1691560
1-1/2	1-1/2	08309-PWR	PFC1691570
1-3/4	1-3/4	-	PFC1691580
2	2	-	PFC1691590
2-3/16	2-3/16	-	PFC1691600

1. All overhead or upwardly inclined installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All horizontal installations require the use of piston plugs where the embedment depth is greater than 8 inches and the drill bit size is larger than 5/8-inch.

3. The use of piston plugs is also recommended for underwater installations where one is tabulated together with the anchor size.

4. A flexible plastic extension tube (Cat. #08281-PWR or #08297-PWR) or equivalent approved by DEWALT must be used with piston plugs.

Cat. No.

08293-PWR

08297-PWR

ORDERING INFORMATION

AC100+ Gold Cartridges (10:1 mix ratio)

Cat. No.	Description	Pack Qty.	Std. Carton	Pallet				
8478SD-PWR	AC100+ Gold 9.5 fl. oz. Quick-Shot	12	36	648				
8578SD-PWR	AC100+ Gold 14 fl. oz. coaxial cartridge	-	12	540				
8490SD-PWR AC100+ Gold 28 fl. oz. dual cartridge - 8 240								
An AC100+ Gold mixin	An AC100+ Gold mixing nozzle is packaged with each cartridge.							

Charles and the second second

PFC1641600 Mixing nozzle (with an 8" extension) 08281-PWR Mixing nozzle extension, 8" long

Cartridge System Mixing Nozzles

Dispensing	Tools	for	Injection	Adhesive
------------	--------------	-----	-----------	----------

Cat. No.	Description	Pack Qty.							
08437-PWR	Manual caulking gun for Quick-Shot	1							
DCE560D1	Quick-Shot 20v battery powered caulking gun	1							
08414-PW	14 fl. oz. standard metal manual tool	1							
08494-PWR	28 oz. std. metal manual tool	1							
08496-PWR	28 oz. pneumatic tool	1							
DCE595D1	28 oz. 20v battery powered dispensing tool	1							

AC100+ Gold mixing nozzles must be used to ensure complete and proper mixing of the adhesive.

Description

Mixing nozzle for AC100+ Gold

Flexible extension tubing, 20" long

Hole Cleaning Tools and Accessories

Cat. No.	Description	Pack Qty.
08284-PWR	Wire brush for 7/16" or 1/2" ANSI hole, 7" length	1
08285-PWR	Wire brush for 9/16" ANSI hole, 7" length	1
08275-PWR	Wire brush for 5/8" ANSI hole, 7" length	1
08286-PWR	Wire brush for 11/16" ANSI hole, 9" length	1
08278-PWR	Wire brush for 3/4" ANSI hole, 9" length	1
08287-PWR	Wire brush for 7/8" ANSI hole, 9" length	1
08288-PWR	Wire brush for 1" ANSI hole, 11" length	1
08289-PWR	Wire brush for 1-1/8" ANSI hole, 11" length	1
08276-PWR	Wire brush for 1-1/4" ANSI hole, 11" length	1
08290-PWR	Wire brush for 1-3/8" ANSI hole, 11" length	1
08291-PWR	Wire brush for 1-1/2" ANSI hole, 11" length	1
08299-PWR	Wire brush for 1-3/4" ANSI hole, 11" length	1
08271-PWR	Wire brush for 2" ANSI hole, 11" length	1
08272-PWR	Wire brush for 2-3/16" ANSI hole, 11" length	1
08283-PWR	SDS-plus adapter for steel brushes	1
08296-PWR	Standard drill adapter for steel brushes (e.g. Jacobs Chuck)	1
08282-PWR	Steel brush extension, 12" length	1
08280-PWR	Hand pump/dust blower (25 fl. oz. clylinder volume)	1
DFC165100	Air blow gun kit with guard & extension, 22" length	1

Premium Piston Plugs

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.
PFC1691510	5/8" Plug	5/8"	1
PFC1691515	11/16" Plug	11/16"	1
PFC1691520	3/4" Plug	3/4"	1
PFC1691530	7/8" Plug	7/8"	1
PFC1691540	1" Plug	1"	1
PFC1691550	1-1/8" Plug	1-1/8"	1
PFC1691555	1-1/4" Plug	1-1/4"	1
PFC1691560	1-3/8" Plug	1-3/8"	1
PFC1691570	1-1/2" Plug	1-1/2"	1
PFC1691580	1-3/4" Plug	1-3/4"	1
PFC1691590	2" Plug	2"	1
PFC1691600	2-3/16" Plug	2-3/16"	1

Stainless Steel Screen Tubes

Carton Qty.

24

24

24

36

Pack Qty.

2

2

2

12

Cat. No.	Description	Drill Bit Dia.	Pack Qty.
07960-PWR	1/4" x 2" Screen Tube	3/8"	25
07862-PWR	1/4" x 6" Screen Tube*	3/8"	25
07864-PWR	1/4" x 8"Screen Tube*	3/8"	25
07856-PWR	3/8" x 2" Screen Tube	1/2"	25
07961-PWR	3/8" x 3-1/2" Screen Tube	1/2"	25
07962-PWR	3/8" x 6" Screen Tube*	1/2"	25
07963-PWR	3/8" x 8" Screen Tube*	1/2"	25
07964-PWR	3/8" x 10" Screen Tube*	1/2"	25
07959-PWR	3/8" x 12" Screen Tube*	1/2"	25
07857-PWR	1/2" x 2" Screen Tube	5/8"	25
07965-PWR	1/2" x 3-1/2" Screen Tube	5/8"	25
07966-PWR	1/2" x 6" Screen Tube	5/8"	25
07967-PWR	1/2" x 8" Screen Tube*	5/8"	25
07968-PWR	1/2" x 10" Screen Tube*	5/8"	25
07858-PWR	5/8" x 2" Screen Tube	3/4"	25
07969-PWR	5/8" x 4-1/2" Screen Tube	3/4"	20
07970-PWR	5/8" x 6" Screen Tube	3/4"	20
07971-PWR	5/8" x 8" Screen Tube	3/4"	20
07972-PWR	5/8" x 10" Screen Tube	3/4"	20
07859-PWR	3/4" x 2" Screen Tube	7/8"	25
07973-PWR	3/4" x 6 Screen Tube	7/8"	10
07977-PWR	3/4" x 8 Screen Tube	7/8"	10
07974-PWR	3/4" x 10 Screen Tube	7/8"	10
07975-PWR	3/4" x 13 Screen Tube	7/8"	10
07978-PWR	3/4" x 17 Screen Tube	7/8"	10
07855-PWR	15/16" x 2" Screen Tube	1"	25
07865-PWR	15/16" x 8" Screen Tube	1"	10
07867-PWR	15/16" x 13" Screen Tube	1"	10
07869-PWR	15/16" x 17" Screen Tube	1"	10

Screen tubes are made from a 300 series stainless steel. The nominal diameter of the screen listed indicates the matching rod diameter (except for the 15/16" screen tubes). 15/16" screen tubes can accept 3/4" diameter threaded rods and #4, #5 or #6 reinforcing bars for unreinforced masonry wall applications (URM).

*Includes extension tubing.

Piston Plugs for Adhesive Anchors

Cat. No.	Description	Drill Bit Dia.	Pack Qty.	Carton Qty.	
08304-PWR	5/8" Plug	5/8"	10	100	
08258-PWR	11/16" Plug	11/16"	10	100	
08259-PWR	3/4" Plug	3/4"	10	100	
08300-PWR	7/8" Plug	7/8"	10	100	
08301-PWR	1" Plug	1"	10	100	
08303-PWR	1-1/8" Plug	1-1/8"	10	100	
08305-PWR	R 1-3/8" Plug 1-3/8" 10 100				
08307-PWR	1-1/4" Plug	1-1/4"	10	100	
08309-PWR	PWR 1-1/2" Plug 1-1/2" 10 100				
A plastic extension tube (Cat# 08281-PWR or 08297-PWR) or equivalent approved by DEWALT must be used with piston plugs.					

6-1/2"

10" 12"

18"

6"

10-1/2"

12"

18"

Plastic Screen Tubes

k.____

DEWALT

ANCHORS & FASTENERS

Cat. No.	Description	Drill Bit Dia.	Pack Qty.	
08310-PWR	3/8" x 3-1/2" Plastic Screen	9/16"	25	
08311-PWR	3/8" x 6" Plastic Screen	9/16"	25	
08313-PWR	3/8" x 8" Plastic Screen	9/16"	25	
08315-PWR	1/2" x 3-1/2" Plastic Screen	3/4"	25	
08317-PWR	1/2" x 6" Plastic Screen	3/4"	25	
08321-PWR	5/8" x 6" Plastic Screen	7/8"	25	
08323-PWR	3/4" x 6" Plastic Screen	1"	10	
The nominal diameter of the screen listed indicates the matching rod diameter.				

Cat. No. Diameter **Usable Length Overall Length** DW5527 3/8" 4" 8" 3/8" DW5529 DW55300 3/8" 10" DW5531 3/8" 16" DW5537 1/2" 4"

16

SDS+ Full Head Carbide Drill Bits

1/2"

1/2"

1/2"

DW5538

DW5539

DW5540

8"

10"

16"

SDS Max 4-Cutter Carbide Drill Bits

Cat. No.	Diameter	Usable Length	Overall Length		
DW5806	5/8"	8"	13-1/2"		
DW5809	5/8"	16"	21-1/2"		
DW5807	5/8"	31"	36"		
DW5808	11/16"	16"	21-1/2"		
DW5810	3/4"	8"	13-1/2"		
DW5812	3/4"	16"	21-1/2"		
DW5813	3/4"	31"	36"		
DW5814	13/16"	16"	21-1/2"		
DW5815	7/8"	8"	13-1/2"		
DW5816	7/8"	16"	21-1/2"		
DW5851	7/8"	31"	36"		
DW5818	1"	8"	13-1/2"		
DW5819	1"	16"	22-1/2"		
DW5852	1"	24"	29"		
DW5820	1"	31"	36"		
DW5821	1-1/8"	10"	15"		
DW5822	1-1/8"	18"	22-1/2"		
DW5853	1-1/8"	24"	29"		
DW5854	1-1/8"	31"	36"		
DW5824	1-1/4"	10"	15"		
DW5825	1-1/4"	18"	22-1/2"		

Cat. No.	Diameter	Usable Length	Overall Length			
DW5471	5/8"	8"	10"			
DW5472	5/8"	16"	18"			
DW5474	3/4"	8"	10"			
DW5475	3/4"	16"	18"			
DW5477	7/8"	8"	10"			
DW5478	7/8"	16"	18"			
DW5479	1"	8"	10"			
DW5480	1"	16"	18"			
DW5481	1-1/8"	8"	10"			
DW5482	1-1/8"	6"	18"			

Dust Extraction

Cat. No.	Description		
DWV012	10 Gallon Wet/Dry Hepa/Rrp Dust Extractor DWV9402 Fleece bag (5 pack) for DEWALT dust extractors DWV9316 Replacement Anti-Static Hose DWV9320 Replacement HEPA Filter Set (Type 1)		
DWH050K	Dust Extraction with two interchangeable drilling heads		
DCB1800B 1800 Watt Portable Power Station & Parallel Battery Charger Bare Unit			

Hollow Drill Bits

Shank	Cat. No.	Diameter	Overall Length	Usable Length	Recommended Hammer
SDS+	DWA54012	1/2"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54916	9/16"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54058	5/8"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54034	3/4"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA58058	5/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58958	5/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58116	11/16"	24-3/4"	15-3/4"	DCH481 / D25603K
	DWA58034	3/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58934	3/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58078	7/8"	23-5/8"	15-3/4"	DCH481 / D25603K
SDS Max	DWA58001	1"	23-5/8"	15-3/4"	DCH481 / D25603K
SUS IVIAX	DWA58901	1"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58118	1-1/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58918	1-1/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58115	1-1/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58114	1-1/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58138	1-3/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58112	1-1/2"	47-1/4"	39-3/8"	DCH481 / D25603K

914210101010101010101 **SDS+ 4-Cutter Carbide Drill Bits**

AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

1-800-4 DEWALT