

Product Submittal/Substitution Request

TO:				
PROJECT:				
PROJECT LOCATION	N:			
SPECIFIED ITEM:				
Section	Page	Paragraph	Description	
PRODUCT SU	BMIT TAL / SUBSTI	TUTION REQUESTED:		
DEWALT ®	Engineered By	Powers® AC200+(to	n) -	
The attached submitt	al nackage includes the produc	t description specifications drawing	s, and performance data for use in the evaluation of t	ne reallest
SUBMITTED		t docompliant, appointed and in granting	, and performance data for doe in the evaluation of the	10 10 4 4 5 6 1
Name:			Signature:	
Company:				
Address:				
Date:	Telep	phone:	Fax:	
FOR USF RY	THE ARCHITECT AN	ID/OR ENGINEER		
Approved	Approved as Not			
(If not approved, ple	ase briefly explain why the pro	oduct was not accepted.)		
Ву:			Date:	
Remarks:				

Questions or inquiries? Contact us at engineering@powers.com, or call 1.800.524.3244

©2019 DEWALT® Engineered By Powers®

DEWALT® AC200+(tm) Submittal Section:

Product Pages:

- General Information
- Design Tables
- Installation Instructions
- Ordering Information

Code Reports & Agency Listings:

- ICC-ES Approval: ESR-4027 (Cracked And Uncracked Concrete)

 ${\it Offline \ version \ available \ for \ download \ at \ \underline{\it www.dewaltdesignassist.com}}.$

DEWALT developed the DEWALT Design Assist (DDA) anchor software to enable users to input technical data into a dynamic model environment-to visualize, consider, and specify anchors in today's changing engineering climate.

For a demonstration of the latest version of PDA, contact us at anchors@DEWALT.com

GENERAL INFORMATION

AC200+™

Acrylic Injection Adhesive Anchoring System and Post-Installed Reinforcing Bar Connections

PRODUCT DESCRIPTION

The AC200+ is a two-component, high strength adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The AC200+ is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in concrete base materials and for post-installed reinforcing bar connections.

GENERAL APPLICATIONS AND USES

- Bonding threaded rod and reinforcing bar into hardened concrete
- Evaluated for installation and use in dry and wet concrete
- Fast curing system which can be installed in a wide range of base material temperatures; qualified for structural applications in concrete and masonry as low as 14°F (-10°C)
- · Qualified for seismic (earthquake) and wind loading

FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Evaluated and recognized for freeze/thaw performance
- + Versatile system which can be used in a wide range of embedments in low and high strength concrete
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES) ESR-4027 for cracked and uncracked concrete
- Code Compliant with the International Building Code/International Residential Code: 2018 IBC/IRC, 2015 IBC/IRC, 2012 IBC/IRC, and 2009 IBC/IRC
- Tested in accordance with ACI 355.4, ASTM E488, and ICC-ES AC308 for use in structural concrete (Design according to ACI 318-14, Chapter 17 and ACI 318-11/08 Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Compliant with NSF/ANSI 61 for drinking water system components health effects; minimum requirements for materials in contact with potable water and water treatment
- Conforms to requirements of ASTM C881 and AASHTO M235, Types I, II, IV and V, Grade 3, Class A
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, and 05 05 19 Post-Installed Concrete Anchors. Adhesive anchoring system shall be AC200+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

CODE LISTED CC-FS FSR-4027 CONCRETE

SECTION CONTENTS

General Information	1
Strength Design (SD)	2
Installation Instructions (Solid Base Materials)	17
Installation Instructions (Post-Installed Rebar)	18
Reference Installation Tables	19
Ordering Information	20

PACKAGING

Coaxial Cartridge

9.5 fl. oz.

Dual (side-by-side) Cartridge

• 28 fl. oz.

STORAGE LIFE & CONDITIONS

Dual cartridge: Eighteen months Coaxial cartridge: Eighteen months In a dry, dark environment with temperature ranging from 41°F to 90°F (5°C to 32°C)

ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)
- 10M to 30M reinforcing bar (CA rebar)

SUITABLE BASE MATERIALS

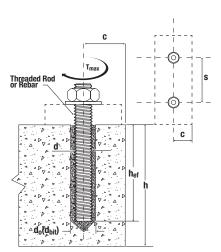
- Normal-weight concrete
- · Lightweight concrete

PERMISSIBLE INSTALLATION **CONDITIONS (ADHESIVE)**

- Dry concrete
- Water-saturated concrete (wet)
- Water-filled holes

STRENGTH DESIGN (SD)

Installation Specifications for Threaded Rod and Reinforcing Bar¹



Dimension/Property	Notation	Units		Nominal Anchor Size															
Threaded Rod	-	-	3/8	-		1/2	-	5/8	-	-	3/4	-	7/8	-	1	-	-	1-1/4	-
Reinforcing Bar	-	-	-	#3	10M	-	#4	-	#5	15M	#6	20M	#7	25M	#8	#9	30M	-	#10
Nominal anchor diameter	da	in. (mm)	0.3 (9.		0.445 (11.3)		500 2.7)		525 5.9)	0.630 (16.0)	0.750 (19.1)	0.768 (19.5)	0.875 (22.2)	0.992 (25.2)	1.000 (25.4)	1.125 (28.6)	1.177 (29.9)	1.2 (31	250 .8)
Nominal ANSI drill bit size	do [dbit]	in.	7/16 ANSI	1/2 ANSI	9/16 ANSI	9/16 ANSI	5/8 ANSI	11/16 ANSI	3/4 ANSI	3/4 ANSI	7/8 ANSI	1 ANSI	1 ANSI	1-1/4 ANSI	1-1/8 ANSI	1-3/8 ANSI	1-1/2 ANSI	1-3/8 ANSI	1-1/2 ANSI
Minimum embedment	hef,min	in. (mm)	2-3 (6		2.8 (70)		3/4 70)	3- ⁻ (7		3.1 (80)	3-1/2 (89)	3.5 (90)	3-1/2 (89)	3.9 (100)	4 (102)	4-1/2 (114)	4.7 (120)	(12	5 27)
Maximum embedment	h _{ef,max}	in. (mm)	7-1 (19	1/2 91)	8.9 (225)		0 54)		1/2 18)	12.6 (320)	15 (381)	15.4 (390)	17-1/2 (445)	19.8 (505)	20 (508)	22-1/2 (572)	23.5 (600)	2 (63	5 35)
Minimum concrete member thickness	h _{min}	in. (mm)	h _{ef} + 1-1/4 (h _{ef} + 30)			her + 2d _o													
Minimum spacing distance	Smin	in. (mm)	1-7 (4	7/8 8)	2 (50)		1/2 52)		6)	3.2 (80)	3-5/8 (92)	3.9 (100)	4-1/4 (108)	4.9 (125)	4-3/4 (121)	5-1/4 (133)	5.9 (150)		7/8 19)
Minimum edge distance (100% T _{max})	Cmin	in. (mm)	1-5 (4	5/8 1)	1.7 (45)		3/4 14)	(5	<u>2</u> 1)	2.2 (55)	2-3/8 (60)	2-3/8 (60)	2-1/2 (64)	2.7 (70)	2-3/4 (70)	3 (75)	3 (75)	3- ⁻ (8	1/4 0)
Maximum Torque ³	T _{max}	ft-lbs	1:	5 ⁴	-	3	30	4	4	-	66	66	96	-	147	185	-	22	21
Minimum edge distance, reduced ^{2.4,5} (45% T _{max})	Cmin,red	in (mm)	-	-	-		-		3/4 5)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)	2-3 (7	3/4 0)
Maximum Torque, reduced ³	T _{max,red}	ft-lbs	7	7	-	1	4	2	0	-	30	-	43	-	66	83	-	9	9

- 1. For use with the design provisions of ACI 318-14 Ch. 17 or ACI 318-11 Appendix D as applicable, ICC-ES AC308, Section 4.2 and ESR-4027.
- 2. For No. 8 rebar an 1-1/4" ANSI drill bit is also suitable for use.
- 3. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.
- 4. For ASTM A36/F1554 Grade 36 carbon steel threaded rods with 3/8-inch-diameter, Tmax = 11 ft.-lbs.
- 5. For installations at the reduced minimum edge distance, cmin,red, the maximum toque applied must be max torque reduced, Tmax,red.
- 6. For installations at the reduced minimum edge distance, $c_{min,red}$, the miminim spacing, $s_{min} = 5 \text{ x da}$.

Detail of Steel Hardware Elements used with Injection Adhesive System

Threaded Rod and Deformed Reinforcing Bar Material Properties

Steel Description (General)	Steel Specification	Nominal Anchor Size	Minimum Ultimate Strength f _u psi (MPa)	Minimum Yield Strength fy psi (MPa)
	ASTM A36 or F1554, Grade 36		58,000 (400)	36,000 (250)
	ASTM F1554 Grade 55	3/8" through 1-1/4"	75,000 (517)	55,000 (380)
	ASTM A193 Grade B7	3/6 tillough 1-1/4	125,000 (860)	105,000 (724)
Carbon Rod	ASTM F1554 Grade 105		125,000 (860)	105,000 (724)
	ASTM A449	3/8" through 1"	120,000 (828)	92,000 (635)
	ASTM A449	1-1/4"	105,000 (720)	81,000 (560)
	ASTM F568M Class 5.8	3/4" through 1-1/4"	72,500 (500)	58,000 (400)
	ASTM F593 CW1	3/8" through 5/8"	100,000 (690)	65,000 (450)
Stainless Rod (Alloy 304 / 316)	ASTM F593 CW2	3/4" through 1-1/4"	85,000 (590)	45,000 (310)
	ASTM A193/A193M Grade B8/B8M2, Class 2B	3/8" through 1-1/4"	95,000 (655)	75,000 (515)
Grade 60	ASTM A615, A767, A996 Grade 60	3/8" through 1-1/4"	90,000 (620)	60,000 (414)
Reinforcing Bar	ASTM A706 Grade 60	(#3 through #10)	80,000 (550)	60,000 (414)
Grade 40 Reinforcing Bar	ASTM A615 Grade 40	3/8" through 3/4" (#3 through #6)	60,000 (415)	40,000 (275)
Grade 400 Metric Reinforcing Bar (CA)	CAN/CSA G30.18	10M through 30M	78,300 (540)	58,000 (400)

Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)

	Barton Information	Symbol Un				Nominal	Rod Diamete	er¹ (inch)				
	Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4		
Threaded rod	nominal outside diameter	d	inch	0.375	0.500	0.625	0.750	0.875	1.000	1.250		
			(mm) inch²	(9.5) 0.0775	(12.7) 0.1419	(15.9) 0.2260	0.3345			0.9691		
Threaded rod	effective cross-sectional area	Ase	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)		
	Manada at atom attended a second at the	N _{sa}	lbf	4,495	8,230	13,110	19,400	26,780	35,130	56,210		
ASTM A 36	Nominal strength as governed by steel strength (for a single anchor)		(kN)	(20.0) 2,695	(36.6) 4.940	(58.3) 7,860		\ ' ' /				
and ASTM F 1554	otoor or origin (for a origin aronor)	Vsa	(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.4)	(93.8)	(150.0)		
Grade 36	Reduction factor for seismic shear		-				0.60					
	Strength reduction factor for tension ² Strength reduction factor for shear ²	φ	-									
	Strength reduction factor for Shear-	φ	- lbf	5,810	10,640	16,950		24 625	15 125	72.690		
	Nominal strength as governed by	N_{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.0)	(323.3)		
ASTM F 1554	steel strength(for a single anchor)	Vsa	lbf	3,485	6,385	10,170	15,050		27,255	43,610		
Grade 55			(kN) -	(15.5)	(28.4)	(45.2)		(92.4)	(121.2)	(194.0)		
	Strength reduction factor for tension ²	Ω'V,seis Φ	-									
	Strength reduction factor for shear ²	$\frac{\varphi}{\phi}$	-				0.65					
		N _{sa}	lbf	9,685	17,735	28,250	41,810	57,710	75,710	121,135		
ASTM A 193 Grade B7	Nominal strength as governed by steel strength (for a single anchor)		(kN) lbf	(43.1) 5,815	(78.9) 10,640	(125.7) 16,950						
and	steel streligth (for a single anchor)	V_{sa}	(kN)	(25.9)	(7.3)	(75.4)				(323.3)		
ASTM F 1554	Reduction factor for seismic shear	€V,seis	- ()	(20.0)	(1.0)	(1 01 1)	0.60	(10110)	(20211)	(020.0)		
Grade 105	Strength reduction factor for tension ²	φ	-				0.75	0.750 0.875 1.000 1.25 (19.1) (22.2) (25.4) (31.8 0.3345 0.4617 0.6057 0.968 (216) (298) (391) (625 9,400 26,780 35,130 56,21 (86.3) (119.1) (156.3) (250. 1,640 16,070 21,080 33,75 (51.8) (71.4) (93.8) (150. 0.60 0.75 0.65 20,775 27,255 43,61 111.6) (154.0) (202.0) (323. 5,050 20,775 27,255 43,61 (67.0) (92.4) (121.2) (194. 0.60 0.75 0.65 11,810 57,710 75,710 121,1 186.0) (256.7) (336.8) (538. 15,085 34,625 45,425 72,68 111.6) (154.0) (202.1) (323. 25,085 34,625 45,425 72,68 111.7 (36.5) 10,74 <td></td>				
	Strength reduction factor for shear ²	φ	-									
	Nominal strength as	Nsa	lbf (kN)	9,300 (41.4)	17,025 (75.7)	27,120 (120.6)				101,755		
Q	governed by steel strength		lbf	5,580	10,215	16,270	24,085			61,050		
ASTM A 449	(for a single anchor)	V_{sa}	(kN)	(24.8)	(45.4)	(72.4)	(107.1)	(149.2)		(271.6)		
	Reduction factor for seismic shear		-									
	Strength reduction factor for tension ²	φ	-									
	Strength reduction factor for shear ²	φ	- lbf	5,620	10,290	16,385		1 22 475	12.015	70.000		
	Nominal strength as governed by	Nsa	(kN)	(25.0)	(45.8)	(72.9)	(107.9)			(312.5)		
AOTA E ECOM	steel strength (for a single anchor)	M	lbf	3,370	6,175	9,830	14,550			42,155		
ASTM F 568M Class 5.8	, , , , , , , , , , , , , , , , , , ,	Vsa	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)		
01033 0.0	Reduction factor for seismic shear		-									
	Strength reduction factor for tension ²	φ	-									
	Strength reduction factor for shear ²	φ	- lbf	7,750	14,190	22,600		20.245	F1 /05	Q2 270		
	Nominal strength as governed by	N_{sa}	(kN)	(34.5)	(63.1)	(100.5)				(366.4)		
ASTM F 593	steel strength (for a single anchor)	W	lbf	4,650	8,515	13,560	17,060			49,425		
CW Stainless (Types 304		Vsa	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.8)		
and 316)	Reduction factor for seismic shear	OtV,seis €	-			,		-				
,	Strength reduction factor for tension ² Strength reduction factor for shear ²	φ	-									
ASTM A 193	Subligui reduction factor for Shear	φ	- Ibf	7,365	13,480	21,470		43 860	57 545	92,065		
Grade B8/	Nominal strength as governed by	N_{sa}	(kN)	(32.8)	(60.0)	(95.5)	(141.3)			(409.5)		
B8M2,	steel strength (for a single anchor)	Vsa	lbf	4,420	8,085	12,880	19,065	26,315	34,525	55,240		
Class 2B			(kN)	(19.7)	(36.0)	(57.3)	(84.8)	(117.1)	(153.6)	(245.7)		
Stainless (Types 304	Reduction factor for seismic shear	Q(V,seis ⊥	-									
and 316)	Strength reduction factor for tension ² Strength reduction factor for shear ²	$\frac{\phi}{\phi}$	-									
,	Strength reduction ractor for Shear			1 N 0 0040			0.00					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

^{1.} Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-2), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)

Decius Information		Complete	11-24-			Nomina	l Reinforcin	g Bar Size	(Rebar) ¹				
	Design Information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10		
Rebar nomin	nal outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)		
Rebar effecti	ive cross-sectional area	Ase	inch² (mm²)	0.110 (71.0)	0.200 (129.0)	0.310 (200.0)	0.440 (283.9)	0.600 (387.1)	0.790 (509.7)	1.000 (645.2)	1.270 (819.4)		
	Nominal strength as governed by		lbf (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)	71,100 (316.3)	90,000 (400.3)	114,300 (508.4)		
ASTM A615, A767, A996 Grade 60	STM A615, 1767, A996 steel strength (for a single anchor)		lbf (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)		
Grade 60	Reduction factor for seismic shear	C V,seis	o.65										
	Strength reduction factor for tension ²	φ	-	0.65									
	Strength reduction factor for shear ²	φ	-				0.	0.60					
	Nominal strength as governed by	Nsa	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)		
ASTM A706	steel strength (for a single anchor)	V_{sa}	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)		
Grade 60	Reduction factor for seismic shear	lphaV,seis					0.	65					
	Strength reduction factor for tension ²	ϕ	-				0.	75					
	Strength reduction factor for shear ²	ϕ	-				0.	65					
	Nominal strength as governed by	N _{sa}	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	In accor	In accordance with ASTM A 615, Gra				
ASTM A 615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	40 bars are furnished only in sizes No. 3					
Grade 40	Reduction factor for seismic shear	C V,seis	-	0.65									
	Strength reduction factor for tension ²	φ	-	0.65									
	Strength reduction factor for shear ²	ϕ	-	0.60									

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

- 1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.
- 2. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

	Design Information		Units		Nominal I	Reinforcing Bar Siz	e (Rebar)¹		
	Design information	Symbol	Units	10 M	15 M	20 M	25 M	30 M	
Reinforcing to	Reinforcing bar O.D.		mm (in.)	11.4 (0.445)	16.0 (0.630)	19.5 (0.768)	25.2 (0.992)	29.9 (1.177)	
Reinforcing to	Reinforcing bar effective cross-sectional area		mm² (inch²)	100.3 (0.155)	201.1 (0.312)	298.6 (0.463	498.8 (0.773)	702.2 (1.088)	
	Nominal strength as governed by	N _{sa}	kN (lb)	54.0 (12,175)	108.5 (24,410)	161.5 (36,255)	270.0 (60,550)	380.0 (85,240)	
CAN/CSA G30.18	steel strength (for a single anchor)	V _{sa}	kN (lb)	32.5 (7,305)	65.0 (14,645)	97.0 (21,755)	161.5 (36,330)	227.5 (51,145)	
Grade 400	Reduction factor for seismic shear	⊘ V,seis	-	0.65					
	Strength reduction factor for tension ²	φ	-			0.65			
	Strength reduction factor for shear ²	φ	-	0.60					

- 1. Values provided for common bar material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.
- The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Concrete Breakout Design Information for Threaded Rod and in Holes Drilled with a Hammer Drill and Carbide Bit¹

Besieus Information	Complete I	Heite			Nomina	al Rod Diamete	r (inch)			
Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4	
Effectiveness factor for cracked concrete	K _{c,cr}	- (SI)			`	17 (7.1)				
Effectiveness factor for uncracked concrete	K _{c,uncr}	- (SI)				24 (10.0)				
Minimum embedment	hef,min	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	5 (127)	
Maximum embedment	h _{ef,max}	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	25 (635)	
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2-1/2 (64)	3-1/8 (79)	3-5/8 (90)	4-1/8 (105)	4-3/4 (120)	5-7/8 (150)	
Minimum edge distance ²	Cmin	inch (mm)	1-5/8 (41)	1-3/4 (44)	2 (51)	2-3/8 (60)	2-1/2 (64)	2-3/4 (70)	3-1/4 (80)	
Minimum edge distance, reduced ² (45% T _{max})	C _{min,red}	inch (mm)	-	-	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	2-3/4 (70)	
Minimum member thickness	h _{min}	inch (mm)		1-1/4 ⊦ 30)		$h_{ef} + 2d_o$	where d₀ is hole	e diameter;		
Critical edge distance—splitting (for uncracked concrete only) ³	Cac	inch I mm		$C_{ac} = h_{ef} \cdot (\frac{\tau}{11})$	$\frac{1000}{60}$)0.4 · [3.1-0.7	$7 \frac{h}{h_{ef}}$] Cac =	$= h_{\rm ef} \cdot (\frac{\tau_{\rm uncr}}{8})^{0.4} \cdot$	$[3.1-0.7 \frac{h}{h_{ef}}]$		
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	φ	-	0.65							
Strength reduction factor for shear, concrete failure modes, Condition B4	φ	-	0.70							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

- 1. Additional setting information is described in the installation instructions.
- 2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.
- 3. τ_{kunor} need not be taken as greater than: $\tau_{\text{kunor}} = \frac{\text{kunor}}{\tau_{\text{hel}} + f \cdot c}$ and $\frac{h}{h_{\text{ef}}}$ need not be taken as larger than 2.4. π•d

Bond Strength Design Information for Threaded Rod in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Information		Cumbal	Units			Nominal	Rod Diame	ter (inch)			
Design intor	mauon	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4	
Minimum em	bedment	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	5 (127)	
Maximum em	bedment	h _{ef,max}	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	25 (635)	
Temperature Range A 122°F (50°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	1,041 (7.2)	1,041 (7.2)	1,111 (7.7)	1,219 (8.4)	1,212 (8.4)	1,206 (8.3)	1,146 (7.9)	
Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2,601 (17.9)	2,415 (16.7)	2,262 (15.6)	2,142 (14.8)	2,054 (14.2)	2,000 (13.8)	1,990 (13.7)	
Temperature Range B 161°F (72°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	905 (6.2)	906 (6.2)	966 (6.7)	1060 (7.3)	1054 (7.3)	1049 (7.2)	997 (6.9)	
Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{ ext{k,uncr}}$	psi (N/mm²)	2,263 (15.6)	2,101 (14.5)	1,968 (13.6)	1,863 (12.8)	1,787 (12.3)	1,740 (12.0)	1732 (11.9)	
Temperature Range C 212°F (100°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	652 (4.5)	653 (4.5)	696 (4.8)	764 (5.3)	760 (5.2)	756 (5.2)	719 (5.0)	
Long-Term Service Temperature; 320°F (160°C) Maximum Short-Term Service Temperature ^{2,3}	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1631 (11.2)	1514 (10.4)	1418 (9.8)	1343 (9.3)	1288 (8.9)	1254 (8.6)	1248 (8.6)	
Dry concrete	Anchor Category	-	-				1				
Dry concrete	Strength reduction factor	$\phi_{ extsf{d}}$	-				0.65				
Water-saturated concrete	Anchor Category	-	-				2				
vvater-saturateu concrete	Strength reduction factor	$\phi_{\scriptscriptstyle{WS}}$	-				0.55				
Water-filled holes	Anchor Category	-	-	3							
water-mileu moles	Strength reduction factor	$\phi_{\scriptscriptstyle{ ext{Wf}}}$	-				0.45				
Reduction factor for	seismic tension ⁹	$lpha_{ exttt{N,seis}}$	-				0.95				

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

- 1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa) and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.10} [For SI: (f'c / 17.2)^{0.10}].
- 2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.
- 3. Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C.

Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

Concrete Breakout Design Information for Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Information	Symbol	Units Nominal Bar Size (US Customary)									
Design imormation	Syllibol	UIIIIS	#3	#4	#5	#6	#7	#8	#9	#10	
Effectiveness factor for cracked concrete	K _{c,cr}	- (SI)				1 (7					
Effectiveness factor for uncracked concrete	K _{c,uncr}	- (SI)				2 (10	4).0)				
Minimum embedment	h _{ef,min}	inch (mm)	(60) (70) (79) (89) (89) (102) (114) (12							5 (127)	
Maximum embedment	h _{ef,max}	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	22-1/2 (572)	25 (635)	
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2-1/2 (64)	3 (79)	3-5/8 (92)	4-1/4 (105)	4-3/4 (120)	5-1/4 (133)	5-7/8 (150)	
Minimum edge distance ²	Cmin	inch (mm)	1-5/8 (41)	1-3/4 (44)	2 (51)	2-3/8 (60)	2-1/2 (64)	2-3/4 (70)	3 (75)	3-1/4 (80)	
Minimum edge distance, reduced ²	Cmin,red	inch (mm)	-	-	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	2-3/4 (70)	2-3/4 (70)	
Minimum member thickness	h _{min}	inch (mm)		1-1/4 + 30)		hef +	- 2d₀ where d	is hole diam	eter;		
Critical edge distance—splitting (for uncracked concrete only) ³	Cac	inch I mm		$c_{ac} = h_{ef}$	$(\frac{\tau_{\text{uncr}}}{1160})^{0.4} \cdot [3.$	1-0.7 h/hef]	$c_{ac} = h_{ef} \cdot $	$(\frac{\tau_{\text{uncr}}}{8})^{0.4} \cdot [3.7]$	1-0.7 <u>h</u>]		
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	φ	-	0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	φ	-				0.	70				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

- 1. Additional setting information is described in the installation instructions.
- 2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.
- 3. τ_{kumor} need not be taken as greater than: $\tau_{\text{kumor}} = \frac{\text{kumor} \cdot \sqrt{h_{\text{ef}} \cdot f'c}}{\tau \cdot d}$ and $\frac{h}{h_{\text{ef}}}$ need not be taken as larger than 2.4.
- 4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit

Design Information			Units			Nomin	al Bar Size	(US Cust	omary)			
Design intor	mation	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10	
Minimum em	bedment	h _{ef,min}	inch (mm)	2-3/8 (60.0)	2-3/4 (70.0)	3-1/8 (79.0)	3-1/2 (89.0)	3-1/2 (89.0)	4 (102.0)	4-1/2 (114.0)	5 (127.0)	
Maximum em	bedment	h _{ef,max}	inch (mm)	7-1/2 (191.0)	10 (254.0)	12-1/2 (318.0)	15 (381.0)	17-1/2 (445.0)	20 (508.0)	(508.0) (572.0)		
Temperature Range A 122°F (50°C) Maximum	Characteristic bond strength in cracked concrete	auk,cr	psi (N/mm²)	1,088 (7.5)	1,053 (7.3)	1,128 (7.8)	1,169 (8.1)	1,174 (8.1)	1,156 (8.0)	1,141 (7.9)	1,164 (8.0)	
Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	auk,uncr	psi (N/mm²)	2,200 (15.2)	2,101 (14.5)	2,028 (14.0)	1,969 (13.6)	1,921 (13.2)	1,881 (13.0)	1,846 (12.7)	1,815 (12.5)	
Temperature Range B 161°F (72°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ ext{k,cr}}$	psi (N/mm²)	947 (6.5)	916 (6.3)	982 (6.8)	1,017 (7.0)	1,021 (7.0)	1,006 (6.9)	993 (6.8)	1,012 (7.0)	
Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1,914 (13.2)	1,828 (12.6)	1,764 (12.2)	1,713 (11.8)	1,672 (11.5)	1,636 (11.3)	1,616 (11.1)	1,579 (10.9)	
Temperature Range C 212°F (100°C) Maximum Long-	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	682 (4.7)	660 (4.6)	707 (4.9)	733 (5.1)	736 (5.1)	725 (5.0)	715 (4.9)	730 (5.0)	
Term Service Temperature; 320°F (160°C) Maximum Short-Term Service Temperature ^{2,3}	Characteristic bond strength in uncracked concrete	$ au_{ ext{k,uncr}}$	psi (N/mm²)	1,379 (9.5)	1,317 (9.1)	1,271 (8.8)	1,235 (8.5)	1,205 (8.3)	1,179 (8.1)	1,157 (8.0)	1,138 (7.8)	
Drygoporeto	Anchor Category	-	-				-	ĺ				
Dry concrete	Strength reduction factor	$\phi_{ extsf{d}}$	-				0.	65				
Water esturated congrets	Anchor Category	-	-				,	2				
Water-saturated concrete	Strength reduction factor	$\phi_{\scriptscriptstyle{WS}}$	-				0.	55				
Water-filled holes	Anchor Category	-	-				(3				
vvater-inled flotes	Strength reduction factor	$\phi_{\scriptscriptstyle{ ext{Wf}}}$	-				0.	45				
Reduction factor for	seismic tension ⁹	$lpha_{ m N,seis}$	-	0.	95			1.	00			

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

- 1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.10} [For SI: (f'c / 17.2)^{0.10}].
- 2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.
- Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C.

Concrete Breakout Design Information for Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Information	Symbol	Units	Nominal Bar Size (CA)								
Design information	Syllibol	Ullits	10M	15M	20M	25M	30M				
Effectiveness factor for cracked concrete	K _{c,cr}	SI (-)			7 (17)						
Effectiveness factor for uncracked concrete	K _{c,uncr}	SI (-)			10 (24)						
Minimum embedment	h _{ef,min}	mm (in.)	70 (2.8)	80 (3.1)	90 (3.5)	100 (3.9)	120 (4.7)				
Maximum embedment	h _{ef,max}	mm (in.)	225 (8.9)	320 (12.6)	390 (15.4)	505 (19.8)	600 (23.5)				
Minimum anchor spacing	Smin	mm (in.)	55 (2-1/2)	80 (3-1/8)	95 (3-3/4)	120 (4-5/8)	150 (5-7/8)				
Minimum edge distance ²	Cmin	mm (in.)	40 (1-3/4)	50 (2)	60 (2-3/8)	70 (2-3/4)	85 (3-1/8)				
Minimum edge distance, reduced ²	Cmin,red	mm (in.)	-	40 (1-3/4)	40 (1-3/4)	40 (1-3/4)	70 (2-3/4)				
Minimum member thickness	h _{min}	mm (in.)		1-1/4 + 30)	h _{ef} + 2	d₀ where d₀ is hole di	ameter;				
Critical edge distance—splitting (for uncracked concrete only) ³	Cac	inch mm	Tunor va. ro. a = h z Tunor va. ro. a = h z								
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	φ	-	0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	φ	-	0.70								

- For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.
- 1. Additional setting information is described in the installation instructions.
- 2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin, and t
- 3. $\tau_{k,uncr}$ need not be taken as greater than: $\tau_{k,uncr} = t_{k,uncr} \cdot \sqrt{t_{kef} \cdot f'c}$ and $\frac{h}{h}$ need not be taken as larger than 2.4. π•d

Bond Strength Design Information for Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

Decima Inform		Cumbal	Units		No	minal Bar Size (CA)	
Design Infor	mation	Symbol	Units	10M	15M	20M	25M	30M
Minimum emi	bedment	h _{ef,min}	mm (in.)	70 (2.8)	80 (3.1)	90 (3.5)	100 (3.9)	120 (4.7)
Maximum em	bedment	h _{ef,max}	mm (in.)	225 (8.9)	320 (12.6)	390 (15.4)	505 (19.8)	600 (23.5)
Temperature Range A 122°F (50°C) Maximum	Characteristic bond strength in cracked concrete	auk,cr	N/mm² (psi)	14.5 (2,110)	13.2 (1,916)	12.5 (1,814)	11.7 (1,690)	11.1 (1,612)
Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	auk,uncr	N/mm² (psi)	7.2 (1,041)	7.5 (1,087)	7.2 (1,045)	6.7 (965)	6.3 (915)
Temperature Range B 161°F (72°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	12.7 (1,836)	11.5 (1,667)	10.9 (1,578)	10.1 (1,470)	9.7 (1,402)
Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	6.2 (906)	6.5 (946)	6.3 (909)	5.8 (840)	5.5 (796)
Temperature Range C 212°F (100°C) Maximum Long-	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	9.1 (1,633)	8.3 (1,201)	7.8 (1,137)	7.3 (1,059)	7.0 (1,010)
Term Service Temperature; 320°F (160°C) Maximum Short-Term Service Temperature ^{2,3}	Characteristic bond strength in uncracked concrete	$ au_{ ext{k,uncr}}$	N/mm² (psi)	5.6 (806)	5.8 (841)	5.6 (809)	5.2 (747)	4.9 (708)
Day concrete	Anchor Category	-	-			1	•	•
Dry concrete	Strength reduction factor	$\phi_{ ext{d}}$	-			0.65		
\M-1	Anchor Category	-	-			2		
Water-saturated concrete	$\phi_{\scriptscriptstyle{WS}}$	-			0.55		-	
Water filled hales	-	-			3			
water-filled floles	Water-filled holes Strength reduction factor				0.45			
Reduction factor for	seismic tension ⁹	$lpha_{ ext{N,seis}}$	-	0.9	95		1.00	

- For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.
- 1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.10} [For SI: (f'c / 17.2)^{0.10}].
- 2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.
- 3. Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C.

^{4.} Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Tension and Shear Design Strength for Threaded Rod Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	φ _{Vcb} or φ _{Vcp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	φν _{cb} or φν _{cp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	φν _{cb} or φν _{cp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	φ _{νcb} or φ _{νcp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{ m Vcp}$ or $\phi_{ m Vcp}$ Shear (lbs.)
	2-3/8	2,855	2,570	3,125	2,920	3,610	3,575	4,425	4,745	5,105	5,500
3/8	3	4,055	4,010	4,440	4,555	5,125	5,570	6,280	7,400	6,710	8,775
3/0	4-1/2	7,445	7,935	8,155	9,015	9,395	11,015	9,785	13,710	10,070	16,015
	7-1/2	14,940	18,190	15,215	20,070	15,655	23,445	16,305	29,180	16,780	34,085
	2-3/4	3,555	3,305	3,895	3,755	4,500	4,590	5,510	6,095	6,365	7,455
1/2	4	6,240	6,700	6,835	7,610	7,895	9,310	9,665	12,365	11,080	15,080
1/2	6	11,465	13,235	12,560	15,035	14,500	18,390	16,150	23,515	16,620	27,470
	10	24,660	31,215	25,110	34,445	25,845	40,235	26,915	50,085	27,700	58,500
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,720	6,675	7,600	7,710	9,295
5/8	5	8,720	9,985	9,555	11,345	11,030	13,875	13,510	18,430	15,600	22,540
3/6	7-1/2	16,020	19,725	17,550	22,410	20,265	27,410	23,635	35,695	24,325	41,695
	12-1/2	34,470	46,550	36,750	52,320	37,825	61,110	39,390	76,070	40,540	87,310
	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,910	9,255	9,135	11,320
3/4	6	11,465	13,595	12,560	15,445	14,500	18,895	17,760	25,095	20,505	30,695
3/4	9	21,060	26,855	23,070	30,510	26,640	37,320	32,225	49,325	33,165	57,615
	15	45,315	63,370	49,640	72,000	51,575	84,420	53,710	105,080	55,280	119,060
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,910	9,100	9,135	11,130
7/8	7	14,445	16,605	15,825	18,865	18,275	23,075	22,380	30,650	25,840	37,485
1/0	10-1/2	26,540	32,800	29,070	37,265	33,570	45,580	41,115	60,540	43,290	71,360
	17-1/2	57,100	77,405	62,550	87,940	67,315	104,575	70,100	130,170	72,150	152,045
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,665	11,280	11,160	13,800
1	8	17,650	19,750	19,335	22,435	22,325	27,440	27,340	36,450	31,570	44,580
'	12	32,425	39,005	35,520	44,315	41,015	54,200	50,230	71,990	55,055	86,235
	20	69,765	92,055	76,425	104,585	85,610	126,375	89,155	157,310	91,755	183,745
	5	8,720	8,170	9,555	9,285	11,030	11,355	13,510	15,085	15,600	18,450
1-1/4	10	24,665	26,380	27,020	29,975	31,200	36,660	38,210	48,690	44,125	59,555
1-1/4	15	45,315	52,110	49,640	59,200	57,320	72,410	70,200	96,175	81,060	117,630
	25	97,500	122,990	106,805	139,730	123,330	170,905	138,610	219,325	142,655	256,185

- Concrete Breakout Strength
 Bond Strength/Pryout Strength
- Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness, ha = hmin, and with the following conditions:
 - c_{a1} is greater than or equal to the critical edge distance, c_{ac}
 - C_{a2} is greater than or equal to 1.5 times C_{a1} .
- 2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.
- 3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.
- 4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027
- 5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.
- Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Tension and Shear Design Strength in Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

					Minim	um Concrete C	ompressive S1	rength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	,000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	φ _{Ngb} or φ _{Na} Tension (lbs.)	φ _{νçb} or φ _{νcp} Shear (lbs.)	Φ _{Ngb} or Φ _{Na} Tension (lbs.)	φ _{Vcb} or φ _{Vcp} Shear (lbs.)	φ _{Nçb} or φ _{Na} Tension (lbs.)	φ _{Vçb} or φ _{Vcp} Shear (lbs.)	φ _{Ngb} or φ _{Na} Tension (lbs.)	φ _{νcb} or φ _{νcp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	ϕ_{Vcb} or ϕ_{Vcp} Shear (lbs.)
	2-3/8	1,895	1,835	1,930	2,075	1,985	2,135	2,065	2,225	2,125	2,290
3/8	3	2,390	2,865	2,435	3,255	2,505	3,980	2,610	5,285	2,685	5,785
3/0	4-1/2	3,585	5,665	3,655	6,440	3,760	7,865	3,915	8,435	4,030	8,680
	7-1/2	5,980	12,875	6,090	13,115	6,265	13,495	6,525	14,055	6,715	14,465
	2-3/4	2,520	2,360	2,760	2,680	3,065	3,280	3,190	4,355	3,285	5,325
1/2	4	4,250	4,785	4,330	5,435	4,455	6,650	4,640	8,830	4,775	10,285
1/2	6	6,375	9,455	6,495	10,740	6,685	13,135	6,960	14,990	7,165	15,430
	10	10,630	22,300	10,825	23,315	11,140	23,995	11,600	24,985	11,940	25,715
	3-1/8	3,050	2,940	3,345	3,340	3,860	4,085	4,730	5,430	4,980	6,640
5/8	5	6,175	7,135	6,765	8,105	7,430	9,910	7,740	13,165	7,965	16,100
5/8	7-1/2	10,635	14,090	10,830	16,005	11,145	19,575	11,610	25,000	11,945	25,730
	12-1/2	17,725	33,250	18,050	37,370	18,575	40,010	19,345	41,670	19,910	42,885
	3-1/2	3,620	3,580	3,965	4,070	4,575	4,980	5,605	6,610	6,470	8,085
3/4	6	8,120	9,710	8,895	11,035	10,270	13,495	12,225	17,925	12,585	21,925
3/4	9	14,920	19,185	16,340	21,795	17,610	26,655	18,340	35,230	18,875	40,655
	15	28,005	45,265	28,520	51,425	29,350	60,300	30,565	65,835	31,460	67,755
	3-1/2	3,620	3,525	3,965	4,000	4,575	4,895	5,605	6,500	6,470	7,950
7/0	7	10,230	11,860	11,210	13,475	12,945	16,485	15,850	21,895	17,030	26,775
7/8	10-1/2	18,800	23,430	20,590	26,620	23,780	32,555	24,820	43,240	25,545	50,970
	17-1/2	37,900	55,290	38,595	62,815	39,720	74,695	41,365	89,095	42,570	91,695
	4	4,420	4,365	4,840	4,960	5,590	6,065	6,845	8,060	7,905	9,855
4	8	12,500	14,105	13,695	16,025	15,815	19,600	19,365	26,035	22,130	31,845
1	12	22,965	27,860	25,160	31,655	29,050	38,715	32,255	51,425	33,200	61,595
	20	49,255	65,755	50,160	74,705	51,625	90,270	53,760	112,365	55,330	119,170
	5	6,175	5,835	6,765	6,630	7,815	8,110	9,570	10,775	11,050	13,175
1 1/4	10	17,470	18,845	19,140	21,410	22,100	26,185	27,065	34,780	31,255	42,540
1-1/4	15	32,095	37,220	35,160	42,285	40,600	51,720	47,895	68,695	49,290	84,020
	25	69,060	87,850	74,475	99,810	76,650	122,075	79,820	156,660	82,150	176,940

- □ Concrete Breakout Strength □ Bond Strength/Pryout Strength
- Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness, ha = h_{min}, and with the following conditions:
 - Ca1 is greater than or equal to the critical edge distance, Cac
- Ca2 is greater than or equal to 1.5 times Ca1.
- 2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.
- 3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACl 318-14 Section 5.3 for load combinations. Condition B was assumed.
- 4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in FSR-4027
- 5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.
- 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength) **Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition** Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

ABLES

					Minim	um Concrete C	Compressive St	trength			
Nominal	Embed.	f'c = 2	,500 psi	f'c = 3,	,000 psi	f'c = 4,	,000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	\$\phi_\text{Ncb}\$ or \$\phi_\text{Na}\$ Tension (lbs.)	φ _{Vçb} or φ _{Vcp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{ m Vcb}$ or $\phi_{ m Vcp}$ Shear (lbs.)	Φ _{Ncb} or Φ _{Na} Tension (lbs.)	φ _{Vcb} or φ _{Vcp} Shear (lbs.)	Φ _{Ncb} or Φ _{Na} Tension (lbs.)	φ _{νςb} or φ _{νcp} Shear (lbs.)	Φ _{Ncb} or Φ _{Na} Tension (lbs.)	$\phi_{ m Vcb}$ or $\phi_{ m Vcp}$ Shear (lbs.)
	2-3/8	2,855	2,570	3,125	2,920	3,610	3,575	4,365	4,705	4,495	4,840
#3	3	4,055	4,010	4,440	4,555	5,125	5,570	5,515	7,025	5,675	8,205
#3	4-1/2	7,445	7,935	7,720	8,820	7,945	10,300	8,275	12,820	8,515	14,975
	7-1/2	12,635	17,010	12,870	18,770	13,245	21,925	13,790	27,290	14,195	30,570
	2-3/4	3,555	3,305	3,895	3,755	4,500	4,590	5,510	6,095	6,365	7,455
#4	4	6,240	6,700	6,835	7,610	7,895	9,310	9,365	12,210	9,640	14,260
#4	6	11,465	13,235	12,560	15,035	13,490	17,870	14,050	22,240	14,460	25,980
	10	21,450	29,525	21,845	32,580	22,485	38,055	23,415	47,370	24,100	51,905
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,725	6,675	7,600	7,710	9,295
,,,	5	8,720	10,005	9,555	11,365	11,030	13,900	13,510	18,465	14,540	21,955
#5	7-1/2	16,020	19,760	17,550	22,450	20,265	27,460	21,190	34,235	21,805	39,985
	12-1/2	32,355	45,455	32,950	50,155	33,910	58,585	35,315	72,925	36,345	78,280
	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,910	9,255	9,135	11,320
110	6	11,465	13,595	12,560	15,445	14,500	18,895	17,760	25,095	20,325	30,585
#6	9	21,060	26,855	23,070	30,510	26,640	37,320	29,625	47,690	30,490	55,705
	15	45,235	63,325	46,065	69,880	47,410	81,620	49,370	101,600	50,815	109,445
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,910	9,100	9,135	11,130
#7	7	14,445	16,605	15,825	18,865	18,275	23,075	22,380	30,650	25,840	37,485
#7	10-1/2	26,540	32,800	29,070	37,265	33,570	45,580	39,340	59,480	40,485	69,475
	17-1/2	57,100	77,405	61,170	87,160	62,960	101,810	65,565	126,730	67,475	145,335
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,665	11,280	11,160	13,800
"0	8	17,650	19,750	19,335	22,435	22,325	27,440	27,340	36,450	31,570	44,580
#8	12	32,425	39,005	35,520	44,315	41,015	54,200	50,230	71,990	51,780	84,145
	20	69,765	92,055	76,425	104,585	80,520	123,310	83,850	153,495	86,295	179,295
	4-1/2	7,445	7,110	8,155	8,080	9,420	9,880	11,535	13,125	13,320	16,055
110	9	21,060	23,055	23,070	26,190	26,640	32,035	32,625	42,550	37,675	52,040
#9	13-1/2	38,690	45,540	42,380	51,740	48,940	63,280	59,940	84,050	64,315	99,830
	22-1/2	83,245	107,440	91,190	122,065	100,010	146,245	104,150	182,045	107,190	212,640
	5	8,720	8,160	9,555	9,270	11,030	11,335	13,510	15,060	15,600	18,420
"40	10	24,665	26,430	27,020	30,025	31,200	36,725	38,210	48,780	44,125	59,660
#10	15	45,315	52,205	49,640	59,310	57,320	72,545	70,200	96,350	78,065	116,085
	25	97,500	123,170	106,805	139,935	121,395	170,075	126,420	211,705	130,110	247,285
- Concrete l	Breakout Strengtl	n 🔲 - Bond Stre	enath/Prvout Stre	nath							

⁻ Concrete Breakout Strength - Bond Strength/Pryout Strength

- 1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:
 - Ca1 is greater than or equal to the critical edge distance, Cac
 - Ca2 is greater than or equal to 1.5 times Ca1.
- 2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.
- 3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.
- 4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.
- 5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.
- 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

					Minim	um Concrete C	Compressive Si	trength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	,000 psi	f'c = 4,	,000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	φ _{Ngb} or φ _{Na} Tension (lbs.)	φ _{Vçb} or φ _{Vcp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	φ _{Vcb} or φ _{Vcp} Shear (lbs.)	φ _{Ngb} or φ _{Na} Tension (lbs.)	φ _{Vçb} or φ _{Vcp} Shear (lbs.)	φ _{Ngb} or φ _{Na} Tension (lbs.)	φ _{νcb} or φ _{νcp} Shear (lbs.)	Φ _{Ngb} or Φ _{Na} Tension (lbs.)	$\phi_{ m Vcb}$ or $\phi_{ m Vcp}$ Shear (lbs.)
	2-3/8	1,980	1,835	2,015	2,085	2,075	2,235	2,160	2,325	2,225	2,395
#3	3	2,500	2,865	2,545	3,255	2,620	3,980	2,730	5,020	2,810	5,860
#3	4-1/2	3,750	5,665	3,820	6,300	3,930	7,355	4,090	8,815	4,210	9,070
	7-1/2	6,250	12,150	6,365	13,405	6,550	14,105	6,820	14,690	7,020	15,120
	2-3/4	2,520	2,360	2,760	2,680	3,100	3,280	3,225	4,355	3,320	5,325
#4	4	4,300	4,785	4,380	5,435	4,505	6,650	4,695	8,720	4,830	10,185
#4	6	6,450	9,455	6,570	10,740	6,760	12,765	7,040	15,165	7,245	15,610
	10	10,750	21,090	10,950	23,270	11,270	24,270	11,735	25,275	12,075	26,015
	3-1/8	3,050	2,940	3,345	3,340	3,860	4,090	4,730	5,430	5,055	6,640
#5	5	6,175	7,145	6,765	8,120	7,545	9,930	7,855	13,190	8,085	15,680
#3	7-1/2	10,795	14,115	10,995	16,035	11,315	19,615	11,785	24,455	12,130	26,125
	12-1/2	17,995	32,465	18,325	35,825	18,860	40,625	19,640	42,305	20,215	43,540
	3-1/2	3,620	3,580	3,965	4,070	4,575	4,980	5,605	6,610	6,470	8,085
#6	6	8,120	9,710	8,895	11,035	10,270	13,495	11,725	17,925	12,065	21,845
#0	9	14,920	19,185	16,340	21,795	16,890	26,655	17,585	34,065	18,100	38,985
	15	26,855	45,235	27,350	49,915	28,150	58,300	29,310	63,135	30,170	64,975
	3-1/2	3,620	3,525	3,965	4,000	4,575	4,895	5,605	6,500	6,470	7,950
#7	7	10,230	11,860	11,210	13,475	12,945	16,485	15,850	21,895	16,495	26,775
#1	10-1/2	18,800	23,430	20,590	26,620	23,085	32,555	24,040	42,485	24,745	49,625
	17-1/2	36,710	55,290	37,385	62,260	38,475	72,720	40,070	86,300	41,240	88,820
	4	4,420	4,365	4,840	4,960	5,590	6,065	6,845	8,060	7,905	9,855
#0	8	12,500	14,105	13,695	16,025	15,815	19,600	19,365	26,035	21,215	31,845
#8	12	22,965	27,860	25,160	31,655	29,050	38,715	30,920	51,425	31,820	60,105
	20	47,210	65,755	48,080	74,705	49,485	88,080	51,530	109,640	53,035	114,230
	4-1/2	5,275	5,080	5,780	5,770	6,670	7,060	8,170	9,375	9,435	11,465
# 0	9	14,920	16,465	16,340	18,710	18,870	22,880	23,110	30,390	26,500	37,170
#9	13-1/2	27,405	32,530	30,020	36,955	34,665	45,200	38,625	60,035	39,750	71,305
	22-1/2	58,965	76,740	60,060	87,190	61,815	104,460	64,375	130,030	66,250	142,695
	5	6,175	5,830	6,765	6,620	7,815	8,100	9,570	10,755	11,050	13,155
#40	10	17,470	18,880	19,140	21,445	22,100	26,230	27,065	34,840	31,255	42,615
#10	15	32,095	37,290	35,160	42,365	40,600	51,815	48,645	68,825	50,065	82,920
	25	69,060	87,980	75,645	99,955	77,855	121,485	81,075	151,220	83,440	176,635

^{■ -} Concrete Breakout Strength
■ - Bond Strength/Pryout Strength

- 1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,
 - $h_a = h_{min}$, and with the following conditions:
 - c_{a1} is greater than or equal to the critical edge distance, c_{ac}
 - Ca2 is greater than or equal to 1.5 times Ca1.
- 2. Calculations were performed according to ACl 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.
- 3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.
- 4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.
- 5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.
- 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

					Minim	um Concrete C	compressive St	rength			
	Embed.		500 psi MPa)		,000 psi MPa)		000 psi MPa)		000 psi MPa)		000 psi MPa)
Nominal Rebar Size	Depth hef in. (mm)	φ _{Ngb} or φ _{Na} Tension lbs. (MPa)	φ _{ν_{cb}} or φ _{ν_{cp}} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension lbs. (MPa)	φ _{Vcb} or φ _{Vcp} Shear lbs. (MPa)	φ _{Ncb} or φ _{Na} Tension lbs. (MPa)	φ _{Vcb} or φ _{Vcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension lbs. (MPa)	φ _{ν_{cb}} or φ _{ν_{cp} Shear Ibs. (MPa)}	φ _{Ncb} or φ _{Na} Tension lbs. (MPa)	φ _{Vcb} or φ _{Vcp} Shear lbs. (MPa)
	2.4	2,900	2,580	3,175	2,930	3,670	3,585	4,495	4,760	5,170	5,550
	(61)	(12.9)	(11.5)	(14.1)	(13.0)	(16.3)	(15.9)	(20.0)	(21.2)	(23.0)	(24.7)
	3.6	5,235	5,440	5,735	6,180	6,625	7,560	7,445	9,370	7,665	10,820
	(90)	(23.3)	(24.2)	(25.5)	(27.5)	(29.5)	(33.6)	(33.1)	(41.7)	(34.1)	(48.1)
10M	5.3	9,620	10,755	10,420	12,075	10,725	13,940	11,170	17,075	11,495	19,715
	(136)	(42.8)	(47.8)	(46.4)	(53.7)	(47.7)	(62.0)	(49.7)	(76.0)	(51.1)	(87.7)
	7.5	14,375	18,220	14,640	19,960	15,070	23,045	15,690	28,225	16,150	32,595
	(191)	(63.9)	(81.0)	(65.1)	(88.8)	(67.0)	(102.5)	(69.8)	(125.6)	(71.8)	(145.0)
	3.1	4,255	4,050	4,665	4,600	5,385	5,625	6,595	7,475	7,615	9,140
	(79)	(18.9)	(18.0)	(20.8)	(20.5)	(24.0)	(25.0)	(29.3)	(33.3)	(33.9)	(40.7)
4514	5.0	8,825	10,105	9,665	11,480	11,160	14,045	13,555	17,950	13,950	20,725
	(128)	(39.3)	(44.9)	(43.0)	(51.1)	(49.6)	(62.5)	(60.3)	(79.8)	(62.1)	(92.2)
15M	7.6	16,210	19,960	17,760	22,680	19,525	26,695	20,335	32,695	20,930	37,750
	(192)	(72.1)	(88.8)	(79.0)	(100.9)	(86.9)	(118.7)	(90.5)	(145.4)	(93.1)	(167.9)
	12.6	31,050	44,995	31,620	49,290	32,545	56,915	33,890	69,705	34,880	75,125
	(320)	(138.1)	(200.1)	(140.7)	(219.3)	(144.8)	(253.2)	(150.8)	(310.1)	(155.2)	(334.2)
	3.5	5,105	4,995	5,595	5,675	6,460	6,945	7,910	9,220	9,135	11,280
	(89)	(22.7)	(22.2)	(24.9)	(25.2)	(28.7)	(30.9)	(35.2)	(41.0)	(40.6)	(50.2)
OOM	6.1	11,870	14,045	13,005	15,955	15,015	19,515	18,390	25,390	19,620	29,320
	(156)	(52.8)	(62.5)	(57.8)	(71.0)	(66.8)	(86.8)	(81.8)	(112.9)	(87.3)	(130.4)
20M	9.2	21,810	27,750	23,890	31,525	27,460	37,770	28,595	46,260	29,430	53,415
	(234)	(97.0)	(123.4)	(106.3)	(140.2)	(122.1)	(168.0)	(127.2)	(205.8)	(130.9)	(237.6)
	15.4	43,665	63,590	44,470	69,660	45,765	80,435	47,660	98,515	49,050	105,650
	(390)	(194.2)	(282.9)	(197.8)	(309.9)	(203.6)	(357.8)	(212.0)	(438.2)	(218.2)	(470.0)
	3.9	6,005	5,855	6,580	6,650	7,600	8,135	9,305	10,805	10,745	13,215
	(99)	(26.7)	(26.0)	(29.3)	(29.6)	(33.8)	(36.2)	(41.4)	(48.1)	(47.8)	(58.8)
25M	7.9	17,440	19,590	19,105	22,255	22,060	27,220	27,020	36,155	30,525	41,845
	(202)	(77.6)	(87.1)	(85.0)	(99.0)	(98.1)	(121.1)	(120.2)	(160.8)	(135.8)	(186.1)
ZUIVI	11.9	32,040	38,700	35,100	43,970	40,530	53,780	44,490	66,015	45,790	76,230
	(302)	(142.5)	(172.1)	(156.1)	(195.6)	(180.3)	(239.2)	(197.9)	(293.6)	(203.7)	(339.1)
	19.8	67,940	90,755	69,190	99,420	71,205	114,800	74,155	140,600	76,320	162,350
	(504)	(302.2)	(403.7)	(307.8)	(442.2)	(316.7)	(510.7)	(329.9)	(625.4)	(339.5)	(722.2)
	4.7	7,950	7,510	8,705	8,530	10,055	10,435	12,315	13,860	14,215	16,950
	(119)	(35.4)	(33.4)	(38.7)	(37.9)	(44.7)	(46.4)	(54.8)	(61.7)	(63.2)	(75.4)
30M	9.4	22,540	24,470	24,695	27,805	28,515	34,005	34,920	45,165	40,325	53,080
	(239)	(100.3)	(108.8)	(109.8)	(123.7)	(126.8)	(151.3)	(155.3)	(200.9)	(179.4)	(236.1)
JUIVI	14.1	41,410	48,350	45,365	54,930	52,380	67,185	59,745	83,745	61,490	96,700
	(359)	(184.2)	(215.1)	(201.8)	(244.3)	(233.0)	(298.9)	(265.8)	(372.5)	(273.5)	(430.1)
	23.5	89,105	114,045	92,910	126,110	95,620	145,620	99,575	178,350	102,480	205,940
	(598)	(396.4)	(507.3)	(413.3)	(561.0)	(425.3)	(647.8)	(442.9)	(793.3)	(455.9)	(916.1)

- - Concrete Breakout Strength - Bond Strength/Pryout Strength
- Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness, ha = h_{min}, and with the following conditions:
 - cat is greater than or equal to the critical edge distance, cac
 - Ca2 is greater than or equal to 1.5 times Ca1.
- 2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.
- 3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.
- 4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.
- 5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.
- 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

			<u> </u>	<u>'</u>	Minim	um Concrete C	compressive St	rength			
	Embed.	f'c = 2, (17.2	500 psi MPa)	f'c = 3 (20.7	,000 psi MPa)		000 psi MPa)	f'c = 6, (41.4	000 psi MPa)	f'c = 8, (55.2	000 psi MPa)
Nominal Rebar Size	Depth hef in. (mm)	ϕ_{Ncb} or ϕ_{Na} Tension lbs. (MPa)	ϕ_{Vcb} or ϕ_{Vcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension lbs. (MPa)	ϕ_{Vcb} or ϕ_{Vcp} Shear lbs. (MPa)	$\phi_{ m Ncb}$ or $\phi_{ m Na}$ Tension Ibs. (MPa)	ϕ_{Vcb} or ϕ_{Vcp} Shear Ibs. (MPa)	$\phi_{ m Ncb}$ or $\phi_{ m Na}$ Tension Ibs. (MPa)	φ _{νcb} or φ _{νcp} Shear lbs. (MPa)	Φ _{Ncb} or Φ _{Na} Tension lbs. (MPa)	φ _{νcb} or φ _{νcp} Shear lbs. (MPa)
	2.40	2,055	1,670	2,250	1,830	2,600	2,115	3,180	2,590	3,675	2,990
	(61)	(9.1)	(7.4)	(10.0)	(8.1)	(11.6)	(9.4)	(14.1)	(11.5)	(16.3)	(13.3)
4014	3.56	3,710	3,255	4,065	3,565	4,690	4,120	5,745	5,045	6,635	5,825
	(90)	(16.5)	(14.5)	(18.1)	(15.9)	(20.9)	(18.3)	(25.6)	(22.4)	(29.5)	(25.9)
10M	5.34	6,815	5,935	7,465	6,500	8,620	7,505	10,560	9,195	11,495	10,615
	(136)	(30.3)	(26.4)	(33.2)	(28.9)	(38.3)	(33.4)	(47.0)	(40.9)	(51.1)	(47.2)
	7.50	11,350	9,810	12,430	10,745	14,355	12,410	15,690	15,200	16,150	17,550
	(191)	(50.5)	(43.6)	(55.3)	(47.8)	(63.9)	(55.2)	(69.8)	(67.6)	(71.8)	(78.1)
	3.10	3,015	2,890	3,305	3,190	3,815	3,685	4,670	4,515	5,395	5,210
	(79)	(13.4)	(12.9)	(14.7)	(14.2)	(17.0)	(16.4)	(20.8)	(20.1)	(24.0)	(23.2)
4514	5.04	6,250	6,595	6,845	7,225	7,905	8,345	9,685	10,220	11,180	11,800
	(128)	(27.8)	(29.3)	(30.4)	(32.1)	(35.2)	(37.1)	(43.1)	(45.5)	(49.7)	(52.5)
15M	7.56	11,480	12,015	12,580	13,165	14,525	15,200	17,790	18,615	20,540	21,495
	(192)	(51.1)	(53.4)	(56.0)	(58.6)	(64.6)	(67.6)	(79.1)	(82.8)	(91.4)	(95.6)
	12.60	24,705	25,620	27,065	28,065	31,250	32,405	33,890	39,690	34,880	45,830
	(320)	(109.9)	(114.0)	(120.4)	(124.8)	(139.0)	(144.1)	(150.8)	(176.5)	(155.2)	(203.9)
	3.50	3,620	3,570	3,965	4,055	4,575	4,730	5,605	5,790	6,470	6,685
	(89)	(16.1)	(15.9)	(17.6)	(18.0)	(20.4)	(21.0)	(24.9)	(25.8)	(28.8)	(29.7)
0014	6.14	8,410	9,390	9,210	10,285	10,635	11,875	13,030	14,545	15,045	16,795
	(156)	(37.4)	(41.8)	(41.0)	(45.7)	(47.3)	(52.8)	(58.0)	(64.7)	(66.9)	(74.7)
20M	9.21	15,450	17,105	16,925	18,740	19,540	21,640	23,935	26,500	27,635	30,600
	(234)	(68.7)	(76.1)	(75.3)	(83.4)	(86.9)	(96.3)	(106.5)	(117.9)	(122.9)	(136.1)
	15.35	33,240	36,430	36,415	39,905	42,045	46,080	47,660	56,435	49,050	65,165
	(390)	(147.9)	(162.0)	(162.0)	(177.5)	(187.0)	(205.0)	(212.0)	(251.0)	(218.2)	(289.9)
	3.90	4,255	4,180	4,660	4,750	5,385	5,810	6,590	7,125	7,610	8,230
	(99)	(18.9)	(18.6)	(20.7)	(21.1)	(24.0)	(25.8)	(29.3)	(31.7)	(33.9)	(36.6)
0514	7.94	12,355	13,355	13,535	14,630	15,625	16,890	19,140	20,685	22,100	23,890
	(202)	(55.0)	(59.4)	(60.2)	(65.1)	(69.5)	(75.1)	(85.1)	(92.0)	(98.3)	(106.3)
25M	11.91	22,695	24,325	24,865	26,650	28,710	30,770	35,160	37,685	40,600	43,515
	(302)	(101.0)	(108.2)	(110.6)	(118.5)	(127.7)	(136.9)	(156.4)	(167.6)	(180.6)	(193.6)
	19.84	48,835	51,810	53,495	56,755	61,770	65,535	74,155	80,260	76,320	92,680
	(504)	(217.2)	(230.5)	(238.0)	(252.5)	(274.8)	(291.5)	(329.9)	(357.0)	(339.5)	(412.3)
	4.70	5,630	5,365	6,165	6,095	7,120	7,455	8,720	9,230	10,070	10,660
	(119)	(25.0)	(23.9)	(27.4)	(27.1)	(31.7)	(33.2)	(38.8)	(41.1)	(44.8)	(47.4)
2014	9.42	15,965	16,900	17,490	18,510	20,195	21,375	24,735	26,180	28,565	30,230
	(239)	(71.0)	(75.2)	(77.8)	(82.3)	(89.8)	(95.1)	(110.0)	(116.5)	(127.1)	(134.5)
30M	14.13	29,335	30,785	32,135	33,725	37,105	38,940	45,445	47,690	52,475	55,070
	(359)	(130.5)	(136.9)	(142.9)	(150.0)	(165.1)	(173.2)	(202.1)	(212.1)	(233.4)	(245.0)
	23.54	63,115	65,565	69,140	71,820	79,835	82,930	97,780	101,570	102,480	117,280
	(598)	(280.7)	(291.6)	(307.6)	(319.5)	(355.1)	(368.9)	(434.9)	(451.8)	(455.9)	(521.7)

^{□ -} Concrete Breakout Strength □ - Bond Strength/Pryout Strength

- Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness, ha = hmin, and with the following conditions:
 - c_{a1} is greater than or equal to the critical edge distance, c_{ac}
 - Ca2 is greater than or equal to 1.5 times Ca1.
- 2. Calculations were performed according to ACl 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.
- 3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.
- 4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.
- 5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACl 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACl 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.
- 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Tension Design of Steel Elements (Steel Strength)^{1,2}

	Steel Elements - Threaded Rod and Reinforcing Bar ASTM A193 ASTM A193												
Nominal Rod/Rebar Size	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar	CAN/CSA G30.18 Grade 400		
	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)		
3/8" or #3	3,370	4,360	7,265	6,975	3,655	5,040	5,525	6,435	6,600	4,290	-		
10M	-										12,175		
1/2" or #4	6,175	7,980	13,300	12,770	6,690	9,225	10,110	11,700	12,000	7,800	-		
5/8" or #5	9,835	12,715	21,190	20,340	10,650	14,690	16,105	18,135	18,600	12,090	-		
15M	-										24,410		
3/4" or #6	14,550	18,815	31,360	30,105	15,765	18,480	23,830	25,740	26,400	17,160	-		
20M	-										36,255		
7/8" or #7	20,085	25,970	43,285	41,930	21,760	25,510	32,895	35,100	36,000		-		
25M	-										60,550		
1" or #8	26,350	34,070	56,785	54,515	28,545	33,465	43,160	46,215	47,400		-		
#9	-							58,500	60,000		-		
30M	-										85,240		
1-1/4" or #10	42,160	54,510	90,850	76,315	45,670	53,540	69,050	74,295	76,200	-	-		

- Steel Strength
- 1. Steel tensile design strength according to ACI 318-14 Ch.17, ϕ Nsa = ϕ Ase,N futa
- 2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

Shear Design of Steel Elements (Steel Strength)^{1,2}

				Steel Element	s - Threaded	Rod and Reinf	orcing Bar				
Nominal Rod/Rebar Size	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar	CAN/CSA G30.18 Grade 400
	ØV₅a Shear (lbs.)	ØVsa Shear (lbs.)	ØVsa Shear (lbs.)	ØV₅a Shear (lbs.)	ØV₅a Shear (lbs.)	ØVsa Shear (lbs.)	ØVsa Shear (lbs.)	ØVsa Shear (lbs.)	ØVsa Shear (lbs.)	ØV₅a Shear (lbs.)	ØV₅a Shear (lbs.)
3/8" or #3	1,755	2,265	3,775	3,625	2,020	2,790	2,870	3,565	3,430	2,375	
10M											7,305
1/2" or #4	3,210	4,150	6,915	6,640	3,705	5,110	5,255	6,480	6,240	4,320	
5/8" or #5	5,115	6,610	11,020	10,575	5,900	8,135	8,375	10,045	9,670	6,695	
15M											14,645
3/4" or #6	7,565	9,785	16,305	15,655	8,730	10,235	12,390	14,255	13,730	9,505	
20M											21,755
7/8" or #7	10,445	13,505	22,505	21,805	12,050	14,130	17,105	19,440	18,720		
25M											36,330
1" or #8	13,700	17,715	29,525	28,345	15,810	18,535	22,445	25,595	24,650		
#9								32,400	31,200		
30M											51,145
1-1/4" or #10	21,920	28,345	47,250	39,685	25,295	29,655	35,905	41,150	39,625		

- Steel Strength
- 1. Steel shear design strength according to ACI 318-14 Ch.17, $\phi V_{sa} = \phi \bullet 0.60 \bullet A_{se,V} \bullet f_{uta}$
- 2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

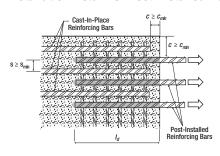
Development Lengths for Common Reinforcing Bar Connections^{1,2,3,6}

Design Information	Symbol	Reference	Units			N	ominal Rel	bar Size (U	IS)		
Design information	Symbol	Standard	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nominal rebar diameter	d _b	ASTM A615/A706, Grade 60	in. (mm)	0.375 (9.5)	0.5 (12.7)	0.625 (15.9)	0.75 (19.1)	0.875 (22.2)	1 (25.4)	1.128 (28.6)	1.27 (32.3)
Nominal rebar area	Ab	(fy = 60 ksi)	in² (mm²)	0.11 (71)	0.2 (127)	0.31 (198)	0.44 (285)	0.6 (388)	0.79 (507)	1 (645)	1.27 (817)
Development length in f'c = 2,500 psi concrete ^{4,5}			in. (mm)	12 (305)	14.4 (366)	18 (457)	21.6 (549)	31.5 (800)	36 (914)	40.6 (1031)	45.7 (1161)
Development length in f'c = 3,000 psi concrete ^{4,5}		ACI 318-14	in. (mm)	12 (305)	13.1 (334)	16.4 (417)	19.7 (501)	28.8 (730)	32.9 (835)	37.1 (942)	41.7 (1060)
Development length in f'c = 4,000 psi concrete ^{4,5}	la	25.4.2.3 or ACI 318-11 12.2.3 as	in. (mm)	12 (305)	12 (305)	14.2 (361)	17.1 (434)	24.9 (633)	28.5 (723)	32.1 (815)	36.2 (920)
Development length in f'c = 6,000 psi concrete ^{4,5}		applicable	in. (mm)	12 (305)	12 (305)	12 (305)	13.9 (354)	20.3 (516)	23.2 (590)	26.2 (666)	29.5 (750)
Development length in f'c = 8,000 psi concrete ^{4,5}			in. (mm)	12 (305)	12 (305)	12 (305)	12.1 (307)	17.6 (443)	20.1 (511)	22.7 (577)	25.6 (649)
Design Information	Symbol	Reference	Units			N	ominal Rel	bar Size (C	A)		
Design intormation	Syllibol	Standard	Uiits	10M		15M	20	OM	25M		30M
Nominal rebar diameter	d₀	CA/CSA G30.18 Grade 400	mm (in.)	11.3 (0.44		16.0 (0.630)		9.5 768)	25.2 (0.992)		29.9 1.177)
Nominal rebar area	Ab	(fy = 58 ksi)	mm² (in²)	100 (0.16		200 (0.31)		00 46)	500 (0.77)		700 (1.09)
Development length in f'c = 2,500 psi concrete ^{4,6}			mm (in.)	315 (12.4		445 (17.5)		78 6.7)	876 (34.5)		1041 (41.0)
Development length in f'c = 3,000 psi concrete ^{4,6}		ACI 318-14	mm (in.)	305 (12.0		407 (16.0)	-	20 1.4)	800 (31.5)		950 (37.4)
Development length in f'c = 4,000 psi concrete ^{4,6}	lα	25.4.2.3 or ACI 318-11 12.2.3	mm (in.)	305 (12.0		353 (13.9)		36 1.1)	693 (27.3)		823 (32.4)
Development length in f'c = 6,000 psi concrete ^{4,6}		as applicable	mm (in.)	305 (12.0		305 (12.0)		38 7.3)	566 (22.3)		672 (26.4)
Development length in f'c = 8,000 psi concrete ^{4,6}			mm (in.)	305 (12.0		305 (12.0)		79 1.9)	490 (19.3)		582 (22.9)

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa; for pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

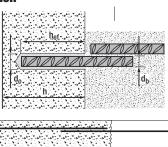
- 1. Calculated development lengths in accordance with ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3, as applicable, for reinforcing bars are valid for static, wind, and earthquake loads.
- 2. Calculated development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.
- 3. For Class B splices, minimum length of lap for tension lap splices is 1.3ld in accordance with ACI 318-14 25.5.2 and ACI 318-11 12.15.1, as applicable.
- 4. For lightweight concrete, λ = 0.75; therefore multiply development lengths by 1.33 (increase development length by 33 percent), unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit alternate values of λ (e.g for sand-lightweight concrete, λ = 0.85; therefore multiply development lengths by 1.18). Refer to ACI 318-14 19.2.4 or ACI 318-11 8.6.1, as applicable. 5. $\frac{C_0 + K_{tr}}{k_{tr}} = 2.5$, $\psi_{=}1.0$, $\psi_{e}=1.0$, $\psi_{e}=0.8$ for $d_{b} \le \#6,1.0$ for $d_{b} > \#6$. Refer to ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4, as applicable.
- 6. Calculations may be performed for other steel grades and concrete compressive strengths per ACI 318-14 Chapter 25 or ACI 318-11 Chapter 12, as applicable.

Installation Parameters for Common Post-Installed Reinforcing Bar Connections

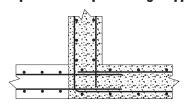

Parameter	Symbol	Units					Nominal Reb	ar Size (US)				
raranietei	Syllibol	UIIIIS	#3	#4		#5	#6	#7	#8		#9	#10
Nominal hole diameter ¹	d₀	in.	1/2	5/8		3/4	7/8	1	1-1/8 1-1/4	1.	-3/8	1-1/2
Effective embedment	h _{ef}	in.	2-3/8 to 22-1/2	2-3/4 to	30	3-1/8 to 37-1/2	3-1/2 to 45	3-1/2 to 52-1/2	4 to 60		1/2 to 7-1/2	5 to 75
Parameter	Symbol	Units					Nominal Reb	ar Size (CA)				
ratailletei	Syllibol	UIIIIS	10M			15M	20	M	25M			30M
Nominal hole diameter ¹	d₀	in.	9/16			3/4	1		1-1/4			1-1/2
Effective embedment	hef	mm	70 to 68	0		80 to 960	90 to	1170	100 to 1510		120) to 1795

For SI: 1 inch = 25.4 mm; for pound-inch units: 1 mm = 0.03937 inches.

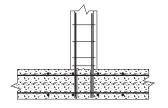
- 1. For any case, it must be possible for the reinforcing bar (rebar) to be inserted into the cleaned hole without resistance.
- 2. Consideration should be given regarding the commercial availability of carbide drill bits (including hollow drill bits), as applicable, with lengths necessary to achieve effective embedments for post-installed reinforcing bar connections.



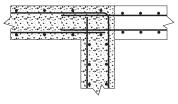
Installation Detail for Post-Installed Reinforcing Bar Connection


Development Length

 $\begin{array}{l} c = \text{edge distance} \\ s = \text{spacing} \end{array}$



 $\begin{array}{l} d_b = nomial \ bar \ diameter \\ d_o = nominal \ hole \ diameter \\ h_{ef} = effective \ embedment \\ h = member \ thickness \end{array}$


Examples of Development Length Application Details for Post-Installed Reinforcing Bar Connections Provided for Illustrator

Tension Lap Splice with Existing Reinforcement for Footing and Foundation Extensions

Tension Development of Column, Cap or Wall Dowels

Tension Lap Splice with Existing Flexural Reinforcement For Slab and Beam Extensions

Hole Cleaning Tools and Accessories for Post-Installed Rebar Connections 12,3,4,5,6,7

Rebar Size	Drill Bit Size (inch)	Brush Size (inch)	Brush Length (inches)	Wire Brush (Cat. No.)	Plug Size (inch)	Piston Plug (Cat. No.)
No. 3	1/2	1/2	6	PFC1671010	N/A	N/A
10M	9/16	9/16	6	PFC1671150	N/A	N/A
No. 4	5/8	5/8	6	PFC1671200	N/A	N/A
No. 5	3/4	3/4	6	PFC1671250	3/4	PFC1691520
15M	3/4	3/4	6	PFC1671250	3/4	PFC1691520
No. 6	7/8	7/8	6	PFC1671300	7/8	PFC1691530
20M	1	1	6	PFC1671350	1	PFC1691540
No. 7	1	1	6	PFC1671350	1	PFC1691540
25M	1-1/4	1-1/4	6	PFC1671450	1-1/4	PFC1691555
No. 8	1-1/8	1-1/8	6	PFC1671425	1-1/8	PFC1691550
INU. O	1-1/4	1-1/4	6	PFC1671450	1-1/4	PFC1691555
No. 9	1-3/8	1-3/8	6	PFC1671450	1-3/8	PFC1691560
30M	1-1/2	1-1/2	6	PFC1671500	1-1/2	PFC1691570
No. 10	1-1/2	1-1/2	6	PFC1671500	1-1/2	PFC1691570

- 1. If the DEWALT DustX+ extraction system is used to automatically clean the holes during drilling, standard hole cleaning (brushing and blowing following drilling) is not required.
- 2. Holes may be drilled with hammer-drill, i.e. rotary impact drills or rock drills with a carbide drill bit (including hollow bits).
- 3. For any case, it must be possible for the reinforcing bar to be inserted into the cleaned drill hole without resistance.
- 4. A brush extension (Cat.#08282) must be used with a steel wire brush for holes drilled deeper than the listed brush length.
- 5. Brush adaptors for power tool connections are available for drill chuck (Cat.#08296) and SDS (Cat.#08283).
- 6. A flexible extension tube (Cat.#08297) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used if the bottom or back of the anchor hole is not reached with the mixing nozzle only.
- 7. All overhead (i.e upwardly inclined) installations require the use of piston plugs during where one is tabulated together with the anchor size (see table). N/A = Not applicable. All horizontal installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 8 inches. A flexible extension tube (Cat.#08297) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used with piston plugs.

INSTALLATION INSTRUCTIONS (SOLID BASE MATERIALS)

DRILLING

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
- Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

Drilling in dry base material is recommended when using hollow drill bits (vacuum must be on).

GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED);
OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.

HOLE CLEANING DRY OR WET/WATER-SATURATED HOLES (BLOW 2X, BRUSH 2X, BLOW 2X

2a- Starting from the bottom or back of the anchor hole, blow the hole clean with compressed air (min. 90 psi / 6 bar) a minimum of two times (2x) If the back of the drilled hole is not reached an extension shall be used.

2b- Determine brush diameter (see hole cleaning equipment selection table) for the drilled hole and brush the hole by hand or attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use. The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too small and must be replaced with proper brush diameter (i.e. new wire brush).

2c- Finally blow the hole clean again with compressed air (min. 90 psi / 6 bar) a minimum of two times (2x). If the back of the drilled hole is not reached an extension shall be used. When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.

PRFPARING

- 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 41°F 104°F (5°C 40°C) when in use; except for installations in base material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge adhesive temperature must be conditioned to 50°F (10°C) minimum. Review published working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of the base material temperature, see published gel and curing times.
- Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element is
 inside the nozzle. Load the cartridge into the correct dispensing tool.
- Note: Always use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) time
 of the adhesive.

4- Prior to inserting the anchor rod or rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.

- 5- Adhesives must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent **GRAY** color.
- Review and note the published working and cure times (reference gel time and curing time table) prior to injection of the mixed adhesive into the
 cleaned anchor hole

INCTALLATION

6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. A plastic extension tube (Cat# 08281 or 08297) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle (see reference tables for installation).

Note! Piston plugs (see hole cleaning equipment selection table) must be used with and attached to the mixing nozzle and extension tube for:

Overhead installations and installations between horizontal and overhead in concrete with anchors larger than 1/2", #4 and 10M.

• All installations with drill hole depth > 10" (250mm)

Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.

In the case that flexible tubing is used (Cat. #PFC1640600), the mixing nozzle may be trimmed at the preforation on the front port before attachment of the tubing. Verify the mixing element is inside the nozzle before use.

Attention! Do not install anchors overhead or upwardly inclined without installation hardware supplied by DEWALT and also receiving proper training and/or certification. Contact DEWALT for details prior to use.

- 7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.
- 8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. For all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the use of temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during the gel (working) time only.

CURING AND LOADING

- 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).
- Do not disturb, torque or load the anchor until it is fully cured.

- 10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference installation specifications for threaded rod and reinforcing bar table) by using a calibrated torque wrench.
- Take care not to exceed the maximum torque for the selected anchor.

INSTALLATION INSTRUCTIONS (POST-INSTALLED REBAR)

HAMMER DRILLING

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
- Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).

GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED); OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.

HOLE CLEANING DRY OR WET HOLES (BLOW 2X, BRUSH 2X, BLOW 2X)

2a- Starting from the bottom or back of the drilled hole, blow the hole clean a minimum of two times (2x). Use a compressed air nozzle (min. 90 psi) for all sizes of reinforcing bar (rebar).

2b- Determine brush diameter (see hole cleaning accessories for post-installed rebar selection table) for the drilled hole and brush the hole by hand or attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too small and must be replaced with proper brush diameter (i.e. new wire brush).

2c- Repeat Step 2a again by blowing the hole clean a minimum of two times (2x).

When finished the hole should be clean and free of dust, debris, oil or other foreign material.

PREPARING

3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Review published gel (working) and cure times. Cartridge adhesive temperature must be between 41°F - 104°F (5°C - 40°C) when in use; except for installations in base material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge adhesive temperature must be conditioned to 50°F (10°C) minimum.

Note: Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For the permitted range of the base material temperature see published gel and cure times.

Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool.

Note: Always use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) time
of the adhesive.

4- Prior to inserting the rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.

5- Adhesive must be properly mixed to achieve published properties. Prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color.

Review and note the published gel (working) and cure times prior to injection of the mixed adhesive into the cleaned anchor hole.

INSTALLATION

6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. A flexible extension tube (Cat.# 08297) or flexible extension hose (Cat.# PFC1640600) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle (see reference tables for installation). (see hole cleaning tools and accessories for post-installed rebar table).

Note! Piston plugs must be used with and attached to mixing nozzle and extension tube for overhead (i.e. upwardly inclined) installations and horizontal installations with rebar sizes larger than #4 and 10M. Insert piston plug to the back of the drilled hole and inject as described in the method above. During injection of the adhesive the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.

 In the case that flexible tubing is used (Cat. #PFC1640600), the mixing nozzle may be trimmed at the preforation on the front port before attachment of the tubing. Verify the mixing element is inside the nozzle before use.

Attention! Do not install anchors overhead or upwardly inclined without installation hardware supplied by DEWALT and also receiving proper training and/or certification. Contact DEWALT for details prior to use.

- 7- The reinforcing bar should be free of dirt, grease, oil or other foreign material. Push clean rebar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.
- 8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. For all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the use of temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during the gel (working) time only.

CURING AND LOADING

- 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).
- Do not disturb, torque or load the anchor until it is fully cured.
- 10- After full curing of the rebar connection, new concrete can be poured (placed) to the installed rebar connection.

REFERENCE INSTALLATION TABLES

Gel (working) Time and Curing Table

Temperature of base material	Gel (working) time	Full curing time
14°F (-10°C) to 22°F (-6°C)	60 minutes	24 hours
23°F (-5°C) to 31°F (-1°C)	50 minutes	5 hours
32°F (0°C) to 40°F (4°C)	25 minutes	3.5 hours
41°F (5°C) to 49°F (9°C)	15 minutes	2 hours
50°F (10°C) to 58°F (14°C)	10 minutes	1 hour
59°F (15°C) to 67°F (19°C)	6 minutes	40 minutes
68°F (20°C) to 85°F (29°C)	3 minutes	30 minutes
86°F (30°C) to 104°F (40°C)	2 minutes	30 minutes

Linear interpolation for intermediate base material temperature is possible.

Cartridge temperature must be between 41°F (5°C) and 104°F (40°C) when in use; except for installations in base material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge temperature must be conditioned to 50°F (10°C) minimum.

Hole Cleaning Equipment Selection Table for AC200+

Rod Diameter (inch)	Rebar Size	ANSI Drill Bit Diameter (inch)	Brush Length (inches)	Steel Wire Brush ^{1,2} (Cat. #)	Blowout Tool	Number of cleaning actions
			Solid Base Material			
3/8	-	7/16	6	PFC1671050		
-	#3	1/2	6	PFC1671100		
1/2	10M	9/16	6	PFC1671150	Communication of the	2x blowing 2x brushing 2x blowing
-	#4	5/8	6	PFC1671200		
5/8	-	11/16	6	PFC1671225		
-	#5 15M	3/4	6	PFC1671250	 Compressed air nozzle only, 	
3/4	#6	7/8	6	PFC1671300	Cat #8292	
7/8	#7 20M	1	6	PFC1671350	(min. 90 psi)	
1	#8	1-1/8	6	PFC1671400		
-	#8 25M	1-1/4	6	PFC1671450	1	
1-1/4	#9	1-3/8	6	PFC1671450	1	
-	#10 30M	1-1/2	6	PFC1671500	1	

- 1. For any case, it must be possible for the steel anchor element to be inserted into the cleaned drill hole without resistance.
- 2. An SDS-plus adaptor (Cat. #PFC1671830) is required to attach a steel wire brush to the drill tool. For hand brushing, attach manual brush wood handle (Cat. #PFC1671000) to the steel brush.
- 3. A brush extension (Cat. #PFC1671820) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

Piston Plugs for Adhesive Anchors^{1,2,3}

ton i lago foi Autoorto Autonoro					
Plug Size (inch)	ANSI Drill Bit Diameter (inch)	Piston Plug (Cat. #)	Piston Plug		
	Solid Bas	e Materials			
11/16	11/16	08258			
3/4	3/4	08259			
7/8	7/8	08300			
1	1	08301			
1-1/8	1-1/8	08303	-		
1-1/4	1-1/4	08307	_		
1-3/8	1-3/8	08305			
1-1/2	1-1/2	08309			

- 1. All overhead or upwardly inclined installations require the use of piston plugs where one is tabulated together with the anchor size.
- 2. All installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 10 inches.
- 3. A flexible plastic extension tube (Cat. #08281 or #08297) or equivalent approved by DEWALT must be used with piston plugs.

PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

Dry Concrete: cured concrete that, at the time of adhesive anchor installation, has not been exposed to water for the preceding 14 days. **Water-Saturated Concrete (wet):** cured concrete that, at the time of adhesive anchor installation, has been exposed to water over a sufficient length of time to have the maximum possible amount of absorbed water into the concrete pore structure to a depth equal to the anchor embedment depth.

Water-Filled Holes (flooded): cured concrete that is water-saturated and where the drilled hole contains standing water at the time of anchor installation.

ORDERING INFORMATION

AC200+ Cartridges

Cat. No.	Description	Std. Box	Std. Ctn.	Pallet	
PFC1271050	AC200+ 9.5 fl. oz. Quik-Shot	12	36	648	
PFC1271150	AC200+ 28 fl. oz. Dual cartridge	-	8	240	
One AC200+ mixing nozzle is packaged with each cartridge.					
AC200+ mixing	AC200+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive.				

Cartridge System Mixing Nozzles

Cat. No.	Description		Std. Ctn.
PFC1641600	Mixing nozzle (with 8" extension)	2	24
08281	Mixing nozzle extension, 8" long	2	24
08297	Mixing nozzle extension, 20" long	1	12

Dispensing Tools for Injection Adhesive

Cat. No.	Description		Std. Ctn.	
08437	Manual caulking gun for Quik-Shot	1	12	
08479	High performance caulking gun for Quik-Shot	1	12	
DCE560D1	Cordless 20v battery powered dispensing tool for Quik-Shot	1	-	
08494	28 fl. oz. Standard all metal manual tool	1	-	
08496	28 fl. oz. High performance pneumatic tool	1	-	
DCE595D1	28 fl. oz. cordless 20v battery powered dispensing tool	1	-	

Hole Cleaning Tools and Accessories

Cat No.	Description	Std. Box
PFC1671050	Premium Wire brush for 7/16" ANSI hole	1
PFC1671100	Premium Wire brush for 1/2" hole	1
PFC1671150	Premium Wire brush for 9/16" ANSI hole	1
PFC1671200	Premium Wire brush for 5/8" ANSI hole	1
PFC1671225	Premium Wire brush for 11/16" ANSI hole	1
PFC1671250	Premium Wire brush for 3/4" ANSI hole	1
PFC1671300	Premium Wire brush for 7/8" ANSI hole	1
PFC1671350	Premium Wire brush for 1" ANSI hole	1
PFC1671400	Premium Wire brush for 1-1/8" ANSI hole	1
PFC1671450	Premium Wire brush for 1-1/4" 1-3/8" ANSI hole	1
PFC1671500	Premium Wire brush for 1-1/2" ANSI hole	1
PFC1671830	Premium SDS-plus adapter for steel brushes	1
PFC1671000	Premium manual brush wood handle	1
PFC1671820	Premium Steel brush extension, 12" length	1
08292	Air compressor nozzle with extension, 18" length	1

Piston Plugs for Adhesive Anchors

Cat. #	Description	ANSI Drill Bit Dia.	Std. Bag
08258	11/16" Plug	11/16"	10
08259	3/4" Plug	3/4"	10
08300	7/8" Plug	7/8"	10
08301	1" Plug	1"	10
08303	1-1/8" Plug	1-1/8"	10
08307	1-1/4" Plug	1-1/4	10
08305	1-3/8" Plug	1-3/8"	10
08309	1-1/2" Plug	1-1/2"	10

Piston Plugs for Post-Installed Rebar Connections

Cat. No.	Description	ANSI Drill Bit Dia.	Qty.
PFC1691520	3/4" Plug	3/4	10
PFC1691530	7/8" Plug	7/8	10
PFC1691540	1" Plug	1	10
PFC1691550	1-1/8" Plug	1-1/8	10
PFC1691555	1-1/4" Plug	1-1/4	10
PFC1691560	1-3/8" Plug	1-3/8	10
PFC1691570	1-1/2" Plug	1-1/2	10

SDS Max 4-Cutter Carbide Drill Bits

Cat. No.	Diameter	Usable Length	Overall Length
DW5806	5/8"	8"	13-1/2"
DW5809	5/8"	16"	21-1/2"
DW5807	5/8"	31"	36"
DW5808	11/16"	16"	21-1/2"
DW5810	3/4"	8"	13-1/2"
DW5812	3/4"	16"	21-1/2"
DW5813	3/4"	31"	36"
DW5814	13/16"	16"	21-1/2"
DW5815	7/8"	8"	13-1/2"
DW5816	7/8"	16"	21-1/2"
DW5851	7/8"	31"	36"
DW5817	27/32"	16"	21-1/2"
DW5818	1"	8"	13-1/2"
DW5819	1"	16"	22-1/2"
DW5852	1"	24"	29"
DW5820	1"	31"	36"
DW5821	1-1/8"	10"	15"
DW5822	1-1/8"	18"	22-1/2"
DW5853	1-1/8"	24"	29"
DW5854	1-1/8"	31"	36"
DW5824	1-1/4"	10"	15"
DW5825	1-1/4"	18"	22-1/2"

SDS+ Full Head Carbide Drill Bits

Cat. No.	Diameter	Usable Length	Overall Length
DW5502	3/16"	2"	4-1/2"
DW5503	3/16"	4"	6-1/2"
DW5504	3/16"	5"	8-1/2"
DW5506	3/16"	10"	12"
DW5512	7/32"	8"	10"
DW5517	1/4"	4"	6"
DW5518	1/4"	6"	8-1/2"
DW55200	1/4"	10"	12"
DW5521	1/4"	12"	14"
DW5524	5/16"	4"	6"
DW5526	5916"	10"	12"
DW5527	3/8"	4"	6-1/2"
DW5529	3/8"	8"	10"
DW55300	3/8"	10"	12"
DW5531	3/8"	16"	18"
DW5537	1/2"	4"	6"
DW5538	1/2"	8"	10-1/2"
DW5539	1/2"	10"	12"
DW5540	1/2"	16"	18"

SDS+ 4-Cutter Carbide Drill Bits

Cat. No.	Diameter	Usable Length	Overall Length
DW5471	5/8"	8"	10"
DW5472	5/8"	16"	18"
DW5474	3/4"	8"	10"
DW5475	3/4"	16"	18"
DW5477	7/8"	8"	10"
DW5478	7/8"	16"	18"
DW5479	1"	8"	10"
DW5480	1"	16"	18"
DW5481	1-1/8"	8"	10"
DW5482	1-1/8"	6"	18"

Dust Extraction

Cat. No.	Description						
DWV012	10 Gallon Wet/Dry Hepa/Rrp Dust Extractor DWV9402 Fleece bag (5 pack) for DEWALT dust extractors DWV9316 Replacement Anti-Static Hose DWV9320 Replacement HEPA Filter Set (Type 1)						
DWH050K	Dust Extraction with two interchangeable drilling heads						
DCB1800M3T1	1800 Watt Portable Power Station & Parallel Battery Charger with 3 20V Max* 5Ah Batteries and 1 60V Max* Flexvolt® Battery						

Hollow Drill Bits

HOHOW I	JLIII RIEZ				
	Cat. No.	Diameter	Overall Length	Usable Length	Recommended Hammer
	DWA54012	1/2"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
SDS+	DWA54916	9/16"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54058	5/8"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54034	3/4"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA58058	5/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58958	5/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58116	11/16"	24-3/4"	15-3/4"	DCH481 / D25603K
	DWA58034	3/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58934	3/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58078	7/8"	23-5/8"	15-3/4"	DCH481 / D25603K
SDS Max	DWA58001	1"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58901	1"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58118	1-1/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58918	1-1/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58114	1-1/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58138	1-3/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58112	1-1/2"	47-1/4"	39-3/8"	DCH481 / D25603K

Most Widely Accepted and Trusted

ICC-ES Evaluation Report

ICC-ES | (800) 423-6587 | (562) 699-0543 | www.icc-es.org

ESR-4027

Reissued 01/2018
Revised 12/2018
This report is subject to renewal 01/2020.

DIVISION: 03 00 00—CONCRETE

SECTION: 03 16 00—CONCRETE ANCHORS

DIVISION: 05 00 00—METALS

SECTION: 05 05 19—POST-INSTALLED CONCRETE ANCHORS

REPORT HOLDER:

DEWALT

EVALUATION SUBJECT:

AC200+[™] ADHESIVE ANCHOR SYSTEM AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE (DEWALT)

"2014 Recipient of Prestigious Western States Seismic Policy Council (WSSPC) Award in Excellence"

A Subsidiary of CODE COUNCIL

s use. 1 this

ICC-ES Evaluation Report

ESR-4027

Reissued January 2018 Revised December 2018 This report is subject to renewal January 2020.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

DEWALT

EVALUATION SUBJECT:

AC200+™ ADHESIVE ANCHOR SYSTEM AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE (DEWALT)

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2018, 2015, 2012 and 2009 International Building Code[®] (IBC)
- 2018, 2015, 2012 and 2009 International Residential Code[®] (IRC)

For evaluation for compliance with the *National Building Code of Canada*[®] (NBCC), see listing report $\underline{\mathsf{ELC-4027}}$.

For evaluation for compliance with codes adopted by Los Angeles Department of Building and Safety (LADBS) see ESR-4027 LABC and LARC Supplement.

Property evaluated:

Structural

2.0 USES

The AC200+ Adhesive Anchor System is used as anchorage and the Post-Installed Reinforcing Bar Connections are used as reinforcing bar connections (for development length and splice length) in cracked and uncracked normal-weight or lightweight concrete with a specified compressive strength, f'_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) to resist static, wind or earthquake (IBC Seismic Design Categories A through F) tension and shear loads.

The anchor system complies with anchors as described in Section 1901.3 of the 2018 and 2015 IBC, Section 1909 of the 2012 IBC, and is an alternative to cast-in-place and post-installed anchors described in Section 1908 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

Post-installed reinforcing bar connections are an alternative to cast-in-place reinforcing bar connection governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections are comprised of AC200+ two-component adhesive filled in cartridges, static mixing nozzles, dispensing tools, hole cleaning equipment, adhesive injection accessories, and steel anchor elements, which are continuously threaded steel rods (to form the AC200+ Adhesive Anchor System) or deformed steel reinforcing bars (to form the AC200+ Post-Installed Reinforcing Bar Connections).

AC200+ adhesive may be used with continuously threaded steel rods or deformed steel reinforcing bars. The primary components of the AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections, including the AC200+ adhesive cartridge, static mixing nozzle, and steel anchor elements, are shown in Figures 1 and 4 of this report. The manufacturer's published installation instructions (MPII), included with each adhesive unit package, are shown in Figure 5 of this report.

3.2 Materials:

3.2.1 AC200+ Adhesive: AC200+ adhesive is an injectable two-component vinylester-urethane hybrid adhesive. The two components are kept separate by means of a labelled dual-cylinder cartridge. The two components combine and react when dispensed through a static mixing nozzle, supplied by DEWALT, which is attached to the cartridge. AC200+ is available in 9.5-ounce (280 mL) and 28-ounce (825 mL) cartridges.

Each cartridge label is marked with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened cartridge stored in a dry, dark, and cool environment.

- **3.2.2 Hole Cleaning Equipment:** Standard hole cleaning equipment and dust extraction system equipment (i.e. suction, vacuum) are available from the report holder.
- **3.2.2.1 Standard Hole Cleaning:** Standard hole cleaning equipment used after drilling is comprised of steel wire brushes supplied by DEWALT and compressed air nozzle (applicable for both post-installed adhesive anchor system and post-installed reinforcing bar connection system). Standard hole cleaning equipment is shown in Figure 5.
- **3.2.2.2 DustX+™ Extraction System:** The DustX+™ extraction system automatically cleans the holes during

drilling using hollow drill bits with a carbide head meeting the requirements of ANSI B212.15 and a DEWALT DWV012 / DWV902M vacuum equipped with an automatic filter cleaning system or equivalent approved by DEWALT (applicable for post-installed adhesive anchors and post-installed reinforcing bar connections). After drilling with the DustX+ system, no further hole cleaning is required. See Figure 2 for an illustration of the DustX+™ extraction system.

3.2.3 Dispensers: AC200+ adhesive must be dispensed with manual dispensers, pneumatic dispensers, or electric powered dispensers supplied by DEWALT.

3.2.4 Steel Anchor Elements:

- 3.2.4.1 Threaded Steel Rods for use in Post-Installed Anchor Applications: Threaded steel rods must be clean and continuously threaded (all-thread) in diameters described in Tables 4 and 10 and Figure 5 of this report. The embedded portions of the threaded rods must be clean, straight, and free of mill scale, rust, mud, oil and other coatings (other than zinc) that may impair the bond with the adhesive. Specifications for grades of threaded rod, including the mechanical properties, and corresponding nuts and washers, are included in Table 2 of this report. Carbon steel threaded rods must be furnished with a minimum 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC1 or a minimum 0.0021-inchthick (0.053 mm) mechanically deposited zinc coating complying with ASTM B695, Class 55. The stainless steel threaded rods must comply with Table 2 of this report. Steel grades and types of material (carbon, stainless) for the washers and nuts must match the threaded rods. Threaded steel rods must be clean, straight and free of indentations or other defects along their length. The embedded end may be flat cut or cut on the bias to a chisel point.
- **3.2.4.2** Steel Reinforcing Bars for use in Post-Installed Anchor Applications: Steel reinforcing bars must be deformed reinforcing bars as described in Table 3 of this report. Tables 7 and 13, and Figure 5 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be clean, straight, and free of mill scale, rust, mud, oil and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation except as set forth in ACI 318-14 Section 26.6.3.1 (b) or ACI 318-11 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.
- 3.2.4.3 Steel Reinforcing Bars for Use in Post-Installed Reinforcing Bar Connections: Steel reinforcing bars used in post-installed reinforcing bar connections must be deformed reinforcing bars (rebars) as depicted in Figure 3. Tables 17 and 18, and Figure 5 summarize reinforcing bars size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in Section 26.6.3.1(a) of ACI 318-14 or Section 7.3.2 of ACI 318-11, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.
- **3.2.4.4 Ductility:** In accordance with ACI 318-14 Section 2.3 or ACI 318-11 Appendix D Section D.1, as applicable, in order for a steel anchor element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation less than 14 percent or a reduction of area less than 30 percent, or both, are

considered brittle. Values for various steel materials are provided in Table 2 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.

3.2.4.5 Concrete: Normalweight and lightweight concrete must comply with Sections 1903 and 1905 of the IBC. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

4.1.1 General: The design strength of anchors under the 2018 and 2015 IBC, as well as the 2018 and 2015 IRC, must be determined in accordance with ACI 318-14 and this report. The design strength of anchors under the 2012 and 2009 IBC, as well as the 2012 and 2009 IRC, must be determined in accordance with ACI 318-11 and this report.

The strength design of anchors must comply with ACI 318-14 17.3.1 or 318-11 D.4.1, as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Design parameters are provided in Table 4 through Table 16 of this report. Strength reduction factors, ϕ , as given in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable.

Strength reduction factors, ϕ , as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

- **4.1.2 Static Steel Strength in Tension:** The nominal static steel strength of a single anchor in tension, N_{sa} , in accordance with ACI 318-14 17.4.1.2 or ACI 318-11 D.5.1.2, as applicable, and the associated strength reduction factors, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are provided in Tables 4, 7, 10 and 13 of this report for the corresponding anchor steel.
- **4.1.3 Static Concrete Breakout Strength in Tension:** The nominal static concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b, must be calculated in accordance with ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable, using the values of $k_{c,cr}$ and $k_{c,uncr}$ as provided in Tables 5, 8, 11 and 14 of this report. Where analysis indicates no cracking in accordance with ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N}$ = 1.0. For anchors in lightweight concrete see ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable. The value of f'_c used for calculation must be limited to 2,500 psi (17.2 MPa) maximum for metric reinforcing bars in cracked concrete. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-14 17.4.5 or ACI 318-11 D.5.5, as applicable. Bond strength values (τ k,cr, τ k,uncr) are a function of concrete compressive strength, concrete state (cracked, uncracked), concrete type (normalweight, lightweight) and installation conditions (dry concrete, watersaturated concrete, water-filled holes). Drilling method is

hammer-drill (i.e., rotary impact drills or rock drills with a carbide drill bit [including hollow drill bits]). Special inspection level is qualified as periodic for all anchors except as shown in Section 4.4 of this report. The selection of continuous special inspection level, with an onsite proof loading program, does not provide a benefit of a lower anchor category or an increase in the associated strength reduction factors for design. The following table summarizes the requirements:

CONCRETE	BOND STRENGTH	CONCRETE TYPE	CONCRETE COMPRESSIVE STRENGTH	PERMISSIBLE INSTALLATION CONDITIONS	ASSOCIATED STRENGTH REDUCTION FACTOR
р				Dry concrete	φ _d
Cracked	τ _{k,cr}	nt or, ht		Water-saturated concrete	φws
0		eigh ⁄eigl	f 'c	Water-filled holes	ϕ_{wf}
e		nalw ghtv	-	Dry concrete	ϕ_{d}
Uncracke	$ au_{k,uncr}$	Normalweight or, Lightweight		Water-saturated concrete	Øws
Ď				Water-filled holes	$\phi_{ m wf}$

Strength reduction factors for determination of the bond strength are given in Tables 6, 9, 12, 15 and 16 of this report. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the corresponding tables and this section.

The bond strength values in Tables 6, 9, 12, 15 and 16 of this report correspond to concrete compressive strength f_c equal to 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi and 8,000 psi (17.2 MPa and 55 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.10}$. [For **SI**: $(f_c / 17.2)^{0.10}$]. The value of f_c used for calculation must be limited to 2,500 psi (17.2 MPa) maximum for metric reinforcing bars in cracked concrete. Where applicable, the modified bond strength values must be used in lieu of $\tau_{k,cr}$ and $\tau_{k,uncr}$ in ACI 318-14 Equations (17.4.5.1d) and (17.4.5.2) or ACI 318-11 Equations (D-21) and (D-22), as applicable.

The resulting nominal bond strength must be multiplied by the associated strength reduction factor ϕ_d , ϕ_{ws} or ϕ_{wf} , as applicable.

- **4.1.5** Static Steel Strength in Shear: The nominal static steel strength of a single anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, and the strength reduction factor, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are given in Tables 4, 7, 11 and 13 of this report for the corresponding anchor steel.
- **4.1.6** Static Concrete Breakout Strength in Shear: The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-14 17.5.2 or 318-11 D.6.2, as applicable, based on information given in Tables 5, 8, 12 and 14 in this report.

The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable using the values of d given in Tables 5, 8, 12 and 14 for the corresponding anchor steel in lieu of d_a . In addition, h_{ef} must be substituted for ℓ_e . In no case shall ℓ_e exceed 8d. The value of f'_c shall be limited to a maximum of 8,000 psi

- (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable.
- **4.1.7 Static Concrete Pryout Strength in Shear:** The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , shall be calculated in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable.
- **4.1.8 Interaction of Tensile and Shear Forces:** For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.
- **4.1.9 Minimum Member Thickness** h_{min} , **Anchor Spacing** s_{min} , **Edge Distance** c_{min} : In lieu of ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, as applicable, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. The minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-14 17.7.4 or ACI 318-11 D.8.4, as applicable.

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for the following anchor sizes with edge distances less than the values given in Tables 5, 8, 11 and 14, as applicable. T_{max} is subject to the edge distance, c_{min} , and anchor spacing, s_{min} , and shall comply with the following requirements:

INSTALLATION T	ORQUE SUBJECT	TO EDGE DIS	STANCE
NOMINAL ANCHOR SIZE, d	MINIMUM EDGE DISTANCE, c _{min}	MINIMUM ANCHOR SPACING, s _{min}	MAXIMUM TORQUE, T _{max}
⁵ / ₈ in. to 1 in. #5 to #8 M16 to M24 ø14 to ø25 15M to 25M	1.75 in. (45 mm)		
1 ¹ / ₄ in. #9 to #10 M27 to M30 ø28 to ø32 30M	2.75 in. (70 mm)	5 <i>d</i>	0.45·T _{max}

For values of T_{max} , see Figure 5 of this report.

4.1.10 Critical Edge Distance c_{ac} and $\psi_{cp,Na}$: The modification factor $\psi_{cp,Na}$, must be determined in accordance with ACI 318-14 17.4.5.5 or ACI 318-11 D.5.5.5, as applicable, except as noted below:

For all cases where c_{Na}/c_{ac} <1.0, $\psi_{cp,Na}$ determined from ACI 318-14 Eq. 17.4.5.5b or ACI 318-11 Eq. D-27, as applicable, need not be taken less than c_{Na}/c_{ac} . For all other cases, $\psi_{cp,Na}$ shall be taken as 1.0.

The critical edge distance, c_{ac} must be calculated according to Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11, in lieu of ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable.

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k, uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$

(Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11)

where

 $\left[\frac{h}{h_{\rm of}}\right]$ need not be taken as larger than 2.4; and where

 $\tau_{k,uncr}$ = the characteristic bond strength stated in the tables of this report whereby $\tau_{k,uncr}$ need not be taken as larger than:

$$au_{k,uncr} = rac{k_{uncr}\sqrt{h_{ef}f_c'}}{\pi \cdot d_a}$$
 Eq. (4-1)

4.1.11 Requirements for Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchors must be designed in accordance with ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, except as described below.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in Tables 4, 7, 11 and 13 for the corresponding anchor steel. The nominal bond strength $\tau_{\kappa,cr}$ must be adjusted by $\alpha_{N,seis}$ as given in Tables 6, 9, 12 and 15 for threaded rods.

As an exception to ACI 318-11 Section D.3.3.4.2: Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy Section ACI 318-11 D.3.3.4.3(d).

Under ACI 318-11 D.3.3.4.3(d), in lieu of requiring the anchor design tensile strength to satisfy the tensile strength requirements of ACI 318-11 D.4.1.1, the anchor design tensile strength shall be calculated from ACI 318-11 D.3.3.4.4.

The following exceptions apply to ACI 318-11 D.3.3.5.2:

- 1. For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.
 - 1.2. The maximum anchor nominal diameter is 5 /₈ inch (16 mm).
 - 1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).
 - 1.4. Anchor bolts are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.
 - 1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.
 - 1.6. The sill plate is 2-inch or 3-inch nominal thickness.
- 2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 2.1. The maximum anchor nominal diameter is 5 /₈ inch (16 mm).
 - 2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).
 - 2.3. Anchors are located a minimum of $1^3/_4$ inches (45 mm) from the edge of the concrete parallel to the length of the track.

- 2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.
- 2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete, shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318-11 D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with ACI 318-11 D.6.2.1(c).

4.2 Strength Design of Post-Installed Reinforcing Bars:

4.2.1 General: The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of post-installed reinforcing bars are illustrated in Figure 3 of this report.

4.2.2 Determination of bar development length I_d : Values of I_d must be determined in accordance with the ACI 318 development and splice length requirements for straight cast-in place reinforcing bars.

Exceptions:

- 1. For uncoated and zinc-coated (galvanized) post-installed reinforcing bars, the factor Ψ_e shall be taken as 1.0. For all other cases, the requirements in ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (b) shall apply.
- 2. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.
- 4.2.3 Minimum Member Thickness, h_{min} , Minimum Concrete Cover, $c_{c,min}$, Minimum Concrete Edge Distance, $c_{b,min}$, Minimum Spacing, $s_{b,min}$: For post-installed reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

For post-installed reinforcing bars installed at embedment depths, h_{ef} , larger than 20d (h_{ef} > 20d), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, $c_{c,min}$				
$d_b \leq No. 6 (16mm)$	1 ³ / ₁₆ in.(30mm)				
No. $6 < d_b \le No.10$	1 ⁹ / ₁₆ in.				
$(16\text{mm} < d_b \le 32\text{mm})$	(40mm)				

The following requirements apply for minimum concrete edge and spacing for h_{ef} > 20d:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

$$c_{b,min} = d_0/2 + c_{c,min}$$

Required minimum center-to-center spacing between post-installed bars:

$$s_{b,min} = d_0 + c_{c,min}$$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight postinstalled reinforcing bars must take into account the provisions of ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

4.3 Installation:

Installation parameters are illustrated in Figure 5 of this report. Installation must be in accordance with ACI 318-14 17.8.1 and 17.8.2 or ACI 318-11 D.9.1 and D.9.2. Anchor and post-installed rebar locations must comply with this report and the plans and specifications approved by the code official. Installation of the AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections must conform to the manufacturer's printed installation instructions included in each unit package as described in Figure 5 of this report.

The adhesive anchor system may be used for upwardly inclined orientation applications (e.g. overhead). Upwardly included and horizontal orientation applications are to be installed using piston plugs for the $^5/_8$ -inch through $1^1/_4$ -inch (M16 through M30) diameter threaded steel rods and No. 5 through No. 10 (14 mm through 32 mm) steel reinforcing bars, installed in the specified hole diameter, and attached to the mixing nozzle and extension tube supplied by DEWALT as described in Figure 5 in this report. Upwardly included and horizontal orientation installation for the $^3/_8$ -inch and $^1/_2$ -inch (M10 and M12) diameter threaded steel rods, and No. 3 and No. 4 (10 mm and 12 mm) steel reinforcing bars may be injected directly to the end of the hole using a mixing nozzle with a hole depth $h_0 \leq 10^\circ$ (250 mm).

Installation of anchors in horizontal or upwardly inclined orientations shall be fully restrained from movement throughout the specified curing period through the use of temporary wedges, external supports, or other methods. Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2018, 2015 and 2012 IBC, 1704.4 and 1704.15 of the 2009 IBC and this report. The special inspector must be on the jobsite initially during anchor or post-installed reinforcing bar installation to verify the anchor or post-installed reinforcing bar type and dimensions, adhesive expiration date, concrete type, concrete compressive strength, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor or post-installed reinforcing bar embedment, tightening torque, and adherence to the manufacturers printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor or post-installed reinforcing bar by construction personnel on site. Subsequent installations of the same anchor or post-installed reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor or post-installed reinforcing bar product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors or post-installed reinforcing bars installed in horizontal or

upwardly inclined orientations to resist sustained tension loads must be performed in accordance with ACI 318-14 17.8.2.4, 26.7.1(h) and 26.13.3.2 (c) or ACI 318-11 D.9.2.4, as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706 or 1707 must be observed, where applicable.

4.5 Compliance with NSF/ANSI Standard 61:

The AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections comply with the requirements of NSF/ANSI Standard 61, as referenced in Section 605 of the 2018, 2015, 2012 and 2009 *International Plumbing Code*® (IPC) and is certified for use as an anchoring adhesive for installing threaded rods less than or equal to 1.3 inches (33 mm) in diameter in concrete for water treatment applications.

5.0 CONDITIONS OF USE

The AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections described in this report comply with, or are a suitable alternative to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- 5.1 AC200+ adhesive anchors and post-installed reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions included with each cartridge and provided in Figure 5 of this report.
- **5.2** The anchors and post-installed reinforcing bars described in this report must be installed in cracked and uncracked normalweight concrete having a specified compressive strength $f_c = 2,500$ psi to 8,500 psi (17.2 MPa to 58.6 MPa).
- **5.3** The concrete shall have attained its minimum design strength prior to installation of the anchors and post-installed reinforcing bars.
- **5.4** The values of f_c used for calculation purposes must not exceed 8,000 psi (55 MPa). The value of f_c used for calculation of tension resistance must be limited to 2,500 psi (17.2 MPa) maximum for metric reinforcing bars used as anchorage in cracked concrete only.
- 5.5 Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes predrilled in accordance with the instructions provided in Figure 5 of this report.
- 5.6 Loads applied to the anchors and post-installed reinforcing bars must be adjusted in accordance with Section 1605.2 of the IBC for strength design.
- 5.7 In structures assigned to Seismic Design Categories C, D, E, and F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report and post-installed reinforcing bars must comply with section 4.2.4 of this report.
- 5.8 AC200+ adhesive anchors and post-installed reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchors and postinstalled reinforcing bars, subject to the conditions of this report.
- 5.9 Strength design values are established in accordance with Section 4.1 of this report.
- 5.10 Post-installed reinforcing bar development and splice lengths are established in accordance with Section 4.2 of this report.

- 5.11 Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values described in this report.
- **5.12** Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318 for cast-in place bars and Section 4.2.3 of this report.
- 5.13 Prior to installation of anchors and post-installed reinforcing bars, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- 5.14 Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, AC200+ adhesive anchors and post-installed reinforcing bars are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.
 - Anchors and post-installed reinforcing bars that 6.0 EVIDENCE SUBMITTED support gravity load-bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - Anchors and post-installed reinforcing bars are used to support non-structural elements.
- 5.15 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time, the 7.0 IDENTIFICATION use of these anchors under such conditions is beyond the scope of this report.
- **5.16** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- 5.17 Use of hot-dipped galvanized carbon steel and stainless steel rods is permitted for exterior exposure or damp environments.
- **5.18** Steel anchoring elements in contact with preservativetreated and fire-retardant-treated wood shall be of zinccoated steel or stainless steel. The minimum coating weights for zinc-coated steel shall be in accordance with ASTM A153.
- 5.19 Periodic special inspection must be provided in accordance with Section 4.4 in this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.4 of this report.

- 5.20 Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed by personnel certified by an applicable certification program in accordance with ACI 318-14 17.8.2.2 or 17.8.2.3 or ACI 318-11 D.9.2.2 or D.9.2.3, as applicable.
- 5.21 AC200+ Adhesive Anchors and Post-Installed Reinforcing Bars may be used to resist tension and shear forces in wall (horizontal) and for overhead (upwardly inclined) installations into concrete with a temperature between 23°F and 104°F (-5°C and 40°C); and between 14°F and 104°F (-10°C and 40°C) for floor (downward) installations.
- 5.22 Anchors and post-installed reinforcing bars shall not be used for installations where the concrete temperature can vary from 40°F (5°C) or less, to 80°F (27°C) or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building facade systems and other applications subject to direct sun exposure.
- 5.23 AC200+ adhesive is manufactured under a qualitycontrol program with inspections by ICC-ES.

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete (AC308), dated October 2017 (Editorially revised March 2018), which incorporates requirements in ACI 355.4-11 for use in cracked and uncracked concrete; including, but not limited to, tests under freeze/thaw conditions, tests under sustained load, tests for installation including installation direction, tests at elevated temperatures, tests for resistance of alkalinity, tests for resistance to sulfur, tests for seismic tension and shear, and tests for post-installed reinforcing bar connections.

- 7.1 AC200+ adhesive is identified by packaging labelled with the company's name (DEWALT) and address, anchor name, the lot number, the expiration date, and the evaluation report number (ESR-4027). Threaded rods, nuts, washers, and deformed reinforcing bars must be standard steel anchor elements and must conform to applicable national or international specifications as set forth in Tables 2 and 3 of this report.
- **7.2** The report holder's contact information is the following:

701 EAST JOPPA ROAD TOWSON, MARYLAND 21286 (800) 524-3244 www.DEWALT.com anchors@DEWALT.com

TABLE 1A—DESIGN USE AND REPORT TABLE INDEX FOR POST-INSTALLED ADHESIVE ANCHORS

	POST-INSTALLED ADHESIVE ANCHORS – TREADED RODS AND REINFORCING BARS											
D	DESIGN STRENGTH ¹		THREADED ROD		DEFORMED REINFORCING BAR	THREADED ROD		DEFORMED REINFORCING BAR (METRIC)				
				(FRACTIONAL	- <i>)</i>	(FRACTIONAL)	(METRIC)		EU	CA		
Steel	N _{sa} , V _{sa}	a		Table 4		Table 7	Table 10		Table 13	Table 13		
Concrete	N _{cb} , N _{cl}	_{bg} , V _{cb} , V _{cbg} ,	V _{cp} , V _{cpg}	Table 5		Table 8	Table 11		Table 14	Table 14		
Bond ²	N _a , N _{ag}	ı		Table 6		Table 9	Table 12 Table 15		Table 15	Table 16		
Conc Typ		Concrete State		eaded Rod meter (inch)		Reinforcing Bar Size (No.)	Drilling Method ³	Minimum and Maximum Embedment		Seismic Design Categories ⁴		
Normal-	weight	Cracked	³ / ₈ , ¹ / ₂ , ⁵	$\frac{1}{2}$ / ₈ , $\frac{3}{4}$, $\frac{7}{8}$, 1, 1 $\frac{1}{4}$		3, 4, 5, 6, 7, 8, 9, 10	Hammer-drill		Table 6	A through F		
and light	weight	Uncracked	³ / ₈ , ¹ / ₂ , ⁵	$\frac{1}{2}$ /8, $\frac{3}{4}$, $\frac{7}{8}$, 1, 1 $\frac{1}{4}$		3, 4, 5, 6, 7, 8, 9, 10	Hammer-drill	Hammer-drill Table 9		A and B		
Conc Typ		Concrete State		eaded Rod meter (mm)		Reinforcing Bar Size, EU and CA (Ø and M)	Drilling Method ³	Mini	mum and Maximum Embedment	Seismic Design Categories ⁴		
		Cracked	10 12	16, 20, 24, 27, 30	10	, 12, 14, 16, 20, 25, 28, 32	Hammer-drill		Table 15	A through E		
Normal-	weight	Crackeu	10, 12,	10, 20, 27, 27, 30		10, 15, 20, 25, 30	riaiiiiiei-uiiii		Table 16	A through F		
and light	weight	Uncracked	10 12	16, 20, 24, 27, 30	10	, 12, 14, 16, 20, 25, 28, 32	Hammer-drill		Table 15	A and B		
		Uncracked 10, 12,		10, 20, 24, 27, 30		10, 15, 20, 25, 30	riammer-um	Table 16		A and B		

For SI: 1 inch = 25.4 mm. For **pound-inch** units: 1 mm = 0.03937 inch.

TABLE 1B—DESIGN USE AND REPORT TABLE INDEX FOR POST-INSTALLED REINFORCING BAR CONNECTIONS1

	POST-INSTALLED REINFORCING BARS (Table 17)										
Concrete Type	Reinforcing Bar Size	Drilling Method ²	Seismic Design Categories ³								
	#3, #4, #5, #6, #7, #8, #9, #10	Hammer-drill	A through F								
Normal-weight and lightweight	Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, Ø28, Ø32	Hammer-drill	A through F								
and lightweight	10M, 15M, 20M, 25M, 30M	Hammer-drill	A through F								

For **SI:** 1 inch = 25.4 mm. For **pound-inch** units: 1 mm = 0.03937 inch.

³See Section 4.2.4 for requirements for seismic design of post-installed reinforcing bar connections, where applicable.

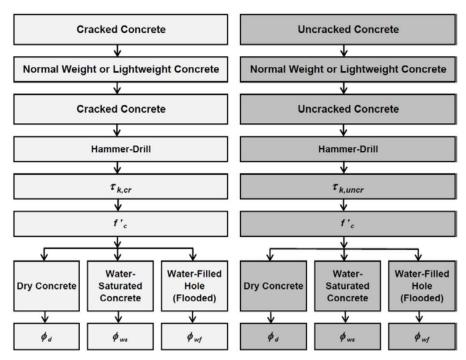


FIGURE A—FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH FOR POST-INSTALLED ADHESIVE ANCHORS

¹Reference ACI 318-14 17.3.1.1 or 318-11 D.4.1.1, as applicable for post-installed adhesive anchors. The controlling strength is decisive from all appropriate failure modes (i.e. steel, concrete, bond) and design assumptions.

² See Section 4.1.4 of this report for bond strength determination of post-installed adhesive anchors.

³Hammer-drill, i.e. rotary impact drills or rock drills with a carbide drill bit (including hollow drill bits).

⁴See Section 4.1.11 for requirements for seismic design of post-installed adhesive anchors, where applicable.

¹Determination of development length for post-installed reinforcing bar connections; see Section 4.2 of this report for requirements.

²Hammer-drill, i.e. rotary impact drills or rock drills with a carbide drill bit (including hollow drill bits).

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS

	THREADED ROD SPECIFICATION		MIN. SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH 0.2 PERCENT OFFSET, f_{ya}	f _{uta} /f _{ya}	ELONGATION, MIN. PERCENT ¹¹	REDUCTION OF AREA, MIN. PERCENT	SPECIFICATION FOR NUTS ¹²
	ASTM A193 ² Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	ASTM A194 / A563 Grade DH
	ASTM A36 ³ / F1554 ⁴ , Grade 36	psi (MPa)	58,000 (400)	36,000 (250)	1.61	23	40	ASTM A194 / A563
	ASTM F1554 ⁴ Grade 55	psi (MPa)	75,000 (515)	55,000 (380)	1.36	23	40	Grade A
STEEL	ASTM F1554 ⁴ Grade 105	psi (MPa)	125,000 (860)	105,000 (725)	1.19	15	45	
S NOS	ASTM A449 ⁵ (3/8" to1" dia.)	psi (MPa)	120,000 (830)	92,000 (635)	1.30	14	35	ASTM A194 / A563 Grade DH
CARBON	ASTM A449 ⁵ (1-1/4" dia.)	psi (MPa)	105,000 (720)	81,000 (560)	1.30	14	35	
	ASTM F568M ⁶ Class 5.8 (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	A563 Grade DH DIN 934 (8-A2K) ¹³
	ISO 898-1 ⁷ Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	EN ISO 4032 Grade 6
	ISO 898-1 ⁷ Class 8.8	MPa (psi)	800 (118,000)	640 (92,800)	1.25	12	52	EN ISO 4032 Grade 8
	ASTM F593 ⁸ CW1 3/ ₈ to ⁵ / ₈ in.	psi (MPa)	100,000 (690)	65,000 (450)	1.54	20	-	ASTM F594 Alloy
STEEL	ASTM F593 ⁸ CW2 ³ / ₄ to 1 ¹ / ₄ in.	psi (MPa)	85,000 (590)	45,000 (310)	1.89	25	-	Group 1, 2 or 3
	ASTM A193/A193M ⁹ Grade B8/B8M2, Class 2B	psi (MPa)	95,000 (655)	75,000 (515)	1.27	25	40	ASTM A194/A194M
STAINLESS	ISO 3506-1 ¹⁰ A4-70 M10-M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	-	EN ISO 4032
	ISO 3506-1 ¹⁰ A4-50 M27-M30	MPa (psi)	500 (72,500)	210 (30,450)	2.38	40	-	EN ISO 4032

Adhesive must be used with continuously threaded carbon or stainless steel rod (all-thread) having thread characteristics complying with ANSI B1.1 UNC Coarse Thread Series.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING SPECIFICATION	UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH, f_{va}
ASTM A615 ¹ , A767 ³ , A996 ⁴	psi	90,000	60,000
Grade 60	(MPa)	(620)	(414)
ASTM A706 ² , A767 ³	psi	80,000	60,000
Grade 60	(MPa)	(550)	(414)
ASTM A615 ¹ , Grade 40	psi	60,000	40,000
	(MPa)	(415)	(275)
DIN 488 ⁵ BSt 500	MPa	550	500
	(psi)	(79,750)	(72,500)
CAN/CSA-G30.18 ⁶ Grade 400	MPa	540	400
	(psi)	(78,300)	(58,000)

¹Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

²Standard Specification for Alloy-Steel and Stainless steel Bolting Materials for High temperature of High Pressure service and Other Special Purpose Applications.

Standard Specification for Carbon Structural steel

⁴Standard Specification for Anchor Bolts, Steel 36, 55 and 105-ksi Yield Strength

⁵Standard Specification for Hex Cap Screws, Bolts and Studs, Heat Treated, 120/105/50 ksi Minimum Tensile Strength, General Use.

⁶Standard Specification for Carbon and Alloy Steel external Threaded Metric Fasteners

⁷Mechanical Properties of Fasteners Made of Carbon Steel and Alloy Steel - Part 1: Bolts, Screws and Studs

^{*}Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

⁹Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications.

Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, Screws and Studs
 Based on 2-in. (50 mm) gauge length except for ASTM A193, which is based on a gauge length of 4d.

¹²Nuts and washers of other grades and style having specified proof load stress greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod. ³Nuts for metric rods.

¹⁴Minimum percent reduction of area not reported in the referenced standard.

²Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.

³Standard Specification for Zinc-Coated (Galvanized) steel Bars for Concrete Reinforcement.

⁴Standard Specification for Rail-Steel and Axle-steel Deformed bars for Concrete Reinforcement.

⁵Reinforcing steel, reinforcing steel bars; dimensions and masses

⁶Billet-Steel Bars for Concrete Reinforcement.

TABLE 4—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD1

						Nominal	Rod Diamet	er (inch)		
DESIGN I	NFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₄
Threaded	rod O D	d	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.250
Tilleaded	10d O.D.	u	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
Threaded	rod effective cross-sectional area	A _{se}	in.²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691
	T		(mm²) Ib	(50) 4,495	(92) 8,230	(146) 13.110	(216) 19,400	(298) 26,780	(391) 35,130	(625) 56,210
54,	Nominal strength as governed by steel	N_{sa}	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)
F15	strength (for a single anchor)	1/	lb	2,695	4,940	7,860	11,640	16,070	21,080	33,725
36/ de		V _{sa}	(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.4)	(93.8)	(150.0)
ASTM A36/F1554, Grade 36	Reduction factor for seismic shear	$\alpha_{V,seis}$	-				0.60			
ST	Strength reduction factor for tension ²	ϕ	-				0.75			
⋖	Strength reduction factor for shear ²	ϕ	-		1	•	0.65	•		
		N _{sa}	lb (I-N)	5,815	10,645	16,950	25,090	34,630	45,430	72,685
554	Nominal strength as governed by steel strength (for a single anchor)		(kN)	(25.9) 3,490	(47.6) 6,385	(75.5)	(111.7)	(154.1)	(202.1) 27,260	(323.1) 43,610
F 15	Strength (for a single anchor)	V_{sa}	lb (kN)	(15.5)	(28.6)	10,170 (45.3)	15,055 (67)	20,780 (92.5)	(121.3)	(193.9)
TM	Reduction factor for seismic shear	α _{V,seis}	-	(/	(/	(/	0.60	()	(- /	(/
ASTM F1554 Grade 55	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ²	φ	-				0.65			
	3	,	lb	9,685	17,735	28,250	41,810	57,710	75,710	121,135
ω 1 4 1-	Nominal strength as governed by steel	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
155 105	strength (for a single anchor)	V _{sa}	lb	5,810	10,640	16,950	25,085	34,625	45,425	72,680
M F M F		-	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM A193 Grade B7 ASTM F1554 Grade 105	Reduction factor for seismic shear	α _{V,seis}	-	0.60						
4 4	0	φ	-	0.75						
	Strength reduction factor for shear ²	φ	-	0.000	47.000	07.400	0.65		======	104 ===
	Nominal strength as governed by steel	N _{sa}	lb (kN)	9,300 (41.4)	17,030 (76.2)	27,120 (120.9)	40,140 (178.8)	55,405 (246.7)	72,685 (323.7)	101,755 (450.0)
ASTM A449	strength (for a single anchor)		lb	5,580	10,220	16,270	24,085	33,240	43,610	61,055
Α¥		V _{sa}	(kN)	(24.8)	(45.7)	(72.5)	(107.3)	(148)	(194.2)	(270.0)
) TS	Reduction factor for seismic shear	$\alpha_{V,seis}$	-				0.60			
ž	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ²	φ	-				0.65			
		N _{sa}	lb	5,620	10,290	16,385	24,250	33,470	43,910	70,260
∑ ∞	Nominal strength as governed by steel	. •Sa	(kN)	(25)	(46)	(73)	(108)	(149)	(195.5)	(312.5)
568	strength (for a single anchor)	V_{sa}	lb (kN)	3,370 (15)	6,175 (27.6)	9,830 (43.8)	14,550 (64.8)	20,085 (89.4)	26,350 (117.3)	42,155 (187.5)
ASTM F568M Class 5.8	Reduction factor for seismic shear	α _{V,seis}	- (KIV)	(13)	(27.0)	(43.0)	0.60	(03.7)	(117.5)	(107.5)
STS	Strength reduction factor for tension ²	φ	_				0.65			
	Strength reduction factor for shear ²	φ	_				0.60			
			lb	7,750	14,190	22,600	28,430	39,245	51,485	82,370
>	Nominal strength as governed by steel	N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	(366.4)
F593 CW inless	strength (for a single anchor)	V _{sa}	lb	4,650	8,515	13,560	17,060	23,545	30,890	49,425
		v sa	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.8)
ASTM Sta	Reduction factor for seismic shear	$\alpha_{V,seis}$	-				0.60			
AS	Strength reduction factor for tension ²	φ	-				0.65			
	Strength reduction factor for shear ²	φ	-				0.60	1	1	1
3M 2,	N	N _{sa}	lb (kN)	7,365	13,480	21,470	31,780	43,860	57,540	92,065
A 19:	Nominal strength as governed by steel strength (for a single anchor)		(kN) lb	(32.8) 4,420	(60.3) 8,090	(95.6) 12,880	(141.5) 19,070	(195.2) 26,320	(256.1) 34,525	(409.4) 55,240
93// 8/Bi s 2E	and the admission of the state	V_{sa}	(kN)	4,420 (19.7)	(36.2)	(57.4)	(84.9)	(117.1)	(153.7)	(245.6)
ASTM A193/A193M Grade B8/B8M2, Class 2B	Reduction factor for seismic shear	α _{V,seis}	-	,,	\/	1/	0.60	/	/	,/
rad TM C	Strength reduction factor for tension ²	φ	-				0.75			
AS.	Strength reduction factor for shear ²	φ	-				0.65			
	St. St. Toddottoff Idotor for Silical	Ψ	<u> </u>	L			0.00			

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod.

²The tabulated value of *φ* applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI

The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in AC 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

TABLE 5—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

	DIGITAL THE PROPERTY OF THE PARTY OF THE PAR										
DESIGN INFORMATION	Ob. ad	11	Nominal Rod Diameter (inch)								
DESIGN INFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₄		
Effectiveness factor for cracked concrete	k _{c,cr}	in-lb (SI)		17 (7)							
Effectiveness factor for uncracked concrete	k _{c,uncr}	in-lb (SI)		24 (10)							
Min. anchor spacing	S _{min}	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 (76)	3 ³ / ₄ (95)	4 ¹ / ₄ (108)	4 ³ / ₄ (121)	5 ⁷ / ₈ (149)		
		in.	1 ⁵ / ₈	1 ³ / ₄	2 (51)	2 ³ / ₈ (60)	2 ¹ / ₂ (64)	2 ³ / ₄ (70)	3 ¹ / ₄ (82)		
Min. edge distance	C _{min}	(mm)	(41)	(45)		edge distances See Section 4.1		For edge distances to $2^3/_4$ -inch (70 mm) see Section 4.1.9.			
Min. member thickness	h _{min}	in. (mm)		+ 1 ¹ / ₄ + 30)			$h_{ef} + 2d_0$	3			
Critical edge distance - splitting (for uncracked concrete only)	C _{ac}	-			S	See Section 4.1.	10 of this report.				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-	0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-				0.7	70				

TABLE 6—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

	DECICAL INFORMATION	O. mah al	Units		No	minal Ro	od Diam	eter (ind	ch)		
	DESIGN INFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₄	
Minimum embedm	ent	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
Maximum embedm	nent	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)				25 (635)	
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2601 (17.9)	2415 (16.6)	2262 (15.6)				1990 (13.7)	
range A ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	1041 (7.2)	1041 (7.2)	1111 (7.7)				1146 (7.9)	
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2263 (15.6)	2101 (14.5)	1968 (13.6)				1732 (11.9)	
range B ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	905 (6.2)	906 (6.2)	966 (6.7)				997 (6.9)	
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1631 (11.2)	1514 (10.4)	1418 (9.8)				1248 (8.6)	
range C ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	652 (4.5)	653 (4.5)	696 (4.8)	764 (5.3)	760 (5.2)	756 (5.2)	719 (5.0)	
Daylana	Anchor category	_	-				1				
Dry concrete	Strength reduction factor	$\phi_{ m d}$	-				0.65				
	Anchor category	-	-				2				
Water-saturated concrete	Strength reduction factor	$\phi_{ m ws}$	1				0.55				
Water-filled holes	Anchor category	_		3							
vvater-illied fioles	Strength reduction factor	ϕ_{wf}					0.45				
Reduction factor for	or seismic tension	^Q N,seis	-				0.95		•		

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f_c/2500)^{0.10}$. See Section 4.1.4 of this report.

¹Additional setting information is described in Figure 5, installation instructions. ²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. 3 d_0 = hole diameter.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly

constant over significant periods of time.

3Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23 percent for temperature range C.

TABLE 7—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS 1

							Nominal	Bar Size				
DESIG	INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	
Reinfo	rcing bar O.D.	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.6)	1.250 (31.8)	
	rcing bar effective cross- nal area	A _{se}	in.² (mm²)	0.110 (71)	0.200 (129)	0.310 (200)	0.440 (284)	0.600 (387)	0.790 (510)	1.000 (645)	1.270 (819)	
	Nominal strength as governed by steel	N _{sa}	lb (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.0)	54,000 (240.0)	71,100 (316.0)	90,000 (400.0)	114,300 (508.0)	
, A996	strength (for a single anchor)	V _{sa}	lb (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)	
ASTM A615, A767, A996 Grade 60	Reduction factor for seismic shear	$a_{V,seis}$	-				0.0	65				
TM A6	Strength reduction factor for tension ²	φ	-				0.0	65				
SY	Strength reduction factor for shear ²	φ	-				0.0	60				
0	Nominal strength as governed by	N _{sa}	lb (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)	
ade 6	steel strength (for a single anchor)	V _{sa}	lb (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (93.9)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)	
ASTM A706 Grade 60	Reduction for seismic shear	$\alpha_{V,seis}$	-				0.0	65				
STM A	Strength reduction factor ϕ for tension ²	φ	-				0.	75				
4	Strength reduction factor φ for shear ²	φ	-				0.0	65				
	Nominal strength as governed by steel	N _{sa}	lb (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)					
ade 40	strength (for a single anchor)	V _{sa}	lb (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)		de 40 bars ar	with ASTM A6 e furnished on		
ASTM A615 Grade 40	Reduction factor for seismic shear	$\alpha_{V,seis}$	-		0.	65			sizes No. 3 through No. 6			
ASTM,	Strength reduction factor for tension ²	φ	-				0.0	65				
	Strength reduction factor for shear ²	φ	-				0.0	60				

¹Values provided for common bar material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

²The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI

²The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.

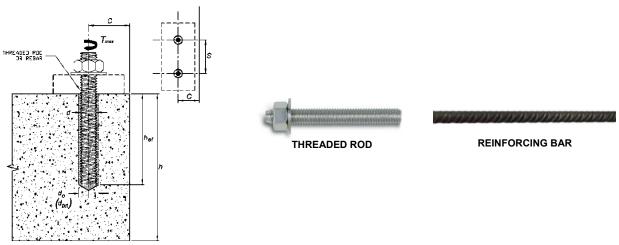


FIGURE 1—INSTALLATION PARAMETERS FOR THREADED RODS AND REINFORCING BARS

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

						No	minal Bar Siz	е		
DESIGN INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
Effectiveness factor for cracked concrete	K _{c,cr}	in-lb (SI)					17 (7)			
Effectiveness factor for uncracked concrete	k _{c,uncr}	inlb. (SI)					24 (10)			
Min. anchor spacing	S _{min}	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 (76)	3 ³ / ₄ (95)	4 ¹ / ₄ (108)	4 ³ / ₄ (121)	5 ¹ / ₄ (133)	5 ⁷ / ₈ (149)
		in.	1 ⁵ / ₈	1 ³ /₄	2 (51)	2 ³ / ₈ (60)	2 ¹ / ₂ (64)	2 ³ / ₄ (70)	3 (76)	3 ¹ / ₄ (82)
Min. edge spacing	C _{min}	(mm)	(41)	(45)			ances to 1 ³ / ₄ -inion 4.1.9 of this			For edge distances to 2 ³ / ₄ -inch (70 mm) see Section 4.1.9.
Min. member thickness	h _{min}	in. (mm)		+ 1 ¹ / ₄ + 30)			h	_{ef} + 2d ₀ ³		
Critical edge spacing – splitting (for uncracked concrete only)	Cac	-				See Section	on 4.1.10 of thi	is report.		
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-					0.65			
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-					0.70			

¹Additional setting information is described in Figure 5, installation instructions.

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DEGICAL INFORM	AATION					ı	Nominal	Bar Size)		
DESIGN INFORM	MATION	Symbol	Units	No.3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
Minimum embedr	ment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)
Maximum embed	ment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	22 ¹ / ₂ (572)	25 (635)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2,200 (15.2)	2,100 (14.5)	2,030 (14.0)	1,970 (13.6)	1,920 (13.2)	1,880 (13.0)	1,845 (12.7)	1,815 (12.5)
range A ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	1,090 (7.5)	1,055 (7.3)	1,130 (7.8)	1,170 (8.1)	1,175 (8.1)	1,155 (8.0)	1,140 (7.9)	1,165 (8.0)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1,915 (13.2)	1,830 (12.6)	1,765 (12.2)	1,715 (11.8)	1,670 (11.5)	1,635 (11.3)	1,615 (11.1)	1,580 (10.9)
range B ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	945 (6.5)	915 (6.3)	980 (6.8)	1,015 (7.0)	1,020 (7.0)	1,005 (6.9)	995 (6.8)	1,010 (7.0)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1,380 (9.5)	1,315 (9.1)	1,270 (8.8)	1,235 (8.5)	1,205 (8.3)	1,180 (8.1)	1,155 (8.0)	1,140 (7.8)
range C ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (N/mm²)	680 (4.7)	660 (4.6)	705 (4.9)	735 (5.1)	735 (5.1)	725 (5.0)	715 (4.9)	730 (5.0)
Dry concrete	Anchor category	-	-				•				
Dry concrete	Strength reduction factor	ϕ_{d}	-				0.0	35			
Water-saturated	Anchor category	-	-				2	2			
concrete	Strength reduction factor	ϕ_{ws}	-				0.	55			
Water-filled	Anchor Category	-					3	3			
holes	Strength reduction factor	ϕ_{Wf}					0.4	45			
Reduction factor	for seismic tension	∝ _{N,seis}	-	0.9	95			1.0	00		

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength f_c between 2,500 psi and 8,000 psi, tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.10}$. See Section 4.1.4 of this report.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. 3d_0 = hole diameter.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

TABLE 10—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD1

							Nominal Rod D	Diameter (mm)		
DESIG	ON INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30
Thread	ded rod O.D.	d	mm (in.)	10 (0.39)	12 (0.47)	16 (0.63)	20 (0.79)	24 (0.94)	27 (1.06)	30 (1.18)
	ded rod effective cross- nal area	A _{se}	mm² (in.²)	58.0 (0.090)	84.3 (0.131)	157 (0.243)	245 (0.380)	353 (0.547)	459 (0.711)	561 (0.870)
8	Nominal strength as governed by steel strength	N _{sa}	kN (lb)	29.0 (6,518)	42.2 (9,473)	78.5 (17,643)	122.5 (27,532)	176.5 (39,668)	229.5 (51,580)	280.5 (63,043)
Class 5.8	(for a single anchor)	V _{sa}	kN (lb)	17.4 (3,911)	25.3 (5,684)	47.1 (10,586)	73.5 (16,519)	105.9 (23,801)	137.7 (30,948)	168.3 (37,826)
8-1 Cl	Reduction factor for seismic shear	$\alpha_{V,seis}$	-				0.60			
SO 898-1	Strength reduction factor for tension ²	φ	-				0.65			
-	Strength reduction factor for shear ²	φ	-				0.60			
	Nominal strength as	N _{sa}	kN (lb)	46.4 (10,428)	67.4 (15,157)	125.6 (28,229)	196 (44,051)	282.4 (63,470)	367.2 (82,528)	448.8 (100,868)
Class 8.8	governed by steel strength (for a single anchor)	V_{sa}	kN (lb)	27.8 (6,257)	40.5 (9,094)	75.4 (16,937)	117.6 (26,431)	169.4 (38,082)	220.3 (49,517)	269.3 (60,521)
	Reduction factor for seismic shear	α _{V,seis}	-				0.60			
SO 898-1	Strength reduction factor for tension ²	φ	-				0.65			
32	Strength reduction factor for shear ²	φ	-				0.60			
	Nominal strength as	N _{sa}	kN (lb)	40.6 (9,125)	59 (13,263)	109.9 (24,700)	171.5 (38,545)	247.1 (55,536)	229.5 (51,580)	280.5 (63,043)
-1, steel ³	governed by steel strength (for a single anchor)	V _{sa}	kN (lb)	24.4 (5,475)	35.4 (7,958)	65.9 (14,820)	102.9 (23,127)	148.3 (33,322)	137.7 (30,948)	168.3 (37,826)
ISO 3506-1, stainless steel ³	Reduction factor for seismic shear	α _{V,seis}	-				0.60			
ISO A4 stail	Strength reduction factor for tension ²	φ	-				0.65			
	Strength reduction factor for shear ²	φ	-				0.60			

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 (b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod. 2 The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI

TABLE 11—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

DEGICAL INFORMATION	0	I I mit m			Non	ninal Rod Diam	eter (mm)		
DESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)				7 (17)			
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)				10 (24)			
Min. anchor spacing	S _{min}	mm (in.)	50 (2)	60 (2 ³ / ₈)	75 (3)	95 (3 ³ / ₄)	115 (4 ¹ / ₂)	125 (5)	140 (5 ¹ / ₂)
		mm	40	45	50 (2)	60 (2 ³ / ₈)	65 (2 ¹ / ₂)	75 (3)	80 (3 ¹ / ₈)
Min. edge distance	C _{min}	mm (in.)	(1 ⁵ / ₈)	45 (1 ³ / ₄)		dge distances to ee Section 4.1.9		ch)	For edge distances to 70 mm (2 ³ / ₄ -inch) see Section 4.1.9.
Min. member thickness	h _{min}	mm (in.)		+ 30 + 1 ¹ / ₄)			$h_{ef} + 2d_0^3$		
Critical edge distance - splitting (for uncracked concrete only)	C _{ac}	-			See S	Section 4.1.10 of	f this report.		
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-				0.65			
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-				0.70			

^{318-14 17.3.3} or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.

³A4-70 Stainless steel (M8-M24); A4-50 Stainless steel (M27-M30)

Additional setting information is described in Figure 5, installation instructions.

Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. 3 d_0 = hole diameter.

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

	DECICAL INFORMATION	Complete L	Haita		N	Nominal F	Rod Diam	eter (inch	1)	
	DESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30
Minimum embedme	nt	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)
Maximum embedme	ent	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	17.7 (2,571)	16.9 (2,453)	15.6 (2,256)	14.6 (2,112)	13.9 (2,020)	13.7 (1,985)	13.7 (1,980)
range A ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	7.2 (1,039)	7.2 (1,043)	7.7 (1,110)	8.4 (1,217)	8.3 (1,209)	8.3 (1,204)	7.9 (1,149)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	15.4 (2,237)	14.7 (2,134)	13.5 (1,963)	12.7 (1,837)	12.1 (1,757)	11.9 (1,727)	11.9 (1,723)
range B ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	6.2 (904)	6.3 (908)	6.7 (966)	7.3 (1,058)	7.2 (1,052)	7.2 (1,047)	6.9 (999)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	11.1 (1,612)	10.6 (1,538)	9.8 (1,415)	9.1 (1,324)	8.7 (1,266)	8.6 (1,245)	8.6 (1,241)
range C ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	4.5 (651)	4.5 (654)	4.8 (696)	5.3 (763)	5.2 (758)	5.2 (755)	5.0 (720)
Dry	Anchor category	_	-				1			
concrete	Strength reduction factor	ϕ_{d}	-				0.65			
Water-saturated	Anchor category	_	-				2			
concrete	Strength reduction factor	$\phi_{ m ws}$	1			•	0.55	•		•
Water-filled holes	Anchor category	_					3			
vvater-illieu rioles	Strength reduction factor	ϕ_{wf}					0.45			
Reduction factor for	seismic tension	∝ _{N,seis}	-				0.95			

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f_c/2500)^{0.10}$. See Section 4.1.4 of this report.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short

TABLE 13—STEEL DESIGN INFORMATION FOR COMMON METRIC EU AND METRIC CANADIAN REINFORCING BARS 1

DEOLG	NI INFORMATION	0				N	ominal Ba	r Size (EU)			
DESIG	INFORMATION	Symbol	Units	ø 10	ø 12	ø 14	ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Reinfo	rcing bar O.D.	d	mm (in.)	10 (0.315)	12 (0.394)	14 (0.472)	16 (0.551)	20 (0.630)	25 (0.787)	28 (1.102)	32 (1.260)
Reinfo	rcing bar effective cross-sectional area	A_{se}	mm² (in.²)	78.5 (0.112)	113.1 (0.175)	153.9 (0.239)	201.1 (0.312)	314.2 (0.487)	490.9 (0.761)	615.8 (0.954)	804.2 (1.247)
200	Nominal strength as governed by steel	N _{sa}	kN (lb)	43.2 (9,739)	62.2 (14,024)	84.7 (19,088)	110.6 (24,932)	172.8 (38,956)	270.0 (60,868)	338.7 (76,353)	442.3 (99,727)
BSt	strength (for a single anchor)	V_{sa}	kN (lb)	25.9 (5,843)	37.3 (8,414)	50.8 (11,453)	66.4 (14,959)	103.7 (23,373)	162.0 (36,521)	203.2 (45,812)	265.4 (59,836)
DIN 488	Reduction factor for seismic shear	$\alpha_{V,seis}$	-				0.6	5			
Z	Strength reduction factor for tension ²	φ	-				0.6	5			
_	Strength reduction factor for shear ²	φ	-				0.6	0			
DESIG	SN INFORMATION	Symbol	Units			N	ominal Ba	Size (CA)			
DESIC	IN INFORMATION	Syllibol	Uiilla	10 N	ı	15 M	2	0 M	25 M		30 M
Reinfo	rcing bar O.D.	d	mm (in.)	11.3 (0.44		16.0 (0.630)		19.5 .768)	25.2 (0.992)		29.9 1.177)
Reinfo	rcing bar effective cross-sectional area	A _{se}	mm² (in.²)	100.3 (0.15		201.1 (0.312)		98.6 .463)	498.8 (0.773)		702.2 1.088)
.18	Nominal strength as governed by steel	N _{sa}	kN (lb)	54.0 (12,17		108.5 (24.410)		61.5 6,255)	270.0 (60,550)		380.0 5,240)
CAN/CSA-G30.18 Grade 400	strength (for a single anchor)	V _{sa}	kN (lb)	32.5 (7,30		65.0 (14,645)		97.0 1,755)	161.5 (36,330)		227.5 1.145)
CS/	Reduction factor for seismic shear	$\alpha_{V,seis}$	-		•		0.6	5		•	
ΑŠ	Strength reduction factor for tension ²	φ	-				0.6	5			
0	Strength reduction factor for shear ²	φ	-				0.6	0			

¹Values provided for common bar material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23 percent for temperature range C.

²The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.

TABLE 14—CONCRETE BREAKOUT DESIGN INFORMATION COMMON EU METRIC AND CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

DESIGN										Nor	ninal Bar	Size (EL	J and CA)		
INFORMATION	Symbol	Units	Ø 10	10 M	Ø 12	ø 14	15 M	ø 16	Ø 20	20 M	Ø 25	25 M	Ø 28	30 M	Ø 32
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)								7 7)					
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)								0 (24)					
Min. anchor spacing	S _{min}	mm (in.)	50 (2)	55 (2 ¹ / ₈)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	80 (3 ¹ / ₈)	75 (3)	95 (3 ³ / ₄)	100 (3 ⁷ / ₈)	120 (4 ⁵ / ₈)	125 (5.0)	130 (5 ¹ / ₄)		50 ⁷ / ₈)
		mm	40	40	45	50 (2)	5 (2	0 2)	60 (2 ³ / ₈)	60 (2 ³ / ₈)	70 (2 ³ / ₄)		75 3)		35 ¹ / ₈)
Min. edge spacing	C _{min}	(in.)	(1 ⁵ / ₈)	7 40 45 (1 ³ / ₈) (1 ³ / ₄) For edge distances to 45 mm (1 ³ / ₄ -inch) For edge distances to 45 mm (1 ³ / ₄ -inch) mm (1 ³ / ₄ -inch)					m (2 ³ / ₄ -ind	distances to 70 (2 ³ / ₄ -inch) ection 4.1.9					
Min. member thickness	h _{min}	in. (mm)		h _{ef} + 1 ¹ /. h _{ef} + 30						h _{ef} +	+ 2d ₀ ³		•		
Critical edge spacing – splitting (for uncracked concrete only)	C _{ac}	-						See S	ection 4.1	.10 of this	report.				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-				0.65									
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-			0.70										

TABLE 15—BOND STRENGTH DESIGN INFORMATION COMMON EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT

DESIGN INFORM	ATION					No	minal Ba	ar Size (E	EU)		
DESIGN INFORMA	ATION	Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Minimum embedm	ent	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	75 (3.0)	80 (3.1)	90 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)
Maximum embedn	nent	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	280 (11.0)	320 (12.6)	400 (15.7)	500 (19.7)	560 (22.0)	640 (25.2)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	15.1 (2,183)	14.6 (2,121)	14.0 (2,025)	14.0 (2,025)	13.5 (1,954)	13.0 (1,886)	12.8 (1,852)	12.5 (1,813)
range A ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	7.5 (1,082)	7.3 (1,060)	7.9 (1,144)	8.2 (1,193)	8.2 (1,188)	8.0 (1,158)	7.9 (1,144)	8.0 (1,163)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	13.1 (1,899)	12.7 (1,845)	12.1 (1,762)	12.1 (1,762)	11.7 (1,700)	11.3 (1,640)	11.1 (1,611)	10.9 (1,577)
range B ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	6.5 (942)	6.4 (922)	6.9 (996)	7.2 (1,038)	7.1 (1,034)	6.9 (1,008)	6.9 (995)	7.0 (1,012)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	9.4 (1,369)	9.2 (1,329)	8.8 (1,270)	8.8 (1,270)	8.4 (1,225)	8.2 (1,182)	8.0 (1,161)	7.8 (1,136)
range C ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	4.7 (678)	4.6 (665)	4.9 (718)	5.2 (748)	5.1 (745)	5.0 (726)	4.9 (717)	5.0 (729)
Dry	Anchor category	-	-				1				
concrete	Strength reduction factor	ϕ_d	-				0.6	35			
Water-saturated	Anchor category	-	-				2	!			
concrete	Strength reduction factor	$\phi_{ m ws}$	-				0.5	55			
Water-filled holes		-	-	3							
vvater-filled notes	Strength reduction factor	ø wf	-				0.4	15			
Reduction factor for	or seismic tension	∝ _{N,seis}	-	0.9	95			1.0	0		

¹Additional setting information is described in Figure 5, installation instructions.
²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. 3d_0 = hole diameter.

Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength f_c between 2,500 psi and 8,000 psi, tabulated characteristic bond strength may not be increased. See Section 4.1.4 of this report.

Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 320°F (160°C). maximum long term temperature = 212°F (100°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal

cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

TABLE 16—BOND STRENGTH DESIGN INFORMATION COMMON CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DESIGN INFORM	ATION	Cumph -	Units		No	minal Bar Siz	e (CA)	
DESIGN INFORM	ATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
Minimum embedm	ent	h _{ef,min}	mm (in.)	70 (2.8)	80 (3.1)	90 (3.5)	100 (3.9)	120 (4.7)
Maximum embedn	nent	h _{ef,max}	mm (in.)	225 (8.9)	320 (12.6)	390 (15.4)	505 (19.8)	600 (23.5)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	14.5 (2,110)	13.2 (1,916)	12.5 (1,814)	11.7 (1,690)	11.1 (1,612)
range A ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	7.2 (1,041)	7.5 (1,087)	7.2 (1,045)	6.7 (965)	6.3 (915)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	12.7 (1,836)	11.5 (1,667)	10.9 (1,578)	10.1 (1,470)	9.7 (1,402)
range B ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	6.2 (906)	6.5 (946)	6.3 (909)	5.8 (840)	5.5 (796)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm² (psi)	9.1 (1,633)	8.3 (1,201)	7.8 (1,137)	7.3 (1,059)	7.0 (1,010)
range C ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm² (psi)	5.6 (806)	5.8 (841)	5.6 (809)	5.2 (747)	4.9 (708)
Dry	Anchor category	-	-			1		
concrete	Strength reduction factor	ϕ_{d}	-			0.65		
Water-saturated	Anchor category	_	-			2		
concrete	Strength reduction factor	φws	-			0.55		
Water-filled holes	Anchor category	-	1			3		
vvater-illied flotes	Strength reduction factor	ϕ_{wf}	-	_		0.45		
Reduction factor for	or seismic tension	∝ _{N,seis}	-	0	.95	_	1.00	

Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength f_c between 2,500 psi and 8,000 psi, tabulated characteristic bond strength may not be increased. See Section 4.1.4 of this report.

The DEWALT drilling systems shown below collect and remove dust with a HEPA dust extractor during the hole drilling operation in dry base materials using hammer-drills (see step 1 of the manufacturer's published installation instructions).

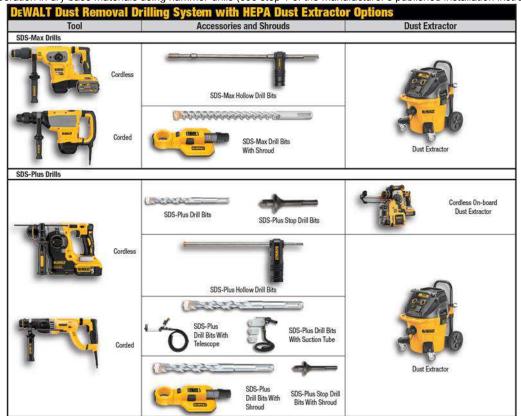


FIGURE 2—EXAMPLES DEWALT DUST REMOVAL DRILLING SYSTEMS WITH HEPA DUST EXTRACTORS FOR ILLUSTRATION

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and

seismic, bond strengths may be increased by 23 percent for temperature range C.

f'_c = 8,000 psi concrete^{4,6}

TABLE 17—DEVELOPMENT LENGTHS FOR COMMON REINFORCING BAR CONNECTIONS PROVIDED FOR ILLUSTRATION^{1,2,3,7}

			FRACTIO	NAL REIN	FORCING	BARS					
		REFERENCE					MINAL REB	AR SIZE	US)		
DESIGN INFORMATION	SYMBOL	STANDARD	UNITS	#3	#4	#5	#6	#7	#8	#9	#10
Nominal rebar diameter	d _b	ASTM A615/A706,	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.128 (28.6)	1.270 (32.3)
Nominal rebar area	Ab	Grade 60 $(f_y = 60 \text{ ksi})$	in ² (mm ²)	0.11 (71)	0.20 (127)	0.31 (198)	0.44 (285)	0.60 (388)	0.79 (507)	1.00 (645)	1.27 (817)
Development length in $f_c = 2,500 \text{ psi}$ concrete ^{4,5}			in. (mm)	12.0 (305)	14.4 (366)	18.0 (457)	21.6 (549)	31.5 (800)	36.0 (914)	40.6 (1031)	45.7 (1161)
Development length in $f_c = 3,000 \text{ psi}$ concrete ^{4,5}			in. (mm)	12.0 (305)	13.1 (334)	16.4 (417)	19.7 (501)	28.8 (730)	32.9 (835)	37.1 (942)	41.7 (1060)
Development length in f_c = 4,000 psi concrete ^{4,5}	I _d	ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3 as applicable	in. (mm)	12.0 (305)	12.0 (305)	14.2 (361)	17.1 (434)	24.9 (633)	28.5 (723)	32.1 (815)	36.2 (920)
Development length in $f_c = 6,000 \text{ psi concrete}^{4,5}$		ac applicable	in. (mm)	12.0 (305)	12.0 (305)	12.0 (305)	13.9 (354)	20.3 (516)	23.2 (590)	26.2 (666)	29.5 (750)
Development length in f'_c = 8,000 psi concrete ^{4,5}			in. (mm)	12.0 (305)	12.0 (305)	12.0 (305)	12.1 (307)	17.6 (443)	20.1 (511)	22.7 (577)	25.6 (649)
		·	METR	IC REINFO	RCING BA	RS	<u> </u>			<u> </u>	<u> </u>
	1	REFERENCE					MINAL REE	BAR SIZE	(EU)		
DESIGN INFORMATION	SYMBOL	STANDARD	UNITS	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Nominal rebar diameter	d _b	DIN 488, BSt 500 (BS 4449: 2005)	mm (in)	10 (0.394)	12 (0.472)	14.0 (0.551)	16 (0.630)	20 (0.787)	25 (0.984)	28 (1.102)	32 (1.260)
Nominal rebar area	Ab	$(f_y = 72.5 \text{ ksi})$	mm² (in²)	78.5 (0.12)	113 (0.18)	154 (0.23)	201 (0.31)	314 (0.49)	491 (0.76)	616 (0.96)	804 (1.25)
Development length in f'_c = 2,500 psi concrete ^{4,6}			mm (in)	348 (13.7)	417 (16.4)	487 (19.2)	556 (21.9)	870 (34.2)	1087 (42.8)	1217 (47.9)	1392 (54.8)
Development length in f'_c = 3,000 psi concrete ^{4,6}		101040 44 05 400	mm (in)	318 (12.5)	381 (15.0)	445 (17.5)	508 (20.0)	794 (31.3)	992 (39.1)	1112 (43.8)	1271 (50.0)
Development length in f'_c = 4,000 psi concrete ^{4,6}	l_d	ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3 as applicable	mm (in)	305 (12.0)	330 (13.0)	385 (15.2)	439 (17.3)	688 (27.1)	859 (33.8)	963 (37.9)	1100 (43.3)
Development length in f'_c = 6,000 psi concrete ^{4,6}			mm (in)	305 (12.0)	305 (12.0)	314 (12.4)	359 (14.2)	562 (22.1)	702 (27.6)	786 (30.9)	899 (35.4)
Development length in f'_c = 8,000 psi concrete ^{4,6}			mm (in)	305 (12.0)	305 (12.0)	305 (12.0)	311 (12.3)	486 (29.1)	608 (23.9)	681 (26.8)	778 (30.6)
DESIGN INFORMATION	SYMBOL	REFERENCE	UNITS	<u> </u>			MINAL REE	AR SIZE (<u> </u>
		STANDARD		10M		15M	20M		25M		30M
Nominal rebar diameter	d _b	CAN/CSA G30.18, Grade 400	mm (in)	11.3 (0.445)	(0	16.0 0.630)	19.5 (0.768)		25.2 (0.992)		29.9 1.177)
Nominal rebar area	A _b	$(f_y = 58 \text{ ksi})$	mm² (in²)	100 (0.16)	(200 0.31)	300 (0.46)		500 (0.77)		700 (1.09)
Development length in $f'_c = 2,500 \text{ psi concrete}^{4,6}$			mm (in)	315 (12.4)	(445 17.5)	678 (26.7)		876 (34.5)		1041 (41.0)
Development length in $f'_c = 3,000 \text{ psi}$ concrete ^{4,6}		ACL 249 44 05 4 0 0	mm (in)	305 (12.0)	(407 16.0)	620 (24.4)		800 (31.5)	(950 (37.4)
Development length in $f'_c = 4,000$ psi concrete ^{4,6}	l_d	ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3 as applicable	mm (in)	305 (12.0)		353 13.9)	536 (21.1)		693 (27.3)	(823 (32.4)
Development length in $f'_c = 6,000$ psi concrete ^{4,6}			mm (in)	305 (12.0)		305 12.0)	438 (17.3)		566 (22.3)	(672 (26.4)
Development length in			mm	305		305	379		490		582

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa; for **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

(12.0)

(12.0)

(14.9)

(19.3)

(22.9)

(in)

¹Calculated development lengths in accordance with Section 4.2.2 of this report and ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3, as applicable, for reinforcing bars are valid for static, wind, and earthquake loads.

²Calculated development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable, and Section 4.2.4 of this report.

 $^{^{3}}$ For Class B splices, minimum length of lap for tension lap splices is $1.3l_{d}$ in accordance with ACI 318-14 25.5.2 and ACI 318-11 12.15.1, as applicable.

⁴For lightweight concrete, λ = 0.75; therefore multiply development lengths by 1.33 (increase development length by 33 percent), unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit alternate values of λ (e.g for sand-lightweight concrete, λ = 0.85; therefore multiply development lengths by 1.18). Refer to ACI 318-14 19.2.4 or ACI 318-11 8.6.1, as applicable.

 $[\]frac{5}{c_b + K_{tr}} = 2.5$, $\psi_t = 1.0$, $\psi_e = 1.0$, $\psi_s = 0.8$ for $d_b \le \#6, 1.0$ for $d_b \ge \#6$. Refer to ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4, as applicable.

 $[\]frac{6}{a_b}\left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5$, $\psi_t = 1.0$, $\psi_e = 1.0$, $\psi_s = 0.8$ for $d_b \le 19$ mm, 1.0 for $d_b > 19$ mm. Refer to ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4, as applicable.

⁷Calculations may be performed for other steel grades and concrete compressive strengths per ACI 318-14 Chapter 25 or ACI 318-11 Chapter 12, as applicable.

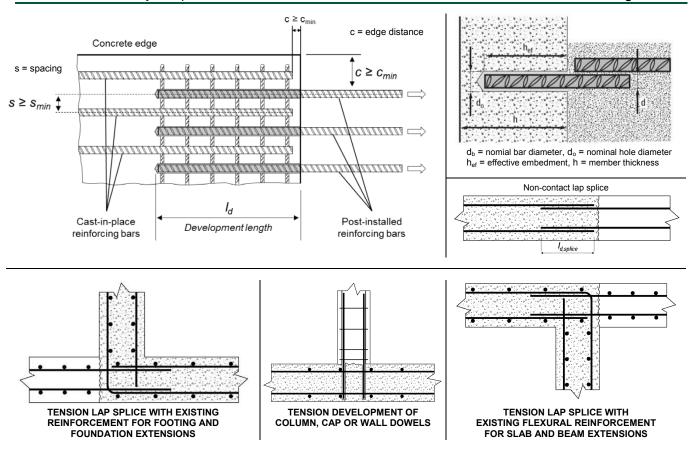


FIGURE 3—INSTALLATION DETAIL FOR POST-INSTALLED REINFORCING BAR CONNECTIONS (Top Pictures), EXAMPLES OF DEVELOPMENT LENGTH APPLICATION DETAILS FOR POST-INSTALLED REINFORCING BAR CONNECTIONS PROVIDED FOR ILLUSTRATION (Bottom Pictures)

TABLE 18—INSTALLATION PARAMETERS FOR COMMON POST-INSTALLED REINFORCING BAR CONNECTIONS3

				FRACT	ONAL REINFORC	ING BARS				
DADAMETED	CVMBOL	UNITS				NOMINAL RE	BAR SIZE (US)		
PARAMETER	SYMBOL	UNITS	#3	#4	#5	#6	#7	#8	#9	#10
Nominal hole diameter ¹	do	in.	1/2	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₈	1 ³ / ₈	1 ¹ / ₂
Effective embedment ²	h _{ef}	in.	2 ³ / ₈ to 22 ¹ / ₂	2 ³ / ₄ to 30	$3^{1}/_{8}$ to $37^{1}/_{2}$	3 ¹ / ₂ to 45	3 ¹ / ₂ to 52 ¹ / ₂	4 to 60	4 ¹ / ₂ to 67 ¹ / ₂	5 to 75
				MET	RIC REINFORCING	BARS				
DADAMETED	CVMDOL	LIMITO				NOMINAL RE	BAR SIZE (EU)		
PARAMETER	SYMBOL	UNITS	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Nominal hole diameter ¹	do	mm	14	16	18	20	25	32	35	40
Effective embedment ²	h _{ef}	mm	60 to 600	70 to 72	75 to 840	90 to 1200	95 to 1440	100 to 1500	112 to 1680	128 to 1920
PARAMETER	SYMBOL	UNITS				NOMINAL RE	BAR SIZE (CA)		
PARAMETER	STWIDUL	UNITS	10M		15M	20	М	25M		30M
Nominal hole diameter ¹	do	in.	⁹ / ₁₆		3/4	1		1 ¹ / ₄		1 ¹ / ₂
Effective embedment ²	h _{ef}	mm	70 to 68	0	80 to 960	90 to	1170	100 to 1510) ,	20 to 1795

For SI: 1 inch \equiv 25.4 mm,; for **pound-inch** units: 1 mm = 0.03937 inches.

³The DEWALT DustX+ extraction system can be used to automatically clean holes drilled in concrete with a hammer-drill; drilling in dry concrete is required.

FIGURE 4—AC200+ ADHESIVE ANCHOR SYSTEM INCLUDING TYPICAL STEEL ANCHOR ELEMENTS

¹For any case, it must be possible for the reinforcing bar (rebar) to be inserted into the cleaned drill hole without resistance.

²Consideration should be given regarding the commercial availability of carbide drill bits (including hollow drill bits) and diamond core drill bits, as applicable, with lengths necessary to achieve the effective embedment for post-installed reinforcing bar connections.

Preparing

AC200+ Instruction Card

Drilling

Follow steps #1 through #10 for recommended installation

Hole cleaning

Setting instructions for Adhesive Anchors and Post-installed Rebar Connections in solid base material Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a

2 1 Drilling in dry concrete is recommended when using hollow drill bits (vacuum must be on) H 22 (a) 63 Go to Step 3 for holes drilled with DustX+*** extraction system (no further hole Finally blow the hole clean again with compressed air (min. 6 bar / 90 psi) a minimum of two times, until return air stream is free of noticeable dust. If the back of the drilled hole is not reached an extension shall be used. When finished the hole the drilled hole is not reached an extension shall be used. When finished the hole Prior to inserting the anchor rod or rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is Starting from the bottom or back of the anchor hole, blow the hole clean with must be replaced with the proper brush diameter. If the back of the drilled hole is not reached a brush extension shall be used. Determine brush diameter (see Table 3) for the drilled hole. Brush the hole with the compressed air (min. 6 bar / 90 psi) a minimum of two times. If the back of the drilled hole is not reached an extension shall be used with the mixing nozzle. has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning straight and free of surface damage and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For the permitted range of the base material Review Safety Data Sheet (SDS) before use. Cartridge adhesive temperature must be between 41°F - 104°F (5°C - 40°C) when in use; except for installations in base Check adhesive expiration date on cartridge label. Do not use expired product brush should resist insertion into the drilled hole - if not the brush is too small and must be checked periodically during use (see Table 3a or 3b as applicable). The cleaning is required). Otherwise go to Step 2a for hole cleaning instructions. drilling and/or removal (see dust extraction equipment by DEWALT to minimize dust element (see Table III). Tolera meet ANSI Standard B212.15 carbide drill bit to the size and embedment required by the selected steel hardware element (see Table III). Tolerances of carbide drill bits including hollow drill bits must dispensing tool make sure the mixing element is inside the nozzle. Load the cartridge into the correct between 14°F and 22°F (-10°C and -6°C) are for downward installations only. Attach a supplied mixing nozzle to the cartridge. Do not modify the mixer in any way and temperature see Table 2; installations installations into concrete with a temperature adhesive temperature must be conditioned to 50°F (10°C) minimum. material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge should be clean and free of dust, debris, ice, grease, oil or other foreign material selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for drill hole depth > 6" (150mm). The wire brush diameter **lote:** In case of standing water in the drilled hole (flooded hole condition), all the wate Review and note the published working and cure times (see Table 2) prior to injection of the mixed adhesive into the cleaned anchor hole. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures adhesive through the mixing nozzle until the adhesive is a consistent gray color Adhesive must be properly mixed to achieve published properties. Prior to dispe adhesive into the drilled hole, separately dispense at least three full strokes of work interruptions exceeding aution: Wear suitable eye and skin protection. Avoid inhalation of dusts during Always use a new mixing nozzle with new cartridges of adhesive and also for ink interruptions exceeding the published gel (working) time of the adhesive. Review working

96 °F 50 °F 41 °F 32 °F 23 °F 14 °F Curing and fixture Installation Gel with piston plug (working) times and curing time: 68, ŧ 1 Ø Ø ÇO ö Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole bottom or back of the hole is not reached with the mixing nozzle only fills to avoid creating air pockets or voids. For embedment depths greater than 7-1/2' an extension tube supplied by DEWALT must be used with the mixing nozzle if the After full curing Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (see Table 2). applications between horizontal and overhead the anchor must be secured from moving/falling during the cure time (e.g. wedges). Minor adjustments to the anchor may be performed during the gel time but the anchor shall not be moved after Be sure that the anchor is fully seated at the bottom of the hole and extension tube for Piston plugs (see Table 3a or 3b) must be used with and attached to mixing After full curing of t tightened up to the installation of the anchor, remove excess adhesive. For overhead applications and adhesive has flowed from the hole and all around the top of the anchor. The anchor should be free of dirt, grease, oil or other foreign material. Push clean Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the Do not disturb, torque or load the anchor until it is fully cured placement and during cure threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe certification. Contact DEWALT for details prior to use. Attention! Do not install anchors overhead or upwardly inclined without installation hardware supplied by DEWALT and also receiving proper training and/or drilled hole by the adhesive pressure. the gel (working) time Take care not to e In the case that flexible tubing is used (Cat. #PFC1640600), the mixing nozzle be trimmed at the perforation on the front port before attachment of the tubing (upwardly inclined) all installations with overhead installations and installations between horizontal and overhead (M16 to M30) diameter and rebar sizes #5 to #10 (Ø14 to Ø32)

emperature of base material	f base ma	terial	Gel (working) time	Full curing time
(-10 °C) to	22 °F	(0° 8-)	60 mins	24 hrs
(-5 °C) to	31 °F	(-1 °C)	50 mins	5 hrs
(0 °C) to	40 °F	(+4 °C)	25 mins	3.5 hrs
(+5 °C) to	49 °F	(+9 °C)	15 mins	2 hrs
(+10 °C) to	58 °F	(+14 °C)	10 mins	1 hrs
(+15 °C) to	67 °F	(+19 °C)	6 mins	40 mins
(+20 °C) to	85 °F	(+29 °C)	3 mins	30 mins
(+30 °C) to	104 °F	(+40 °C)	2 mins	30 mins

FIGUE ANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS (MPII)

and that

drill hole depth do >10" (250mm) with anchor rod 5/8" to 1-1/4

nozzle

43

Rod

g

Drill bit - Ø

d.

Brush

B

Cat #

Piston plug (size)

Standard

Premium

Rod

Rebar

da, Drill bit - Ø EU | CA

d.

Brush - Ø [inch] 0.53 0.61

Cat.#

Piston plug (size)

Cat.#

[mm]

[mm] [mm] [inch]

B/16

PFC1671150

Piston plugs not required

36.

Standard hole cleaning / piston plug info (EU metric and CA metric sizes)¹

anamana

the ball

[inch] Rebar

#3

1/2

PFC1671050 PFC1671100

3a.

Standard hole cleaning / piston plug info (fractional sizes)

FIGURE 5—MANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS (MPII) (Continued)

300 32

640

180 128

88

ICC-ES Evaluation Report

ESR-4027 LABC and LARC Supplement

Reissued January 2018 Revised December 2018 This report is subject to renewal January 2020.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

DEWALT

EVALUATION SUBJECT:

AC200+™ ADHESIVE ANCHOR SYSTEM AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE (DEWALT)

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections in cracked and uncracked concrete, described in ICC-ES master evaluation report <u>ESR-4027</u>, have also been evaluated for compliance with the codes noted below as adopted by Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2017 City of Los Angeles Building Code (LABC)
- 2017 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections in cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the master evaluation report <u>ESR-4027</u>, comply with LABC Chapter 19, and LARC, and are subjected to the conditions of use described in this report.

3.0 CONDITIONS OF USE

The AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections described in this evaluation report must comply with all of the following conditions:

- All applicable sections in the master evaluation report <u>ESR-4027</u>.
- The design, installation, conditions of use and labeling of the AC200+ Adhesive Anchor System and Post-Installed Reinforcing Bar Connections are in accordance with the 2015 International Building Code[®] (2015 IBC) provisions noted in the master evaluation report ESR-4027.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the master evaluation report and tables are for the connection of the
 anchors or reinforcing bars to the concrete. The connection between the anchors or the reinforcing bars and the
 connected members shall be checked for capacity (which may govern).

This supplement expires concurrently with the master report, reissued January 2018 and revised December 2018.

ICC-ES Evaluation Report

ESR-4027 FBC Supplement

Reissued January 2018 Revised December 2018 This report is subject to renewal January 2020.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

DEWALT

EVALUATION SUBJECT:

AC200+[™]ADHESIVE ANCHOR SYSTEM AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE (DEWALT)

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the AC200+ adhesive anchors, recognized in ICC-ES master evaluation report ESR-4027, have also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2017 Florida Building Code—Building
- 2017 Florida Building Code—Residential

2.0 CONCLUSIONS

The AC200+ adhesive anchors, described in Sections 2.0 through 7.0 of the master evaluation report ESR-4027, comply with the Florida Building Code—Building and the Florida Building Code—Residential, provided the design and installation are in accordance with the 2015 International Building Code® provisions noted in the master report.

Use of the AC200+ adhesive anchors with stainless steel threaded rod materials and reinforcing bars has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the Florida Building Code—Building and the Florida Building Code—Residential.

Use of the AC200+ adhesive anchors with carbon steel standard steel threaded rod materials for compliance with the Highvelocity Hurricane Zone provisions of the Florida Building Code—Building and the Florida Building Code—Residential has not been evaluated and is outside the scope of the supplemental report.

For products falling under Florida Rule 9N-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the master report, reissued January 2018 and revised December 2018.

