Industrial machine and equipment mounts

• Barriers, guards, fencing and railing

Tension zone / cracked concrete

Seismic attachments (SDC A – F)

Retrofit anchors for cast-in anchor bolts

Utility system bracing, hangers and supports

Critical Connection Undercut Anchoring System

50

GENERAL INFORMATION

CCU+[™]

Critical Connection Undercut Anchoring System

PRODUCT DESCRIPTION

The DEWALT Critical Connection Undercut (CCU+[™]) anchor is a post-installed structural anchor designed for static, dynamic and seismic loading in the tension zone of both cracked and uncracked concrete. The high capacity CCU+[™] anchor can be loaded immediately following installation and is available in zinc plated ASTM A36 (F1554 Grade 36) mild carbon steel and ASTM A193 Grade B7 high strength carbon steel. For exterior applications or where high corrosion resistance is required, the CCU+[™] is also available in ASTM A193 Grade 8BM, Class 2 high strength 316 stainless steel.

CCU+ anchors are installed into a fixed depth hole with a cone-shaped cavity at the bottom which is created in a secondary drilling operation using a specialty undercut drill bit supplied by DEWALT. The result is bottom-bearing post-installed anchor which keys into the base material with minimal expansive forces allowing for close edge distance and anchor spacing, similar to a cast-in-place headed stud. The heavy-wall expansion sleeve contributes to load transfer and improved shear capacities particularly for the thrubolt version.

GENERAL APPLICATIONS AND USES

- Structural connections (e.g. beam, column)
- Safety related fastening and assemblies
- Bridge, tunnel and port structure attachments
- Water and wastewater treatment facility units
- Vessel, tank and containment wall anchorage
- Power generation plant / hydro dam anchors

FEATURE AND BENEFITS

- + Load transfers to concrete through bearing not friction (similar to cast-in headed bolts)
- + Provides positive mechanical interlock into base material
- + Consistent predictable behavior and exceptional load capacities
- + Robust design minimizes anchor displacement under load
- + Anchor bearing area is more than two-and-a-half times the net tensile area of the anchor rod
- + Anchor rods can be designed for stretch length and ductile steel behavior for seismic loading
- + Close edge distance, anchor spacing, and slab thickness due to low expansive forces
- + Thrubolt version provides significant increase in shear capacities and variable fixture thickness
- + Length ID code and material ID marking stamped on head of each anchor
- + Undercut cavity is created in seconds with durable undercutting tool
- + DEWALT dust removal drilling system (with HEPA dust extractor) can be used for an OSHA 1926.1153 Table 1 compliant solution
- + CCU+ undercut anchors made in USA at time of publication; product certifications available by request (anchors@DEWALT.com)

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-4810 and ELC-4810 for cracked and uncracked concrete
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (-19 and -14) Chapter 17, CSA A23.3-19 Annex D or ACI 318-11 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor category 1 for all sizes)
- City of Los Angeles, LABC Supplement (within ESR-4810)
- Florida Building Code, FBC Supplement including HVHZ (within ESR-4810)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 – Concrete Anchors and 05 05 19 – Post-Installed Concrete Anchors. Undercut anchors shall be CCU+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	1
Material Specifications	2
Anchor Specifications	2
Installation Specifications	3
Installation Instructions	5
Limit States Design Information .	6
Design Strength Tables (SD)	7
Performance Data (ASD)	9
Ordering Information	.11

PRESET (PS)

THREAD VERSION

UNC threaded stud (anchor rod)

ANCHOR SIZE RANGE (TYP.)

• 3/8" through 3/4" diameters (anchor rod diameter)

ANCHOR MATERIAL TYPE

- Zinc Plated Carbon Steel
- 316 Stainless Steel

ANCHOR VERSIONS

- Preset (PS)
- Thrubolt (TB)

SUITABLE BASE MATERIALS

- · Normal-weight concrete
- Lightweight concrete

CODE LISTED **CODE LISTED** -ES ESR-4810 ICC-ES ELC-4810 CONCRETE CONCRETE

TECHNICAL GUIDE – CANADIAN SUPPLEMENT – MECHANICAL ANCHORS ©2024 DEWALT – REV. D

1-800-4 **DEWALT**

MATERIAL SPECIFICATIONS

	Anchor Design	ation / Material
Anchor Component	Mild Carbon Steel High Strength Carbon Steel	High Strength Stainless Steel
Anchor Rod (Threaded Rod)	ASTM A36 (F1554, Grade 36) ASTM A193, Grade B7	ASTM A193, Grade B8M, Class 2 (316 SS)
Expansion Sleeve	Carbon Steel	AISI 316 SS
Expansion Cone	Carbon Steel	AISI 316 SS
Hex Nut	3/8" : SAE J955, Grade 8 1/2", 5/8" and 3/4" : ASTM A563, Grade C	3/8" : ASTM F594, 316 SS, Alloy Group 2 1/2", 5/8" and 3/4" : ASTM A194, Grade 8M (S1)
Washer	ASTM F844; Meets ANSI/ASME B18.22.1, Type A plain (wide)	AISI 316 SS; meets ANSI/ASME B18.22.1, Type A plain (wide)
Plating (carbon steel components)	Zinc plating, ASTM B633, SC1 (Fe/Zn 5); min. plating requirement for Mild Service Condition	Not applicable

ANCHOR SPECIFICATIONS

CCU+ Undercut Anchor Nominal Dimensional Characteristics^{1,2,3}

Anchor	Anchor Rod		Rod	Anchor	Expansio	on Sleeve	Expander	Max. Fixture
Description, Nominal Size and Length (in.)	Anchor Kod Designation (ASTM)	Anchor Version	Diameter, drod (in.)	Length, Ib (in.)	Length, Is (in.)	Diameter d₅ (in.)	Cone Dia., d₀ (in.)	Thickness, t _{max} (in.)
	ASTM A36 or	Preset (PS)	3/8	6	4	11/16	11/16	7/8
3/8 x 6	A193, Grade B7	Thrubolt (TB)	5/0	0	4-7/8	11/10	11/10	110
5/0 × 0	A193. Grade B8M (316 SS)	Preset (PS)	- 3/8	6	4	11/16	11/16	7/8
	A195, Glade Dolw (510 55)	Thrubolt (TB)	5/0	0	4-7/8	11/10	11/10	110
	ASTM A36 or	Preset (PS)	1/2	7-1/2	5	13/16	12/16	1-1/4
1/2 x 7-1/2	A193, Grade B7	Thrubolt (TB)	1/2	1=1/2	6-1/4	13/10	13/10	1-1/4
1/2 X / - 1/2	A193, Grade B8M (316 SS)	Preset (PS)	1/2	7-1/2	5	13/16	12/16	1-1/4
	A195, GIAUE DOIVI (510 55)	Thrubolt (TB)	1/2	1-1/2	6-1/4	13/10	13/10	1-1/4
	ASTM A36 or	Preset (PS)	1/2	8-1/4	5	13/16	12/16	2
1/2 x 8-1/4	A193, Grade B7	Thrubolt (TB)	1/2	0-1/4	7	13/10	13/10	۷
1/2 X 0-1/4	A193. Grade B8M (316 SS)	Preset (PS)	1/2	8-1/4	5	13/16	12/16	2
	A195, GIAUE DOIVI (510 55)	Thrubolt (TB)	1/2	0-1/4	7	13/10	13/10	2
	ASTM A36 or	Preset (PS)	- 5/8	10-3/4	7-1/2	-	-	1-5/8
5/8 x 10-3/4	A193, Grade B7	Thrubolt (TB)	5/6	10-3/4	9-1/8	1		1-0/6
5/6 X 10-3/4	A193, Grade B8M (316 SS)	Preset (PS)	- 5/8	10-3/4	7-1/2	1	1	1-5/8
	A193, GIAUE DOIVI (310 33)	Thrubolt (TB)	5/6	10-3/4	9-1/8			1-0/6
	ASTM A36 or	Preset (PS)	- 5/8	11-1/2	7-1/2	1	Cone Dia., dc	2-3/8
5/8 x 11-1/2	A193, Grade B7	Thrubolt (TB)	5/6	11-1/2	9-7/8			2-3/0
5/8 X 11-1/2	A193, Grade B8M (316 SS)	Preset (PS)	- 5/8	11-1/2	7-1/2	1	1	2-3/8
	A193, GIAUE DOIVI (310 33)	Thrubolt (TB)	- 5/6	11-1/2	9-7/8		1 1 1	2-3/0
	ASTM A36 or	Preset (PS)	- 3/4	14	10	1-1/4	4 4 / 4	2
3/4 x 14	A193, Grade B7	Thrubolt (TB)	- 3/4	14	12	1-1/4	1-1/4	2
3/4 X 14	A100, Grada DOM (010,00)	Preset (PS)	- 3/4	14	10	1-1/4	4 4 / 4	
	A193, Grade B8M (316 SS)	Thrubolt (TB)	3/4	14	12	1-1/4	1-1/4	2
	ASTM A36 or	Preset (PS)	- 3/4	16	10	1 1/4	1 1/4	4
3/4 x 16	A193, Grade B7	Thrubolt (TB)	3/4	16	14	1-1/4	1-1/4	4
3/4 X 10	A102 Crada DOM (216 CO)	Preset (PS)	- 3/4	16	10	1-1/4	1 1/4	4
	A193, Grade B8M (316 SS)	Thrubolt (TB)	3/4	16	14	1 1-1/4	1-1/4	4

1. Preset anchors are designed so the top of the expansion sleeve is approximately flush with the base material after setting. Thrubolt anchors are designed so the expansion sleeve can be set through and can engage the fixture. See CCU+ undercut anchor detail and installation specifications.

2. Anchor rod (threaded rod) conforming to ASTM F1554, Grade 105 is strength equivalent to the tabulated ASTM A193, Grade B7 designation.

 The listed anchor lengths are based on the anchor sizes commercially available at the time of publication; custom lengths can be produced by request. Custom length anchors not long enough to meet the minimum embedment requirements are outside the scope of ICC-ES ESR-4810 and ELC-4810.

CCU+ Undercut Anchor Assembly

A36 = A36 anchor rod B7 = A193 Grade B7 anchor rod SS2 = A193 Gr. B8M (316 SS) anchor rod

www.**DeWALT.**com

2

CHANICAL ANCHORS

Π

Critical Connection Undercut Anchoring System

Anchor Length Code Identification System

	marking on rod head	A	В	C	D	E	F	G	H	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	w	x
Anchor	From	1-1/2	2	2-1/2	3	3-1/2	4	4-1/2	5	5-1/2	6	6-1/2	7	7-1/2	8	8-1/2	9	9-1/2	10	11	12	13	14	15	16
Length. Ib (inches)	Up to but not including	2	2-1/2	3	3-1/2	4	4-1/2	5	5-1/2	6	6-1/2	7	7-1/2	8	8-1/2	9	9-1/2	10	11	12	13	14	15	16	17

INSTALLATION SPECIFICATIONS

CCU+ Undercut Anchor Detail

CCU+ Undercut Anchor Installation Specifications and Supplemental Information

Anchor Prop	erty/	Notation	Units				N	ominal A	nchor Size	e / Rod Di	ameter, d	rod			
Setting Inform	ation	Notation	Units		3/8 inch			1/2 inch	I		5/8 inch			3/4 inch	
Anchor Rod Designati	on	ASTM	-	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)
Outside anchor diame expansion sleeve dian		da/ds	in. (mm)		0.6875 (17.5)	•		0.8125 (20.6)	•		1.000 (25.4)			1.25 (31.8)	
Nominal drill bit diame	eter (ANSI)	d _{bit}	in.		11/16			13/16			1			1-1/4	
Nominal embedment	depth ¹	h _{nom}	in. (mm)		4-1/4 (108)			5-3/8 (137)			8 (203)			10-5/8 (270)	
Effective embedment		h _{ef}	in. (mm)		4 (102)			5 (127)			7-1/2 (191)			10 (254)	
Minimum hole depth, (see note 2 for thrubo	preset version It version)	h₀	in. (mm)		4-1/4 (108)			5-3/8 (137)			8 (203)			10-5/8 (270)	
Min. concrete member preset version (see note 3 for thrubo	· · · · · · · · · · · · · · · · · · ·	h _{min}	in. (mm)		6 (152)			7 (178)			9-1/2 (241)			12 (305)	
Minimum edge distan	се	Cmin	in. (mm)		2-1/2 (64)			3 (76)			4-1/2 (114)			6 (152)	
Minimum spacing dis	tance	Smin	in. (mm)		3 (76)			3-3/4 (95)			5-5/8 (143)			7-1/2 (191)	
Minimum diameter of clearance hole in fixture	Preset (PS) Version Thrubolt (TB) Version	Сh	in. (mm)		7/16 (11.1) 3/4 (19.1)			9/16 (14.3) 7/8 (22.2)			11/16 (17.5) 1-1/8 (28.6)			13/16 (20.6) 1-3/8 (34.9)	
Maximum thickness o		tmax	in.		(1011)			nominal	dimensior endent on		teristics t		I	(0 110)	
Installation torque		Tinst	ftlbf. (N-m)	11 (15)		7 i0)	29 (40)	7	70 95)	70 (95)	1	18 50)	118 (160)	22	
Torque wrench / sock	et size	-	in.		9/16	,		7/8			1-1/16			1-1/4	,
Nut height		-	in.		21/64			31/64			39/64			47/64	
Washer O.D.		-	in.		1			1-3/8			1-3/4			2	
Effective tensile stress (anchor rod)	s area	Ase	in.² (mm²)		0.078 (50)			0.142 (91)			0.226 (146)			0.334 (215)	
Minimum specified ult strength ⁴	timate	futa	psi (N/mm²)	58,000 (400)	125,000 (860)	120,000 (827)	58,000 (400)	125,000 (860)	110,000 (758)	58,000 (400)	125,000 (860)	110,000 (758)	58,000 (400)	125,000 (860)	110,000 (758)
Minimum specified yie	eld strength	f _{ya}	psi (N/mm²)	36,000 (248)	105,000 (723)	95,000 (655)	36,000 (248)	105,000 (723)	95,000 (655)	36,000 (248)	105,000 (723)	95,000 (655)	36,000 (248)	105,000 (723)	95,000 (655)
Strength length of the	anchor rod⁵	-	in.	hnom	- 11/16 ·	+ t _{fix}	hnom	- 13/16	+ trix	h	nom - 1 + '	fix	hnon	n - 1-1/4 -	⊢ t _{fix}
Mean axial stiffness ⁶	Uncracked concrete	$eta_{ ext{uncr}}$	lbf/in.		595,000			1,705,00	0		356,000			446,000	
IVIEAN AXIAI SUIMESS"	cracked concrete	$eta_{ m cr}$	lbf/in.		398,000			744,000			445,000			354,000	

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor and equal to the hole depth.

For thrubolt applications the actual hole depth, h_{0.act} is dependent on the actual fixture thickness, t_{mx}. Actual hole depth for thrubolts is determined by taking the minimum hole depth plus the
maximum thickness of fixture for the selected anchor less the actual fixture thickness being fastened to the base material (h_{0.act} = h₀ + t_{max} - t_m).

3. For thrubolt applications the minimum concrete member thickness, hmin.act is dependent on the actual fixture thickness, tm. Minimum concrete member thickness for thrubolts is determined by taking the minimum concrete member thickness plus the maximum thickness of fixture for the selected anchor less the actual fixture thickness being fastened to the base material (hmin.act = hmin + tmax - tmx).

4. The anchor rod for the 3/8-inch stainless steel anchors is manufactured with a minimum specified ultimate strength of 120 ksi (827 N/mm²).

5. For CCU+ undercut anchors, the anchor rod, d_{rod} replaces the outside anchor diameter, d_a (i.e. expansion sleeve diameter, d_a) for determination of stretch length and stretch length ratio. Stretch lengths of the anchor rod (threaded rod) in anchor assemblies for embedments listed are greater than eight anchor rod diameters, 8d_{rod} which meets the prescriptive requirements as given in ACI 318-19 17.10.5.3(a), ACI 318-14 17.2.3.4.3(a) and ACI 318-11 D.3.3.4.3(a) and CSA A23.3-19, and CSA A23.3-19.

6. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

ANICAL ANCHORS

Critical Connection Undercut Anchoring System

Σ

50

CCU+ Undercut Anchor Installation Accessories and Tools^{1,2}

Nominal	Nominal	Anchor		Primary Bit		Under	cut Bit	Rotary	Setting	Sleeves
Anchor Size	Hole Diameter	Version	HSB	HB	Conventional	HUCB	UCB	Hammer Drill	Powered	Manual
3/8"	11/16"	Preset (PS)	DFX11380 (SDS-Plus)	DWA54116 (SDS-Plus)	DW5808 4-Cutter	DFX21380 (SDS-Plus)	DFX21381 (SDS-Plus)	DCH416 or D25416	DFX313825 (SDS-Plus)	DFX313805
		Thrubolt (TB)	-	(SDS=F108)	(SDS-Max)	(SDS=F105)	(SDS=F105)	(SDS-Plus)	(SDS=Flus)	
1/2"	13/16"	Preset (PS)	DFX11120 (SDS-Plus)	DWA54316 (SDS-Plus)	DW5814 4-Cutter	DFX21120 (SDS-Plus)	DFX21121 (SDS-Plus)	DCH416 or D25416	DFX311230 (SDS-Plus)	DFX311210
		Thrubolt (TB)	-	(303-1103)	(SDS-Max)	(303-1103)	(SDS-Flus)	(SDS-Plus)	(303-1103)	
5/8"	1"	Preset (PS)	DFX11580 (SDS-Max)	DWA58001 (SDS-Max)	DW5852 4-Cutter	DFX21580* (SDS-Plus)	DFX21581* (SDS-Plus)	DCH614 or D25614	DFX315835 (SDS-Max)	DFX315815
		Thrubolt (TB)	-	(SDS-IVIAX)	(SDS-Max)	(303-1103)	(SDS-Flus)	(SDS-Max)	(SDS-IVIAX)	
3/4"	1-1/4"	Preset (PS)	DFX11340 (SDS-Max)	DWA58115	DW5855 4-Cutter	DFX21340	DFX21341	DCH614 or D25614	DFX313440	DFX313420
		Thrubolt (TB)	-	(SDS-Max)	(SDS-Max)	(SDS-Max)	(SDS-Max)	(SDS-Max)	(SDS-Max)	

*For rotary hammer drill connector options, designated drill bits can be considered for use with a DW5891 SDS-Max to SDS-Plus adapter.

1. The listed anchor installation accessories and tools are based on DEWALT equipment commercially available at the time of publication.

2. CCU+ dust removal drill bits (e.g. HSB, HB, HUCB) are used with a vacuum dust extractor (e.g. DWV010, DWV012, DWV015, DCV585).

CCU+ Dust Removal Drill Bits

INSTALLATION INSTRUCTIONS

CCU+ Undercut Anchor Installation Instructions

installations.

TECHNICAL GUIDE - CANADIAN SUPPLEMENT - MECHANICAL ANCHORS © 2024 DEWALT - REV. D

ECHANICAL ANCHORS

Critical Connection Undercut Anchoring System CCU+

LIMIT STATES DESIGN INFORMATIO	V
--------------------------------	---

Design Information for CCU+ Undercut Anchor in Concrete (For use with CSA A23.3 (-19) Annex D)^{1,2}

Anobor)ronorty / Cotting Information	Notation	Units					Nom	inal Anc	hor Dia	meter							
Anchor P	Property / Setting Information	Notation	Units		3/8"			1/2"			5/8"			3/4"				
Anchor cat	egory	1, 2 or 3	-		1			1			1			1				
Anchor rod	designation	-	-	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)			
Outside dia	meter of anchor	da	mm		17.5			20.6			25.4			31.8				
Nominal en	nbedment depth	hnom	mm		108			137			203			270				
Effective er	nbedment depth	hef	mm		102			127			190			254				
	STEEL STRENGTH IN T	ENSION ⁴ , S	STEEL STR	ENGTH I	N SHEAR	AND STE	EL STRE	NGTH IN	SHEAR F	DR SEISN	IIC APPLI	CATIONS	4					
Steel resist	ance of anchor in tension⁴	Nsr	kN	20.1	43.4	41.6	36.6	79.0	69.5	58.3	125.7	110.6	86.2	185.7	163.4			
Steel embe for reinforc	edment material resistance factor ement	φs	-						0.	85								
	modification factor for tension, el failure modes	R	-						0.	80								
Preset	Steel resistance of anchor in shear	V _{sa}	kN	10.1	21.7	22.7	18.3	39.5	39.4	29.1	62.8	64.9	43.1	92.9	99.4			
(PS)	Steel resistane of anchor in shear, seismic ⁹	V _{sa,eq}	kN	7.0	19.5	20.5	12.8	35.5	36.2	20.4	56.6	58.5	30.2	83.6	89.4			
Thrubolt	Steel resistance of anchor in shear	V _{sa}	kN	10.1	63.2	79.2	18.3	83.3	107.7	29.1	128.9	172.6	43.1	185.2	256.9			
(TB)	Steel resistance of anchor in shear, seismic ⁹	V _{sa,eq}	kN	7.0	56.9	48.5	12.8	74.9	86.1	20.4	116.0	139.4	30.2	148.2	205.4			
Steel embe for reinforc	edment material resistance factor ement	φs	-						0.	85								
Resistance	modification factor for shear ³	R	-						0.	75								
			CON	ICRETE B		STRENG	TH IN TE											
	e distance (uncracked concrete)	Cac	mm		152			191			241			305				
concrete	ss factor in tension, uncracked	Kuncr	-		17			17			17			17				
Effectivene: concrete	ss factor in tension, cracked	Kcr	-		10			10			10			10				
Modification uncracked	n factor for cracked and concrete⁵	₩c,N	-		1.00			1.00			1.00			1.00				
Material res	sistance factor for concrete	ϕ_{c}	-						0.	65								
	modification factor for tension, ngth, Condition B ³	R	-						1.	00								
	PULLOUT STRENGT	'H IN TENS	ION (NON	SEISMIC	-APPLICA	TIONS) [®] A	ND PULL	OUT STR	ENGTH IN	TENSIO	N FOR SE	ISMIC [®]						
Factored pu concrete (1	ullout resistance, uncracked 7 MPa) ⁶	N _{p,uncr}	kN		see note	7	5	ee note	7	5	see note i	7	5	see note	7			
Factored pu concrete (1	ullout resistance, cracked 7 MPa) ⁶	Np,cr	kN	5	see note	7	ę	ee note	7	5	see note	7	ę	see note	7			
Factored pu concrete (1	ullout resistance, cracked 7 MPa) ⁶	N _{p,eq}	kN	5	see note	7	ę	ee note	7	5	see note	7	ę	see note	7			
Material res	sistance factor for concrete	ϕ_{c}	-						0.	65								
	modification factor for tension, ngth, Condition B ³	R	-						1.	00								
		CONCRETE	BREAKOU	T STREN	GTH IN S	HEAR [®] AN	D PRYOU	T STREN	GTH IN S	HEAR [®]								
	ng length of anchor	le	mm		102			127			190			254				
	for pryout strength	Kcp	-		2.0			2.0			2.0			2.0				
	sistance factor for concrete	$\phi_{ m c}$	-						0.	65								
Resistance strength ³	modification factor for pryout	R	-						1.	00		a a b						
1. The data	in this table is intended to be used with	the design	provisions	of CSA A2	3.3 (-19) /	Annex D, a	s applicab	le; for and	hors resist	ting seism	ic load con	nbinations	the additi	onal requii	rements			

isions of CSA A23.3 (-19) Annex D, as applicable; for anchors resisting seismic load comb of CSA A23.3 (-19) D.4.3, as applicable, must apply.

 CSA A23.3 (-19) D.4.3, as applicable, intext apply.
 Installation must comply with published instructions and details.
 All values of R for use with the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or 2010 NBCC, CSA A23.3 (-19) Annex C, as applicable, Conditon B applies where supplementary reinforcement in comformance with CSA A23.3 (-19 D.3.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. 4.

The CCU+ undercut anchor is considered a ductile steel element as defined by CSA A23.3(-19) D.2, as applicable.

5. For all design cases $\Psi_{e,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (K_{cr}) or uncracked concrete (K_{uncr}) must be used. 6. For all design cases use $\Psi_{e,P} = 1.0$. For the calculation of Nerr, see CSA A23.3 (-19) D.6.3.

7. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated sizes and embedment.

8. Anchors are permitted to be used in lightweight concrete in accordance with CSA A23.3 (-19) D.4.6.

Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2 (Section 9.6), as referenced in CSA A23.3 (-19) Annex D, Section D.4.3.4. 9.

DESIGN STRENGTH TABLES (SD)

Factored Design Resistance (Nr And Vr) calculated in accordance with CSA A23.3-19 Annex D:

Tension and Shear Design Strengths for CCU+ Preset Version (PS) Installed in Cracked Concrete^{1,2,3,4,5,6}

							Mi	nimum C	oncrete C	ompress	ive Streng	jth					
Nominal Anchor	Nominal Embed.		f'c = 20).7 Mpa			f'c = 27	7.6 Mpa			f'c = 41	.4 Mpa			f'c = 55	5.2 Mpa	
Size / Rod Diameter	Depth hom		nsion Is.)		hear Is.)		nsion Is.)		hear Is.)		nsion Is.)		hear Is.)		nsion Is.)		hear Is.)
(in.)	(mm)	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	108	13.7	29.5	6.4	13.8	13.7	29.5	6.4	13.8	13.7	29.5	6.4	13.8	13.7	29.5	6.4	13.8
1/2	137	24.9	42.3	11.7	23.8	24.9	48.8	11.7	25.1	24.9	53.7	11.7	25.1	24.9	53.7	11.7	25.1
5/8	203	39.6	77.7	18.6	40.0	39.6	85.4	18.6	40.0	39.6	85.4	18.6	40.0	39.6	85.4	18.6	40.0
3/4	270	58.6	119.7	27.5	59.2	58.6	126.3	27.5	59.2	58.6	126.3	27.5	59.2	58.6	126.3	27.5	59.2
🔲 - Anchor F	Pullout/Pryout	Strength C	ontrols 🔲	- Concrete	Breakout	Strength C	ontrols 🔲	- Steel Str	ength Cont	rols							

Tension and Shear Design Strengths for CCU+ Preset Version (PS) Installed in Uncracked Concrete^{1,2,3,4,5,6}

							Mi	nimum C	oncrete C	ompress	ive Streng	yth					
Nominal Anchor	Nominal Embed.		f'c = 20).7 Mpa			f'c = 2	7.6 Mpa			f'c = 41	I.4 Mpa			f'c = 55	5.2 Mpa	
Size / Rod Diameter	Depth hnom		nsion Is.)		hear is.)		nsion Is.)		hear os.)		nsion DS.)		hear is.)		ension os.)		hear Is.)
(in.)	(mm)	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	108	13.7	29.5	6.4	13.8	13.7	29.5	6.4	13.8	13.7	29.5	6.4	13.8	13.7	29.5	6.4	13.8
1/2	137	24.9	53.7	11.7	25.1	24.9	53.7	11.7	25.1	24.9	53.7	11.7	25.1	24.9	53.7	11.7	25.1
5/8	203	39.6	85.4	18.6	40.0	39.6	85.4	18.6	40.0	39.6	85.4	18.6	40.0	39.6	85.4	18.6	40.0
3/4	270	58.6	126.3	27.5	59.2	58.6	126.3	27.5	59.2	58.6	126.3	27.5	59.2	58.6	126.3	27.5	59.2
- Anchor F	Pullout/Prvout	Strenath C	ontrols 🗖	- Concrete	e Breakout	Strenath C	ontrols	- Steel Str	enath Cont	rols							

Tension and Shear Design Strengths for CCU+ Thrubolt Version (TB) Installed in Cracked Concrete^{1,2,3,4,5,6}

						IVI	nimum c	oncrete C	ompress	ive Streng	π					
Nominal Embod		f'c = 20).7 Mpa			f'c = 2	7.6 Mpa			f'c = 41	.4 Mpa			f'c = 55	5.2 Mpa	
Depth																hear Is.)
(mm)	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
108	13.7	29.5	6.4	19.2	13.7	29.5	6.4	22.1	13.7	29.5	6.4	27.1	13.7	29.5	6.4	31.3
137	24.9	42.3	11.7	28.1	24.9	48.7	11.7	32.5	24.9	53.7	11.7	39.8	24.9	53.7	11.7	46.0
203	39.7	77.7	18.6	49.2	39.7	85.4	18.6	56.9	39.7	85.4	18.6	69.6	39.7	85.4	18.6	80.4
270	58.6	119.7	27.5	73.8	58.6	126.3	27.5	85.2	58.6	126.3	27.5	104.3	58.6	126.3	27.5	118.1
	Embed. Depth hrom (mm) 108 137 203	Embed. Deptime (mm) Nr Tel (b) 108 13.7 137 24.9 203 39.7	Image: Base of the sector of the se	Image:	Image: Section of the secti	Image:	Image: Second system Image: Se	A36 A193, Gr. B7 A36 108 13.7 29.5 6.4 19.2 13.7 29.5 6.4 137 24.9 42.3 11.7 28.1 24.9 48.7 11.7 203 39.7 77.7 18.6 49.2 39.7 85.4 18.6	A36 A193, Gr. B7 108 13.7 29.5 6.4 19.2 13.7 29.5 6.4 22.1 137 24.9 42.3 11.7 28.1 24.9 48.7 11.7 32.5 203 39.7 77.7 18.6 49.2 39.7 85.4 18.6 56.9	Image: Inclusion of the second sec	Image: Second system Image: S	Image: Inclusion of the second sec	Image: Inclusion of the state of	Image: Inclusion of the second state straining of the second strai	Image: Inclusion of the state of	Image: Inclusion of the second sec

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for CCU+ Thrubolt Version (TB) Installed in Uncracked Concrete^{1,2,3,4,5,6}

							Mi	nimum C	oncrete C	ompress	ive Streng	yth					
Nominal	Nominal Embed.		f'c = 20).7 Mpa			f'c = 2	7.6 Mpa			f'c = 41	1.4 Mpa			f'c = 55	5.2 Mpa	
Anchor Size / Rod Diameter	Depth hnom		nsion Is.)		hear Is.)		nsion Is.)		hear os.)		ension os.)		hear is.)		nsion DS.)		hear os.)
(in.)	(mm)	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	108	13.7	29.5	6.4	26.8	13.7	29.5	6.4	30.9	13.7	29.5	6.4	37.8	13.7	29.5	6.4	40.3
1/2	137	24.9	53.7	11.7	39.4	24.9	53.7	11.7	45.5	24.9	53.7	11.7	53.1	24.9	53.7	11.7	53.1
5/8	203	39.7	85.4	18.6	68.9	39.7	85.4	18.6	79.6	39.7	85.4	18.6	82.2	39.7	85.4	18.6	82.2
3/4	270	58.6	126.3	27.5	103.2	58.6	126.3	27.5	118.1	58.6	126.3	27.5	118.1	58.6	126.3	27.5	118.1
- Anchor F	Pullout/Pryout	Strength (ontrols 🗖	- Concrete	Breakout	Strength C	ontrols	- Steel Str	enath Cont	rols							

- Anchor Pullout/Pryout Strength Controls - Concrete Breakout Strength Controls - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = 1.5*hmin, and with the following conditions:

2- Calculations were performed following methodology in CSA A23.3-19, Annex D. The load level corresponding to the failure mode listed (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

3- Material Resistance factors (ø) are in accorace with CSA A23.3-19, Sections 8.4.2 and 8.4.3. Mondification Factors (R) are in accordance with CSA A23.3-19 Annex D, Section D.5.3 Condition B; it is assumed that supplementary reinforcement not present. Material resistance factors for steel strength are taken as 0.85 for tension and shear; Modification factors are taken as 0.80 for Tension and 0.75 for Shear; values correspond to ductile steel elements.

4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with CSA A23.3-19 Annex D, Section D.8.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see CSA A23.3 Annex D and information contained in this product supplement. For other design conditions including seismic considerations please see CSA A23.3 Annex D.

Critical Connection Undercut Anchoring System

5

TECHNICAL GUIDE - CANADIAN SUPPLEMENT - MECHANICAL ANCHORS © 2024 DEWALT - REV. D

Ca1 ≥ 1.5hef
 Ca2 ≥ 1.5Ca1.

Tension and Shear Design Strengths for CCU+ Preset Version (PS) Installed in Cracked Concrete^{1,2,3,4,5,6}

				Mir	nimum Concrete C	ompressive Stren	gth		
Nominal Anchor	Nominal Embed.	f'c = 20).7 Mpa	(lbs.) (lbs.) (lbs.) (lbs.) Gr. B8M A193, Gr. B8M A194, Gr. B8M A194, Gr. B8M A194, Gr. B8M A194, Gr. B8M	.4 Mpa	f'c = 55	5.2 Mpa		
Size / Rod Diameter	Depth hrom	Nr Tension (lbs.)	Vr Shear (lbs.)				Vr Shear (lbs.)	Nr Tension (lbs.)	V: Shear (lbs.)
(in.)	(mm)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)				A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	108	28.3	14.5	28.3	14.5	28.3	14.5	28.3	14.5
1/2	137	42.3	25.1	47.2	25.1	47.2	25.1	47.2	25.1
5/8	203	75.2	41.4	75.2	41.4	75.2	41.4	75.2	41.4
3/4	270	111.1	63.3	111.1	63.3	111.1	63.3	111.1	63.3
🔲 - Anchor Pull	lout/Pryout Stren	gth Controls 🔲 - Co	ncrete Breakout Stre	ngth Controls 🔳 - S	teel Strength Control	3			

Tension and Shear Design Strengths for CCU+ Preset Version (PS) Installed in Uncracked Concrete^{1,2,3,4,5,6}

				Mir	nimum Concrete C	ompressive Stren	gth		
Nominal Anchor	Nominal Embed.	f'c = 20).7 Mpa	f'c = 2	7.6 Mpa	f'c = 41	.4 Mpa	f'c = 55	i.2 Mpa
Size / Rod Diameter	Depth hnom	N [,] Tension (lbs.)	Vr Shear (lbs.)	Nr Tension (lbs.)	Vr Shear (lbs.)	Nr Tension (lbs.)	Vr Shear (lbs.)	Nr Tension (lbs.)	Vr Shear (lbs.)
(in.)	(mm)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	108	28.3	14.5	28.3	14.5	28.3	14.5	28.3	14.5
1/2	137	47.2	25.1	47.2	25.1	47.2	25.1	47.2	25.1
5/8	203	75.2	41.4	75.2	41.4	75.2	41.4	75.2	41.4
3/4	270	111.1	63.3	111.1	63.3	111.1	63.3	111.1	63.3

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for CCU+ Thrubolt Version (TB) Installed in Cracked Concrete^{1,2,3,5,6}

				Mir	nimum Concrete C	ompressive Stren	gth		
Nominal Anchor	Nominal Embed.	f'c = 20).7 Mpa	f'c = 2	7.6 Mpa	f'c = 41	.4 Mpa	f'c = 55	5.2 Mpa
Size / Rod Diameter	Depth hom	Nr Tension (lbs.)	Vr Shear (lbs.)						
(in.)	(mm)	A193, Gr. B8M (316 SS)							
3/8	108	28.3	19.2	28.3	22.1	28.3	27.1	28.3	31.3
1/2	137	42.3	28.1	47.2	32.5	47.2	39.8	47.2	46.0
5/8	203	75.2	49.2	75.2	56.9	75.2	69.6	75.2	80.4
3/4	270	111.1	73.8	111.1	85.2	111.1	104.3	111.1	120.4
									1

📃 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Stainless Steel CCU+ Thrubolt Version (TB) Installed in Uncracked Concrete^{1,2,3,4,5,6,7}

				Mir	Minimum Concrete Compressive Strength f'c = 27.6 Mpa f'c = 41.4 Mpa f'c = 55. Nr Tension (lbs.) V. Shear (lbs.) Nr Tension (lbs.) V. Shear (lbs.) Nr Tension (lbs.) Nr Tension (lbs.) Nr Tension (lbs.) Nr Tension (lbs.) 1193, Gr. B8M (316 SS) A193, Gr. B8				
Nominal	Nominal	f'c = 20).7 Mpa	f'c = 2	7.6 Mpa	f'c = 41	.4 Mpa	f'c = 55	5.2 Mpa
Anchor Size / Rod Diameter	Embed. Depth hnom	N/ Tension (lbs.)	Vr Shear (lbs.)						Vr Shear (lbs.)
(in.)	(mm)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)					A193, Gr. B8M (316 SS)
3/8	108	28.3	26.8	28.3	30.9	28.3	37.8	28.3	43.7
1/2	137	47.2	39.4	47.2	45.5	47.2	57.7	47.2	64.4
5/8	203	75.2	68.9	75.2	79.6	75.2	97.4	75.2	110.0
3/4	270	111.1	103.2	111.1	119.2	111.1	146.1	111.1	163.7
- Anchor Pul	lout/Prvout Stren	ath Controls 🔲 - Ca	ncrete Breakout Stre	nath Controls 🔲 - S	teel Strenath Control	S			

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = 1.5*hmin, and with the following conditions:

Ca1 ≥ 1.5hef
 Ca2 ≥ 1.5Ca1.

2- Calculations were performed following methodology in CSA A23.3-19, Annex D. The load level corresponding to the failure mode listed (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout in shear are calculated using the effective embedment values, h_{ef}, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

3- Material Resistance factors (ø) are in accorance with CSA A23.3-19, Sections 8.4.2 and 8.4.3. Mondification Factors (R) are in accordance with CSA A23.3-19 Annex D, Section D.5.3 Condition B; it is assumed that supplementary reinforcement not present. Material resistance factors for steel strength are taken as 0.85 for tension and shear; Modification factors are taken as 0.80 for Tension and 0.75 for Shear; values correspond to ductile steel elements.

- 4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with CSA A23.3-19 Annex D, Section D.8.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see CSA A23.3 Annex D and information contained in this product supplement. For other design conditions including seismic considerations please see CSA A23.3 Annex D.

PERFORMANCE DATA (ASD)

Converted Allowable Loads for CCU+ Preset Version (PS) Installed in Cracked Concrete^{1,2}

							М	inimum C	oncrete C	ompressi	ve Streng	th					
Nominal Anchor	Nominal		f'c = 20).7 Mpa			f'c = 27	7.6 Mpa			f'c = 41	.4 Mpa			f'c = 55	5.2 Mpa	
	Embed. Depth hnom (mm)	Tallowa Tens (k	sion	Vallowa Sho (k			able,ASD sion N)	Vallowa Shi (k		Tens	able,ASD sion N)	Sh	able,ASD ear N)	Ten	able,ASD Sion :N)	Vallowa Shi (k	
(in.)	()	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	108	9.8	21.1	4.6	9.9	9.8	21.1	4.6	9.9	9.8	21.1	4.6	9.9	9.8	21.1	4.6	9.9
1/2	137	17.8	30.2	8.4	17.0	17.8	34.9	8.4	17.9	17.8	38.4	8.4	17.9	17.8	38.4	8.4	17.9
5/8	203	28.3	55.5	13.3	28.6	28.3	61.0	13.3	28.6	28.3	61.0	13.3	28.6	28.3	61.0	13.3	28.6
3/4	270	41.9	85.5	19.6	42.3	41.9	90.2	19.6	42.3	41.9	90.2	19.6	42.3	41.9	90.2	19.6	42.3

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for CCU+ Preset Version (PS) Installed in Uncracked Concrete¹²

							M	inimum c	oncrete u	ompress	ve Streng	m					
Nomi Anch	Nomina		f'c = 2	0.7 Mpa			f'c = 27	7.6 Mpa			f'c = 41	I.4 Mpa			f'c = 55	5.2 Mpa	
/ Rod Diameter (in.)	d Depth ter (mm)	I allow Ten	able,ASD Sion (N)	Sh	able,ASD ear (N)	Ten	able,ASD sion (N)	Sh	able,ASD ear N)	Ten	able,ASD sion : N)	Sh	able,ASD ear N)	Ten	able,ASD Sion :N)	Sh	able,ASD ear :N)
		A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	108	9.8	21.1	4.6	9.9	9.8	21.1	4.6	9.9	9.8	21.1	4.6	9.9	9.8	21.1	4.6	9.9
1/2	137	17.8	38.4	8.4	17.9	17.8	38.4	8.4	17.9	17.8	38.4	8.4	17.9	17.8	38.4	8.4	17.9
5/8	203	28.3	61.0	13.3	28.6	28.3	61.0	13.3	28.6	28.3	61.0	13.3	28.6	28.3	61.0	13.3	28.6
3/4	270	41.9	90.2	19.6	42.3	41.9	90.2	19.6	42.3	41.9	90.2	19.6	42.3	41.9	90.2	19.6	42.3

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for CCU+ Thrubolt Version (TB) Installed in Cracked Concrete^{1,2}

							M	inimum C	oncrete C	ompressi	ive Streng	th					
Nominal Anchor	Nominal		f'c = 20	D.7 Mpa			f'c = 27	7.6 Mpa			f'c = 41	.4 Mpa			f'c = 55	5.2 Mpa	
Size / Rod Diameter	Embed. Depth hnom (mm)		able,ASD sion N)	Sh	able,ASD ear N)	Ten	able,ASD sion N)	Sh	able,ASD ear N)	Ten	able,ASD sion : N)	Sh	able,ASD ear N)		able,ASD sion N)	Sh	able,ASD ear iN)
(in.)	(,	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	108	9.8	21.1	4.6	13.7	9.8	21.1	4.6	15.8	9.8	21.1	4.6	19.4	9.8	21.1	4.6	22.4
1/2	137	17.8	30.2	8.4	20.1	17.8	34.8	8.4	23.2	17.8	38.4	8.4	28.4	17.8	38.4	8.4	32.9
5/8	203	28.4	55.5	13.3	35.1	28.4	61.0	13.3	40.6	28.4	61.0	13.3	49.7	28.4	61.0	13.3	57.4
3/4	270	41.9	85.5	19.6	52.7	41.9	90.2	19.6	60.9	41.9	90.2	19.6	74.5	41.9	90.2	19.6	84.4

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for CCU+ Thrubolt Version (TB) Installed in Uncracked Concrete^{1,2}

							Mi	inimum C	oncrete C	ompressi	ve Streng	th					
Nominal Anchor	Nominal		f'c = 20).7 Mpa			f'c = 27	7.6 Mpa			f'c = 41	.4 Mpa			f'c = 55	5.2 Mpa	
Size / Rod Diameter	Embed. Depth hnom (mm)		able,ASD sion N)	Sh	able,ASD ear N)	Ten	able,ASD sion N)	Sh	able,ASD ear N)	Ten	able,ASD sion N)	Vallowa Shi (k	ear	Tallowable,ASD Tension (kN)		Vallowa Sho (k	ear
(in.)	()	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	108	9.8	21.1	4.6	19.1	9.8	21.1	4.6	22.1	9.8	21.1	4.6	27.0	9.8	21.1	4.6	28.8
1/2	137	17.8	38.4	8.4	28.1	17.8	38.4	8.4	32.5	17.8	38.4	8.4	37.9	17.8	38.4	8.4	37.9
5/8	203	28.4	61.0	13.3	49.2	28.4	61.0	13.3	56.9	28.4	61.0	13.3	58.7	28.4	61.0	13.3	58.7
3/4	270	41.9	90.2	19.6	73.7	41.9	90.2	19.6	84.4	41.9	90.2	19.6	84.4	41.9	90.2	19.6	84.4
1 Alloweb		on oro oolo	ulated usin		nion faatar	or from th	o Enotorod	Doolan Ctr	onath Tabl	on and oon	ditiona aba	un proviour					

Allowable load values are calculated using a conversion factor, α, from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Σ

TECHNICAL GUIDE – CANADIAN SUPPLEMENT – MECHANICAL ANCHORS ©2024 DEWALT – REV. D

ECHANICAL ANCHORS

Converted Allowable Loads for CCU+ Preset Version (PS) Installed in Cracked Concrete^{1,2}

				М	inimum Concrete C	ompressive Streng	th		
Nominal Anchor	Nominal	f'c = 20	D.7 Mpa	f'c = 27	7.6 Mpa	f'c = 41	.4 Mpa	f'c = 55	i.2 Mpa
Size / Rod Diameter	Embed. Depth hnom (mm)	Tallowable,ASD Tension (kN)	Valiowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)
(in.)	(,	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	108	20.2	10.4	20.2	10.4	20.2	10.4	20.2	10.4
1/2	137	30.2	17.9	33.7	17.9	33.7	17.9	33.7	17.9
5/8	203	53.7	29.6	53.7	29.6	53.7	29.6	53.7	29.6
3/4	270	79.4	45.2	79.4	45.2	79.4	45.2	79.4	45.2
				(

1. Allowable load values are calculated using a conversion factor, α, from the Factored Design Strength Tables and conditions shown previously.

Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. 2.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for CCU+ Preset Version (PS) Installed in Uncracked Concrete^{1,2}

				Mi	inimum Concrete C	ompressive Streng	th	f'c = 55. Tension (kN) A193, Gr. B8M (316 SS) 20.2 33.7	
Nominal Anchor	Nominal	f'c = 20	D.7 Mpa	f'c = 27	7.6 Mpa	f'c = 41	I.4 Mpa	f'c = 55	5.2 Mpa
Size / Rod Diameter	Embed. Depth hnom (mm)	Tallowable,ASD Tension (kN)	Valiowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)	Tension	Vallowable,ASD Shear (kN)
(in.)	()	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)		A193, Gr. B8M (316 SS)
3/8	108	20.2	10.4	20.2	10.4	20.2	10.4	20.2	10.4
1/2	137	33.7	17.9	33.7	17.9	33.7	17.9	33.7	17.9
5/8	203	53.7	29.6	53.7	29.6	53.7	29.6	53.7	29.6
3/4	270	79.4	45.2	79.4	45.2	79.4	45.2	79.4	45.2

1. Allowable load values are calculated using a conversion factor, α, from the Factored Design Strength Tables and conditions shown previously.

Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. 2.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for CCU+ Thrubolt Version (TB) Installed in Cracked Concrete^{1,2}

				Mi	inimum Concrete C	ompressive Streng	th	ftc = 55 Tailovatie.450 Tension (kN) A193, Gr. B8M (316 SS) 20.2 33.7 53.7 79.4	
Nominal Anchor	Nominal	f'c = 20).7 Mpa	f'c = 27	7.6 Mpa	f'c = 41	I.4 Mpa	f'c = 55	i.2 Mpa
Size / Rod Diameter	Embed. Depth hnom (mm)	Tallowable,ASD Tension (KN)	V _{allowable,ASD} Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)	Tension	Vallowable,ASD Shear (KN)
(in.)	()	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)		A193, Gr. B8M (316 SS)
3/8	108	20.2	13.7	20.2	15.8	20.2	19.4	20.2	22.4
1/2	137	30.2	20.1	33.7	23.2	33.7	28.4	33.7	32.9
5/8	203	53.7	35.1	53.7	40.6	53.7	49.7	53.7	57.4
3/4	270	79.4	52.7	79.4	60.9	79.4	74.5	79.4	86.0
1. Allowab	le load valu	es are calculated usin	g a conversion factor,	α , from the Factored	Design Strength Table	es and conditions show	wn previously.		

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for CCU+ Thrubolt Version (TB) Installed in Uncracked Concrete^{1,2}

ominal	f'c = 20							
mbod E		0.7 Mpa	f'c = 27	7.6 Mpa	f'c = 41	.4 Mpa	f'c = 55	i.2 Mpa
hoom (mm)	Tallowable,ASD Tension (KN)	Vallowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)	Tallowable,ASD Tension (kN)	Vallowable,ASD Shear (kN)
()	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
108	20.2	19.1	20.2	22.1	20.2	27.0	20.2	31.2
137	33.7	28.1	33.7	32.5	33.7	41.2	33.7	46.0
203	53.7	49.2	53.7	56.9	53.7	69.6	53.7	78.6
270	79.4	73.7	79.4	85.1	79.4	104.4	79.4	116.9
1 2 2	epth nom nm) 08 37 203	Latorable ASD Tension (kl) A193, Gr. BBM (316 SS) 008 20.2 137 33.7 203 53.7 270 79.4	I altoratio_ASD Valuowatio_ASD Tension (kl) Shear (kl) A193, Gr. B8M (316 SS) A193, Gr. B8M (316 SS) 008 20.2 19.1 37 33.7 28.1 203 53.7 49.2 270 79.4 73.7	I allovable ASD Tension (kl) Valuvable ASD Shear (kl) I allovable ASD Tension (kl) I allovable ASD Tension (kl) A193, Gr. B8M (316 SS) A193, Gr. B8M (316 SS) A193, Gr. B8M (316 SS) A193, Gr. B8M (316 SS) 008 20.2 19.1 20.2 137 33.7 28.1 33.7 203 53.7 49.2 53.7 270 79.4 73.7 79.4	Individie/ASD Tension (kt) Valurable/ASD Shear (kt) Individie/ASD Tension (kt) Individie/ASD Tension (kt) Valurable/ASD Tension (kt) V	I altowatie ASD Tension Valuratie ASD Shear (kl) Valuratie ASD Shear (kl) Valuratie ASD Tension (kl) A193, Gr. B8M (316 SS) A193, Gr. B8M (316	I allowable ASD Tension (kN) Valueable ASD Shear (kN) Valueable ASD Tension (kN) Valueable ASD Tension (tN) Valueable ASD Tension (tN) 008 20.2 19.1 20.2 22.1 20.2 27.0 137 33.7 28.1 33.7 32.5 33.7 41.2 203 53.7 49.2 53.7	Internet New mm Internet New methods Valuewate/ASD Internet New methods Internet New me

1. Allowable load values are calculated using a conversion factor, α, from the Factored Design Strength Tables and conditions shown previously.

Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. 2.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

CCU+

CHANICAL ANCHORS

TMT

J J

Critical Connection Undercut Anchoring System

ORDERING INFORMATION

Carbon Steel CCU+ Undercut Anchors (ASTM A36 Anchor Rod)^{1,2,3}

Cat. No.	Anchor Description, Nominal Size and Length (in.)	Anchor Version	Drill Hole Dia. (in.)	Max. Fixture Thickness, (in.)	Pack Qty.	
DFM1311050	3/8 x 6	Preset (PS)	11/16	7/8	20	
DFM1311550	3/8 X b	Thrubolt (TB)	11/10	//0	20	
DFM1311100	1/2 x 7-1/2	Preset (PS)	12/16	1-1/4	12	
DFM1311600	1/2 X /-1/2	Thrubolt (TB)	13/16	1-1/4	12	
DFM1311150	1/2 x 8-1/4	Preset (PS)	13/16	2	12	
DFM1311650	1/2 X 0-1/4	Thrubolt (TB)	13/10 2	12	J	
DFM1311200	E/0 40.0/4	Preset (PS)	- 1	1 1 5/0	10	
DFM1311700	5/8 x 10-3/4	Thrubolt (TB)		1 1-5/8	10	
DFM1311250	E/0 x 11 1/0	Preset (PS)	-	0.0/0	10	
DFM1311750	5/8 x 11-1/2	Thrubolt (TB)	1 2-3/8	10		
DFM1311300	3/4 x 14	Preset (PS)	1 1/4	2	6	1
DFM1311800	- 3/4 X 14	Thrubolt (TB)	1-1/4 2	2	6	1
DFM1311350	3/4 x 16	Preset (PS)	1-1/4	Λ	6]
DFM1311850	3/4 X 10	Thrubolt (TB)	1-1/4	4	6	1

Carbon Steel CCU+ Undercut Anchors (ASTM A193, Grade B7 Anchor Rod)^{1,2,3}

Cat. No.	Anchor Description, Nominal Size and Length (in.)	Anchor Version	Drill Hole Dia. (in.)	Max. Fixture Thickness, (in.)	Pack Qty.	
DFM1371050	2/0 × 6	Preset (PS)	11/16	7/8	20	
DFM1371550	3/8 x 6	Thrubolt (TB)	1 1710	//0	20	-j-
DFM1371100	1/2 x 7-1/2	Preset (PS)	13/16	1-1/4	12	
DFM1371600	1/2 X /-1/2	Thrubolt (TB)	13/10	1-1/4	12	_
DFM1371150	1/2 x 8-1/4	Preset (PS)	13/16	2	12	
DFM1371650	1/2 X 0-1/4	Thrubolt (TB)	13/10	2	12	4
DFM1371200	5/8 x 10-3/4	Preset (PS)	1	1-5/8	10]
DFM1371700	J/0 X 10-3/4	Thrubolt (TB)	I	1-5/0	10	
DFM1371250	5/8 x 11-1/2	Preset (PS)	1	2-3/8	10	
DFM1371750	J/U X 11-1/2	Thrubolt (TB)		2-3/0	10	
DFM1371300	3/4 x 14	Preset (PS)	1-1/4	2	6	
DFM1371800	J/4 X 14	Thrubolt (TB)	1-1/4	۷	6	
DFM1371350	3/4 x 16	Preset (PS)	1-1/4	4	6	
DFM1371850	01 X F (0	Thrubolt (TB)	1 1/4		6	J

Stainless Steel CCU+ Undercut Anchors (ASTM A193, Grade B8M, Class 2 Anchor Rod - 316 SS)^{1,2,3}

Cat. No.	Anchor Description, Nominal Size and Length (in.)	Anchor Version	Drill Hole Dia. (in.)	Max. Fixture Thickness, (in.)	Pack Qty.
DFM1361050	2/0 × 6	Preset (PS)	11/16	7/8	20
DFM1361550	3/8 x 6	Thrubolt (TB)	11/10	//0	20
DFM1361100	1/2 x 7-1/2	Preset (PS)	13/16	1-1/4	12
DFM1361600	1/2 X /-1/2	Thrubolt (TB)	13/10	1-1/4	12
DFM1361150	1/2 x 8-1/4	Preset (PS)	13/16	2	12
DFM1361650	1/2 X 0-1/4	Thrubolt (TB)			12
DFM1361200	5/8 x 10-3/4	Preset (PS)	1	1-5/8	10
DFM1361700	3/6 X 10-3/4	Thrubolt (TB)			10
DFM1361250	5/8 x 11-1/2	Preset (PS)	-	2-3/8	10
DFM1361750	J/0 X 11-1/2	Thrubolt (TB)			10
DFM1361300	3/4 x 14	Preset (PS)	1 1/4	2	6
DFM1361800	J/4 X 14	Thrubolt (TB)	1-1/4		6
DFM1361350	3/4 x 16	Preset (PS)	1-1/4	4	6
DFM1361850	J/4 X 10	Thrubolt (TB)	1-1/4	4	6

Notes for Anchor Ordering Information Tables:

1. Standard preset anchors are designed so the top of the expansion sleeve is approximately flush with the base material after setting. Thrubolt anchors are designed so the expansion sleeve can be set through and can engage the fixture. See CCU+ undercut anchor detail and installation specifications.

2. Undercut drill bits and setting sleeves are required for installation. See the available anchor installation accessories and tools commercially available from DEWALT at the time of publication.

3. The listed anchor lengths are based on the anchor sizes commercially available at the time of publication; custom lengths can be produced by request.

1-800-4 DEWALT

Setting Sleeves

Powered	Manual	Approximate Usable	Matching Nominal	Deals Ohr
Cat. No.	Cat. No.	Sleeve Length, (in.)	Anchor Šize, (in.)	Pack Qty.
DFX313825 (SDS-Plus)	-	2-3/4	3/8 (11/16 O.D.)	1
-	DFX313805	5		1
DFX311230 (SDS-Plus)	-	3-3/4	1/2 (13/16 O.D.)	1
-	DFX311210	5	, , , , , , , , , , , , , , , , , , ,	1
DFX315835 (SDS-Max)	-	4-3/4	5/8 (1 0.D.)	1
-	DFX315815	5-1/4	· · · · · · · · · · · · · · · · · · ·	1
DFX313440 (SDS-Max)	-	6-1/2	3/4 (1-1/4 O.D.)	1
-	DFX313420	7	. ,	1

0.D. = outside diameter

Rotary Hammer Drills

Cat. No.	Nominal Drill Bit Diameter (in.)	Approximate Impact Energy (J)	Pack Qty.	
DCH416 or D25416	11/16	4.5	1	
(SDS-Plus)	13/16	4.0	I	
DCH614 or D25614	1	10.5	1	
(SDS-Max)	1-1/4	10.0	1	

Drill Chuck Adapter

Cat. No.	Shank Type	Pack Qty.
DW5891	SDS-Max to SDS-Plus Adapter	1

Hollow Stop Bits (HSB)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Max. Drilling Depth, (in.)	Shank Type	Pack Qty.	
DFX11380	11/16	4-1/4	SDS-Plus	1	
DFX11120	13/16	5-3/8	SDS-Plus	1	
DFX11580	1	8	SDS-Max	1	
DFX11340	1-1/4	10-5/8	SDS-Max	1	
Stop drill bits create a drilled hole to the specified depth for standard preset version CCU+ Undercut anchors. For thrubolt applications, see CCU+ undercut anchor detail and installation specifications.					

HSB dust removal drill bits are used with a vacuum dust extractor (e.g. DWV010, DWV012, DWV015, DCV585).

Hollow Bits (HB)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Usable Length, (in.)	Shank Type	Pack Qty.		
DWA54116	11/16	9-3/4	SDS-Plus	1		
DWA54316	13/16	9-3/4	SDS-Plus	1		
DWA58001	1	15-3/4	SDS-Max	1		
DWA58115	1-1/4	15-3/4	SDS-Max	1		
HB dust removal drill bits a	HB dust removal drill bits are used with a vacuum dust extractor (e.g. DWV010, DWV012, DWV015, DCV585).					

Conventional Bits (4-Cutter)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Usable Length, (in.)	Shank Type	Pack Qty.
DW5808	11/16	16	SDS-Max	1
DW5814	13/16	16	SDS-Max	1
DW5852	1	24	SDS-Max	1
DW5855	1-1/4	24	SDS-Max	1

MECHANICAL ANCHORS

DEWALT

Hollow Undercut Bits (HUCB)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Max. Hole Depth, (in.)	Shank Type	Pack Qty.	
DFX21380	11/16	6	SDS-Plus	1	
DFX21120	13/16	8	SDS-Plus	1	
DFX21580*	1	11	SDS-Plus*	1	
DFX21340	1-1/4	15-1/4	SDS-Max	1	
*For rotary hammer drill connector options, a DW5891 SDS-Max to SDS-Plus adapter can be considered.					

HUCB dust removal drill bits are used with a vacuum dust extractor (e.g. DWV010, DWV012, DWV015, DCV585).

Note: HUCB or UCB are required for the installation of CCU+ undercut anchors; see installation instructions.

Undercut Bits (UCB)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Max. Hole Depth, (in.)	Shank Type	Pack Qty.		
DFX21381	11/16	6	SDS-Plus	1		
DFX21121	13/16	8	SDS-Plus	1		
DFX21581*	1	11	SDS-Plus*	1		
DFX21341	1-1/4	15-1/4	SDS-Max	1		
*For rotary hammer drill co	*For rotary hammer drill connector options a DW5891 SDS-Max to SDS-Plus adapter can be considered					

"For rotary nammer drill connector options, a DWS891 SUS-Max to SUS-Plus adapter can be considered. Note: HUCB or UCB are required for the installation of CCU+ undercut anchors; see installation instructions.

Replacement Cutter Blades for Undercut Bits

Cat. No.	Nominal Drill Bit	For Us	e With	Deals Ohr		
Gat. NO.	Diameter, (in.)	HUCB	UCB	Pack Qty.		
DFX213825	11/16	DFX21380	DFX21381	1		
DFX211230	13/16	DFX21120	DFX21121	1		
DFX215835	1	DFX21580	DFX21581	1		
DFX213440	1-1/4	DFX21340	DFX21341	1		
Replacement cutter blades	Replacement cutter blades can be used with both hollow undercut drill bits (HUCB) and undercut drill bits (UCB) as indicated.					

Replacement Bow Jaws for Undercut Bits

Cat. No.	Nominal Drill Bit	For Use With		Pack Qty.
Gal. NO.	Diameter, (in.)	HUCB	UCB	FACK QLY.
DFX213807	11/16	DFX21380	-	1
DFX213805	11/10	-	DFX21381	1
DFX211212	13/16	DFX21120	-	1
DFX211210	13/10	-	DFX21121	1
DFX215817	1	DFX21580	-	1
DFX215815	I	-	DFX21581	1
DFX213422	1-1/4	DFX21340	-	1
DFX213420	1-1/4	-	DFX21341	1

Vacuums

Cat. No.	Description	Pack Qty.
DWV010	8 Gallon HEPA/RRP Dust Extractor	1
DWV015	10 Gallon Wet/Dry HEPA/RRP Dust Extractor	1
DCV585	Flexvolt 60V Max Dust Extratcor (Tool only)	1

