





| SELECTION GUIDE      | 26  |
|----------------------|-----|
| NJECTION ADHESIVES   |     |
| AST CURE ACRYLICS    |     |
| <b>\C200+</b> ™      | 29  |
| \C100+ GOLD®         | 45  |
| <b>\C50+</b> ™       | 69  |
| TANDARD CURE EPOXIES |     |
| PURE110+®            | 76  |
| PURE50+™             | 101 |
| PURE GP <sup>™</sup> | 118 |
| PE1000+®             | 123 |
| LASS CAPSULE         |     |
| IAMMER-CAPSULE®      | 142 |



**SELECTION GUIDE** 

|            |             |                       |                |                      | Ba                            | ise N                   | late        | rial         |       |                      |         |           |           |           | Anc       | hor       | Diam     | eter           |        |         |        |        | Chen        | nistry                     | Ho<br>D<br>Met | ole<br>rill<br>hod* | Hole<br>Condition |     |                                                           |
|------------|-------------|-----------------------|----------------|----------------------|-------------------------------|-------------------------|-------------|--------------|-------|----------------------|---------|-----------|-----------|-----------|-----------|-----------|----------|----------------|--------|---------|--------|--------|-------------|----------------------------|----------------|---------------------|-------------------|-----|-----------------------------------------------------------|
|            |             |                       | Concrete       | Lightweight Concrete | Grout-filled Concrete Masonry | Hollow Concrete Masonry | Solid Brick | Hollow Brick | Stone | Structural Clay/Tile | 1/4"    | 3/8" (#3) | 1/2" (#4) | 5/8" (#5) | 3/4" (#6) | 7/8" (#7) | 1" ( #8) | 1-1/4" ( # 10) | 1-3/8" | 1-1/2"  | 1-3/4" | 2"     | Epoxy Resin | Hybrid / Ester Based Resin | Hammer-drill   | Core-drill          | Dry               | Wet | Building Code /<br>Jurisdiction<br>Recognition            |
|            | lics        | <b>AC200+</b> ™       | •              | •                    | 0                             |                         | 0           |              |       |                      |         | •         | •         | •         | •         | •         | •        | •              | 0      | 0       |        |        |             | •                          | •              |                     | •                 | •   | ICC-ES ESR-4027<br>IBC, NBC, City of LA,<br>FBC, NSF, DOT |
|            | t Cure Acry | AC100+ Gold®          | •              | •                    | •                             | •                       | •           | 0            | 0     | 0                    | 0       | •         | •         | •         | •         | •         | •        | •              | 0      | 0       | 0      | 0      |             | •                          | •              |                     | •                 | •   | ICC-ES ESR-2582<br>IBC, NBC, City of<br>LA, FBC, NSF, DOT |
| \$         | Fast        | <b>AC50</b> ™         | •              | 0                    |                               |                         |             |              |       |                      |         | •         | •         | •         | •         | 0         | •        | 0              |        |         |        |        |             | •                          | •              |                     | •                 |     | DOT                                                       |
| n Adhesive |             | Pure110+®             | •              | •                    | •                             | •                       | 0           | 0            | 0     | 0                    | 0       | •         | •         | •         | •         | •         | •        | •              | 0      | 0       | 0      | 0      | •           |                            | •              | 0                   | •                 | •   | ICC-ES ESR-3298<br>IBC, NBC, City of LA,<br>FBC, NSF, DOT |
| Injectio   | ure Epoxies | Pure GP               | •              | 0                    |                               |                         |             |              |       |                      |         | •         | •         | •         | •         | 0         | •        | 0              |        |         |        |        | •           |                            | •              |                     | •                 | •   | DOT                                                       |
|            | Standard Cu | Pure50+™              | •              | •                    | 0                             | 0                       | 0           |              | 0     |                      |         | •         | •         | •         | •         | •         | •        | •              |        |         |        |        | •           |                            | •              | 0                   | •                 | •   | ICC-ES ESR-3576<br>IBC, FBC, NSF, DOT                     |
|            |             | PE1000+®              | •              | •                    | •                             | 0                       | 0           |              | 0     | 0                    | 0       | •         | •         | •         | •         | •         | •        | •              | 0      | 0       | 0      | 0      | •           |                            | •              | •                   | •                 | •   | ICC-ES ESR-2583<br>IBC, FBC, NSF, DOT                     |
| Glass      | Capsules    | Hammer-<br>Capsule®   | •              | 0                    | •                             |                         |             |              |       |                      |         | •         | •         | •         | •         | •         | •        |                |        |         |        |        |             | •                          | •              |                     | •                 | •   | DOT                                                       |
| •<br>*Ha   | Sui'<br>amn | table <b>O</b> May be | Suitat<br>impa | ole<br>.ct dri       | ills or                       | rock (                  | drills v    | with a       | carb  | ide dr               | ill bit | (inclu    | ding l    | nollow    | drill     | bits):    | core-(   | drill i.e      | e. con | e-drill | with   | a diar | mond co     | ore-drill                  | bit.           |                     |                   |     |                                                           |

DEWALT

ENGINEERED BY POWERS

#### **GENERAL INFORMATION**

#### **AC200+**<sup>™</sup>

Acrylic Injection Adhesive Anchoring System and Post-Installed Reinforcing Bar Connections

#### **PRODUCT DESCRIPTION**

The AC200+ is a two-component, high strength adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The AC200+ is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in concrete base materials and for post-installed reinforcing bar connections.

#### **GENERAL APPLICATIONS AND USES**

- · Bonding threaded rod and reinforcing bar into hardened concrete
- · Evaluated for installation and use in dry and wet concrete
- · Fast curing system which can be installed in a wide range of base material temperatures
- Qualified for seismic (earthquake) and wind loading

#### FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Evaluated and recognized for freeze/thaw performance
- + Versatile system which can be used in a wide range of embedments in low and high strength concrete
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)

#### **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES) ESR-4027 for cracked and uncracked concrete
- Code Compliant with 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ACI 355.4, ASTM E 488, and ICC-ES AC308 for use in structural concrete (Design according to ACI 318-14, Chapter 17 and ACI 318-11/08 Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Compliant with NSF/ANSI 61 for drinking water system components health effects; minimum requirements for materials in contact with potable water and water treatment
- Conforms to requirements of ASTM C881 and AASHTO M235, Types I, II, IV and V, Grade 3, Class A
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

#### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchors, and 05 05 19 Post-Installed Concrete Anchors. Adhesive anchoring system shall be AC200+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.





#### SECTION CONTENTS

| General Information                                 | .27 |
|-----------------------------------------------------|-----|
| Strength Design (SD)                                | .28 |
| Installation Instructions<br>(Solid Base Materials) | .40 |
| Installation Instructions<br>(Post-Installed Rebar) | .41 |
| Reference Installation Tables                       | .42 |
| Ordering Information                                | .43 |



#### PACKAGING

#### **Coaxial Cartridge**

• 10 fl. oz.

Dual (side-by-side) Cartridge

• 28 fl. oz.

#### **STORAGE LIFE & CONDITIONS**

Dual cartridge: Eighteen months Coaxial cartridge: Eighteen months In a dry, dark environment with temperature ranging from 41°F to 90°F (5°C to 32°C)

#### ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)

#### SUITABLE BASE MATERIALS

- · Normal-weight concrete
- Lightweight concrete

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry concrete
- Water-saturated concrete (wet)



Acrylic Injection Adhesive Anchoring System

AC200+

S



#### **STRENGTH DESIGN (SD)**

**Dimension/Property** 

**Threaded Rod** 

#### Installation Specifications for Threaded Rod and Reinforcing Bar

Units

-

-

in.

(mm)

in.

in.

(mm)

in.

(mm)

in.

(mm)

in.

(mm)

in.

(mm)

ft-lbs

in

(mm)

ft-lbs

3/8

-

7/16

ANSI

-

#3

1/2

ANSI

hef + 1-1/4

(hef + 30)

0.375

(9.5)

2-3/8

(60)

7-1/2

(191)

1-7/8

(48)

1-5/8

(41)

15<sup>3</sup>

-

7<sup>3</sup>

1/2

-

9/16

ANSI

0.500

(12.7)

2 - 3/4

(70)

10

(254)

2-1/2

(62)

1-3/4

(44)

30

-

14

-

#4

5/8

ANSI

Notation

-

-

da

d<sub>o</sub> [d<sub>bit</sub>]

h<sub>ef,min</sub>

h<sub>ef,max</sub>

hmin

Smin

Cmin

T<sub>max</sub>

Cmin,red

Tmax,red



1-1/4

-

1-3/8

ANSI

#10

1-1/2

ANSI

1.250

(31.8)

5

(127)

25

(635)

5-7/8

(149)

3-1/4

(80)

221

2-3/4

(70)

99

| N N      | Reinforcing Bar                                                         |
|----------|-------------------------------------------------------------------------|
|          | Nominal anchor diameter                                                 |
|          | Nominal ANSI drill bit size                                             |
|          | Minimum embedment                                                       |
|          | Maximum embedment                                                       |
|          | Minimum concrete<br>member thickness                                    |
| Acrylic  | Minimum spacing distance                                                |
| Inject X | Minimum edge distance<br>(100% T <sub>max</sub> )                       |
| ğ        | Maximum Torque <sup>2</sup>                                             |
| Adhes    | Minimum edge distance, reduced <sup>2,4,5</sup> (45% T <sub>max</sub> ) |
| Sive     | Maximum Torque, reduced <sup>2</sup>                                    |
|          |                                                                         |

1. For use with the design provisions of ACI 318-14 Ch. 17 or ACI 318-11 Appendix D as applicable, ICC-ES AC308, Section 4.2 and ESR-4027

2. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved

3. For ASTM A36/F1554 Grade 36 carbon steel threaded rods, Tmax = 11 ft.-lb, Tmax,red = 5.

4. For installations at the reduced minimum edge distance, cmin,red, the maximum toque applied must be max torque reduced, Tmaxred.

5. For installations at the reduced minimum edge distance,  $c_{min,red}$ , the miminim spacing,  $s_{min} = 5 \text{ x da}$ .

#### **Detail of Steel Hardware Elements** used with Injection Adhesive System

C Threaded Rod or Rebar s C h<sub>ef</sub> h ^d₀(d<sub>bit</sub>) p·Þ

| Illieaueu n                           | u anu perurmeu ne                          | siniorcing bar n                   | naterial Frup                                         | erues                                              |
|---------------------------------------|--------------------------------------------|------------------------------------|-------------------------------------------------------|----------------------------------------------------|
| Steel<br>Description<br>(General)     | Steel Specification<br>(ASTM)              | Nominal Anchor<br>Size (inch)      | Minimum<br>Ultimate<br>Strength<br>fu<br>psi<br>(MPa) | Minimum<br>Yield<br>Strength<br>fy<br>psi<br>(MPa) |
|                                       | ASTM A36 or F1554,<br>Grade 36             |                                    | 58,000<br>(400)                                       | 36,000<br>(250)                                    |
|                                       | ASTM F1554 Grade 55                        | 2/8 through 1 1/4                  | 75,000<br>(517)                                       | 55,000<br>(380)                                    |
|                                       | ASTM A193 Grade B7                         | 3/8 through 1-1/4                  | 125,000<br>(860)                                      | 105,000<br>(724)                                   |
| Carbon Rod                            | ASTM F1554 Grade 105                       |                                    | 125,000<br>(860)                                      | 105,000<br>(724)                                   |
|                                       | ASTM A449                                  | 3/8 through 1                      | 120,000<br>(828)                                      | 92,000<br>(635)                                    |
|                                       | ASTM A449                                  | 1-1/4                              | 105,000<br>(720)                                      | 81,000<br>(560)                                    |
|                                       | ASTM F568M Class 5.8                       | 3/4 through 1-1/4                  | 72,500<br>(500)                                       | 58,000<br>(400)                                    |
|                                       | ASTM F593 CW1                              | 3/8 through 5/8                    | 100,000<br>(690)                                      | 65,000<br>(450)                                    |
| Stainless Rod<br>(Alloy 304 /<br>316) | ASTM F593 CW2                              | 3/4 through 1-1/4                  | 85,000<br>(590)                                       | 45,000<br>(310)                                    |
| 010)                                  | ASTM A193/A193M<br>Grade B8/B8M2, Class 2B | 3/8 through 1-1/4                  | 95,000<br>(655)                                       | 75,000<br>(515)                                    |
| Grade 60                              | ASTM A615, A767, A996<br>Grade 60          | 3/8 through 1-1/4                  | 90,000<br>(620)                                       | 60,000<br>(414)                                    |
| Reinforcing Bar                       | ASTM A706 Grade 60                         | (#3 through #10)                   | 80,000<br>(550)                                       | 60,000<br>(414)                                    |
| Grade 40<br>Reinforcing Bar           | ASTM A615 Grade 40                         | 3/8 through 3/4<br>(#3 through #6) | 60,000<br>(415)                                       | 40,000<br>(275)                                    |

**Nominal Anchor Size** 

#5

3/4

ANSI

0.625

(15.9)

3-1/8

(79)

12-1/2

(318)

3

(76)

2

(51)

44

1-3/4

(44)

20

3/4

#6

0.750

(19.1)

7/8

ANSI

3 - 1/2

(89)

15

(381)

3-5/8

(92)

2-3/8

(60)

66

1-3/4

(44)

30

7/8

#7

0.875

(22.2)

1

ANSI

3-1/2

(89)

17-1/2

(445)

4-1/4

(108)

2-1/2

(64)

96

1-3/4

(44)

43

-

hef + 2do

1

#8

1.000

(25.4)

1-1/8

ANSI

4

(102)

20

(508)

4-3/4

(121)

2-3/4

(70)

147

1-3/4

(44)

66

**#9** 

1.125

(28.6)

1-3/8

ANSI

4 - 1/2

(114)

22-1/2

(572)

5-1/4

(133)

3

(75)

185

2-3/4

(70)

83

5/8

-

11/16

ANSI

# Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)



|              | Desire Information                                 | Complete        | Unite                     | Nominal Rod Diameter <sup>1</sup> (inch)                             |                  |                   |                   |                   |                   |                    |  |  |  |
|--------------|----------------------------------------------------|-----------------|---------------------------|----------------------------------------------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--|--|--|
|              | Design Information                                 | Symbol          | Units                     | 3/8                                                                  | 1/2              | 5/8               | 3/4               | 7/8               | 1                 | 1-1/4              |  |  |  |
| Threaded rod | nominal outside diameter                           | d               | inch                      | 0.375                                                                | 0.500            | 0.625             | 0.750             | 0.875             | 1.000             | 1.250              |  |  |  |
|              | <i>(</i> , ))                                      |                 | (mm)<br>inch <sup>2</sup> | 0.0775                                                               | 0.1419           | 0.2260            | 0.3345            | 0.4617            | (25.4)            | 0.9691             |  |  |  |
| Inreaded rod | effective cross-sectional area                     | Ase             | (mm²)                     | (50)                                                                 | (92)             | (146)             | (216)             | (298)             | (391)             | (625)              |  |  |  |
|              | Nominal strongth as governed by                    | Nsa             | lbf<br>(kN)               | 4,495                                                                | 8,230            | 13,110            | 19,400            | 26,780            | 35,130            | 56,210<br>(250 0)  |  |  |  |
| ASTM A 36    | steel strength (for a single anchor)               | M               | lbf                       | 2,695                                                                | 4,940            | 7,860             | 11,640            | 16,070            | 21,080            | 33,725             |  |  |  |
| ASTM F 1554  | Deduction for the formation is also an             | Vsa             | (kN)                      | (12.0)                                                               | (22.0)           | (35.0)            | (51.8)            | (71.4)            | (93.8)            | (150.0)            |  |  |  |
| Grade 36     | Strength reduction factor for tension <sup>2</sup> | OV,seis         | -                         |                                                                      |                  |                   | 0.60              |                   |                   |                    |  |  |  |
|              | Strength reduction factor for shear <sup>2</sup>   | ψ<br>φ          | -                         |                                                                      |                  |                   | 0.65              |                   |                   |                    |  |  |  |
|              |                                                    | Ψ               | lbf                       | 5.810                                                                | 10.640           | 16.950            | 25.085            | 34.625            | 45.425            | 72.680             |  |  |  |
|              | Nominal strength as governed by                    | INsa            | (kN)                      | (25.9)                                                               | (47.3)           | (75.4)            | (111.6)           | (154.0)           | (202.0)           | (323.3)            |  |  |  |
| ASTM F 1554  | steel strength(for a single anchor)                | Vsa             | lbf<br>(LN)               | 3,485                                                                | 6,385            | 10,170            | 15,050            | 20,775            | 27,255            | 43,610             |  |  |  |
| Grade 55     | Reduction factor for seismic shear                 | QV.seis         | (KIN)<br>-                | (13.3)                                                               | (20.4)           | (4J.Z)            | 0.60              | (92.4)            | (121.2)           | (194.0)            |  |  |  |
|              | Strength reduction factor for tension <sup>2</sup> | φ               | -                         |                                                                      |                  |                   | 0.75              |                   |                   |                    |  |  |  |
|              | Strength reduction factor for shear <sup>2</sup>   | φ               | -                         |                                                                      |                  |                   | 0.65              |                   |                   |                    |  |  |  |
| ACTM A 102   | Nominal strength as governed by                    | N <sub>sa</sub> | lbf<br>(kN)               | 9,685<br>(43.1)                                                      | 17,735<br>(78.9) | 28,250<br>(125 7) | 41,810<br>(186 0) | 57,710<br>(256 7) | 75,710<br>(336.8) | 121,135<br>(538.8) |  |  |  |
| Grade B7     | steel strength (for a single anchor)               | M               | lbf                       | 5,815                                                                | 10,640           | 16,950            | 25,085            | 34,625            | 45,425            | 72,680             |  |  |  |
| and          |                                                    | Vsa             | (kN)                      | (25.9)                                                               | (7.3)            | (75.4)            | (111.6)           | (154.0)           | (202.1)           | (323.3)            |  |  |  |
| ASIM F 1554  | Reduction factor for seismic shear                 | QV,seis         | -                         |                                                                      |                  | -                 | 0.60              |                   |                   |                    |  |  |  |
| Glade 105    | Strength reduction factor for shear <sup>2</sup>   | φ               | -                         |                                                                      |                  |                   | 0.75              |                   |                   |                    |  |  |  |
|              |                                                    | Ψ               | lbf                       | 9,300                                                                | 17,025           | 27,120            | 40,140            | 55,905            | 72,685            | 101,755            |  |  |  |
|              | Nominal strength as                                | INsa            | (kN)                      | (41.4)                                                               | (75.7)           | (120.6)           | (178.5)           | (248.7)           | (323.3)           | (452.6)            |  |  |  |
|              | (for a single anchor)                              | V <sub>sa</sub> | lbf<br>(kN)               | 5,580                                                                | 10,215           | 16,270            | 24,085            | 33,540            | 43,610            | 61,050<br>(271.6)  |  |  |  |
| ASTIVI A 449 | Reduction factor for seismic shear                 | (AV seis        | (KIN)<br>-                | (24.0)                                                               | (43.4)           | (72.4)            | 0.60              | (149.2)           | (194.0)           | (271.0)            |  |  |  |
|              | Strength reduction factor for tension <sup>2</sup> | φ               | -                         |                                                                      |                  |                   | 0.75              |                   |                   |                    |  |  |  |
|              | Strength reduction factor for shear <sup>2</sup>   | φ               | -                         |                                                                      |                  |                   | 0.65              |                   |                   |                    |  |  |  |
|              | Nominal strangth as governed by                    | Nsa             | lbf                       | 5,620                                                                | 10,290           | 16,385            | 24,250            | 33,475            | 43,915            | 70,260             |  |  |  |
|              | steel strength (for a single anchor)               |                 | (KIN)<br>Ibf              | 3 370                                                                | 6 175            | 9.830             | 14 550            | 20.085            | 26,350            | 42 155             |  |  |  |
| ASTM F 568M  | otool of ongen (for a onigio anonor)               | V <sub>sa</sub> | (kN)                      | (15.0)                                                               | (27.5)           | (43.7)            | (64.7)            | (89.3)            | (117.2)           | (187.5)            |  |  |  |
| Class 5.6    | Reduction factor for seismic shear                 | OV,seis         | -                         |                                                                      |                  |                   | 0.60              |                   |                   |                    |  |  |  |
|              | Strength reduction factor for tension <sup>2</sup> | φ               | -                         |                                                                      |                  |                   | 0.65              |                   |                   |                    |  |  |  |
|              | Strength reduction factor for shear                | φ               | -<br>Ibf                  | 7 750                                                                | 1/ 100           | 22,600            | 0.60              | 20.245            | 51 / 95           | <u>82.270</u>      |  |  |  |
|              | Nominal strength as governed by                    | N <sub>sa</sub> | (kN)                      | (34.5)                                                               | (63.1)           | (100.5)           | (126.5)           | (174.6)           | (229.0)           | (366.4)            |  |  |  |
| ASTM F 593   | steel strength (for a single anchor)               | Ve              | lbf                       | 4,650                                                                | 8,515            | 13,560            | 17,060            | 23,545            | 30,890            | 49,425             |  |  |  |
| (Types 304   |                                                    | v sa            | (kN)                      | (20.7)                                                               | (37.9)           | (60.3)            | (75.9)            | (104.7)           | (137.4)           | (219.8)            |  |  |  |
| and 316)     | Reduction factor for seismic shear                 | OV,seis         | -                         |                                                                      |                  |                   | 0.60              |                   |                   |                    |  |  |  |
|              | Strength reduction factor for shear <sup>2</sup>   | φ               | -                         |                                                                      |                  |                   | 0.60              |                   |                   |                    |  |  |  |
| ASTM A 193   | Stongth foddotion labor for onoal                  | Ψ               | lbf                       | 7,365                                                                | 13,480           | 21,470            | 31,775            | 43,860            | 57,545            | 92,065             |  |  |  |
| Grade B8/    | Nominal strength as governed by                    | INsa            | (kN)                      | (32.8)                                                               | (60.0)           | (95.5)            | (141.3)           | (195.1)           | (256.0)           | (409.5)            |  |  |  |
| B8M2,        | steel strength (for a single anchor)               | Vsa             | lbf<br>(kN)               | 4,420                                                                | 8,085            | 12,880            | 19,065            | 26,315            | 34,525            | 55,240             |  |  |  |
| Class 2B     | Beduction factor for seismic shear                 | OV sois         | (KIN)<br>-                | <u>, (10.7) (00.0) (07.3) (04.0) (117.1) (133.0) (243.7)</u><br>0.60 |                  |                   |                   |                   |                   |                    |  |  |  |
| (Types 304   | Strength reduction factor for tension <sup>2</sup> | φ               | -                         |                                                                      |                  |                   | 0.75              |                   |                   |                    |  |  |  |
| and 316)     | Strength reduction factor for shear <sup>2</sup>   | φ               | -                         |                                                                      |                  |                   | 0.65              |                   |                   |                    |  |  |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (

2. The tabulated value of \u03c6 applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \u03c6 must be determined in accordance with ACI 318 D.4.4.

# Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)



DEWAL

ENGINEERED BY Powers

|                                             | Barland Construction                               |                  |                |                 |                  | Nomina            | I Reinforcin      | g Bar Size (      | (Rebar) <sup>1</sup>   |                           |                    |  |  |  |
|---------------------------------------------|----------------------------------------------------|------------------|----------------|-----------------|------------------|-------------------|-------------------|-------------------|------------------------|---------------------------|--------------------|--|--|--|
|                                             | Design Information                                 | Symbol           | Units          | No. 3           | No. 4            | No. 5             | No. 6             | No. 7             | No. 8                  | No. 9                     | No. 10             |  |  |  |
| Rebar nomi                                  | nal outside diameter                               | d                | inch<br>(mm)   | 0.375<br>(9.5)  | 0.500<br>(12.7)  | 0.625<br>(15.9)   | 0.750<br>(19.1)   | 0.875<br>(22.2)   | 1.000<br>(25.4)        | 1.125<br>(28.7)           | 1.250<br>(32.3)    |  |  |  |
| Rebar effect                                | ive cross-sectional area                           | Ase              | inch²<br>(mm²) | 0.110<br>(71.0) | 0.200<br>(129.0) | 0.310<br>(200.0)  | 0.440<br>(283.9)  | 0.600<br>(387.1)  | 0.790<br>(509.7)       | 1.000<br>(645.2)          | 1.270<br>(819.4)   |  |  |  |
|                                             | Nominal strength as governed by                    | N <sub>sa</sub>  | lbf<br>(kN)    | 9,900<br>(44.0) | 18,000<br>(80.1) | 27,900<br>(124.1) | 39,600<br>(176.1) | 54,000<br>(240.2) | 71,100<br>(316.3)      | 90,000<br>(400.3)         | 114,300<br>(508.4) |  |  |  |
| ASTM A615,<br>A767, A996                    | steel strength (for a single anchor)               | V <sub>sa</sub>  | lbf<br>(kN)    | 5,940<br>(26.4) | 10,800<br>(48.0) | 16,740<br>(74.5)  | 23,760<br>(105.7) | 32,400<br>(144.1) | 42,660<br>(189.8)      | 54,000<br>(240.2)         | 68,580<br>(305.0)  |  |  |  |
| Grade ou                                    | Reduction factor for seismic shear                 | <b>∕∕</b> V,seis | -              |                 |                  |                   | 0.                | 65                |                        |                           |                    |  |  |  |
|                                             | Strength reduction factor for tension <sup>2</sup> | $\phi$           | -              |                 | 0.65             |                   |                   |                   |                        |                           |                    |  |  |  |
|                                             | Strength reduction factor for shear <sup>2</sup>   | $\phi$           | -              |                 | 0.60             |                   |                   |                   |                        |                           |                    |  |  |  |
|                                             | Nominal strength as governed by                    | Nsa              | lbf<br>(kN)    | 8,800<br>(39.1) | 16,000<br>(71.2) | 24,800<br>(110.3) | 35,200<br>(156.6) | 48,000<br>(213.5) | 63,200<br>(281.1)      | 80,000<br>(355.9)         | 101,600<br>(452.0) |  |  |  |
| ASTM A706                                   | steel strength (for a single anchor)               | V <sub>sa</sub>  | lbf<br>(kN)    | 5,280<br>(23.5) | 9,600<br>(42.7)  | 14,880<br>(66.2)  | 21,120<br>(94.0)  | 28,800<br>(128.1) | 37,920<br>(168.7)      | 48,000<br>(213.5)         | 60,960<br>(271.2)  |  |  |  |
| Grade 60                                    | Reduction factor for seismic shear                 | <i>O</i> Xv,seis |                |                 |                  |                   | 0.                | 65                |                        |                           |                    |  |  |  |
|                                             | Strength reduction factor for tension <sup>2</sup> | $\phi$           | -              |                 |                  |                   | 0.                | 75                |                        |                           |                    |  |  |  |
|                                             | Strength reduction factor for shear <sup>2</sup>   | $\phi$           | -              |                 |                  | -                 | 0.                | 65                |                        |                           |                    |  |  |  |
|                                             | Nominal strength as governed by                    | Nsa              | lbf<br>(kN)    | 6,600<br>(29.4) | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | In accor          | dance with             | ASTM A 61!                | 5. Grade           |  |  |  |
| ASTM A 615                                  | ASTM A 615                                         | V <sub>sa</sub>  | lbf<br>(kN)    | 3,960<br>(17.6) | 7,200<br>(32.0)  | 11,160<br>(49.6)  | 15,840<br>(70.5)  | 40 bars           | are furnishe<br>throug | ed only in siz<br>h No. 6 | tes No. 3          |  |  |  |
| Grade 40 Reduction factor for seismic shear |                                                    | <i>O</i> ℓv,seis | -              | 0.65            |                  |                   |                   |                   |                        |                           |                    |  |  |  |
|                                             | $\phi$                                             | -                | 0.65           |                 |                  |                   |                   |                   |                        |                           |                    |  |  |  |
|                                             | Strength reduction factor for shear <sup>2</sup>   | $\phi$           | -              |                 | 0.60             |                   |                   |                   |                        |                           |                    |  |  |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4.

#### FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH



#### **Concrete Breakout Design Information for Threaded Rod and in** Holes Drilled with a Hammer Drill and Carbide Bit<sup>1</sup>



CODE LISTED ICC-ES ESR-4027

| Decign Information                                                                         | Sumbol                                                                                                                                    | Unito        | Nominal Rod Diameter (inch)             |                |                   |                                                |                                   |                |                |  |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|----------------|-------------------|------------------------------------------------|-----------------------------------|----------------|----------------|--|--|--|--|
| Design mormation                                                                           | Symbol                                                                                                                                    | Units        | 3/8                                     | 1/2            | 5/8               | 3/4                                            | 7/8                               | 1              | 1-1/4          |  |  |  |  |
| Effectiveness factor for<br>cracked concrete                                               | k <sub>c,cr</sub>                                                                                                                         | -<br>(SI)    |                                         |                |                   | 17<br>(7.1)                                    |                                   |                |                |  |  |  |  |
| Effectiveness factor for<br>uncracked concrete                                             | k <sub>c,uncr</sub>                                                                                                                       | -<br>(SI)    |                                         |                |                   | 24<br>(10.0)                                   |                                   |                |                |  |  |  |  |
| Minimum embedment                                                                          | hef,min                                                                                                                                   | inch<br>(mm) | 2-3/8<br>(60)                           | 2-3/4<br>(70)  | 3-1/8<br>(79)     | 3-1/2<br>(89)                                  | 3-1/2<br>(89)                     | 4<br>(102)     | 5<br>(127)     |  |  |  |  |
| Maximum embedment                                                                          | hef,max                                                                                                                                   | inch<br>(mm) | 7-1/2<br>(191)                          | 10<br>(254)    | 12-1/2<br>(318)   | 15<br>(381)                                    | 17-1/2<br>(445)                   | 20<br>(508)    | 25<br>(635)    |  |  |  |  |
| Minimum anchor spacing                                                                     | Smin                                                                                                                                      | inch<br>(mm) | 1-7/8<br>(48)                           | 2-1/2<br>(64)  | 3-1/8<br>(79)     | 3-5/8<br>(90)                                  | 4-1/8<br>(105)                    | 4-3/4<br>(120) | 5-7/8<br>(150) |  |  |  |  |
| Minimum edge distance <sup>2</sup>                                                         | Cmin                                                                                                                                      | inch<br>(mm) | 1-5/8<br>(41)                           | 1-3/4<br>(44)  | 2<br>(51)         | 2-3/8<br>(60)                                  | 2-1/2<br>(64)                     | 2-3/4<br>(70)  | 3-1/4<br>(80)  |  |  |  |  |
| Minimum edge distance, reduced <sup>2</sup><br>(45% T <sub>max</sub> )                     | Cmin,red                                                                                                                                  | inch<br>(mm) | -                                       | -              | 1-3/4<br>(44)     | 1-3/4<br>(44)                                  | 1-3/4<br>(44)                     | 1-3/4<br>(44)  | 2-3/4<br>(70)  |  |  |  |  |
| Minimum member thickness                                                                   | h <sub>min</sub>                                                                                                                          | inch<br>(mm) | h <sub>ef</sub> +<br>(h <sub>ef</sub> - | 1-1/4<br>⊦ 30) |                   | $h_{ef} + 2d_0 v$                              | where d₀ is hole                  | diameter;      |                |  |  |  |  |
| Critical edge distance—splitting                                                           | 0                                                                                                                                         | inch         |                                         |                | $C_{ac} = h_{ef}$ | $(\frac{\tau_{uncr}}{1160})^{0.4} \cdot [3.1]$ | -0.7 <u>h</u><br><sub>hef</sub> ] |                |                |  |  |  |  |
| (for uncracked concrete only) <sup>3</sup>                                                 | (for uncracked concrete only) <sup>3</sup> $C_{ac} = h_{ef} \cdot \left(\frac{z_{uncr}}{8}\right)^{0.4} \cdot [3.1-0.7 \frac{h}{h_{ef}}]$ |              |                                         |                |                   |                                                |                                   |                |                |  |  |  |  |
| Strength reduction factor for tension,<br>concrete failure modes, Condition B <sup>4</sup> | $\phi$                                                                                                                                    | -            |                                         |                |                   | 0.65                                           |                                   |                |                |  |  |  |  |
| Strength reduction factor for shear, concrete failure modes, Condition B4                  | $\phi$                                                                                                                                    | -            |                                         |                |                   | 0.70                                           |                                   |                |                |  |  |  |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3.  $T_{kuner}$  need not be taken as greater than:  $T_{kuner} = \frac{kuner}{\pi \cdot d}$  and  $\frac{h}{her}$  need not be taken as larger than 2.4.

π•d

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. accordance with ACI 318 D.4.4.

#### Bond Strength Design Information for Threaded Rod in Holes Drilled with a Hammer Drill and Carbide Bit<sup>1</sup>

| Decian Infor                                                                                             | motion                                                | Sumbol                         | Unito          | Nominal Rod Diameter (inch) |                 |                 |                 |                 |                 |                 |  |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|----------------|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
| שמאוו וווער                                                                                              | IIIduuii                                              | Symbol                         | Units          | 3/8                         | 1/2             | 5/8             | 3/4             | 7/8             | 1               | 1-1/4           |  |  |
| Minimum eml                                                                                              | pedment                                               | h <sub>ef,min</sub>            | inch<br>(mm)   | 2-3/8<br>(60)               | 2-3/4<br>(70)   | 3-1/8<br>(79)   | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)      | 5<br>(127)      |  |  |
| Maximum em                                                                                               | bedment                                               | h <sub>ef,max</sub>            | inch<br>(mm)   | 7-1/2<br>(191)              | 10<br>(254)     | 12-1/2<br>(318) | 15<br>(381)     | 17-1/2<br>(445) | 20<br>(508)     | 25<br>(635)     |  |  |
| Temperature Range A<br>122°F (50°C) Maximum                                                              | Characteristic bond strength<br>in cracked concrete   | $	au_{ m k,cr}$                | psi<br>(N/mm²) | 1,041<br>(7.2)              | 1,041<br>(7.2)  | 1,111<br>(7.7)  | 1,219<br>(8.4)  | 1,212<br>(8.4)  | 1,206<br>(8.3)  | 1,146<br>(7.9)  |  |  |
| Long-Term Service Temperature;<br>176°F (80°C) Maximum<br>Short-Term Service Temperature <sup>2</sup>    | Characteristic bond strength<br>in uncracked concrete | $	au_{k,uncr}$                 | psi<br>(N/mm²) | 2,601<br>(17.9)             | 2,415<br>(16.7) | 2,262<br>(15.6) | 2,142<br>(14.8) | 2,054<br>(14.2) | 2,000<br>(13.8) | 1,990<br>(13.7) |  |  |
| Temperature Range B<br>161°F (72°C) Maximum                                                              | Characteristic bond strength<br>in cracked concrete   | $	au_{ m k,cr}$                | psi<br>(N/mm²) | 905<br>(6.2)                | 906<br>(6.2)    | 966<br>(6.7)    | 1060<br>(7.3)   | 1054<br>(7.3)   | 1049<br>(7.2)   | 997<br>(6.9)    |  |  |
| Long-Term Service Temperature;<br>248°F (120°C) Maximum<br>Short-Term Service Temperature <sup>2</sup>   | Characteristic bond strength<br>in uncracked concrete | $	au_{	extsf{k},	extsf{uncr}}$ | psi<br>(N/mm²) | 2,263<br>(15.6)             | 2,101<br>(14.5) | 1,968<br>(13.6) | 1,863<br>(12.8) | 1,787<br>(12.3) | 1,740<br>(12.0) | 1732<br>(11.9)  |  |  |
| <b>Temperature Range C</b><br>212°F (100°C) Maximum                                                      | Characteristic bond strength<br>in cracked concrete   | $	au_{ m k,cr}$                | psi<br>(N/mm²) | 652<br>(4.5)                | 653<br>(4.5)    | 696<br>(4.8)    | 764<br>(5.3)    | 760<br>(5.2)    | 756<br>(5.2)    | 719<br>(5.0)    |  |  |
| Long-Term Service Temperature;<br>320°F (160°C) Maximum<br>Short-Term Service Temperature <sup>2,3</sup> | Characteristic bond strength<br>in uncracked concrete | $	au_{k,uncr}$                 | psi<br>(N/mm2) | 1631<br>(11.2)              | 1514<br>(10.4)  | 1418<br>(9.8)   | 1343<br>(9.3)   | 1288<br>(8.9)   | 1254<br>(8.6)   | 1248<br>(8.6)   |  |  |
| Drucesporete                                                                                             | Anchor Category                                       | -                              | -              |                             |                 |                 | 1               |                 |                 |                 |  |  |
| Dry concrete                                                                                             | Strength reduction factor                             | $\phi_{ m d}$                  | -              |                             |                 |                 | 0.65            |                 |                 |                 |  |  |
| Mater estimated esperate                                                                                 | Anchor Category                                       | -                              | -              |                             |                 |                 | 2               |                 |                 |                 |  |  |
| Water-saturated concrete Strength reduction factor                                                       |                                                       | $\phi_{ws}$                    | -              | 0.55                        |                 |                 |                 |                 |                 |                 |  |  |
| Reduction factor for a                                                                                   | seismic tension <sup>®</sup>                          | $lpha_{ m N,seis}$             | -              | 0.95                        |                 |                 |                 |                 |                 |                 |  |  |

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)<sup>0.10</sup> [For SI: (f'c / 17.2)<sup>0.19</sup>].

2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

3. Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C.





#### Concrete Breakout Design Information for Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit<sup>1</sup>



| Decign Information                                                                         | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unite        |                                         |                |                 | Nominal                                   | Bar Size                    |                       |                 |                |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|----------------|-----------------|-------------------------------------------|-----------------------------|-----------------------|-----------------|----------------|
| Design mormation                                                                           | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units        | #3                                      | #4             | #5              | #6                                        | #7                          | #8                    | #9              | #10            |
| Effectiveness factor for<br>cracked concrete                                               | k <sub>c,cr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>(SI)    |                                         |                |                 | 1<br>(7                                   | 7<br>.1)                    |                       |                 |                |
| Effectiveness factor for<br>uncracked concrete                                             | k <sub>c,uncr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>(SI)    |                                         |                |                 | 2<br>(10                                  | 4<br>).0)                   |                       |                 |                |
| Minimum embedment                                                                          | h <sub>ef,min</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inch<br>(mm) | 2-3/8<br>(60)                           | 2-3/4<br>(70)  | 3-1/8<br>(79)   | 3-1/2<br>(89)                             | 3-1/2<br>(89)               | 4<br>(102)            | 4-1/2<br>(114)  | 5<br>(127)     |
| Maximum embedment                                                                          | hef,max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | inch<br>(mm) | 7-1/2<br>(191)                          | 10<br>(254)    | 12-1/2<br>(318) | 15<br>(381)                               | 17-1/2<br>(445)             | 20<br>(508)           | 22-1/2<br>(572) | 25<br>(635)    |
| Minimum anchor spacing                                                                     | Smin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inch<br>(mm) | 1-7/8<br>(48)                           | 2-1/2<br>(64)  | 3<br>(79)       | 3-5/8<br>(92)                             | 4-1/4<br>(105)              | 4-3/4<br>(120)        | 5-1/4<br>(133)  | 5-7/8<br>(150) |
| Minimum edge distance <sup>2</sup>                                                         | Cmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inch<br>(mm) | 1-5/8<br>(41)                           | 1-3/4<br>(44)  | 2<br>(51)       | 2-3/8<br>(60)                             | 2-1/2<br>(64)               | 2-3/4<br>(70)         | 3<br>(75)       | 3-1/4<br>(80)  |
| Minimum edge distance, reduced <sup>2</sup>                                                | Cmin,red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inch<br>(mm) | -                                       | -              | 1-3/4<br>(44)   | 1-3/4<br>(44)                             | 1-3/4<br>(44)               | 1-3/4<br>(44)         | 2-3/4<br>(70)   | 2-3/4<br>(70)  |
| Minimum member thickness                                                                   | hmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inch<br>(mm) | h <sub>ef</sub> +<br>(h <sub>ef</sub> ⊣ | 1-1/4<br>⊦ 30) |                 | hef +                                     | 2d₀ where d                 | lo is hole diam       | ieter;          |                |
| Critical edge distance—splitting                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inch         |                                         |                | Cac             | $= h_{ef} \cdot (rac{	au_{uncr}}{1160})$ | <sup>0.4</sup> · [3.1-0.7 ] | h<br><sub>hef</sub> ] |                 |                |
| (for uncracked concrete only) <sup>3</sup>                                                 | $\frac{c_{\text{ec}}}{(\text{mm})} = \frac{c_{\text{ec}}}{c_{\text{ec}}} + \frac{c_{\text{ec}}}{(1 - 1)^{0.4}} + \frac{c_{\text{ec}}}{(3 - 1)^{0.4}} + \frac{c_{\text{ec}}}{($ |              |                                         |                |                 |                                           |                             |                       |                 |                |
| Strength reduction factor for tension,<br>concrete failure modes, Condition B <sup>₄</sup> | $\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            |                                         |                |                 | 0.                                        | 65                          |                       |                 |                |
| Strength reduction factor for shear,<br>concrete failure modes, Condition B <sup>4</sup>   | $\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            |                                         |                |                 | 0.                                        | 70                          |                       |                 |                |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3.  $\tau_{k,uncr}$  need not be taken as greater than:  $\tau_{k,uncr} = \frac{kuncr \cdot \sqrt{h_{ef} \cdot f'_{C}}}{\sqrt{h_{ef} \cdot f'_{C}}}$  and  $\frac{h}{h_{ef}}$  need not be taken as larger than 2.4.

 $\frac{1}{\pi \cdot d} = \frac{1}{he}$ 

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

## Bond Strength Design Information for Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit

| Design Infor                                                                                           | motion                                                | Cumhal              | Unite          | Nominal Bar Size |                 |                   |                 |                   |                 |                   |                 |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|----------------|------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|--|
| Design infor                                                                                           | mauon                                                 | Symbol              | Units          | #3               | #4              | #5                | #6              | #7                | #8              | #9                | #10             |  |
| Minimum emt                                                                                            | pedment                                               | h <sub>ef,min</sub> | inch<br>(mm)   | 2-3/8<br>(60.0)  | 2-3/4<br>(70.0) | 3-1/8<br>(79.0)   | 3-1/2<br>(89.0) | 3-1/2<br>(89.0)   | 4<br>(102.0)    | 4-1/2<br>(114.0)  | 5<br>(127.0)    |  |
| Maximum em                                                                                             | bedment                                               | h <sub>ef,max</sub> | inch<br>(mm)   | 7-1/2<br>(191.0) | 10<br>(254.0)   | 12-1/2<br>(318.0) | 15<br>(381.0)   | 17-1/2<br>(445.0) | 20<br>(508.0)   | 22-1/2<br>(572.0) | 25<br>(635.0)   |  |
| Temperature Range A<br>122°F (50°C) Maximum                                                            | Characteristic bond strength<br>in cracked concrete   | $	au_{ m k,cr}$     | psi<br>(N/mm²) | 1,088<br>(7.5)   | 1,053<br>(7.3)  | 1,128<br>(7.8)    | 1,169<br>(8.1)  | 1,174<br>(8.1)    | 1,156<br>(8.0)  | 1,141<br>(7.9)    | 1,164<br>(8.0)  |  |
| Long-Term Service Temperature;<br>176°F (80°C) Maximum<br>Short-Term Service Temperature <sup>2</sup>  | Characteristic bond strength<br>in uncracked concrete | $	au_{k,uncr}$      | psi<br>(N/mm²) | 2,200<br>(15.2)  | 2,101<br>(14.5) | 2,028<br>(14.0)   | 1,969<br>(13.6) | 1,921<br>(13.2)   | 1,881<br>(13.0) | 1,846<br>(12.7)   | 1,815<br>(12.5) |  |
| <b>Temperature Range B</b><br>161°F (72°C) Maximum                                                     | Characteristic bond strength<br>in cracked concrete   | $	au_{ m k,cr}$     | psi<br>(N/mm²) | 947<br>(6.5)     | 916<br>(6.3)    | 982<br>(6.8)      | 1,017<br>(7.0)  | 1,021<br>(7.0)    | 1,006<br>(6.9)  | 993<br>(6.8)      | 1,012<br>(7.0)  |  |
| Long-Term Service Temperature;<br>248°F (120°C) Maximum<br>Short-Term Service Temperature <sup>2</sup> | Characteristic bond strength<br>in uncracked concrete | $	au_{k,uncr}$      | psi<br>(N/mm²) | 1,914<br>(13.2)  | 1,828<br>(12.6) | 1,764<br>(12.2)   | 1,713<br>(11.8) | 1,672<br>(11.5)   | 1,636<br>(11.3) | 1,616<br>(11.1)   | 1,579<br>(10.9) |  |
| Temperature Range C<br>212°F (100°C) Maximum Long-                                                     | Characteristic bond strength<br>in cracked concrete   | $	au_{ m k,cr}$     | psi<br>(N/mm²) | 682<br>(4.7)     | 660<br>(4.6)    | 707<br>(4.9)      | 733<br>(5.1)    | 736<br>(5.1)      | 725<br>(5.0)    | 715<br>(4.9)      | 730<br>(5.0)    |  |
| Term Service Temperature; 320°F<br>(160°C) Maximum Short-Term<br>Service Temperature <sup>2,3</sup>    | Characteristic bond strength<br>in uncracked concrete | $	au_{k,uncr}$      | psi<br>(N/mm²) | 1,379<br>(9.5)   | 1,317<br>(9.1)  | 1,271<br>(8.8)    | 1,235<br>(8.5)  | 1,205<br>(8.3)    | 1,179<br>(8.1)  | 1,157<br>(8.0)    | 1,138<br>(7.8)  |  |
| Day concrete                                                                                           | Anchor Category                                       | -                   | -              |                  | -               |                   | 1               | 1                 |                 |                   |                 |  |
| Strength reduction factor                                                                              |                                                       | $\phi_{ m d}$       | -              |                  |                 |                   | 0.0             | 65                |                 |                   |                 |  |
| Water-saturated concrete                                                                               | Anchor Category                                       | -                   | -              |                  |                 |                   | 2               | 2                 |                 |                   |                 |  |
| Water-saturated concrete Strength reduction factor                                                     |                                                       |                     | -              | 0.55             |                 |                   |                 |                   |                 |                   |                 |  |
| Reduction factor for s                                                                                 | <i>C</i> ∕N,seis                                      | -                   | 0.             | 0.95 1.00        |                 |                   |                 |                   |                 |                   |                 |  |

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)<sup>10</sup> [For SI: (f'c / 17.2)<sup>10</sup>].

2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

 Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C.

ADHESIVES

CODE LISTED ICC-ES ESR-4027

**ADHESIVES** 

Acrylic Injection Adhesive Anchoring System

AC200+



Tension and Shear Design Strength for Threaded Rod Installed in Uncracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup> **Minimum Concrete Compressive Strength** 

| Nominal           | Embed.                | f'c = 2,                                               | 500 psi                                                  | f'c = 3,                                                    | 000 psi                                                    | f'c = 4,                                                          | 000 psi                                                  | f <sup>i</sup> C = 6,                                       | 000 psi                                                    | f'c = 8,                                                          | 000 psi                                                  |
|-------------------|-----------------------|--------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|
| Rod Size<br>(in.) | Depth<br>hef<br>(in.) | $\phi_{N_{Gb}}$<br>or $\phi_{Na}$<br>Tension<br>(lbs.) | φν <sub>φ</sub><br>or φν <sub>φ</sub><br>Shear<br>(lbs.) | φ <sub>Ncb</sub><br>or φ <sub>Na</sub><br>Tension<br>(lbs.) | φ <sub>νcb</sub><br>or φ <sub>νcp</sub><br>Shear<br>(lbs.) | $\phi_{\text{Ncb}}$<br>or $\phi_{\text{Na}}$<br>Tension<br>(lbs.) | $\phi_{ m Vcb}$<br>or $\phi_{ m Vcp}$<br>Shear<br>(lbs.) | φ <sub>Ncb</sub><br>or φ <sub>Na</sub><br>Tension<br>(lbs.) | φ <sub>νcb</sub><br>or φ <sub>νcp</sub><br>Shear<br>(lbs.) | $\phi_{\text{Ncb}}$<br>or $\phi_{\text{Na}}$<br>Tension<br>(lbs.) | $\phi_{ m Vcb}$<br>or $\phi_{ m Vcp}$<br>Shear<br>(lbs.) |
|                   | 2-3/8                 | 2,855                                                  | 2,570                                                    | 3,125                                                       | 2,920                                                      | 3,610                                                             | 3,575                                                    | 4,425                                                       | 4,745                                                      | 5,105                                                             | 5,500                                                    |
| 2/0               | 3                     | 4,055                                                  | 4,010                                                    | 4,440                                                       | 4,555                                                      | 5,125                                                             | 5,570                                                    | 6,280                                                       | 7,400                                                      | 6,710                                                             | 8,775                                                    |
| 3/0               | 4-1/2                 | 7,445                                                  | 7,935                                                    | 8,155                                                       | 9,015                                                      | 9,395                                                             | 11,015                                                   | 9,785                                                       | 13,710                                                     | 10,070                                                            | 16,015                                                   |
|                   | 7-1/2                 | 14,940                                                 | 18,190                                                   | 15,215                                                      | 20,070                                                     | 15,655                                                            | 23,445                                                   | 16,305                                                      | 29,180                                                     | 16,780                                                            | 34,085                                                   |
|                   | 2-3/4                 | 3,555                                                  | 3,305                                                    | 3,895                                                       | 3,755                                                      | 4,500                                                             | 4,590                                                    | 5,510                                                       | 6,095                                                      | 6,365                                                             | 7,455                                                    |
| 1/0               | 4                     | 6,240                                                  | 6,700                                                    | 6,835                                                       | 7,610                                                      | 7,895                                                             | 9,310                                                    | 9,665                                                       | 12,365                                                     | 11,080                                                            | 15,080                                                   |
| 1/2               | 6                     | 11,465                                                 | 13,235                                                   | 12,560                                                      | 15,035                                                     | 14,500                                                            | 18,390                                                   | 16,150                                                      | 23,515                                                     | 16,620                                                            | 27,470                                                   |
|                   | 10                    | 24,660                                                 | 31,215                                                   | 25,110                                                      | 34,445                                                     | 25,845                                                            | 40,235                                                   | 26,915                                                      | 50,085                                                     | 27,700                                                            | 58,500                                                   |
|                   | 3-1/8                 | 4,310                                                  | 4,120                                                    | 4,720                                                       | 4,680                                                      | 5,450                                                             | 5,720                                                    | 6,675                                                       | 7,600                                                      | 7,710                                                             | 9,295                                                    |
| E /0              | 5                     | 8,720                                                  | 9,985                                                    | 9,555                                                       | 11,345                                                     | 11,030                                                            | 13,875                                                   | 13,510                                                      | 18,430                                                     | 15,600                                                            | 22,540                                                   |
| 5/0               | 7-1/2                 | 16,020                                                 | 19,725                                                   | 17,550                                                      | 22,410                                                     | 20,265                                                            | 27,410                                                   | 23,635                                                      | 35,695                                                     | 24,325                                                            | 41,695                                                   |
|                   | 12-1/2                | 34,470                                                 | 46,550                                                   | 36,750                                                      | 52,320                                                     | 37,825                                                            | 61,110                                                   | 39,390                                                      | 76,070                                                     | 40,540                                                            | 87,310                                                   |
|                   | 3-1/2                 | 5,105                                                  | 5,015                                                    | 5,595                                                       | 5,700                                                      | 6,460                                                             | 6,970                                                    | 7,910                                                       | 9,255                                                      | 9,135                                                             | 11,320                                                   |
| 2//               | 6                     | 11,465                                                 | 13,595                                                   | 12,560                                                      | 15,445                                                     | 14,500                                                            | 18,895                                                   | 17,760                                                      | 25,095                                                     | 20,505                                                            | 30,695                                                   |
| 5/4               | 9                     | 21,060                                                 | 26,855                                                   | 23,070                                                      | 30,510                                                     | 26,640                                                            | 37,320                                                   | 32,225                                                      | 49,325                                                     | 33,165                                                            | 57,615                                                   |
|                   | 15                    | 45,315                                                 | 63,370                                                   | 49,640                                                      | 72,000                                                     | 51,575                                                            | 84,420                                                   | 53,710                                                      | 105,080                                                    | 55,280                                                            | 119,060                                                  |
|                   | 3-1/2                 | 5,105                                                  | 4,930                                                    | 5,595                                                       | 5,605                                                      | 6,460                                                             | 6,855                                                    | 7,910                                                       | 9,100                                                      | 9,135                                                             | 11,130                                                   |
| 7/9               | 7                     | 14,445                                                 | 16,605                                                   | 15,825                                                      | 18,865                                                     | 18,275                                                            | 23,075                                                   | 22,380                                                      | 30,650                                                     | 25,840                                                            | 37,485                                                   |
| 110               | 10-1/2                | 26,540                                                 | 32,800                                                   | 29,070                                                      | 37,265                                                     | 33,570                                                            | 45,580                                                   | 41,115                                                      | 60,540                                                     | 43,290                                                            | 71,360                                                   |
|                   | 17-1/2                | 57,100                                                 | 77,405                                                   | 62,550                                                      | 87,940                                                     | 67,315                                                            | 104,575                                                  | 70,100                                                      | 130,170                                                    | 72,150                                                            | 152,045                                                  |
|                   | 4                     | 6,240                                                  | 6,115                                                    | 6,835                                                       | 6,945                                                      | 7,895                                                             | 8,495                                                    | 9,665                                                       | 11,280                                                     | 11,160                                                            | 13,800                                                   |
| 1                 | 8                     | 17,650                                                 | 19,750                                                   | 19,335                                                      | 22,435                                                     | 22,325                                                            | 27,440                                                   | 27,340                                                      | 36,450                                                     | 31,570                                                            | 44,580                                                   |
|                   | 12                    | 32,425                                                 | 39,005                                                   | 35,520                                                      | 44,315                                                     | 41,015                                                            | 54,200                                                   | 50,230                                                      | 71,990                                                     | 55,055                                                            | 86,235                                                   |
|                   | 20                    | 69,765                                                 | 92,055                                                   | 76,425                                                      | 104,585                                                    | 85,610                                                            | 126,375                                                  | 89,155                                                      | 157,310                                                    | 91,755                                                            | 183,745                                                  |
|                   | 5                     | 8,720                                                  | 8,170                                                    | 9,555                                                       | 9,285                                                      | 11,030                                                            | 11,355                                                   | 13,510                                                      | 15,085                                                     | 15,600                                                            | 18,450                                                   |
| 1 1 / /           | 10                    | 24,665                                                 | 26,380                                                   | 27,020                                                      | 29,975                                                     | 31,200                                                            | 36,660                                                   | 38,210                                                      | 48,690                                                     | 44,125                                                            | 59,555                                                   |
| 1-1/4             | 15                    | 45,315                                                 | 52,110                                                   | 49,640                                                      | 59,200                                                     | 57,320                                                            | 72,410                                                   | 70,200                                                      | 96,175                                                     | 81,060                                                            | 117,630                                                  |
|                   | 25                    | 97,500                                                 | 122,990                                                  | 106,805                                                     | 139,730                                                    | 123,330                                                           | 170,905                                                  | 138,610                                                     | 219,325                                                    | 142,655                                                           | 256,185                                                  |

🔲 - Concrete Breakout Strength 📃 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,  $h_a = h_{min}$ , and with the following conditions:

- Ca1 is greater than or equal to the critical edge distance, Cac

- Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors ( $\phi$ ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.



#### Tension and Shear Design Strength in Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>



|                                                      |                       | Minimum Concrete Compressive Strength                       |                                                              |                                                        |                                                                  |                                                         |                                                          |                                                                                                 |                                                          |                                                |                                                          |  |
|------------------------------------------------------|-----------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|--|
| Nominal                                              | Embed.                | f'c = 2,                                                    | 500 psi                                                      | f'c = 3,                                               | 000 psi                                                          | f'c = 4,                                                | 000 psi                                                  | f'C = 6,                                                                                        | 000 psi                                                  | f'c = 8,                                       | 000 psi                                                  |  |
| Rod Size<br>(in.)                                    | Depth<br>hef<br>(in.) | Ø <sub>Nçb</sub><br>or Ø <sub>Na</sub><br>Tension<br>(Ibs.) | φ <sub>νς</sub> ,<br>or φ <sub>νς</sub> ,<br>Shear<br>(lbs.) | $\phi_{N_{Cb}}$<br>or $\phi_{Na}$<br>Tension<br>(lbs.) | $\phi_{\text{Vcb}}$<br>or $\phi_{\text{Vcp}}$<br>Shear<br>(lbs.) | $\phi_{N_{C^b}}$<br>or $\phi_{Na}$<br>Tension<br>(lbs.) | $\phi_{V_{CP}}$<br>or $\phi_{V_{CP}}$<br>Shear<br>(lbs.) | $\phi_{\scriptscriptstyle  m Ncb}$<br>or $\phi_{\scriptscriptstyle  m Na}$<br>Tension<br>(lbs.) | $\phi_{V_{CP}}$<br>or $\phi_{V_{CP}}$<br>Shear<br>(lbs.) | Ø <sub>№6</sub><br>or Ø№a<br>Tension<br>(Ibs.) | $\phi_{ m Vcb}$<br>or $\phi_{ m Vcp}$<br>Shear<br>(lbs.) |  |
|                                                      | 2-3/8                 | 1,895                                                       | 1,835                                                        | 1,930                                                  | 2,075                                                            | 1,985                                                   | 2,135                                                    | 2,065                                                                                           | 2,225                                                    | 2,125                                          | 2,290                                                    |  |
| 3/8 -                                                | 3                     | 2,390                                                       | 2,865                                                        | 2,435                                                  | 3,255                                                            | 2,505                                                   | 3,980                                                    | 2,610                                                                                           | 5,285                                                    | 2,685                                          | 5,785                                                    |  |
|                                                      | 4-1/2                 | 3,585                                                       | 5,665                                                        | 3,655                                                  | 6,440                                                            | 3,760                                                   | 7,865                                                    | 3,915                                                                                           | 8,435                                                    | 4,030                                          | 8,680                                                    |  |
|                                                      | 7-1/2                 | 5,980                                                       | 12,875                                                       | 6,090                                                  | 13,115                                                           | 6,265                                                   | 13,495                                                   | 6,525                                                                                           | 14,055                                                   | 6,715                                          | 14,465                                                   |  |
| 2-3                                                  | 2-3/4                 | 2,520                                                       | 2,360                                                        | 2,760                                                  | 2,680                                                            | 3,065                                                   | 3,280                                                    | 3,190                                                                                           | 4,355                                                    | 3,285                                          | 5,325                                                    |  |
| 1/0                                                  | 4                     | 4,250                                                       | 4,785                                                        | 4,330                                                  | 5,435                                                            | 4,455                                                   | 6,650                                                    | 4,640                                                                                           | 8,830                                                    | 4,775                                          | 10,285                                                   |  |
| 1/2                                                  | 6                     | 6,375                                                       | 9,455                                                        | 6,495                                                  | 10,740                                                           | 6,685                                                   | 13,135                                                   | 6,960                                                                                           | 14,990                                                   | 7,165                                          | 15,430                                                   |  |
|                                                      | 10                    | 10,630                                                      | 22,300                                                       | 10,825                                                 | 23,315                                                           | 11,140                                                  | 23,995                                                   | 11,600                                                                                          | 24,985                                                   | 11,940                                         | 25,715                                                   |  |
| 3-1/8           5/8           7-1/2           12-1/2 | 3-1/8                 | 3,050                                                       | 2,940                                                        | 3,345                                                  | 3,340                                                            | 3,860                                                   | 4,085                                                    | 4,730                                                                                           | 5,430                                                    | 4,980                                          | 6,640                                                    |  |
|                                                      | 5                     | 6,175                                                       | 7,135                                                        | 6,765                                                  | 8,105                                                            | 7,430                                                   | 9,910                                                    | 7,740                                                                                           | 13,165                                                   | 7,965                                          | 16,100                                                   |  |
|                                                      | 7-1/2                 | 10,635                                                      | 14,090                                                       | 10,830                                                 | 16,005                                                           | 11,145                                                  | 19,575                                                   | 11,610                                                                                          | 25,000                                                   | 11,945                                         | 25,730                                                   |  |
|                                                      | 12-1/2                | 17,725                                                      | 33,250                                                       | 18,050                                                 | 37,370                                                           | 18,575                                                  | 40,010                                                   | 19,345                                                                                          | 41,670                                                   | 19,910                                         | 42,885                                                   |  |
| 3-                                                   | 3-1/2                 | 3,620                                                       | 3,580                                                        | 3,965                                                  | 4,070                                                            | 4,575                                                   | 4,980                                                    | 5,605                                                                                           | 6,610                                                    | 6,470                                          | 8,085                                                    |  |
| 2//                                                  | 6                     | 8,120                                                       | 9,710                                                        | 8,895                                                  | 11,035                                                           | 10,270                                                  | 13,495                                                   | 12,225                                                                                          | 17,925                                                   | 12,585                                         | 21,925                                                   |  |
| 3/4                                                  | 9                     | 14,920                                                      | 19,185                                                       | 16,340                                                 | 21,795                                                           | 17,610                                                  | 26,655                                                   | 18,340                                                                                          | 35,230                                                   | 18,875                                         | 40,655                                                   |  |
|                                                      | 15                    | 28,005                                                      | 45,265                                                       | 28,520                                                 | 51,425                                                           | 29,350                                                  | 60,300                                                   | 30,565                                                                                          | 65,835                                                   | 31,460                                         | 67,755                                                   |  |
|                                                      | 3-1/2                 | 3,620                                                       | 3,525                                                        | 3,965                                                  | 4,000                                                            | 4,575                                                   | 4,895                                                    | 5,605                                                                                           | 6,500                                                    | 6,470                                          | 7,950                                                    |  |
| 7/9                                                  | 7                     | 10,230                                                      | 11,860                                                       | 11,210                                                 | 13,475                                                           | 12,945                                                  | 16,485                                                   | 15,850                                                                                          | 21,895                                                   | 17,030                                         | 26,775                                                   |  |
| 170                                                  | 10-1/2                | 18,800                                                      | 23,430                                                       | 20,590                                                 | 26,620                                                           | 23,780                                                  | 32,555                                                   | 24,820                                                                                          | 43,240                                                   | 25,545                                         | 50,970                                                   |  |
|                                                      | 17-1/2                | 37,900                                                      | 55,290                                                       | 38,595                                                 | 62,815                                                           | 39,720                                                  | 74,695                                                   | 41,365                                                                                          | 89,095                                                   | 42,570                                         | 91,695                                                   |  |
|                                                      | 4                     | 4,420                                                       | 4,365                                                        | 4,840                                                  | 4,960                                                            | 5,590                                                   | 6,065                                                    | 6,845                                                                                           | 8,060                                                    | 7,905                                          | 9,855                                                    |  |
| 1                                                    | 8                     | 12,500                                                      | 14,105                                                       | 13,695                                                 | 16,025                                                           | 15,815                                                  | 19,600                                                   | 19,365                                                                                          | 26,035                                                   | 22,130                                         | 31,845                                                   |  |
| 1                                                    | 12                    | 22,965                                                      | 27,860                                                       | 25,160                                                 | 31,655                                                           | 29,050                                                  | 38,715                                                   | 32,255                                                                                          | 51,425                                                   | 33,200                                         | 61,595                                                   |  |
|                                                      | 20                    | 49,255                                                      | 65,755                                                       | 50,160                                                 | 74,705                                                           | 51,625                                                  | 90,270                                                   | 53,760                                                                                          | 112,365                                                  | 55,330                                         | 119,170                                                  |  |
|                                                      | 5                     | 6,175                                                       | 5,835                                                        | 6,765                                                  | 6,630                                                            | 7,815                                                   | 8,110                                                    | 9,570                                                                                           | 10,775                                                   | 11,050                                         | 13,175                                                   |  |
| 1-1//                                                | 10                    | 17,470                                                      | 18,845                                                       | 19,140                                                 | 21,410                                                           | 22,100                                                  | 26,185                                                   | 27,065                                                                                          | 34,780                                                   | 31,255                                         | 42,540                                                   |  |
| 1-1/4                                                | 15                    | 32,095                                                      | 37,220                                                       | 35,160                                                 | 42,285                                                           | 40,600                                                  | 51,720                                                   | 47,895                                                                                          | 68,695                                                   | 49,290                                         | 84,020                                                   |  |
|                                                      | 25                    | 69,060                                                      | 87,850                                                       | 74,475                                                 | 99,810                                                           | 76,650                                                  | 122,075                                                  | 79,820                                                                                          | 156,660                                                  | 82,150                                         | 176,940                                                  |  |

Concrete Breakout Strength - Bond Strength/Pryout Strength

 Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness, h<sub>a</sub> = h<sub>min</sub>, and with the following conditions:

- Ca1 is greater than or equal to the critical edge distance, Cac

- Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.



Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>



- Concrete Breakout Strength - Bond Strength/Pryout Strength

 Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness, h<sub>a</sub> = h<sub>min</sub>, and with the following conditions:

- Ca1 is greater than or equal to the critical edge distance, Cac

- Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.







Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>



Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions:

- can be greater than or equal to the children edge d-  $c_{a2}$  is greater than or equal to 1.5 times  $c_{a1}$ .

Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (\$\phi\$) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

 Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.



#### Tension Design of Steel Elements (Steel Strength)<sup>1,2</sup>

| Steel Elements - Threaded Rod and Reinforcing Bar |                                           |                           |                                                         |                           |                            |                                                        |                                                                                 |                                |                                |                                |
|---------------------------------------------------|-------------------------------------------|---------------------------|---------------------------------------------------------|---------------------------|----------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Nominal<br>Rod/Rebar<br>Size                      | ASTM A36<br>and ASTM<br>F1554<br>Grade 36 | ASTM F1554<br>Grade 55    | ASTM A193<br>Grade B7<br>and<br>ASTM F1554<br>Grade 105 | ASTM A449                 | ASTM<br>F568M<br>Class 5.8 | ASTM<br>F593 CW<br>Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M2, Class<br>2B Stainless<br>(Types 304<br>and 316) | ASTM A615<br>Grade 60<br>Rebar | ASTM A706<br>Grade 60<br>Rebar | ASTM A615<br>Grade 40<br>Rebar |
| (IN. OF NO.)                                      | ØNsa<br>Tension<br>(Ibs.)                 | ØN₅a<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)                               | ØNsa<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)  | ØNsa<br>Tension<br>(Ibs.)                              | ØNsa<br>Tension<br>(Ibs.)                                                       | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      |
| 3/8 or #3                                         | 3,370                                     | 4,360                     | 7,265                                                   | 6,975                     | 3,655                      | 5,040                                                  | 5,525                                                                           | 6,435                          | 6,600                          | 4,290                          |
| 1/2 or #4                                         | 6,175                                     | 7,980                     | 13,300                                                  | 12,770                    | 6,690                      | 9,225                                                  | 10,110                                                                          | 11,700                         | 12,000                         | 7,800                          |
| 5/8 or #5                                         | 9,835                                     | 12,715                    | 21,190                                                  | 20,340                    | 10,650                     | 14,690                                                 | 16,105                                                                          | 18,135                         | 18,600                         | 12,090                         |
| 3/4 or #6                                         | 14,550                                    | 18,815                    | 31,360                                                  | 30,105                    | 15,765                     | 18,480                                                 | 23,830                                                                          | 25,740                         | 26,400                         | 17,160                         |
| 7/8 or #7                                         | 20,085                                    | 25,970                    | 43,285                                                  | 41,930                    | 21,760                     | 25,510                                                 | 32,895                                                                          | 35,100                         | 36,000                         |                                |
| 1 or #8                                           | 26,350                                    | 34,070                    | 56,785                                                  | 54,515                    | 28,545                     | 33,465                                                 | 43,160                                                                          | 46,215                         | 47,400                         |                                |
| #9                                                |                                           |                           |                                                         |                           |                            |                                                        |                                                                                 | 58,500                         | 60,000                         |                                |
| 1-1/4 or #10                                      | 42,160                                    | 54,510                    | 90,850                                                  | 76,315                    | 45,670                     | 53,540                                                 | 69,050                                                                          | 74,295                         | 76,200                         |                                |
| Ctool Strongth                                    |                                           |                           |                                                         |                           |                            |                                                        |                                                                                 |                                |                                |                                |

1. Steel tensile design strength according to ACI 318-14 Ch.17,  $\phi_{Nsa} = \phi \bullet_{Ase,N} \bullet_{futa}$ 

The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

#### Shear Design of Steel Elements (Steel Strength)<sup>1,2</sup>

|                              | Steel Elements - Threaded Rod and Reinforcing Bar |                         |                                                         |                         |                            |                                                        |                                                                                 |                                |                                |                                |
|------------------------------|---------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------------|----------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Nominal<br>Rod/Rebar<br>Size | ASTM A36<br>and ASTM<br>F1554<br>Grade 36         | ASTM F1554<br>Grade 55  | ASTM A193<br>Grade B7<br>and<br>ASTM F1554<br>Grade 105 | ASTM A449               | ASTM<br>F568M<br>Class 5.8 | ASTM<br>F593 CW<br>Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M2, Class<br>2B Stainless<br>(Types 304<br>and 316) | ASTM A615<br>Grade 60<br>Rebar | ASTM A706<br>Grade 60<br>Rebar | ASTM A615<br>Grade 40<br>Rebar |
| (                            | ØVsa<br>Shear<br>(Ibs.)                           | ØV₅a<br>Shear<br>(lbs.) | ØV₃<br>Shear<br>(Ibs.)                                  | ØV₅a<br>Shear<br>(lbs.) | ØVsa<br>Shear<br>(Ibs.)    | ØV₅a<br>Shear<br>(lbs.)                                | ØV≊<br>Shear<br>(Ibs.)                                                          | ØV∝<br>Shear<br>(Ibs.)         | ØV≊<br>Shear<br>(Ibs.)         | ØV₃<br>Shear<br>(Ibs.)         |
| 3/8 or #3                    | 1,755                                             | 2,265                   | 3,775                                                   | 3,625                   | 2,020                      | 2,790                                                  | 2,870                                                                           | 3,565                          | 3,430                          | 2,375                          |
| 1/2 or #4                    | 3,210                                             | 4,150                   | 6,915                                                   | 6,640                   | 3,705                      | 5,110                                                  | 5,255                                                                           | 6,480                          | 6,240                          | 4,320                          |
| 5/8 or #5                    | 5,115                                             | 6,610                   | 11,020                                                  | 10,575                  | 5,900                      | 8,135                                                  | 8,375                                                                           | 10,045                         | 9,670                          | 6,695                          |
| 3/4 or #6                    | 7,565                                             | 9,785                   | 16,305                                                  | 15,655                  | 8,730                      | 10,235                                                 | 12,390                                                                          | 14,255                         | 13,730                         | 9,505                          |
| 7/8 or #7                    | 10,445                                            | 13,505                  | 22,505                                                  | 21,805                  | 12,050                     | 14,130                                                 | 17,105                                                                          | 19,440                         | 18,720                         |                                |
| 1 or #8                      | 13,700                                            | 17,715                  | 29,525                                                  | 28,345                  | 15,810                     | 18,535                                                 | 22,445                                                                          | 25,595                         | 24,650                         |                                |
| #9                           | -                                                 |                         |                                                         |                         |                            |                                                        |                                                                                 | 32,400                         | 31,200                         |                                |
| 1-1/4 or #10                 | 21,920                                            | 28,345                  | 47,250                                                  | 39,685                  | 25,295                     | 29,655                                                 | 35,905                                                                          | 41,150                         | 39,625                         |                                |
| - Steel Strength             |                                                   |                         |                                                         |                         |                            |                                                        |                                                                                 |                                |                                |                                |

1. Steel shear design strength according to ACI 318-14 Ch.17,  $\phi$ Vsa =  $\phi \bullet 0.60 \bullet A_{se,V} \bullet f_{uta}$ 

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

#### **Development Lengths for Common Reinforcing Bar Connections**<sup>1,2,3,6</sup>

| Design Information                                              | Symbol | Reference<br>Standard                                           | Units        | Nominal Rebar Size (US) |               |                 |                |                 |               |                 |                |
|-----------------------------------------------------------------|--------|-----------------------------------------------------------------|--------------|-------------------------|---------------|-----------------|----------------|-----------------|---------------|-----------------|----------------|
| Design mormation                                                | Symbol |                                                                 |              | #3                      | #4            | #5              | #6             | #7              | #8            | #9              | #10            |
| Nominal rebar diameter                                          | d⊾     | ASTM A615/A706,                                                 | in.<br>(mm)  | 0.375<br>(9.5)          | 0.5<br>(12.7) | 0.625<br>(15.9) | 0.75<br>(19.1) | 0.875<br>(22.2) | 1<br>(25.4)   | 1.128<br>(28.6) | 1.27<br>(32.3) |
| Nominal rebar area                                              | Ab     | 60  ksi                                                         | in²<br>(mm²) | 0.11<br>(71)            | 0.2<br>(127)  | 0.31<br>(198)   | 0.44<br>(285)  | 0.6<br>(388)    | 0.79<br>(507) | 1<br>(645)      | 1.27<br>(817)  |
| Development length in $f'c = 2,500$ psi concrete <sup>4,5</sup> |        | ACI 318-14<br>25.4.2.3 or ACI<br>318-11 12.2.3 as<br>applicable | in.<br>(mm)  | 12<br>(305)             | 14.4<br>(366) | 18<br>(457)     | 21.6<br>(549)  | 31.5<br>(800)   | 36<br>(914)   | 40.6<br>(1031)  | 45.7<br>(1161) |
| Development length in $f'c = 3,000$ psi concrete <sup>4,5</sup> |        |                                                                 | in.<br>(mm)  | 12<br>(305)             | 13.1<br>(334) | 16.4<br>(417)   | 19.7<br>(501)  | 28.8<br>(730)   | 32.9<br>(835) | 37.1<br>(942)   | 41.7<br>(1060) |
| Development length in $f'c = 4,000$ psi concrete <sup>4,5</sup> | la     |                                                                 | in.<br>(mm)  | 12<br>(305)             | 12<br>(305)   | 14.2<br>(361)   | 17.1<br>(434)  | 24.9<br>(633)   | 28.5<br>(723) | 32.1<br>(815)   | 36.2<br>(920)  |
| Development length in $f'c = 6,000$ psi concrete <sup>4,5</sup> |        |                                                                 | in.<br>(mm)  | 12<br>(305)             | 12<br>(305)   | 12<br>(305)     | 13.9<br>(354)  | 20.3<br>(516)   | 23.2<br>(590) | 26.2<br>(666)   | 29.5<br>(750)  |
| Development length in $f'c = 8,000$ psi concrete <sup>4,5</sup> |        |                                                                 | in.<br>(mm)  | 12<br>(305)             | 12<br>(305)   | 12<br>(305)     | 12.1<br>(307)  | 17.6<br>(443)   | 20.1<br>(511) | 22.7<br>(577)   | 25.6<br>(649)  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa; for pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

1. Calculated development lengths in accordance with ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3, as applicable, for reinforcing bars are valid for static, wind, and earthquake loads.

2. Calculated development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

3. For Class B splices, minimum length of lap for tension lap splices is 1.3l<sub>4</sub> in accordance with ACI 318-14 25.5.2 and ACI 318-11 12.15.1, as applicable.

4. For lightweight concrete,  $\lambda$  = 0.75; therefore multiply development lengths by 1.33 (increase development length by 33 percent), unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit alternate values of  $\lambda$  (e.g for sand-lightweight concrete,  $\lambda$  = 0.85; therefore multiply development lengths by 1.18). Refer to ACI 318-14 19.2.4 or ACI 318-11 8.6.1, as applicable.  $\left(\frac{Cb + Ku}{db}\right) = 2.5, \psi_{f=1.0}, \psi_{f=1.0}, \psi_{f=0.8}$  for  $d_{b} \le \#6, 1.0$  for  $d_{b} > \#6$ . Refer to ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4, as applicable.

5. db

6. Calculations may be performed for other steel grades and concrete compressive strengths per ACI 318-14 Chapter 25 or ACI 318-11 Chapter 12, as applicable.

#### Installation Parameters for Common Post-Installed Reinforcing Bar Connections

| Doromotor                          | Symbol          | Unito | Nominal Rebar Size (US) |             |                     |             |                     |          |                     |          |  |
|------------------------------------|-----------------|-------|-------------------------|-------------|---------------------|-------------|---------------------|----------|---------------------|----------|--|
| Faiallietei                        |                 | Units | #3                      | #4          | #5                  | #6          | #7                  | #8       | #9                  | #10      |  |
| Nominal hole diameter <sup>1</sup> | do              | in.   | 7/16                    | 5/8         | 3/4                 | 7/8         | 1                   | 11/8     | 1-3/8               | 1-1/2    |  |
| Effective embedment                | h <sub>ef</sub> | in.   | 2-3/8 to<br>7-1/2       | 2-3/4 to 10 | 3-1/8 to<br>12-1/2  | 3-1/2 to 15 | 3-1/2 to<br>17-1/2  | 4 to 20  | 4-1/2 to<br>22-1/2  | 5 to 25  |  |
| Nominal hole diameter <sup>1</sup> | d₀              | in.   | 1/2                     | 5/8         | 3/4                 | 1           | 1-1/8               | 1-1/4    | 1-3/8               | 1-1/2    |  |
| Effective embedment                | hef             | in.   | 7-1/2 to<br>22-1/2      | 10 to 30    | 12-1/2 to<br>37-1/2 | 15 to 45    | 17-1/2 to<br>52-1/2 | 20 to 60 | 22-1/2 to<br>67-1/2 | 25 to 75 |  |

For SI: 1 inch = 25.4 mm,; for pound-inch units: 1 mm = 0.03937 inches.

1. For any case, it must be possible for the reinforcing bar (rebar) to be inserted into the cleaned hole without resistance.

2. Consideration should be given regarding the commercial availability of carbide drill bits (including hollow drill bits), as applicable, with lengths necessary to achieve effective embedments for post-installed reinforcing bar connections.

#### Installation Detail for Post-Installed Reinforcing Bar Connection



Examples of Development Length Application Details for Post-Installed Reinforcing Bar Connections Provided for Illustrator



Tension Lap Splice with Existing Reinforcement for Footing and Foundation Extensions



Tension Development of Column, Cap or Wall Dowels



Tension Lap Splice with Existing Flexural Reinforcement For Slab and Beam Extensions

# DEWALT.

#### Hole Cleaning Tools and Accessories for Post-Installed Rebar Connections<sup>1,2,3,4,5,6,7</sup>

| Rebar<br>Size<br>(No.) | Drill Bit<br>Size<br>(inch) | Brush Size<br>(inch)  | Brush Length<br>(inches) | Wire Brush<br>(Cat. No.) | Plug Size<br>(inch)   | Piston<br>Plug<br>(Cat. No.) |
|------------------------|-----------------------------|-----------------------|--------------------------|--------------------------|-----------------------|------------------------------|
| 2                      | 7/16                        | 7/16                  | 6-3/4                    | PFC1671050               | N/A                   | N/A                          |
| 3                      | 1/2                         | 1/2                   | 6-3/4                    | PFC1671010               | N/A                   | N/A                          |
| 4                      | 5/8                         | 5/8                   | 6-3/4                    | PFC1671200               | N/A                   | N/A                          |
| 5                      | 3/4                         | 3/4                   | 7-7/8                    | PFC1671250               | 3/4                   | PFC1691520                   |
| 6                      | 7/8                         | 7/8                   | 7-7/8                    | PFC1671300               | 7/8                   | PFC1691530                   |
| 0                      | 1                           | 1                     | 11-7/8                   | PFC1671350               | 1                     | PFC1691540                   |
| 7                      | 1                           | 1                     | 11-7/8                   | PFC1671350               | 1                     | PFC1691540                   |
| /                      | 1-1/8                       | 1-1/8                 | 11-7/8                   | PFC1671400               | 1-1/8                 | PFC1691550                   |
| 0                      | 1-1/8                       | 1-1/8                 | 11-7/8                   | PFC1671425               | 1-1/8                 | PFC1691550                   |
| 8                      | 1-1/4                       | 1-1/4                 | 11-7/8                   | PFC1671450               | 1-1/4                 | PFC1691555                   |
| 9                      | 1-3/8                       | 1-3/8                 | 11-7/8                   | PFC1671450               | 1-3/8                 | PFC1691560                   |
| 10                     | 1-1/2                       | 1-1/2                 | 11-7/8                   | PFC1671500               | 1-1/2                 | PFC1691570                   |
| 1. If the DEWALT       | DustX+ extraction s         | ystem is used to auto | matically clean the h    | oles during drilling, s  | tandard hole cleaning | g (brushing and              |

Wire Brush Brush Extension Drill Chuck Adapter SDS Adapter Compressed Air Nozzle

difference in the second



3. For any case, it must be possible for the reinforcing bar to be inserted into the cleaned drill hole without resistance.

4. A brush extension (Cat.#08282) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

5. Brush adaptors for power tool connections are available for drill chuck (Cat.#08296) and SDS (Cat.#08283).

A flexible extension tube (Cat.#08297) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used if the bottom or back of the anchor hole is not reached with the mixing nozzle only.

7. All overhead (i.e upwardly inclined) installations require the use of piston plugs during where one is tabulated together with the anchor size (see table). N/A = Not applicable. All horizontal installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 8 inches. A flexible extension tube (Cat.#08297) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used with piston plugs.



DustX+<sup>™</sup> System



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NINSTRUCTIONS (SULID BASE MATERIALS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.</li> <li>Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.</li> </ul>                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 60.<br>60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dinning in dry base material is recommended when using honow drift bits (vacuum must be on).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HOLE CLEANIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IG DRY OR WET/WATER-SATURATED HOLES (BLOW 2X, BRUSH 2X, BLOW 2X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ۲ <u>۲۲۲۲ (۱</u> ۲۲۲)<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>2a-</b> Starting from the bottom or back of the anchor hole, blow the hole clean with compressed air (min. 90 psi / 6 bar) a minimum of two times (2x). If the back of the drilled hole is not reached an extension shall be used.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2b- Determine brush diameter (see hole cleaning equipment selection table) for the drilled hole and brush the hole by hand or attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use. The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too small and must be replaced with proper brush diameter (i.e. new wire brush). |
| 2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>2c-</b> Finally blow the hole clean again with compressed air (min. 90 psi / 6 bar) a minimum of two times (2x). If the back of the drilled hole is not reached an extension shall be used. When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.                                                                                                                                                                                                                                                                                                                                                               |
| PREPARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 41°F - 104°F (5°C - 40°C) when in use. Review published working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of the base material temperature, see published gel and curing times.                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Note: Always use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tanaan ahaan ah<br>ahaan ahaan a | <ul> <li>4- Prior to inserting the anchor rod or rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>5- Adhesives must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color.</li> <li>Review and note the published working and cure times (reference gel time and curing time table) prior to injection of the mixed adhesive into the cleaned anchor hole.</li> </ul>                                                                                                                                                                         |
| INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. A plastic extension tube (Cat# 08281 or 08297) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle (see reference tables for installation).                                                                                                                                                                                                   |
| WITH PISTON PLUG:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Note! Piston plugs (see hole cleaning equipment selection table) must be used with and attached to the mixing nozzle and extension tube for:</li> <li>Overhead installations and installations between horizontal and overhead in concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10</li> <li>All installations with drill hole depth &gt; 10" (250mm) with anchor rod 5/8" to 1-1/4" diameter and rebar sizes #5 to #10</li> </ul>                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In the case that flexible tubing is used (Cat. #PFC1640600), the mixing nozzle may be trimmed at the preforation on the front port before attachment of the tubing. Verify the mixing element is inside the nozzle before use.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Attention! Do not install anchors overhead or upwardly inclined without installation hardware supplied by DEWALT and also receiving proper training and/or certification. Contact DEWALT for details prior to use.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. For all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the use of temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during the gel (working) time only.</li> </ul>                                     |
| CURING AND L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 68°F 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).</li> <li>Do not disturb, torque or load the anchor until it is fully cured.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li><b>10-</b> After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference installation specifications for threaded rod and reinforcing bar table) by using a calibrated torque wrench.</li> <li>Take care not to exceed the maximum torque for the selected anchor.</li> </ul>                                                                                                                                                                                                                                                                                                             |

**ADHESIVES** 

TECHNICAL GUIDE - ADHESIVES ©2018 DEWALT - REV.E

#### www.DEWALT.com



#### INSTALLATION INSTRUCTIONS (POST-INSTALLED REBAR)

#### MFR DRILLING



- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
- Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum. compressed air, etc.) prior to cleaning.

Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).

GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED). OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.

#### **DLE CLEANING DRY OR** H 2X. BLOW 2X

| 2X | 2a- |
|----|-----|
|    | 2b- |

Starting from the bottom or back of the drilled hole, blow the hole clean a minimum of two times (2x). Use a compressed air nozzle (min. 90 psi) for all sizes of reinforcing bar (rebar).

Determine brush diameter (see hole cleaning accessories for post-installed rebar selection table) for the drilled hole and brush the hole by hand or attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use. The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too small and must be replaced with proper brush diameter (i.e. new wire brush).

| V A V A          | <b>2c- Repeat Step 2a</b> again by blowing the hole clean a minimum of two times (2x).         |
|------------------|------------------------------------------------------------------------------------------------|
|                  | When finished the hole should be clean and free of dust, debris, oil or other foreign material |
| <u>کې کې 2</u> X |                                                                                                |



3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Review published gel (working) and cure times. Cartridge adhesive temperature must be between 41°F - 104°F (5°C - 40°C) when in use.

Note: Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For the permitted range of the base material temperature see published gel and cure times.

Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool.

Note: Always use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive.



- 4- Prior to inserting the rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.
- 5- Adhesive must be properly mixed to achieve published properties. Prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color.

Review and note the published gel (working) and cure times prior to injection of the mixed adhesive into the cleaned anchor hole.

#### STALL ATION



6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. A flexible extension tube (Cat.# 08297) or flexible extension hose (Cat.# PFC1640600) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle (see reference tables for installation). (see hole cleaning tools and accessories for post-installed rebar table)

Note! Piston plugs must be used with and attached to mixing nozzle and extension tube for overhead (i.e. upwardly inclined) installations and horizontal installations with rebar sizes as indicated in the hole cleaning tools and accessories for post-installed rebar table. Insert piston plug to the back of the drilled hole and inject as described in the method above. During injection of the adhesive the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.

In the case that flexible tubing is used (Cat. #PFC1640600), the mixing nozzle may be trimmed at the preforation on the front port before attachment of the tubing. Verify the mixing element is inside the nozzle before use.

ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.

Attention! Do not install anchors overhead or upwardly inclined without installation hardware supplied by DEWALT and also receiving proper training and/or certification. Contact DEWALT for details prior to use.

- 7- The reinforcing bar should be free of dirt, grease, oil or other foreign material. Push clean rebar into the anchor hole while turning slightly to A- V A-
  - 8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. For all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the use of temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during the gel (working) time only



9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).

Do not disturb, torgue or load the anchor until it is fully cured.

10- After full curing of the rebar connection, new concrete can be poured (placed) to the installed rebar connection.

#### 1-800-4 DEWALT

AC200+1

**ADHESIVES** 



#### **REFERENCE INSTALLATION TABLES**

#### Gel (working) Time and Curing Table

| Temperature of base material                                                   | Gel (working) time | Full curing time |
|--------------------------------------------------------------------------------|--------------------|------------------|
| 23°F (-5°C) to 31°F (-1°C)                                                     | 50 minutes         | 5 hours          |
| 32°F (0°C) to 40°F (4°C)                                                       | 25 minutes         | 3.5 hours        |
| 41°F (5°C) to 49°F (9°C)                                                       | 15 minutes         | 2 hours          |
| 50°F (10°C) to 58°F (14°C)                                                     | 10 minutes         | 1 hour           |
| 59°F (15°C) to 67°F (19°C)                                                     | 6 minutes          | 40 minutes       |
| 68°F (20°C) to 85°F (29°C)                                                     | 3 minutes          | 30 minutes       |
| 86°F (30°C) to 104°F (40°C)                                                    | 2 minutes          | 30 minutes       |
| Linear interpolation for intermediate base material temperature is possible.   |                    |                  |
| Cartridge temperature must be between 41°F (5°C) and 104°F (40°C) when in use. |                    |                  |

#### Hole Cleaning Equipment Selection Table for AC200+

| Rod<br>Diameter<br>(inch) | Rebar Size<br>(No.) | ANSI Drill Bit<br>Diameter<br>(inch) | Brush Length<br>(inches) | Steel Wire<br>Brush <sup>1,2</sup><br>(Cat. #) | Blowout<br>Tool           | Number of<br>cleaning<br>actions |  |  |  |
|---------------------------|---------------------|--------------------------------------|--------------------------|------------------------------------------------|---------------------------|----------------------------------|--|--|--|
| Solid Base Material       |                     |                                      |                          |                                                |                           |                                  |  |  |  |
| 3/8                       | -                   | 7/16                                 | 5-3/8                    | PFC1671050                                     |                           |                                  |  |  |  |
| -                         | #3                  | 1/2                                  | 5-3/8                    | PFC1671100                                     |                           |                                  |  |  |  |
| 1/2                       | -                   | 9/16                                 | 5-3/8                    | PFC1671150                                     |                           | 2x blowing<br>2x brushing        |  |  |  |
| -                         | #4                  | 5/8                                  | 5-3/8                    | PFC1671200                                     |                           |                                  |  |  |  |
| 5/8                       | -                   | 11/16                                | 5-3/8                    | PFC1671225                                     | Compressed air            |                                  |  |  |  |
| -                         | #5                  | 3/4                                  | 5-3/8                    | PFC1671250                                     | nozzle only,<br>Cat #8292 |                                  |  |  |  |
| 3/4                       | #6                  | 7/8                                  | 5-3/8                    | PFC1671300                                     | (min. 90 psi)             | 2x blowing                       |  |  |  |
| 7/8                       | #7                  | 1                                    | 5-3/8                    | PFC1671350                                     |                           |                                  |  |  |  |
| 1                         | #8                  | 1-1/8                                | 5-3/8                    | PFC1671400                                     |                           |                                  |  |  |  |
| 1-1/4                     | #9                  | 1-3/8                                | 5-3/8                    | PFC1671450                                     |                           |                                  |  |  |  |
| -                         | #10                 | 1-1/2                                | 5-3/8                    | PFC1671500                                     |                           |                                  |  |  |  |

1. For any case, it must be possible for the steel anchor element to be inserted into the cleaned drill hole without resistance.

2. An SDS-plus adaptor (Cat. #PFC1671830) is required to attach a steel wire brush to the drill tool. For hand brushing, attach manual brush wood handle (Cat. #PFC1671000) to the steel brush.

3. A brush extension (Cat. #PFC1671820) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

#### **Piston Plugs for Adhesive Anchors**<sup>1,2,3</sup>

| Plug Size<br>(inch)                              | ANSI Drill Bit<br>Diameter<br>(inch)                   | Piston Plug<br>(Cat. #)                  | Piston Plug |  |  |  |  |  |
|--------------------------------------------------|--------------------------------------------------------|------------------------------------------|-------------|--|--|--|--|--|
| Solid Base Materials                             |                                                        |                                          |             |  |  |  |  |  |
| 11/16                                            | 11/16                                                  | 08258                                    |             |  |  |  |  |  |
| 3/4                                              | 3/4                                                    | 08259                                    |             |  |  |  |  |  |
| 7/8                                              | 7/8                                                    | 08300                                    |             |  |  |  |  |  |
| 1                                                | 1                                                      | 08301                                    |             |  |  |  |  |  |
| 1-1/8                                            | 1-1/8                                                  | 08303                                    |             |  |  |  |  |  |
| 1-1/4                                            | 1-1/4                                                  | 08307                                    |             |  |  |  |  |  |
| 1-3/8                                            | 1-3/8                                                  | 08305                                    |             |  |  |  |  |  |
| 1-1/2                                            | 1-1/2                                                  | 08309                                    |             |  |  |  |  |  |
| 1 All overboad or upwordly inclined installation | a manufact that was of sisters where where are in take | ومتعاميه ومقاومه بالقار بالقارب والمعادي |             |  |  |  |  |  |

All overhead or upwardly inclined installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 10 inches.

3. A flexible plastic extension tube (Cat. #08281 or #08297) or equivalent approved by DEWALT must be used with piston plugs.

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

**Dry Concrete:** cured concrete that, at the time of adhesive anchor installation, has not been exposed to water for the preceding 14 days. Water-Saturated Concrete (wet): cured concrete that, at the time of adhesive anchor installation, has been exposed to water over a sufficient length of time to have the maximum possible amount of absorbed water into the concrete pore structure to a depth equal to the anchor embedment depth.

AC200+

ADHESIVES

#### **ORDERING INFORMATION**

#### AC200+ Cartridges

DEV/

ENGINEERED BY POWERS

| Cat. No.                                                  | Description                      | Std. Box | Std. Ctn. | Pallet |
|-----------------------------------------------------------|----------------------------------|----------|-----------|--------|
| PFC1271050                                                | AC200+ 10 fl. oz. Quik-Shot      | 12       | 36        | 648    |
| PFC1271150                                                | AC200+ 28 fl. oz. Dual cartridge | -        | 8         | 240    |
| One AC200+ mixing nozzle is packaged with each cartridge. |                                  |          |           |        |
|                                                           |                                  |          |           |        |

AC200+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive.

#### **Cartridge System Mixing Nozzles**

| Cat. No.   | Description                       | Std. Pkg. | Std. Ctn. |
|------------|-----------------------------------|-----------|-----------|
| PFC1641600 | Mixing nozzle (with 8" extension) | 2         | 24        |
| 08281      | Mixing nozzle extension, 8" long  | 2         | 24        |
| 08297      | Mixing nozzle extension, 20" long | 1         | 12        |

#### **Dispensing Tools for Injection Adhesive**

| Cat. No. | Description                                             | Std. Box | Std. Ctn. |
|----------|---------------------------------------------------------|----------|-----------|
| 08437    | Manual caulking gun for Quik-Shot                       | 1        | 12        |
| 08479    | High performance caulking gun for Quik-Shot             | 1        | 12        |
| DCE560D1 | 10 fl. oz. cordless 20v battery powered dispensing tool | 1        | -         |
| 08485    | 12 fl. oz. High performance metal manual tool           | 1        | 20        |
| 08494    | 28 fl. oz. Standard all metal manual tool               | 1        | -         |
| 08496    | 28 fl. oz. High performance pneumatic tool              | 1        | -         |
| DCE595D1 | 28 fl. oz. cordless 20v battery powered dispensing tool | 1        | -         |



#### **Hole Cleaning Tools and Accessories**

| Cat No.    | Description                                      | Std. Box |
|------------|--------------------------------------------------|----------|
| PFC1671050 | Premium Wire brush for 7/16" ANSI hole           | 1        |
| PFC1671100 | Premium Wire brush for 1/2" hole                 | 1        |
| PFC1671150 | Premium Wire brush for 9/16" ANSI hole           | 1        |
| PFC1671200 | Premium Wire brush for 5/8" ANSI hole            | 1        |
| PFC1671225 | Premium Wire brush for 11/16" ANSI hole          | 1        |
| PFC1671250 | Premium Wire brush for 3/4" ANSI hole            | 1        |
| PFC1671300 | Premium Wire brush for 7/8" ANSI hole            | 1        |
| PFC1671350 | Premium Wire brush for 1" ANSI hole              | 1        |
| PFC1671400 | Premium Wire brush for 1-1/8" ANSI hole          | 1        |
| PFC1671450 | Premium Wire brush for 1-3/8" ANSI hole          | 1        |
| PFC1671500 | Premium Wire brush for 1-1/2" ANSI hole          | 1        |
| PFC1671830 | Premium SDS-plus adapter for steel brushes       | 1        |
| PFC1671000 | Premium manual brush wood handle                 | 1        |
| PFC1671820 | Premium Steel brush extension, 12" length        | 1        |
| 08292      | Air compressor nozzle with extension, 18" length | 1        |

#### **Piston Plugs for Adhesive Anchors**

| Piston Plugs for Aunesive Anchors |             |                     |          |  |
|-----------------------------------|-------------|---------------------|----------|--|
| Cat. #                            | Description | ANSI Drill Bit Dia. | Std. Bag |  |
| 08258                             | 11/16" Plug | 11/16"              | 10       |  |
| 08259                             | 3/4" Plug   | 3/4"                | 10       |  |
| 08300                             | 7/8" Plug   | 7/8"                | 10       |  |
| 08301                             | 1" Plug     | 1"                  | 10       |  |
| 08303                             | 1-1/8" Plug | 1-1/8"              | 10       |  |
| 08307                             | 1-1/4" Plug | 1-1/4               | 10       |  |
| 08305                             | 1-3/8" Plug | 1-3/8"              | 10       |  |
| 08309                             | 1-1/2" Plug | 1-1/2"              | 10       |  |

#### **Piston Plugs for Post-Installed Rebar Connections**

| Cat. No.   | Description | ANSI Drill Bit Dia. | Qty. |
|------------|-------------|---------------------|------|
| PFC1691520 | 3/4" Plug   | 3/4                 | 10   |
| PFC1691530 | 7/8" Plug   | 7/8                 | 10   |
| PFC1691540 | 1" Plug     | 1                   | 10   |
| PFC1691550 | 1-1/8" Plug | 1-1/8               | 10   |
| PFC1691555 | 1-1/4" Plug | 1-1/4               | 10   |
| PFC1691560 | 1-3/8" Plug | 1-3/8               | 10   |
| PFC1691570 | 1-1/2" Plug | 1-1/2               | 10   |

| DEWALT | 8 |
|--------|---|
|        | 5 |

| D        | SDS Max 4- | Cutter Carbide | Drill Bits    |                |
|----------|------------|----------------|---------------|----------------|
|          | Cat. No.   | Diameter       | Usable Length | Overall Length |
| S        | DW5806     | 5/8"           | 8"            | 13-1/2"        |
| <b>≤</b> | DW5809     | 5/8"           | 16"           | 21-1/2"        |
| S        | DW5807     | 5/8"           | 31"           | 36"            |
|          | DW5808     | 11/16"         | 16"           | 21-1/2"        |
|          | DW5810     | 3/4"           | 8"            | 13-1/2"        |
|          | DW5812     | 3/4"           | 16"           | 21-1/2"        |
|          | DW5813     | 3/4"           | 31"           | 36"            |
|          | DW5814     | 13/16"         | 16"           | 21-1/2"        |
|          | DW5815     | 7/8"           | 8"            | 13-1/2"        |
|          | DW5816     | 7/8"           | 16"           | 21-1/2"        |
| 0        | DW5851     | 7/8"           | 31"           | 36"            |
| 20       | DW5817     | 27/32"         | 16"           | 21-1/2"        |
| <b>Ř</b> | DW5818     | 1"             | 8"            | 13-1/2"        |
| T M      | DW5819     | 1"             | 16"           | 22-1/2"        |
|          | DW5852     | 1"             | 24"           | 29"            |
|          | DW5820     | 1"             | 31"           | 36"            |
|          | DW5821     | 1-1/8"         | 10"           | 15"            |
|          | DW5822     | 1-1/8"         | 18"           | 22-1/2"        |
|          | DW5853     | 1-1/8"         | 24"           | 29"            |
|          | DW5854     | 1-1/8"         | 31"           | 36"            |
|          | DW5824     | 1-1/4"         | 10"           | 15"            |
|          |            | 1              |               |                |

1-1/4"

| -)- | - Hays |  |
|-----|--------|--|
|     |        |  |

22-1/2"

SDS+ Full Head Carbide Drill Bits

| Cat. No. | Diameter | Usable Length | Overall Length |  |
|----------|----------|---------------|----------------|--|
| DW5502   | 3/16"    | 2"            | 4-1/2"         |  |
| DW5503   | 3/16"    | 4"            | 6-1/2"         |  |
| DW5504   | 3/16"    | 5"            | 8-1/2"         |  |
| DW5506   | 3/16"    | 10"           | 12"            |  |
| DW5512   | 7/32"    | 8"            | 10"            |  |
| DW5517   | 1/4"     | 4"            | 6"             |  |
| DW5518   | 1/4"     | 6"            | 8-1/2"         |  |
| DW55200  | 1/4"     | 10"           | 12"            |  |
| DW5521   | 1/4"     | 12"           | 14"            |  |
| DW5524   | 5/16"    | 4"            | 6"             |  |
| DW5526   | 5916"    | 10"           | 12"            |  |
| DW5527   | 3/8"     | 4"            | 6-1/2"         |  |
| DW5529   | 3/8"     | 8"            | 10"            |  |
| DW55300  | 3/8"     | 10"           | 12"            |  |
| DW5531   | 3/8"     | 16"           | 18"            |  |
| DW5537   | 1/2"     | 4"            | 6"             |  |
| DW5538   | 1/2"     | 8"            | 10-1/2"        |  |
| DW5539   | 1/2"     | 10"           | 12"            |  |
| DW5540   | 1/2"     | 16"           | 18"            |  |

#### 10121101010101010

#### **SDS+ 4-Cutter Carbide Drill Bits**

| Cat. No. | Diameter | Usable Length | Overall Length |
|----------|----------|---------------|----------------|
| DW5471   | 5/8"     | 8"            | 10"            |
| DW5472   | 5/8"     | 16"           | 18"            |
| DW5474   | 3/4"     | 8"            | 10"            |
| DW5475   | 3/4"     | 16"           | 18"            |
| DW5477   | 7/8"     | 8"            | 10"            |
| DW5478   | 7/8"     | 16"           | 18"            |
| DW5479   | 1"       | 8"            | 10"            |
| DW5480   | 1"       | 16"           | 18"            |
| DW5481   | 1-1/8"   | 8"            | 10"            |
| DW5482   | 1-1/8"   | 6"            | 18"            |

#### **Dust Extraction**

DW5825

| Cat. No. Description                                      |                                                                                                                                                                                             |  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DWV012                                                    | 10 Gallon Wet/Dry Hepa/Rrp Dust Extractor<br>DWV9402 Fleece bag (5 pack) for DEWALT dust extractors<br>DWV9316 Replacement Anti-Static Hose<br>DWV9320 Replacement HEPA Filter Set (Type 1) |  |
| DWH050K Dust Extraction with two interchangeable drilling |                                                                                                                                                                                             |  |
| DCB1800M3T1                                               | 1800 Watt Portable Power Station & Parallel Battery Charger<br>with 3 20V Max* 5Ah Batteries and 1 60V Max* Flexvolt® Battery                                                               |  |

18"



#### **Hollow Drill Bits**

|         | Cat. No. | Diameter | <b>Overall Length</b> | Usable Length | <b>Recommended Ham mer</b> |
|---------|----------|----------|-----------------------|---------------|----------------------------|
| SDS+    | DWA54012 | 1/2"     | 14-1/2"               | 9-3/4"        | DCH133 / DCH273 / DCH293   |
|         | DWA54916 | 9/16"    | 14-1/2"               | 9-3/4"        | DCH133 / DCH273 / DCH293   |
|         | DWA54058 | 5/8"     | 14-1/2"               | 9-3/4"        | DCH133 / DCH273 / DCH293   |
|         | DWA54034 | 3/4"     | 14-1/2"               | 9-3/4"        | DCH133 / DCH273 / DCH293   |
|         | DWA58058 | 5/8"     | 23-5/8"               | 15-3/4"       | DCH481 / D25603K           |
|         | DWA58034 | 3/4"     | 23-5/8"               | 15-3/4"       | DCH481 / D25603K           |
| SDS Max | DWA58078 | 7/8"     | 23-5/8"               | 15-3/4"       | DCH481 / D25603K           |
| -       | DWA58001 | 1"       | 23-5/8"               | 15-3/4"       | DCH481 / D25603K           |
|         | DWA58118 | 1-1/8"   | 23-5/8"               | 15-3/4"       | DCH481 / D25603K           |



#### **GENERAL INFORMATION**

### AC100+ GOLD®

Vinylester Injection Adhesive Anchoring System

#### PRODUCT DESCRIPTION

The AC100+ Gold is a two-component vinylester adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The AC100+ Gold is designed for bonding threaded rod and reinforcing bar elements into drilled holes in concrete and masonry base materials.

#### **GENERAL APPLICATIONS AND USES**

- Bonding threaded rod and reinforcing bar into hardened concrete and masonry
- · Evaluated for use in dry and water-saturated concrete (including water filled holes)
- · Suitable to resist loads in cracked or uncracked concrete base materials
- Fast curing system which can be installed in a wide range of base material temperatures; qualified for structural applications in concrete and masonry as low as 14°F (-10°C)
- · Qualified for seismic (earthquake) and wind loading

#### FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Consistent performance in low and high strength concrete
- + Evaluated and recognized for freeze/thaw performance (interior and exterior applications)
- + Evaluated and recognized for a range of embedments
- + Versatile low odor formula with quick cure time
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Universal product for concrete and masonry (hollow and solid base materials)

#### **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES) ESR-2582 for concrete
- International Code Council, Evaluation Service (ICC-ES) ESR-3200 for masonry
- International Code Council, Evaluation Service (ICC-ES) ESR-4105 for Unreinforced Masonry (URM)
- Code compliant with the 2015 IRC, 2015 IBC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC.
- Tested in accordance with ASTM E488 / ACI 355.4 and ICC-ES AC308 for use in structural concrete with ACI 318-14 Chapter 17 or ACI 318-11/08 Appendix D.
- Compliant with NSF/ANSI Standard 61 for drinking water system components health effects; meets requirements for materials in contact with potable water and water treatment
- Conforms to requirements of ASTM C 881 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes A & B (meets Type III with exception of elongation)
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

#### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Adhesive anchoring system shall be AC100+ Gold as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.









#### SECTION CONTENTS

| General Information45                                                                    |
|------------------------------------------------------------------------------------------|
| Reference Data (ASD)46                                                                   |
| Strength Design (SD)54                                                                   |
| Installation Instructions<br>(Solid Base Materials)64                                    |
| Installation Instructions<br>(Unreinforced Masonry [URM]<br>and Hollow Base Materials)65 |
| Reference Tables for Installation .66                                                    |
| Ordering Information67                                                                   |



AC100+ GOLD

#### PACKAGING

#### **Coaxial Cartridge**

• 10 fl. oz. (280 ml or 17.1 in<sup>3</sup>)

#### Dual (side-by-side Cartridge)

- 12 fl. oz. (345 ml or 21.0 in<sup>3</sup>)
- 28 fl. oz. (825 ml or 50.3 in<sup>3</sup>)

#### **STORAGE LIFE & CONDITIONS**

Eighteen months in a dry, dark environment with temperature ranging from 32°F and 86°F (-0°C to 30°C)

#### ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter rod
- No. 3 to No. 10 rebar

#### SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete
- Grouted concrete masonry (CMU)
- Hollow concrete masonry (CMU)
- Brick masonry

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry concrete
- Water-saturated concrete (wet)
- Water-filled holes (flooded)

FECHNICAL GUIDE – ADHESIVES ©2018 DEWALT – REV. D

Vinylester Injection Adhesive Anchoring System

AC100+ GO



#### **REFERENCE DATA (ASD)**

#### Allowable Stress Design (ASD) Installation Table for AC100+ Gold (Solid Concrete Base Materials)

| Dime                                                                     | nsion/Property                                                                      | Notation         | Units          |                | Nominal Anchor Size |             |                         |                 |                 |                 |                 |                 |                 |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------|----------------|----------------|---------------------|-------------|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Threaded rod                                                             |                                                                                     | -                | -              | 3/8"           | 1/2"                | -           | 5/8"                    | 3/4'"           | 7/8"            | 1"              | -               | 1-1/4"          | -               |
| Reinforcing bar                                                          |                                                                                     | -                | -              | #3             | -                   | #4          | #5                      | #6              | #7              | #8              | #9              | -               | #10             |
| Nominal anchor diameter                                                  |                                                                                     | d                | in.<br>(mm)    | 0.375<br>(9.5) | 0.5<br>(12          | 500<br>2.7) | 0.625<br>(15.9)         | 0.750<br>(19.1) | 0.875<br>(22.2) | 1.000<br>(25.4) | 1.125<br>(28.6) | 1.250<br>(31.8) | 1.250<br>(31.8) |
| Nominal diameter of drilled hole                                         |                                                                                     | d <sub>bit</sub> | in.            | 7/16<br>ANSI   | 9/16<br>ANSI        | 5/8<br>ANSI | 11/16<br>or 3/4<br>ANSI | 7/8<br>ANSI     | 1<br>ANSI       | 1-1/8<br>ANSI   | 1-3/8<br>ANSI   | 1-3/8<br>ANSI   | 1-1/2<br>ANSI   |
| Minimum nominal e                                                        | embedment depth                                                                     | h <sub>nom</sub> | in.<br>(mm)    | 2-3/8<br>(61)  | 2-5<br>(7           | 3/4<br>'0)  | 3-1/8<br>(79)           | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)      | 4-1/2<br>(114)  | 5<br>(127)      | 5<br>(127)      |
| Maximum torque<br>(only possible after<br>full cure<br>time of adhesive) | A36 or F1554<br>carbon steel rod                                                    | T <sub>max</sub> | ftlb.<br>(N-m) | 10<br>(13)     | 2(3                 | 25<br>34)   | 50<br>(68)              | 90<br>(122)     | 125<br>(169)    | 165<br>(224)    | -               | 280<br>(379)    | -               |
|                                                                          | F593 Condition CW stainless<br>steel rod or ASTM A193,<br>Grade B7 carbon steel rod | T <sub>max</sub> | ftlb.<br>(N-m) | 16<br>(22)     | 3(4                 | 33<br>15)   | 60<br>(81)              | 105<br>(142)    | 125<br>(169)    | 165<br>(224)    | -               | 280<br>(379)    | -               |

#### Allowable Stress Design (ASD) Installation Table for AC100+ Gold (Hollow Base Material with Screen Tube)

| Dimension/Property                                                 | Notation         | Units           | Nominal Size - Stainless Steel |                |                 |                 |                 | Nominal Size - Plastic |                |                 |                 |
|--------------------------------------------------------------------|------------------|-----------------|--------------------------------|----------------|-----------------|-----------------|-----------------|------------------------|----------------|-----------------|-----------------|
| Threaded Rod                                                       | -                | -               | 1/4"                           | 3/8"           | 1/2"            | 5/8"            | 3/4"            | 1/4"                   | 3/8"           | 1/2"            | 5/8"            |
| Nominal threaded rod diameter                                      | d                | in.<br>(mm)     | 0.250<br>(6.4)                 | 0.375<br>(9.5) | 0.500<br>(12.7) | 0.625<br>(15.9) | 0.750<br>(19.1) | 0.250<br>(6.4)         | 0.375<br>(9.5) | 0.500<br>(12.7) | 0.625<br>(15.9) |
| Nominal screen tube diameter                                       | -                | in.             | 1/4                            | 3/8            | 1/2             | 5/8             | 3/4             | 1/4                    | 3/8            | 1/2             | 5/8             |
| Nominal diameter of drilled hole                                   | d <sub>bit</sub> | in.<br>(mm)     | 3/8<br>ANSI                    | 1/2<br>ANSI    | 5/8<br>ANSI     | 3/4<br>ANSI     | 7/8<br>ANSI     | 1/2<br>ANSI            | 9/16<br>ANSI   | 3/4<br>ANSI     | 7/8<br>ANSI     |
| Maximum torque<br>(only possible after full cure time of adhesive) | T <sub>max</sub> | ftlbf.<br>(N-m) | 4<br>(5)                       | 6<br>(8)       | 10<br>(14)      | 10<br>(14)      | 10<br>(14)      | 4<br>(5)               | 6<br>(8)       | 10<br>(14)      | 10<br>(14)      |

#### **Detail of Steel Hardware Elements** used with Injection Adhesive System



## Nomenclature

d = Diameter of anchor

= Diameter of drilled hole = Base material thickness dbit

h

The greater of: [hnom + 1-1/4"] and [hnom + 2dbit] hnom = Minimum embedment depth

**Threaded Rod and Deformed Reinforcing Bar Material Properties** 

| Steel<br>Description<br>(General) | Steel<br>Specification<br>(ASTM) | Nominal<br>Anchor Size<br>(inch)      | Minimum<br>Yield Strength,<br>fy (ksi) | Minimum<br>Ultimate<br>Strength,<br>fu (ksi) |
|-----------------------------------|----------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|
| Carbon Rod                        | A 36 or F1554<br>Grade 36        | 3/8 through 1-1/4                     | 36.0                                   | 58.0                                         |
| Stainless Rod                     | F 593,                           | 3/8 through 5/8                       | 65.0                                   | 100.0                                        |
| (Alloy 304 / 316)                 | Condition CW                     | 3/4 through 1-1/4 45.0                |                                        | 85.0                                         |
| High Strength<br>Carbon Rod       | A 193<br>Grade B7                | 3/8 through 1-1/4                     | 105.0                                  | 125.0                                        |
|                                   | A 615, A 767,<br>Grade 75        | 3/8 through 1-1/4<br>(#3 through #10) | 75.0                                   | 100.0                                        |
| Doinforcing Por                   | A 615, A 767,<br>Grade 60        | 3/8 through 1-1/4<br>(#3 through #10) | 60.0                                   | 90.0                                         |
| NEITIULCING DAI                   | A 706, A 767,<br>Grade 60        | 3/8 through 1-1/4<br>(#3 through #10) | 60.0                                   | 80.0                                         |
|                                   | A 615, A 767,<br>Grade 40        | 3/8 through 1-1/4<br>(#3 through #10) | 40.0                                   | 60.0                                         |

# Ultimate and Allowable Load Capacities for AC100+ Gold Installed into Normal-Weight Concrete with Threaded Rod and Reinforcing Bar (based on bond strength/concrete capacity)<sup>1,2,3,4,5,6</sup>

|                             |                                      | Minimum Concrete Compressive Strength       |                                              |                                             |                                              |                                             |                                              |                                             |                                              |  |  |  |  |  |  |
|-----------------------------|--------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| Nominal Rod<br>Diameter or  | Minimum<br>Embedment<br>Depth<br>in. | f'c = 3,                                    | 000 psi                                      | f'c = 4,                                    | 000 psi                                      | f'c = 5,                                    | 000 psi                                      | f'c = 6,                                    | 000 psi                                      |  |  |  |  |  |  |
| Rebar Size<br>d<br>in. or # |                                      | Ultimate<br>Tension Load<br>Capacity<br>Ibs | Allowable<br>Tension Load<br>Capacity<br>Ibs |  |  |  |  |  |  |
|                             | 2-3/8                                | 4,840                                       | 1,210                                        | 5,040                                       | 1,260                                        | 5,180                                       | 1,295                                        | 5,320                                       | 1,330                                        |  |  |  |  |  |  |
| 3/8 or #3                   | 3-1/2                                | 7,140                                       | 1,785                                        | 7,420                                       | 1,855                                        | 7,640                                       | 1,910                                        | 7,820                                       | 1,955                                        |  |  |  |  |  |  |
|                             | 4-1/2                                | 9,180                                       | 2,295                                        | 9,540                                       | 2,385                                        | 9,820                                       | 2,455                                        | 10,060                                      | 2,515                                        |  |  |  |  |  |  |
|                             | 2-3/4                                | 7,980                                       | 1,995                                        | 8,280                                       | 2,070                                        | 8,540                                       | 2,135                                        | 8,740                                       | 2,185                                        |  |  |  |  |  |  |
| 1/2 or #4                   | 4-3/8                                | 12,720                                      | 3,180                                        | 13,200                                      | 3,300                                        | 13,580                                      | 3,395                                        | 13,900                                      | 3,475                                        |  |  |  |  |  |  |
|                             | 6                                    | 17,420                                      | 4,355                                        | 18,100                                      | 4,525                                        | 18,620                                      | 4,655                                        | 19,080                                      | 4,770                                        |  |  |  |  |  |  |
| 5/8 or #5                   | 3-1/8                                | 11,220                                      | 2,805                                        | 11,660                                      | 2,915                                        | 12,000                                      | 3,000                                        | 12,300                                      | 3,075                                        |  |  |  |  |  |  |
|                             | 5-1/4                                | 19,200                                      | 4,800                                        | 19,960                                      | 4,990                                        | 20,540                                      | 5,135                                        | 21,020                                      | 5,255                                        |  |  |  |  |  |  |
|                             | 7-1/2                                | 27,660                                      | 6,915                                        | 28,720                                      | 7,180                                        | 29,560                                      | 7,390                                        | 30,280                                      | 7,570                                        |  |  |  |  |  |  |
|                             | 3-1/2                                | 13,320                                      | 3,330                                        | 13,820                                      | 3,455                                        | 14,220                                      | 3,555                                        | 14,560                                      | 3,640                                        |  |  |  |  |  |  |
| 3/4 or #6                   | 6-1/4                                | 26,880                                      | 6,720                                        | 27,900                                      | 6,975                                        | 28,720                                      | 7,180                                        | 29,420                                      | 7,355                                        |  |  |  |  |  |  |
|                             | 9                                    | 40,440                                      | 10,110                                       | 42,000                                      | 10,500                                       | 43,220                                      | 10,805                                       | 44,260                                      | 11,065                                       |  |  |  |  |  |  |
|                             | 3-1/2                                | 13,320                                      | 3,330                                        | 13,820                                      | 3,455                                        | 14,220                                      | 3,555                                        | 14,560                                      | 3,640                                        |  |  |  |  |  |  |
| 7/8 or #7                   | 7                                    | 36,680                                      | 9,170                                        | 38,080                                      | 9,520                                        | 39,200                                      | 9,800                                        | 40,140                                      | 10,035                                       |  |  |  |  |  |  |
|                             | 10-1/2                               | 60,040                                      | 15,010                                       | 62,340                                      | 15,585                                       | 64,180                                      | 16,045                                       | 65,700                                      | 16,425                                       |  |  |  |  |  |  |
|                             | 4                                    | 16,260                                      | 4,065                                        | 16,880                                      | 4,220                                        | 17,380                                      | 4,345                                        | 17,800                                      | 4,450                                        |  |  |  |  |  |  |
| 1 or #8                     | 8                                    | 46,540                                      | 11,635                                       | 48,300                                      | 12,075                                       | 49,740                                      | 12,435                                       | 50,920                                      | 12,730                                       |  |  |  |  |  |  |
|                             | 12                                   | 76,820                                      | 19,205                                       | 79,740                                      | 19,935                                       | 82,080                                      | 20,520                                       | 84,060                                      | 21,015                                       |  |  |  |  |  |  |
|                             | 5                                    | 22,740                                      | 5,685                                        | 23,600                                      | 5,900                                        | 24,300                                      | 6,075                                        | 24,880                                      | 6,220                                        |  |  |  |  |  |  |
| 1-1/4 or #10                | 10                                   | 65,880                                      | 16,470                                       | 68,400                                      | 17,100                                       | 70,420                                      | 17,605                                       | 72,100                                      | 18,025                                       |  |  |  |  |  |  |
|                             | 15                                   | 109,040                                     | 27,260                                       | 113,200                                     | 28,300                                       | 116,540                                     | 29,135                                       | 119,320                                     | 29,830                                       |  |  |  |  |  |  |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is the greater of [hnom + 1-1/4] and [hnom + 2dtat].

4. The tabulated load values are applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in wet concrete or water-filled holes may require a reduction in capacity. Contact DEWALT for more information concerning these installation conditions.

5. Adhesives experience reductions in capacity at elevated temperatures. See the In-Service Temperature chart for allowable loads capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.



# AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

|                                        |                           |                      |                           |                      |                                           |                      | Steel Ele               | ements -             | Threaded                       | l Rod and            | 1 Reinfor                      | cing Bar             |                                |                      |                                |                      |                                |                      |
|----------------------------------------|---------------------------|----------------------|---------------------------|----------------------|-------------------------------------------|----------------------|-------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|
| Nominal<br>Rod<br>Diameter<br>or Rebar | A36 or F1554,<br>Grade 36 |                      | A36 or F1554,<br>Grade 55 |                      | A 193, Grade<br>B7 or F1554,<br>Grade 105 |                      | F 593, CW (SS)          |                      | ASTM A615<br>Grade 40<br>Rebar |                      | ASTM A615<br>Grade 60<br>Rebar |                      | ASTM A706<br>Grade 60<br>Rebar |                      | ASTM A615<br>Grade 75<br>Rebar |                      | ASTM A706<br>Grade 80<br>Rebar |                      |
| Size<br>(in. or #)                     | Tension<br>Ibs.<br>(kN)   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)                   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) |
| 3/8 or #3                              | 2,115<br>(9.4)            | 1,090<br>(4.8)       | 2,735<br>(12.2)           | 1,410<br>(6.3)       | 4,555<br>(20.3)                           | 2,345<br>(10.4)      | 3,645<br>(16.2)         | 1,880<br>(8.4)       | 2,210<br>(9.8)                 | 1,125<br>(5.0)       | 2,650<br>(11.8)                | 1,690<br>(7.5)       | 2,650<br>(11.8)                | 1,500<br>(6.7)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       |
| 1/2 or #4                              | 3,760<br>(16.7)           | 1,935<br>(8.6)       | 4,860<br>(21.6)           | 2,505<br>(11.1)      | 8,100<br>(36.0)                           | 4,170<br>(18.5)      | 6,480<br>(28.8)         | 3,340<br>(14.9)      | 3,925<br>(17.5)                | 2,005<br>(8.9)       | 4,710<br>(21.0)                | 3,005<br>(13.4)      | 4,710<br>(21.0)                | 2,670<br>(11.9)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      |
| 5/8 or #5                              | 5,870<br>(26.1)           | 3,025<br>(13.5)      | 7,595<br>(33.8)           | 3,910<br>(17.4)      | 12,655<br>(56.3)                          | 6,520<br>(29.0)      | 10,125<br>(45.0)        | 5,215<br>(23.2)      | 6,135<br>(27.3)                | 3,130<br>(13.9)      | 7,365<br>(32.8)                | 4,695<br>(20.9)      | 7,365<br>(32.8)                | 4,170<br>(18.5)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      |
| 3/4 or #6                              | 8,455<br>(37.6)           | 4,355<br>(19.4)      | 10,935<br>(48.6)          | 5,635<br>(25.1)      | 18,225<br>(81.1)                          | 9,390<br>(41.8)      | 12,390<br>(55.1)        | 6,385<br>(28.4)      | 8,835<br>(39.3)                | 4,505<br>(20.0)      | 10,605<br>(47.2)               | 6,760<br>(30.1)      | 10,605<br>(47.2)               | 6,010<br>(26.7)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      |
| 7/8 or #7                              | 11,510<br>(51.2)          | 5,930<br>(26.4)      | 14,885<br>(66.2)          | 7,665<br>(34.1)      | 24,805<br>(110.3)                         | 12,780<br>(56.8)     | 16,865<br>(75.0)        | 8,690<br>(38.7)      | -                              | -                    | 14,430<br>(64.2)               | 9,200<br>(40.9)      | 14,430<br>(64.2)               | 8,180<br>(36.4)      | 14,430<br>(64.2)               | 10,220<br>(45.5)     | 14,430<br>(64.2)               | 10,220<br>(45.5)     |
| 1 or #8                                | 15,035<br>(66.9)          | 7,745<br>(34.5)      | 19,440<br>(86.5)          | 10,015<br>(44.5)     | 32,400<br>(144.1)                         | 16,690<br>(74.2)     | 22,030<br>(98.0)        | 11,350<br>(50.5)     | -                              | -                    | 18,850<br>(83.8)               | 12,015<br>(53.4)     | 18,850<br>(83.8)               | 10,680<br>(47.5)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     |
| #9                                     | -                         | -                    | -                         | -                    | -                                         | -                    | -                       | -                    | -                              | -                    | 23,985<br>(106.7)              | 15,290<br>(68.0)     | 23,985<br>(106.7)              | 13,590<br>(60.5)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     |
| 1-1/4                                  | 23,490<br>(104.5)         | 12,100<br>(53.8)     | 30,375<br>(135.1)         | 15,645<br>(69.6)     | 50,620<br>(225.2)                         | 26,080<br>(116.0)    | 34,425<br>(153.1)       | 17,735<br>(78.9)     | -                              | -                    | -                              | -                    | -                              | -                    | -                              | -                    | -                              | -                    |
| #10                                    | -                         | -                    | -                         | -                    | -                                         | -                    | -                       | -                    | -                              | -                    | 30,405<br>(135.2)              | 19,380<br>(86.2)     | 30,405<br>(135.2)              | 17,230<br>(76.6)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     |

1. AISC defined steel strength (ASD) for threaded rod: Tensile =  $0.33 \bullet F_u \bullet A_{nom}$ , Shear =  $0.17 \bullet F_u \bullet A_{nom}$ 

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

5. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is the greater of [hnom + 1-1/4"] and [hnom + 2dbit]

#### Load-Temperature Reduction Curve Concrete Base Materials



#### Load-Temperature Reduction Curve Masonry Units



# Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Grout-Filled Concrete Masonry (Based on Bond Strength/Masonry Strength)<sup>1,2,3,7,9,12</sup>

| Anchor<br>Diameter<br>d<br>(inch)                              | Minimum<br>Embedment<br>hnom<br>(inch) | Critical Spacing<br>Distance<br>Sα<br>(inch) | Minimum Edge<br>Distance<br>cmin<br>(inch)            | Minimum End<br>Distance<br>Cmin<br>(inch) | Tension Load<br>(Ibs)       | Direction of Shear Loading | Shear Load<br>(lbs) |  |  |  |  |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------|----------------------------|---------------------|--|--|--|--|
| Anchor Installed Into Grouted Masonry Wall Faces 4568,10,11,13 |                                        |                                              |                                                       |                                           |                             |                            |                     |  |  |  |  |
|                                                                |                                        | 6                                            | 3                                                     | 3                                         | 615                         | Towards Edge/End           | 275                 |  |  |  |  |
| 2/0                                                            | 2                                      | 6                                            | 3                                                     | 3                                         | 615                         | Away From Edge/End         | 340                 |  |  |  |  |
| 3/0                                                            | 3                                      | 6                                            | 3                                                     | 4                                         | 735                         | Any                        | 490                 |  |  |  |  |
|                                                                |                                        | 6                                            | 12                                                    | 12                                        | 960                         | Any                        | 855                 |  |  |  |  |
|                                                                |                                        | 8                                            | 3                                                     | 3                                         | 720                         | Towards Edge/End           | 429                 |  |  |  |  |
|                                                                |                                        | 8                                            | 3                                                     | 3                                         | 720                         | Away From Edge/End         | 1320                |  |  |  |  |
| 1/2                                                            | 4                                      | 8                                            | 4                                                     | 4                                         | 985                         | Any                        | 655                 |  |  |  |  |
|                                                                |                                        | 8                                            | 12                                                    | 12                                        | 960                         | Towards Edge/End           | 1430                |  |  |  |  |
|                                                                |                                        | 8                                            | 12                                                    | 12                                        | 960                         | Away From Edge/End         | 1760                |  |  |  |  |
|                                                                |                                        | 8                                            | 7-3/4 (Bed Joint)                                     | 3                                         | 935                         | Load To Edge               | 460                 |  |  |  |  |
|                                                                |                                        | 10                                           | 3                                                     | 3                                         | 712                         | Towards Edge/End           | 459                 |  |  |  |  |
|                                                                |                                        | 10                                           | 3                                                     | 3                                         | 712                         | Away From Edge/End         | 1410                |  |  |  |  |
| 5/8                                                            | 5                                      | 10                                           | 12                                                    | 12                                        | 1095                        | Towards Edge/End           | 1530                |  |  |  |  |
|                                                                |                                        | 10                                           | 12                                                    | 12                                        | 1095                        | Away From Edge/End         | 1880                |  |  |  |  |
|                                                                |                                        | 10                                           | 7-3/4 (Bed Joint)                                     | 3                                         | 1030                        | Load To Edge               | 590                 |  |  |  |  |
|                                                                |                                        | 12                                           | 4                                                     | 4                                         | 754                         | Towards Edge/End           | 628                 |  |  |  |  |
|                                                                |                                        | 12                                           | 4                                                     | 4                                         | 754                         | Away From Edge/End         | 1448                |  |  |  |  |
| 3/4                                                            | 6                                      | 12                                           | 12                                                    | 12                                        | 1160                        | Towards Edge/End           | 1570                |  |  |  |  |
|                                                                |                                        | 12                                           | 12                                                    | 12                                        | 1160                        | Away From Edge/End         | 1930                |  |  |  |  |
|                                                                |                                        | 12                                           | 7-3/4 (Bed Joint)                                     | 4                                         | 945                         | Load To Edge               | 565                 |  |  |  |  |
|                                                                |                                        | An                                           | chor installed into T                                 | ops of Grouted Masc                       | onry Walls <sup>14,15</sup> |                            |                     |  |  |  |  |
| Anchor Diameter<br>d<br>(inch)                                 | Minimum<br>Embedment<br>hnom<br>(inch) | Minimum Spacing<br>Distance                  | Minimum Edge<br>Distance<br><sup>Cmin</sup><br>(inch) | Minimum End<br>Distance<br>Cmin<br>(inch) | Tension Load<br>(lbs)       | Direction of Shear Loading | Shear Load<br>(lbs) |  |  |  |  |
|                                                                | 2.75                                   | 1 anchor per cell                            | 1.75                                                  | 4                                         | 595                         | Any                        | 300                 |  |  |  |  |
|                                                                | 4                                      | 1 anchor per cell                            | 1.75                                                  | 3                                         | 520                         | Load To Edge               | 190                 |  |  |  |  |
| 1/2                                                            | 4                                      | 1 anchor per cell                            | 1.75                                                  | 3                                         | 520                         | Load To End                | 300                 |  |  |  |  |
|                                                                | 10                                     | 1 anchor per block <sup>16</sup>             | 1.75                                                  | 10.5                                      | 1670                        | Load To Edge               | 190                 |  |  |  |  |
|                                                                | 10                                     | 1 anchor per block <sup>16</sup>             | 1.75                                                  | 10.5                                      | 1670                        | Load To End                | 300                 |  |  |  |  |
|                                                                | 5                                      | 1 anchor per cell                            | 1.75                                                  | 3                                         | 745                         | Load To Edge               | 240                 |  |  |  |  |
| 5/8                                                            | 5                                      | 1 anchor per cell                            | 1.75                                                  | 3                                         | 745                         | Load To End                | 300                 |  |  |  |  |

 5/4
 6
 1 anchor per cell
 2.75
 4
 1260
 Load To End
 490

 1. Tabulated load values are for anchors installed in nominal 8-inch wide (203 mm) Grade N, Type II, lightweight, medium-weight or normal-weight grout filled concrete masonry units with a minimum masonry strength, fm, of 1,500 psi (10.3 MPa) conforming to ASTM C 90. If the specified compressive strength of the masonry, f'm, is 2,000 psi (13.8 MPa) minimum the tabulated values may be increased by 4 percent (multiplied by 1.04).
 ASTM C 90.
 If the specified compressive strength of the masonry, f'm, is 2,000 psi (13.8 MPa) minimum the tabulated values may be increased by 4 percent (multiplied by 1.04).
 ASTM C 90.
 If the specified compressive strength of the masonry, f'm, is 2,000 psi (13.8 MPa) minimum the tabulated values may be increased by 4 percent (multiplied by 1.04).

2. Allowable bond or masonry strengths in tension and shear are calculated using a safety factor of 5.0 and must be checked against the allowable tension and shear capacities for threaded rod based on steel strength to determine the controlling factor. See allowable load table based on steel strength.

10.5

10.5

4

2095

2095

1260

Load To Edge

Load To End

Load To Edge

3. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

1 anchor per block16

1 anchor per block16

1 anchor per cell

4. Anchors may be installed in the grouted cells, cell webs and bed joints not closer than 1-1/2-inch from the vertical mortar joint (head joint) provided the minimum edge and end distances are maintained. Anchors may be placed in the head joint if the vertical joint is mortared full-depth.

5. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements.

2.75

2.75

2.75

6. The critical spacing, ser, for use with the anchor values shown in this table is 16 anchor diameters. The critical spacing, ser, distance is the distance where the full load values in the table may be used. The minimum spacing distance, sem, is the minimum anchor spacing for which values are available and installation is permitted. For 3/8-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.70 and a shear reduction factor of 0.45. For ½ - and 5/8 – inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.85 and a shear reduction factor of 0.45. For 3/4-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.45.

7. Spacing distance is measured from the centerline to centerline between two anchors.

12.5

12.5

6

3/4

8. The critical edge or end distance, c<sub>m</sub>, is the distance where full load values in the table may be used. The minimum edge or end distance, c<sub>mn</sub>, is the minimum distance for which values are available and installation is permitted.

9. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

10. Linear interpolation of load values between the minimum spacing, smin, and critical spacing, sr, distances and between minimum edge or end distance, cmin, and critical edge or end distance, cr, is permitted.

11. The tabulated values are applicable for anchors in the ends of grout-filled concrete masonry units where minimum edge and end distances are maintained.

12. The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

13. Concrete masonry width (wall thickness) must be equal to or greater than 1.5 times the anchor embedment depth (e.g. 3/8-inch and 1/2-inch diameter anchors are permitted in nominally

6-inch-thick concrete masonry). The 5/8-inch and 3/4-inch diameter anchors must be installed in minimum nominally 8-inch-thck concrete masonry. 14. Anchors must be installed into the grouted cell: anchors are not permitted to be installed in a head joint. flange or wen of the concrete masonry unit.

15. Allowable shear loads parallel or perpendicular to the edge of a masonry wall may be applied in or out of plane.

16. Anchors with minimum spacing distance of one anchor per block may not be installed in adjacent cells (i.e. one cell must separate the anchor locations).

240

300

410

FECHNICAL GUIDE – ADHESIVES ©2018 DEWALT – REV. D



#### AC100+ Gold Adhesive Anchors Installed into Grouted Concrete Masonry Wall



#### AC100+ Gold Adhesive Anchors Installed into Hollow Concrete Masonry Wall



#### AC100+ Gold Adhesive Anchors Installed into Top of Grouted Concrete Masonry Wall



- i. Shear luau parallel to Euge and perpendicular to End
- Shear load parallel to End and perpendicular to Edge
   Shear load parallel to Edge and perpendicular away from End
- 4. Shear load parallel to End and perpendicular to opposite Edge

#### Direction of Shear Loading in Relation to Edge and End of Masonry Wall



- 1. Shear load parallel to Edge and perpendicular to  $\operatorname{End}$
- 2. Shear load parallel to End and perpendicular to Edge
- 3. Shear load parallel to Edge and perpendicular away from End
- 4. Shear load parallel to End and perpendicular away from Edge

Anchor

Diameter

d (inch)

1/4

(6.4)

**Screen Tube** 

(type)

Stainless Steel

# Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Hollow Concrete Masonry Walls with Stainless Steel and Plastic Screen Tubes<sup>1,2,3,4,5,6,7,8,9,10,11,12,13</sup>

Minimum Edge

Distance

(inch)

1-1/2

(38.1)

3

(76.2)

1-1/2

(38.1)

**Critical** 

Spacing Distance

Sc

(inch)

4

(101.6)

4

(101.6)

4

(101.6)

Minimum

Embedment

(inch)

1-1/4

(31.8)

1-1/4

(31.8)

1-1/4

(31.8)



|                   |                       | 1-1/4<br>(31.8)         | 4<br>(101.6)         | 3<br>(76.2)       | 3<br>(76.2)           | 350<br>(1.6)          | Away From Edge/End             | 465<br>(2.1) |
|-------------------|-----------------------|-------------------------|----------------------|-------------------|-----------------------|-----------------------|--------------------------------|--------------|
|                   | Plastic               | 1-1/4<br>(31.8)         | 1 anchor<br>per cell | 3<br>(76.2)       | 3<br>(76.2)           | 140<br>(0.6)          | Towards Edge/End               | 235<br>(1.0) |
|                   |                       | 1-1/4<br>(31.8)         | 6<br>(152.4)         | 1-7/8<br>(47.6)   | 1-7/8<br>(47.6)       | 320<br>(1.4)          | Towards Edge/End               | 145<br>(0.6) |
| 3/8<br>(9.5)      | Stainless Steel       | 1-1/4<br>(31.8)         | 6<br>(152.4)         | 3-3/4<br>(95.3)   | 3-3/4<br>(95.3)       | 400 (1.8)             | Towards Edge/End               | 290<br>(1.3) |
|                   |                       | 1-1/4 (31.8)            | 6 (152.4)            | 1-7/8<br>(47.6)   | 1-7/8<br>(47.6)       | 320                   | Away From Edge/End             | 245          |
| ()                |                       | 1-1/4 (31.8)            | 6<br>(152.4)         | 3-3/4 (95.3)      | 3-3/4 (95.3)          | 400                   | Away From Edge/End             | 490          |
|                   | Plastic               | 1-1/4 (31.8)            | 1 anchor per         | 3 (76.2)          | 3 (76.2)              | 140                   | Towards Edge/End               | 235          |
|                   |                       | 1-1/4 (31.8)            | 8 (203.2)            | 3-3/4 (95.3)      | 3-3/4 (95.3)          | 380                   | Towards Edge/End               | 215          |
|                   | Stainless Steel       | 1-1/4                   | 8<br>(203.2)         | 11-1/4            | 11-1/4 (285.8)        | 400                   | Towards Edge/End               | 430          |
| 1/2<br>(12,7)     |                       | 1-1/4 (31.8)            | 8<br>(203.2)         | 3-3/4<br>(95.3)   | 3-3/4<br>(95.3)       | 380                   | Away From Edge/End             | 365          |
| ()                |                       | 1-1/4 (31.8)            | 8<br>(203.2)         | 11-1/4 (285.8)    | 11-1/4 (285.8)        | 400 (1.8)             | Away From Edge/End             | 730          |
|                   | Plastic               | 1-1/4<br>(31.8)         | 1 anchor<br>per cell | 3 (76.2)          | 3 (76.2)              | 150                   | Towards Edge/End               | 215          |
|                   |                       | 1-1/4<br>(31.8)         | 8<br>(203.2)         | 3-3/4<br>(95.3)   | 3-3/4<br>(95.3)       | 380                   | Towards Edge/End               | 215<br>(1.0) |
|                   |                       | 1-1/4<br>(31.8)         | 8<br>(203.2)         | 11-1/4 (285.8)    | 11-1/4<br>(285.8)     | 400 (1.8)             | Towards Edge/End               | 430 (1.9)    |
| 5/8<br>(15.9)     | Stainless Steel       | 1-1/4 (31.8)            | (203.2)              | 3-3/4<br>(95.3)   | 3-3/4<br>(95.3)       | 380                   | Away From Edge/End             | 365          |
| ()                |                       | 1-1/4 (31.8)            | (203.2)              | 11-1/4 (285.8)    | 11-1/4                | 400                   | Away From Edge/End             | 730          |
|                   | Plastic               | 1-1/4 (31.8)            | 1 anchor             | 3 (76.2)          | 3 (76.2)              | 150<br>(0.7)          | Towards Edge/End               | 215          |
|                   |                       | 1-1/4 (31.8)            | 8<br>(203.2)         | 3-3/4 (95.3)      | 3-3/4 (95.3)          | 380                   | Towards Edge/End               | 215          |
| 3//               |                       | 1-1/4 (31.8)            | 8 (203.2)            | 11-1/4 (285.8)    | 11-1/4 (285.8)        | 400                   | Towards Edge/End               | 430          |
| (19.1)            | Stainless Steel       | 1-1/4<br>(31.8)         | 8 (203.2)            | 3-3/4             | 3-3/4 (95.3)          | 380                   | Away From Edge/End             | 365          |
|                   |                       | 1-1/4                   | 8<br>(203 2)         | 11-1/4            | 11-1/4                | 400                   | Away From Edge/End             | 730          |
| 1. Tabulated load | l values are for anch | ors installed in hollow | v concrete masonry   | with minimum maso | nrv strenath. f'm. of | 1.500 psi (10.3 MPa). | Concrete masonry units must be | liahtweiaht. |

1. Tabulated load values are for anchors installed in hollow concrete masonry with minimum masonry strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be lightweight, medium-weight or normal-weight conforming to ASTM C 90. Allowable loads have been calculated using a safety factor of 5.0.

2. Anchors must be installed into the hollow cell; anchors are not permitted to be installed in a mortar joint, flange or web of the concrete masonry unit.

3. A maximum of two anchor may be installed in a single masonry cell in accordance with the spacing and edge distance requirements, except as noted in the table.

4. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

5. Edge or end distance is measured from anchor centerline to the closest unrestrained edge of the CMU block.

6. The critical spacing, s<sub>er</sub>, for use with the anchor values shown in this table is 16 anchor diameters, except as noted in the table. The critical spacing, s<sub>er</sub>, distance is the distance where the full load values in the table may be used. The minimum spacing distance, s<sub>min</sub>, is the minimum anchor spacing for which values are available and installation is permitted. The spacing may be reduced to 8 anchor diameters by multiplying the tension load value by a reduction factor of 0.60 and multiplying the shear load value by a reduction factor of 0.45.

7. Spacing distance is measured from the centerline to centerline between two anchors.

Linear interpolation of load values between the minimum spacing, smin, and critical spacing, s<sub>cr</sub>, distances and between minimum edge or end distance, cmin, and critical edge or end distance, c<sub>σ</sub>, is permitted if applicable.

9. Concrete masonry width (wall thickness) may be minimum nominal 6-inch-thick provided the minimum embedment (i.e. face shell thickness) is maintained.

10. The tabulated values are applicable for anchors in the ends of hollow concrete masonry units where minimum face shell thickness, minimum edge and end distances are maintained.

11. Anchors are recognized to resist dead, live and wind tension and shear load applications.

12. Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values.

13. The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.





# **ADHESIVES**

# Ultimate and Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Brick Masonry Walls<sup>1,2,3</sup>



1. Tabulated load values are for anchors installed in minimum 2 wythe, Grade SW, solid clay brick masonry conforming to ASTM C 62. Motar must be N, S or M.

Allowable loads are calculated using an applied safety factor or 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.
 Allowable loads apply to installations in the face of brick or mortar joint. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity.



Allowable Shear

lbs. (kN)

1,000

(4.5) 500

(2.3) 750

(3.4)

#### Allowable Load Capacities for Threaded Rods and Reinforcing Bars or Rebar Dowel for AC100+ Gold Installed in Unreinforced Brick Masonry (URM Walls)<sup>1,2</sup>

Shear Anchor - Configuration A (See Figure 1)

| Varies 8" Shear Anchor<br>3/4" Diameter<br>Min. Grade AS6/A307<br>Threaded Rod<br>Rebar Dowel<br>No. 4. No. 5. or No. 6 | Rod Dia. or<br>Rebar Size<br>d<br>in.<br>(mm) | Minimum<br>Embed.<br>h <sub>√</sub><br>in.<br>(mm) |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| Min. Grade 40 Rebar                                                                                                     | 3/4<br>(19.1)                                 | 8<br>(203.2)                                       |
|                                                                                                                         | No. 4                                         | 8<br>(203.2)                                       |
| 15/16" Diameter<br>Screen Tube<br>in 1" Diameter Hole                                                                   | No. 5                                         | 8<br>(203.2)                                       |
|                                                                                                                         | No. 6                                         | 8                                                  |

Figure 1

8 13 1,000 (203.2) (330.2)(4.5) Allowable load values are applicable only where in-place shear tests indicate minimum mortar strength of 35 psi net. The 1.

Minimum

Wall Thickness

in.

(mm)

13

(330.2)

13

(330.2)

13

(330.2)

Allowable Tension

lbs. (kN)

-

anchors installed in unreinforced brick walls are limited to resisting seismic or wind loads only.



| Rod Dia. or<br>Rebar Size<br>d<br>in.<br>(mm) | Minimum<br>Embed.<br>h√<br>in.<br>(mm)       | Minimum<br>Wall<br>Thickness<br>in.<br>(mm) | Allowable<br>Tension<br>Ibs.<br>(kN) | Allowable<br>Shear<br>Ibs.<br>(kN) |
|-----------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------|------------------------------------|
| 3/4<br>(19.1)                                 | Within 1 inch<br>of opposite<br>wall surface | 13<br>(330.2)                               | 1,200<br>(5.4)                       | 1,000<br>(4.5)                     |

Figure 2

2. Allowable load values are applicable only where in-place shear tests indicate minimum mortar strength of 35 psi net. The anchors installed in unreinforced brick walls are limited to resisting seismic or wind loads only.

| Anchor<br>Description                                          | Minimum<br>Vertical Spacing<br>in. | Minimum Horizontal Spacing<br>in. | Minimum<br>Edge Distance<br>in. |
|----------------------------------------------------------------|------------------------------------|-----------------------------------|---------------------------------|
| Shear Anchor<br>Configuration A – (See Figure 1)               | 16                                 | 16                                | 16                              |
| 22-1/2° Combination Anchor<br>Configuration B – (See Figure 2) | 16                                 | 16                                | 16                              |

# AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

**ADHESIVES** 

AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

#### **STRENGTH DESIGN (SD)**

| <b>DEWALT</b> |
|---------------|
|               |

| Strength Design Installation Ta | able for <i>i</i> | AC100+ | Gold |
|---------------------------------|-------------------|--------|------|
|---------------------------------|-------------------|--------|------|

| Parameter                                        | Symbol           | Unite        |                                                   |            | Fra       | actional Nor    | inal Rod Dia    | ameter (Inch    | ) / Reinforci   | ng Bar Size     |                 |                 |
|--------------------------------------------------|------------------|--------------|---------------------------------------------------|------------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Falantee                                         | Symbol           | Units        | 3/8 or #3                                         | 1/2        | #4        | 5/8 or #5       | 3/4 or #6       | 7/8 or #7       | 1 or #8         | #9              | 1-1/4           | #10             |
| Threaded rod outside diameter                    | d                | inch<br>(mm) | 0.375<br>(9.5)                                    | 0.5<br>(12 | 00<br>.7) | 0.625<br>(15.9) | 0.750<br>(19.1) | 0.875<br>(22.2) | 1.000<br>(25.4) | -               | 1.250<br>(31.8) | -               |
| Rebar nominal outside diameter                   | d                | inch<br>(mm) | 0.375<br>(9.5)                                    | 0.5<br>(12 | 00<br>.7) | 0.625<br>(15.9) | 0.750<br>(19.1) | 0.875<br>(22.2) | 1.000<br>(25.4) | 1.125<br>(28.7) | -               | 1.250<br>(31.8) |
| Carbide drill bit nominal size                   | do (dbit)        | inch         | 7/16                                              | 9/16       | 5/8       | 11/16 or<br>3/4 | 7/8             | 1               | 1-1/8           | 1-3/8           | 1-3/8           | 1-1/2           |
| Minimum embedment                                | hef,min          | inch<br>(mm) | 2-3/8<br>(60)                                     | 2-3<br>(7  | 3/4<br>0) | 3-1/8<br>(79)   | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)      | 4-1/2<br>(114)  | 5<br>(127)      | 5<br>(127)      |
| Maximum embedment                                | hef,max          | inch<br>(mm) | 4-1/2<br>(114)                                    | 6<br>(15   | 6<br>52)  | 7-1/2<br>(191)  | 9<br>(229)      | 10-1/2<br>(267) | 12<br>(305)     | 13-1/2<br>(343) | 15<br>(381)     | 15<br>(381)     |
| Minimum member thickness                         | hmin             | inch<br>(mm) | h <sub>ef</sub> + 1-1/4<br>(h <sub>ef</sub> + 30) |            |           | $h_{ef} + 2d_o$ |                 |                 |                 |                 |                 |                 |
| Minimum anchor spacing                           | Smin             | inch<br>(mm) | 1-7/8<br>(48)                                     | 2-1<br>(6  | 1/2<br>4) | 3-1/8<br>(79)   | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159)  |
| Minimum edge distance                            | Cmin             | inch<br>(mm) | 1-7/8<br>(48)                                     | 2-1<br>(6  | 1/2<br>4) | 3-1/8<br>(79)   | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159)  |
| Max. rod torque <sup>2</sup>                     | Tmax             | ft-lbs       | 15                                                | 3          | 3         | 60              | 105             | 125             | 165             | -               | 280             | -               |
| Max. torque <sup>2,3</sup><br>(A36/Grade 36 rod) | T <sub>max</sub> | ft-lbs       | 10                                                | 2          | 5         | 50              | 90              | 125             | 165             | -               | 280             | -               |
| Max. torque <sup>2,4</sup><br>(Class 1 SS rod)   | Tmax             | ft-lbs       | 5                                                 | 2          | 0         | 40              | 60              | 100             | 165             | -               | 280             | -               |
| Minimum edge distance, reduced <sup>5</sup>      | Cmin,red         | inch<br>(mm) | 1-3/4<br>(45)                                     | 1-3<br>(4  | 3/4<br>5) | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 2-3/4<br>(70)   | 2-3/4<br>(70)   | 2-3/4<br>(70)   |

For pound-inch units: 1 mm = 0.03937 inch, 1 N-m = 0.7375 ft-lbf. For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. For use with the design provisions of ACI 318-14 Ch. 17 or ACI 318-11 Appendix D as applicable and ICC-ES AC308, Section 4.2 and ESR-2582.

2. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

3. These torque values apply to ASTM A 36 / F 1554 Grade 36 carbon steel threaded rods

4. These torque values apply to ASTM A 193 Grade B8/B8M (Class 1) stainless steel threaded rods.

5. For installation between the minimum edge distance, cmm, and the reduced minimum edge distance, cmm,red, the maximum torque must be reduced (multiplied) by a factor of 0.45.

#### Detail of Steel Hardware Elements used with Injection Adhesive System



|                                   |                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                              |
|-----------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| Steel<br>Description<br>(General) | Steel Specification<br>(ASTM)                  | Nominal Anchor<br>Size (inch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum<br>Yield<br>Strength, fy<br>(ksi) | Minimum<br>Ultimate<br>Strength,<br>fu (ksi) |
|                                   | ASTM A 36 and<br>F 1554 Grade 36               | 3/8 through 1-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.0                                      | 58.0                                         |
| Carbon rod                        | ASTM F 1554 Grade 55                           | 3/8 through 1-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.0                                      | 75.0                                         |
|                                   |                                                | 3/8 through 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.0                                      | 120.0                                        |
|                                   | ASTIVI A 449                                   | Nominal Anchor<br>Size (inch)         Minimum<br>Yield<br>Strength, f,<br>(ksi)         Minimum<br>Wield<br>Strength, f,<br>(ksi)         Minimum<br>Wield<br>Strength, f,<br>(ksi)           3/8 through 1-1/4         36.0         58.0           3/8 through 1-1/4         55.0         75.0           3/8 through 1         92.0         120.           1-1/4         81.0         105.1           3/8 through 1-1/4         105.0         125.1           3/8 through 5/8         65.0         100.1           3/4 through 1-1/4         45.0         85.0           3/8 through 1-1/4         75.0         95.0           3/8 through 1-1/4         75.0         90.0           3/8 through 1-1/4         75.0         100.0           3/8 through 1-1/4         60.0         90.0           3/8 through 1-1/4         60.0         90.0           0         3/8 through 1-1/4<br>(#3 through #10)         60.0         80.0           0         3/8 through 1-1/4<br>(#3 through #10)         60.0         80.0           0         3/8 through 1-1/4<br>(#3 through #10)         60.0         80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105.0                                     |                                              |
| High Strength<br>Carbon rod       | ASTM A 193<br>Grade B7 and<br>F 1554 Grade 105 | 3/8 through 1-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105.0                                     | 125.0                                        |
|                                   | ACTM E EQ2 Condition CM/                       | 3/8 through 5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.0                                      | 100.0                                        |
|                                   | ASTIVEF 593 CONDITION CW                       | 3/4 through 1-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0                                      | 85.0                                         |
| Stainless rod<br>(Alloy 304/316)  | ASTM A 193 Grade B8/B8M,<br>Class 1            | 3/8 through 1-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.0                                      | 75.0                                         |
|                                   | ASTM A 193 Grade B8/B8M2,<br>Class 2B          | ion         Nominal Anchor<br>Size (inch)         Minimum<br>Yield<br>Strength, fy<br>(ksi)         Minimum<br>Strength, fy<br>(strength, fy<br>(strength, fy<br>(ksi)         Minimum<br>Strength, fy<br>(ksi)         Minimum<br>Strength, fy<br>(strength, fy<br>(strength, fy<br>(ksi)         Minimum<br>Strength, fy<br>(strength, fy<br>(strength, fy)         Minimum<br>Strength, fy         Strength, fy | 95.0                                      |                                              |
|                                   | ASTM A 615, A 767, Grade 75                    | 3/8 through 1-1/4<br>(#3 through #10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75.0                                      | 100.0                                        |
| Dainforging Par                   | ASTM A 615, A 767, Grade 60                    | 3/8 through 1-1/4<br>(#3 through #10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.0                                      | 90.0                                         |
| Nell II OF CITING Dat             | ASTM A 706, A 767, Grade 60                    | 3/8 through 1-1/4<br>(#3 through #10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.0                                      | 80.0                                         |
|                                   | ASTM A 615, A 767, Grade 40                    | 3/8 through 1-1/4<br>(#3 through #10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.0                                      | 60.0                                         |

#### **Threaded Rod and Deformed Reinforcing Bar Material Properties**

TECHNICAL GUIDE - ADHESIVES ©2018 DEWALT - REV. D

CODE LISTED ICC-ES ESR-2582



**Design Information** 

1-1/4

# Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)

Symbol

Units

3/8

1/2

5/8



1

Nominal Rod Diameter<sup>1</sup> (inch)

3/4

7/8

| S |
|---|
|   |
|   |
| 5 |
| Ξ |
|   |

AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

| Threaded rod                             | nominal outside diameter                                                   | d                | inch<br>(mm)   | n 0.375 0.500 0.625 0.750 0.875 1.000 1.2<br>n) (9.5) (12.7) (15.9) (19.1) (22.2) (25.4) (31 |                  |                   |                   |                   | 1.250<br>(31.8)   |                    |  |
|------------------------------------------|----------------------------------------------------------------------------|------------------|----------------|----------------------------------------------------------------------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--|
| Threaded rod                             | effective cross-sectional area                                             | Ase              | inch²<br>(mm²) | 0.0775<br>(50)                                                                               | 0.1419<br>(92)   | 0.2260<br>(146)   | 0.3345<br>(216)   | 0.4617<br>(298)   | 0.6057<br>(391)   | 0.9691<br>(625)    |  |
|                                          | Nominal strength as governed by                                            | Nsa              | lbf<br>(kN)    | 4,495<br>(20.0)                                                                              | 8,230<br>(36.6)  | 13,110<br>(58.3)  | 19,400<br>(86.3)  | 26,780<br>(119.1) | 35,130<br>(156.3) | 56,210<br>(250.0)  |  |
| ASTM A 36<br>and                         | steel strength (for a single anchor)                                       | V <sub>sa</sub>  | lbf<br>(kN)    | 2,695<br>(12.0)                                                                              | 4,940<br>(22.0)  | 7,860<br>(35.0)   | 11,640<br>(51.8)  | 16,070<br>(71.4)  | 21,080<br>(93.8)  | 33,725<br>(150.0)  |  |
| Grade 36                                 | Reduction factor for seismic shear                                         | OlV,seis         | -              | 0.80                                                                                         | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |
|                                          | Strength reduction factor for tension <sup>2</sup>                         | φ                | -              |                                                                                              | 0.75             |                   |                   |                   |                   |                    |  |
|                                          | Strength reduction factor for shear <sup>2</sup>                           | φ                | -              |                                                                                              |                  |                   | 0.65              |                   |                   |                    |  |
|                                          | Nominal strength as governed by                                            | Nsa              | lbf<br>(kN)    | 5,810<br>(25.9)                                                                              | 10,640<br>(47.3) | 16,950<br>(75.4)  | 25,085<br>(111.6) | 34,625<br>(154.0) | 45,425<br>(202.0) | 72,680<br>(323.3)  |  |
| ASTM F 1554                              | steel strength(for a single anchor)                                        | Vsa              | lbf<br>(kN)    | 3,485<br>(15.5)                                                                              | 6,385<br>(28.4)  | 10,170<br>(45.2)  | 15,050<br>(67.0)  | 20,775<br>(92.4)  | 27,255<br>(121.2) | 43,610<br>(194.0)  |  |
| Grade 55                                 | Reduction factor for seismic shear                                         | QV,seis          | -              | 0.80                                                                                         | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |
|                                          | Strength reduction factor for tension <sup>2</sup>                         | φ                | -              |                                                                                              |                  |                   | 0.75              |                   |                   |                    |  |
|                                          | Strength reduction factor for shear <sup>2</sup>                           | φ                | -              |                                                                                              |                  |                   | 0.65              |                   |                   |                    |  |
| Nominal strength as governed by          |                                                                            | N <sub>sa</sub>  | lbf<br>(kN)    | 9,685<br>(43.1)                                                                              | 17,735<br>(78.9) | 28,250<br>(125.7) | 41,810<br>(186.0) | 57,710<br>(256.7) | 75,710<br>(336.8) | 121,135<br>(538.8) |  |
| Grade B7<br>and                          | steel strength (for a single anchor)                                       | Vsa              | lbf<br>(kN)    | 5,815<br>(25.9)                                                                              | 10,640<br>(7.3)  | 16,950<br>(75.4)  | 25,085<br>(111.6) | 34,625<br>(154.0) | 45,425<br>(202.1) | 72,680<br>(323.3)  |  |
| ASTM F 1554                              | Reduction factor for seismic shear                                         | OlV,seis         | -              | 0.80                                                                                         | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |
| Grade 105                                | Strength reduction factor for tension <sup>2</sup>                         | φ                | -              | 0.75                                                                                         |                  |                   |                   |                   |                   |                    |  |
|                                          | Strength reduction factor for shear <sup>2</sup>                           | $\phi$           | -              |                                                                                              | 0.65             |                   |                   |                   |                   |                    |  |
|                                          | Nominal strength as<br>governed by steel strength<br>(for a single anchor) | N <sub>sa</sub>  | lbf<br>(kN)    | 9,300<br>(41.4)                                                                              | 17,025<br>(75.7) | 27,120<br>(120.6) | 40,140<br>(178.5) | 55,905<br>(248.7) | 72,685<br>(323.3) | 101,755<br>(452.6) |  |
| ASTM A 449                               |                                                                            | V <sub>sa</sub>  | lbf<br>(kN)    | 5,580<br>(24.8)                                                                              | 10,215<br>(45.4) | 16,270<br>(72.4)  | 24,085<br>(107.1) | 33,540<br>(149.2) | 43,610<br>(194.0) | 61,050<br>(271.6)  |  |
|                                          | Reduction factor for seismic shear                                         | ØV,seis          | -              | 0.80                                                                                         | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |
|                                          | Strength reduction factor for tension <sup>2</sup>                         | φ                | -              |                                                                                              |                  |                   | 0.75              |                   |                   |                    |  |
|                                          | Strength reduction factor for shear <sup>2</sup>                           | φ                | -              |                                                                                              |                  |                   | 0.65              |                   |                   |                    |  |
|                                          | Nominal strength as governed by                                            | N <sub>sa</sub>  | lbf<br>(kN)    | 7,750<br>(34.5)                                                                              | 14,190<br>(63.1) | 22,600<br>(100.5) | 28,430<br>(126.5) | 39,245<br>(174.6) | 51,485<br>(229.0) | 82,370<br>(366.4)  |  |
| ASTM F 593<br>CW Stainless<br>(Types 304 | steel strength (for a single anchor)                                       | Vsa              | lbf<br>(kN)    | 4,650<br>(20.7)                                                                              | 8,515<br>(37.9)  | 13,560<br>(60.3)  | 17,060<br>(75.9)  | 23,545<br>(104.7) | 30,890<br>(137.4) | 49,425<br>(219.8)  |  |
| and 316)                                 | Reduction factor for seismic shear                                         | OlV,seis         | -              | 0.70                                                                                         | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |
|                                          | Strength reduction factor for tension <sup>3</sup>                         | φ                | -              |                                                                                              |                  |                   | 0.65              |                   |                   |                    |  |
|                                          | Strength reduction factor for shears                                       | φ                | -              | 4.400                                                                                        | 0.000            | 10.000            | 0.60              | 00.045            | 04.505            | 55.040             |  |
| ASTM A 193<br>Grade B8/B8M               | Nominal strength as governed by                                            | Nsa              | lbt<br>(kN)    | 4,420<br>(19.7)                                                                              | 8,090<br>(36.0)  | 12,880<br>(57.3)  | 19,065<br>(84.8)  | 26,315<br>(117.1) | 34,525<br>(153.6) | 55,240<br>(245.7)  |  |
| Class 1<br>Stainless                     | steel strength (for a single anchor)"                                      | V <sub>sa</sub>  | lbf<br>(kN)    | 2,650<br>(11.8)                                                                              | 4,855<br>(21.6)  | 7,730<br>(34.4)   | 11,440<br>(50.9)  | 15,790<br>(70.2)  | 20,715<br>(92.1)  | 33,145<br>(147.4)  |  |
| (Types 304                               | Reduction factor for seismic shear                                         | ØV,seis<br>∳     | -              | 0.70                                                                                         | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |
| and 316)                                 | Strength reduction factor for shear <sup>2</sup>                           | φ                | -              |                                                                                              |                  |                   | 0.75              |                   |                   |                    |  |
| ASTM A 193                               | Nominal strength as governed by                                            |                  | lbf<br>(kN)    | 7,365<br>(32.8)                                                                              | 13,480<br>(60.0) | 21,470<br>(95.5)  | 31,775<br>(141.3) | 43,860<br>(195.1) | 57,545<br>(256.0) | 92,065<br>(409.5)  |  |
| Grade B8/<br>B8M2,<br>Class 2B           | steel strength (for a single anchor)                                       | V <sub>sa</sub>  | lbf<br>(kN)    | 4,420<br>(19.7)                                                                              | 8,085<br>(36.0)  | 12,880<br>(57.3)  | 19,065<br>(84.8)  | 26,315<br>(117.1) | 34,525<br>(153.6) | 55,240<br>(245.7)  |  |
| Stainless                                | Reduction factor for seismic shear                                         | <i>O</i> (V,seis | -              | 0.70                                                                                         | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |
| (Types 304                               | Strength reduction factor for tension <sup>2</sup>                         | $\phi$           | -              |                                                                                              |                  |                   | 0.75              |                   |                   |                    |  |
| anu 310j                                 | Strength reduction factor for shear <sup>2</sup>                           | $\phi$           | -              |                                                                                              |                  |                   | 0.65              |                   |                   |                    |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

2. The tabulated value of  $\dot{\phi}$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements.

3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements

4. In accordance with ACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/B8M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9fy or 57,000 psi (393 MPa).

TECHNICAL GUIDE – ADHESIVES © 2018 DEWALT – REV. D

# Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)



▶ E '.'/+

ENGINEERED BY Powers

|               |                                                                      |                  |                | Nominal Reinforcing Bar Size (Rebar) |                  |                   |                   |                   |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|----------------------------------------------------------------------|------------------|----------------|--------------------------------------|------------------|-------------------|-------------------|-------------------|-----------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Design Information                                                   | Symbol           | Units          | No. 3                                | No. 4            | No. 5             | No. 6             | No. 7             | No. 8                       | No. 9                      | No. 10                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rebar nomi    | nal outside diameter                                                 | d                | inch<br>(mm)   | 0.375<br>(9.5)                       | 0.500<br>(12.7)  | 0.625<br>(15.9)   | 0.750<br>(19.1)   | 0.875<br>(22.2)   | 1.000<br>(25.4)             | 1.125<br>(28.7)            | 1.250<br>(32.3)                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Rebar effect  | ive cross-sectional area                                             | Ase              | inch²<br>(mm²) | 0.110<br>(71.0)                      | 0.200<br>(129.0) | 0.310<br>(200.0)  | 0.440<br>(283.9)  | 0.600<br>(387.1)  | 0.790<br>(509.7)            | 1.000<br>(645.2)           | 1.270<br>(819.4)                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | Nominal strength as governed by                                      | N <sub>sa</sub>  | lbf<br>(kN)    | 11,000<br>(48.9)                     | 20,000<br>(89.0) | 31,000<br>(137.9) | 44,000<br>(195.7) | 60,000<br>(266.9) | 79,000<br>(351.4)           | 100,000<br>(444.8)         | 127,000<br>(564.9)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ASTM          | steel strength (for a single anchor)                                 | V <sub>sa</sub>  | lbf<br>(kN)    | 6,600<br>(29.4)                      | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | 36,000<br>(160.1) | 47,400<br>(210.8)           | 60,000<br>(266.9)          | 1.123         1.230           (28.7)         (32.3)           1.000         1.270           (645.2)         (819.4)           00,000         127,000           (444.8)         (564.9)           60,000         76,200           (28.7)         (338.9)           0.80         0.80           90,000         114,300           (400.3)         (508.4)           54,000         68,580           (240.2)         (305.0)           0.80         0.80 |
| Grade 75      | Reduction factor for seismic shear                                   | <i>O</i> ∕v,seis | -              | 0.70                                 | 0.70             | 0.80              | 0.80              | 0.80              | 0.80                        | 0.80                       | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | Strength reduction factor for tension <sup>3</sup>                   | $\phi$           | -              |                                      |                  |                   | 0.                | 65                |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Strength reduction factor for shear <sup>3</sup>                     | $\phi$           | -              |                                      |                  |                   | 0.                | 60                |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Nominal strength as governed by steel strength (for a single anchor) | N <sub>sa</sub>  | lbf<br>(kN)    | 9,900<br>(44.0)                      | 18,000<br>(80.1) | 27,900<br>(124.1) | 39,600<br>(176.1) | 54,000<br>(240.2) | 71,100<br>(316.3)           | 90,000<br>(400.3)          | 114,300<br>(508.4)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ASTM<br>A 615 |                                                                      | V <sub>sa</sub>  | lbf<br>(kN)    | 5,940<br>(26.4)                      | 10,800<br>(48.0) | 16,740<br>(74.5)  | 23,760<br>(105.7) | 32,400<br>(144.1) | 42,660<br>(189.8)           | 54,000<br>(240.2)          | 68,580<br>(305.0)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Grade 60      | Reduction factor for seismic shear                                   | <i>O</i> ℓv,seis | -              | 0.70                                 | 0.70             | 0.80              | 0.80              | 0.80              | 0.80                        | 0.80                       | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | Strength reduction factor for tension <sup>2</sup>                   | $\phi$           | -              | 0.75                                 |                  |                   |                   |                   |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Strength reduction factor for shear <sup>2</sup>                     | $\phi$           | -              | 0.65                                 |                  |                   |                   |                   |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Nominal strength as governed by                                      | Nsa              | lbf<br>(kN)    | 8,800<br>(39.1)                      | 16,000<br>(71.2) | 24,800<br>(110.3) | 35,200<br>(156.6) | 48,000<br>(213.5) | 63,200<br>(281.1)           | 80,000<br>(355.9)          | 101,600<br>(452.0)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ASTM A 706    | steel strength (for a single anchor)                                 | V <sub>sa</sub>  | lbf<br>(kN)    | 5,280<br>(23.5)                      | 9,600<br>(42.7)  | 14,880<br>(66.2)  | 21,120<br>(94.0)  | 28,800<br>(128.1) | 37,920<br>(168.7)           | 48,000<br>(213.5)          | 60,960<br>(271.2)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Grade 60      | Reduction factor for seismic shear                                   | <i>O</i> ℓV,seis | -              | 0.70                                 | 0.70             | 0.80              | 0.80              | 0.80              | 0.80                        | 0.80                       | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | Strength reduction factor for tension <sup>2</sup>                   | $\phi$           | -              |                                      |                  |                   | 0.                | 75                |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Strength reduction factor for shear <sup>2</sup>                     | $\phi$           | -              |                                      |                  |                   | 0.                | 65                |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Nominal strength as governed by                                      | Nsa              | lbf<br>(kN)    | 6,600<br>(29.4)                      | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | In accord         | ance with As                | STM A 615.                 | Grade 40                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ASTM A 615    | steel strength (for a single anchor)                                 | V <sub>sa</sub>  | lbf<br>(kN)    | 3,960<br>(17.6)                      | 7,200<br>(32.0)  | 11,160<br>(49.6)  | 15,840<br>(70.5)  | bar               | s are furnish<br>No. 3 thro | ied only in s<br>ugh No. 6 | izes                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Grade 40      | Reduction factor for seismic shear                                   | <i>O</i> ∕v,seis | -              | 0.70                                 | 0.70             | 0.80              | 0.80              |                   |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Strength reduction factor for tension <sup>2</sup>                   | $\phi$           | -              |                                      |                  |                   | 0.                | 75                |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Strength reduction factor for shear <sup>2</sup>                     | $\phi$           | -              |                                      |                  |                   | 0.                | 65                |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements. In accordance with ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)(a), as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-14 20.2.2.4 and 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.

3. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.

**ADHESIVES** 

# Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars (For use with loads combinations taken from ACI 318-14 Section 5.3)<sup>1</sup>



|                                                                                         |                   |              |                                                                                               |                | Nominal Roo                  | d Diameter (in                                | ch) / Reinforc  | ing Bar Size  |                 |                 |
|-----------------------------------------------------------------------------------------|-------------------|--------------|-----------------------------------------------------------------------------------------------|----------------|------------------------------|-----------------------------------------------|-----------------|---------------|-----------------|-----------------|
| Design Information                                                                      | Symbol            | I Units      | 3/8 or #3                                                                                     | 1/2 or #4      | 5/8 or #5                    | 3/4 or #6                                     | 7/8 or #7       | 1 or #8       | #9              | 1-1/4 or<br>#10 |
| Effectiveness factor for<br>cracked concrete                                            | k <sub>c,cr</sub> | -<br>(SI)    | Not<br>Applicable                                                                             |                |                              |                                               | 17<br>(7.1)     |               |                 |                 |
| Effectiveness factor for<br>uncracked concrete                                          | Kc,uncr           | -<br>(SI)    |                                                                                               |                |                              | 2<br>(10                                      | 4<br>).0)       |               |                 |                 |
| Minimum embedment                                                                       | hef,min           | inch<br>(mm) | 2-3/8<br>(60)                                                                                 | 2-3/4<br>(70)  | 3-1/8<br>(79)                | 3-1/2<br>(89)                                 | 3-1/2<br>(89)   | 4<br>(102)    | 4-1/2<br>(114)  | 5<br>(127)      |
| Maximum embedment                                                                       | hef,max           | inch<br>(mm) | 4-1/2<br>(114)                                                                                | 6<br>(152)     | 7-1/2<br>(191)               | 9<br>(229)                                    | 10-1/2<br>(267) | 12<br>(305)   | 13-1/2<br>(343) | 15<br>(381)     |
| Minimum anchor spacing                                                                  | Smin              | inch<br>(mm) | 1-7/8<br>(48)                                                                                 | 2-1/2<br>(64)  | 3-1/8<br>(79)                | 3-3/4<br>(95)                                 | 4-3/8<br>(111)  | 5<br>(127)    | 5-5/8<br>(143)  | 6-1/4<br>(159)  |
| Minimum edge distance <sup>2</sup>                                                      | Cmin              | inch<br>(mm) |                                                                                               |                | 5 <i>d</i> where <i>d</i> is | s nominal outs                                | side diameter ( | of the anchor | _               |                 |
| Minimum edge distance, reduced <sup>2</sup>                                             | Cmin,red          | inch<br>(mm) | 1-3/4<br>(45)                                                                                 | 1-3/4<br>(45)  | 1-3/4<br>(45)                | 1-3/4<br>(45)                                 | 1-3/4<br>(45)   | 1-3/4<br>(45) | 2-3/4<br>(70)   | 2-3/4<br>(70)   |
| Minimum member thickness                                                                | h <sub>min</sub>  | inch<br>(mm) | h <sub>ef</sub> +<br>(h <sub>ef</sub> +                                                       | 1-1/4<br>⊦ 30) |                              | h <sub>ef</sub> -                             | ⊦ 2d₀ where d   | is hole diam  | eter;           |                 |
| Critical edge distance—splitting                                                        |                   | inch         |                                                                                               |                | Cac                          | $h = h_{ef} \cdot (\frac{\tau_{uncr}}{1160})$ | º.₄ · [3.1-0.7  | <u>]</u> ]    |                 |                 |
| (for uncracked concrete only) <sup>3</sup>                                              | Cac               | (mm)         | $c_{ac} = h_{ef} \cdot (\frac{\tau_{uncr}}{8})^{o.4} \cdot [3.1\text{-}0.7 \frac{h}{h_{ef}}]$ |                |                              |                                               |                 |               |                 |                 |
| Strength reduction factor for tension, concrete failure modes, Condition B <sup>4</sup> | φ                 | -            |                                                                                               | 0.65           |                              |                                               |                 |               |                 |                 |
| Strength reduction factor for shear, concrete failure modes, Condition B <sup>4</sup>   | φ                 | -            |                                                                                               |                |                              | 0.                                            | 70              |               |                 |                 |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3.  $T_{k,uncr}$  need not be taken as greater than:  $T_{k,uncr} = \frac{k_{uncr} \cdot \sqrt{h_{ef} \cdot f'_{C}}}{\pi \cdot d}$  and  $\frac{h}{h_{ef}}$  need not be taken as larger than 2.4.

 $\pi \cdot d$   $\Pi_{ef}$ 

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4.

#### FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH



# Bond Strength Design Information for Threaded Rods (For use with load combinations taken from ACI 318-14 Section 5.3)<sup>1,2</sup>



| Design Infe                                              | rmation                                                               | Sumbol                            | Unito          | Nominal Rod Diameter (Inch) / Reinforcing Bar Size |                |                |               |                                     |                                        |                                                                  |
|----------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|----------------|----------------------------------------------------|----------------|----------------|---------------|-------------------------------------|----------------------------------------|------------------------------------------------------------------|
| Design into                                              | ormauon                                                               | Symbol                            | Units          | 3/8                                                | 1/2            | 5/8            | 3/4           | 7/8                                 | 1                                      | 1-1/4                                                            |
| Minimum er                                               | nbedment                                                              | h <sub>ef,min</sub>               | inch<br>(mm)   | 2-3/8<br>(60)                                      | 2-3/4<br>(70)  | 3-1/8<br>(79)  | 3-1/2<br>(89) | 3-1/2<br>(89)                       | 4<br>(102)                             | 5<br>(127)                                                       |
| Maximum er                                               | nbedment                                                              | h <sub>ef,max</sub>               | inch<br>(mm)   | 4-1/2<br>(114)                                     | 6<br>(152)     | 7-1/2<br>(191) | 9<br>(229)    | 10-1/2<br>(267)                     | 12<br>(305)                            | 15<br>(381)                                                      |
| 122°F (50°C)<br>Maximum Long-Term                        | Characteristic bond<br>strength in<br>cracked concrete <sup>4,7</sup> | $	au_{k,cr}$                      | psi<br>(N/mm²) | Not<br>Applicable                                  | 498<br>(3.4)   | 519<br>(3.6)   | 519<br>(3.6)  | 519<br>(3.6)                        | 519<br>(3.6)                           | 525<br>(3.6)                                                     |
| Service Temperature;<br>176°F (80°C)                     | Characteristic bond                                                   |                                   | nei            | 823                                                | 823            | 800            | 000           | 823<br>(5.7)                        | 743<br>(5.1)                           | 588<br>(4.1)                                                     |
| Maximum Short-Term<br>Service Temperature <sup>3,4</sup> | strength in<br>uncracked concrete <sup>4,8</sup>                      | $\mathcal{T}$ k,uncr              | (N/mm²)        | (5.7)                                              | (5.7)          | (5.7)          | (5.7)         |                                     | Not app<br>water-fi<br>installation    | Not applicable in<br>water-filled hole<br>installation condition |
| 162°F (72°C)<br>Maximum Long-Term                        | Characteristic bond<br>strength in<br>cracked concrete <sup>4,7</sup> | $	au_{k,cr}$                      | psi<br>(N/mm²) | Not<br>Applicable                                  | 245<br>(1.7)   | 255<br>(1.8)   | 255<br>(1.8)  | 255<br>(1.8)                        | 255<br>(1.8)                           | 255<br>(1.8)                                                     |
| Service Temperature;<br>248°F (120°C)                    | Characteristic bond                                                   |                                   | nai            | 405                                                | 405            | 405            | 405           | 405<br>(2.8)                        | 366<br>(2.5)                           | Not                                                              |
| Maximum Short-Term<br>Service Temperature <sup>3,4</sup> | strength in<br>uncracked concrete <sup>4,8</sup>                      | $\mathcal{T}_{k,uncr}$            | (N/mm²)        | (2.8)                                              | (2.8)          | (2.8)          | (2.8)         | Not app<br>water-fi<br>installatior | licable in<br>Iled hole<br>n condition | Applicable                                                       |
|                                                          | Dry concrete                                                          | $\phi_{ m d}$                     | -              |                                                    | 0.             | 65             |               | 0.65                                | 0.65                                   | 0.65                                                             |
| Permissible installation                                 | Water-saturated concrete                                              | $\phi_{\scriptscriptstyle  m WS}$ | -              |                                                    | 0.             | 55             |               | 0.55                                | 0.55                                   | 0.55                                                             |
| conditions                                               | Water-filled hole                                                     | $\phi_{\scriptscriptstyle  m wf}$ | -              | 0.45                                               |                |                | 0.45          | 0.45                                | 0.45                                   |                                                                  |
|                                                          | (flooded)                                                             | Kwf                               |                |                                                    | 0.78 0.70 0.69 |                |               |                                     |                                        | 0.67                                                             |
| Reduction factor fo                                      | r seismic tension                                                     | $lpha_{ m N}$ ,seis               | -              |                                                    |                |                | 0.95          |                                     |                                        |                                                                  |

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)<sup>a13</sup> [For S1: (f'c / 17.2)<sup>a13</sup>].

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-14 17.2.6 where applicable.

3. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 9.1, Temperature Category A.

4. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

5. Characteristic bond strengths are for sustained loads including dead and live loads.

6. Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

7. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete must be adjusted by an additional reduction factor, *Q*<sub>N,sets</sub>, as given in this table.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

#### Bond Strength Design Information for Reinforcing Bar (For use with load combinations taken from ACI 318-14 Section 5.3)<sup>1,2</sup>

| Design Information                                                                                                                    |                                                                         | Symbol                              | Units          | Nominal Rod Diameter (Inch) / Reinforcing Bar Size |               |                |               |                                                            |                                                            |                 |              |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|----------------|----------------------------------------------------|---------------|----------------|---------------|------------------------------------------------------------|------------------------------------------------------------|-----------------|--------------|
|                                                                                                                                       |                                                                         |                                     |                | #3                                                 | #4            | #5             | #6            | #7                                                         | #8                                                         | #9              | #10          |
| Minimum embedment                                                                                                                     |                                                                         | h <sub>ef,min</sub>                 | inch<br>(mm)   | 2-3/8<br>(60)                                      | 2-3/4<br>(70) | 3-1/8<br>(79)  | 3-1/2<br>(89) | 3-1/2<br>(89)                                              | 4<br>(102)                                                 | 4-1/2<br>(114)  | 5<br>(127)   |
| Maximum embedment                                                                                                                     |                                                                         | hef,max                             | inch<br>(mm)   | 4-1/2<br>(114)                                     | 6<br>(152)    | 7-1/2<br>(191) | 9<br>(229)    | 10-1/2<br>(267)                                            | 12<br>(305)                                                | 13-1/2<br>(343) | 15<br>(381)  |
| 122°F (50°C)<br>Maximum Long-Term<br>Service Temperature;<br>176°F (80°C)<br>Maximum Short-Term<br>Service Temperature <sup>34</sup>  | Characteristic bond<br>strength in<br>cracked concrete <sup>4,7</sup>   | $\mathcal{T}_{k,cr}$                | psi<br>(N/mm²) | Not<br>Applicable                                  | 331<br>(2.3)  | 345<br>(2.4)   | 345<br>(2.4)  | 345<br>(2.4)                                               | 345<br>(2.4)                                               | 349<br>(2.4)    | 349<br>(2.4) |
|                                                                                                                                       | Characteristic bond<br>strength in<br>uncracked concrete <sup>4,8</sup> | $	au_{k,uncr}$                      | psi<br>(N/mm²) | 823<br>(5.7)                                       | 823<br>(5.7)  | 823<br>(5.7)   | 823<br>(5.7)  | 823<br>(5.7)                                               | 743<br>(5.1)                                               | 655<br>(4.5)    | 588<br>(4.1) |
|                                                                                                                                       |                                                                         |                                     |                |                                                    |               |                |               |                                                            | Not applicable in water-filled hole installation condition |                 |              |
| 162°F (72°C)<br>Maximum Long-Term<br>Service Temperature;<br>248°F (120°C)<br>Maximum Short-Term<br>Service Temperature <sup>34</sup> | Characteristic bond<br>strength in<br>cracked concrete <sup>4,7</sup>   | $\mathcal{T}_{k,cr}$                | psi<br>(N/mm²) | Not<br>Applicable                                  | 163<br>(1.1)  | 170<br>(1.2)   | 170<br>(1.2)  | 170<br>(1.2)                                               | 170<br>(1.2)                                               | 170<br>(1.2)    | 170<br>(1.2) |
|                                                                                                                                       | Characteristic bond<br>strength in<br>uncracked concrete48              | $	au_{	extsf{k},	extsf{uncr}}$      | psi<br>(N/mm²) | 405<br>(2.8)                                       | 405<br>(2.8)  | 405<br>(2.8)   | 405<br>(2.8)  | 405<br>(2.8)                                               | 366<br>(2.5)                                               | 329<br>(2.3)    | Not          |
|                                                                                                                                       |                                                                         |                                     |                |                                                    |               |                |               | Not applicable in water-filled hole installation condition |                                                            | Applicable      |              |
| Permissible installation<br>conditions <sup>6</sup>                                                                                   | Dry concrete                                                            | $\phi_{ m d}$                       | -              | 0.65                                               |               |                |               | 0.65                                                       | 0.65                                                       | 0.65            | 0.65         |
|                                                                                                                                       | Water-saturated concrete                                                | $\phi_{\scriptscriptstyle { m WS}}$ | -              | 0.55                                               |               |                |               | 0.55                                                       | 0.55                                                       | 0.55            | 0.55         |
|                                                                                                                                       | Water-filled hole<br>(flooded)                                          | $\phi_{\scriptscriptstyle  m wf}$   | -              | 0.45 0.45 0.45                                     |               |                |               |                                                            | 0.45                                                       | 0.45            |              |
|                                                                                                                                       |                                                                         | $\kappa_{ m wf}$                    |                | 0.78 0.70 0.69 0                                   |               |                |               |                                                            | 0.68                                                       | 0.67            |              |
| Reduction factor for seismic tension                                                                                                  |                                                                         | lphaN ,seis                         | -              | 0.95                                               |               |                |               |                                                            |                                                            |                 |              |

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)<sup>a13</sup> [For SI: (f'c / 17.2)<sup>a13</sup>].

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-14 17.2.6 where applicable.

3. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 9.1, Temperature Category A.

4. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

5. Characteristic bond strengths are for sustained loads including dead and live loads.

6. Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

7. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete must be adjusted by an additional reduction factor, *Oct*<sub>M,seis</sub>, as given in this table.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.


Tension and Shear Design Strength for Threaded Rod and Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength)



Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                                 |                       |                                    |                                                                                              |                                    | Minim                                                                                        | um Concrete C                      | Compressive S                                                                                | trength                            |                                                                            |                                    |                                                                            |
|---------------------------------|-----------------------|------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------|
| Nominal                         | Embed.                | f'c = 2,5                          | 500 (psi)                                                                                    | f'c = 3,0                          | 000 (psi)                                                                                    | f'c = 4,0                          | 000 (psi)                                                                                    | f'c = 6,0                          | 000 (psi)                                                                  | f'c = 8,0                          | )00 (psi)                                                                  |
| Rod/Rebar<br>Size<br>(in. or #) | Depth<br>hef<br>(in.) | ∲N☆<br>or ØN₂<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{\mathrm{cb}}}$<br>or $\phi_{\mathbf{V}_{\mathrm{cp}}}$<br>Shear<br>(lbs.) | ∲N∞<br>or ØNª<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{\mathrm{cb}}}$<br>or $\phi_{\mathbf{V}_{\mathrm{cp}}}$<br>Shear<br>(lbs.) | ∲N∞<br>or ØNª<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{\mathrm{cb}}}$<br>or $\phi_{\mathbf{V}_{\mathrm{cp}}}$<br>Shear<br>(lbs.) | ∲N∞<br>or ØNª<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(lbs.) | ∲N☆<br>or ØN₂<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(lbs.) |
|                                 | 2-3/8                 | 1,495                              | 1,610                                                                                        | 1,535                              | 1,650                                                                                        | 1,590                              | 1,715                                                                                        | 1,675                              | 1,805                                                                      | 1,740                              | 1,875                                                                      |
| 3/8 or #3                       | 3                     | 1,890                              | 2,955                                                                                        | 1,935                              | 3,270                                                                                        | 2,010                              | 3,830                                                                                        | 2,120                              | 4,565                                                                      | 2,200                              | 4,735                                                                      |
| I F                             | 4-1/2                 | 2,835                              | 5,395                                                                                        | 2,905                              | 5,965                                                                                        | 3,015                              | 6,495                                                                                        | 3,180                              | 6,845                                                                      | 3,300                              | 7,105                                                                      |
|                                 | 2-3/4                 | 2,310                              | 2,780                                                                                        | 2,365                              | 3,075                                                                                        | 2,455                              | 3,605                                                                                        | 2,590                              | 4,505                                                                      | 2,690                              | 5,280                                                                      |
| 1/2 or #4                       | 4                     | 3,360                              | 5,230                                                                                        | 3,440                              | 5,785                                                                                        | 3,575                              | 6,780                                                                                        | 3,765                              | 8,110                                                                      | 3,910                              | 8,420                                                                      |
|                                 | 6                     | 5,040                              | 9,530                                                                                        | 5,165                              | 10,540                                                                                       | 5,360                              | 11,545                                                                                       | 5,650                              | 12,170                                                                     | 5,865                              | 12,630                                                                     |
|                                 | 3-1/8                 | 3,280                              | 3,695                                                                                        | 3,360                              | 4,085                                                                                        | 3,490                              | 4,785                                                                                        | 3,680                              | 5,990                                                                      | 3,820                              | 7,020                                                                      |
| 5/8 or #5                       | 5                     | 5,250                              | 8,155                                                                                        | 5,380                              | 9,015                                                                                        | 5,585                              | 10,565                                                                                       | 5,885                              | 12,675                                                                     | 6,110                              | 13,160                                                                     |
|                                 | 7-1/2                 | 7,880                              | 14,850                                                                                       | 8,065                              | 16,420                                                                                       | 8,375                              | 18,035                                                                                       | 8,825                              | 19,015                                                                     | 9,165                              | 19,735                                                                     |
|                                 | 3-1/2                 | 4,285                              | 4,730                                                                                        | 4,380                              | 5,230                                                                                        | 4,535                              | 6,130                                                                                        | 4,760                              | 7,670                                                                      | 4,925                              | 8,990                                                                      |
| 3/4 or #6                       | 6                     | 7,565                              | 11,515                                                                                       | 7,745                              | 12,730                                                                                       | 8,040                              | 14,925                                                                                       | 8,475                              | 18,250                                                                     | 8,795                              | 18,950                                                                     |
|                                 | 9                     | 11,345                             | 20,970                                                                                       | 11,615                             | 23,190                                                                                       | 12,060                             | 25,975                                                                                       | 12,710                             | 27,380                                                                     | 13,195                             | 28,420                                                                     |
|                                 | 3-1/2                 | 4,370                              | 4,930                                                                                        | 4,475                              | 5,470                                                                                        | 4,635                              | 6,410                                                                                        | 4,865                              | 8,020                                                                      | 5,040                              | 9,400                                                                      |
| 7/8 or #7                       | 7                     | 10,295                             | 14,500                                                                                       | 10,540                             | 16,035                                                                                       | 10,940                             | 18,795                                                                                       | 11,535                             | 23,510                                                                     | 11,975                             | 25,790                                                                     |
|                                 | 10-1/2                | 15,440                             | 26,410                                                                                       | 15,810                             | 29,210                                                                                       | 16,415                             | 34,235                                                                                       | 17,300                             | 37,265                                                                     | 17,960                             | 38,685                                                                     |
|                                 | 4                     | 5,210                              | 6,045                                                                                        | 5,325                              | 6,685                                                                                        | 5,515                              | 7,835                                                                                        | 5,795                              | 9,800                                                                      | 6,000                              | 11,490                                                                     |
| 1 or #8                         | 8                     | 12,140                             | 17,000                                                                                       | 12,430                             | 18,800                                                                                       | 12,905                             | 22,040                                                                                       | 13,600                             | 27,565                                                                     | 14,120                             | 30,410                                                                     |
|                                 | 12                    | 18,205                             | 30,965                                                                                       | 18,645                             | 34,245                                                                                       | 19,355                             | 40,140                                                                                       | 20,400                             | 43,940                                                                     | 21,180                             | 45,615                                                                     |
|                                 | 5                     | 5,795                              | 6,845                                                                                        | 5,925                              | 7,570                                                                                        | 6,135                              | 8,875                                                                                        | 6,445                              | 11,100                                                                     | 6,670                              | 13,010                                                                     |
| #9                              | 10                    | 13,545                             | 19,320                                                                                       | 13,865                             | 21,365                                                                                       | 14,395                             | 25,045                                                                                       | 15,175                             | 31,325                                                                     | 15,755                             | 33,930                                                                     |
|                                 | 15                    | 20,315                             | 35,195                                                                                       | 20,800                             | 38,920                                                                                       | 21,595                             | 45,620                                                                                       | 22,760                             | 49,025                                                                     | 23,630                             | 50,895                                                                     |
|                                 | 5                     | 6,575                              | 7,695                                                                                        | 6,720                              | 8,510                                                                                        | 6,955                              | 9,975                                                                                        | 7,305                              | 12,480                                                                     | 7,565                              | 14,625                                                                     |
| 1-1/4                           | 10                    | 15,010                             | 21,630                                                                                       | 15,370                             | 23,920                                                                                       | 15,955                             | 28,035                                                                                       | 16,820                             | 35,065                                                                     | 17,460                             | 37,605                                                                     |
|                                 | 15                    | 22,515                             | 39,390                                                                                       | 23,055                             | 43,560                                                                                       | 23,930                             | 51,060                                                                                       | 25,225                             | 54,335                                                                     | 26,190                             | 56,405                                                                     |
|                                 | 5                     | 6,490                              | 7,685                                                                                        | 6,635                              | 8,495                                                                                        | 6,870                              | 9,960                                                                                        | 7,215                              | 12,455                                                                     | 7,470                              | 14,600                                                                     |
| #10                             | 10                    | 15,010                             | 21,665                                                                                       | 15,370                             | 23,960                                                                                       | 15,955                             | 28,085                                                                                       | 16,820                             | 35,130                                                                     | 17,460                             | 37,605                                                                     |
|                                 | 15                    | 22,515                             | 39,465                                                                                       | 23,055                             | 43,640                                                                                       | 23,930                             | 51,155                                                                                       | 25,225                             | 54,335                                                                     | 26,190                             | 56,405                                                                     |

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,  $h_a = h_{min}$ , and with the following conditions:

-  $C_{a1}$  is greater than or equal to the critical edge distance,  $C_{ac}$ 

- Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318-14, Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors ( $\phi$ ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14, Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14, Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14, Ch.17 and ICC-ES AC308 and ESR-2582.

Tension and Shear Design Strength for Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 122°F (50°C) Maximum Long-Term ServiceTemperature;

#### 176°F (80°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|               |              | Minimum Concrete Compressive Strength |                                    |                                    |                                    |                                    |                                  |                                    |                                  |                                    |                                  |
|---------------|--------------|---------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------------------|
| Nominal       | Embed.       | f'c = 2,5                             | 500 (psi)                          | f'c = 3,0                          | )00 (psi)                          | f'c = 4,0                          | 000 (psi)                        | f'c = 6,0                          | 000 (psi)                        | f'c = 8,0                          | 00 (psi)                         |
| Size<br>(in.) | hef<br>(in.) | ØN☆<br>or ØN₄<br>Tension<br>(Ibs.)    | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØN☆<br>or ØN₄<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØN☆<br>or ØN₄<br>Tension<br>(Ibs.) | ∳V₀<br>or ØV₀<br>Shear<br>(Ibs.) | ØN∞<br>or ØNa<br>Tension<br>(Ibs.) | ∳V₀<br>or ØV₀<br>Shear<br>(Ibs.) | ØN∞<br>or ØNa<br>Tension<br>(Ibs.) | ∳V₀<br>or ØV₀<br>Shear<br>(Ibs.) |
|               | 2-3/4        | 1,400                                 | 1,985                              | 1,430                              | 2,195                              | 1,485                              | 2,575                            | 1,565                              | 3,220                            | 1,625                              | 3,505                            |
| 1/2           | 4            | 2,035                                 | 3,735                              | 2,085                              | 4,130                              | 2,160                              | 4,655                            | 2,280                              | 4,910                            | 2,365                              | 5,095                            |
|               | 6            | 3,050                                 | 6,570                              | 3,125                              | 6,730                              | 3,245                              | 6,985                            | 3,420                              | 7,365                            | 3,550                              | 7,645                            |
|               | 3-1/8        | 2,070                                 | 2,640                              | 2,120                              | 2,915                              | 2,200                              | 3,420                            | 2,320                              | 4,275                            | 2,410                              | 5,015                            |
| 5/8           | 5            | 3,310                                 | 5,825                              | 3,390                              | 6,440                              | 3,520                              | 7,550                            | 3,710                              | 7,995                            | 3,855                              | 8,300                            |
|               | 7-1/2        | 4,970                                 | 10,605                             | 5,085                              | 10,955                             | 5,280                              | 11,375                           | 5,565                              | 11,990                           | 5,780                              | 12,445                           |
|               | 3-1/2        | 2,705                                 | 3,380                              | 2,760                              | 3,735                              | 2,860                              | 4,380                            | 3,000                              | 5,480                            | 3,105                              | 6,420                            |
| 3/4           | 6            | 4,770                                 | 8,225                              | 4,885                              | 9,095                              | 5,070                              | 10,660                           | 5,345                              | 11,510                           | 5,550                              | 11,950                           |
|               | 9            | 7,155                                 | 14,980                             | 7,325                              | 15,780                             | 7,605                              | 16,380                           | 8,015                              | 17,265                           | 8,320                              | 17,925                           |
|               | 3-1/2        | 2,755                                 | 3,525                              | 2,820                              | 3,910                              | 2,920                              | 4,580                            | 3,070                              | 5,730                            | 3,180                              | 6,715                            |
| 7/8           | 7            | 6,490                                 | 10,360                             | 6,645                              | 11,455                             | 6,900                              | 13,425                           | 7,275                              | 15,665                           | 7,550                              | 16,265                           |
|               | 10-1/2       | 9,735                                 | 18,865                             | 9,970                              | 20,865                             | 10,350                             | 22,295                           | 10,910                             | 23,500                           | 11,325                             | 24,395                           |
|               | 4            | 3,640                                 | 4,320                              | 3,720                              | 4,775                              | 3,855                              | 5,595                            | 4,045                              | 7,000                            | 4,190                              | 8,205                            |
| 1             | 8            | 8,480                                 | 12,145                             | 8,680                              | 13,430                             | 9,015                              | 15,740                           | 9,500                              | 19,690                           | 9,865                              | 21,240                           |
|               | 12           | 12,720                                | 22,120                             | 13,025                             | 24,460                             | 13,520                             | 28,670                           | 14,250                             | 30,695                           | 14,795                             | 31,865                           |
|               | 5            | 5,870                                 | 5,495                              | 6,000                              | 6,080                              | 6,210                              | 7,125                            | 6,525                              | 8,915                            | 6,755                              | 10,445                           |
| 1-1/4         | 10           | 13,400                                | 15,450                             | 13,720                             | 17,085                             | 14,245                             | 20,025                           | 15,015                             | 25,050                           | 15,590                             | 29,360                           |
|               | 15           | 20,100                                | 28,135                             | 20,585                             | 31,115                             | 21,370                             | 36,470                           | 22,525                             | 45,620                           | 23,385                             | 50,365                           |

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions: -  $c_{at}$  is greater than or equal to the critical edge distance,  $c_{ac}$ 

-  $C_{a2}$  is greater than or equal to 1.5 times  $C_{a1}$ .

Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/prout

2. Calculations were performed according to ACIS 15-14 CI.17 and ICC-ES ACSOS. The load level corresponding to the failure mode listed [Concrete breakdul strength, bond strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors ( $\phi$ ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-2582.



#### Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 122°F (50°C) Maximum Long-Term Service Temperature;



176°F (80°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                          |                                 | winimum concrete compressive Strength |                                    |                                                    |                                                                            |                                                 |                                    |                                     |                                    |                                     |                                    |  |
|--------------------------|---------------------------------|---------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|------------------------------------|--|
| Nominal                  | Embed.<br>Depth<br>hef<br>(in.) | f'c = 2,5                             | 500 (psi)                          | f'c = 3,0                                          | 000 (psi)                                                                  | f'c = 4,0                                       | 000 (psi)                          | f'c = 6,0                           | )00 (psi)                          | f'c = 8,0                           | )00 (psi)                          |  |
| Rod/Rebar<br>Size<br>(#) |                                 | ØNcb<br>or ØNa<br>Tension<br>(Ibs.)   | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | <i>φ</i> N∞<br>or <i>φ</i> Na<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(Ibs.) | φN <sub>cb</sub><br>or φNa<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØNcb<br>or ØNa<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØNcb<br>or ØNa<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(Ibs.) |  |
|                          | 2-3/4                           | 930                                   | 1,985                              | 950                                                | 2,050                                                                      | 990                                             | 2,130                              | 1,040                               | 2,245                              | 1,080                               | 2,330                              |  |
| #4                       | 4                               | 1,350                                 | 2,910                              | 1,385                                              | 2,980                                                                      | 1,435                                           | 3,095                              | 1,515                               | 3,265                              | 1,575                               | 3,385                              |  |
|                          | 6                               | 2,030                                 | 4,365                              | 2,075                                              | 4,470                                                                      | 2,155                                           | 4,645                              | 2,270                               | 4,895                              | 2,360                               | 5,080                              |  |
|                          | 3-1/8                           | 1,375                                 | 2,640                              | 1,410                                              | 2,915                                                                      | 1,465                                           | 3,150                              | 1,540                               | 3,320                              | 1,600                               | 3,445                              |  |
| #5                       | 5                               | 2,200                                 | 4,740                              | 2,255                                              | 4,855                                                                      | 2,340                                           | 5,040                              | 2,465                               | 5,315                              | 2,560                               | 5,515                              |  |
|                          | 7-1/2                           | 3,300                                 | 7,115                              | 3,380                                              | 7,285                                                                      | 3,510                                           | 7,560                              | 3,700                               | 7,970                              | 3,840                               | 8,275                              |  |
|                          | 3-1/2                           | 1,795                                 | 3,380                              | 1,835                                              | 3,735                                                                      | 1,900                                           | 4,095                              | 1,995                               | 4,300                              | 2,065                               | 4,450                              |  |
| #6                       | 6                               | 3,170                                 | 6,830                              | 3,245                                              | 6,990                                                                      | 3,370                                           | 7,260                              | 3,550                               | 7,650                              | 3,690                               | 7,945                              |  |
|                          | 9                               | 4,755                                 | 10,240                             | 4,870                                              | 10,490                                                                     | 5,055                                           | 10,890                             | 5,330                               | 11,475                             | 5,530                               | 11,915                             |  |
|                          | 3-1/2                           | 1,830                                 | 3,525                              | 1,875                                              | 3,910                                                                      | 1,945                                           | 4,185                              | 2,040                               | 4,395                              | 2,110                               | 4,550                              |  |
| #7                       | 7                               | 4,315                                 | 9,295                              | 4,420                                              | 9,515                                                                      | 4,585                                           | 9,880                              | 4,835                               | 10,415                             | 5,020                               | 10,810                             |  |
|                          | 10-1/2                          | 6,475                                 | 13,940                             | 6,630                                              | 14,275                                                                     | 6,880                                           | 14,820                             | 7,255                               | 15,620                             | 7,530                               | 16,215                             |  |
|                          | 4                               | 2,420                                 | 4,320                              | 2,475                                              | 4,775                                                                      | 2,560                                           | 5,515                              | 2,690                               | 5,795                              | 2,785                               | 6,000                              |  |
| #8                       | 8                               | 5,635                                 | 12,140                             | 5,770                                              | 12,430                                                                     | 5,990                                           | 12,905                             | 6,315                               | 13,600                             | 6,555                               | 14,120                             |  |
|                          | 12                              | 8,455                                 | 18,210                             | 8,655                                              | 18,645                                                                     | 8,985                                           | 19,355                             | 9,475                               | 20,405                             | 9,835                               | 21,180                             |  |
|                          | 5                               | 3,090                                 | 4,890                              | 3,155                                              | 5,410                                                                      | 3,270                                           | 6,340                              | 3,435                               | 7,395                              | 3,555                               | 7,655                              |  |
| #9                       | 10                              | 7,215                                 | 13,800                             | 7,390                                              | 15,260                                                                     | 7,670                                           | 16,520                             | 8,085                               | 17,415                             | 8,395                               | 18,080                             |  |
|                          | 15                              | 10,825                                | 23,315                             | 11,085                                             | 23,870                                                                     | 11,505                                          | 24,780                             | 12,130                              | 26,125                             | 12,590                              | 27,120                             |  |
|                          | 5                               | 3,855                                 | 5,490                              | 3,940                                              | 6,070                                                                      | 4,080                                           | 7,115                              | 4,280                               | 8,900                              | 4,435                               | 9,550                              |  |
| #10                      | 10                              | 8,910                                 | 15,475                             | 9,120                                              | 17,115                                                                     | 9,470                                           | 20,060                             | 9,980                               | 21,500                             | 10,365                              | 22,320                             |  |
|                          | 15                              | 13,365                                | 28,190                             | 13,685                                             | 29,470                                                                     | 14,205                                          | 30,595                             | 14,975                              | 32,250                             | 15,545                              | 33,480                             |  |

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions:

- can is greater than or equal to the critical edge distance, car

-  $c_{a2}$  is greater than or equal to 1.5 times  $c_{a1}.$ 

Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors () for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-2582.





#### Tension Design of Steel Elements (Steel Strength)<sup>1,2</sup>

|                                              | Steel Elements - Threaded Rod and Reinforcing Bar |                           |                                                         |                                                        |                                                                               |                                                                                 |                                |                                |                                |                                |
|----------------------------------------------|---------------------------------------------------|---------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Nominal<br>Rod/Rebar<br>Size<br>(in. or No.) | ASTM A36<br>and ASTM<br>F1554<br>Grade 36         | ASTM F1554<br>Grade 55    | ASTM A193<br>Grade B7<br>and ASTM<br>F1554 Grade<br>105 | ASTM<br>F593 CW<br>Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M, Class<br>1 Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M2, Class<br>2B Stainless<br>(Types 304<br>and 316) | ASTM A615<br>Grade 75<br>Rebar | ASTM A615<br>Grade 60<br>Rebar | ASTM A706<br>Grade 60<br>Rebar | ASTM A615<br>Grade 40<br>Rebar |
|                                              | ØNsa<br>Tension<br>(Ibs.)                         | ØNsa<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)                               | ØNsa<br>Tension<br>(Ibs.)                              | ØNsa<br>Tension<br>(Ibs.)                                                     | ØNsa<br>Tension<br>(Ibs.)                                                       | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      |
| 3/8 or #3                                    | 3,370                                             | 4,360                     | 7,265                                                   | 5,040                                                  | 3,315                                                                         | 5,525                                                                           | 7,150                          | 7,425                          | 6,600                          | 4,950                          |
| 1/2 or #4                                    | 6,175                                             | 7,980                     | 13,300                                                  | 9,225                                                  | 6,070                                                                         | 10,110                                                                          | 13,000                         | 13,500                         | 12,000                         | 9,000                          |
| 5/8 or #5                                    | 9,835                                             | 12,715                    | 21,190                                                  | 14,690                                                 | 9,660                                                                         | 16,105                                                                          | 20,150                         | 20,925                         | 18,600                         | 13,950                         |
| 3/4 or #6                                    | 14,550                                            | 18,815                    | 31,360                                                  | 18,480                                                 | 14,300                                                                        | 23,830                                                                          | 28,600                         | 29,700                         | 26,400                         | 19,800                         |
| 7/8 or #7                                    | 20,085                                            | 25,970                    | 43,285                                                  | 25,510                                                 | 19,735                                                                        | 32,895                                                                          | 39,000                         | 40,500                         | 36,000                         |                                |
| 1 or #8                                      | 26,350                                            | 34,070                    | 56,785                                                  | 33,465                                                 | 25,895                                                                        | 43,160                                                                          | 51,350                         | 53,325                         | 47,400                         |                                |
| #9                                           |                                                   |                           |                                                         |                                                        |                                                                               |                                                                                 | 65,000                         | 67,500                         | 60,000                         |                                |
| 1-1/4 or #10                                 | 42,160                                            | 54,510                    | 90,850                                                  | 53,540                                                 | 41,430                                                                        | 69,050                                                                          | 82,550                         | 85,725                         | 76,200                         | -                              |

- Steel Strength

1. Steel tensile design strength according to ACI 318-14 Ch.17 Appendix D,  $\phi$ Nsa =  $\phi$  • Ase,N • futa

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

#### Shear Design of Steel Elements (Steel Strength)<sup>1,2</sup>

|                              | Steel Elements - Threaded Rod and Reinforcing Bar |                           |                                                         |                                                        |                                                                               |                                                                                 |                                |                                |                                |                                |
|------------------------------|---------------------------------------------------|---------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Nominal<br>Rod/Rebar<br>Size | ASTM A36<br>and ASTM<br>F1554<br>Grade 36         | ASTM F1554<br>Grade 55    | ASTM A193<br>Grade B7<br>and ASTM<br>F1554 Grade<br>105 | ASTM<br>F593 CW<br>Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M, Class<br>1 Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M2, Class<br>2B Stainless<br>(Types 304<br>and 316) | ASTM A615<br>Grade 75<br>Rebar | ASTM A615<br>Grade 60<br>Rebar | ASTM A706<br>Grade 60<br>Rebar | ASTM A615<br>Grade 40<br>Rebar |
| (III. OF NO.)                | ØNsa<br>Tension<br>(Ibs.)                         | ØNsa<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)                               | ØNsa<br>Tension<br>(Ibs.)                              | ØNsa<br>Tension<br>(Ibs.)                                                     | ØNsa<br>Tension<br>(Ibs.)                                                       | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      |
| 3/8 or #3                    | 1,755                                             | 2,265                     | 3,775                                                   | 2,790                                                  | 1,725                                                                         | 2,870                                                                           | 3,960                          | 3,860                          | 3,430                          | 2,575                          |
| 1/2 or #4                    | 3,210                                             | 4,150                     | 6,915                                                   | 5,110                                                  | 3,155                                                                         | 5,255                                                                           | 7,200                          | 7,020                          | 6,240                          | 4,680                          |
| 5/8 or #5                    | 5,115                                             | 6,610                     | 11,020                                                  | 8,135                                                  | 5,025                                                                         | 8,375                                                                           | 11,160                         | 10,880                         | 9,670                          | 7,255                          |
| 3/4 or #6                    | 7,565                                             | 9,785                     | 16,305                                                  | 10,235                                                 | 7,435                                                                         | 12,390                                                                          | 15,840                         | 15,445                         | 13,730                         | 10,295                         |
| 7/8 or #7                    | 10,445                                            | 13,505                    | 22,505                                                  | 14,130                                                 | 10,265                                                                        | 17,105                                                                          | 21,600                         | 21,060                         | 18,720                         |                                |
| 1 or #8                      | 13,700                                            | 17,715                    | 29,525                                                  | 18,535                                                 | 13,465                                                                        | 22,445                                                                          | 28,440                         | 27,730                         | 24,650                         |                                |
| #9                           |                                                   |                           |                                                         |                                                        |                                                                               |                                                                                 | 36,000                         | 35,100                         | 31,200                         |                                |
| 1-1/4 or #10                 | 21,920                                            | 28,345                    | 47,240                                                  | 29,655                                                 | 21,545                                                                        | 35,905                                                                          | 45,720                         | 44,575                         | 39,625                         |                                |
| - Steel Strength             |                                                   |                           |                                                         |                                                        |                                                                               |                                                                                 |                                |                                |                                |                                |

1. Steel shear design strength according to ACI 318-14 Ch.17 Appendix D,  $\phi$ V<sub>sa</sub> =  $\phi \bullet 0.60 \bullet A_{se,V} \bullet f_{uta}$ 

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest

load level controls.

| INSTALLATIO              | N INSTRUCTIONS (SOLID BASE MATERIALS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal (see dust extraction equipment by DEWALT to minimize dust emission).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning. Drilling in dry base material is recommended when using hollow drill bits (vacuum must be on).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" DRILLING AND CLEANING SYSTEM; OTHERWISE GO TO STEP 2A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | TORY (BLOW 4X, BRUSH 4X, BLOW 4X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | <ul> <li>by DEWALT) a minimum of four times (4x).</li> <li>Les a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz.) for anchor rod 3/8" to 3/4" diameter or reinforcing bar (rebar).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>4X</b>                | <ul> <li>Use a compressed air nozzle (min. 90 ps) for anchor rod 7/8" to 1-1/4" diameter and rebar sizes #7 to #10. A hand pump shall not be used</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| \$2.\$7\$\$2.\$7         | with these anchor sizes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | the hole with the selected wire brush a minimum of four times (4x). A brush extension (supplied by DEWALT, Cat. #08282) should be used for holes drilled deeper than the listed brush length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4 <b>X</b><br>▼ <b>4</b> | • The wire brush diameter should be checked periodically during use. The brush should resist insertion into the drilled hole and come into contact with the sides of the drilled hole. If not the brush is too small and must be replaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | <ul> <li>2c- Finally, blow the hole clean again a minimum of four times (4x).</li> <li>Use a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz.) for anchor rod 3/8" to 3/4" diameter or reinforcing bar (rebar)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>4X</b>                | <ul> <li>sizes #3 to #6.</li> <li>Use a compressed air nozzle (min. 90 psi) for anchor rod 7/8" to 1-1/4" diameter and rebar sizes #7 to #10. A hand pump shall not be used</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | <ul> <li>When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PREPARING                | 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 23°F - 95°F (-5°C - 35°C) when in use unless otherwise noted. Review gel (working) and cure time table. Consideration should be given to the reduced gel time of the adhesive in warm temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | <ul> <li>Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool.</li> <li>Note: Always use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published working time of the adhesive.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          | <ul><li>4- Prior to inserting the anchor rod or rebar into the filled bore hole, the position of the embedment depth has to be marked on the anchor</li><li>Verify anchor element is straight and free of surface damage.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3X                       | 5- Adhesive must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color. Do not attach a used nozzle when changing to a new cartridge. Design and not the published undring and gurst time and gurst time and gurst time table) prior to the prior to dispensing adhesive into the drilled interview.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | <ul> <li>Review and note the published working and cure times (see get time and curing time table) prior to injection of the mixed adhesive into the<br/>cleaned anchor hole.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INSTALLATION             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | 6- Fill the cleaned hole approximately to two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. If the bottom or back of the anchor hole is not reached with the mixing nozzle only, a plastic extension tube must be used with the mixing nozzle (see reference tables for installation).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WITH PISTON PLUG:        | <ul> <li>Piston plugs (see installation specifications) must be used with and attached to the mixing nozzle and extension tube for horizontal and overhead installations in concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject a concrete with anchor rod 5/8" to 1-1/4" diameter and rebar size</li></ul> |
|                          | <ul> <li>Attention! Do not install anchors overhead without proper training and installation hardware provided by DEWALT.<br/>Contact DEWALT for details prior to use</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | <ul> <li><b>7-</b> The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | <ul> <li>8- Be sure that the anchor is fully seated at the bottom of the hole to the specified embedment. Adhesive must completely fill the annular gap between the anchor and the base material. Protect the anchor element threads from fouling with adhesive. For all installations the rebar must be restrained from movement throughout the specified curing period (as necessary) where necessary through the use of temporary wedges, external supports, or other methods. Minor adjustments to the position of the anchor element may be performed during the gel (working) time only.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>CURING AND LO</b>     | DADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 68°F                     | 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 45<br>min                | Do not disturb, torque or load the anchor until it is fully cured.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | <ul> <li>10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference gel time and curing table) by using a calibrated torque wrench.</li> <li>Take care not to exceed the maximum torque for the selected anchor.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

www.**DeWALT**.com

**ADHESIVES** 



#### **INSTALLATION INSTRUCTIONS (UNREINFORCED MASONRY [URM] AND HOLLOW BASE MATERIALS)**



#### 1-800-4 **DeWALT**

FECHNICAL GUIDE – ADHESIVES ©2018 DEWALT – REV. D

**ADHESIVES** 

#### **REFERENCE TABLES FOR INSTALLATION**

#### Gel (working) Time and Curing Table

| Temperature o | f Base Material | Col (working) Time | Full Curing Time |  |  |  |  |  |  |
|---------------|-----------------|--------------------|------------------|--|--|--|--|--|--|
| ۴             | °C              | Gei (working) Time | run curing time  |  |  |  |  |  |  |
| 14            | -10             | 90 minutes         | 24 hours         |  |  |  |  |  |  |
| 23            | -5              | 90 minutes         | 14 hours         |  |  |  |  |  |  |
| 32            | 0               | 45 minutes         | 7 hours          |  |  |  |  |  |  |
| 41            | 5               | 25 minutes         | 2 hours          |  |  |  |  |  |  |
| 50            | 10              | 15 minutes         | 90 minutes       |  |  |  |  |  |  |
| 68            | 20              | 6 minutes          | 45 minutes       |  |  |  |  |  |  |
| 86            | 30              | 4 minutes          | 25 minutes       |  |  |  |  |  |  |
| 95            | 35              | 2 minutes          | 20 minutes       |  |  |  |  |  |  |
| 104           | 40              | 1.5 minutes        | 15 minutes       |  |  |  |  |  |  |

The gel (working) times listed for 32'F to 95'F are also applicable for the temperature of the adhesive and use of mixing nozzes during installation.

For installations in base material temperatures between 14'F and 23'F (-10°C and -5°C) the cartridge temperature must be conditioned to between 68'F and 95'F (20'C - 35'C).

#### Hole Cleaning Equipment Selection Table for AC100+ Gold<sup>1,2,3,4</sup>

| Threaded Rod<br>Diameter<br>(inch)                                      | Rebar Size<br>(no.)                                       | ANSI Drill Bit<br>Diameter<br>(inch)                          | Brush Length, L<br>(inches)                               | Steel Wire<br>Brush<br>(Cat. #) | Blowout<br>Tool       | Number of<br>Cleaning Actions |
|-------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|-----------------------|-------------------------------|
|                                                                         | ·                                                         |                                                               | Solid Base Material                                       |                                 |                       |                               |
| 3/8                                                                     | #3                                                        | 7/16                                                          | 6-3/4                                                     | 08284                           |                       |                               |
| 1/2                                                                     | -                                                         | 9/16                                                          | 6-3/4                                                     | 08285                           | Hand-pump             |                               |
| -                                                                       | #4                                                        | 5/8                                                           | 6-3/4                                                     | 08275                           | (Cat #08280)          | 4x blowing                    |
| 5/8                                                                     | #5                                                        | 11/16                                                         | 7-7/8                                                     | 08286                           | compressed            |                               |
| 5/8                                                                     | #5                                                        | 3/4                                                           | 7-7/8                                                     | 08278                           | air nozzle            |                               |
| 3/4                                                                     | #6                                                        | 7/8                                                           | 7-7/8                                                     | 08287                           |                       | 4x blowing                    |
| 7/8                                                                     | #7                                                        | 1                                                             | 11-7/8                                                    | 08288                           |                       | 5                             |
| 1                                                                       | #8                                                        | 1-1/8                                                         | 11-7/8                                                    | 08289                           | Compressed air        |                               |
| 1-1/4                                                                   | #9                                                        | 1-3/8                                                         | 11-7/8                                                    | 08290                           | nozzle only           |                               |
| -                                                                       | #10                                                       | 1-1/2                                                         | 11-7/8                                                    | 08291                           |                       |                               |
|                                                                         |                                                           |                                                               | Hollow Base Material                                      |                                 |                       |                               |
| 1/4                                                                     | -                                                         | 3/8                                                           | 6-3/4                                                     | 08284                           |                       |                               |
| 1/4                                                                     | -                                                         | 1/2                                                           | 6-3/4                                                     | 08284                           | ]                     |                               |
| 3/8                                                                     | -                                                         | 1/2                                                           | 6-3/4                                                     | 08284                           |                       |                               |
| 3/8                                                                     | -                                                         | 9/16                                                          | 6-3/4                                                     | 08285                           | Hand pump             | 2x blowing                    |
| 1/2                                                                     | -                                                         | 5/8                                                           | 6-3/4                                                     | 08275                           | (Cat# 08280) or       | 2x brushing                   |
| 1/2                                                                     | -                                                         | 3/4                                                           | 7-7/8                                                     | 08278                           | compressed air nozzle | 2x blowing                    |
| 5/8                                                                     | -                                                         | 3/4                                                           | 7-7/8                                                     | 08278                           |                       |                               |
| 5/8                                                                     | -                                                         | 7/8                                                           | 7-7/8                                                     | 08287                           |                       |                               |
| 3/4                                                                     | -                                                         | 7/8                                                           | 7-7/8                                                     | 08287                           |                       |                               |
| <ol> <li>An SDS-plus adaptor (<br/>2. A brush extension (Cat</li> </ol> | Cat. #08283) or Jacobs chu<br>t. #08282) must be used for | ck style adaptor (Cat. #0829<br>holes drilled deeper than the | 6) is required to attach a stee<br>e listed brush length. | el wire brush to the drill tool |                       |                               |

3. See ordering information for selection of piston plugs (where applicable).

4. For any case, it must be possible for the steel anchor element to be inserted into the cleaned hole without resistance.

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

Dry Concrete: cured concrete that, at the time of adhesive anchor installation, has not been exposed to water for the preceding 14 days.

Water-Saturated Concrete (wet): cured concrete that, at the time of adhesive anchor installation, has been exposed to water over a sufficient length of time to have the maximum possible amount of absorbed water into the concrete pore structure to a depth equal to the anchor embedment depth.

Water-Filled Holes (flooded): cured concrete that is water-saturated and where the drilled hole contains standing water at the time of anchor installation.

Cat No.

8478SD

**ORDERING INFORMATION** 

AC100+ Gold Cartridges

# ADHESIVES





| 8486SD                         | AC100+ Gold 12 fl. oz. dual cartridge                                                                                   | -                |   |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------|---|
| 8490SD                         | -                                                                                                                       |                  |   |
| One AC100+ Go<br>AC100+ Gold m | old mixing nozzle is packaged with each cartridge.<br>ixing nozzles must be used to ensure complete and proper mixing c | of the adhesive. |   |
|                                |                                                                                                                         |                  | - |

Description

AC100+ Gold 10 fl. oz. Quik-Shot

#### **Cartridge System Mixing Nozzles**

| Cat No. | Description                                                       | Std. Pack/<br>Box | Std. Carton |
|---------|-------------------------------------------------------------------|-------------------|-------------|
| 08293   | Extra mixing nozzle for AC100+ Gold (10 oz. & 12 oz.)             | 2                 | 24          |
| 08294   | Extra mixing nozzle (with an 8" extension) for AC100+ Gold 28 oz. | 2                 | 24          |
| 08281   | Mixing nozzle extension, 8" minimum                               | 2                 | 24          |
| 08297   | Mixing nozzle extension, 20" long                                 |                   |             |

Std. Box

12

Std. Carton

36

12

8

#### **Dispensing Tools for Injection Adhesive**

| Cat No.  | Description                                                 | Std. Box | Std. Ctn. |
|----------|-------------------------------------------------------------|----------|-----------|
| 08437    | Manual caulking gun for Quik-Shot                           | 1        | 12        |
| 08479    | High performance caulking<br>gun for Quik-Shot              | 1        | 6         |
| 08485    | AC100+ Gold 10 oz. & 12 oz.<br>high performance manual tool | 1        | 20        |
| 08494    | AC100+ Gold 28 oz. standard<br>all metal manual tool        | 1        | -         |
| 08496    | AC100+ Gold 28 oz. pneumatic tool                           | 1        | -         |
| DCE595D1 | AC100+ Gold 28 oz. 20v battery<br>powered dispensing tool   | 1        | -         |

#### **Piston Plugs for Adhesive Anchors**

**Stainless Steel Screen Tubes** 

Pallet

648

540

240

| Cat. No.          | Description            | ANSI Drill Bit Dia.      | Std. Bag       | Std. Ctn.  |
|-------------------|------------------------|--------------------------|----------------|------------|
| 08304             | 5/8" Plug              | 5/8"                     | 10             | 100        |
| 08258             | 11/16" Plug            | 11/16"                   | 10             | 100        |
| 08259             | 3/4" Plug              | 3/4"                     | 10             | 100        |
| 08300             | 7/8" Plug              | 7/8"                     | 10             | 100        |
| 08301             | 1" Plug                | 1"                       | 10             | 100        |
| 08303             | 1-1/8" Plug            | 1-1/8"                   | 10             | 100        |
| 08305             | 1-3/8" Plug            | 1-3/8"                   | 10             | 100        |
| 08307             | 1-1/4" Plug            | 1-1/4"                   | 10             | 100        |
| 08309             | 1-1/2" Plug            | 1-1/2"                   | 10             | 100        |
| A plastic extensi | on tube (Cat# 08281 or | 08297) or equivalent app | proved by DEWA | LT must be |

A plastic extension tube (Cat# 08281 or 08297) or equivalent approved by DEWALT must be used with piston plugs.

#### **Hole Cleaning Tools and Accessories**

| Cat No. | Description                                                                                                                                                                                                                                | Std. Box |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 08284   | Wire brush for 7/16" or 1/2" ANSI hole, 6-3/4" length                                                                                                                                                                                      | 1        |
| 08285   | Wire brush for 9/16" ANSI hole, 6-3/4" length                                                                                                                                                                                              | 1        |
| 08275   | Wire brush for 5/8" ANSI hole, 6-3/4" length                                                                                                                                                                                               | 1        |
| 08286   | Wire brush for 11/16" ANSI hole, 7-7/8" length                                                                                                                                                                                             | 1        |
| 08278   | Wire brush for 3/4" ANSI hole, 7-7/8" length                                                                                                                                                                                               | 1        |
| 08287   | Wire brush for 7/8" ANSI hole, 7-7/8" length                                                                                                                                                                                               | 1        |
| 08288   | Wire brush for 1" ANSI hole, 11-7/8" length                                                                                                                                                                                                | 1        |
| 08289   | Wire brush for 1-1/8" ANSI hole, 11-7/8" length                                                                                                                                                                                            | 1        |
| 08276   | Wire brush for 1-1/4" ANSI hole, 11-7/8" length                                                                                                                                                                                            | 1        |
| 08290   | Wire brush for 1-3/8" ANSI hole, 11-7/8" length                                                                                                                                                                                            | 1        |
| 08291   | Wire brush for 1-1/2" ANSI hole, 11-7/8" length                                                                                                                                                                                            | 1        |
| 08283   | SDS-plus adapter for steel brushes                                                                                                                                                                                                         | 1        |
| 08296   | Standard drill adapter for steel brushes<br>(e.g. Jacobs Chuck)                                                                                                                                                                            | 1        |
| 08282   | Steel brush extension, 12" length                                                                                                                                                                                                          | 1        |
| 08280   | Hand pump/dust blower (25 ft. oz. clylinder volume)                                                                                                                                                                                        | 1        |
| 08292   | Air compressor nozzle with extension, 18" length                                                                                                                                                                                           | 1        |
| 52073   | Adhesive cleaning kit, includes 4 wire brushes<br>(08284, 08285, 08286, 08287), steel brush<br>extension (08282), SDS-plus adapter (08283),<br>standard drill adapter (08296), hand pump/dust<br>blower (08280), gloves and safety glasses | 1        |

| Cat. No. | Description               | Drill Diameter | Std. Ctn. |
|----------|---------------------------|----------------|-----------|
| 07960    | 1/4" x 2" Screen Tube     | 3/8"           | 25        |
| 07862    | 1/4" x 6" Screen Tube*    | 3/8"           | 25        |
| 07864    | 1/4" x 8"Screen Tube*     | 3/8"           | 25        |
| 07856    | 3/8" x 2" Screen Tube     | 1/2"           | 25        |
| 07961    | 3/8" x 3-1/2" Screen Tube | 1/2"           | 25        |
| 07962    | 3/8" x 6" Screen Tube*    | 1/2"           | 25        |
| 07963    | 3/8" x 8" Screen Tube*    | 1/2"           | 25        |
| 07964    | 3/8" x 10" Screen Tube*   | 1/2"           | 25        |
| 07959    | 3/8" x 12" Screen Tube*   | 1/2"           | 25        |
| 07857    | 1/2" x 2" Screen Tube     | 5/8"           | 25        |
| 07965    | 1/2" x 3-1/2" Screen Tube | 5/8"           | 25        |
| 07966    | 1/2" x 6" Screen Tube*    | 5/8"           | 25        |
| 07967    | 1/2" x 8" Screen Tube*    | 5/8"           | 25        |
| 07968    | 1/2" x 10" Screen Tube*   | 5/8"           | 25        |
| 07858    | 5/8" x 2" Screen Tube     | 3/4"           | 25        |
| 07969    | 5/8" x 4-1/2" Screen Tube | 3/4"           | 20        |
| 07970    | 5/8" x 6" Screen Tube     | 3/4"           | 20        |
| 07971    | 5/8" x 8" Screen Tube*    | 3/4"           | 20        |
| 07972    | 5/8" x 10" Screen Tube*   | 3/4"           | 20        |
| 07859    | 3/4" x 2" Screen Tube     | 7/8"           | 25        |
| 07855    | 15/16" x 2" Screen Tube   | 1"             | 25        |
| 07865    | 15/16" x 8" Screen Tube   | 1"             | 10        |
| 07867    | 15/16" x 13" Screen Tube  | 1"             | 10        |

Screen tubes are made from a 300 series stainless steel. The nominal diameter of the screen listed indicates the matching rod diameter.

\*Includes extension tubing.





#### **Plastic Screen Tubes**

Cat. No.

DW5806

DW5809

DW5807

DW5808

DW5810

DW5812

DW5813

DW5814

DW5815

DW5816

DW5851

DW5817

DW5818

DW5819

DW5852

DW5820

DW5821

DW5822

DW5853

DW5854

DW5824

DW5825

| Cat. No.            | Description                          | ANSI Drill<br>Diameter | Standard<br>Carton |  |  |  |  |
|---------------------|--------------------------------------|------------------------|--------------------|--|--|--|--|
| 08310               | 3/8" x 3-1/2" Plastic Screen         | 9/16"                  | 25                 |  |  |  |  |
| 08311               | 3/8" x 6" Plastic Screen             | 9/16"                  | 25                 |  |  |  |  |
| 08313               | 3/8" x 8" Plastic Screen             | 9/16"                  | 25                 |  |  |  |  |
| 08315               | 1/2" x 3-1/2" Plastic Screen         | 3/4"                   | 25                 |  |  |  |  |
| 08317               | 1/2" x 6" Plastic Screen             | 3/4"                   | 25                 |  |  |  |  |
| 08321               | 5/8" x 6" Plastic Screen             | 7/8"                   | 25                 |  |  |  |  |
| 08323               | 3/4" x 6" Plastic Screen             | 1"                     | 10                 |  |  |  |  |
| For availability of | stainless steel screen tubes, Contac | t DEWALT               |                    |  |  |  |  |

**Usable Length** 

8"

16"

31"

16"

8"

16"

31"

16"

8"

16"

31"

16"

8"

16"

24"

31"

10"

18"

24"

31"

10"

18"

**Overall Length** 

13-1/2"

21-1/2"

36"

21-1/2"

13-1/2"

21-1/2"

36"

21-1/2"

13-1/2"

21-1/2"

36"

21-1/2"

13-1/2"

22-1/2"

29"

36"

15"

22-1/2"

29"

36"

15"

22-1/2"

**SDS Max 4-Cutter Carbide Drill Bits** 

Diameter

5/8"

5/8"

5/8"

11/16"

3/4"

3/4"

3/4"

13/16"

7/8"

7/8"

7/8"

27/32"

1"

1"

1"

1"

1-1/8"

1-1/8"

1-1/8"

1-1/8"

1-1/4"

1-1/4"





#### **Dust Extraction**

| Cat. No.    | Description                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DWV012      | 10 Gallon Wet/Dry Hepa/Rrp Dust Extractor<br>DWV9402 Fleece bag (5 pack) for DEWALT dust extractors<br>DWV9316 Replacement Anti-Static Hose<br>DWV9320 Replacement HEPA Filter Set (Type 1) |
| DWH050K     | Dust Extraction with two interchangeable drilling heads                                                                                                                                     |
| DCB1800M3T1 | 1800 Watt Portable Power Station & Parallel Battery Charger<br>with 3 20V Max* 5Ah Batteries and 1 60V Max* Flexvolt® Battery                                                               |

#### 

#### **SDS+ Full Head Carbide Drill Bits**

| Cat. No. | Diameter | Usable Length | Overall Length |
|----------|----------|---------------|----------------|
| DW5502   | 3/16"    | 2"            | 4-1/2"         |
| DW5503   | 3/16"    | 4"            | 6-1/2"         |
| DW5504   | 3/16"    | 5"            | 8-1/2"         |
| DW5506   | 3/16"    | 10"           | 12"            |
| DW5512   | 7/32"    | 8"            | 10"            |
| DW5517   | 1/4"     | 4"            | 6"             |
| DW5518   | 1/4"     | 6"            | 8-1/2"         |
| DW55200  | 1/4"     | 10"           | 12"            |
| DW5521   | 1/4"     | 12"           | 14"            |
| DW5524   | 5/16"    | 4"            | 6"             |
| DW5526   | 5916"    | 10"           | 12"            |
| DW5527   | 3/8"     | 4"            | 6-1/2"         |
| DW5529   | 3/8"     | 8"            | 10"            |
| DW55300  | 3/8"     | 10"           | 12"            |
| DW5531   | 3/8"     | 16"           | 18"            |
| DW5537   | 1/2"     | 4"            | 6"             |
| DW5538   | 1/2"     | 8"            | 10-1/2"        |
| DW5539   | 1/2"     | 10"           | 12"            |
| DW5540   | 1/2"     | 16"           | 18"            |

#### 

| SDS+ 4-Cutter Carbide Drill Bits |          |               |                |  |  |  |
|----------------------------------|----------|---------------|----------------|--|--|--|
| Cat. No.                         | Diameter | Usable Length | Overall Length |  |  |  |
| DW5471                           | 5/8"     | 8"            | 10"            |  |  |  |
| DW5472                           | 5/8"     | 16"           | 18"            |  |  |  |
| DW5474                           | 3/4"     | 8"            | 10"            |  |  |  |
| DW5475                           | 3/4"     | 16"           | 18"            |  |  |  |
| DW5477                           | 7/8"     | 8"            | 10"            |  |  |  |
| DW5478                           | 7/8"     | 16"           | 18"            |  |  |  |
| DW5479                           | 1"       | 8"            | 10"            |  |  |  |
| DW5480                           | 1"       | 16"           | 18"            |  |  |  |
| DW5481                           | 1-1/8"   | 8"            | 10"            |  |  |  |
| DW5482                           | 1-1/8"   | 6"            | 18"            |  |  |  |

#### Hollow Drill Bits

|         | Cat. No. | Diameter | Overall Length | Usable Length | Recommended Hammer Drill |
|---------|----------|----------|----------------|---------------|--------------------------|
|         | DWA54012 | 1/2"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
| CDC .   | DWA54916 | 9/16"    | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
| 202+    | DWA54058 | 5/8"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
|         | DWA54034 | 3/4"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
| SDS Max | DWA58058 | 5/8"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58034 | 3/4"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58078 | 7/8"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58001 | 1"       | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58118 | 1-1/8"   | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |



#### **GENERAL INFORMATION**

#### **AC50**<sup>™</sup>

Adhesive Anchoring System

#### **PRODUCT DESCRIPTION**

The AC50 is a two-component, adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The AC50 is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in solid concrete base materials.

#### **GENERAL APPLICATIONS AND USES**

- · Bonding threaded rod and reinforcing bar into hardened concrete
- · Evaluated for installation and use in dry holes
- Can be installed in a range of base material temperatures (as low as 5°F)

#### FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading

#### **APPROVALS AND LISTINGS**

- Conforms to requirements of ASTM C 881 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes A & B (also meets Type III except for elongation)
- Tested in accordance with ASTM E488
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

#### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Adhesive anchoring system shall be AC50 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

#### SECTION CONTENTS

| General Information                                 | 69 |
|-----------------------------------------------------|----|
| Installation Specifications                         | 70 |
| Performance Data                                    | 71 |
| Installation Instructions<br>(Solid Base Materials) | 73 |
| Reference Tables<br>for Installation                | 74 |
| Ordering Information                                | 75 |



#### PACKAGING

Dual (side-by-side Cartridge)

• 28 fl. oz. (825 mL), 10:1 mix ratio

#### **STORAGE LIFE & CONDITIONS**

Fifteen months in a dry, dark environment with temperature ranging from 32°F to 86°F (0°C to 30°C)

#### ANCHOR SIZE RANGE (TYPICAL)

- 3/8" through 1" diameter threaded rod
- No. 3 through No. 8 rebar

### SUITABLE BASE MATERIALS (ADHESIVE)

· Normal-weight concrete

Adhesive Anchoring Syster

AC50

**INSTALLATION SPECIFICATIONS** 

# ADHESIVES

# AC50<sup>TM</sup> Adhesive Anchoring System

| Installation Specifications for Threaded Rod and Reinforcing Bar |                                                                                         |                  |                                        |                                                                                         |                                        |                  |                 |                 |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|----------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------|------------------|-----------------|-----------------|--|
| Dimens                                                           | ion/Property                                                                            | Notation         | Units                                  |                                                                                         | Nor                                    | ninal Anchor     | Size            |                 |  |
| Threaded Rod                                                     |                                                                                         | -                | -                                      | 3/8" 1/2" 5/8" 3/4"                                                                     |                                        |                  | 1"              |                 |  |
| Reinforcing Bar                                                  |                                                                                         | -                | -                                      | #3                                                                                      | #4                                     | #5 #6 #          |                 |                 |  |
| Nominal anchor diameter                                          |                                                                                         | d                | in.<br>(mm)                            | 0.375<br>(9.5)                                                                          | 0.500<br>(12.7)                        | 0.625<br>(15.9)  | 0.750<br>(19.1) | 0.875<br>(22.2) |  |
| Nominal diameter of drilled hole                                 |                                                                                         | do, (dbit)       | in.                                    | 7/16<br>ANSI                                                                            | /16 9/16 3/4 7/8<br>NSI ANSI ANSI ANSI |                  |                 | 1-1/8<br>ANSI   |  |
| Minimum embedment                                                |                                                                                         | hnom             | in.<br>(mm)                            | 2-3/8 2-3/4 3-1/8 3-1/2<br>(60) (70) (79) (89)                                          |                                        | 4<br>(102)       |                 |                 |  |
| Minimum concrete member thickn                                   | ess                                                                                     | h <sub>min</sub> | in.<br>(mm)                            | h <sub>ef</sub> + 1-1/4<br>1) (h <sub>ef</sub> + 30) h <sub>ef</sub> + 2 d <sub>o</sub> |                                        |                  |                 |                 |  |
| Minimum spacing distance                                         |                                                                                         | Smin             | in.<br>(mm)                            | 1-7/8 2-1/2 3-1/8 3-3/4<br>(48) (64) (79) (95) ((                                       |                                        | 5<br>(127)       |                 |                 |  |
| Minimum edge distance                                            |                                                                                         | Cmin             | in.<br>(mm)                            | 1-7/8<br>(48)                                                                           | 2-1/2<br>(64)                          | 3-1/8<br>(79)    | 3-3/4<br>(95)   | 5<br>(127)      |  |
| Critical edge distance                                           |                                                                                         | Ccr              | in.<br>(mm)                            |                                                                                         |                                        | 2h <sub>ef</sub> |                 |                 |  |
| Mavimum targua (aply pagaible                                    | ASTM A36 or F1554 Grade 36                                                              | T <sub>max</sub> | ft lbs.<br>(N-m)                       | 10<br>(13)                                                                              | 25<br>(34)                             | 50<br>(68)       | 90<br>(122)     | 165<br>(224)    |  |
| after full cure time of adhesive)                                | ASTM F593 Condition CW stainless<br>steel rod or ASTM A193 Grade B7<br>carbon steel rod | T <sub>max</sub> | ft Ibs.<br>(N-m)                       | 15<br>(20)                                                                              | 33<br>(45)                             | 60<br>(81)       | 105<br>(142)    | 165<br>(224)    |  |
| Effective cross sectional area of the                            | readed rod                                                                              | Ase              | in.²<br>(mm²)                          | 0.078 0.142 0.226 0.335 (<br>(50) (92) (146) (216)                                      |                                        | 0.606<br>(391)   |                 |                 |  |
| Effective cross sectional area of rei                            | nforcing bar                                                                            | Ase              | in. <sup>2</sup><br>(mm <sup>2</sup> ) | 0.110<br>(71)                                                                           | 0.200<br>(129)                         | 0.310<br>(200)   | 0.440<br>(284)  | 0.790<br>(510)  |  |

# Detail of Steel Hardware Elements used with Injection Adhesive System



#### Threaded Rod and Deformed Reinforcing Bar Material Properties

| Steel<br>Description<br>(General) | Steel<br>Specification<br>(ASTM) | Nominal<br>Anchor Size<br>(inch)   | Minimum<br>Yield Strength,<br>fy (ksi) | Minimum<br>Ultimate<br>Strength,<br>f₁ (ksi) |
|-----------------------------------|----------------------------------|------------------------------------|----------------------------------------|----------------------------------------------|
| Carbon Rod                        | A 36 or F1554<br>Grade 36        | 3/8 through 1                      | 36.0                                   | 58.0                                         |
| Stainless Rod                     | F 593,                           | 3/8 through 5/8                    | 65.0                                   | 100.0                                        |
| (Alloy 304 / 316)                 | Condition CW                     | 3/4 through 1                      | 45.0                                   | 85.0                                         |
| High Strength<br>Carbon Rod       | A 193<br>Grade B7                | 3/8 through 1                      | 105.0                                  | 125.0                                        |
| Grade 60<br>Reinforcing Bar       | A 615, A 767,<br>or A 996        | 3/8 through 1<br>(#3 through #8)   | 60.0                                   | 90.0                                         |
| Grade 40<br>Reinforcing Bar       | A 615                            | 3/8 through 3/4<br>(#3 through #6) | 40.0                                   | 70.0                                         |

#### PERFORMANCE DATA

## Ultimate and Allowable Tension Load Capacities for AC50 Installed with Threaded Rod into Normal Weight Concrete (based on bond strength/concrete capacity)<sup>1,2,3,4,5,6,7</sup>

| Newingl                          |               | Minimum Concrete Compressive Strength - f'c (psi) |                                                    |                                                   |                                                    |                                                   |                                                    |
|----------------------------------|---------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Anchor<br>Diameter<br>d<br>(in.) | Embedment     | 2,500                                             | psi                                                | 3,00                                              | 0 psi                                              | 4,00                                              | )0 psi                                             |
|                                  | hoom<br>(in.) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) |
| 3/8                              | 3-3/8         | 6,520                                             | 1,630                                              | 6,765                                             | 1,690                                              | 7,165                                             | 1,790                                              |
|                                  | (85.7)        | (29.0)                                            | (7.3)                                              | (30.1)                                            | (7.5)                                              | (31.9)                                            | (8.0)                                              |
| 1/2                              | 4-1/2         | 11,860                                            | 2,965                                              | 12,300                                            | 3,075                                              | 13,025                                            | 3,255                                              |
|                                  | (114.3)       | (52.8)                                            | (13.2)                                             | (54.7)                                            | (13.7)                                             | (57.9)                                            | (14.5)                                             |
| 5/8                              | 5-5/8         | 18,520                                            | 4,630                                              | 19,205                                            | 4,800                                              | 20,345                                            | 5,085                                              |
|                                  | (142.9)       | (82.4)                                            | (20.6)                                             | (85.4)                                            | (21.4)                                             | (90.5)                                            | (22.6)                                             |
| 3/4                              | 6-3/4         | 22,420                                            | 5,605                                              | 23,255                                            | 5,815                                              | 24,630                                            | 6,160                                              |
|                                  | (171.5)       | (99.7)                                            | (24.9)                                             | (103.4)                                           | (25.9)                                             | (109.6)                                           | (27.4)                                             |
| 1                                | 9             | 29,005                                            | 7,250                                              | 30,080                                            | 7,520                                              | 31,860                                            | 7,965                                              |
|                                  | (228.6)       | (129.0)                                           | (32.2)                                             | (133.8)                                           | (33.5)                                             | (141.7)                                           | (35.4)                                             |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is 2 times the embedment depth.

4. The tabulated load values are applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacities.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.

7. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

## Ultimate and Allowable Tension Load Capacities for AC50 Installed with Reinforcing Bar into Normal Weight Concrete (based on bond strength/concrete capacity)<sup>1,2,3,4,5,6,7</sup>

| Nominal    |                                    | Minimum Concrete Compressive Strength - f'c (psi) |                                                    |                                                   |                                                    |                                                   |                                                    |  |
|------------|------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--|
| Anchor     | Embedment                          | 2,500 psi                                         |                                                    | 3,00                                              | 0 psi                                              | 4,00                                              | 4,000 psi                                          |  |
| d<br>(in.) | Depth<br>h <sub>nom</sub><br>(in.) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) |  |
| #3         | 3-3/8                              | 6,225                                             | 1,555                                              | 6,460                                             | 1,615                                              | 6,840                                             | 1,710                                              |  |
|            | (85.7)                             | (27.7)                                            | (6.9)                                              | (28.7)                                            | (7.2)                                              | (30.4)                                            | (7.6)                                              |  |
| #4         | 4-1/2                              | 10,480                                            | 2,620                                              | 10,870                                            | 2,720                                              | 11,515                                            | 2,880                                              |  |
|            | (114.3)                            | (46.6)                                            | (11.7)                                             | (48.4)                                            | (12.1)                                             | (51.2)                                            | (12.8)                                             |  |
| #5         | 5-5/8                              | 16,830                                            | 4,210                                              | 17,455                                            | 4,365                                              | 18,490                                            | 4,625                                              |  |
|            | (142.9)                            | (74.9)                                            | (18.7)                                             | (77.6)                                            | (19.4)                                             | (82.2)                                            | (20.6)                                             |  |
| #6         | 6-3/4                              | 15,545                                            | 3,885                                              | 16,120                                            | 4,030                                              | 17,075                                            | 4,270                                              |  |
|            | (171.5)                            | (69.1)                                            | (17.3)                                             | (71.7)                                            | (17.9)                                             | (76.0)                                            | (19.0)                                             |  |
| #6         | 9                                  | 16,015                                            | 4,005                                              | 16,610                                            | 4,155                                              | 17,590                                            | 4,400                                              |  |
|            | (228.6)                            | (71.2)                                            | (17.8)                                             | (73.9)                                            | (18.5)                                             | (78.2)                                            | (19.6)                                             |  |
| #8         | 9                                  | 34,095                                            | 8,525                                              | 35,360                                            | 8,840                                              | 37,455                                            | 9,365                                              |  |
|            | (228.6)                            | (151.7)                                           | (37.9)                                             | (157.3)                                           | (39.3)                                             | (166.6)                                           | (41.7)                                             |  |
| #8         | 12                                 | 39,060                                            | 9,765                                              | 40,510                                            | 10,130                                             | 42,910                                            | 10,730                                             |  |
|            | (304.8)                            | (173.7)                                           | (43.4)                                             | (180.2)                                           | (45.1)                                             | (190.9)                                           | (47.7)                                             |  |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is 2 times the embedment depth.

4. The tabulated load values are applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacities.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.

7. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

TECHNICAL GUIDE – ADHESIVES © 2018 DEWALT – REV. D



**ADHESIVES** 

|  | Allowable Load ( | <b>Capacities</b> for | <b>Threaded Rod</b> | and Reinforcing | Bar (Based on | Steel Strength) <sup>1,2,3,4,5</sup> |
|--|------------------|-----------------------|---------------------|-----------------|---------------|--------------------------------------|
|--|------------------|-----------------------|---------------------|-----------------|---------------|--------------------------------------|

|                                        |                           | Steel Elements - Threaded Rod and Reinforcing Bar |                           |                      |                                           |                      |                         |                      |                                |                      |                                |                      |                                |                      |                                |                      |                                |                      |
|----------------------------------------|---------------------------|---------------------------------------------------|---------------------------|----------------------|-------------------------------------------|----------------------|-------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|
| Nominal<br>Rod<br>Diameter<br>or Rebar | A36 or F1554,<br>Grade 36 |                                                   | A36 or F1554,<br>Grade 55 |                      | A 193, Grade<br>B7 or F1554,<br>Grade 105 |                      | F 593, CW (SS)          |                      | ASTM A615<br>Grade 40<br>Rebar |                      | ASTM A615<br>Grade 60<br>Rebar |                      | ASTM A706<br>Grade 60<br>Rebar |                      | ASTM A615<br>Grade 75<br>Rebar |                      | ASTM A706<br>Grade 80<br>Rebar |                      |
| Size<br>(in. or #)                     | Tension<br>Ibs.<br>(kN)   | Shear<br>Ibs<br>(kN)                              | Tension<br>Ibs.<br>(kN)   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)                   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) |
| 3/8 or #3                              | 2,115<br>(9.4)            | 1,090<br>(4.8)                                    | 2,735<br>(12.2)           | 1,410<br>(6.3)       | 4,555<br>(20.3)                           | 2,345<br>(10.4)      | 3,645<br>(16.2)         | 1,880<br>(8.4)       | 2,210<br>(9.8)                 | 1,125<br>(5.0)       | 2,650<br>(11.8)                | 1,690<br>(7.5)       | 2,650<br>(11.8)                | 1,500<br>(6.7)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       |
| 1/2 or #4                              | 3,760<br>(16.7)           | 1,935<br>(8.6)                                    | 4,860<br>(21.6)           | 2,505<br>(11.1)      | 8,100<br>(36.0)                           | 4,170<br>(18.5)      | 6,480<br>(28.8)         | 3,340<br>(14.9)      | 3,925<br>(17.5)                | 2,005<br>(8.9)       | 4,710<br>(21.0)                | 3,005<br>(13.4)      | 4,710<br>(21.0)                | 2,670<br>(11.9)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      |
| 5/8 or #5                              | 5,870<br>(26.1)           | 3,025<br>(13.5)                                   | 7,595<br>(33.8)           | 3,910<br>(17.4)      | 12,655<br>(56.3)                          | 6,520<br>(29.0)      | 10,125<br>(45.0)        | 5,215<br>(23.2)      | 6,135<br>(27.3)                | 3,130<br>(13.9)      | 7,365<br>(32.8)                | 4,695<br>(20.9)      | 7,365<br>(32.8)                | 4,170<br>(18.5)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      |
| 3/4 or #6                              | 8,455<br>(37.6)           | 4,355<br>(19.4)                                   | 10,935<br>(48.6)          | 5,635<br>(25.1)      | 18,225<br>(81.1)                          | 9,390<br>(41.8)      | 12,390<br>(55.1)        | 6,385<br>(28.4)      | 8,835<br>(39.3)                | 4,505<br>(20.0)      | 10,605<br>(47.2)               | 6,760<br>(30.1)      | 10,605<br>(47.2)               | 6,010<br>(26.7)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      |
| 7/8 or #7                              | 11,510<br>(51.2)          | 5,930<br>(26.4)                                   | 14,885<br>(66.2)          | 7,665<br>(34.1)      | 24,805<br>(110.3)                         | 12,780<br>(56.8)     | 16,865<br>(75.0)        | 8,690<br>(38.7)      | -                              | -                    | 14,430<br>(64.2)               | 9,200<br>(40.9)      | 14,430<br>(64.2)               | 8,180<br>(36.4)      | 14,430<br>(64.2)               | 10,220<br>(45.5)     | 14,430<br>(64.2)               | 10,220<br>(45.5)     |
| 1 or #8                                | 15,035<br>(66.9)          | 7,745<br>(34.5)                                   | 19,440<br>(86.5)          | 10,015<br>(44.5)     | 32,400<br>(144.1)                         | 16,690<br>(74.2)     | 22,030<br>(98.0)        | 11,350<br>(50.5)     | -                              | -                    | 18,850<br>(83.8)               | 12,015<br>(53.4)     | 18,850<br>(83.8)               | 10,680<br>(47.5)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     |
| #9                                     | -                         | -                                                 | -                         | -                    | -                                         | -                    | -                       | -                    | -                              | -                    | 23,985<br>(106.7)              | 15,290<br>(68.0)     | 23,985<br>(106.7)              | 13,590<br>(60.5)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     |
| 1-1/4                                  | 23,490<br>(104.5)         | 12,100<br>(53.8)                                  | 30,375<br>(135.1)         | 15,645<br>(69.6)     | 50,620<br>(225.2)                         | 26,080<br>(116.0)    | 34,425<br>(153.1)       | 17,735<br>(78.9)     | -                              | -                    | -                              | -                    | -                              | -                    | -                              | -                    | -                              | -                    |
| #10                                    | -                         | -                                                 | -                         | -                    | -                                         | -                    | -                       | -                    | -                              | -                    | 30,405<br>(135.2)              | 19,380<br>(86.2)     | 30,405<br>(135.2)              | 17,230<br>(76.6)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     |

1. AISC defined steel strength (ASD) for threaded rod: Tensile =  $0.33 \bullet F_u \bullet A_{nom}$ , Shear =  $0.17 \bullet F_u \bullet A_{nom}$ 

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may ne necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

 The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is the greater of [hnom + 1-1/4"] and [hnom + 2dbit]

#### In-Service Temperature Chart For Allowable Load Capacities<sup>1</sup>

| Base Materia                                                                                           | I Temperature | Deduction Factor Fac Terrarelyne |  |  |  |
|--------------------------------------------------------------------------------------------------------|---------------|----------------------------------|--|--|--|
| ° F                                                                                                    | °C            | Reduction Factor For Temperature |  |  |  |
| 0                                                                                                      | -18           | 1.00                             |  |  |  |
| 32 0                                                                                                   |               | 1.00                             |  |  |  |
| 50 10                                                                                                  |               | 1.00                             |  |  |  |
| 70                                                                                                     | 20            | 1.00                             |  |  |  |
| 90                                                                                                     | 30            | 0.91                             |  |  |  |
| 110                                                                                                    | 40            | 0.82                             |  |  |  |
| 140                                                                                                    | 60            | 0.69                             |  |  |  |
| 180                                                                                                    | 82            | 0.52                             |  |  |  |
| 1. Linear interpolation may be used to derive reduction factors for temperatures between those listed. |               |                                  |  |  |  |



**ADHESIVES** 

Adhesive Anchoring Systen

#### **INSTALLATION INSTRUCTIONS (SOLID BASE MATERIALS)**



#### 1-800-4 **DEWALT**

#### **REFERENCE TABLES FOR INSTALLATION**

#### **Gel (working) Time and Curing Table**

|                                                                                                                                                           | 0               |                      |                  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|------------------|--|--|
| Temperature of                                                                                                                                            | f Base Material | Gel (working) Time   | Full Curing Time |  |  |
| ۴                                                                                                                                                         | °C              | dei (working) fillie |                  |  |  |
| 5                                                                                                                                                         | -15             | 120 minutes          | 48 hours         |  |  |
| 14                                                                                                                                                        | -10             | 90 minutes           | 24 hours         |  |  |
| 23                                                                                                                                                        | -5              | 90 minutes           | 14 hours         |  |  |
| 32                                                                                                                                                        | 0               | 45 minutes           | 7 hours          |  |  |
| 41                                                                                                                                                        | 5               | 35 minutes           | 4 hours          |  |  |
| 60                                                                                                                                                        | 15              | 15 minutes           | 3 hours          |  |  |
| 68                                                                                                                                                        | 20              | 8 minutes            | 90 minutes       |  |  |
| 86                                                                                                                                                        | 30              | 4 minutes            | 60 minutes       |  |  |
| 95                                                                                                                                                        | 35              | 3 minutes            | 45 minutes       |  |  |
| For installations in base material temperatures between 5°F and 32°F the cartridge temperature must be conditioned to between 68°F and 95°F (20°C - 35°C) |                 |                      |                  |  |  |

#### **Hole Cleaning Equipment Selection Table for AC50**

| Threaded Rod<br>Diameter<br>(inch) | Rebar Size<br>(no.)        | ANSI Drill Bit<br>Diameter<br>(inch) | Brush Length, L<br>(inches)    | Steel Wire<br>Brush<br>(Cat. #) | Blowout<br>Tool                                | Number of<br>Cleaning Actions |
|------------------------------------|----------------------------|--------------------------------------|--------------------------------|---------------------------------|------------------------------------------------|-------------------------------|
|                                    |                            |                                      | Solid Base Material            |                                 |                                                |                               |
| 3/8                                | #3                         | 7/16                                 | 6-3/4                          | 08284                           |                                                |                               |
| 1/2                                | #4                         | 9/16                                 | 6-3/4                          | 08285                           |                                                |                               |
| E /0                               | <i>.</i>                   | 11/16                                | 7-7/8                          | 08286                           | Compressed air<br>nozzle only<br>(min. 90 psi) | Ax blowing                    |
| 0/6                                | #J                         | 3/4                                  | 7-7/8                          | 08278                           |                                                | 4x brushing                   |
| 3/4                                | #6                         | 7/8                                  | 7-7/8                          | 08287                           |                                                | 4x blowing                    |
| 7/8                                | #7                         | 1                                    | 11-7/8                         | 08288                           |                                                |                               |
| 1                                  | #8                         | 1-1/8                                | 11-7/8                         | 08289                           |                                                |                               |
| An CDC plug adaptor (Cat           | #00202) or loooba abuak at | de adapter (Cat. #0.9206) in         | required to attach a atool wir | a bruch to the drill tool       |                                                |                               |

#### An SDS-plus adaptor (Cat. #08283) or Jacobs chuck style adaptor (Cat. #08296) is required to attach a steel wire brush to the drill tool.

#### **Adhesive Piston Plugs**

| Plug<br>Size<br>(inch) | ANSI Drill Bit<br>Diameter<br>(inch) | Piston<br>Plug<br>(Cat. #) | Horizontal<br>Installations |
|------------------------|--------------------------------------|----------------------------|-----------------------------|
| 11/16                  | 11/16                                | 08258                      |                             |
| 3/4                    | 3/4                                  | 08259                      |                             |
| 7/8                    | 7/8                                  | 08300                      | (1998)                      |
| 1                      | 1                                    | 08301                      |                             |
| 1-1/8                  | 1-1/8                                | 08303                      |                             |

1. All horizontal installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 8 inches.

2. A plastic extension tube (3/8" dia., Cat. #08281) or equivalent approved by DEWALT must be used with piston plugs.

#### **ORDERING INFORMATION**

#### **AC50 Cartridges**

| Cat No.                                                                                | Description | Std. Carton | Pallet |  |
|----------------------------------------------------------------------------------------|-------------|-------------|--------|--|
| 8497 AC50 28 fl. oz. dual cartridge                                                    |             | 8           | 400    |  |
| One mixing nozzle is packaged with each cartridge.                                     |             |             |        |  |
| AC50 mixing nozzles must be used to ensure complete and proper mixing of the adhesive. |             |             |        |  |



| Cat No. | Description                                      | Std. Pack/<br>Box | Std. Carton |
|---------|--------------------------------------------------|-------------------|-------------|
| 08294   | Extra mixing nozzle (with 8" extension) for AC50 | 2                 | 24          |
| 08281   | Mixing nozzle extension, 8" minimum              | 2                 | 24          |

#### **Dispensing Tools for Injection Adhesive**

| Cat No.  | Description                                | Std. Box | Std. Carton |
|----------|--------------------------------------------|----------|-------------|
| 08494    | 28 oz. Standard metal manual tool          | 1        | 10          |
| DCE595D1 | 28 oz. 20v Battery powered dispensing tool | 1        | -           |
| 08496    | 28 oz. Pneumatic tool                      | 1        | -           |

#### **AC50 Adhesive Anchor System**



#### **Hole Cleaning Tools and Accessories**

| Cat No. | Description                                                  | Std. Box |
|---------|--------------------------------------------------------------|----------|
| 08284   | Wire brush for 7/16" or 1/2" ANSI hole, 6-3/4" length        | 1        |
| 08285   | Wire brush for 9/16" ANSI hole, 6-3/4" length                | 1        |
| 08275   | Wire brush for 5/8" ANSI hole, 6-3/4" length                 | 1        |
| 08286   | Wire brush for 11/16" ANSI hole, 7-7/8" length               | 1        |
| 08278   | Wire brush for 3/4" ANSI hole, 7-7/8" length                 | 1        |
| 08287   | Wire brush for 7/8" ANSI hole, 7-7/8" length                 | 1        |
| 08288   | Wire brush for 1" ANSI hole, 11-7/8" length                  | 1        |
| 08289   | Wire brush for 1-1/8" ANSI hole, 11-7/8" length              | 1        |
| 08283   | SDS-plus adapter for steel brushes                           | 1        |
| 08296   | Standard drill adapter for steel brushes (e.g. Jacobs Chuck) | 1        |
| 08282   | Steel brush extension, 12" length                            | 1        |
| 08292   | Air compressor nozzle with extension, 18" length             | 1        |

#### mmm mmm mmm MILLIN. ------×1-1-----

anna Millitte

#### **Adhesive Pistons Plugs**

| Cat. No. | Description | ANSI Drill Dia. | Std. Bag | Std. Ctd. |
|----------|-------------|-----------------|----------|-----------|
| 08302    | 9/16" Plug  | 9/16"           | 10       | 100       |
| 08304    | 5/8" Plug   | 5/8"            | 10       | 100       |
| 08258    | 11/16" Plug | 11/16"          | 10       | 100       |
| 08259    | 3/4" Plug   | 3/4"            | 10       | 100       |
| 08300    | 7/8" Plug   | 7/8"            | 10       | 100       |
| 08301    | 1" Plug     | 1"              | 10       | 100       |
| 08303    | 1-1/8" Plua | 1-1/8"          | 10       | 100       |







**ADHESIVES** 



ADHESIVES

#### **GENERAL INFORMATION**

#### PURE110+®

Epoxy Injection Adhesive Anchoring System and Post-Installed Reinforcing Bar Connections

#### **PRODUCT DESCRIPTION**

The Pure110+ is a two-component, high strength adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The Pure110+ is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in concrete and masonry base materials and for post-installed reinforcing bar connections.

Pure110+ has the same bond strength at room temperature and at 110°F.

#### **GENERAL APPLICATIONS AND USES**

- Bonding threaded rod and reinforcing bar into hardened concrete
- Evaluated for installation and use in dry and wet holes, including water filled and submerged
- Can be installed in a wide range of base material temperatures
- Cracked and uncracked concrete
- Seismic and wind loading
- Oversized hammer-drilled holes in concrete, for short term loading only (contact DEWALT for details)

#### FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Evaluated and recognized for freeze/thaw performance
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Same bond strength at room temperature and at 110°F.

#### **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES) ESR-3298 for cracked and uncracked concrete
- Code Compliant with 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC.
- Conforms to requirements of ASTM C 881 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes B & C (also meets Type III except for elongation)
- Department of Transportation listings see www.DEWALT.com or contact transportation agency
- Tested in accordance with ACI 355.4, ASTM E 488, and ICC-ES AC308 for use in structural concrete (Design according to ACI 318-14, Chapter 17 and ACI 318-11/08 Appendix D)
- Tested and qualified for use in post-installed reinforcing bar connections
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Compliant with NSF/ANSI 61 for drinking water system components health effects; minimum requirements for materials in contact with potable water and water treatment

#### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 Masonry Anchors and 05 05 19 Post-Installed Concrete Anchors. Adhesive anchoring system shall be Pure110+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.



#### **SECTION CONTENTS**

| General Information76                                                          |
|--------------------------------------------------------------------------------|
| Reference Data (ASD)77                                                         |
| Strength Design (SD)81                                                         |
| Installation Instructions for<br>Adhesive Anchors<br>(Solid Base Materials)93  |
| Installation Instructions for<br>Adhesive Anchors<br>(Hollow Base Materials)95 |
| Installation Instructions<br>(Post-Installed rebar)96                          |
| Reference Installation Tables98                                                |
| Ordering Information99                                                         |



#### PACKAGING

#### Coaxial Cartridge

• 9 fl. oz. (265 ml or 16.2 in<sup>3</sup>)

#### Dual (side-by-side) Cartridge

- 21 fl. oz. (620 ml or 37.8 in<sup>3</sup>), 1:1 mix ratio
- 51 fl. oz. (1510 ml or 92.1 in<sup>3</sup>), 1:1 mix ratio
- 13 fl. oz. (385 ml or 23.5 in<sup>3</sup>), 3:1 mix ratio
- 20 fl. oz. (585 ml or 35.7 in<sup>3</sup>), 3:1 mix ratio

#### **STORAGE LIFE & CONDITIONS**

Dual cartridge: Two years Coaxial cartridge: Eighteen months In a dry, dark environment with temperature ranging from 41°F to 86°F (5°C to 30°C)

#### ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)

#### **SUITABLE BASE MATERIALS**

- Normal-weight concrete
- Lightweight concrete
- Grouted Concrete Masonry
- Hollow Concrete Masonry

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry concrete
- Water-saturated concrete (wet)
- · Water-filled holes (flooded)
- Underwater concrete (submerged)

#### www.**DeWALT**.com

- REV. D

TECHNICAL GUIDE - ADHESIVES ©2018 DEWALT

#### **REFERENCE DATA (ASD)**

Þ E '

ENGINEERED BY POWERS

#### Installation Table for Pure110+ (Solid Concrete Base Materials)

| Dimension/Property                                   | Notation         | Units          |                |                       |             |                         | Nominal A       | nchor Size      |                 |                 |                 |                 |
|------------------------------------------------------|------------------|----------------|----------------|-----------------------|-------------|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Threaded Rod                                         | -                | -              | 3/8            | 1/2                   | -           | 5/8                     | 3/4             | 7/8             | 1               | -               | 1-1/4           | -               |
| Reinforcing Bar                                      | -                | -              | #3             | -                     | #4          | #5                      | #6              | #7              | #8              | #9              | -               | #10             |
| Nominal anchor diameter                              | d                | in.<br>(mm)    | 0.375<br>(9.5) | 0.5<br>(12            | 500<br>2.7) | 0.625<br>(15.9)         | 0.750<br>(19.1) | 0.875<br>(22.5) | 1.000<br>(25.4) | 1.125<br>(28.6) | 1.250<br>(31.8) | 1.250<br>(31.8) |
| Carbide drill bit nominal size <sup>3</sup>          | d <sub>bit</sub> | in.            | 7/16<br>ANSI   | 9/16<br>ANSI          | 5/8<br>ANSI | 11/16 or<br>3/4<br>ANSI | 7/8<br>ANSI     | 1<br>ANSI       | 1-1/8<br>ANSI   | 1-3/8<br>ANSI   | 1-3/8<br>ANSI   | 1-1/2<br>ANSI   |
| Minimum embedment                                    | h <sub>nom</sub> | in.<br>(mm)    | 2-3/8<br>(61)  | 2-3<br>(7             | 3/4<br>0)   | 3-1/8<br>(80)           | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)      | 4-1/2<br>(114)  | 5<br>(127)      | 5<br>(127)      |
| Minimum spacing distance                             | S <sub>min</sub> | in.<br>(mm)    | 1-7/8<br>(48)  | 2- <sup>-</sup><br>(6 | 1/2<br>2)   | 3-1/8<br>(80)           | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159   |
| Minimum edge distance                                | Cmin             | in.<br>(mm)    | 1-7/8<br>(48)  | 2- <sup>-</sup><br>(6 | 1/2<br>2)   | 3-1/8<br>(80)           | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159   |
| Maximum torque1                                      | т                | ftlb.<br>(N-m) | 15<br>(20)     | 3<br>(4               | 0<br>1)     | 60<br>(81)              | 105<br>(142)    | 125<br>(169)    | 165<br>(223)    | 200<br>(270)    | 280<br>(379)    | 280<br>(379)    |
| Maximum torque<br>(low strength rods) <sup>1,2</sup> | 1 max            | ftlb.<br>(N-m) | 5<br>(7)       | 2<br>(2               | 0<br>7)     | 40<br>(54)              | 60<br>(81)      | 100<br>(136)    | 165<br>(223)    | -               | 280<br>(379)    | -               |

1. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

2. These torque values apply to ASTM A 36 / F 1554, Grade 36 carbon steel threaded rods; ASTM F1554 Grade 55 carbon steel threaded rods; and ASTM A193 Grade B8/B8M (Class 1) stainless steel threaded rods.

3. For any case, it must be possible for the steel anchor element to be inserted into the cleaned drilled hole without resistance.

#### Installation Table for Pure110+ (Hollow Base Material with Screen Tube)

| Dimonoione (property                                               | Notation         | Unito          | Nominal Size - Plastic |                 |                 |                 |  |  |  |
|--------------------------------------------------------------------|------------------|----------------|------------------------|-----------------|-----------------|-----------------|--|--|--|
|                                                                    | NULALIUII        | Units          | 3/8"                   | 1/2"            | 5/8"            | 3/4"            |  |  |  |
| Nominal threaded rod diameter                                      | d                | in<br>(mm)     | 0.375<br>(9.5)         | 0.500<br>(12.7) | 0.625<br>(15.9) | 0.750<br>(19.0) |  |  |  |
| Nominal screen tube diameter                                       | -                | in.            | 3/8                    | 1/2             | 5/8             | 3/4             |  |  |  |
| Nominal diameter of drilled hole                                   | d <sub>bit</sub> | in.            | 9/16<br>ANSI           | 3/4<br>ANSI     | 7/8<br>ANSI     | 1<br>ANSI       |  |  |  |
| Maximum torque<br>(only possible after full cure time of adhesive) | T <sub>max</sub> | ftlb.<br>(N-m) | 10<br>(8)              | 10<br>(8)       | 10<br>(8)       | 10<br>(8)       |  |  |  |

#### **Detail of Steel Hardware Elements** used with Injection Adhesive System



#### Nomenclature

- d = Diameter of anchor
- = Diameter of drilled hole dbit
- h = Base material thickness
- The greater of:
- [hnom + 1-1/4"] and [hnom + 2dbit]
- $h_{nom} = Minimum embedment depth$

#### **Threaded Rod and Deformed Reinforcing Bar Material Properties**

| Steel<br>Description<br>(General) | Steel<br>Specification<br>(ASTM)        | Nominal<br>Anchor Size<br>(inch)      | Minimum<br>Yield Strength,<br>fy (ksi) | Minimum<br>Ultimate<br>Strength,<br>f₁ (ksi) |
|-----------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|
|                                   | A 36 or F1554<br>Grade 36               | 3/8 through $1-1/4$                   | 36.0                                   | 58.0                                         |
|                                   | F 1554 Grade 55                         | 5/6 tillough 1-1/4                    | 55.0                                   | 75.0                                         |
| Carbon Staal                      | A 440                                   | 3/8 through 1                         | 92.0                                   | 120.0                                        |
| Carbon Gleen                      | A 449                                   | 1-1/4                                 | 81.0                                   | 105.0                                        |
|                                   | A 193, Grade B7 or<br>F 1554, Grade 105 | 3/8 through 1-1/4                     | 105.0                                  | 125.0                                        |
|                                   | F 568M Class 5.8                        | 3/4 through 1-1/4                     | 58.0                                   | 72.5                                         |
|                                   | F 593,                                  | 3/8 through 5/8                       | 65.0                                   | 100.0                                        |
|                                   | Condition CW                            | 3/4 through 1-1/4                     | 45.0                                   | 85.0                                         |
| Stainless Steel                   | A 193/A193M Grade<br>B8/B8M2, Class 1   | 3/4 through 1-1/4                     | 30.0                                   | 75.0                                         |
|                                   | A 193/A193M Grade<br>B8/B8M2, Class 2B  | 3/8 through 1-1/4                     | 75.0                                   | 95.0                                         |
| Grade 40<br>Reinforcing Bar       | A 615, A 767                            | 3/8 through 3/4<br>(#3 through #6)    | 40.0                                   | 60.0                                         |
| Grade 60                          | A 615, A 767                            | 3/8 through 1-1/4                     | 60.0                                   | 90.0                                         |
| Reinforcing Bar                   | A 706, A 767                            | (#3 through #10)                      | 60.0                                   | 80.0                                         |
| Grade 75<br>Reinforcing Bar       | A 615, A 767                            | 3/8 through 1-1/4<br>(#3 through #10) | 75.0                                   | 100.0                                        |



**ADHESIVES** 

#### Ultimate and Allowable Load Capacities for Pure110+ Installed with Threaded Rod into Normal Weight Concrete (based on bond strength/concrete capacity)<sup>1,2,3,4,5,6,7</sup>



|          |                                     |                      |                                                   | Minimum Concrete C                                 | Concrete Compressive Strength                     |                                                    |  |  |  |
|----------|-------------------------------------|----------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--|--|--|
| Rod      | Drill                               | Minimum Embedment    | f'c = 3,000 p                                     | si (20.7 MPa)                                      | f'c = 4,000 psi (27.6 MPa)                        |                                                    |  |  |  |
| d<br>in. | Diameter<br>d <sub>bit</sub><br>in. | Deptn<br>in.<br>(mm) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) |  |  |  |
| 3/8      | 7/16                                | 3-3/8<br>(85.7)      | 10,445<br>(46.5)                                  | 2,610<br>(11.6)                                    | 10,445<br>(46.5)                                  | 2,610<br>(11.6)                                    |  |  |  |
| 1/2      | 9/16                                | 4 1/2<br>(114.3)     | 17,470<br>(77.7)                                  | 4,370<br>(19.4)                                    | 20,225<br>(90.0)                                  | 5,055<br>(22.5)                                    |  |  |  |
| 5/8      | 11/16 or 3/4                        | 5-5/8<br>(142.9)     | 23,335<br>(103.8)                                 | 5,835<br>(26.0)                                    | 28,600<br>(127.2)                                 | 7,150<br>(31.8)                                    |  |  |  |
| 3/4      | 7/8                                 | 6-3/4<br>(171.5)     | 36,255<br>(161.3)                                 | 9,065<br>(40.3)                                    | 40,930<br>(182.1)                                 | 10,235<br>(45.5)                                   |  |  |  |
| 7/8      | 1                                   | 7-7/8<br>(200.0)     | 46,275<br>(205.8)                                 | 11,570<br>(51.5)                                   | 52,920<br>(235.4)                                 | 13,230<br>(58.8)                                   |  |  |  |
| 1        | 1 1/9                               | 9<br>(228.6)         | 57,015<br>(253.6)                                 | 14,255<br>(63.4)                                   | 79,295<br>(352.7)                                 | 19,825<br>(88.2)                                   |  |  |  |
| 1        | 1-1/0                               | 10<br>(254.0)        | 77,445<br>(344.5)                                 | 19,360<br>(86.1)                                   | 82,745<br>(368.1)                                 | 20,685<br>(92.0)                                   |  |  |  |
| 1-1/4    | 1-3/8                               | 11-1/4<br>(285.8)    | 91,885<br>(408.7)                                 | 22,970<br>(102.2)                                  | 98,170<br>(436.7)                                 | 24,545<br>(109.2)                                  |  |  |  |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is the greater of [hoom + 1-1/4"] and [hnom + 2dbit]

4. The tabulated load values are applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water-saturated concrete (wet) or in water-filled holes (flooded) require a 15% reduction in capacity. Installations in underwater concrete (submerged) require a 30% reduction in capacity. Contact DEWALT for more information concerning these installation conditions.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.

7. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

#### Ultimate and Allowable Load Capacities for Pure110+ Installed with Reinforcing Bar into Normal Weight Concrete (based on bond strength/concrete capacity)<sup>1,2,3,4,5,6,7</sup>



|                    |                         |                                | Minimum Concrete Compressive Strength             |                                                    |                                                   |                                                    |  |  |  |
|--------------------|-------------------------|--------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--|--|--|
| Bar                | Drill                   | Minimum                        | f'c = 3,000 p                                     | si (20.7 MPa)                                      | f'c = 4,000 p                                     | si (27.6 MPa)                                      |  |  |  |
| Diameter<br>d<br># | Diameter<br>dbit<br>in. | Embeament Depth<br>in.<br>(mm) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) | Ultimate Tension<br>Load Capacity<br>Ibs.<br>(kN) | Allowable Tension<br>Load Capacity<br>Ibs.<br>(kN) |  |  |  |
| #3                 | 7/16                    | 3-3/8<br>(85.7)                | 11,155<br>(49.6)                                  | 2,790<br>(12.4)                                    | 11,155<br>(49.6)                                  | 2,790<br>(12.4)                                    |  |  |  |
| #4                 | 9/16                    | 4-1/2<br>(114.3)               | 17,735<br>(78.9)                                  | 4,435<br>(19.7)                                    | 19,200<br>(85.4)                                  | 4,800<br>(21.4)                                    |  |  |  |
| #5                 | 11/16 or 2/4            | 4<br>(101.6)                   | 16,740<br>(74.5)                                  | 4,185<br>(18.6)                                    | 16,910<br>(75.2)                                  | 4,230<br>(18.8)                                    |  |  |  |
| #5                 | 11/10/01/3/4            | 5-5/8<br>(142.9)               | 23,420<br>(104.2)                                 | 5,855<br>(26.0)                                    | 25,705<br>(114.3)                                 | 6,425<br>(28.6)                                    |  |  |  |
| #6                 | 7/8                     | 6-3/4<br>(171.5)               | 34,266<br>(152.4)                                 | 8,565<br>(38.1)                                    | 40,775<br>(181.4)                                 | 10,195<br>(45.3)                                   |  |  |  |
| #8                 | 1-1/8                   | 9<br>(228.6)                   | 55,140<br>(245.3)                                 | 13,785<br>(61.3)                                   | 72,575<br>(322.8)                                 | 18,145<br>(80.7)                                   |  |  |  |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is The greater of [hoom + 1-1/4"] and [hnom + 2dbit].

4. The tabulated load values are applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water-saturated concrete (wet) or in water-filled holes (flooded) require a 15% reduction in capacity. Installations in underwater concrete (submerged) require a 30% reduction in capacity. Contact DEWALT for more information concerning these installation conditions.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.

7. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

Epoxy Injection Adhesive Anchoring System

**PURE110+**®

- REV. D





#### Allowable Load Capacities for Threaded Rod and Reinforcing Bar (Based on Steel Strength)<sup>1,2,3,4,5</sup>

|                                        | Steel Elements - Threaded Rod and Reinforcing Bar |                      |                           |                      |                                           |                      |                         |                      |                         |                      |                                |                      |                         |                      |                                |                      |                                |                      |
|----------------------------------------|---------------------------------------------------|----------------------|---------------------------|----------------------|-------------------------------------------|----------------------|-------------------------|----------------------|-------------------------|----------------------|--------------------------------|----------------------|-------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|
| Nominal<br>Rod<br>Diameter<br>or Rebar | A36 or F1554,<br>Grade 36                         |                      | A36 or F1554,<br>Grade 55 |                      | A 193, Grade<br>B7 or F1554,<br>Grade 105 |                      | F 593, CW (SS)          |                      | ASTM<br>Grad<br>Rel     | A615<br>e 40<br>bar  | ASTM A615<br>Grade 60<br>Rebar |                      | ASTM<br>Grad<br>Rel     | A706<br>e 60<br>oar  | ASTM A615<br>Grade 75<br>Rebar |                      | ASTM A706<br>Grade 80<br>Rebar |                      |
| Size<br>(in. or #)                     | Tension<br>Ibs.<br>(kN)                           | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)                   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) |
| 3/8 or #3                              | 2,115<br>(9.4)                                    | 1,090<br>(4.8)       | 2,735<br>(12.2)           | 1,410<br>(6.3)       | 4,555<br>(20.3)                           | 2,345<br>(10.4)      | 3,645<br>(16.2)         | 1,880<br>(8.4)       | 2,210<br>(9.8)          | 1,125<br>(5.0)       | 2,650<br>(11.8)                | 1,690<br>(7.5)       | 2,650<br>(11.8)         | 1,500<br>(6.7)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       |
| 1/2 or #4                              | 3,760<br>(16.7)                                   | 1,935<br>(8.6)       | 4,860<br>(21.6)           | 2,505<br>(11.1)      | 8,100<br>(36.0)                           | 4,170<br>(18.5)      | 6,480<br>(28.8)         | 3,340<br>(14.9)      | 3,925<br>(17.5)         | 2,005<br>(8.9)       | 4,710<br>(21.0)                | 3,005<br>(13.4)      | 4,710<br>(21.0)         | 2,670<br>(11.9)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      |
| 5/8 or #5                              | 5,870<br>(26.1)                                   | 3,025<br>(13.5)      | 7,595<br>(33.8)           | 3,910<br>(17.4)      | 12,655<br>(56.3)                          | 6,520<br>(29.0)      | 10,125<br>(45.0)        | 5,215<br>(23.2)      | 6,135<br>(27.3)         | 3,130<br>(13.9)      | 7,365<br>(32.8)                | 4,695<br>(20.9)      | 7,365<br>(32.8)         | 4,170<br>(18.5)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      |
| 3/4 or #6                              | 8,455<br>(37.6)                                   | 4,355<br>(19.4)      | 10,935<br>(48.6)          | 5,635<br>(25.1)      | 18,225<br>(81.1)                          | 9,390<br>(41.8)      | 12,390<br>(55.1)        | 6,385<br>(28.4)      | 8,835<br>(39.3)         | 4,505<br>(20.0)      | 10,605<br>(47.2)               | 6,760<br>(30.1)      | 10,605<br>(47.2)        | 6,010<br>(26.7)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      |
| 7/8 or #7                              | 11,510<br>(51.2)                                  | 5,930<br>(26.4)      | 14,885<br>(66.2)          | 7,665<br>(34.1)      | 24,805<br>(110.3)                         | 12,780<br>(56.8)     | 16,865<br>(75.0)        | 8,690<br>(38.7)      | -                       | -                    | 14,430<br>(64.2)               | 9,200<br>(40.9)      | 14,430<br>(64.2)        | 8,180<br>(36.4)      | 14,430<br>(64.2)               | 10,220<br>(45.5)     | 14,430<br>(64.2)               | 10,220<br>(45.5)     |
| 1 or #8                                | 15,035<br>(66.9)                                  | 7,745<br>(34.5)      | 19,440<br>(86.5)          | 10,015<br>(44.5)     | 32,400<br>(144.1)                         | 16,690<br>(74.2)     | 22,030<br>(98.0)        | 11,350<br>(50.5)     | -                       | -                    | 18,850<br>(83.8)               | 12,015<br>(53.4)     | 18,850<br>(83.8)        | 10,680<br>(47.5)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     |
| #9                                     | -                                                 | -                    | -                         | -                    | -                                         | -                    | -                       | -                    | -                       | -                    | 23,985<br>(106.7)              | 15,290<br>(68.0)     | 23,985<br>(106.7)       | 13,590<br>(60.5)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     |
| 1-1/4                                  | 23,490<br>(104.5)                                 | 12,100<br>(53.8)     | 30,375<br>(135.1)         | 15,645<br>(69.6)     | 50,620<br>(225.2)                         | 26,080<br>(116.0)    | 34,425<br>(153.1)       | 17,735<br>(78.9)     | -                       | -                    | -                              | -                    | -                       | -                    | -                              | -                    | -                              | -                    |
| #10                                    | -                                                 | -                    | -                         | -                    | -                                         | -                    | -                       | -                    | -                       | -                    | 30,405<br>(135.2)              | 19,380<br>(86.2)     | 30,405<br>(135.2)       | 17,230<br>(76.6)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     |
|                                        |                                                   |                      |                           |                      |                                           |                      |                         |                      |                         |                      |                                |                      |                         |                      |                                |                      |                                |                      |

1. AISC defined steel strength (ASD) for threaded rod: Tensile =  $0.33 \bullet F_u \bullet A_{nom}$ , Shear =  $0.17 \bullet F_u \bullet A_{nom}$ 

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

5. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is the greater of [hnom + 1-1/4"] and [hnom + 2dail]

#### In-Service Temperature Chart For Allowable Load Capacities

| Base Materia                                                                                                                | l Temperature | Reduction Factor For Townsystems |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|--|--|--|--|--|
| °F                                                                                                                          | °C            | Reduction Factor For Temperature |  |  |  |  |  |
| 32                                                                                                                          | 0             | 1.00                             |  |  |  |  |  |
| 41                                                                                                                          | 5             | 1.00                             |  |  |  |  |  |
| 50                                                                                                                          | 10            | 1.00                             |  |  |  |  |  |
| 70                                                                                                                          | 20            | 1.00                             |  |  |  |  |  |
| 110                                                                                                                         | 43            | 1.00                             |  |  |  |  |  |
| 130                                                                                                                         | 54            | 0.82                             |  |  |  |  |  |
| 150                                                                                                                         | 66            | 0.73                             |  |  |  |  |  |
| 180 82 0.48                                                                                                                 |               |                                  |  |  |  |  |  |
| <ol> <li>Linear interpolation may be used to derive reduction factors for temperatures between<br/>those listed.</li> </ol> |               |                                  |  |  |  |  |  |



#### Ultimate and Allowable Load Capacities for Threaded Rod Installed with Pure110+ into Grout-Filled Masonry<sup>1,2,3,4,5</sup>



• FA '.'

|                      | Anchor Installed Into Grouted Masonry Wall Faces |                        |                         |                                 |                         |                       |                         |                       |  |  |  |
|----------------------|--------------------------------------------------|------------------------|-------------------------|---------------------------------|-------------------------|-----------------------|-------------------------|-----------------------|--|--|--|
| Nominal              | Minimum                                          | Nominal                | Minimum                 | Minimum                         | Ultimat                 | e Load                | Allowable Load          |                       |  |  |  |
| Diameter<br>d<br>in. | Embed.<br>h√<br>in.<br>(mm)                      | Bit<br>Diameter<br>in. | Distance<br>in.<br>(mm) | Eage<br>Distance<br>in.<br>(mm) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) |  |  |  |
| 3/8                  | 3<br>(76.2)                                      | 7/16 ANSI              | 12<br>(304.8)           | 12<br>(304.8)                   | 6,005<br>(26.7)         | 5,200<br>(23.1)       | 1,200<br>(5.3)          | 1,040<br>(4.6)        |  |  |  |
| 1/2                  | 4<br>(101.6)                                     | 9/16 ANSI              | 12<br>(304.8)           | 12<br>(304.8)                   | 8,650<br>(38.5)         | 8,845<br>(39.3)       | 1,730<br>(7.7)          | 1,770<br>(7.9)        |  |  |  |
| 5/8                  | 5<br>(127)                                       | 11/16 ANSI             | 12<br>(304.8)           | 12<br>(304.8)                   | 12,840<br>(57.1)        | 8,430<br>(37.5)       | 2,570<br>(11.4)         | 1,685<br>(7.5)        |  |  |  |
| 3/4                  | 6<br>(152.4)                                     | 7/8 ANSI               | 20<br>(508)             | 20<br>(508)                     | 19,560<br>(87.0)        | 12,685<br>(56.4)      | 3,910<br>(17.4)         | 2,540<br>(11.3)       |  |  |  |

#### Anchor Installed in the Tops of Grouted Masonry Walls<sup>6</sup>

| Nominal Minimum<br>Embed. |                             | Nominal                         | Minimum                        | Minimum                         | Ultimat                 | te Load               | Allowat                 | Allowable Load        |  |  |
|---------------------------|-----------------------------|---------------------------------|--------------------------------|---------------------------------|-------------------------|-----------------------|-------------------------|-----------------------|--|--|
| Diameter<br>d<br>in.      | Embed.<br>h√<br>in.<br>(mm) | Driii<br>Bit<br>Diameter<br>in. | End<br>Distance<br>in.<br>(mm) | Edge<br>Distance<br>in.<br>(mm) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) |  |  |
| 1/2                       | 4<br>(101.6)                | 9/16 ANSI                       | 4<br>(101.6)                   | 1.75<br>(44.5)                  | 5,135<br>(22.8)         | 1,750<br>(7.8)        | 1,030<br>(4.6)          | 350<br>(1.6)          |  |  |
| 5/8                       | 5<br>(127)                  | 11/16 ANSI                      | 4<br>(101.6)                   | 2.75<br>(69.9)                  | 5,360<br>(23.6)         | 3,130<br>(13.9)       | 1,070<br>(4.8)          | 625<br>(2.8)          |  |  |

1. Tabulated load values are for 3/8" and 1/2" diameter anchors installed in minimum 6" wide, Grade N, Type II, light weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate compressive strength at the time of installation (f'm ≥ 1,500 psi).

 Tabulated load values are for 5/8" and 3/4" diameter anchors installed in 8" wide, Grade N, Type II, light weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate compressive strength at the time of installation (f'm ≥ 1,500 psi).

3. Anchors must be installed in grouted cells and the minimum edge and end distances must be maintained.

4. Allowable load capacities listed are calculated using an applied safety factor of 5.0 and must be checked against the allowable tension and shear capacities for threaded rod based on steel strength to determine the controlling factor.

The tabulated values are applicable for anchors installed into grouted masonry wall faces and masonry wall tops at a critical spacing distance, ser, between anchors of 3 times the embedment depth.

6. Anchor installations into tops of grouted masonry walls are limited to one per masonry cell.



Wall Face Permissible Anchor Locations (Un-hatched Area)



Top of Wall

#### Ultimate and Allowable Load Capacities for Threaded Rod Installed with Pure110+ into Hollow Concrete Masonry Walls with Plastic Screen Tubes<sup>1,2,3</sup>



| Nominal Anohor  | Iominal Anchor Minimum Screen Minimum E |                         | Minimum Edge            | Ultimate Load           | Allowable Load          |                         |
|-----------------|-----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Diameter<br>in. | Tube Length<br>in.                      | Distance<br>in.<br>(mm) | Distance<br>in.<br>(mm) | ASTM C-90 Block<br>Type | Tension<br>Ibs.<br>(kN) | Tension<br>Ibs.<br>(kN) |
| 3/8             | 3-1/2                                   | 3-3/4<br>(95.3)         | 3-3/4<br>(95.3)         | Lightweight             | 790<br>(3.5)            | 160<br>(0.7)            |
| 1/2             | 3-1/2                                   | 3-3/4<br>(95.3)         | 3-3/4<br>(95.3)         | Lightweight             | 1,255<br>(5.6)          | 250<br>(1.1)            |
| 5/8             | 6                                       | 3-3/4<br>(95.3)         | 3-3/4<br>(95.3)         | Normal-weight⁴          | 1,545<br>(6.9)          | 310<br>(1.4)            |
| 3/4             | 6                                       | 3-3/4<br>(95.3)         | 3-3/4<br>(95.3)         | Normal-weight⁴          | 1,545<br>(6.9)          | 310<br>(1.4)            |

1. Tabulated load values are for anchors installed in minimum 8" wide, Grade N, Type II, lightweight or normal weight concrete masonry units conforming to ASTM C 90 that have reached a designated ultimate compressive strength at the time of installation (f'm ≥ 1,500 psi). Mortar must be type N, S or M.

Allowable loads are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.
 Anchor spacing is limited to one per masonry cell.

4. The tabulated load values are applicable to normal-weight concrete masonry units with a minimum face shell thickness of 1-1/2 inches.

#### Installation Specifications for Threaded Rod and Reinforcing Bar

|                                                   |                                    |                 |                                       |                       | Frac            | tional Nomi     | nal Rod Dia     | meter (Incl     | n) / Reinford   | ing Bar Siz     | e               |                |
|---------------------------------------------------|------------------------------------|-----------------|---------------------------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|
| Parameter                                         | Symbol                             | Units           | 3/8 or<br>#3                          | 1/2                   | #4              | 5/8 or<br>#5    | 3/4 or<br>#6    | 7/8 or<br>#7    | 1 or #8         | #9              | 1-1/4           | #10            |
| Threaded rod outside diameter                     | d                                  | inch<br>(mm)    | 0.375<br>(9.5)                        | 0.5<br>(12            | 00<br>2.7)      | 0.625<br>(15.9) | 0.750<br>(19.1) | 0.875<br>(22.2) | 1.000<br>(25.4) | -               | 1.250<br>(31.8) | -              |
| Rebar nominal outside diameter                    | d                                  | inch<br>(mm)    | 0.375 0.500<br>(9.5) (12.7)           |                       | 0.625<br>(15.9) | 0.750<br>(19.1) | 0.875<br>(22.2) | 1.000<br>(25.4) | 1.125<br>(28.7) | -               | 1.250<br>(31.8) |                |
| Carbide drill bit nominal size6                   | d <sub>o</sub> (d <sub>bit</sub> ) | inch            | 7/16                                  | 9/16                  | 5/8             | 11/16 or<br>3/4 | 7/8             | 1               | 1-1/8           | 1-3/8           | 1-3/8           | 1-1/2          |
| Minimum embedment                                 | hef,min                            | inch<br>(mm)    | 2-3/8<br>(60)                         | 2-3<br>(7             | 3/4<br>0)       | 3-1/8<br>(79)   | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)      | 4-1/2<br>(114)  | 5<br>(127)      | 5<br>(127)     |
| Maximum embedment                                 | hef,max                            | inch<br>(mm)    | 7-1/2<br>(191)                        | 1<br>(25              | 0<br>54)        | 12-1/2<br>(318) | 15<br>(381)     | 17-1/2<br>(445) | 20<br>(508)     | 22-1/2<br>(572) | 25<br>(635)     | 25<br>(635)    |
| Minimum member thickness                          | hmin                               | inch<br>(mm)    | h <sub>ef</sub> +<br>(h <sub>ef</sub> | - 1-1/4<br>+ 30)      |                 | her + 2do       |                 |                 |                 |                 |                 |                |
| Minimum anchor spacing                            | Smin                               | inch<br>(mm)    | 1-7/8<br>(48)                         | 2- <sup>-</sup><br>(6 | 1/2<br>4)       | 3-1/8<br>(79)   | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159) |
| Minimum edge distance                             | Cmin                               | inch<br>(mm)    | 1-7/8<br>(48)                         | 2- <sup>-</sup><br>(6 | 1/2<br>4)       | 3-1/8<br>(79)   | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159) |
| Max. torque <sup>2</sup>                          | T <sub>max</sub>                   | ft-lbs<br>(N-m) | 15<br>(20)                            | 3<br>(4               | 0<br>1)         | 60<br>(81)      | 105<br>(142)    | 125<br>(169)    | 165<br>(221)    | 200<br>(280)    | 280<br>(379)    | 280<br>(379)   |
| Max. torque <sup>2,3</sup><br>(low strength rods) | T <sub>max</sub>                   | ft-lbs<br>(N-m) | 5<br>(7)                              | 2<br>(2               | 0<br>7)         | 40<br>(54)      | 60<br>(81)      | 100<br>(136)    | 165<br>(223)    | -               | 280<br>(379)    | -              |
| Minimum edge distance, reduced <sup>5</sup>       | Cmin,red                           | inch<br>(mm)    | 1-3/4<br>(45)                         | 1-3<br>(4             | 3/4<br>5)       | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 2-3/4<br>(70)   | 2-3/4<br>(70)   | 2-3/4<br>(70)  |
| Max. torque, reduced <sup>2</sup>                 | T <sub>max,red</sub>               | ft-lbs<br>(N-m) | 7 [5]4                                | 1 (1                  | 4<br>9)         | 27<br>(37)      | 47<br>(64)      | 56<br>(76)      | 74<br>(100)     | 90<br>(122)     | 126<br>(171)    | 126<br>(171)   |

For pound-inch units: 1 mm = 0.03937 inch, 1 N-m = 0.7375 ft-lbf. For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. For use with the design provisions of ACI 318-14 Ch.17 or ACI 318-11 Appendix D as applicable, ICC-ES AC308, Section 4.2 and ESR-3298

2. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

3. These torque values apply to ASTM A 36 / F 1554 Grade 36 carbon steel threaded rods; ASTM F 1554 Grade 55 carbon steel threaded rods; and ASTM A 193 Grade B8/B8M (Class 1) stainless steel threaded rods.

4. These torque values apply to ASTM A 193 Grade B8/B8M (Class 1) stainless steel threaded rods.

5. For Installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be max torque reduced, Tmaxred.

6. For any case, it must be possible for the steel anchor element to be inserted into the cleaned drill hole without resistance.

## Detail of Steel Hardware Elements used with Injection Adhesive System



| Threaded  | Rod  | and | Deformed   | Reinforcing   | Rar | Material | Pronerties    |
|-----------|------|-----|------------|---------------|-----|----------|---------------|
| i m caaca | IIUu | unu | Delotiliou | ILCIIIIOIUIII | Dui | matchat  | I I Upul luus |

| Steel<br>Description<br>(General) | Steel Specification<br>(ASTM)           | Nominal Anchor<br>Size (inch)         | Minimum Yield<br>Strength,<br>fy (ksi) | Minimum<br>Ultimate<br>Strength,<br>f₁ (ksi) |
|-----------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|
|                                   | A 36 or F 1554 Grade 36                 | 0/0 through 1 1/4                     | 36.0                                   | 58.0                                         |
|                                   | F 1554 Grade 55                         | 3/8 through 1-1/4                     | 55.0                                   | 75.0                                         |
|                                   | A 440                                   | 3/8 through 1                         | 92.0                                   | 120.0                                        |
| Carbon rod                        | A 449                                   | 1-1/4                                 | 81.0                                   | 105.0                                        |
|                                   | A 193, Grade B7 or F<br>1554, Grade 105 | 3/8 through 1-1/4                     | 105.0                                  | 125.0                                        |
|                                   | F 568M Class 5 8                        | 3/4 through 1-1/4                     | 58.0                                   | 72.5                                         |
|                                   | E EQ2 Condition CW                      | 3/8 through 5/8                       | 65.0                                   | 100.0                                        |
|                                   | F 595 CONULION CW                       | 3/4 through 1-1/4                     | 45.0                                   | 85.0                                         |
| Stainless rod                     | A 193/193M<br>Grade B8/B8M,<br>Class 1  | 3/8 through 1-1/4                     | 30.0                                   | 75.0                                         |
|                                   | A 193/A193M<br>Grade B8/B8M2, Class 2B  | 3/8 through 1-1/4                     | 75.0                                   | 95.0                                         |
| Grade 40<br>Reinforcing Bar       | A 615, A 767                            | 3/8 through 1-1/4<br>(#3 through #10) | 40.0                                   | 60.0                                         |
| Grade 60                          | A 615, A 767                            | 3/8 through 1-1/4                     | 60.0                                   | 90.0                                         |
| Reinforcing Bar                   | A 706, A 767                            | (#3 through #10)                      | 60.0                                   | 80.0                                         |
| Grade 75<br>Reinforcing Bar       | A 615, A 767                            | 3/8 through 1-1/4<br>(#3 through #10) | 75.0                                   | 100.0                                        |



**CODE LISTED** 

ICC-ES ESR-3298

**ADHESIVES** 

#### Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)



ENGINEERED BY Powers

|                         |                                                     |                  |                                                 | Nominal Rod Diameter <sup>1</sup> (inch) |                 |                           |                           |                           |                           |                           |
|-------------------------|-----------------------------------------------------|------------------|-------------------------------------------------|------------------------------------------|-----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                         | Design Information                                  | Symbol           | Units                                           | 3/8                                      | 1/2             | 5/8                       | 3/4                       | 7/8                       | 1                         | 1-1/4                     |
| Threaded rod            | nominal outside diameter                            | d                | inch                                            | 0.375                                    | 0.500           | 0.625                     | 0.750                     | 0.875                     | 1.000                     | 1.250                     |
| Threaded rod            | effective cross-sectional area                      | Ase              | (mm)<br>inch <sup>2</sup><br>(mm <sup>2</sup> ) | (9.5)<br>0.0775<br>(50)                  | 0.1419          | (15.9)<br>0.2260<br>(146) | (19.1)<br>0.3345<br>(216) | (22.2)<br>0.4617<br>(208) | (25.4)<br>0.6057<br>(201) | (31.8)<br>0.9691<br>(625) |
|                         |                                                     |                  | lbf                                             | 4,495                                    | 8,230           | 13,110                    | 19.400                    | 26,780                    | 35.130                    | 56.210                    |
| ASTM A 36               | Nominal strength as governed by                     | Nsa              | (kN)                                            | (20.0)                                   | (36.6)          | (58.3)                    | (86.3)                    | (119.1)                   | (156.3)                   | (250.0)                   |
| and<br>ASTM E 1554      | steel strength (for a single anchor)                | Vsa              | lbf<br>(kN)                                     | 2,695<br>(12.0)                          | 4,940<br>(22.0) | 7,860<br>(35.0)           | 11,640<br>(51.8)          | 16,070<br>(71.4)          | 21,080<br>(93.8)          | 33,725<br>(150.0)         |
| Grade 36                | Reduction factor for seismic shear                  | OlV,seis         | -                                               | 0.80                                     | 0.80            | 0.80                      | 0.80                      | 0.80                      | 0.80                      | 0.80                      |
|                         | Strength reduction factor for tension <sup>2</sup>  | φ                | -                                               |                                          |                 |                           | 0.75                      |                           |                           |                           |
|                         | Strength reduction factor for shear <sup>2</sup>    | φ                | -<br>Ibf                                        | E 010                                    | 10.640          | 16.050                    | 0.65                      | 24.605                    | 1E 10E                    | 70.600                    |
|                         | Nominal strength as governed by                     | Nsa              | (kN)                                            | 2,810<br>(25.9)                          | (47.3)          | (75.4)                    | 25,085<br>(111.6)         | 34,625<br>(154.0)         | 45,425<br>(202.0)         | (323.3)                   |
| ASTM F 1554             |                                                     | Vsa              | (kN)                                            | (15.5)                                   | (28.4)          | (45.2)                    | (67.0)                    | (92.4)                    | (121.2)                   | (194.0)                   |
| Grade 55                | Reduction factor for seismic shear                  | Ø∕V,seis         | -                                               | 0.80                                     | 0.80            | 0.80                      | 0.80                      | 0.80                      | 0.80                      | 0.80                      |
|                         | Strength reduction factor for tension <sup>2</sup>  | φ                | -                                               |                                          |                 |                           | 0.75                      |                           |                           |                           |
|                         | Strength reduction factor for shear <sup>2</sup>    | φ                | -                                               | 0.005                                    | 47 705          | 00.050                    | 0.65                      | 57.740                    | 75 74 0                   | 101 105                   |
| <b>ASTM A 193</b>       | Nominal strength as governed by                     | N <sub>sa</sub>  | (kN)                                            | 9,685                                    | (78.9)          | 28,250 (125.7)            | 41,810 (186.0)            | 57,710<br>(256.7)         | (336.8)                   | 121,135<br>(538.8)        |
| Grade B7                | steel strength (for a single anchor)                | V                | lbf                                             | 5,815                                    | 10,640          | 16,950                    | 25,085                    | 34,625                    | 45,425                    | 72,680                    |
| and                     |                                                     | Vsa              | (kN)                                            | (25.9)                                   | (7.3)           | (75.4)                    | (111.6)                   | (154.0)                   | (202.1)                   | (323.3)                   |
| ASTM F 1554             | Reduction factor for seismic shear                  | OlV,seis         | -                                               | 0.80                                     | 0.80            | 0.80                      | 0.80                      | 0.80                      | 0.80                      | 0.80                      |
| Grade 105               | Strength reduction factor for tension <sup>2</sup>  | φ                | -                                               |                                          |                 |                           | 0.75                      |                           |                           |                           |
|                         | Strength reduction factor for shear-                | φ                | -<br>lbf                                        | 0.200                                    | 17.025          | 27 120                    | 0.00                      | 55 005                    | 72 695                    | 101 755                   |
|                         | Nominal strength as                                 | Nsa              | (kN)                                            | (41.4)                                   | (75.7)          | (120.6)                   | (178.5)                   | (248.7)                   | (323.3)                   | (452.6)                   |
|                         | governed by steel strength<br>(for a single anchor) | Vea              | lbf                                             | 5,580                                    | 10,215          | 16,270                    | 24,085                    | 33,540                    | 43,610                    | 61,050                    |
| ASTM A 449              | Poduction factor for aciemic cheer                  | • 3u             | (KN)                                            | (24.8)                                   | (45.4)          | (72.4)                    | (107.1)                   | (149.2)                   | (194.0)                   | (2/1.6)                   |
|                         | Strength reduction factor for tension <sup>2</sup>  | OV,seis          | -                                               | 0.00                                     | 0.00            | 0.00                      | 0.00                      | 0.00                      | 0.00                      | 0.00                      |
|                         | Strength reduction factor for shear <sup>2</sup>    | φ<br>            | -                                               |                                          |                 |                           | 0.65                      |                           |                           |                           |
|                         | Changar rodaction ration for oriotal                | ¥                | lbf                                             | 5,620                                    | 10,290          | 16,385                    | 24,250                    | 33,475                    | 43,915                    | 5                         |
|                         | Nominal strength as governed by                     | INsa             | (kN)                                            | (25.0)                                   | (45.8)          | (72.9)                    | (107.9)                   | (148.9)                   | (195.4)                   |                           |
| ISO 898-1               | steel strength (for a single anchor)                | Vsa              | lbf                                             | 3,370                                    | 6,175           | 9,830                     | 14,550                    | 20,085                    | 26,350                    | _5                        |
| Class 5.8               | Reduction factor for seismic shear                  | <i>Ohu ania</i>  | (KIN)<br>_                                      | 0.80                                     | 0.80            | (43.7)                    | 0.80                      | 0.80                      | 0.80                      | _5                        |
|                         | Strength reduction factor for tension <sup>3</sup>  | φ.               | -                                               | 0.00                                     | 0.00            | 0.00                      | 0.65                      | 0.00                      | 0.00                      |                           |
|                         | Strength reduction factor for shear <sup>3</sup>    | φ                | -                                               |                                          |                 |                           | 0.60                      |                           |                           |                           |
|                         |                                                     | N                | lbf                                             | 7,750                                    | 14,190          | 22,600                    | 28,430                    | 39,245                    | 51,485                    | 82,370                    |
| ASTM F 593              | Nominal strength as governed by                     | TNSa             | (kN)                                            | (34.5)                                   | (63.1)          | (100.5)                   | (126.5)                   | (174.6)                   | (229.0)                   | (366.4)                   |
| CW Stainless            | steel strength (for a single anchor)                | Vsa              |                                                 | 4,650                                    | 8,515           | 13,560                    | 17,060                    | 23,545                    | 30,890                    | 49,425                    |
| (Types 304              | Reduction factor for seismic shear                  | OV seis          | -                                               | 0.70                                     | 0.70            | 0.80                      | 0.80                      | 0.80                      | 0.80                      | 0.80                      |
| and 316)                | Strength reduction factor for tension <sup>3</sup>  | φ                | -                                               | 0.10                                     | 0.10            | 0.00                      | 0.65                      | 0.00                      | 0.00                      | 0.00                      |
|                         | Strength reduction factor for shear <sup>3</sup>    | $\phi$           | - 1                                             |                                          |                 |                           | 0.60                      |                           |                           |                           |
| ASTM A 193              | Nominal strangth as governed by                     | N <sub>sa</sub>  | lbf<br>(kNi)                                    | 4,420                                    | 8,090<br>(36.0) | 12,880                    | 19,065                    | 26,315                    | 34,525                    | 55,240<br>(245 7)         |
| Grade B8/B8M,           | steel strength (for a single anchor) <sup>4</sup>   |                  | lbf                                             | 2.650                                    | 4.855           | 7.730                     | 11.440                    | 15,790                    | 20.715                    | 33,145                    |
| Class 1                 |                                                     | Vsa              | (kN)                                            | (11.8)                                   | (21.6)          | (34.4)                    | (50.9)                    | (70.2)                    | (92.1)                    | (147.4)                   |
| Stainless<br>(Types 304 | Reduction factor for seismic shear                  | <i>O</i> (V,seis | -                                               | 0.70                                     | 0.70            | 0.80                      | 0.80                      | 0.80                      | 0.80                      | 0.80                      |
| and 316)                | Strength reduction factor for tension <sup>2</sup>  | φ                | -                                               |                                          |                 |                           | 0.75                      |                           |                           |                           |
|                         | Strength reduction factor for shear <sup>2</sup>    | φ                | -                                               | 7.005                                    | 10.400          | 01 470                    | 0.65                      | 40.000                    | EZEAE                     | 00.005                    |
| ASTM A 193<br>Grade B8/ | Nominal strength as governed by                     | N <sub>sa</sub>  | (kN)                                            | (32.8)                                   | (60.0)          | (95.5)                    | (141.3)                   | 43,860 (195.1)            | 57,545<br>(256.0)         | 92,065                    |
| B8M2,                   | steel strength (for a single anchor)                | V                | lbf                                             | 4,420                                    | 8,085           | 12,880                    | 19,065                    | 26,315                    | 34,525                    | 55,240                    |
| Class 2B                |                                                     | Vsa              | (kN)                                            | (19.7)                                   | (36.0)          | (57.3)                    | (84.8)                    | (117.1)                   | (153.6)                   | (245.7)                   |
| Stainless               | Reduction factor for seismic shear                  | OlV,seis         | -                                               | 0.70                                     | 0.70            | 0.80                      | 0.80                      | 0.80                      | 0.80                      | 0.80                      |
| (Types 304<br>and 316)  | Strength reduction factor for tension <sup>2</sup>  | φ<br>            | -                                               |                                          |                 | -                         | 0.75                      |                           |                           |                           |
|                         |                                                     | Ψ                | <u> </u>                                        | I                                        |                 |                           | 0.00                      |                           |                           |                           |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

2. The tabulated value of \$\phi\$ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \$\phi\$ must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements.

3. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements

4. In accordance with AACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/B8M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9fy or 57,000 psi (393 MPa).

5. The referenced standard includes rod diameters up to and including 1-inch (24 mm).

#### Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)



|                           | Barlan Information                                 | 0               |                |                     |                  | Nomina            | I Reinforcin      | ıg Bar Size (                                              | (Rebar) <sup>1</sup> |                    |                    |
|---------------------------|----------------------------------------------------|-----------------|----------------|---------------------|------------------|-------------------|-------------------|------------------------------------------------------------|----------------------|--------------------|--------------------|
|                           | Design Information                                 | Symbol          | Units          | No. 3               | No. 4            | No. 5             | No. 6             | No. 7                                                      | No. 8                | No. 9              | No. 10             |
| Rebar nomir               | nal outside diameter                               | d               | inch<br>(mm)   | 0.375<br>(9.5)      | 0.500<br>(12.7)  | 0.625<br>(15.9)   | 0.750<br>(19.1)   | 0.875<br>(22.2)                                            | 1.000<br>(25.4)      | 1.125<br>(28.7)    | 1.250<br>(32.3)    |
| Rebar effect              | ive cross-sectional area                           | Ase             | inch²<br>(mm²) | 0.110<br>(71.0)     | 0.200<br>(129.0) | 0.310<br>(200.0)  | 0.440<br>(283.9)  | 0.600<br>(387.1)                                           | 0.790<br>(509.7)     | 1.000<br>(645.2)   | 1.270<br>(819.4)   |
|                           | Nominal strength as governed by                    | Nsa             | lbf<br>(kN)    | 11,000<br>(48.9)    | 20,000<br>(89.0) | 31,000<br>(137.9) | 44,000<br>(195.7) | 60,000<br>(266.9)                                          | 79,000<br>(351.4)    | 100,000<br>(444.8) | 127,000<br>(564.9) |
| ASTM                      | steel strength (for a single anchor)               | Vsa             | lbf<br>(kN)    | 6,600<br>(29.4)     | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | 36,000<br>(160.1)                                          | 47,400<br>(210.8)    | 60,000<br>(266.9)  | 76,200<br>(338.9)  |
| Grade 75                  | Reduction factor for seismic shear                 | Ø℃,seis         | -              | 0.70                | 0.70             | 0.80              | 0.80              | 0.80                                                       | 0.80                 | 0.80               | 0.80               |
|                           | Strength reduction factor for tension <sup>3</sup> | $\phi$          | -              |                     |                  |                   | 0.                | 65                                                         |                      |                    |                    |
|                           | Strength reduction factor for shear <sup>3</sup>   | $\phi$          | -              |                     |                  |                   | 0.                | 60                                                         |                      |                    |                    |
|                           | Nominal strength as governed by                    | Nsa             | lbf<br>(kN)    | 9,900<br>(44.0)     | 18,000<br>(80.1) | 27,900<br>(124.1) | 39,600<br>(176.1) | 54,000<br>(240.2)                                          | 71,100<br>(316.3)    | 90,000<br>(400.3)  | 114,300<br>(508.4) |
| ASTM<br>A 615<br>Grade 60 | steel strength (for a single anchor)               | Vsa             | lbf<br>(kN)    | 5,940<br>(26.4)     | 10,800<br>(48.0) | 16,740<br>(74.5)  | 23,760<br>(105.7) | 32,400<br>(144.1)                                          | 42,660<br>(189.8)    | 54,000<br>(240.2)  | 68,580<br>(305.0)  |
|                           | Reduction factor for seismic shear                 | Ø∕V,seis        | -              | 0.70                | 0.70             | 0.80              | 0.80              | 0.80                                                       | 0.80                 | 0.80               | 0.80               |
|                           | Strength reduction factor for tension <sup>2</sup> | $\phi$          | -              |                     |                  |                   | 0.                | 75                                                         |                      |                    |                    |
|                           | Strength reduction factor for shear <sup>2</sup>   | $\phi$          | -              |                     |                  |                   | 0.                | 65                                                         |                      |                    |                    |
|                           | Nominal strength as governed by                    | Nsa             | lbf<br>(kN)    | 8,800<br>(39.1)     | 16,000<br>(71.2) | 24,800<br>(110.3) | 35,200<br>(156.6) | 48,000<br>(213.5)                                          | 63,200<br>(281.1)    | 80,000<br>(355.9)  | 101,600<br>(452.0) |
| ASTM A 706                | steel strength (for a single anchor)               | Vsa             | lbf<br>(kN)    | 5,280<br>(23.5)     | 9,600<br>(42.7)  | 14,880<br>(66.2)  | 21,120<br>(94.0)  | 28,800<br>(128.1)                                          | 37,920<br>(168.7)    | 48,000<br>(213.5)  | 60,960<br>(271.2)  |
| Grade 60                  | Reduction factor for seismic shear                 | $lpha_{V,seis}$ |                | 0.70                | 0.70             | 0.80              | 0.80              | 0.80                                                       | 0.80                 | 0.80               | 0.80               |
|                           | Strength reduction factor for tension <sup>2</sup> | $\phi$          | -              |                     |                  |                   | 0.                | 75                                                         |                      |                    |                    |
|                           | Strength reduction factor for shear <sup>2</sup>   | $\phi$          | -              |                     |                  |                   | 0.                | 65                                                         |                      |                    |                    |
|                           | Nominal strength as governed by                    | Nsa             | lbf<br>(kN)    | 6,600<br>(29.4)     | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | In accor                                                   | dance with           | ASTM A 615         | 5. Grade           |
| ASTM A 615                | steel strength (for a single anchor)               | Vsa             | lbf<br>(kN)    | 3,960<br>(17.6)     | 7,200<br>(32.0)  | 11,160<br>(49.6)  | 15,840<br>(70.5)  | 40 bars are furnished only in sizes No. 3<br>through No. 6 |                      |                    | es No. 3           |
| Grade 40                  | Reduction factor for seismic shear                 | Ø℃,seis         | -              | 0.70 0.70 0.80 0.80 |                  |                   |                   |                                                            |                      |                    |                    |
|                           | Strength reduction factor for tension <sup>2</sup> | $\phi$          | -              |                     |                  |                   | 0.                | 75                                                         |                      |                    |                    |
|                           | Strength reduction factor for shear <sup>2</sup>   | $\phi$          | -              |                     |                  |                   | 0.                | 65                                                         |                      |                    |                    |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements. In accordance with ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)(a), as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-14 20.2.2.4 and 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.

3. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.

#### **Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars** (For use with loads combinations taken from ACI 318-14 Section 5.3)\*



|                                                                                         |                  |              |                                         |                | Nominal Roo                  | d Diameter (in                            | ch) / Reinforc                           | ing Bar Size    |                 |                 |
|-----------------------------------------------------------------------------------------|------------------|--------------|-----------------------------------------|----------------|------------------------------|-------------------------------------------|------------------------------------------|-----------------|-----------------|-----------------|
| Design Information                                                                      | Symbol           | Units        | 3/8 or #3                               | 1/2 or #4      | 5/8 or #5                    | 3/4 or #6                                 | 7/8 or #7                                | 1 or #8         | #9              | 1-1/4 or<br>#10 |
| Effectiveness factor for<br>cracked concrete                                            | Kc,cr            | (SI)         |                                         |                |                              | 1<br>(7.                                  | 7<br>.1)                                 |                 |                 |                 |
| Effectiveness factor for<br>uncracked concrete                                          | Kc,uncr          | -<br>(SI)    |                                         |                |                              | 2<br>(10                                  | 4<br>).0)                                |                 |                 |                 |
| Minimum embedment                                                                       | hef,min          | inch<br>(mm) | 2-3/8<br>(60)                           | 2-3/4<br>(70)  | 3-1/8<br>(79)                | 3-1/2<br>(89)                             | 3-1/2<br>(89)                            | 4<br>(102)      | 4-1/2<br>(114)  | 5<br>(127)      |
| Maximum embedment                                                                       | hef,max          | inch<br>(mm) | 7-1/2<br>(191)                          | 10<br>(254)    | 12-1/2<br>(318)              | 15<br>(381)                               | 17-1/2<br>(445)                          | 20<br>(508)     | 22-1/2<br>(572) | 25<br>(635)     |
| Minimum anchor spacing                                                                  | Smin             | inch<br>(mm) | 1 <i>-</i> 7/8<br>(48)                  | 2-1/2<br>(64)  | 3-1/8<br>(79)                | 3-3/4<br>(95)                             | 4-3/8<br>(111)                           | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  |
| Minimum edge distance <sup>2</sup>                                                      | Cmin             | inch<br>(mm) |                                         |                | 5 <i>d</i> where <i>d</i> is | s nominal outs                            | side diameter o                          | of the anchor   |                 |                 |
| Minimum edge distance, reduced <sup>2</sup>                                             | Cmin,red         | inch<br>(mm) | 1-3/4<br>(45)                           | 1-3/4<br>(45)  | 1-3/4<br>(45)                | 1-3/4<br>(45)                             | 1-3/4<br>(45)                            | 1-3/4<br>(45)   | 2-3/4<br>(70)   | 2-3/4<br>(70)   |
| Minimum member thickness                                                                | h <sub>min</sub> | inch<br>(mm) | h <sub>ef</sub> +<br>(h <sub>ef</sub> + | 1-1/4<br>- 30) |                              | h <sub>ef</sub> -                         | ⊦ 2d₀ where d                            | ₀ is hole diame | eter;           |                 |
| Critical edge distance—splitting (for                                                   | 0                | inch         |                                         |                | Cac                          | $= h_{ef} \cdot (rac{	au_{uncr}}{1160})$ | º.₄ · [3.1-0.7 ¦h                        | <u>]</u> ]      |                 |                 |
| uncracked concrete only) <sup>3</sup>                                                   | Cac              | (mm)         |                                         |                | Cac                          | $= h_{ef} \cdot (\frac{\tau_{uncr}}{8})$  | <sup>₀.₄</sup> · [3.1-0.7 <sup>l</sup> h | <u>]</u> ]      |                 |                 |
| Strength reduction factor for tension, concrete failure modes, Condition B <sup>4</sup> | $\phi$           | - 0.65       |                                         |                |                              |                                           |                                          |                 |                 |                 |
| Strength reduction factor for shear, concrete failure modes, Condition B <sup>4</sup>   | φ                | -            |                                         |                |                              | 0.                                        | 70                                       |                 |                 |                 |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3.  $T_{k,uncr}$  need not be taken as greater than:  $T_{k,uncr} = \frac{kuncr}{\sqrt{h_{ef} \cdot f'c}}$  and  $\frac{h}{t_{r}}$  need not be taken as larger than 2.4. h<sub>ef</sub>

π•d

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4.

#### FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH





#### Bond Strength Design Information for Threaded Rods and Reinforcing Bars<sup>1,2</sup>



| n                                                         | ooign Information                                                                        | Sumbol                         | nbol Units              |                  | Nominal Rod Diameter (inch) |                   |                 |                   |                 |                   |                 |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|-------------------------|------------------|-----------------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|--|
| U                                                         | esign mormation                                                                          | Symbol                         | Units                   | 3/8              | 1/2                         | 5/8               | 3/4             | 7/8               | 1               | 1-1               | /4              |  |
| Minimum embedment                                         |                                                                                          | h <sub>ef,min</sub>            | inch<br>(mm)            | 2-3/8<br>(60)    | 2-3/4<br>(70)               | 3-1/8<br>(79)     | 3-1/2<br>(89)   | 3-1/2<br>(89)     | 4<br>(102)      | 5<br>(12          | 5<br>27)        |  |
| Maximum embedment                                         |                                                                                          | h <sub>ef,max</sub>            | inch<br>(mm)            | 7-1/2<br>(191)   | 10<br>(254)                 | 12-1/2<br>(318)   | 15<br>(381)     | 17-1/2<br>(445)   | 20<br>(508)     | 23<br>(63         | 5<br>35)        |  |
| 11005 (4000)                                              | Characteristic bond strength in<br>cracked concrete <sup>6.9</sup>                       | $	au_{ m k,cr}$                | psi<br>(N/mm²)          | 1,206            | 1,206 (8.3)                 | 1,206 (8.3)       | 1,206 (8.3)     | 1,206 (8.3)       | 1,206           | 1,2               | .06<br>3)       |  |
| Maximum Long-Term<br>Service Temperature:                 | Characteristic bond strength in cracked concrete, short-term loading only <sup>a</sup>   | $	au_{ m k,cr}$                | psi<br>(N/mm²)          | 1,206<br>(8.3)   | 1,206<br>(8.3)              | 1,206<br>(8.3)    | 1,206<br>(8.3)  | 1,206<br>(8.3)    | 1,206<br>(8.3)  | 1,2<br>(8.        | .06<br>3)       |  |
| 140°F (60°C)<br>Maximum Short-Term                        | Characteristic bond strength in uncracked concrete <sup>6,8</sup>                        | $	au_{	extsf{k},	extsf{uncr}}$ | psi<br>(N/mm²)          | 1,829<br>(12.6)  | 1,738<br>(12.0)             | 1,671<br>(11.5)   | 1,617<br>(11.1) | 1,567<br>(10.8)   | 1,538<br>(10.6) | 1,4<br>(10        | .79<br>.2)      |  |
| Service Temperature <sup>3,5</sup>                        | Characteristic bond strength in uncracked concrete, short-term loading only <sup>8</sup> | $	au_{	extsf{k},	extsf{uncr}}$ | psi<br>(N/mm²)          | 1,829<br>(12.6)  | 1,738<br>(12.0)             | 1,671<br>(11.5)   | 1,617<br>(11.1) | 1,567<br>(10.8)   | 1,538<br>(10.6) | 1,4<br>(10        | .79<br>.2)      |  |
| 11005 (4000)                                              | Characteristic bond strength in cracked concrete <sup>6,9</sup>                          | $	au_{ m k,cr}$                | psi<br>(N/mm²)          | 882<br>(6.1)     | 882<br>(6.1)                | 882<br>(6.1)      | 882<br>(6.1)    | 882<br>(6.1)      | 882<br>(6.1)    | 88<br>(6.         | 32<br>1)        |  |
| Maximum Long-Term<br>Service Temperature:                 | Characteristic bond strength in cracked concrete, short-term loading only <sup>a</sup>   | $	au_{ m k,cr}$                | psi<br>(N/mm²)          | 882<br>(6.1)     | 882<br>(6.1)                | 882<br>(6.1)      | 882<br>(6.1)    | 882<br>(6.1)      | 882<br>(6.1)    | 88<br>(6.         | 32<br>1)        |  |
| 176°F (80°C)<br>Maximum Short-Term                        | Characteristic bond strength in uncracked concrete <sup>6,8</sup>                        | $	au_{	extsf{k},	extsf{uncr}}$ | psi<br>(N/mm²)          | 1,334<br>(9.2)   | 1,262<br>(8.7)              | 1,218<br>(8.4)    | 1,175<br>(8.1)  | 1,146<br>(7.9)    | 1,117<br>(7.7)  | 1,0<br>(7.        | 73<br>4)        |  |
| Service Temperature <sup>4,5</sup>                        | Characteristic bond strength in uncracked concrete, short-term loading only <sup>8</sup> | $	au_{k,uncr}$                 | psi<br>(N/mm²)          | 1,334<br>(9.2)   | 1,262<br>(8.7)              | 1,218<br>(8.4)    | 1,175<br>(8.1)  | 1,146<br>(7.9)    | 1,117 (7.7)     | 1,0<br>(7.        | 73<br>4)        |  |
| _                                                         |                                                                                          |                                |                         |                  | . ,                         | . ,               | Nominal         | Bar Size          | . ,             |                   | ,               |  |
| U                                                         | esign information                                                                        | Symbol                         | Units                   | #3               | #4                          | #5                | #6              | #7                | #8              | #9                | #10             |  |
| Minimum embedment                                         |                                                                                          | h <sub>ef,min</sub>            | inch<br>(mm)            | 2-3/8<br>(60.0)  | 2-3/4<br>(70.0)             | 3-1/8<br>(79.0)   | 3-1/2<br>(89.0) | 3-1/2<br>(89.0)   | 4<br>(102.0)    | 4-1/2<br>(114.0)  | 5<br>(127.0)    |  |
| Maximum embedment                                         |                                                                                          | h <sub>ef,max</sub>            | inch<br>(mm)            | 7-1/2<br>(191.0) | 10<br>(254.0)               | 12-1/2<br>(318.0) | 15<br>(381.0)   | 17-1/2<br>(445.0) | 20<br>(508.0)   | 22-1/2<br>(572.0) | 25<br>(635.0)   |  |
| 110°F (43°C)                                              | Characteristic bond strength in cracked concrete <sup>6,9</sup>                          | $	au_{ m k,cr}$                | psi<br>(N/mm²)          | 1,206<br>(8.3)   | 1,170<br>(8.1)              | 1,122<br>(7.7)    | 1,122<br>(7.7)  | 1,122<br>(7.7)    | 1,122<br>(7.7)  | 1,122<br>(7.7)    | 1,122<br>(7.7)  |  |
| Maximum Long-Term<br>Service Temperature;                 | Characteristic bond strength in cracked concrete, short-term loading only <sup>a</sup>   | $	au_{ m k,cr}$                | psi<br>(N/mm²)          | 1,206<br>(8.3)   | 1,170<br>(8.1)              | 1,122<br>(7.7)    | 1,122<br>(7.7)  | 1,122<br>(7.7)    | 1,122<br>(7.7)  | 1,122<br>(7.7)    | 1,122<br>(7.7)  |  |
| 140°F (60°C)<br>Maximum Short-Term                        | Characteristic bond strength in uncracked concrete <sup>6,8</sup>                        | $	au_{	extsf{k},	extsf{uncr}}$ | psi<br>(N/mm²)          | 1,829<br>(12.6)  | 1,738<br>(12.0)             | 1,671<br>(11.5)   | 1,617<br>(11.1) | 1,567<br>(10.8)   | 1,538<br>(10.6) | 1,507<br>(10.4)   | 1,479<br>(10.2) |  |
| Service Temperature <sup>3,5</sup>                        | Characteristic bond strength in uncracked concrete, short-term loading only <sup>8</sup> | $	au_{k,uncr}$                 | psi<br>(N/mm²)          | 1,829<br>(12.6)  | 1,738<br>(12.0)             | 1,671<br>(11.5)   | 1,617<br>(11.1) | 1,567<br>(10.8)   | 1,538<br>(10.6) | 1,507<br>(10.4)   | 1,479<br>(10.2) |  |
|                                                           | Characteristic bond strength in cracked concrete <sup>6,9</sup>                          | $	au_{ m k,cr}$                | psi<br>(N/mm²)          | 882<br>(6.1)     | 848<br>(5.8)                | 814<br>(5.6)      | 814<br>(5.6)    | 814<br>(5.6)      | 814<br>(5.6)    | 814<br>(5.6)      | 814<br>(5.6)    |  |
| 110°F (43°C)<br>Maximum Long-Term<br>Service Temperature; | Characteristic bond strength in cracked concrete, short-term loading only <sup>a</sup>   | $\mathcal{T}_{k,cr}$           | psi<br>(N/mm²)          | 882<br>(6.1)     | 848<br>(5.8)                | 814<br>(5.6)      | 814<br>(5.6)    | 814<br>(5.6)      | 814<br>(5.6)    | 814<br>(5.6)      | 814<br>(5.6)    |  |
| Maximum Short-Term<br>Service Temperature <sup>4,5</sup>  | Characteristic bond strength in uncracked concrete <sup>6,8</sup>                        | $	au_{k,uncr}$                 | psi<br>(N/mm²)          | 1,334<br>(9.2)   | 1,262<br>(8.7)              | 1,218<br>(8.4)    | 1,175<br>(8.1)  | 1,146<br>(7.9)    | 1,117<br>(7.7)  | 1,102<br>(7.6)    | 1,073<br>(7.4)  |  |
|                                                           | Characteristic bond strength in uncracked concrete, short-term loading only <sup>8</sup> | $	au_{k,uncr}$                 | psi<br>(N/mm²)          | 1,334<br>(9.2)   | 1,262<br>(8.7)              | 1,218<br>(8.4)    | 1,175<br>(8.1)  | 1,146<br>(7.9)    | 1,117<br>(7.7)  | 1,102<br>(7.6)    | 1,073<br>(7.4)  |  |
|                                                           | Dry concrete                                                                             | Anchor (                       | Category                |                  |                             |                   | 1               | 1                 |                 |                   |                 |  |
|                                                           |                                                                                          | 4                              | b <sub>d</sub>          |                  |                             |                   | 0.0             | 65                |                 |                   |                 |  |
| Permissible installation                                  | Water-saturated concrete,                                                                | Anchor (                       | Category                | <u>y 2</u>       |                             |                   |                 |                   |                 |                   |                 |  |
| CONTRILIONS                                               |                                                                                          | φws,<br>Anchor (               | <i>φ</i> wf<br>Category | <u> </u>         |                             |                   |                 |                   |                 |                   |                 |  |
|                                                           | Underwater (submerged)                                                                   |                                |                         | 0.55 0.45        |                             |                   |                 |                   |                 |                   |                 |  |
| Reduction factor for seisn                                | nic tension <sup>®</sup>                                                                 | φ<br>(Λ)                       |                         | 1.00             |                             |                   |                 |                   |                 |                   |                 |  |

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)<sup>223</sup> [For SI: (f'c / 17.2)<sup>223</sup>].

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

The maximum short-term service temperature may be increased to 162°F (72°C) provided characteristic bond strengths are reduced by 3 percent. Long-term and short-term temperatures
meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category B.

4. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category A.

5. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

6. Characteristic bond strengths are for sustained loads including dead and live loads.

7. Permissible installation conditions include dry concrete, water-saturated concrete, water-filled holes and underwater. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

9. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete do not require an additional reduction factor applied for seismic tension ( $\alpha_{\text{M,seis}} = 1.0$ ), where seismic design is applicable.





# Tension and Shear Design Strength for Threaded Rod Installed in Uncracked Concrete (Bond or Concrete Strength)



Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                            |                       |                                                 |                                                          |                                                 | pressive Strength                                                          |                                                 |                                                                            |                                     |                                                                            |                                     |                                  |
|----------------------------|-----------------------|-------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|-------------------------------------|----------------------------------|
| Nominal                    | Embed.                | f'c = 2,                                        | 500 (psi)                                                | f'c = 3,                                        | 000 (psi)                                                                  | f'c = 4,                                        | 000 (psi)                                                                  | f'c = 6,0                           | 000 (psi)                                                                  | f'c = 8,0                           | )00 (psi)                        |
| Rod/Rebar<br>Size<br>(in.) | Depth<br>hef<br>(in.) | φN <sub>cb</sub><br>or φNa<br>Tension<br>(Ibs.) | $\phi_{V_{cb}}$<br>or $\phi_{V_{cp}}$<br>Shear<br>(lbs.) | φN <sub>cb</sub><br>or φNa<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(lbs.) | φN <sub>cb</sub><br>or φNa<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(lbs.) | ØΝcb<br>or ØΝa<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(lbs.) | ΦNcb<br>or ΦNa<br>Tension<br>(Ibs.) | ∳V₀<br>or ψV₀<br>Shear<br>(lbs.) |
|                            | 2-3/8                 | 2,855                                           | 2,570                                                    | 3,125                                           | 2,920                                                                      | 3,610                                           | 3,575                                                                      | 4,070                               | 4,380                                                                      | 4,345                               | 4,680                            |
| 2/9                        | 3                     | 4,055                                           | 4,010                                                    | 4,380                                           | 4,530                                                                      | 4,680                                           | 5,370                                                                      | 5,140                               | 6,830                                                                      | 5,490                               | 8,095                            |
| 3/0                        | 4-1/2                 | 6,305                                           | 7,420                                                    | 6,575                                           | 8,270                                                                      | 7,020                                           | 9,805                                                                      | 7,710                               | 12,465                                                                     | 8,235                               | 14,775                           |
|                            | 7-1/2                 | 10,505                                          | 15,800                                                   | 10,955                                          | 17,600                                                                     | 11,705                                          | 20,865                                                                     | 12,845                              | 26,530                                                                     | 13,725                              | 29,565                           |
|                            | 2-3/4                 | 3,555                                           | 3,305                                                    | 3,895                                           | 3,755                                                                      | 4,500                                           | 4,590                                                                      | 5,510                               | 6,095                                                                      | 6,365                               | 7,455                            |
| 1/2                        | 4                     | 6,240                                           | 6,700                                                    | 6,835                                           | 7,610                                                                      | 7,895                                           | 9,310                                                                      | 8,680                               | 11,845                                                                     | 9,275                               | 14,045                           |
| 1/2                        | 6                     | 10,645                                          | 12,850                                                   | 11,105                                          | 14,315                                                                     | 11,865                                          | 16,970                                                                     | 13,020                              | 21,575                                                                     | 13,915                              | 25,585                           |
|                            | 10                    | 17,745                                          | 27,370                                                   | 18,505                                          | 30,485                                                                     | 19,770                                          | 36,150                                                                     | 21,705                              | 45,955                                                                     | 23,190                              | 49,945                           |
|                            | 3-1/8                 | 4,310                                           | 4,120                                                    | 4,720                                           | 4,680                                                                      | 5,450                                           | 5,725                                                                      | 6,675                               | 7,600                                                                      | 7,710                               | 9,295                            |
| E /0                       | 5                     | 8,720                                           | 10,005                                                   | 9,555                                           | 11,365                                                                     | 11,030                                          | 13,900                                                                     | 13,040                              | 18,205                                                                     | 13,935                              | 21,585                           |
| 5/6                        | 7-1/2                 | 15,995                                          | 19,745                                                   | 16,680                                          | 22,000                                                                     | 17,820                                          | 26,080                                                                     | 19,565                              | 33,160                                                                     | 20,900                              | 39,315                           |
|                            | 12-1/2                | 26,660                                          | 42,065                                                   | 27,800                                          | 46,860                                                                     | 29,700                                          | 55,560                                                                     | 32,605                              | 70,225                                                                     | 34,835                              | 75,030                           |
| ſ                          | 3-1/2                 | 5,105                                           | 5,015                                                    | 5,595                                           | 5,700                                                                      | 6,460                                           | 6,970                                                                      | 7,910                               | 9,255                                                                      | 9,135                               | 11,320                           |
| 2/4                        | 6                     | 11,465                                          | 13,595                                                   | 12,560                                          | 15,445                                                                     | 14,500                                          | 18,895                                                                     | 17,760                              | 25,095                                                                     | 19,415                              | 30,030                           |
| 3/4                        | 9                     | 21,060                                          | 26,855                                                   | 23,070                                          | 30,510                                                                     | 24,835                                          | 36,285                                                                     | 27,260                              | 46,130                                                                     | 29,125                              | 54,695                           |
|                            | 15                    | 37,145                                          | 58,530                                                   | 38,740                                          | 65,200                                                                     | 41,390                                          | 77,305                                                                     | 45,435                              | 97,855                                                                     | 48,540                              | 104,550                          |
|                            | 3-1/2                 | 5,105                                           | 4,930                                                    | 5,595                                           | 5,605                                                                      | 6,460                                           | 6,855                                                                      | 7,910                               | 9,100                                                                      | 9,135                               | 11,130                           |
| 7/0                        | 7                     | 14,445                                          | 16,605                                                   | 15,825                                          | 18,865                                                                     | 18,275                                          | 23,075                                                                     | 22,380                              | 30,650                                                                     | 25,610                              | 37,355                           |
| //0                        | 10-1/2                | 26,540                                          | 32,800                                                   | 29,070                                          | 37,265                                                                     | 32,755                                          | 45,135                                                                     | 35,955                              | 57,380                                                                     | 38,415                              | 68,035                           |
|                            | 17-1/2                | 49,000                                          | 72,810                                                   | 51,095                                          | 81,105                                                                     | 54,590                                          | 96,165                                                                     | 59,930                              | 122,255                                                                    | 64,025                              | 137,905                          |
|                            | 4                     | 6,240                                           | 6,115                                                    | 6,835                                           | 6,945                                                                      | 7,895                                           | 8,495                                                                      | 9,665                               | 11,280                                                                     | 11,160                              | 13,800                           |
| 1                          | 8                     | 17,650                                          | 19,750                                                   | 19,335                                          | 22,435                                                                     | 22,325                                          | 27,440                                                                     | 27,340                              | 36,450                                                                     | 31,570                              | 44,580                           |
| 1                          | 12                    | 32,425                                          | 39,005                                                   | 35,520                                          | 44,315                                                                     | 41,015                                          | 54,200                                                                     | 46,095                              | 69,560                                                                     | 49,250                              | 82,475                           |
|                            | 20                    | 62,815                                          | 88,270                                                   | 65,505                                          | 98,330                                                                     | 69,985                                          | 116,585                                                                    | 76,825                              | 148,215                                                                    | 82,080                              | 175,735                          |
|                            | 5                     | 8,720                                           | 8,170                                                    | 9,555                                           | 9,285                                                                      | 11,030                                          | 11,355                                                                     | 13,510                              | 15,085                                                                     | 15,600                              | 18,450                           |
| 1 1/4                      | 10                    | 24,665                                          | 26,380                                                   | 27,020                                          | 29,975                                                                     | 31,200                                          | 36,660                                                                     | 38,210                              | 48,690                                                                     | 44,125                              | 59,555                           |
| 1-1/4                      | 15                    | 45,315                                          | 52,110                                                   | 49,640                                          | 59,200                                                                     | 57,320                                          | 72,410                                                                     | 69,260                              | 95,655                                                                     | 74,000                              | 113,420                          |
|                            | 25                    | 94,380                                          | 121,400                                                  | 98,420                                          | 135,235                                                                    | 105,155                                         | 160,345                                                                    | 115,435                             | 203,845                                                                    | 123,330                             | 241,695                          |

- Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions:

-  $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$ 

- c<sub>#2</sub> is greater than or equal to 1.5 times c<sub>#1</sub>.
 2. Calculations were performed according to ACI 218-14 Cb 17 and ICC-ES AC208. The load level corresponding to the

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors ( $\phi$ ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3298.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3298 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-3298.



Tension and Shear Design Strength for Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                                 |                       | Minimum Concrete Compressive Strength |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                     |                                                                            |  |  |
|---------------------------------|-----------------------|---------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|----------------------------------------------------------------------------|--|--|
| Nominal                         | Embed.                | f'c = 2,5                             | i00 (psi)                          | f'c = 3,0                          | 00 (psi)                           | f'c = 4,0                          | 000 (psi)                          | f'c = 6,0                          | )00 (psi)                          | f'c = 8,000 (psi)                   |                                                                            |  |  |
| Rod/Rebar<br>Size<br>(in. or #) | Depth<br>hef<br>(in.) | ØN☆<br>or ØNª<br>Tension<br>(Ibs.)    | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØN∞<br>or ØNª<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØN☆<br>or ØNª<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØN☆<br>or ØN₄<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØN₀₀<br>or ØNa<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(Ibs.) |  |  |
|                                 | 2-3/8                 | 2,020                                 | 1,835                              | 2,215                              | 2,085                              | 2,445                              | 2,555                              | 2,685                              | 2,890                              | 2,865                               | 3,085                                                                      |  |  |
| 2/0                             | 3                     | 2,770                                 | 2,865                              | 2,890                              | 3,235                              | 3,085                              | 3,835                              | 3,390                              | 4,875                              | 3,620                               | 5,785                                                                      |  |  |
| 3/0                             | 4-1/2                 | 4,155                                 | 5,300                              | 4,335                              | 5,905                              | 4,630                              | 7,005                              | 5,085                              | 8,900                              | 5,430                               | 10,555                                                                     |  |  |
|                                 | 7-1/2                 | 6,925                                 | 11,285                             | 7,225                              | 12,570                             | 7,715                              | 14,905                             | 8,470                              | 18,245                             | 9,050                               | 19,495                                                                     |  |  |
|                                 | 2-3/4                 | 2,520                                 | 2,360                              | 2,760                              | 2,680                              | 3,185                              | 3,280                              | 3,905                              | 4,355                              | 4,425                               | 5,325                                                                      |  |  |
| 1/2                             | 4                     | 4,420                                 | 4,785                              | 4,840                              | 5,435                              | 5,490                              | 6,650                              | 6,025                              | 8,460                              | 6,435                               | 10,030                                                                     |  |  |
| 172                             | 6                     | 7,390                                 | 9,180                              | 7,705                              | 10,225                             | 8,230                              | 12,125                             | 9,035                              | 15,410                             | 9,655                               | 18,275                                                                     |  |  |
|                                 | 10                    | 12,315                                | 19,550                             | 12,840                             | 21,775                             | 13,720                             | 25,820                             | 15,060                             | 32,435                             | 16,090                              | 34,655                                                                     |  |  |
|                                 | 3-1/8                 | 3,050                                 | 2,940                              | 3,345                              | 3,340                              | 3,860                              | 4,090                              | 4,730                              | 5,430                              | 5,460                               | 6,640                                                                      |  |  |
| 5/9                             | 5                     | 6,175                                 | 7,145                              | 6,765                              | 8,120                              | 7,815                              | 9,930                              | 9,415                              | 13,005                             | 10,055                              | 15,415                                                                     |  |  |
| 5/0                             | 7-1/2                 | 11,350                                | 14,105                             | 12,040                             | 15,715                             | 12,860                             | 18,630                             | 14,120                             | 23,685                             | 15,085                              | 28,080                                                                     |  |  |
|                                 | 12-1/2                | 19,240                                | 30,045                             | 20,065                             | 33,470                             | 21,435                             | 39,685                             | 23,530                             | 50,455                             | 25,140                              | 54,150                                                                     |  |  |
|                                 | 3-1/2                 | 3,620                                 | 3,580                              | 3,965                              | 4,070                              | 4,575                              | 4,980                              | 5,605                              | 6,610                              | 6,470                               | 8,085                                                                      |  |  |
| 3/4                             | 6                     | 8,120                                 | 9,710                              | 8,895                              | 11,035                             | 10,270                             | 13,495                             | 12,580                             | 17,925                             | 14,480                              | 21,450                                                                     |  |  |
| 5/4                             | 9                     | 14,920                                | 19,185                             | 16,340                             | 21,795                             | 18,520                             | 25,920                             | 20,330                             | 32,950                             | 21,720                              | 39,070                                                                     |  |  |
|                                 | 15                    | 27,705                                | 41,805                             | 28,890                             | 46,570                             | 30,870                             | 55,220                             | 33,885                             | 70,200                             | 36,205                              | 77,975                                                                     |  |  |
|                                 | 3-1/2                 | 3,620                                 | 3,525                              | 3,965                              | 4,000                              | 4,575                              | 4,895                              | 5,605                              | 6,500                              | 6,470                               | 7,950                                                                      |  |  |
| 7/8                             | 7                     | 10,230                                | 11,860                             | 11,210                             | 13,475                             | 12,945                             | 16,485                             | 15,850                             | 21,895                             | 18,305                              | 26,680                                                                     |  |  |
| 110                             | 10-1/2                | 18,800                                | 23,430                             | 20,590                             | 26,620                             | 23,780                             | 32,240                             | 27,675                             | 40,985                             | 29,565                              | 48,595                                                                     |  |  |
|                                 | 17-1/2                | 37,710                                | 52,005                             | 39,325                             | 57,935                             | 42,015                             | 68,690                             | 46,120                             | 87,325                             | 49,275                              | 103,540                                                                    |  |  |
|                                 | 4                     | 4,420                                 | 4,365                              | 4,840                              | 4,960                              | 5,590                              | 6,065                              | 6,845                              | 8,060                              | 7,905                               | 9,855                                                                      |  |  |
| 1                               | 8                     | 12,500                                | 14,105                             | 13,695                             | 16,025                             | 15,815                             | 19,600                             | 19,365                             | 26,035                             | 22,365                              | 31,845                                                                     |  |  |
| I                               | 12                    | 22,965                                | 27,860                             | 25,160                             | 31,655                             | 29,050                             | 38,715                             | 35,580                             | 49,685                             | 38,615                              | 58,910                                                                     |  |  |
|                                 | 20                    | 49,255                                | 63,050                             | 51,365                             | 70,235                             | 54,875                             | 83,275                             | 60,240                             | 105,870                            | 64,360                              | 125,525                                                                    |  |  |
|                                 | 5                     | 6,175                                 | 5,835                              | 6,765                              | 6,630                              | 7,815                              | 8,110                              | 9,570                              | 10,775                             | 11,050                              | 13,175                                                                     |  |  |
| 1-1//                           | 10                    | 17,470                                | 18,845                             | 19,140                             | 21,410                             | 22,100                             | 26,185                             | 27,065                             | 34,780                             | 31,255                              | 42,540                                                                     |  |  |
| 1-1/4                           | 15                    | 32,095                                | 37,220                             | 35,160                             | 42,285                             | 40,600                             | 51,720                             | 49,725                             | 68,325                             | 57,415                              | 81,015                                                                     |  |  |
|                                 | 25                    | 69,060                                | 86,715                             | 75,655                             | 96,595                             | 85,745                             | 114,530                            | 94,125                             | 145,605                            | 100,565                             | 172,640                                                                    |  |  |

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions:

-  $\ensuremath{\mathsf{Cat}}$  is greater than or equal to the critical edge distance,  $\ensuremath{\mathsf{Cac}}$ 

Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3298.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3298 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-3298.





Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength)



Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                          |                       | Minimum Concrete Compressive Strength |                                                                            |                                     |                                                                            |                                     |                                    |                                     |                                  |                                     |                                    |  |
|--------------------------|-----------------------|---------------------------------------|----------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|----------------------------------|-------------------------------------|------------------------------------|--|
| Nominal                  | Embed.                | f'c = 2,                              | 500 (psi)                                                                  | f'c = 3,0                           | 000 (psi)                                                                  | f'c = 4,0                           | )00 (psi)                          | f'c = 6,0                           | 000 (psi)                        | f'c = 8,0                           | )00 (psi)                          |  |
| Rod/Rebar<br>Size<br>(#) | Depth<br>hef<br>(in.) | ØN₀₀<br>or ØNª<br>Tension<br>(Ibs.)   | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(lbs.) | ØΝcb<br>or ØΝa<br>Tension<br>(Ibs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(lbs.) | ØΝcb<br>or ØΝa<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVop<br>Shear<br>(lbs.) | ØNcb<br>or ØNa<br>Tension<br>(Ibs.) | φV₀<br>or φV₀<br>Shear<br>(lbs.) | ØNcb<br>or ØNa<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(Ibs.) |  |
|                          | 2-3/8                 | 2,855                                 | 2,570                                                                      | 3,125                               | 2,920                                                                      | 3,610                               | 3,575                              | 4,070                               | 4,380                            | 4,345                               | 4,680                              |  |
| #3                       | 3                     | 4,055                                 | 4,010                                                                      | 4,380                               | 4,530                                                                      | 4,680                               | 5,370                              | 5,140                               | 6,830                            | 5,490                               | 8,095                              |  |
| #5                       | 4-1/2                 | 6,305                                 | 7,420                                                                      | 6,575                               | 8,270                                                                      | 7,020                               | 9,805                              | 7,710                               | 12,465                           | 8,235                               | 14,775                             |  |
|                          | 7-1/2                 | 10,505                                | 15,800                                                                     | 10,955                              | 17,600                                                                     | 11,705                              | 20,865                             | 12,845                              | 26,530                           | 13,725                              | 29,565                             |  |
|                          | 2-3/4                 | 3,555                                 | 3,305                                                                      | 3,895                               | 3,755                                                                      | 4,500                               | 4,590                              | 5,510                               | 6,095                            | 6,365                               | 7,455                              |  |
| #4                       | 4                     | 6,240                                 | 6,700                                                                      | 6,835                               | 7,610                                                                      | 7,895                               | 9,310                              | 8,680                               | 11,845                           | 9,275                               | 14,045                             |  |
| #4                       | 6                     | 10,645                                | 12,850                                                                     | 11,105                              | 14,315                                                                     | 11,865                              | 16,970                             | 13,020                              | 21,575                           | 13,915                              | 25,585                             |  |
|                          | 10                    | 17,745                                | 27,370                                                                     | 18,505                              | 30,485                                                                     | 19,770                              | 36,150                             | 21,705                              | 45,955                           | 23,190                              | 49,945                             |  |
|                          | 3-1/8                 | 4,310                                 | 4,120                                                                      | 4,720                               | 4,680                                                                      | 5,450                               | 5,725                              | 6,675                               | 7,600                            | 7,710                               | 9,295                              |  |
| #5                       | 5                     | 8,720                                 | 10,005                                                                     | 9,555                               | 11,365                                                                     | 11,030                              | 13,900                             | 13,040                              | 18,205                           | 13,935                              | 21,585                             |  |
| #5                       | 7-1/2                 | 15,995                                | 19,745                                                                     | 16,680                              | 22,000                                                                     | 17,820                              | 26,080                             | 19,565                              | 33,160                           | 20,900                              | 39,315                             |  |
|                          | 12-1/2                | 26,660                                | 42,065                                                                     | 27,800                              | 46,860                                                                     | 29,700                              | 55,560                             | 32,605                              | 70,225                           | 34,835                              | 75,030                             |  |
|                          | 3-1/2                 | 5,105                                 | 5,015                                                                      | 5,595                               | 5,700                                                                      | 6,460                               | 6,970                              | 7,910                               | 9,255                            | 9,135                               | 11,320                             |  |
| #6                       | 6                     | 11,465                                | 13,595                                                                     | 12,560                              | 15,445                                                                     | 14,500                              | 18,895                             | 17,760                              | 25,095                           | 19,415                              | 30,030                             |  |
| #0                       | 9                     | 21,060                                | 26,855                                                                     | 23,070                              | 30,510                                                                     | 24,835                              | 36,285                             | 27,260                              | 46,130                           | 29,125                              | 54,695                             |  |
|                          | 15                    | 37,145                                | 58,530                                                                     | 38,740                              | 65,200                                                                     | 41,390                              | 77,305                             | 45,435                              | 97,855                           | 48,540                              | 104,550                            |  |
|                          | 3-1/2                 | 5,105                                 | 4,930                                                                      | 5,595                               | 5,605                                                                      | 6,460                               | 6,855                              | 7,910                               | 9,100                            | 9,135                               | 11,130                             |  |
| #7                       | 7                     | 14,445                                | 16,605                                                                     | 15,825                              | 18,865                                                                     | 18,275                              | 23,075                             | 22,380                              | 30,650                           | 25,610                              | 37,355                             |  |
| #7                       | 10-1/2                | 26,540                                | 32,800                                                                     | 29,070                              | 37,265                                                                     | 32,755                              | 45,135                             | 35,955                              | 57,380                           | 38,415                              | 68,035                             |  |
|                          | 17-1/2                | 49,000                                | 72,810                                                                     | 51,095                              | 81,105                                                                     | 54,590                              | 96,165                             | 59,930                              | 122,255                          | 64,025                              | 137,905                            |  |
|                          | 4                     | 6,240                                 | 6,115                                                                      | 6,835                               | 6,945                                                                      | 7,895                               | 8,495                              | 9,665                               | 11,280                           | 11,160                              | 13,800                             |  |
| #8                       | 8                     | 17,650                                | 19,750                                                                     | 19,335                              | 22,435                                                                     | 22,325                              | 27,440                             | 27,340                              | 36,450                           | 31,570                              | 44,580                             |  |
| #0                       | 12                    | 32,425                                | 39,005                                                                     | 35,520                              | 44,315                                                                     | 41,015                              | 54,200                             | 46,095                              | 69,560                           | 49,250                              | 82,475                             |  |
|                          | 20                    | 62,815                                | 88,270                                                                     | 65,505                              | 98,330                                                                     | 69,985                              | 116,585                            | 76,825                              | 148,215                          | 82,080                              | 175,735                            |  |
|                          | 4-1/2                 | 7,445                                 | 7,110                                                                      | 8,155                               | 8,080                                                                      | 9,420                               | 9,880                              | 11,535                              | 13,125                           | 13,320                              | 16,055                             |  |
| #O                       | 9                     | 21,060                                | 23,055                                                                     | 23,070                              | 26,190                                                                     | 26,640                              | 32,035                             | 32,625                              | 42,550                           | 37,675                              | 52,040                             |  |
| #9                       | 13-1/2                | 38,690                                | 45,540                                                                     | 42,380                              | 51,740                                                                     | 48,940                              | 63,280                             | 57,165                              | 82,475                           | 61,075                              | 97,785                             |  |
|                          | 22-1/2                | 77,895                                | 104,620                                                                    | 81,230                              | 116,545                                                                    | 86,790                              | 138,185                            | 95,270                              | 175,670                          | 101,790                             | 208,290                            |  |
|                          | 5                     | 8,720                                 | 8,160                                                                      | 9,555                               | 9,270                                                                      | 11,030                              | 11,335                             | 13,510                              | 15,060                           | 15,600                              | 18,420                             |  |
| #10                      | 10                    | 24,665                                | 26,430                                                                     | 27,020                              | 30,025                                                                     | 31,200                              | 36,725                             | 38,210                              | 48,780                           | 44,125                              | 59,660                             |  |
| #10                      | 15                    | 45,315                                | 52,205                                                                     | 49,640                              | 59,310                                                                     | 57,320                              | 72,545                             | 69,260                              | 95,835                           | 74,000                              | 113,625                            |  |
|                          | 25                    | 94,380                                | 121,580                                                                    | 98,420                              | 135,435                                                                    | 105,155                             | 160,580                            | 115,435                             | 204,145                          | 123,330                             | 242,050                            |  |

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions: -  $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$ 

-  $C_{a2}$  is greater than or equal to 1.5 times  $C_{a1}$ .

Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3298.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3298 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information

included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-3298.



Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                          |                       |                                   | Minimum Concrete Compressive Strength |                                    |                                    |                                     |                                    |                                    |                                    |                                                    |                                                                            |
|--------------------------|-----------------------|-----------------------------------|---------------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|
| Nominal                  | Embed.                | f'c = 2,5                         | i00 (psi)                             | f'c = 3,0                          | 000 (psi)                          | f'c = 4,0                           | 000 (psi)                          | f'c = 6,0                          | 000 (psi)                          | f'c = 8,000 (psi)                                  |                                                                            |
| Rod/Rebar<br>Size<br>(#) | Depth<br>hef<br>(in.) | ØΝ☆<br>or Ø№<br>Tension<br>(lbs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.)    | ØN☆<br>or ØNª<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | ØNcb<br>or ØNa<br>Tension<br>(Ibs.) | ¢Vc₀<br>or ψVc₀<br>Shear<br>(lbs.) | ØN∞<br>or ØNª<br>Tension<br>(Ibs.) | ΦVcb<br>or ΦVcp<br>Shear<br>(lbs.) | <i>Φ</i> Ν₀<br>or <i>Φ</i> Νa<br>Tension<br>(lbs.) | $\phi_{\mathbf{V}_{cb}}$<br>or $\phi_{\mathbf{V}_{cp}}$<br>Shear<br>(Ibs.) |
|                          | 2-3/8                 | 2,020                             | 1,835                                 | 2,215                              | 2,085                              | 2,445                               | 2,555                              | 2,685                              | 2,890                              | 2,865                                              | 3,085                                                                      |
| #2                       | 3                     | 2,770                             | 2,865                                 | 2,890                              | 3,235                              | 3,085                               | 3,835                              | 3,390                              | 4,875                              | 3,620                                              | 5,785                                                                      |
| #3                       | 4-1/2                 | 4,155                             | 5,300                                 | 4,335                              | 5,905                              | 4,630                               | 7,005                              | 5,085                              | 8,900                              | 5,430                                              | 10,555                                                                     |
|                          | 7-1/2                 | 6,925                             | 11,285                                | 7,225                              | 12,570                             | 7,715                               | 14,905                             | 8,470                              | 18,245                             | 9,050                                              | 19,495                                                                     |
|                          | 2-3/4                 | 2,520                             | 2,360                                 | 2,760                              | 2,680                              | 3,185                               | 3,280                              | 3,905                              | 4,355                              | 4,295                                              | 5,325                                                                      |
| #1                       | 4                     | 4,420                             | 4,785                                 | 4,840                              | 5,435                              | 5,325                               | 6,650                              | 5,845                              | 8,460                              | 6,245                                              | 10,030                                                                     |
| #4                       | 6                     | 7,170                             | 9,180                                 | 7,475                              | 10,225                             | 7,985                               | 12,125                             | 8,765                              | 15,410                             | 9,365                                              | 18,275                                                                     |
|                          | 10                    | 11,945                            | 19,550                                | 12,455                             | 21,775                             | 13,310                              | 25,820                             | 14,610                             | 31,470                             | 15,610                                             | 33,620                                                                     |
|                          | 3-1/8                 | 3,050                             | 2,940                                 | 3,345                              | 3,340                              | 3,860                               | 4,090                              | 4,730                              | 5,430                              | 5,380                                              | 6,640                                                                      |
| #5                       | 5                     | 6,175                             | 7,145                                 | 6,765                              | 8,120                              | 7,815                               | 9,930                              | 8,755                              | 13,005                             | 9,355                                              | 15,415                                                                     |
| #5                       | 7-1/2                 | 10,740                            | 14,105                                | 11,200                             | 15,715                             | 11,965                              | 18,630                             | 13,135                             | 23,685                             | 14,035                                             | 28,080                                                                     |
|                          | 12-1/2                | 17,900                            | 30,045                                | 18,665                             | 33,470                             | 19,945                              | 39,685                             | 21,890                             | 47,155                             | 23,390                                             | 50,380                                                                     |
|                          | 3-1/2                 | 3,620                             | 3,580                                 | 3,965                              | 4,070                              | 4,575                               | 4,980                              | 5,605                              | 6,610                              | 6,470                                              | 8,085                                                                      |
| #6                       | 6                     | 8,120                             | 9,710                                 | 8,895                              | 11,035                             | 10,270                              | 13,495                             | 12,580                             | 17,925                             | 13,475                                             | 21,450                                                                     |
| #0                       | 9                     | 14,920                            | 19,185                                | 16,130                             | 21,795                             | 17,230                              | 25,920                             | 18,915                             | 32,950                             | 20,210                                             | 39,070                                                                     |
|                          | 15                    | 25,775                            | 41,805                                | 26,880                             | 46,570                             | 28,720                              | 55,220                             | 31,525                             | 67,900                             | 33,680                                             | 72,545                                                                     |
|                          | 3-1/2                 | 3,620                             | 3,525                                 | 3,965                              | 4,000                              | 4,575                               | 4,895                              | 5,605                              | 6,500                              | 6,470                                              | 7,950                                                                      |
| #7                       | 7                     | 10,230                            | 11,860                                | 11,210                             | 13,475                             | 12,945                              | 16,485                             | 15,850                             | 21,895                             | 18,305                                             | 26,680                                                                     |
| #7                       | 10-1/2                | 18,800                            | 23,430                                | 20,590                             | 26,620                             | 23,455                              | 32,240                             | 25,745                             | 40,985                             | 27,505                                             | 48,595                                                                     |
|                          | 17-1/2                | 35,085                            | 52,005                                | 36,585                             | 57,935                             | 39,090                              | 68,690                             | 42,910                             | 87,325                             | 45,845                                             | 98,740                                                                     |
|                          | 4                     | 4,420                             | 4,365                                 | 4,840                              | 4,960                              | 5,590                               | 6,065                              | 6,845                              | 8,060                              | 7,905                                              | 9,855                                                                      |
| #9                       | 8                     | 12,500                            | 14,105                                | 13,695                             | 16,025                             | 15,815                              | 19,600                             | 19,365                             | 26,035                             | 22,365                                             | 31,845                                                                     |
| #0                       | 12                    | 22,965                            | 27,860                                | 25,160                             | 31,655                             | 29,050                              | 38,715                             | 33,625                             | 49,685                             | 35,925                                             | 58,910                                                                     |
|                          | 20                    | 45,825                            | 63,050                                | 47,785                             | 70,235                             | 51,055                              | 83,275                             | 56,045                             | 105,870                            | 59,880                                             | 125,525                                                                    |
|                          | 4-1/2                 | 5,275                             | 5,080                                 | 5,780                              | 5,770                              | 6,670                               | 7,060                              | 8,170                              | 9,375                              | 9,435                                              | 11,465                                                                     |
| #0                       | 9                     | 14,920                            | 16,465                                | 16,340                             | 18,710                             | 18,870                              | 22,880                             | 23,110                             | 30,390                             | 26,685                                             | 37,170                                                                     |
| #9                       | 13-1/2                | 27,405                            | 32,530                                | 30,020                             | 36,955                             | 34,665                              | 45,200                             | 42,455                             | 58,910                             | 45,470                                             | 69,845                                                                     |
|                          | 22-1/2                | 57,995                            | 74,730                                | 60,480                             | 83,245                             | 64,615                              | 98,700                             | 70,930                             | 125,480                            | 75,785                                             | 148,775                                                                    |
|                          | 5                     | 6,175                             | 5,830                                 | 6,765                              | 6,620                              | 7,815                               | 8,100                              | 9,570                              | 10,755                             | 11,050                                             | 13,155                                                                     |
| #10                      | 10                    | 17,470                            | 18,880                                | 19,140                             | 21,445                             | 22,100                              | 26,230                             | 27,065                             | 34,840                             | 31,255                                             | 42,615                                                                     |
| #10                      | 15                    | 32,095                            | 37,290                                | 35,160                             | 42,365                             | 40,600                              | 51,815                             | 49,725                             | 68,455                             | 56,135                                             | 81,160                                                                     |
|                          | 25                    | 69,060                            | 86,840                                | 74,665                             | 96,740                             | 79,775                              | 114,700                            | 87,570                             | 145,820                            | 93,560                                             | 172,890                                                                    |

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{\text{min}}$ , and with the following conditions:

-  $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$  -  $c_{a2}$  is greater than or equal to 1.5 times  $c_{a1}.$ 

1-800-4 DEWALT

Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors ( $\phi$ ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3298.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3298 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-3298.



# **ADHESIVES**

# **PURE 1 1 U+**<sup>©</sup> Epoxy Injection Adhesive Anchoring System

|   | Shear                                                   |
|---|---------------------------------------------------------|
| 2 | <ol> <li>Steel t</li> <li>The ta<br/>the low</li> </ol> |
|   | 🔲 - Steel S                                             |
|   | 1-1/4 or                                                |
|   | #9                                                      |

| <b>Tension Design</b> | of Steel | <b>Elements</b> | (Steel | Strength) <sup>1,2</sup> |              |
|-----------------------|----------|-----------------|--------|--------------------------|--------------|
|                       |          |                 |        | Steel Elements - 1       | <b>Threa</b> |

|                                              | Steel Elements - Threaded Rod and Reinforcing Bar |                           |                                                               |                           |                                                             |                                                           |                                                                                       |                                                                                          |                                   |                                   |                                   |                                   |
|----------------------------------------------|---------------------------------------------------|---------------------------|---------------------------------------------------------------|---------------------------|-------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Nominal<br>Rod/Rebar<br>Size<br>(in. or No.) | ASTM<br>A36 and<br>ASTM<br>F1554<br>Grade 36      | ASTM<br>F1554<br>Grade 55 | ASTM<br>A193<br>Grade B7<br>and ASTM<br>F1554<br>Grade<br>105 | ASTM<br>A449              | ASTM<br>F568M<br>Class 5.8<br>and IS0<br>898-1<br>Class 5.8 | ASTM<br>F593 CW<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A193<br>Grade<br>B8/B8M,<br>Class 1<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A193<br>Grade B8/<br>B8M2,<br>Class 2B<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A615<br>Grade 75<br>Rebar | ASTM<br>A615<br>Grade 60<br>Rebar | ASTM<br>A706<br>Grade 60<br>Rebar | ASTM<br>A615<br>Grade 40<br>Rebar |
|                                              | ØNsa<br>Tension<br>(Ibs.)                         | ØNsa<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)                                     | ØNsa<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)                                   | ØNsa<br>Tension<br>(Ibs.)                                 | ØNsa<br>Tension<br>(Ibs.)                                                             | ØNsa<br>Tension<br>(Ibs.)                                                                | ØNsa<br>Tension<br>(Ibs.)         | ØNsa<br>Tension<br>(Ibs.)         | ØNsa<br>Tension<br>(Ibs.)         | ØNsa<br>Tension<br>(Ibs.)         |
| 3/8 or #3                                    | 3,370                                             | 4,360                     | 7,265                                                         | 6,975                     | 3,655                                                       | 5,040                                                     | 3,315                                                                                 | 5,525                                                                                    | 7,150                             | 7,425                             | 6,600                             | 4,950                             |
| 1/2 or #4                                    | 6,175                                             | 7,980                     | 13,300                                                        | 12,770                    | 6,690                                                       | 9,225                                                     | 6,070                                                                                 | 10,110                                                                                   | 13,000                            | 13,500                            | 12,000                            | 9,000                             |
| 5/8 or #5                                    | 9,835                                             | 12,715                    | 21,190                                                        | 20,340                    | 10,650                                                      | 14,690                                                    | 9,660                                                                                 | 16,105                                                                                   | 20,150                            | 20,925                            | 18,600                            | 13,950                            |
| 3/4 or #6                                    | 14,550                                            | 18,815                    | 31,360                                                        | 30,105                    | 15,765                                                      | 18,480                                                    | 14,300                                                                                | 23,830                                                                                   | 28,600                            | 29,700                            | 26,400                            | 19,800                            |
| 7/8 or #7                                    | 20,085                                            | 25,970                    | 43,285                                                        | 41,930                    | 21,760                                                      | 25,510                                                    | 19,735                                                                                | 32,895                                                                                   | 39,000                            | 40,500                            | 36,000                            |                                   |
| 1 or #8                                      | 26,350                                            | 34,070                    | 56,785                                                        | 54,515                    | 28,545                                                      | 33,465                                                    | 25,895                                                                                | 43,160                                                                                   | 51,350                            | 53,325                            | 47,400                            |                                   |
| #9                                           |                                                   |                           |                                                               |                           |                                                             |                                                           |                                                                                       |                                                                                          | 65,000                            | 67,500                            | 60,000                            |                                   |
| 1-1/4 or #10                                 | 42,160                                            | 54,510                    | 90,850                                                        | 76,315                    |                                                             | 53,540                                                    | 41,430                                                                                | 69,050                                                                                   | 82,550                            | 85,725                            | 76,200                            |                                   |
| - Steel Strengt                              | th                                                |                           |                                                               |                           |                                                             |                                                           |                                                                                       |                                                                                          |                                   |                                   |                                   |                                   |

tensile design strength according to ACl 318-14 Ch.17,  $\phi$ Nsa =  $\phi$  • Ase,N • futa

abulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode,

west load level controls.

#### **Design of Steel Elements (Steel Strength)**<sup>1,2</sup>

|                                              | Steel Elements - Threaded Rod and Reinforcing Bar |                           |                                                               |                         |                                                             |                                                           |                                                                                       |                                                                                          |                                   |                                   |                                   |                                   |
|----------------------------------------------|---------------------------------------------------|---------------------------|---------------------------------------------------------------|-------------------------|-------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Nominal<br>Rod/Rebar<br>Size<br>(in. or No.) | ASTM<br>A36 and<br>ASTM<br>F1554<br>Grade 36      | ASTM<br>F1554<br>Grade 55 | ASTM<br>A193<br>Grade B7<br>and ASTM<br>F1554<br>Grade<br>105 | ASTM<br>A449            | ASTM<br>F568M<br>Class 5.8<br>and ISO<br>898-1<br>Class 5.8 | ASTM<br>F593 CW<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A193<br>Grade<br>B8/B8M,<br>Class 1<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A193<br>Grade B8/<br>B8M2,<br>Class 2B<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A615<br>Grade 75<br>Rebar | ASTM<br>A615<br>Grade 60<br>Rebar | ASTM<br>A706<br>Grade 60<br>Rebar | ASTM<br>A615<br>Grade 40<br>Rebar |
|                                              | ØV≊<br>Shear<br>(lbs.)                            | ØV∞<br>Shear<br>(Ibs.)    | ØVsa<br>Shear<br>(Ibs.)                                       | ØVsa<br>Shear<br>(lbs.) | ØVsa<br>Shear<br>(Ibs.)                                     | ØVsa<br>Shear<br>(Ibs.)                                   | ØV≊<br>Shear<br>(Ibs.)                                                                | ØV∞<br>Shear<br>(Ibs.)                                                                   | ØVsa<br>Shear<br>(lbs.)           | ØV≊<br>Shear<br>(Ibs.)            | ØV≈<br>Shear<br>(Ibs.)            | ØVsa<br>Shear<br>(lbs.)           |
| 3/8 or #3                                    | 1,755                                             | 2,265                     | 3,775                                                         | 3,625                   | 2,025                                                       | 2,790                                                     | 1,725                                                                                 | 2,870                                                                                    | 3,960                             | 3,860                             | 3,430                             | 2,575                             |
| 1/2 or #4                                    | 3,210                                             | 4,150                     | 6,915                                                         | 6,640                   | 3,705                                                       | 5,110                                                     | 3,155                                                                                 | 5,255                                                                                    | 7,200                             | 7,020                             | 6,240                             | 4,680                             |
| 5/8 or #5                                    | 5,115                                             | 6,610                     | 11,020                                                        | 10,575                  | 5,900                                                       | 8,135                                                     | 5,025                                                                                 | 8,375                                                                                    | 11,160                            | 10,880                            | 9,670                             | 7,255                             |
| 3/4 or #6                                    | 7,565                                             | 9,785                     | 16,305                                                        | 15,655                  | 8,730                                                       | 10,235                                                    | 7,435                                                                                 | 12,390                                                                                   | 15,840                            | 15,445                            | 13,730                            | 10,295                            |
| 7/8 or #7                                    | 10,445                                            | 13,505                    | 22,505                                                        | 21,805                  | 12,050                                                      | 14,130                                                    | 10,265                                                                                | 17,105                                                                                   | 21,600                            | 21,060                            | 18,720                            |                                   |
| 1 or #8                                      | 13,700                                            | 17,715                    | 29,525                                                        | 28,345                  | 15,810                                                      | 18,535                                                    | 13,465                                                                                | 22,445                                                                                   | 28,440                            | 27,730                            | 24,650                            |                                   |
| #9                                           |                                                   |                           |                                                               |                         |                                                             |                                                           |                                                                                       |                                                                                          | 36,000                            | 35,100                            | 31,200                            |                                   |
| 1-1/4 or #10                                 | 21,920                                            | 28,345                    | 47,240                                                        | 39,685                  | -                                                           | 29,655                                                    | 21,545                                                                                | 35,905                                                                                   | 45,720                            | 44,575                            | 39,625                            | -                                 |

- Steel Strength

1. Steel shear design strength according to ACI 318-14 Ch.17,  $\phi$ Vsa =  $\phi \bullet 0.60 \bullet A_{se,V} \bullet f_{uta}$ 

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.



#### **Development Lengths for Common Reinforcing Bar Connections**<sup>1,2,3,6</sup>

|                                                                  |        |                                                                 | <u> </u>     |                         |               |                 |                |                 |               |                 |                |                |
|------------------------------------------------------------------|--------|-----------------------------------------------------------------|--------------|-------------------------|---------------|-----------------|----------------|-----------------|---------------|-----------------|----------------|----------------|
| Decision Information                                             | Sumbol | Reference                                                       | Units        | Nominal Rebar Size (US) |               |                 |                |                 |               |                 |                |                |
| Design information                                               | Symbol | Standard                                                        |              | #3                      | #4            | #5              | #6             | #7              | #8            | #9              | #10            | #11            |
| Nominal rebar diameter                                           | d⊾     | ASTM A615/A706,                                                 | in.<br>(mm)  | 0.375<br>(9.5)          | 0.5<br>(12.7) | 0.625<br>(15.9) | 0.75<br>(19.1) | 0.875<br>(22.2) | 1<br>(25.4)   | 1.128<br>(28.6) | 1.27<br>(32.3) | 1.41<br>(35.8) |
| Nominal rebar area                                               | Ab     | 60  ksi                                                         | in²<br>(mm²) | 0.11<br>(71)            | 0.2<br>(127)  | 0.31<br>(198)   | 0.44<br>(285)  | 0.6<br>(388)    | 0.79<br>(507) | 1<br>(645)      | 1.27<br>(817)  | 1.56<br>(1006) |
| Development length in<br>f'c = 2,500 psi concrete <sup>4,5</sup> |        | ACI 318-14<br>25.4.2.3 or ACI<br>318-11 12.2.3 as<br>applicable | in.<br>(mm)  | 12<br>(305)             | 14.4<br>(366) | 18<br>(457)     | 21.6<br>(549)  | 31.5<br>(800)   | 36<br>(914)   | 40.6<br>(1031)  | 45.7<br>(1161) | 50.8<br>(1290) |
| Development length in<br>f'c = 3,000 psi concrete <sup>4,5</sup> |        |                                                                 | in.<br>(mm)  | 12<br>(305)             | 13.1<br>(334) | 16.4<br>(417)   | 19.7<br>(501)  | 28.8<br>(730)   | 32.9<br>(835) | 37.1<br>(942)   | 41.7<br>(1060) | 46.3<br>(1177) |
| Development length in $f'c = 4,000$ psi concrete <sup>4,5</sup>  | la     |                                                                 | in.<br>(mm)  | 12<br>(305)             | 12<br>(305)   | 14.2<br>(361)   | 17.1<br>(434)  | 24.9<br>(633)   | 28.5<br>(723) | 32.1<br>(815)   | 36.2<br>(920)  | 40.1<br>(1019) |
| Development length in $f'c = 6,000$ psi concrete <sup>4,5</sup>  |        |                                                                 | in.<br>(mm)  | 12<br>(305)             | 12<br>(305)   | 12<br>(305)     | 13.9<br>(354)  | 20.3<br>(516)   | 23.2<br>(590) | 26.2<br>(666)   | 29.5<br>(750)  | 32.8<br>(832)  |
| Development length in<br>f'c = 8,000 psi concrete <sup>4,5</sup> |        |                                                                 | in.<br>(mm)  | 12<br>(305)             | 12<br>(305)   | 12<br>(305)     | 12.1<br>(307)  | 17.6<br>(443)   | 20.1<br>(511) | 22.7<br>(577)   | 25.6<br>(649)  | 28.4<br>(721)  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa; for pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

1. Calculated development lengths in accordance with ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3, as applicable, for reinforcing bars are valid for static, wind, and earthquake loads.

2. Calculated development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable. The value of f 'c used to calculate development

lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDC's C, D, E and F.

3. For Class B splices, minimum length of lap for tension lap splices is 1.314 in accordance with ACI 318-14 25.5.2 and ACI 318-11 12.15.1, as applicable.

4. For lightweight concrete,  $\lambda$  = 0.75; therefore multiply development lengths by 1.33 (increase development length by 33 percent), unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit alternate values of  $\lambda$  (e.g for sand-lightweight concrete,  $\lambda$  = 0.85; therefore multiply development lengths by 1.18). Refer to ACI 318-14 19.2.4 or  $\frac{(C_b + K_{tr})}{(L_b - K_{tr})} = 2.5, \quad \psi_{t=1.0}, \quad \psi_{s=0.8} \text{ for } d_{b} \le \#6, 1.0 \text{ for } d_{b} > \#6. \text{ Refer to ACI 318-14 } 25.4.2.4 \text{ or ACI 318-11 } 12.2.4, \text{ as applicable.}$ 

5.

Calculations may be performed for other steel grades and concrete compressive strengths per ACI 318-14 Chapter 25 or ACI 318-11 Chapter 12, as applicable. 6.

#### Installation Parameters for Common Post-Installed Reinforcing Bar Connections

| Poromotor                          | Symbol          | Units | Nominal Rebar Size (US) |             |                     |             |                     |          |                     |          |                     |
|------------------------------------|-----------------|-------|-------------------------|-------------|---------------------|-------------|---------------------|----------|---------------------|----------|---------------------|
| Falailletei                        |                 |       | #3                      | #4          | #5                  | #6          | #7                  | #8       | #9                  | #10      | #11                 |
| Nominal hole diameter <sup>1</sup> | d₀              | in.   | 7/16                    | 5/8         | 3/4                 | 7/8         | 1                   | 11/8     | 1-3/8               | 1-1/2    | 1-3/4               |
| Effective embedment                | h <sub>ef</sub> | in.   | 2-3/8 to<br>7-1/2       | 2-3/4 to 10 | 3-1/8 to<br>12-1/2  | 3-1/2 to 15 | 3-1/2 to<br>17-1/2  | 4 to 20  | 4-1/2 to<br>22-1/2  | 5 to 25  | 5-1/2 to<br>27-1/2  |
| Nominal hole diameter <sup>1</sup> | do              | in.   | 1/2                     | 5/8         | 3/4                 | 1           | 1-1/8               | 1-1/4    | 1-3/8               | 1-1/2    | 1-3/4               |
| Effective embedment                | h <sub>ef</sub> | in.   | 7-1/2 to<br>22-1/2      | 10 to 30    | 12-1/2 to<br>37-1/2 | 15 to 45    | 17-1/2 to<br>52-1/2 | 20 to 60 | 22-1/2 to<br>67-1/2 | 25 to 75 | 27-1/2 to<br>82-1/2 |

For SI: 1 inch = 25.4 mm,; for pound-inch units: 1 mm = 0.03937 inches.

1. For any case, it must be possible for the reinforcing bar (rebar) to be inserted into the cleaned hole without resistance.

2. Consideration should be given regarding the commercial availability of carbide drill bits (including hollow drill bits) and diamond core bits, as applicable, with lengths necessary to achieve effective embedments for post-installed reinforcing bar connections

#### Installation Detail for Post-Installed Reinforcing Bar Connection



#### Examples of Development Length Application Details for Post-Installed Reinforcing Bar Connections Provided for Illustrator



Tension Lap Splice with Existing Reinforcement for Footing and Foundation Extensions



Tension Development of Column, Cap or Wall Dowels



Tension Lap Splice with Existing Flexural Reinforcement For Slab and Beam Extensions

**ADHESIVE** 



ADHESIVES

Epoxy Injection Adhesive Anchoring System

**PURE110+®** 



#### Hole Cleaning Tools and Accessories for Post-Installed Rebar Connections<sup>1,2,3,4,5,6,7</sup>

|                        | J                           |                      |                          |                          |                     | -                            |
|------------------------|-----------------------------|----------------------|--------------------------|--------------------------|---------------------|------------------------------|
| Rebar<br>Size<br>(No.) | Drill Bit<br>Size<br>(inch) | Brush Size<br>(inch) | Brush Length<br>(inches) | Wire Brush<br>(Cat. No.) | Plug Size<br>(inch) | Piston<br>Plug<br>(Cat. No.) |
| 2                      | 7/16                        | 7/16                 | 6-3/4                    | 08284                    | N/A                 | N/A                          |
| 3                      | 1/2                         | 1/2                  | 6-3/4                    | 08285                    | N/A                 | N/A                          |
| 4                      | 5/8                         | 5/8                  | 6-3/4                    | 08275                    | N/A                 | N/A                          |
| 5                      | 3/4                         | 3/4                  | 7-7/8                    | 08278                    | 3/4                 | PFC1691520                   |
| 0                      | 7/8                         | 7/8                  | 7-7/8                    | 08287                    | 7/8                 | PFC1691530                   |
| 0                      | 1                           | 1                    | 11-7/8                   | 08288                    | 1                   | PFC1691540                   |
| 7                      | 1                           | 1                    | 11-7/8                   | 08288                    | 1                   | PFC1691540                   |
| 1                      | 1-1/8                       | 1-1/8                | 11-7/8                   | 08289                    | 1-1/8               | PFC1691550                   |
| 8                      | 1-1/8                       | 1-1/8                | 11-7/8                   | 08289                    | 1-1/8               | PFC1691550                   |
|                        | 1-1/4                       | 1-1/4                | 11-7/8                   | 08290                    | 1-1/4               | PFC1691555                   |
| 9                      | 1-3/8                       | 1-3/8                | 11-7/8                   | 08290                    | 1-3/8               | PFC1691560                   |
| 10                     | 1-1/2                       | 1-1/2                | 11-7/8                   | 08291                    | 1-1/2               | PFC1691570                   |
| 11                     | 1-3/4                       | 1-3/4                | 11-7/8                   | 08299                    | 1-3/4               | PFC1691580                   |
|                        |                             |                      |                          |                          |                     |                              |



 If the DEWALT DustX+ extraction system is used to automatically clean the holes during drilling, standard hole cleaning (brushing and blowing following drilling) is not required.

Holes may be drilled with hammer-drill, i.e. rotary impact drills or rock drills with a carbide drill bit (including hollow bits) or core-drill, i.e. core drill with a diamond core drill bit.

3. For any case, it must be possible for the reinforcing bar to be inserted into the cleaned hole without resistance.

4. A brush extension (Cat.#08282) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

5. Brush adaptors for power tool connections are available for drill chuck (Cat.#08296) and SDS (Cat.#08283).

 A flexible extension tube (Cat.#08297) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used if the bottom or back of the anchor hole is not reached with the mixing nozzle only.

7. All overhead (i.e upwardly inclined) installations require the use of piston plugs during where one is tabulated together with the anchor size (see table). N/A = Not applicable. All horizontal installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 8 inches. A flexible extension tube (Cat.#08297) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used with piston plugs.



#### INSTALLATION INSTRUCTIONS FOR ADHESIVE ANCHORS (SOLID BASE MATERIALS)

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

Dry Concrete: cured concrete that, at the time of adhesive anchor installation, has not been exposed to water for the preceding 14 days. Water-Saturated Concrete (wet): cured concrete that, at the time of adhesive anchor installation, has been exposed to water over a sufficient length of time to have the maximum possible amount of absorbed water into the concrete pore structure to a depth equal to the anchor embedment depth.

Water-Filled Holes (flooded): cured concrete that is water-saturated and where the drilled hole contains standing water at the time of anchor installation.

Underwater Concrete (submerged): cured concrete that is water-saturated and covered with water at the time of anchor installation.

#### DRILLING



- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
- Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).

GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+<sup>™</sup> EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED). OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.

#### IN THE CASE OF AN UNDERWATER (SUBMERGED) INSTALLATION CONDITION GO TO STEP 2UW-I FOR SEPARATE SPECIFIC HOLE CLEANING INSTRUCTIONS.

#### HOLE CLEANING DRY OR WET/WATER-SATURATED HOLES (BLOW 2X, BRUSH 2X, BLOW 2X)

| V A V A |    |
|---------|----|
|         | 2X |

- 2a- Starting from the bottom or back of the drilled anchor hole, blow the hole clean a minimum of two times (2x).
- Use a compressed air nozzle (min. 90 psi) for all sizes of anchor rod and reinforcing bar (rebar).



- **2b-** Determine wire brush diameter (see hole cleaning equipment selection table) for the drilled hole and attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length.
- The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too
  small and must be replaced with proper brush diameter (i.e. new wire brush).
- 2c- Repeat Step 2a- again by blowing the hole clean a minimum of two times (2x).

| ************************************** | _  |
|----------------------------------------|----|
|                                        |    |
| · · · · · · · · ·                      | 2X |

• When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.

#### NEXT GO TO STEP 3.

#### HOLE CLEANING UNDERWATER INSTALLATION (FLUSH, BRUSH 2X, FLUSH)



2uw-i- Starting from the bottom or back of the drilled anchor hole, rinse/flush the hole clean with air/water (air/water line pressure) until clear water comes out.



2uw-ii- Determine brush diameter (see hole cleaning equipment selection table) for the drilled hole and attach the brush with adaptor to a rotary drill tool. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length.

The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too



2uw-iii- Repeat Step 2a- again by rinse/flushing the hole clean with air/water.

small and must be replaced with proper brush diameter (i.e. new wire brush).

• When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.

#### NEXT GO TO STEP 3.





94

**ADHESIVES** 



#### **INSTALLATION INSTRUCTIONS FOR ADHESIVE ANCHORS (HOLLOW BASE MATERIALS)**



#### 1-800-4 DEWALT

FECHNICAL GUIDE – ADHESIVES ©2018 DEWALT – REV. D

**ADHESIVES** 

Epoxy Injection Adhesive Anchoring System

+0+

**PURE1**


#### INSTALLATION INSTRUCTIONS (POST-INSTALLED REBAR) HAMMER DRILLING RILLIN 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the v ...... selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill (OTT 0 bits, including hollow bits, must meet ANSI Standard B212.15. A. Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal. • ⋒⊨⊂∎Я Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, Ā EG. compressed air, etc.) prior to cleaning. Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on). GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED). OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS. OLE CLEANING DRY OR WET HOLES (BLOW 2X, BRUSH 2X, BLOW 2X) 2a- Starting from the bottom or back of the drilled hole, blow the hole clean a minimum of two times (2x). Use a compressed air nozzle (min. 90 psi) for all sizes of reinforcing bar (rebar). 2X 2b- Determine brush diameter (see hole cleaning accessories for post-installed rebar selection table) for the drilled hole and brush the hole by . . hand or attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). 2X A brush extension (supplied by DEWALT) must be used for drill hole depth than the listed brush length. The wire brush diameter must be checked periodically during use; The brush should resist insertion into the drilled hole, if not the brush is too small and must be replaced with the proper brush diameter (i.e. new wire brush). 2c- Repeat Step 2a again by blowing the hole clean a minimum of two times (2x). When finished the hole should be clean and free of dust, debris, oil or other foreign material. 2X NEXT GO TO STEP 3. **CORE DRILLING** RIIII 1- Drill a hole into the base material with a core drill tool to the size and embedment required by the selected steel hardware element Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal. NI F CI FAI RINSE, BRUSH 2X, RINSE, BLOW 2X) 2a- Starting from the bottom or back of the drilled hole, rinse/flush the hole clean with air/water (air/water line pressure) until clear water comes b<sup>4</sup> . ♥ . b<sup>4</sup> out. (=== 2b- Determine brush diameter (see hole cleaning accessories for post-installed rebar selection table) for drilled hole and attach the brush with v , 4 adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length. The wire brush diameter must be . 2X checked periodically during use The brush should resist insertion into the drilled hole, if not the brush is small and must be replaced with the proper brush diameter (i.e. new wire brush). 2c- Repeat Step 2a again by rinse/flush the hole clean with water. v .......... (=== 2d- Starting from the bottom or back of the drilled anchor hole, blow the hole clean a minimum if two times (2x). V \_ A Use a compressed air nozzle (min. 90 psi) for all sizes of anchor rod and reinforcing bar (rebar) **2X** When finished the hole should be clean and free of water, debris, oil or other foreign material. ▼.,**^**. 2e- Repeat Step 2b again by brushing the hole with a wire brush a minimum if two times (2x). 2X 2f- Repeat Step 2d again by blowing the hole clean a minimum if two times (2x). When finished the hole should be clean and free of water, debris, oil or other foreign material. 2X NEXT GO TO STEP 3.

- REV. D

TECHNICAL GUIDE - ADHESIVES ©2018 DEWALT



**ADHESIVES** 

Epoxy Injection Adhesive Anchoring System

**PURE110+®** 



0000000

• E'.'/•

ENGINEERED BY POWERS

#### **REFERENCE INSTALLATION TABLES**

#### Gel (working) Time and Curing Table

| Temperature of base material |    | Gel (working) time | Full ouring time |  |
|------------------------------|----|--------------------|------------------|--|
| ۴                            | °C |                    |                  |  |
| 41                           | 5  | 120 minutes        | 48 hours         |  |
| 50                           | 10 | 90 minutes         | 24 hours         |  |
| 68                           | 20 | 25 minutes         | 8 hours          |  |
| 86                           | 30 | 20 minutes         | 8 hours          |  |
| 95                           | 35 | 15 minutes         | 6 hours          |  |
| 104                          | 40 | 12 minutes         | 4 hours          |  |
| 110                          | 43 | 10 minutes         | 4 hours          |  |

Linear interpolation for intermediate base material temperature is possible.

Cartridge adhesive temperature must be between 50°F - 110°F (10°C - 43°C) when in use; for overhead applications cartridge adhesive temperature must be between 50°F - 90°F (10°C - 32°C) when in use. For best experience, suggested minimum cartridge adhesive temperature is 68°F (20°C) when in use.

#### Hole Cleaning Equipment Selection Table for Pure110+ Adhesive Anchors<sup>1,2,3</sup>

| Rod<br>Diameter<br>(inch)                                                                                                  | Rebar Size<br>(No.) | ANSI Drill Bit<br>Diameter <sup>1</sup><br>(inch) | Brush Length, L<br>(inches) | Steel Wire<br>Brush <sup>2,3</sup><br>(Cat. #) | Blowout<br>Tool                                              | Number of<br>cleaning<br>actions        |
|----------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------|-----------------------------|------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|
|                                                                                                                            |                     |                                                   | Solid Base Material         |                                                |                                                              |                                         |
| 3/8                                                                                                                        | #3                  | 7/16                                              | 6-3/4                       | 08284                                          |                                                              |                                         |
| 1/2                                                                                                                        | -                   | 9/16                                              | 6-3/4                       | 08285                                          |                                                              | 2x blowing<br>2x brushing<br>2x blowing |
| -                                                                                                                          | #4                  | 5/8                                               | 6-3/4                       | 08275                                          |                                                              |                                         |
| F /0                                                                                                                       | <i></i>             | 11/16                                             | 7-7/8                       | 08286                                          |                                                              |                                         |
| 5/8                                                                                                                        | C#                  | 3/4                                               | 7-7/8                       | 08278                                          | Compressed air<br>nozzle only,<br>Cat #8292<br>(min. 90 psi) |                                         |
| 3/4                                                                                                                        | #6                  | 7/8                                               | 7-7/8                       | 08287                                          |                                                              |                                         |
| 7/8                                                                                                                        | #7                  | 1                                                 | 11-7/8                      | 08288                                          |                                                              |                                         |
| 1                                                                                                                          | #8                  | 1-1/8                                             | 11-7/8                      | 08289                                          |                                                              |                                         |
| 1-1/4                                                                                                                      | #9                  | 1-3/8                                             | 11-7/8                      | 08290                                          | -                                                            |                                         |
| -                                                                                                                          | #10                 | 1-1/2                                             | 11-7/8                      | 08291                                          | -                                                            |                                         |
|                                                                                                                            | •                   | Hollow Bas                                        | e Material (with plastic s  | screen tube)                                   |                                                              |                                         |
| 3/8                                                                                                                        | -                   | 9/16                                              | 6-3/4                       | 08285                                          |                                                              |                                         |
| 1/2                                                                                                                        | -                   | 3/4                                               | 7-7/8                       | 08278                                          | Compressed air<br>nozzle only,<br>Cat #8292<br>(min 90 psi)  | 2x blowing                              |
| 5/8                                                                                                                        | -                   | 7/8                                               | 7-7/8                       | 08287                                          |                                                              | 2x brusning<br>2x blowing               |
| 3/4                                                                                                                        | -                   | 1                                                 | 11-7/8                      | 08288                                          | (mm. 00 pai)                                                 |                                         |
| 1. For any case, it must be possible for the steel anchor element to be inserted into the cleaned hole without resistance. |                     |                                                   |                             |                                                |                                                              |                                         |

2. An SDS-plus adaptor (Cat. #08283) or Jacobs chuck style adaptor (Cat. #08296) is required to attach a steel wire brush to the drill tool.

3. A brush extension (Cat. #08282) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

#### **Piston Plugs for Adhesive Anchors**<sup>1,2,3,4</sup>

| Plug Size<br>(inch)                                                                                             | ANSI Drill Bit<br>Diameter<br>(inch)                                                                                  | Piston Plug<br>(Cat. #)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Piston Plug |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                 | Solid Base                                                                                                            | e Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| 11/16                                                                                                           | 11/16                                                                                                                 | 08258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 3/4                                                                                                             | 3/4                                                                                                                   | 08259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 7/8                                                                                                             | 7/8                                                                                                                   | 08300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 1                                                                                                               | 1                                                                                                                     | 08301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 1-1/8                                                                                                           | 1-1/8                                                                                                                 | 08303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 1-1/4                                                                                                           | 1-1/4                                                                                                                 | 08307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 1-3/8                                                                                                           | 1-3/8                                                                                                                 | 08305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 1-1/2                                                                                                           | 1-1/2                                                                                                                 | 08309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| A All Control to the late of the second s | en<br>Selata a selata a diserante da talente data dibara dibara dibara dibara dibara dibara dibara dibara dibara diba | It is a second sec | 0           |

1. All overhead installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All horizontal installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 8 inches.

3. The use of piston plugs is also recommended for underwater installations where one is tabulated together with the anchor size.

4. A flexible plastic extension tube (Cat. #08281 or #08297) or equivalent approved by DEWALT must be used with piston plugs.

– REV. D

TECHNICAL GUIDE - ADHESIVES ©2018 DEWALT

DEWA

#### **ORDERING INFORMATION**

#### Pure110+ Cartridges

| Cat. No.                                                                                     | Description                                            | Std. Box | Std. Ctn. | Pallet |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|-----------|--------|--|
| 08310SD                                                                                      | Pure110+ 9 fl. oz. Quik-Shot cartridge (1:1 mix ratio) | 12       | 24        | 432    |  |
| 08321SD                                                                                      | Pure110+ 21 fl. oz. dual cartridge (1:1 mix ratio)     | 12       | -         | 540    |  |
| 08351SD                                                                                      | Pure110+ 51 fl. oz. dual cartridge (1:1 mix ratio)     | 5        | -         |        |  |
| 08313SD                                                                                      | Pure110+ 13 fl. oz. dual cartridge (3:1 mix ratio)     | 12       | -         | 540    |  |
| 08320SD                                                                                      | Pure110+ 20 fl. oz. dual cartridge (3:1 mix ratio)     | 12       | -         | 540    |  |
| One Pure110+ mixing nozzle is packaged with each cartridge.                                  |                                                        |          |           |        |  |
| Duration, mining paralage must be used to appure complete and prepare mining of the adhesing |                                                        |          |           |        |  |

Pure110+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive.

#### **Cartridge System Mixing Nozzles and Nozzle Extensions**

| Cat. No.   | Description                                                                      | Std. Pkg. | Std. Ctn. |
|------------|----------------------------------------------------------------------------------|-----------|-----------|
| PFC1641600 | Mixing nozzle (with 8" extension) for Pure110+ Quik-Shot                         | 2         | 24        |
| 08609      | Extra high flow mixing nozzle (with 8" extension)<br>for Pure110+ dual cartridge | 2         | 24        |
| 08281      | Mixing nozzle extension, 8" long                                                 | 2         | 24        |
| 08297      | Mixing nozzle extension, 18" long                                                | 1         | 12        |
| PFC1640600 | Flexible Extension Hose, 25 ft.                                                  | 1         | 12        |

#### **Dispensing Tools for Injection Adhesive**

| Cat. No. | Description                                                                         | Std. Box | Std. Ctn. |
|----------|-------------------------------------------------------------------------------------|----------|-----------|
| 08437    | Manual caulking gun for Quik-Shot                                                   | 1        | 12        |
| 08479    | High performance caulking gun for Quik-Shot                                         | 1        | 12        |
| DCE560D1 | Cordless 20v Battery powereed dispensing tool for Quik-Shot                         | 1        | -         |
| 08409    | 21 fl. oz. Standard metal manual tool                                               | 1        | 10        |
| 08421    | 21 fl. oz. High performance manual tool                                             | 1        | 10        |
| DCE591D1 | 21 fl. oz. cordless 20v Battery powered dispensing tool                             | 1        | -         |
| 08413    | 21 fl. oz. Pneumatic tool                                                           | 1        | -         |
| 08298    | 13 fl. oz. + 20 fl. oz. Manual tool (3:1 mix ratio)                                 | 1        | 6         |
| DCE593D1 | 13 fl. oz + 20 fl. oz. cordless 20v Battery powered dispensing tool (3:1 mix ratio) | 1        | -         |
| 08497SD  | 13 fl. oz. + 20 fl. oz Pneumatic tool (3:1 mix ratio)                               | 1        | 6         |
| 08438    | 51 fl. oz. Pneumatic tool                                                           | 1        | -         |

#### **Hole Cleaning Tools and Accessories**

| Cat No. | Description                                                  | Std. Box |
|---------|--------------------------------------------------------------|----------|
| 08284   | Wire brush for 7/16" or 1/2" ANSI hole, 6-3/4" length        | 1        |
| 08285   | Wire brush for 9/16" ANSI hole, 6-3/4" length                | 1        |
| 08275   | Wire brush for 5/8" ANSI hole, 6-3/4" length                 | 1        |
| 08286   | Wire brush for 11/16" ANSI hole, 7-7/8" length               | 1        |
| 08278   | Wire brush for 3/4" ANSI hole, 7-7/8" length                 | 1        |
| 08287   | Wire brush for 7/8" ANSI hole, 7-7/8" length                 | 1        |
| 08288   | Wire brush for 1" ANSI hole, 11-7/8" length                  | 1        |
| 08289   | Wire brush for 1-1/8" ANSI hole, 11-7/8" length              | 1        |
| 08276   | Wire brush for 1-1/4" ANSI hole, 11-7/8" length              | 1        |
| 08290   | Wire brush for 1-3/8" ANSI hole, 11-7/8" length              | 1        |
| 08291   | Wire brush for 1-1/2" ANSI hole, 11-7/8" length              | 1        |
| 08273   | Wire brush for 1-5/8" ANSI hole, 11-7/8" length              | 1        |
| 08299   | Wire brush for 1-3/4" ANSI hole, 11-7/8" length              | 1        |
| 08283   | SDS-plus adapter for steel brushes                           | 1        |
| 08296   | Standard drill adapter for steel brushes (e.g. Jacobs Chuck) | 1        |
| 08282   | Steel brush extension, 12" length                            | 1        |
| 08292   | Air compressor nozzle with extension, 18" length             | 1        |

#### **Piston Plugs for Adhesive Anchors**

| Cat. No. | Description | ANSI Drill Bit Dia. | Qty. |  |
|----------|-------------|---------------------|------|--|
| 08258    | 11/16" Plug | 11/16"              | 10   |  |
| 08259    | 3/4" Plug   | 3/4"                | 10   |  |
| 08300    | 7/8" Plug   | 7/8"                | 10   |  |
| 08301    | 1" Plug     | 1"                  | 10   |  |
| 08303    | 1-1/8" Plug | 1-1/8"              | 10   |  |
| 08305    | 1-3/8" Plug | 1-3/8"              | 10   |  |
| 08309    | 1-1/2" Plug | 1-1/2"              | 10   |  |

#### **Piston Plugs for Post-Installed Rebar Connections**

| Cat. No.   | Description | ANSI Drill Bit Dia. | Qty. |  |  |
|------------|-------------|---------------------|------|--|--|
| PFC1691520 | 3/4" Plug   | 3/4                 | 10   |  |  |
| PFC1691530 | 7/8" Plug   | 7/8                 | 10   |  |  |
| PFC1691540 | 1" Plug     | 1                   | 10   |  |  |
| PFC1691550 | 1-1/8" Plug | 1-1/8               | 10   |  |  |
| PFC1691555 | 1-1/4" Plug | 1-1/4               | 10   |  |  |
| PFC1691560 | 1-3/8" Plug | 1-3/8               | 10   |  |  |
| PFC1691570 | 1-1/2" Plug | 1-1/2               | 10   |  |  |
| PFC1691580 | 1-3/4" Plug | 1-3/4               | 10   |  |  |





#### **Plastic Screen Tubes**

Cat. No.

DW5806

DW5809

DW5807

DW5808

DW5810

DW5812

DW5813

DW5814

DW5815

DW5816

DW5851

DW5817

DW5818

DW5819

DW5852

DW5820

DW5821

DW5822

DW5853

DW5854

DW5824

DW5825

| Cat. No.            | Description                          | ANSI Drill<br>Diameter | Standard<br>Carton |
|---------------------|--------------------------------------|------------------------|--------------------|
| 08310               | 3/8" x 3-1/2" Plastic Screen         | 9/16"                  | 25                 |
| 08311               | 3/8" x 6" Plastic Screen             | 9/16"                  | 25                 |
| 08313               | 3/8" x 8" Plastic Screen             | 9/16"                  | 25                 |
| 08315               | 1/2" x 3-1/2" Plastic Screen         | 3/4"                   | 25                 |
| 08317               | 1/2" x 6" Plastic Screen             | 3/4"                   | 25                 |
| 08321               | 5/8" x 6" Plastic Screen             | 7/8"                   | 25                 |
| 08323               | 3/4" x 6" Plastic Screen             | 1"                     | 10                 |
| For availability of | stainless steel screen tubes, Contac | t DEWALT               |                    |

**Usable Length** 

8"

16"

31"

16"

8"

16"

31"

16"

8"

16"

31"

16"

8"

16"

24"

31"

10"

18"

24"

31"

10"

18"

**Overall Length** 

13-1/2"

21-1/2"

36"

21-1/2"

13-1/2"

21-1/2"

36"

21-1/2"

13-1/2"

21-1/2"

36"

21-1/2"

13-1/2"

22-1/2"

29"

36"

15"

22-1/2"

29"

36"

15"

22-1/2"

**SDS Max 4-Cutter Carbide Drill Bits** 

Diameter

5/8"

5/8"

5/8"

11/16"

3/4"

3/4"

3/4"

13/16"

7/8"

7/8"

7/8"

27/32"

1"

1"

1"

1"

1-1/8"

1-1/8"

1-1/8"

1-1/8"

1-1/4"

1-1/4"







#### **Dust Extraction**

| Cat. No.    | Description                                                                                                                                                                                 |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DWV012      | 10 Gallon Wet/Dry Hepa/Rrp Dust Extractor<br>DWV9402 Fleece bag (5 pack) for DEWALT dust extractors<br>DWV9316 Replacement Anti-Static Hose<br>DWV9320 Replacement HEPA Filter Set (Type 1) |  |  |
| DWH050K     | Dust Extraction with two interchangeable drilling heads                                                                                                                                     |  |  |
| DCB1800M3T1 | 1800 Watt Portable Power Station & Parallel Battery Charger<br>with 3 20V Max* 5Ah Batteries and 1 60V Max* Flexvolt® Battery                                                               |  |  |

#### 

#### **SDS+ Full Head Carbide Drill Bits**

| Cat. No. | Diameter | Usable Length | Overall Length |
|----------|----------|---------------|----------------|
| DW5502   | 3/16"    | 2"            | 4-1/2"         |
| DW5503   | 3/16"    | 4"            | 6-1/2"         |
| DW5504   | 3/16"    | 5"            | 8-1/2"         |
| DW5506   | 3/16"    | 10"           | 12"            |
| DW5512   | 7/32"    | 8"            | 10"            |
| DW5517   | 1/4"     | 4"            | 6"             |
| DW5518   | 1/4"     | 6"            | 8-1/2"         |
| DW55200  | 1/4"     | 10"           | 12"            |
| DW5521   | 1/4"     | 12"           | 14"            |
| DW5524   | 5/16"    | 4"            | 6"             |
| DW5526   | 5916"    | 10"           | 12"            |
| DW5527   | 3/8"     | 4"            | 6-1/2"         |
| DW5529   | 3/8"     | 8"            | 10"            |
| DW55300  | 3/8"     | 10"           | 12"            |
| DW5531   | 3/8"     | 16"           | 18"            |
| DW5537   | 1/2"     | 4"            | 6"             |
| DW5538   | 1/2"     | 8"            | 10-1/2"        |
| DW5539   | 1/2"     | 10"           | 12"            |
| DW5540   | 1/2"     | 16"           | 18"            |

#### 

| SDS+ 4-Cut | tter Carbide Dri | ill Bits      |                |
|------------|------------------|---------------|----------------|
| Cat. No.   | Diameter         | Usable Length | Overall Length |
| DW5471     | 5/8"             | 8"            | 10"            |
| DW5472     | 5/8"             | 16"           | 18"            |
| DW5474     | 3/4"             | 8"            | 10"            |
| DW5475     | 3/4"             | 16"           | 18"            |
| DW5477     | 7/8"             | 8"            | 10"            |
| DW5478     | 7/8"             | 16"           | 18"            |
| DW5479     | 1"               | 8"            | 10"            |
| DW5480     | 1"               | 16"           | 18"            |
| DW5481     | 1-1/8"           | 8"            | 10"            |
| DW5482     | 1-1/8"           | 6"            | 18"            |

#### Hollow Drill Bits

|         | Cat. No. | Diameter | Overall Length | Usable Length | Recommended Hammer Drill |
|---------|----------|----------|----------------|---------------|--------------------------|
|         | DWA54012 | 1/2"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
| 000.    | DWA54916 | 9/16"    | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
| SDS+    | DWA54058 | 5/8"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
|         | DWA54034 | 3/4"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
|         | DWA58058 | 5/8"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58034 | 3/4"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
| SDS Max | DWA58078 | 7/8"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58001 | 1"       | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58118 | 1-1/8"   | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |





#### **GENERAL INFORMATION**

## PURE50+™

Epoxy Injection Adhesive Anchoring System

#### **PRODUCT DESCRIPTION**

The Pure50+ is a two-component adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The Pure50+ is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in solid concrete base materials.

#### **GENERAL APPLICATIONS AND USES**

- · Bonding threaded rod and reinforcing bar into hardened concrete
- · Evaluated for installation and use in dry, wet, and water-filled holes
- · Can be installed in a wide range of base material temperatures

#### FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Evaluated and recognized for freeze/thaw performance
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Oversized hammer-drilled holes in concrete, for short term loading only (contact DEWALT for details)

#### **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES) ESR-3576 for cracked and uncracked concrete.
- Code Compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC.
- Conforms to requirements of ASTM C 881 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes B & C(also meets Type III except for elongation)
- Department of Transportation listings see www.DEWALT.com or contact transportation agency
- Tested in accordance with ACI 355.4 / ASTM E488, and ICC-ES AC308 for use in concrete (Design according to ACI 318-14 Chapter 17 and 318-11/08 Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Compliant with NSF/ANSI Standard 61 for Drinking Water System Components Health Effects; minimum requirements for material in contact with potable water and water treatment

#### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchors. and 05 05 19 - Post-Installed Concrete Anchors. Adhesive anchoring system shall be Pure50+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.



#### SECTION CONTENTS

| General Information                                 | 101 |
|-----------------------------------------------------|-----|
| Reference Data (ASD)                                | 102 |
| Performance Data                                    | 103 |
| Strength Design (SD)                                | 106 |
| Installation Instructions<br>(Solid Base Materials) | 114 |
| Reference Installation Tables                       | 115 |
| Ordering Information                                | 116 |



#### PACKAGING

#### **Coaxial Cartridge**

- 9 fl. oz. (265ml) 1:1 mix ratio
- Dual (side-by-side Cartridge) 1:1 mix ratio
- 21 fl. oz. (620 ml) 1:1 mix ratio
- 51 fl. oz. (1400 ml) 1:1 mix ratio

#### **STORAGE LIFE & CONDITIONS**

Dual cartridge: Two years Coaxial cartridge: Eighteen months In a dry, dark environment with temperature ranging from 41°F to 86°F (5°C to 30°C)

#### ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)

#### SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry Concrete
- Water Saturated Concrete
- Water-Filled Holes

Epoxy Injection Adhesive Anchoring System

**PURE50** 

#### **REFERENCE DATA (ASD)**

#### Installation Table for Pure50+ (Solid Concrete Base Materials)

| Dimension/Property                                   | Notation         | Units          |                |                       |               | -                       | Nominal A       | nchor Size      |                 |                 |                 |                 |
|------------------------------------------------------|------------------|----------------|----------------|-----------------------|---------------|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Threaded Rod                                         | -                | -              | 3/8            | 1/2                   | 1/2 -         |                         | 3/4             | 7/8             | 1               | -               | 1-1/4           | -               |
| Reinforcing Bar                                      | -                | -              | #3             | -                     | #4            | #5                      | #6              | #7              | #8              | #9              | -               | #10             |
| Nominal anchor diameter                              | d                | in.<br>(mm)    | 0.375<br>(9.5) | 0.500<br>(12.7)       |               | 0.625<br>(15.9)         | 0.750<br>(19.1) | 0.875<br>(22.5) | 1.000<br>(25.4) | 1.125<br>(28.6) | 1.250<br>(31.8) | 1.250<br>(31.8) |
| Carbide drill bit nominal size <sup>3</sup>          | d <sub>bit</sub> | in.            | 7/16<br>ANSI   | 9/16<br>ANSI          | 5/8<br>ANSI   | 11/16 or<br>3/4<br>ANSI | 7/8<br>ANSI     | 1<br>ANSI       | 1-1/8<br>ANSI   | 1-3/8<br>ANSI   | 1-3/8<br>ANSI   | 1-1/2<br>ANSI   |
| Minimum embedment                                    | h <sub>nom</sub> | in.<br>(mm)    | 2-3/8<br>(61)  | 2-3<br>(7             | 2-3/4<br>(70) |                         | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)      | 4-1/2<br>(114)  | 5<br>(127)      | 5<br>(127)      |
| Minimum spacing distance                             | Smin             | in.<br>(mm)    | 1-7/8<br>(48)  | 2- <sup>-</sup><br>(6 | 1/2<br>2)     | 3-1/8<br>(80)           | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159   |
| Minimum edge distance                                | Cmin             | in.<br>(mm)    | 1-7/8<br>(48)  | 2- <sup>-</sup><br>(6 | 2-1/2<br>(62) |                         | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159   |
| Maximum torque <sup>1</sup>                          | т                | ftlb.<br>(N-m) | 15<br>(20)     | 3<br>(4               | 30<br>(41)    |                         | 105<br>(142)    | 125<br>(169)    | 165<br>(223)    | 200<br>(270)    | 280<br>(379)    | 280<br>(379)    |
| Maximum torque<br>(low strength rods) <sup>1,2</sup> | l max            | ftlb.<br>(N-m) | 5<br>(7)       | 2<br>(2               | 0<br>7)       | 40<br>(54)              | 60<br>(81)      | 100<br>(136)    | 165<br>(223)    | -               | 280<br>(379)    | -               |

1. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

2. These torque values apply to ASTM A 36 / F 1554, Grade 36 carbon steel threaded rods; ASTM F1554 Grade 55 carbon steel threaded rods; and ASTM A193 Grade B8/B8M (Class 1) stainless steel threaded rods.

3. For any case, it must be possible for the steel anchor element to be inserted into the cleaned drill hole without resistance.



**Detail of Steel Hardware Elements** 

#### Nomenclature

- d = Diameter of anchor
- dbit = Diameter of drilled hole
- h = Base material thickness
- The greater of:

#### **Threaded Rod and Deformed Reinforcing Bar Material Properties**

| Steel<br>Description<br>(General) | Steel<br>Specification<br>(ASTM)        | Nominal<br>Anchor Size<br>(inch)      | Minimum<br>Yield Strength,<br>fy (ksi) | Minimum<br>Ultimate<br>Strength,<br>fu (ksi) |
|-----------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|
|                                   | A 36 or F1554<br>Grade 36               | 3/8 through $1-1/4$                   | 36.0                                   | 58.0                                         |
|                                   | F 1554 Grade 55                         |                                       | 55.0                                   | 75.0                                         |
| Carbon Staal                      | A 440                                   | 3/8 through 1                         | 92.0                                   | 120.0                                        |
| Carbon Sleer                      | A 449                                   | 1-1/4                                 | 81.0                                   | 105.0                                        |
|                                   | A 193, Grade B7 or<br>F 1554, Grade 105 | 3/8 through 1-1/4                     | 105.0                                  | 125.0                                        |
|                                   | F 568M Class 5.8                        | 3/4 through 1-1/4                     | 58.0                                   | 72.5                                         |
|                                   | F 593,                                  | 3/8 through 5/8                       | 65.0                                   | 100.0                                        |
|                                   | Condition CW                            | 3/4 through 1-1/4                     | 45.0                                   | 85.0                                         |
| Stainless Steel                   | A 193/A193M Grade<br>B8/B8M2, Class 1   | 3/4 through 1-1/4                     | 30.0                                   | 75.0                                         |
|                                   | A 193/A193M Grade<br>B8/B8M2, Class 2B  | 3/8 through 1-1/4                     | 75.0                                   | 95.0                                         |
| Grade 40<br>Reinforcing Bar       | A 615, A 767                            | 3/8 through 3/4<br>(#3 through #6)    | 40.0                                   | 60.0                                         |
| Grade 60                          | A 615, A 767                            | 3/8 through 1-1/4                     | 60.0                                   | 90.0                                         |
| Reinforcing Bar                   | A 706, A 767                            | (#3 through #10)                      | 60.0                                   | 80.0                                         |
| Grade 75<br>Reinforcing Bar       | A 615, A 767                            | 3/8 through 1-1/4<br>(#3 through #10) | 75.0                                   | 100.0                                        |



#### PERFORMANCE DATA

# Ultimate and Allowable Load Capacities for Pure50+ Installed with Threaded Rod into Normal-Weight Concrete (based on bond strength/concrete capacity)<sup>1,2,3,4,5,6,7</sup>

|          |                         |                      | Minimum Concrete Compressive Strength       |                                              |                                             |                                              |  |  |  |  |  |  |
|----------|-------------------------|----------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| Rod      | Drill<br>Diameter       | Minimum<br>Embedment | 3,00                                        | 0 psi                                        | 4,00                                        | 0 psi                                        |  |  |  |  |  |  |
| d<br>in. | d <sub>bit</sub><br>in. | Depth<br>hef<br>in.  | Ultimate Tension<br>Load Capacity<br>(lbs.) | Allowable Tension<br>Load Capacity<br>(lbs.) | Ultimate Tension<br>Load Capacity<br>(lbs.) | Allowable Tension<br>Load Capacity<br>(lbs.) |  |  |  |  |  |  |
| 3/8      | 7/16                    | 3-3/8                | 9,725                                       | 2,430                                        | 9,725                                       | 2,430                                        |  |  |  |  |  |  |
| 1/2      | 9/16                    | 4-1/2                | 15,240                                      | 3,810                                        | 17,745                                      | 4,435                                        |  |  |  |  |  |  |
| 5/8      | 11/16 or 3/4            | 5-5/8                | 22,870                                      | 5,720                                        | 28,200                                      | 7,050                                        |  |  |  |  |  |  |
| 3/4      | 7/8                     | 6-3/4                | 31,765                                      | 7,940                                        | 36,470                                      | 9,120                                        |  |  |  |  |  |  |
| 7/8      | 1                       | 7-7/8                | 39,615                                      | 9,905                                        | 45,745                                      | 11,435                                       |  |  |  |  |  |  |
| 4        | 1 1/0                   | 9                    | 48,750                                      | 12,185                                       | 66,950                                      | 16,740                                       |  |  |  |  |  |  |
| I        | 1-1/0                   | 10                   | 56,665                                      | 14,165                                       | 69,305                                      | 17,325                                       |  |  |  |  |  |  |
| 1-1/4    | 1-3/8                   | 11-1/4               | 76,985                                      | 19,245                                       | 88,895                                      | 22,225                                       |  |  |  |  |  |  |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is greater of [h<sub>nom</sub> + 1-1/4"] and [h<sub>nom</sub> + 2dbit].

4. The tabulated load values are for applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water saturated (wet) concrete or in waterfilled holes (flooded) require a 15% reduction in capacity. Contact DEWALT for more information concerning these installation conditions.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.

7. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

# Ultimate and Allowable Load Capacities for Pure50+ Installed with Reinforcing Bar into Normal-Weight Concrete (based on bond strength/concrete capacity)<sup>1,2,3,4,5,6,7</sup>

|                 |                |                                                         | Minimum Concrete Compressive Strength       |                                              |                                             |                                              |  |  |  |  |  |  |  |
|-----------------|----------------|---------------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|--|--|--|--|--|--|--|
| Bar<br>Diameter | Drill Diameter | Minimum<br>Embedment<br>Depth<br>h <sub>ef</sub><br>in. | 3,00                                        | 0 psi                                        | 4,000 psi                                   |                                              |  |  |  |  |  |  |  |
| d<br>in.        | Obit<br>in.    |                                                         | Ultimate Tension<br>Load Capacity<br>(lbs.) | Allowable Tension<br>Load Capacity<br>(lbs.) | Ultimate Tension<br>Load Capacity<br>(lbs.) | Allowable Tension<br>Load Capacity<br>(lbs.) |  |  |  |  |  |  |  |
| #3              | 7/16           | 3-3/8                                                   | 9,950                                       | 2,490                                        | 9,950                                       | 2,490                                        |  |  |  |  |  |  |  |
| #4              | 9/16           | 4-1/2                                                   | 16,340                                      | 4,085                                        | 18,045                                      | 4,510                                        |  |  |  |  |  |  |  |
| #6              | 11/16          | 4                                                       | 16,405                                      | 4,100                                        | 16,670                                      | 4,170                                        |  |  |  |  |  |  |  |
| #5              | 3/4            | 5-5/8                                                   | 22,955                                      | 5,740                                        | 25,345                                      | 6,335                                        |  |  |  |  |  |  |  |
| #6              | 7/8            | 6-3/4                                                   | 29,690                                      | 7,425                                        | 35,930                                      | 8,985                                        |  |  |  |  |  |  |  |
| #8              | 1-1/8          | 9                                                       | 48,465                                      | 12,115                                       | 65,270                                      | 16,320                                       |  |  |  |  |  |  |  |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is greater of [hnom + 1-1/4"] and [hnom + 2dbit]

4. The tabulated load values are for applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water saturated (wet) concrete or in waterfilled holes (flooded) require a 15% reduction in capacity. Contact DEWALT for more information concerning these installation conditions.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.

7. Allowable shear capacity is controlled by allowable steel strength for the given conditions.



**ADHESIVES** 

FECHNICAL GUIDE – ADHESIVES ©2018 DEWALT – REV. D

**ADHESIVES** 

Epoxy Injection Adhesive Anchoring System

PURE50+



Ultimate Load Capacities for Pure50+ Installed with Threaded Rod into Normal-Weight Concrete, with 1-3/4" Edge Distance (Based on Bond Strength/Concrete Capacity)<sup>1.23.4</sup>



|                   |                      | Minimum Concrete Compressive Strength - f'c (psi) |                                           |                                             |                                           |                                             |                                           |  |  |  |  |  |
|-------------------|----------------------|---------------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|--|--|--|--|--|
| Nominal<br>Anchor | Minimum<br>Embedment | 2,50                                              | 0 psi                                     | 3,00                                        | 0 psi                                     | 4,000 psi                                   |                                           |  |  |  |  |  |
| Diameter<br>(in.) | Depth<br>(in.)       | Ultimate Tension<br>Load Capacity<br>(lbs.)       | Ultimate Shear<br>Load Capacity<br>(lbs.) | Ultimate Tension<br>Load Capacity<br>(lbs.) | Ultimate Shear<br>Load Capacity<br>(lbs.) | Ultimate Tension<br>Load Capacity<br>(lbs.) | Ultimate Shear<br>Load Capacity<br>(lbs.) |  |  |  |  |  |
| 3/8               | 3-3/8                | 6,460                                             | 7,200                                     | 6,700                                       | 7,200                                     | 7,100                                       | 7,200                                     |  |  |  |  |  |
| 1/2               | 4-1/2                | 9,625                                             | 9,925                                     | 9,980                                       | 9,980 9,925                               |                                             | 9,925                                     |  |  |  |  |  |
| 5/8               | 5-5/8                | 11,610                                            | 12,785                                    | 12,040                                      | 12,785                                    | 12,750                                      | 12,785                                    |  |  |  |  |  |
| 3/4               | 6-3/4                | 12,390                                            | 10,360                                    | 12,850                                      | 10,360                                    | 13,615                                      | 10,360                                    |  |  |  |  |  |
| 1                 | 9                    | 12,390                                            | -                                         | 12,850                                      | -                                         | 13,615                                      | -                                         |  |  |  |  |  |

1. The values listed above are ultimate load capacities which should be reduced by a minimum safety factor of 4.0 or greater to determine the allowable working load. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

2. Allowable bond strength/concrete capacity must be checked against allowable steel strength to determine the controlling allowable load.

3. The tabulated data is applicable to single anchors at critical edge distance in uncracked concrete, normal-weight concrete having a compressive strength as listed. Values are for dry concrete in holes drilled with a hammer drill and an ANSI carbide drill bit.

4. Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.

#### Allowable Load Capacities for Pure50+ Installed with Threaded Rod into Normal-Weight Concrete with 1-3/4" Edge Distance (Based on Bond Strength / Concrete Capacity)<sup>1,2,3,4,5,6</sup>



|                   |                                        | Minimum Concrete Compressive Strength - f'c (psi) |                                            |                                              |                                            |                                              |                                            |  |  |  |  |  |
|-------------------|----------------------------------------|---------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|--|--|--|--|--|
| Nominal<br>Anchor | Minimum<br>Embedment<br>Depth<br>(in.) | 2,50                                              | 0 psi                                      | 3,00                                         | 0 psi                                      | 4,000 psi                                    |                                            |  |  |  |  |  |
| Diameter<br>(in.) |                                        | Allowable Tension<br>Load Capacity<br>(lbs.)      | Allowable Shear<br>Load Capacity<br>(lbs.) | Allowable Tension<br>Load Capacity<br>(lbs.) | Allowable Shear<br>Load Capacity<br>(lbs.) | Allowable Tension<br>Load Capacity<br>(lbs.) | Allowable Shear<br>Load Capacity<br>(lbs.) |  |  |  |  |  |
| 3/8               | 3-3/8                                  | 1,615                                             | 1,800                                      | 1,675                                        | 1,800                                      | 1,775                                        | 1,800                                      |  |  |  |  |  |
| 1/2               | 4 1/2                                  | 2,405                                             | 2,480                                      | 2,495                                        | 2,480                                      | 2,645                                        | 2,480                                      |  |  |  |  |  |
| 5/8               | 5-5/8                                  | 2,900                                             | 3,195                                      | 3,010                                        | 3,195                                      | 3,190                                        | 3,195                                      |  |  |  |  |  |
| 3/4               | 6-3/4                                  | 3,100                                             | 2,590                                      | 3,215                                        | 2,590                                      | 3,405                                        | 2,590                                      |  |  |  |  |  |
| 1                 | 9                                      | 3,100                                             | -                                          | 3,215                                        | -                                          | 3,405                                        | -                                          |  |  |  |  |  |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors where the minimum member thickness is greater of [hnom + 1-1/4"] and [hnom + 2dwi]

4. The tabulated load values are for applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in wet concrete or in water-filled holes may require a reduction in capacity. Contact DEWALT for more information concerning these installation conditions.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.





#### Allowable Load Capacities for Threaded Rod and Reinforcing Bar (Based on Steel Strength)<sup>1,2,3,4,5</sup>

|                                        |                           | Steel Elements - Threaded Rod and Reinforcing Bar |                           |                      |                                           |                      |                         |                      |                                |                      |                                |                      |                                |                      |                                |                      |                                |                      |
|----------------------------------------|---------------------------|---------------------------------------------------|---------------------------|----------------------|-------------------------------------------|----------------------|-------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|--------------------------------|----------------------|
| Nominal<br>Rod<br>Diameter<br>or Rebar | A36 or F1554,<br>Grade 36 |                                                   | A36 or F1554,<br>Grade 55 |                      | A 193, Grade<br>B7 or F1554,<br>Grade 105 |                      | F 593, CW (SS)          |                      | ASTM A615<br>Grade 40<br>Rebar |                      | ASTM A615<br>Grade 60<br>Rebar |                      | ASTM A706<br>Grade 60<br>Rebar |                      | ASTM A615<br>Grade 75<br>Rebar |                      | ASTM A706<br>Grade 80<br>Rebar |                      |
| Size<br>(in. or #)                     | Tension<br>Ibs.<br>(kN)   | Shear<br>Ibs<br>(kN)                              | Tension<br>Ibs.<br>(kN)   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)                   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) |
| 3/8 or #3                              | 2,115<br>(9.4)            | 1,090<br>(4.8)                                    | 2,735<br>(12.2)           | 1,410<br>(6.3)       | 4,555<br>(20.3)                           | 2,345<br>(10.4)      | 3,645<br>(16.2)         | 1,880<br>(8.4)       | 2,210<br>(9.8)                 | 1,125<br>(5.0)       | 2,650<br>(11.8)                | 1,690<br>(7.5)       | 2,650<br>(11.8)                | 1,500<br>(6.7)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       |
| 1/2 or #4                              | 3,760<br>(16.7)           | 1,935<br>(8.6)                                    | 4,860<br>(21.6)           | 2,505<br>(11.1)      | 8,100<br>(36.0)                           | 4,170<br>(18.5)      | 6,480<br>(28.8)         | 3,340<br>(14.9)      | 3,925<br>(17.5)                | 2,005<br>(8.9)       | 4,710<br>(21.0)                | 3,005<br>(13.4)      | 4,710<br>(21.0)                | 2,670<br>(11.9)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      |
| 5/8 or #5                              | 5,870<br>(26.1)           | 3,025<br>(13.5)                                   | 7,595<br>(33.8)           | 3,910<br>(17.4)      | 12,655<br>(56.3)                          | 6,520<br>(29.0)      | 10,125<br>(45.0)        | 5,215<br>(23.2)      | 6,135<br>(27.3)                | 3,130<br>(13.9)      | 7,365<br>(32.8)                | 4,695<br>(20.9)      | 7,365<br>(32.8)                | 4,170<br>(18.5)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      |
| 3/4 or #6                              | 8,455<br>(37.6)           | 4,355<br>(19.4)                                   | 10,935<br>(48.6)          | 5,635<br>(25.1)      | 18,225<br>(81.1)                          | 9,390<br>(41.8)      | 12,390<br>(55.1)        | 6,385<br>(28.4)      | 8,835<br>(39.3)                | 4,505<br>(20.0)      | 10,605<br>(47.2)               | 6,760<br>(30.1)      | 10,605<br>(47.2)               | 6,010<br>(26.7)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      |
| 7/8 or #7                              | 11,510<br>(51.2)          | 5,930<br>(26.4)                                   | 14,885<br>(66.2)          | 7,665<br>(34.1)      | 24,805<br>(110.3)                         | 12,780<br>(56.8)     | 16,865<br>(75.0)        | 8,690<br>(38.7)      | -                              | -                    | 14,430<br>(64.2)               | 9,200<br>(40.9)      | 14,430<br>(64.2)               | 8,180<br>(36.4)      | 14,430<br>(64.2)               | 10,220<br>(45.5)     | 14,430<br>(64.2)               | 10,220<br>(45.5)     |
| 1 or #8                                | 15,035<br>(66.9)          | 7,745<br>(34.5)                                   | 19,440<br>(86.5)          | 10,015<br>(44.5)     | 32,400<br>(144.1)                         | 16,690<br>(74.2)     | 22,030<br>(98.0)        | 11,350<br>(50.5)     | -                              | -                    | 18,850<br>(83.8)               | 12,015<br>(53.4)     | 18,850<br>(83.8)               | 10,680<br>(47.5)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     |
| #9                                     | -                         | -                                                 | -                         | -                    | -                                         | -                    | -                       | -                    | -                              | -                    | 23,985<br>(106.7)              | 15,290<br>(68.0)     | 23,985<br>(106.7)              | 13,590<br>(60.5)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     |
| 1-1/4                                  | 23,490<br>(104.5)         | 12,100<br>(53.8)                                  | 30,375<br>(135.1)         | 15,645<br>(69.6)     | 50,620<br>(225.2)                         | 26,080<br>(116.0)    | 34,425<br>(153.1)       | 17,735<br>(78.9)     | -                              | -                    | -                              | -                    | -                              | -                    | -                              | -                    | -                              | -                    |
| #10                                    | -                         | -                                                 | -                         | -                    | -                                         | -                    | -                       | -                    | -                              | -                    | 30,405<br>(135.2)              | 19,380<br>(86.2)     | 30,405<br>(135.2)              | 17,230<br>(76.6)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     |
|                                        |                           |                                                   |                           |                      |                                           |                      |                         |                      |                                |                      |                                |                      |                                |                      |                                |                      |                                |                      |

1. AISC defined steel strength (ASD) for threaded rod: Tensile =  $0.33 \bullet F_u \bullet A_{nom}$ , Shear =  $0.17 \bullet F_u \bullet A_{nom}$ 

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

5. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is the greater of [hnom + 1-1/4"] and [hnom + 2dbit]

#### In-Service Temperature Chart For Allowable Load Capacities<sup>1</sup>

| Base Materia                                                                                           | l Temperature | Poduction Easter For Tomperature |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|---------------|----------------------------------|--|--|--|--|--|--|
| °F                                                                                                     | °C            |                                  |  |  |  |  |  |  |
| 32                                                                                                     | 0             | 1.00                             |  |  |  |  |  |  |
| 41                                                                                                     | 5             | 1.00                             |  |  |  |  |  |  |
| 50                                                                                                     | 10            | 1.00                             |  |  |  |  |  |  |
| 70                                                                                                     | 20            | 1.00                             |  |  |  |  |  |  |
| 110                                                                                                    | 43            | 1.00                             |  |  |  |  |  |  |
| 130                                                                                                    | 54            | 0.85                             |  |  |  |  |  |  |
| 150                                                                                                    | 66            | 0.76                             |  |  |  |  |  |  |
| 180                                                                                                    | 82            | 0.51                             |  |  |  |  |  |  |
| 1. Linear interpolation may be used to derive reduction factors for temperatures between those listed. |               |                                  |  |  |  |  |  |  |





#### STRENGTH DESIGN (SD)

#### Installation Specifications for Threaded Rod and Reinforcing Bar<sup>1</sup>



|                                                   |                      |                 | Fractional Nominal Kod Diameter (Inch) / Reinforcing Bar Size |                       |               |                 |                 |                 |                 |                 |                 |                 |
|---------------------------------------------------|----------------------|-----------------|---------------------------------------------------------------|-----------------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Parameter                                         | Symbol               | Units           | 3/8 or<br>#3                                                  | 1/2                   | #4            | 5/8 or<br>#5    | 3/4 or<br>#6    | 7/8 or<br>#7    | 1 or #8         | #9              | 1-1/4           | #10             |
| Threaded rod outside diameter                     | d                    | inch<br>(mm)    | 0.375<br>(9.5)                                                | 0.5<br>(12            | 500<br>2.7)   | 0.625<br>(15.9) | 0.750<br>(19.1) | 0.875<br>(22.2) | 1.000<br>(25.4) | -               | 1.250<br>(31.8) | -               |
| Rebar nominal outside diameter                    | d                    | inch<br>(mm)    | 0.375<br>(9.5)                                                | 0.5<br>(12            | 500<br>2.7)   | 0.625<br>(15.9) | 0.750<br>(19.1) | 0.875<br>(22.2) | 1.000<br>(25.4) | 1.125<br>(28.7) | -               | 1.250<br>(31.8) |
| Carbide drill bit nominal size6                   | do (dbit)            | inch            | 7/16                                                          | 9/16                  | 9/16 5/8      |                 | 7/8             | 1               | 1-1/8           | 1-3/8           | 1-3/8           | 1-1/2           |
| Minimum embedment                                 | hef,min              | inch<br>(mm)    | 2-3/8<br>(60)                                                 | 2-3<br>(7             | 2-3/4<br>(70) |                 | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)      | 4-1/2<br>(114)  | 5<br>(127)      | 5<br>(127)      |
| Maximum embedment                                 | h <sub>ef,max</sub>  | inch<br>(mm)    | 7-1/2<br>(191)                                                | 1<br>(25              | 10<br>(254)   |                 | 15<br>(381)     | 17-1/2<br>(445) | 20<br>(508)     | 22-1/2<br>(572) | 25<br>(635)     | 25<br>(635)     |
| Minimum member thickness                          | hmin                 | inch<br>(mm)    | h <sub>ef</sub> + 1-1/4<br>(h <sub>ef</sub> + 30)             |                       |               |                 |                 | hef + 2do       |                 |                 |                 |                 |
| Minimum anchor spacing                            | Smin                 | inch<br>(mm)    | 1-7/8<br>(48)                                                 | 2- <sup>-</sup><br>(6 | 1/2<br>4)     | 3-1/8<br>(79)   | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159)  |
| Minimum edge distance                             | Cmin                 | inch<br>(mm)    | 1-7/8<br>(48)                                                 | 2- <sup>-</sup><br>(6 | 1/2<br>4)     | 3-1/8<br>(79)   | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159)  |
| Max. torque <sup>2</sup>                          | T <sub>max</sub>     | ft-lbs<br>(N-m) | 15<br>(20)                                                    | 3<br>(4               | 0<br>1)       | 60<br>(81)      | 105<br>(142)    | 125<br>(169)    | 165<br>(221)    | 200<br>(280)    | 280<br>(379)    | 280<br>(379)    |
| Max. torque <sup>2,3</sup><br>(low strength rods) | T <sub>max</sub>     | ft-lbs<br>(N-m) | 5<br>(7)                                                      | 2<br>(2               | 20<br>(27)    |                 | 60<br>(81)      | 100<br>(136)    | 165<br>(223)    | -               | 280<br>(379)    | -               |
| Minimum edge distance, reduced⁵                   | Cmin,red             | inch<br>(mm)    | 1-3/4<br>(45)                                                 | 1-:<br>(4             | 3/4<br>5)     | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 1-3/4<br>(45)   | 2-3/4<br>(70)   | 2-3/4<br>(70)   | 2-3/4<br>(70)   |
| Max. torque, reduced <sup>2</sup>                 | T <sub>max,red</sub> | ft-lbs<br>(N-m) | 7 [5]⁴                                                        | 1<br>(1               | 4<br>9)       | 27<br>(37)      | 47<br>(64)      | 56<br>(76)      | 74<br>(100)     | 90<br>(122)     | 126<br>(171)    | 126<br>(171)    |

 $\label{eq:source} \mbox{For pound-inch units: 1 mm} = 0.03937 \mbox{ inch, 1 N-m} = 0.7375 \mbox{ ft-lbf. For SI: 1 inch} = 25.4 \mbox{ mm, 1 ft-lbf} = 1.356 \mbox{ N-m}.$ 

1. For use with the design provisions of ACI 318-14 Ch.17 or ACI 318-11 Appendix D as applicable, ICC-ES AC308, Section 4.2 and ESR-3576

2. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

3. These torque values apply to ASTM A 36 / F 1554 Grade 36 carbon steel threaded rods; ASTM F 1554 Grade 55 carbon steel threaded rods; and ASTM A 193 Grade B8/B8M (Class 1) stainless steel threaded rods.

4. These torque values apply to ASTM A 193 Grade B8/B8M (Class 1) stainless steel threaded rods.

5. For Installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be max torque reduced, Tmacred.

6. For any case, it must be possible for the steel anchor element to be inserted into the cleaned drill hole without resistance.

# Detail of Steel Hardware Elements used with Injection Adhesive System



#### Threaded Rod and Deformed Reinforcing Bar Material Properties

| Steel<br>Description<br>(General) | Steel Specification<br>(ASTM)           | Nominal Anchor<br>Size (inch)         | Minimum Yield<br>Strength,<br>fy (ksi) | Minimum<br>Ultimate<br>Strength,<br>fu (ksi) |
|-----------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|
|                                   | A 36 or F 1554 Grade 36                 | 2/2 through 1 1/4                     | 36.0                                   | 58.0                                         |
|                                   | F 1554 Grade 55                         | 3/8 through 1-1/4                     | 55.0                                   | 75.0                                         |
| O sub sus us d                    | A 440                                   | 3/8 through 1                         | 92.0                                   | 120.0                                        |
| Carbon rod                        | A 449                                   | 1-1/4                                 | 81.0                                   | 105.0                                        |
|                                   | A 193, Grade B7 or F<br>1554, Grade 105 | 3/8 through 1-1/4                     | 105.0                                  | 125.0                                        |
|                                   | F 568M Class 5.8                        | 3/4 through 1-1/4                     | 58.0                                   | 72.5                                         |
|                                   | E 502 Condition CW                      | 3/8 through 5/8                       | 65.0                                   | 100.0                                        |
|                                   |                                         | 3/4 through 1-1/4                     | 45.0                                   | 85.0                                         |
| Stainless rod                     | A 193/193M<br>Grade B8/B8M,<br>Class 1  | 3/8 through 1-1/4                     | 30.0                                   | 75.0                                         |
|                                   | A 193/A193M<br>Grade B8/B8M2, Class 2B  | 3/8 through 1-1/4                     | 75.0                                   | 95.0                                         |
| Grade 40<br>Reinforcing Bar       | A 615, A 767                            | 3/8 through 1-1/4<br>(#3 through #6)  | 40.0                                   | 60.0                                         |
| Grade 60                          | A 615, A 767                            | 3/8 through 1-1/4                     | 60.0                                   | 90.0                                         |
| Reinforcing Bar                   | A 706, A 767                            | (#3 through #10)                      | 60.0                                   | 80.0                                         |
| Grade 75<br>Reinforcing Bar       | A 615, A 767                            | 3/8 through 1-1/4<br>(#3 through #10) | 75.0                                   | 100.0                                        |

# Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)



|                          | Design Information                                                  | Cumhal          | Unito          |                 |                  | Nominal           | Rod Diamete       | er' (inch)        |                   |                    |
|--------------------------|---------------------------------------------------------------------|-----------------|----------------|-----------------|------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
|                          | Design Information                                                  | Symbol          | Units          | 3/8             | 1/2              | 5/8               | 3/4               | 7/8               | 1                 | 1-1/4              |
| Threaded rod             | nominal outside diameter                                            | d               | inch<br>(mm)   | 0.375<br>(9.5)  | 0.500<br>(12.7)  | 0.625<br>(15.9)   | 0.750<br>(19.1)   | 0.875<br>(22.2)   | 1.000<br>(25.4)   | 1.250<br>(31.8)    |
| Threaded rod             | effective cross-sectional area                                      | A <sub>se</sub> | inch²<br>(mm²) | 0.0775<br>(50)  | 0.1419<br>(92)   | 0.2260<br>(146)   | 0.3345<br>(216)   | 0.4617<br>(298)   | 0.6057<br>(391)   | 0.9691<br>(625)    |
|                          | Nominal strength as governed by                                     | Nsa             | lbf<br>(kN)    | 4,495<br>(20.0) | 8,230<br>(36.6)  | 13,110<br>(58.3)  | 19,400<br>(86.3)  | 26,780<br>(119.1) | 35,130<br>(156.3) | 56,210<br>(250.0)  |
| and<br>ASTM F 1554       | steel strength (for a single anchor)                                | V <sub>sa</sub> | lbf<br>(kN)    | 2,695<br>(12.0) | 4,940<br>(22.0)  | 7,860<br>(35.0)   | 11,640<br>(51.8)  | 16,070<br>(71.4)  | 21,080<br>(93.8)  | 33,725<br>(150.0)  |
| Grade 36                 | Reduction factor for seismic shear                                  | OV,seis         | -              | 0.80            | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |
|                          | Strength reduction factor for tension <sup>2</sup>                  | φ               | -              |                 |                  |                   | 0.75              |                   |                   |                    |
|                          |                                                                     | φ               | -<br>Ihf       | 5.810           | 10.640           | 16.050            | 25.085            | 34 625            | 15 125            | 72 680             |
|                          | Nominal strength as governed by steel strength(for a single anchor) | Nsa             | (kN)           | (25.9)          | (47.3)           | (75.4)            | (111.6)           | (154.0)           | (202.0)           | (323.3)            |
| ASTM F 1554              |                                                                     | Vsa             | (kN)           | (15.5)          | (28.4)           | (45.2)            | (67.0)            | (92.4)            | (121.2)           | (194.0)            |
| Grade 55                 | Reduction factor for seismic shear                                  | QV,seis         | -              | 0.80            | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |
|                          | Strength reduction factor for tension <sup>2</sup>                  | $\phi$          | -              |                 |                  |                   | 0.75              |                   |                   |                    |
|                          | Strength reduction factor for shear <sup>2</sup>                    | φ               | -              | 0.005           | 47.705           | 00.050            | 0.65              | 57.740            | 75 74 0           | 101 105            |
|                          | Neminal strangth as governed by                                     | Nsa             |                | 9,685           | 17,735           | 28,250            | 41,810            | 57,710            | (226.0)           | 121,135            |
| ASTM A 193<br>Grado B7   | steel strength (for a single anchor)                                |                 | (KIN)<br>Ibf   | 5.815           | 10.640           | 16.950            | 25.085            | 34.625            | (330.0)           | 72 680             |
| and                      |                                                                     | Vsa             | (kN)           | (25.9)          | (7.3)            | (75.4)            | (111.6)           | (154.0)           | (202.1)           | (323.3)            |
| ASTM F 1554              | Reduction factor for seismic shear                                  | QV,seis         | -              | 0.80            | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |
| Grade 105                | Strength reduction factor for tension <sup>2</sup>                  | φ               | -              |                 |                  |                   | 0.75              |                   |                   |                    |
|                          | Strength reduction factor for shear <sup>2</sup>                    | φ               | -              |                 |                  |                   | 0.65              |                   |                   |                    |
|                          | Nominal strength as<br>governed by steel strength                   | N <sub>sa</sub> | lbf<br>(kN)    | 9,300<br>(41.4) | 17,025<br>(75.7) | 27,120<br>(120.6) | 40,140<br>(178.5) | 55,905<br>(248.7) | 72,685<br>(323.3) | 101,755<br>(452.6) |
| ASTM A 449               | (for a single anchor)                                               | Vsa             | lbf<br>(kN)    | 5,580<br>(24.8) | 10,215<br>(45.4) | 16,270<br>(72.4)  | 24,085<br>(107.1) | 33,540<br>(149.2) | 43,610<br>(194.0) | 61,050<br>(271.6)  |
|                          | Reduction factor for seismic shear                                  | QV,seis         | -              | 0.80            | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |
|                          | Strength reduction factor for tension <sup>2</sup>                  | φ               | -              |                 |                  |                   | 0.75              |                   |                   |                    |
|                          | Strength reduction factor for shear <sup>2</sup>                    | φ               | -              | F 000           | 10.000           | 10.005            | 0.65              | 00.475            | 40.015            |                    |
|                          | Nominal strength as governed by                                     | N <sub>sa</sub> | (kN)           | 5,620 (25.0)    | (45.8)           | (72.9)            | (107.9)           | 33,475 (148.9)    | 43,915 (195.4)    | _5                 |
| ASTM F568<br>Class 5.8   | steel strength (for a single anchor)                                | Vsa             | lbf<br>(kN)    | 3,370<br>(15.0) | 6,175<br>(27,5)  | 9,830<br>(43,7)   | 14,550            | 20,085            | 26,350<br>(117,2) | _5                 |
| (ISO 898-1)              | Reduction factor for seismic shear                                  | QV,seis         | -              | 0.80            | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | _5                 |
|                          | Strength reduction factor for tension <sup>3</sup>                  | φ               | -              |                 |                  |                   | 0.65              |                   |                   |                    |
|                          | Strength reduction factor for shear <sup>3</sup>                    | $\phi$          | -              |                 |                  |                   | 0.60              | 1                 | r                 | r                  |
|                          | Nominal strangth as governed by                                     | Nsa             | lbt            | 7,750           | 14,190           | 22,600            | 28,430            | 39,245            | 51,485            | 82,370             |
| ASTM F 593               | steel strength (for a single anchor)                                |                 | lhf            | 4 650           | 8 515            | 13 560            | 17.060            | 23 545            | 30.890            | 49.425             |
| CW Stainless             |                                                                     | V <sub>sa</sub> | (kN)           | (20.7)          | (37.9)           | (60.3)            | (75.9)            | (104.7)           | (137.4)           | (219.8)            |
| (Types 304<br>and 316)   | Reduction factor for seismic shear                                  | OV,seis         | -              | 0.70            | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |
| and STO                  | Strength reduction factor for tension <sup>3</sup>                  | φ               | -              |                 |                  |                   | 0.65              |                   |                   |                    |
|                          | Strength reduction factor for shear <sup>3</sup>                    | φ               | -              | 4.400           | 0.000            | 10.000            | 0.60              | 00.045            | 04.505            | 55.040             |
| ASTM A 193               | Nominal strength as governed by                                     | Nsa             | lbf<br>(kN)    | 4,420<br>(19.7) | 8,090<br>(36.0)  | 12,880<br>(57.3)  | 19,065<br>(84.8)  | 26,315<br>(117.1) | 34,525<br>(153.6) | 55,240<br>(245.7)  |
| Class 1                  | steel strength (for a single anchor) <sup>₄</sup>                   | $V_{sa}$        | lbf<br>(kN)    | 2,650<br>(11.8) | 4,855<br>(21.6)  | 7,730<br>(34.4)   | 11,440<br>(50.9)  | 15,790<br>(70.2)  | 20,715<br>(92.1)  | 33,145<br>(147.4)  |
| Stainless<br>(Types 304  | Reduction factor for seismic shear                                  | OV,seis         | -              | 0.70            | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |
| and 316)                 | Strength reduction factor for tension <sup>2</sup>                  | $\phi$          | -              |                 |                  |                   | 0.75              |                   |                   |                    |
| and or of                | Strength reduction factor for shear <sup>2</sup>                    | φ               | -              |                 |                  | 04 470            | 0.65              |                   |                   |                    |
| ASTM A 193<br>Grade B8/  | Nominal strength as governed by                                     | Nsa             | lbf<br>(kN)    | 7,365<br>(32.8) | 13,480<br>(60.0) | 21,470<br>(95.5)  | 31,775<br>(141.3) | 43,860<br>(195.1) | 57,545<br>(256.0) | 92,065<br>(409.5)  |
| B8M2,<br>Class 2B        | steel strength (for a single anchor)                                | Vsa             | lbt<br>(kN)    | 4,420<br>(19.7) | 8,085<br>(36.0)  | 12,880<br>(57.3)  | 19,065<br>(84.8)  | 26,315<br>(117.1) | 34,525<br>(153.6) | 55,240<br>(245.7)  |
| Stainless                | Reduction factor for seismic shear                                  | OV,seis         | -              | 0.70            | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |
| (1) ypes 304<br>and 316) | Strength reduction factor for tension <sup>2</sup>                  | φ               | -              |                 |                  |                   | 0.75              |                   |                   |                    |
| unu 010j                 | Surengul reduction lactor for shear                                 | φ               | -              |                 |                  |                   | 0.00              |                   |                   |                    |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

2. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements.

3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements

4. In accordance with ACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/B8M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9fy or 57,000 psi (393 MPa).

5. The referenced standard includes rod diameters up to and including 1-inch (24 mm).

# Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)



ENGINEERED BY POWERS

|               |                                                                      |                  |                |                  |                  | Nomina            | l Reinforcir      | g Bar Size (                                                    | (Rebar) <sup>1</sup> |                    |                    |  |
|---------------|----------------------------------------------------------------------|------------------|----------------|------------------|------------------|-------------------|-------------------|-----------------------------------------------------------------|----------------------|--------------------|--------------------|--|
|               | Design Information                                                   | Symbol           | Units          | No. 3            | No. 4            | No. 5             | No. 6             | No. 7                                                           | No. 8                | No. 9              | No. 10             |  |
| Rebar nomi    | nal outside diameter                                                 | d                | inch<br>(mm)   | 0.375<br>(9.5)   | 0.500<br>(12.7)  | 0.625<br>(15.9)   | 0.750<br>(19.1)   | 0.875<br>(22.2)                                                 | 1.000<br>(25.4)      | 1.125<br>(28.7)    | 1.250<br>(32.3)    |  |
| Rebar effect  | ive cross-sectional area                                             | Ase              | inch²<br>(mm²) | 0.110<br>(71.0)  | 0.200<br>(129.0) | 0.310<br>(200.0)  | 0.440<br>(283.9)  | 0.600<br>(387.1)                                                | 0.790<br>(509.7)     | 1.000<br>(645.2)   | 1.270<br>(819.4)   |  |
|               | Nominal strength as governed by                                      | Nsa              | lbf<br>(kN)    | 11,000<br>(48.9) | 20,000<br>(89.0) | 31,000<br>(137.9) | 44,000<br>(195.7) | 60,000<br>(266.9)                                               | 79,000<br>(351.4)    | 100,000<br>(444.8) | 127,000<br>(564.9) |  |
| ASTM          | steel strength (for a single anchor)                                 | V <sub>sa</sub>  | lbf<br>(kN)    | 6,600<br>(29.4)  | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | 36,000<br>(160.1)                                               | 47,400<br>(210.8)    | 60,000<br>(266.9)  | 76,200<br>(338.9)  |  |
| Grade 75      | Reduction factor for seismic shear                                   | <i>O</i> V,seis  | -              | 0.70             | 0.70             | 0.80              | 0.80              | 0.80                                                            | 0.80                 | 0.80               | 0.80               |  |
| ĺ             | Strength reduction factor for tension <sup>3</sup>                   | $\phi$           | -              | 0.65             |                  |                   |                   |                                                                 |                      |                    |                    |  |
|               | Strength reduction factor for shear <sup>3</sup>                     | $\phi$           | -              |                  |                  |                   | 0.                | 60                                                              |                      |                    |                    |  |
|               | Nominal strength as governed by                                      |                  | lbf<br>(kN)    | 9,900<br>(44.0)  | 18,000<br>(80.1) | 27,900<br>(124.1) | 39,600<br>(176.1) | 54,000<br>(240.2)                                               | 71,100<br>(316.3)    | 90,000<br>(400.3)  | 114,300<br>(508.4) |  |
| ASTM<br>A 615 | TM<br>315<br>te 60                                                   | Vsa              | lbf<br>(kN)    | 5,940<br>(26.4)  | 10,800<br>(48.0) | 16,740<br>(74.5)  | 23,760<br>(105.7) | 32,400<br>(144.1)                                               | 42,660<br>(189.8)    | 54,000<br>(240.2)  | 68,580<br>(305.0)  |  |
| Grade of      | Reduction factor for seismic shear                                   | <i>O</i> ℓv,seis | -              | 0.70             | 0.70             | 0.80              | 0.80              | 0.80                                                            | 0.80                 | 0.80               | 0.80               |  |
|               | Strength reduction factor for tension <sup>2</sup>                   | $\phi$           | -              |                  |                  |                   | 0.                | .75                                                             |                      |                    |                    |  |
|               | Strength reduction factor for shear <sup>2</sup>                     | $\phi$           | -              | 0.65             |                  |                   |                   |                                                                 |                      |                    |                    |  |
|               | Nominal strength as governed by                                      | Nsa              | lbf<br>(kN)    | 8,800<br>(39.1)  | 16,000<br>(71.2) | 24,800<br>(110.3) | 35,200<br>(156.6) | 48,000<br>(213.5)                                               | 63,200<br>(281.1)    | 80,000<br>(355.9)  | 101,600<br>(452.0) |  |
| ASTM A 706    | steel strength (for a single anchor)                                 | V <sub>sa</sub>  | lbf<br>(kN)    | 5,280<br>(23.5)  | 9,600<br>(42.7)  | 14,880<br>(66.2)  | 21,120<br>(94.0)  | 28,800<br>(128.1)                                               | 37,920<br>(168.7)    | 48,000<br>(213.5)  | 60,960<br>(271.2)  |  |
| Grade 60      | Reduction factor for seismic shear                                   | <i>O</i> ℓV,seis | -              | 0.70             | 0.70             | 0.80              | 0.80              | 0.80                                                            | 0.80                 | 0.80               | 0.80               |  |
|               | Strength reduction factor for tension <sup>2</sup>                   | $\phi$           | -              |                  |                  |                   | 0.                | 75                                                              |                      |                    |                    |  |
|               | Strength reduction factor for shear <sup>2</sup>                     | $\phi$           | -              |                  |                  |                   | 0.                | 65                                                              |                      |                    |                    |  |
|               | Nominal strength as governed by steel strength (for a single anchor) |                  | lbf<br>(kN)    | 6,600<br>(29.4)  | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | In ac                                                           | cordance w           | ith ASTM A         | 615.               |  |
| ASTM A 615    |                                                                      |                  | lbf<br>(kN)    | 3,960<br>(17.6)  | 7,200<br>(32.0)  | 11,160<br>(49.6)  | 15,840<br>(70.5)  | Grade 40 bars are furnished only in size<br>No. 3 through No. 6 |                      |                    | y in sizes         |  |
| Grade 40      | Reduction factor for seismic shear                                   | $lpha_{V,seis}$  | -              | 0.70             | 0.70             | 0.80              | 0.80              | Ĭ                                                               |                      |                    |                    |  |
|               | Strength reduction factor for tension <sup>2</sup>                   | $\phi$           | -              | 0.75             |                  |                   |                   |                                                                 |                      |                    |                    |  |
|               | Strength reduction factor for shear <sup>2</sup>                     | $\phi$           | -              |                  |                  |                   | 0.                | 65                                                              |                      |                    |                    |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-14 17.3.3 correspond to ductile steel elements. In accordance with ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)(6, as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-14 20.2.2.4 and 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.

3. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.



#### **Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars** (For use with loads combinations taken from ACI 318-14 Section 5.3)<sup>1</sup>



|                                                                                         | _                   |                                                                                                                                                                                                                                                 |                                         |                                                        | Nominal Roo     | d Diameter (in                                     | ch) / Reinforc                             | ing Bar Size  |                 |                 |
|-----------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|-----------------|----------------------------------------------------|--------------------------------------------|---------------|-----------------|-----------------|
| Design Information                                                                      | Symbol              | Units                                                                                                                                                                                                                                           | 3/8 or #3                               | 1/2 or #4                                              | 5/8 or #5       | 3/4 or #6                                          | 7/8 or #7                                  | 1 or #8       | #9              | 1-1/4 or<br>#10 |
| Effectiveness factor for<br>cracked concrete                                            | k <sub>c,cr</sub>   | -<br>(SI)                                                                                                                                                                                                                                       |                                         |                                                        |                 | 1<br>(7                                            | 7<br>1)                                    |               |                 |                 |
| Effectiveness factor for<br>uncracked concrete                                          | k <sub>c,uncr</sub> | Nominal Rod Diameter (inch) / Reinforcing Bar Size           Units         3/8 or #3         1/2 or #4         5/8 or #5         3/4 or #6         7/8 or #7         1 or #8         #9         1-                 10 rms         #9         1- |                                         |                                                        |                 |                                                    |                                            |               |                 |                 |
| Minimum embedment                                                                       | h <sub>ef,min</sub> | inch<br>(mm)                                                                                                                                                                                                                                    | 2-3/8<br>(60)                           | 2-3/4<br>(70)                                          | 3-1/8<br>(79)   | 3-1/2<br>(89)                                      | 3-1/2<br>(89)                              | 4<br>(102)    | 4-1/2<br>(114)  | 5<br>(127)      |
| Maximum embedment                                                                       | hef,max             | inch<br>(mm)                                                                                                                                                                                                                                    | 7-1/2<br>(191)                          | 10<br>(254)                                            | 12-1/2<br>(318) | 15<br>(381)                                        | 17-1/2<br>(445)                            | 20<br>(508)   | 22-1/2<br>(572) | 25<br>(635)     |
| Minimum anchor spacing                                                                  | Smin                | inch<br>(mm)                                                                                                                                                                                                                                    | 1-7/8<br>(48)                           | 2-1/2<br>(64)                                          | 3-1/8<br>(79)   | 3-3/4<br>(95)                                      | 4-3/8<br>(111)                             | 5<br>(127)    | 5-5/8<br>(143)  | 6-1/4<br>(159)  |
| Minimum edge distance <sup>2</sup>                                                      | Cmin                | inch<br>(mm)                                                                                                                                                                                                                                    |                                         | 2                                                      | 5d where d i    | s nominal outs                                     | ide diameter o                             | of the anchor |                 |                 |
| Minimum edge distance, reduced <sup>2</sup>                                             | Cmin,red            | inch<br>(mm)                                                                                                                                                                                                                                    | 1-3/4<br>(45)                           | 1-3/4<br>(45)                                          | 1-3/4<br>(45)   | 1-3/4<br>(45)                                      | 1-3/4<br>(45)                              | 1-3/4<br>(45) | 2-3/4<br>(70)   | 2-3/4<br>(70)   |
| Minimum member thickness                                                                | hmin                | inch<br>(mm)                                                                                                                                                                                                                                    | h <sub>ef</sub> +<br>(h <sub>ef</sub> - | 1-1/4<br>⊦ 30)                                         |                 | hef -                                              | ⊦ 2d₀ where d                              | is hole diame | eter;           |                 |
| Critical edge distance—splitting (for                                                   |                     | inch                                                                                                                                                                                                                                            |                                         |                                                        | Cac             | $h_{ef} = h_{ef} \cdot (\frac{\tau_{uncr}}{1160})$ | <sup>0.₄</sup> · [3.1-0.7 <mark>/</mark> h | <u>]</u> ]    |                 |                 |
| uncracked concrete only) <sup>3</sup>                                                   | Cac                 | (mm)                                                                                                                                                                                                                                            |                                         |                                                        | Cac             | $h = h_{ef} \cdot (\frac{\tau_{uncr}}{8})$         | <sup>₀.₄</sup> · [3.1-0.7 <sup>l</sup> h   | <u>]</u> ]    |                 |                 |
| Strength reduction factor for tension, concrete failure modes, Condition B <sup>4</sup> | φ                   | -                                                                                                                                                                                                                                               |                                         | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                 |                                                    |                                            |               |                 |                 |
| Strength reduction factor for shear, concrete failure modes, Condition B <sup>4</sup>   | $\phi$              | -                                                                                                                                                                                                                                               |                                         |                                                        |                 | 0.                                                 | 70                                         |               |                 |                 |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3.  $T_{k,uncr}$  need not be taken as greater than:  $T_{k,uncr} = \frac{k_{uncr} \cdot \sqrt{h_{ef} \cdot f'_{C}}}{h_{ef} \cdot f'_{C}}$  and  $\frac{h}{h_{ef}}$  need not be taken as larger than 2.4. hef

π•d

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4.

# Bond Strength Design Information for Threaded Rods and Reinforcing Bars (For use with load combinations taken from ACI 318-14 Section 5.3)<sup>1</sup>



|                                                                    |                                                                         |                                                                          |                |                 | Nor            | ninal Rod D     | iameter (in    | ch) / Reinfo    | orcing Bar \$  | Size            |                 |
|--------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|-----------------|
| Design li                                                          | nformation                                                              | Symbol                                                                   | Units          | 3/8 or<br>#3    | 1/2 or<br>#4   | 5/8 or<br>#5    | 3/4 or<br>#6   | 7/8 or<br>#7    | 1 or #8        | #9              | 1-1/4 or<br>#10 |
| Minimum                                                            | embedment                                                               | h <sub>ef,min</sub>                                                      | inch<br>(mm)   | 2-3/8<br>(60)   | 2-3/4<br>(70)  | 3-1/8<br>(79)   | 3-1/2<br>(89)  | 3-1/2<br>(89)   | 4<br>(102)     | 4-1/2<br>(114)  | 5<br>(127)      |
| Maximum                                                            | embedment                                                               | h <sub>ef,max</sub>                                                      | inch<br>(mm)   | 7-1/2<br>(191)  | 10<br>(254)    | 12-1/2<br>(318) | 15<br>(381)    | 17-1/2<br>(445) | 20<br>(508)    | 22-1/2<br>(572) | 25<br>(635)     |
| 110°F (43°C) Maximum<br>Long-Term Service<br>Temperature; 140°F    | Characteristic bond<br>strength in<br>cracked concrete <sup>6,9</sup>   | $	au_{	ext{k,cr}}$                                                       | psi<br>(N/mm²) | 684<br>(4.7)    | 658<br>(4.5)   | 632<br>(4.4)    | 608<br>(4.2)   | 585<br>(4.0)    | 562<br>(3.9)   | 562<br>(3.9)    | 562<br>(3.9)    |
| (60°C) Maximum<br>Short-Term Service<br>Temperature <sup>3,5</sup> | Characteristic bond<br>strength in<br>uncracked concrete <sup>6,8</sup> | $	au_{	extsf{k},	extsf{uncr}}$                                           | psi<br>(N/mm²) | 1,444<br>(10.0) | 1,389<br>(9.6) | 1,335<br>(9.2)  | 1,283<br>(8.8) | 1,234<br>(8.5)  | 1,184<br>(8.2) | 1,184<br>(8.2)  | 1,184<br>(8.2)  |
| 110°F (43°C) Maximum<br>Long-Term Service<br>Temperature; 176°F    | Characteristic bond<br>strength in<br>cracked concrete <sup>6,9</sup>   | $	au_{k,cr}$                                                             | psi<br>(N/mm²) | 475<br>(3.3)    | 457<br>(3.2)   | 439<br>(3.0)    | 422<br>(2.9)   | 406<br>(2.8)    | 390<br>(2.7)   | 390<br>(2.7)    | 390<br>(2.7)    |
| (80°C) Maximum<br>Short-Term Service<br>Temperature⁴.⁵             | Characteristic bond<br>strength in<br>uncracked concrete <sup>6,8</sup> | $	au_{	extsf{k},	extsf{uncr}}$                                           | psi<br>(N/mm²) | 1,024<br>(7.1)  | 985<br>(6.8)   | 947<br>(6.5)    | 910<br>(6.3)   | 875<br>(6.0)    | 840<br>(5.8)   | 840<br>(5.8)    | 840<br>(5.8)    |
| Dry concrete                                                       |                                                                         | Anchor<br>Category                                                       | -              | 1               |                |                 |                |                 |                |                 |                 |
| Permissible                                                        |                                                                         | $\phi_{ m d}$                                                            | -              |                 |                |                 | 0.             | 65              |                |                 |                 |
| Conditions <sup>7</sup>                                            | Water-saturated concrete,                                               | Anchor<br>Category                                                       | -              |                 |                |                 | 2              | 2               |                |                 |                 |
|                                                                    | water-mieu nole (noodeu)                                                | $\phi_{\scriptscriptstyle { m WS}},  \phi_{\scriptscriptstyle { m Wf}},$ | -              |                 |                |                 | 0.             | 55              |                |                 |                 |
| Reduction factor                                                   | for seismic tension <sup>®</sup>                                        | $\alpha_{\text{N,seis}}$                                                 | -              |                 |                |                 |                | 1               |                |                 |                 |

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)<sup>ozs</sup> [For SI: (f'c / 17.2)<sup>ozs</sup>]. See Section 4.1.4 of this report for bond strength determination.

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-14 17.2.6 where applicable.

The maximum short-term service temperature may be increased to 162°F (72°C) provided characteristic bond strengths are reduced by 3 percent. Long-term and short-term temperatures
meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category B.

4. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category A.

5. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

6. Characteristic bond strengths are for sustained loads including dead and live loads.

7. Permissible installation conditions include dry concrete, water-saturated concrete, and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

9. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete do not require an additional reduction factor applied for seismic tension (*cat.seis* = 1.0), where seismic design is applicable.

#### FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH







Tension and Shear Design Strength Installed in Uncracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                                 |                       |                                     |                                    |                                                    | Minim                            | um concrete c                                      | ompressive St                    | trength                                            |                                    |                                                    |                                  |
|---------------------------------|-----------------------|-------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------|
| Nominal                         | Embed.                | f'c = 2,                            | 500 (psi)                          | f'c = 3,0                                          | 000 (psi)                        | f'c = 4,0                                          | 000 (psi)                        | f'c = 6,0                                          | 000 (psi)                          | f'c = 8,0                                          | 000 (psi)                        |
| Rod/Rebar<br>Size<br>(in. or #) | Depth<br>hef<br>(in.) | ØN₀₀<br>or ØNª<br>Tension<br>(Ibs.) | ΦV₀₀<br>or ΦV₀₀<br>Shear<br>(lbs.) | <i>Φ</i> Ν∞<br>or <i>Φ</i> Ν₃<br>Tension<br>(lbs.) | φV₀<br>or φV₀<br>Shear<br>(lbs.) | <i>Φ</i> Ν₀<br>or <i>Φ</i> Νª<br>Tension<br>(lbs.) | φV₀<br>or φV₀<br>Shear<br>(lbs.) | <i>Φ</i> Ν₀<br>or <i>Φ</i> Νª<br>Tension<br>(lbs.) | ΦV₀₀<br>or ΦV₀₀<br>Shear<br>(lbs.) | <i>Φ</i> Ν₀<br>or <i>Φ</i> Νª<br>Tension<br>(lbs.) | φV₀<br>or φVφ<br>Shear<br>(lbs.) |
|                                 | 2-3/8                 | 2,625                               | 2,490                              | 2,740                                              | 2,770                            | 2,925                                              | 3,150                            | 3,210                                              | 3,460                              | 3,430                                              | 3,695                            |
| 2/0 or #2                       | 3                     | 3,315                               | 3,700                              | 3,460                                              | 4,120                            | 3,695                                              | 4,885                            | 4,055                                              | 6,210                              | 4,335                                              | 7,365                            |
| 3/0 01 #3                       | 4-1/2                 | 4,975                               | 6,755                              | 5,190                                              | 7,525                            | 5,545                                              | 8,920                            | 6,085                                              | 11,340                             | 6,500                                              | 13,445                           |
|                                 | 7-1/2                 | 8,295                               | 14,375                             | 8,650                                              | 16,010                           | 9,240                                              | 18,985                           | 10,145                                             | 21,845                             | 10,835                                             | 23,340                           |
|                                 | 2-3/4                 | 3,555                               | 3,305                              | 3,895                                              | 3,755                            | 4,345                                              | 4,525                            | 4,770                                              | 5,755                              | 5,095                                              | 6,825                            |
| 1/2 or #/                       | 4                     | 5,675                               | 6,450                              | 5,915                                              | 7,185                            | 6,320                                              | 8,520                            | 6,940                                              | 10,830                             | 7,415                                              | 12,840                           |
| 1/2 01 #4                       | 6                     | 8,510                               | 11,750                             | 8,875                                              | 13,085                           | 9,480                                              | 15,515                           | 10,405                                             | 19,725                             | 11,120                                             | 23,390                           |
|                                 | 10                    | 14,180                              | 25,020                             | 14,790                                             | 27,875                           | 15,800                                             | 33,050                           | 17,345                                             | 37,360                             | 18,530                                             | 39,915                           |
|                                 | 3-1/8                 | 4,310                               | 4,120                              | 4,720                                              | 4,680                            | 5,450                                              | 5,720                            | 6,430                                              | 7,525                              | 6,835                                              | 8,920                            |
| 5/9 or #5                       | 5                     | 8,520                               | 9,895                              | 8,885                                              | 11,020                           | 9,490                                              | 13,065                           | 10,420                                             | 16,610                             | 11,130                                             | 19,695                           |
| 5/6 01 #5                       | 7-1/2                 | 12,780                              | 18,020                             | 13,325                                             | 20,070                           | 14,235                                             | 23,800                           | 15,630                                             | 30,255                             | 16,700                                             | 35,870                           |
|                                 | 12-1/2                | 21,300                              | 38,395                             | 22,210                                             | 42,775                           | 23,730                                             | 50,715                           | 26,050                                             | 56,105                             | 27,830                                             | 59,940                           |
|                                 | 3-1/2                 | 5,105                               | 5,015                              | 5,595                                              | 5,700                            | 6,460                                              | 6,970                            | 7,635                                              | 9,255                              | 8,265                                              | 11,245                           |
| 2/1 or #6                       | 6                     | 11,465                              | 13,595                             | 12,295                                             | 15,315                           | 13,135                                             | 18,160                           | 14,420                                             | 23,090                             | 15,405                                             | 27,375                           |
| 3/4 01 #0                       | 9                     | 17,685                              | 25,045                             | 18,440                                             | 27,900                           | 19,705                                             | 33,080                           | 21,630                                             | 42,050                             | 23,110                                             | 49,775                           |
|                                 | 15                    | 29,475                              | 53,355                             | 30,735                                             | 59,435                           | 32,840                                             | 70,470                           | 36,050                                             | 77,645                             | 38,515                                             | 82,955                           |
|                                 | 3-1/2                 | 5,105                               | 4,930                              | 5,595                                              | 5,605                            | 6,460                                              | 6,855                            | 7,350                                              | 9,100                              | 7,975                                              | 11,130                           |
| 7/9 or #7                       | 7                     | 14,445                              | 16,605                             | 15,825                                             | 18,865                           | 17,195                                             | 22,525                           | 18,875                                             | 28,635                             | 20,170                                             | 33,950                           |
| 1/0 01 #1                       | 10-1/2                | 23,150                              | 31,060                             | 24,145                                             | 34,595                           | 25,795                                             | 41,020                           | 28,315                                             | 52,150                             | 30,250                                             | 61,830                           |
|                                 | 17-1/2                | 38,585                              | 66,175                             | 40,240                                             | 73,715                           | 42,990                                             | 87,400                           | 47,195                                             | 101,645                            | 50,420                                             | 108,600                          |
|                                 | 4                     | 6,240                               | 6,115                              | 6,835                                              | 6,945                            | 7,895                                              | 8,495                            | 9,190                                              | 11,280                             | 9,980                                              | 13,800                           |
| 1 or #9                         | 8                     | 17,650                              | 19,750                             | 19,335                                             | 22,435                           | 21,550                                             | 27,055                           | 23,655                                             | 34,395                             | 25,275                                             | 40,785                           |
| 1 01 #0                         | 12                    | 29,015                              | 37,310                             | 30,255                                             | 41,560                           | 32,325                                             | 49,280                           | 35,485                                             | 62,650                             | 37,910                                             | 74,280                           |
|                                 | 20                    | 48,355                              | 79,500                             | 50,425                                             | 88,560                           | 53,875                                             | 105,005                          | 59,140                                             | 127,380                            | 63,185                                             | 136,095                          |
|                                 | 4-1/2                 | 7,445                               | 7,110                              | 8,155                                              | 8,080                            | 9,420                                              | 9,880                            | 11,335                                             | 13,125                             | 12,300                                             | 16,055                           |
| #0                              | 9                     | 21,060                              | 23,055                             | 23,070                                             | 26,190                           | 26,640                                             | 32,035                           | 29,940                                             | 41,110                             | 31,990                                             | 48,745                           |
| π3                              | 13-1/2                | 36,720                              | 44,600                             | 38,290                                             | 49,680                           | 40,910                                             | 58,905                           | 44,910                                             | 74,885                             | 47,985                                             | 88,790                           |
|                                 | 22-1/2                | 61,200                              | 94,995                             | 63,820                                             | 105,825                          | 68,185                                             | 125,475                          | 74,850                                             | 159,515                            | 79,970                                             | 172,245                          |
|                                 | 5                     | 8,720                               | 8,170                              | 9,555                                              | 9,285                            | 11,030                                             | 11,355                           | 13,510                                             | 15,085                             | 15,190                                             | 18,450                           |
| 1-1//                           | 10                    | 24,665                              | 26,380                             | 27,020                                             | 29,975                           | 31,200                                             | 36,660                           | 36,965                                             | 48,050                             | 39,490                                             | 56,970                           |
| 1-1/4                           | 15                    | 45,315                              | 52,110                             | 47,275                                             | 58,060                           | 50,510                                             | 68,835                           | 55,445                                             | 87,515                             | 59,240                                             | 103,760                          |
|                                 | 25                    | 75,555                              | 111,065                            | 78,790                                             | 123,720                          | 84,180                                             | 146,695                          | 92,410                                             | 186,490                            | 98,730                                             | 212,650                          |
|                                 | 5                     | 8,720                               | 8,160                              | 9,555                                              | 9,270                            | 11,030                                             | 11,335                           | 13,510                                             | 15,060                             | 15,020                                             | 18,420                           |
| #10                             | 10                    | 24,665                              | 26,430                             | 27,020                                             | 30,025                           | 31,200                                             | 36,725                           | 36,965                                             | 48,135                             | 39,490                                             | 57,070                           |
| #10                             | 15                    | 45,315                              | 52,205                             | 47,275                                             | 58,165                           | 50,510                                             | 68,965                           | 55,445                                             | 87,675                             | 59,240                                             | 103,955                          |
|                                 | 25                    | 75,555                              | 111,225                            | 78,790                                             | 123,905                          | 84,180                                             | 146,910                          | 92,410                                             | 186,765                            | 98,730                                             | 212,650                          |

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions:

-  $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$ 

-  $c_{a2}$  is greater than or equal to 1.5 times  $c_{a1}.$ 

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors ( $\phi$ ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3576.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3576 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-3576.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.



## Tension and Shear Design Strength Installed in Cracked Concrete

(Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                                 |                                   |                                     |                                  |                                                 | Minim                            | um Concrete (                                      | Compressive S                      | trength                             |                                  |                                     |                                                          |
|---------------------------------|-----------------------------------|-------------------------------------|----------------------------------|-------------------------------------------------|----------------------------------|----------------------------------------------------|------------------------------------|-------------------------------------|----------------------------------|-------------------------------------|----------------------------------------------------------|
| Nominal                         | Embed.                            | f'c = 2,                            | 500 (psi)                        | f'C = 3,                                        | 000 (psi)                        | f'c = 4,                                           | 000 (psi)                          | f'c = 6,                            | 000 (psi)                        | f'c = 8,                            | 000 (psi)                                                |
| Rod/Rebar<br>Size<br>(in. or #) | Depth<br>h <sub>ef</sub><br>(in.) | ØN₀₀<br>or ØNª<br>Tension<br>(Ibs.) | φV∞<br>or φV∞<br>Shear<br>(Ibs.) | φN <sub>cb</sub><br>or φNa<br>Tension<br>(Ibs.) | φV∞<br>or φV∞<br>Shear<br>(Ibs.) | <i>φ</i> Ν₀<br>or <i>φ</i> Ν₂<br>Tension<br>(lbs.) | φV₀₀<br>or φV₀₀<br>Shear<br>(lbs.) | ØN₀₀<br>or ØNª<br>Tension<br>(Ibs.) | φV∞<br>or φV∞<br>Shear<br>(Ibs.) | ØN₀₀<br>or ØNª<br>Tension<br>(Ibs.) | $\phi_{V_{cb}}$<br>or $\phi_{V_{cp}}$<br>Shear<br>(lbs.) |
|                                 | 2-3/8                             | 1,245                               | 1,340                            | 1,295                                           | 1,395                            | 1,385                                              | 1,495                              | 1,520                               | 1,640                            | 1,625                               | 1,750                                                    |
| 2/0 or #2                       | 3                                 | 1,570                               | 2,645                            | 1,640                                           | 2,945                            | 1,750                                              | 3,490                              | 1,920                               | 4,140                            | 2,055                               | 4,425                                                    |
| 3/0 01 #3                       | 4-1/2                             | 2,355                               | 4,825                            | 2,460                                           | 5,295                            | 2,625                                              | 5,655                              | 2,885                               | 6,210                            | 3,080                               | 6,635                                                    |
|                                 | 7-1/2                             | 3,930                               | 8,460                            | 4,095                                           | 8,825                            | 4,375                                              | 9,425                              | 4,805                               | 10,350                           | 5,135                               | 11,055                                                   |
|                                 | 2-3/4                             | 1,850                               | 2,360                            | 1,925                                           | 2,680                            | 2,060                                              | 3,235                              | 2,260                               | 4,110                            | 2,415                               | 4,875                                                    |
| 1/2 or #/                       | 4                                 | 2,685                               | 4,605                            | 2,800                                           | 5,130                            | 2,995                                              | 6,085                              | 3,285                               | 7,080                            | 3,510                               | 7,565                                                    |
| 1/2 01 #4                       | 6                                 | 4,030                               | 8,390                            | 4,205                                           | 9,055                            | 4,490                                              | 9,675                              | 4,930                               | 10,620                           | 5,265                               | 11,345                                                   |
|                                 | 10                                | 6,720                               | 14,470                           | 7,005                                           | 15,090                           | 7,485                                              | 16,120                             | 8,215                               | 17,700                           | 8,780                               | 18,910                                                   |
|                                 | 3-1/8                             | 2,365                               | 2,940                            | 2,500                                           | 3,340                            | 2,720                                              | 4,085                              | 3,045                               | 5,375                            | 3,235                               | 6,375                                                    |
| 5/8 or #5                       | 5                                 | 4,035                               | 7,065                            | 4,205                                           | 7,870                            | 4,495                                              | 9,335                              | 4,935                               | 10,625                           | 5,270                               | 11,350                                                   |
| J/0 01 #J                       | 7-1/2                             | 6,050                               | 12,870                           | 6,310                                           | 13,590                           | 6,740                                              | 14,515                             | 7,400                               | 15,935                           | 7,905                               | 17,025                                                   |
|                                 | 12-1/2                            | 10,085                              | 21,715                           | 10,515                                          | 22,645                           | 11,235                                             | 24,195                             | 12,330                              | 26,560                           | 13,175                              | 28,375                                                   |
|                                 | 3-1/2                             | 2,805                               | 3,580                            | 2,955                                           | 4,070                            | 3,215                                              | 4,980                              | 3,620                               | 6,610                            | 3,920                               | 8,035                                                    |
| 2/4 or #6                       | 6                                 | 5,585                               | 9,710                            | 5,825                                           | 10,940                           | 6,225                                              | 12,970                             | 6,835                               | 14,720                           | 7,300                               | 15,725                                                   |
| 3/4 01 #0                       | 9                                 | 8,380                               | 17,890                           | 8,740                                           | 18,825                           | 9,335                                              | 20,110                             | 10,250                              | 22,075                           | 10,950                              | 23,585                                                   |
|                                 | 15                                | 13,970                              | 30,085                           | 14,565                                          | 31,370                           | 15,560                                             | 33,520                             | 17,085                              | 36,795                           | 18,250                              | 39,310                                                   |
|                                 | 3-1/2                             | 2,720                               | 3,525                            | 2,860                                           | 4,000                            | 3,105                                              | 4,895                              | 3,485                               | 6,500                            | 3,780                               | 7,950                                                    |
| 7/8 or #7                       | 7                                 | 7,315                               | 11,860                           | 7,630                                           | 13,475                           | 8,150                                              | 16,090                             | 8,950                               | 19,275                           | 9,560                               | 20,595                                                   |
| //O UI #/                       | 10-1/2                            | 10,975                              | 22,185                           | 11,445                                          | 24,650                           | 12,230                                             | 26,340                             | 13,425                              | 28,910                           | 14,340                              | 30,890                                                   |
|                                 | 17-1/2                            | 18,290                              | 39,400                           | 19,075                                          | 41,085                           | 20,380                                             | 43,895                             | 22,370                              | 48,185                           | 23,905                              | 51,485                                                   |
|                                 | 4                                 | 3,405                               | 4,365                            | 3,585                                           | 4,960                            | 3,890                                              | 6,065                              | 4,365                               | 8,060                            | 4,735                               | 9,855                                                    |
| 1 or #9                         | 8                                 | 9,180                               | 14,105                           | 9,575                                           | 16,025                           | 10,230                                             | 19,325                             | 11,230                              | 24,185                           | 11,995                              | 25,840                                                   |
| 1 01 #0                         | 12                                | 13,770                              | 26,650                           | 14,360                                          | 29,685                           | 15,345                                             | 33,050                             | 16,845                              | 36,280                           | 17,995                              | 38,760                                                   |
|                                 | 20                                | 22,950                              | 49,435                           | 23,935                                          | 51,555                           | 25,575                                             | 55,080                             | 28,070                              | 60,465                           | 29,995                              | 64,600                                                   |
|                                 | 4-1/2                             | 4,205                               | 5,080                            | 4,425                                           | 5,770                            | 4,800                                              | 7,060                              | 5,380                               | 9,375                            | 5,840                               | 11,465                                                   |
| #0                              | 9                                 | 11,620                              | 16,465                           | 12,115                                          | 18,710                           | 12,945                                             | 22,880                             | 14,210                              | 29,365                           | 15,185                              | 32,705                                                   |
| #9                              | 13-1/2                            | 17,430                              | 31,855                           | 18,175                                          | 35,485                           | 19,420                                             | 41,825                             | 21,315                              | 45,915                           | 22,775                              | 49,055                                                   |
|                                 | 22-1/2                            | 29,050                              | 62,570                           | 30,295                                          | 65,245                           | 32,365                                             | 69,710                             | 35,530                              | 76,525                           | 37,960                              | 81,760                                                   |
|                                 | 5                                 | 5,190                               | 5,835                            | 5,465                                           | 6,630                            | 5,925                                              | 8,110                              | 6,645                               | 10,775                           | 7,210                               | 13,175                                                   |
| 1_1//                           | 10                                | 14,345                              | 18,845                           | 14,960                                          | 21,410                           | 15,985                                             | 26,185                             | 17,545                              | 34,320                           | 18,745                              | 40,375                                                   |
| 1-1/4                           | 15                                | 21,520                              | 37,220                           | 22,440                                          | 41,470                           | 23,975                                             | 49,170                             | 26,320                              | 56,685                           | 28,120                              | 60,560                                                   |
|                                 | 25                                | 35,865                              | 77,245                           | 37,400                                          | 80,550                           | 39,955                                             | 86,060                             | 43,865                              | 94,475                           | 46,865                              | 100,935                                                  |
|                                 | 5                                 | 5,135                               | 5,830                            | 5,405                                           | 6,620                            | 5,860                                              | 8,100                              | 6,570                               | 10,755                           | 7,130                               | 13,155                                                   |
| #10                             | 10                                | 14,345                              | 18,880                           | 14,960                                          | 21,445                           | 15,985                                             | 26,230                             | 17,545                              | 34,380                           | 18,745                              | 40,375                                                   |
| #10                             | 15                                | 21,520                              | 37,290                           | 22,440                                          | 41,545                           | 23,975                                             | 49,260                             | 26,320                              | 56,685                           | 28,120                              | 60,560                                                   |
|                                 | 25                                | 35,865                              | 77,245                           | 37,400                                          | 80,550                           | 39,955                                             | 86,060                             | 43,865                              | 94,475                           | 46,865                              | 100,935                                                  |

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions: -  $c_{at}$  is greater than or equal to the critical edge distance,  $c_{ac}$ 

-  $C_{a2}$  is greater than or equal to 1.5 times  $C_{a1}$ .

Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors () for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors ( $\phi$ ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3576.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3576 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-3576.

 Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

TECHNICAL GUIDE - ADHESIVES ©2018 DEWALT

- REV. D

112





# ABLES

#### Tension Design of Steel Elements (Steel Strength)<sup>1,2</sup>

|                                              |                                              |                           |                                                               | Steel Ele                 | ements - Thre                                               | eaded Rod an                                              | d Reinforcing                                                                         | g Bar                                                                                    |                                   |                                   |                                   |                                   |
|----------------------------------------------|----------------------------------------------|---------------------------|---------------------------------------------------------------|---------------------------|-------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Nominal<br>Rod/Rebar<br>Size<br>(in. or No.) | ASTM<br>A36 and<br>ASTM<br>F1554<br>Grade 36 | ASTM<br>F1554<br>Grade 55 | ASTM<br>A193<br>Grade B7<br>and ASTM<br>F1554<br>Grade<br>105 | ASTM<br>A449              | ASTM<br>F568M<br>Class 5.8<br>and IS0<br>898-1<br>Class 5.8 | ASTM<br>F593 CW<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A193<br>Grade<br>B8/B8M,<br>Class 1<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A193<br>Grade B8/<br>B8M2,<br>Class 2B<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A615<br>Grade 75<br>Rebar | ASTM<br>A615<br>Grade 60<br>Rebar | ASTM<br>A706<br>Grade 60<br>Rebar | ASTM<br>A615<br>Grade 40<br>Rebar |
|                                              | ØN₅a<br>Tension<br>(Ibs.)                    | ØNsa<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)                                     | ØNsa<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)                                   | ØNsa<br>Tension<br>(Ibs.)                                 | ØNsa<br>Tension<br>(Ibs.)                                                             | ØNsa<br>Tension<br>(Ibs.)                                                                | ØNsa<br>Tension<br>(Ibs.)         | ØN₅a<br>Tension<br>(lbs.)         | ØNsa<br>Tension<br>(Ibs.)         | ØNsa<br>Tension<br>(lbs.)         |
| 3/8 or #3                                    | 3,370                                        | 4,360                     | 7,265                                                         | 6,975                     | 3,655                                                       | 5,040                                                     | 3,315                                                                                 | 5,525                                                                                    | 7,150                             | 7,425                             | 6,600                             | 4,950                             |
| 1/2 or #4                                    | 6,175                                        | 7,980                     | 13,300                                                        | 12,770                    | 6,690                                                       | 9,225                                                     | 6,070                                                                                 | 10,110                                                                                   | 13,000                            | 13,500                            | 12,000                            | 9,000                             |
| 5/8 or #5                                    | 9,835                                        | 12,715                    | 21,190                                                        | 20,340                    | 10,650                                                      | 14,690                                                    | 9,660                                                                                 | 16,105                                                                                   | 20,150                            | 20,925                            | 18,600                            | 13,950                            |
| 3/4 or #6                                    | 14,550                                       | 18,815                    | 31,360                                                        | 30,105                    | 15,765                                                      | 18,480                                                    | 14,300                                                                                | 23,830                                                                                   | 28,600                            | 29,700                            | 26,400                            | 19,800                            |
| 7/8 or #7                                    | 20,085                                       | 25,970                    | 43,285                                                        | 41,930                    | 21,760                                                      | 25,510                                                    | 19,735                                                                                | 32,895                                                                                   | 39,000                            | 40,500                            | 36,000                            | -                                 |
| 1 or #8                                      | 26,350                                       | 34,070                    | 56,785                                                        | 54,515                    | 28,545                                                      | 33,465                                                    | 25,895                                                                                | 43,160                                                                                   | 51,350                            | 53,325                            | 47,400                            | -                                 |
| #9                                           |                                              |                           |                                                               |                           |                                                             |                                                           |                                                                                       |                                                                                          | 65,000                            | 67,500                            | 60,000                            | -                                 |
| 1-1/4 or #10                                 | 42,160                                       | 54,510                    | 90,850                                                        | 76,315                    | -                                                           | 53,540                                                    | 41,430                                                                                | 69,050                                                                                   | 82,550                            | 85,725                            | 76,200                            | -                                 |
| Ctool Ctronget                               | h                                            |                           |                                                               |                           |                                                             |                                                           |                                                                                       |                                                                                          |                                   |                                   |                                   |                                   |

#### - Steel Strength

1. Steel tensile design strength according to ACI 318-14 Ch.17,  $\phi$ Nsa =  $\phi$  • Ase,N • futa

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode,

the lowest load level controls.

#### Shear Design of Steel Elements (Steel Strength)<sup>1,2</sup>

|                                              |                                              |                           |                                                               | Steel El                | ements - Thr                                                | eaded Rod an                                              | d Reinforcing                                                                         | g Bar                                                                                    |                                   |                                   |                                   |                                   |
|----------------------------------------------|----------------------------------------------|---------------------------|---------------------------------------------------------------|-------------------------|-------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Nominal<br>Rod/Rebar<br>Size<br>(in. or No.) | ASTM<br>A36 and<br>ASTM<br>F1554<br>Grade 36 | ASTM<br>F1554<br>Grade 55 | ASTM<br>A193<br>Grade B7<br>and ASTM<br>F1554<br>Grade<br>105 | ASTM<br>A449            | ASTM<br>F568M<br>Class 5.8<br>and IS0<br>898-1<br>Class 5.8 | ASTM<br>F593 CW<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A193<br>Grade<br>B8/B8M,<br>Class 1<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A193<br>Grade B8/<br>B8M2,<br>Class 2B<br>Stainless<br>(Types<br>304 and<br>316) | ASTM<br>A615<br>Grade 75<br>Rebar | ASTM<br>A615<br>Grade 60<br>Rebar | ASTM<br>A706<br>Grade 60<br>Rebar | ASTM<br>A615<br>Grade 40<br>Rebar |
|                                              | ØVsa<br>Shear<br>(Ibs.)                      | ØVsa<br>Shear<br>(Ibs.)   | ØVsa<br>Shear<br>(Ibs.)                                       | ØVsa<br>Shear<br>(Ibs.) | ØVsa<br>Shear<br>(Ibs.)                                     | ØVsa<br>Shear<br>(Ibs.)                                   | ØVsa<br>Shear<br>(Ibs.)                                                               | ØVsa<br>Shear<br>(Ibs.)                                                                  | ØVsa<br>Shear<br>(Ibs.)           | ØVsa<br>Shear<br>(Ibs.)           | ØVsa<br>Shear<br>(Ibs.)           | ØVsa<br>Shear<br>(Ibs.)           |
| 3/8 or #3                                    | 1,755                                        | 2,265                     | 3,775                                                         | 3,625                   | 2,025                                                       | 2,790                                                     | 1,725                                                                                 | 2,870                                                                                    | 3,960                             | 3,860                             | 3,430                             | 2,575                             |
| 1/2 or #4                                    | 3,210                                        | 4,150                     | 6,915                                                         | 6,640                   | 3,705                                                       | 5,110                                                     | 3,155                                                                                 | 5,255                                                                                    | 7,200                             | 7,020                             | 6,240                             | 4,680                             |
| 5/8 or #5                                    | 5,115                                        | 6,610                     | 11,020                                                        | 10,575                  | 5,900                                                       | 8,135                                                     | 5,025                                                                                 | 8,375                                                                                    | 11,160                            | 10,880                            | 9,670                             | 7,255                             |
| 3/4 or #6                                    | 7,565                                        | 9,785                     | 16,305                                                        | 15,655                  | 8,730                                                       | 10,235                                                    | 7,435                                                                                 | 12,390                                                                                   | 15,840                            | 15,445                            | 13,730                            | 10,295                            |
| 7/8 or #7                                    | 10,445                                       | 13,505                    | 22,505                                                        | 21,805                  | 12,050                                                      | 14,130                                                    | 10,265                                                                                | 17,105                                                                                   | 21,600                            | 21,060                            | 18,720                            |                                   |
| 1 or #8                                      | 13,700                                       | 17,715                    | 29,525                                                        | 28,345                  | 15,810                                                      | 18,535                                                    | 13,465                                                                                | 22,445                                                                                   | 28,440                            | 27,730                            | 24,650                            |                                   |
| #9                                           |                                              |                           |                                                               |                         |                                                             |                                                           |                                                                                       |                                                                                          | 36,000                            | 35,100                            | 31,200                            |                                   |
| 1-1/4 or #10                                 | 21,920                                       | 28,345                    | 47,240                                                        | 39,685                  | -                                                           | 29,655                                                    | 21,545                                                                                | 35,905                                                                                   | 45,720                            | 44,575                            | 39,625                            | -                                 |

- Steel Strength

1. Steel shear design strength according to ACI 318-14 Ch.17,  $\phi$ Vsa =  $\phi \bullet 0.60 \bullet A_{se,V} \bullet f_{uta}$ 

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.





www.DEWALT.com

|                                                        | 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | <ul> <li>Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.</li> <li>Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                        | Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).<br>50 TO STEP 3 FOR HOLES DRILLED WITH DUSTX+ <sup>™</sup> EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED).<br>0 THERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HOLE CLEANING                                          | DRY OR WET/WATER-SATURATED HOLES (BLOW 2X, BRUSH 2X, BLOW 2X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V V                                                    | 2a- Starting from the bottom or back of the drilled anchor hole, blow the hole clean a minimum of two times (2x).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2X                                                     | • Use a compressed air nozzle (min. 90 psi) for all sizes of anchor rod and reinforcing bar (rebar).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                        | <ul> <li>2b- Determine wire brush diameter (see installation specifications) for the drilled hole and attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length.</li> <li>The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if it does not come into the drilled hole.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        | contact with the sides of the drilled hole, the brush is too small and must be replaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| × ↓ ↓ ↓<br>▼ ↓ ↓ ▼ ↓ ↓<br>■ ↓ ↓ ↓                      | <b>2c-</b> Repeat Step 2a- again by blowing the hole clean a minimum of two times (2x).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28                                                     | • When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PREPARING                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 50°F - 104°F (10°C - 40°C) when in use; for overhead applications cartridge temperature must be between 50°F - 90°F (10°C - 30°C). Review published working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of the base material temperature, see published gel and curing times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                        | <ul> <li>Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing elemen<br/>is inside the nozzle. Load the cartridge into the correct dispensing tool.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                        | <ul> <li>Note: Always use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (ministrational former former former)<br> ←−−−her −−−→ | 4- Prior to inserting the anchor rod or rebar into the filled bore hole, the position of the embedment depth has to be marked on the anchor.<br>Verify anchor element is straight and free of surface damage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4                                                      | 5- Adhesives must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent <b>GRAY</b> color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3X                                                     | <ul> <li>Review and note the published working and cure times (reference gel time and curing time table) prior to injection of the mixed adhesive into the cleaned anchor hole.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| INSTALLATION                                           | C Fill the cleaned hale approximately two thirds full with mixed adhesive starting from the bottom or heals of the apphar hale. Clearly withdraw th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        | O- Find the cleaned hole approximately two-units full with mixed adhesive starting from the bottom of back of the archor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. A plastic extension tube (Cat# 08281 or 08297) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WITH PISTON PLUG:                                      | <ul> <li>Piston plugs (see adhesive piston plug table) must be used with and attached to the mixing nozzle and extension tube for horizontal installation where embedment is greater than 8 inches and overhead installations in concrete with anchor rod from 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.</li> <li>Attention! Do not install anchors overhead without proper training and installation hardware provided by the DEWALT. Contact DEWALT for details prior to use the prior to use of the prior to use of</li></ul> |
|                                                        | <ul> <li>7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        | 8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. For all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the u of temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during t gel time only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CURING AND LO                                          | ADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 68°F                                                   | 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        | Do not disturb, torque or load the anchor until it is fully cured.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

TECHNICAL GUIDE - ADHESNES ©2018 DEWALT - REV. D

#### **REFERENCE INSTALLATION TABLES**

#### Gel (working) Time and Curing Table

|               | <u> </u>        |                    |                  |
|---------------|-----------------|--------------------|------------------|
| Temperature o | f base material | Gol (working) time | Full curing time |
| ٥F            | °C              |                    |                  |
| 50            | 10              | 90 minutes         | 24 hours         |
| 68            | 20              | 25 minutes         | 8 hours          |
| 86            | 30              | 20 minutes         | 8 hours          |
| 95            | 35              | 15 minutes         | 6 hours          |
| 104           | 40              | 12 minutes         | 4 hours          |
|               |                 |                    |                  |

Linear interpolation for intermediate base material temperature is possible.

Cartridge adhesive temperature must be between 50°F - 110°F (10°C - 43°C) when in use; for overhead applications cartridge adhesive temperature must be between 50°F - 90°F (10°C - 32°C) when in use. For best experience, suggested minimum cartridge adhesive temperature is 68°F (20°C) when in use

#### Hole Cleaning Equipment Selection Table for Pure50+12.3

| Rod<br>Diameter<br>(inch) | Rebar Size<br>(No.) | ANSI Drill Bit<br>Diameter'<br>(inch) | Brush Length, L<br>(inches) | Steel Wire<br>Brush <sup>2,3</sup><br>(Cat. #) | Blowout<br>Tool                | Number of<br>cleaning<br>actions |
|---------------------------|---------------------|---------------------------------------|-----------------------------|------------------------------------------------|--------------------------------|----------------------------------|
|                           |                     |                                       | Solid Base Material         |                                                |                                |                                  |
| 3/8                       | #3                  | 7/16                                  | 6-3/4                       | 08284                                          |                                |                                  |
| 1/2                       | -                   | 9/16                                  | 6-3/4                       | 08285                                          |                                |                                  |
| -                         | #4                  | 5/8                                   | 6-3/4                       | 08275                                          |                                |                                  |
| E /0                      | ще                  | 11/16                                 | 7-7/8                       | 08286                                          |                                |                                  |
| 0/0                       | 6#                  | 3/4                                   | 7-7/8                       | 08278                                          | Compressed air<br>nozzle only. | 2x blowing                       |
| 3/4                       | #6                  | 7/8                                   | 7-7/8                       | 08287                                          | Cat #8292<br>(min_90 psi)      | 2x blowing                       |
| 7/8                       | #7                  | 1                                     | 11-7/8                      | 08288                                          |                                |                                  |
| 1                         | #8                  | 1-1/8                                 | 11-7/8                      | 08289                                          |                                |                                  |
| 1-1/4                     | #9                  | 1-3/8                                 | 11-7/8                      | 08290                                          |                                |                                  |
| -                         | #10                 | 1-1/2                                 | 11-7/8                      | 08291                                          |                                |                                  |

1. For any case, it must be possible for the steel anchor element to be inserted into the cleaned hole without resistance.

2. An SDS-plus adaptor (Cat. #08283) or Jacobs chuck style adaptor (Cat. #08296) is required to attach a steel wire brush to the drill tool.

3. A brush extension (Cat. #08282) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

#### Adhesive Piston Plugs<sup>1,2,3</sup>

| Plug Size<br>(inch) | ANSI Drill Bit<br>Diameter<br>(inch) | Piston Plug<br>(Cat. #) | Piston Plug |
|---------------------|--------------------------------------|-------------------------|-------------|
|                     | Solid Base                           | e Materials             |             |
| 11/16               | 11/16                                | 08258                   |             |
| 3/4                 | 3/4                                  | 08259                   |             |
| 7/8                 | 7/8                                  | 08300                   |             |
| 1                   | 1                                    | 08301                   |             |
| 1-1/8               | 1-1/8                                | 08303                   |             |
| 1-1/4               | 1-1/4                                | 08307                   |             |
| 1-3/8               | 1-3/8                                | 08305                   |             |
| 1-1/2               | 1-1/2                                | 08309                   |             |

1. All overhead installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All horizontal installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 8 inches.

3. A flexible plastic extension tube (Cat. #08281 or 08297) or equivalent approved by DEWALT must be used with piston plugs.

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

Dry Concrete: cured concrete that, at the time of adhesive anchor installation, has not been exposed to water for the preceding 14 days.

Water-Saturated Concrete (wet): cured concrete that, at the time of adhesive anchor installation, has been exposed to water over a sufficient length of time to have the maximum possible amount of absorbed water into the concrete pore structure to a depth equal to the anchor embedment depth.

Water-Filled Holes (flooded): cured concrete that is water-saturated and where the drilled hole contains standing water at the time of anchor installation.

FECHNICAL GUIDE – ADHESIVES © 2018 DEWALT – REV. D



#### **ORDERING INFORMATION**

#### **Pure50+ Cartridges**

| Cat No.                                                                                   | Description                          | Std. Ctn. | Pallet |  |
|-------------------------------------------------------------------------------------------|--------------------------------------|-----------|--------|--|
| 08600                                                                                     | Pure50+ 9 fl. oz Quik-Shot cartridge | 12        | 432    |  |
| 08605                                                                                     | Pure50+ 21 fl. oz. cartridge         | 12        | 540    |  |
| 08651                                                                                     | Pure50+ 51 fl. oz. cartridge         | 8         | 216    |  |
| One Pure50+ mixing nozzle is packaged with each cartridge.                                |                                      |           |        |  |
| Pure50+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive. |                                      |           |        |  |



#### **Cartridge System Mixing Nozzles**

| Cat. No. | Description                                                    | Std. Pkg. | Std. Ctn. |
|----------|----------------------------------------------------------------|-----------|-----------|
| 08294    | Extra mixing nozzle (with 8" extension) for Pure50+ 21 fl. oz. | 2         | 24        |
| 08609    | High flow mixing nozzle (with 8" extension)                    | 2         | 24        |
| 08281    | Mixing nozzle extension, 8" long                               | 2         | 24        |
| 08297    | Mixing nozzle extension, 20" long                              | 1         | 12        |



#### **Dispensing Tools for Injection Adhesive**

| Cat No.  | Description                                    | Std. Box | Std. Ctn. |
|----------|------------------------------------------------|----------|-----------|
| 08437    | Manual caulking gun for Quik-Shot              | 1        | 12        |
| 08479    | High performance caulking gun for Quik-Shot    | 1        | 12        |
| DCE560D1 | Quik-Shot 20v Battery powered dispensing tool  | 1        | -         |
| 08409    | 21 fl. oz. Standard metal manual tool          | 1        | 10        |
| 08421    | 21 fl. oz. High performance manual tool        | 1        | 10        |
| DCE591D1 | 21 fl. oz. 20v Battery powered dispensing tool | 1        | -         |
| 08459    | 21 fl. oz. Pneumatic tool                      | 1        | -         |
| 08438    | 51 fl. oz. Pneumatic tool                      | 1        | -         |



#### **Hole Cleaning Tools and Accessories**

| Cat No. | Description                                                                                                                                                                                                                               | Std. Box |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 08284   | Wire brush for 7/16" or 1/2" ANSI hole, 6-3/4" length                                                                                                                                                                                     | 1        |
| 08285   | Wire brush for 9/16" ANSI hole, 6-3/4" length                                                                                                                                                                                             | 1        |
| 08275   | Wire brush for 5/8" ANSI hole, 6-3/4" length                                                                                                                                                                                              | 1        |
| 08286   | Wire brush for 11/16" ANSI hole, 7-7/8" length                                                                                                                                                                                            | 1        |
| 08278   | Wire brush for 3/4" ANSI hole, 7-7/8" length                                                                                                                                                                                              | 1        |
| 08287   | Wire brush for 7/8" ANSI hole, 7-7/8" length                                                                                                                                                                                              | 1        |
| 08288   | Wire brush for 1" ANSI hole, 11-7/8" length                                                                                                                                                                                               | 1        |
| 08289   | Wire brush for 1-1/8" ANSI hole, 11-7/8" length                                                                                                                                                                                           | 1        |
| 08276   | Wire brush for 1-1/4" ANSI hole, 11-7/8" length                                                                                                                                                                                           | 1        |
| 08290   | Wire brush for 1-3/8" ANSI hole, 11-7/8" length                                                                                                                                                                                           | 1        |
| 08291   | Wire brush for 1-1/2" ANSI hole, 11-7/8" length                                                                                                                                                                                           | 1        |
| 08283   | SDS-plus adapter for steel brushes                                                                                                                                                                                                        | 1        |
| 08296   | Standard drill adapter for steel brushes<br>(e.g. Jacobs Chuck)                                                                                                                                                                           | 1        |
| 08282   | Steel brush extension, 12" length                                                                                                                                                                                                         | 1        |
| 08292   | Air compressor nozzle with extension, 18" length                                                                                                                                                                                          | 1        |
| 52703   | Adhesives cleaning kit includes 4 wire brushes<br>(08284, 08285, 08286, 08287), Steel brush<br>extension (08282), SDS-Plus adapter (08283),<br>Standard drill adapter (08296), Hand pump/dust<br>blower (08280), glove and safety glasses | 1        |

#### **Adhesive Piston Plugs for Adhesive Anchors**

| Cat No. | Description | ANSI Drill Bit Dia. | Std.<br>Bag |
|---------|-------------|---------------------|-------------|
| 08258   | 11/16" Plug | 11/16"              | 10          |
| 08259   | 3/4" Plug   | 3/4"                | 10          |
| 08300   | 7/8" Plug   | 7/8"                | 10          |
| 08301   | 1" Plug     | 1"                  | 10          |
| 08303   | 1-1/8" Plug | 1-1/8"              | 10          |
| 08307   | 1-1/4" Plug | 1-1/4"              | 10          |
| 08305   | 1-3/8" Plug | 1-3/8"              | 10          |
| 08309   | 1-1/2" Plug | 1-1/2"              | 10          |

# **ADHESIVES**

**PURESO+**<sup>TM</sup> Epoxy Injection Adhesive Anchoring System

| SDS Max 4-0 | Cutter Carbide | e Drill Bits  |                |  |
|-------------|----------------|---------------|----------------|--|
| Cat. No.    | Diameter       | Usable Length | Overall Length |  |
| DW5806      | 5/8"           | 8"            | 13-1/2"        |  |
| DW5809      | 5/8"           | 16"           | 21-1/2"        |  |
| DW5807      | 5/8"           | 31"           | 36"            |  |
| DW5808      | 11/16"         | 16"           | 21-1/2"        |  |
| DW5810      | 3/4"           | 8"            | 13-1/2"        |  |
| DW5812      | 3/4"           | 16"           | 21-1/2"        |  |
| DW5813      | 3/4"           | 31"           | 36"            |  |
| DW5814      | 13/16"         | 16"           | 21-1/2"        |  |
| DW5815      | 7/8"           | 8"            | 13-1/2"        |  |
| DW5816      | 7/8"           | 16"           | 21-1/2"        |  |
| DW5851      | 7/8"           | 31"           | 36"            |  |
| DW5817      | 27/32"         | 16"           | 21-1/2"        |  |
| DW5818      | 1"             | 8"            | 13-1/2"        |  |
| DW5819      | 1"             | 16"           | 22-1/2"        |  |
| DW5852      | 1"             | 24"           | 29"            |  |
| DW5820      | 1"             | 31"           | 36"            |  |
| DW5821      | 1-1/8"         | 10"           | 15"            |  |
| DW5822      | 1-1/8"         | 18"           | 22-1/2"        |  |
| DW5853      | 1-1/8"         | 24"           | 29"            |  |
| DW5854      | 1-1/8"         | 31"           | 36"            |  |
| DW5824      | 1-1/4"         | 10"           | 15"            |  |

18"

22-1/2"

| <b>ЭДЭ+ LIII</b> | neau carbine D |               |                |
|------------------|----------------|---------------|----------------|
| Cat. No.         | Diameter       | Usable Length | Overall Length |
| DW5502           | 3/16"          | 2"            | 4-1/2"         |
| DW5503           | 3/16"          | 4"            | 6-1/2"         |
| DW5504           | 3/16"          | 5"            | 8-1/2"         |
| DW5506           | 3/16"          | 10"           | 12"            |
| DW5512           | 7/32"          | 8"            | 10"            |
| DW5517           | 1/4"           | 4"            | 6"             |
| DW5518           | 1/4"           | 6"            | 8-1/2"         |
| DW55200          | 1/4"           | 10"           | 12"            |
| DW5521           | 1/4"           | 12"           | 14"            |
| DW5524           | 5/16"          | 4"            | 6"             |
| DW5526           | 5916"          | 10"           | 12"            |
| DW5527           | 3/8"           | 4"            | 6-1/2"         |
| DW5529           | 3/8"           | 8"            | 10"            |
| DW55300          | 3/8"           | 10"           | 12"            |
| DW5531           | 3/8"           | 16"           | 18"            |
| DW5537           | 1/2"           | 4"            | 6"             |
| DW5538           | 1/2"           | 8"            | 10-1/2"        |
| DW5539           | 1/2"           | 10"           | 12"            |
| DW5540           | 1/2"           | 16"           | 18"            |

11111111

#### 1944 1944 1944 1

#### 9 **SDS+ 4-Cutter Carbide Drill Bits**

| Cat. No. | Diameter | Usable Length | Overall Length |
|----------|----------|---------------|----------------|
| DW5471   | 5/8"     | 8"            | 10"            |
| DW5472   | 5/8"     | 16"           | 18"            |
| DW5474   | 3/4"     | 8"            | 10"            |
| DW5475   | 3/4"     | 16"           | 18"            |
| DW5477   | 7/8"     | 8"            | 10"            |
| DW5478   | 7/8"     | 16"           | 18"            |
| DW5479   | 1"       | 8"            | 10"            |
| DW5480   | 1"       | 16"           | 18"            |
| DW5481   | 1-1/8"   | 8"            | 10"            |
| DW5482   | 1-1/8"   | 6"            | 18"            |

#### **Dust Extraction**

DW5825

1-1/4"

| Cat. No.    | Description                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DWV012      | 10 Gallon Wet/Dry Hepa/Rrp Dust Extractor<br>DWV9402 Fleece bag (5 pack) for DEWALT dust extractors<br>DWV9316 Replacement Anti-Static Hose<br>DWV9320 Replacement HEPA Filter Set (Type 1) |
| DWH050K     | Dust Extraction with two interchangeable drilling heads                                                                                                                                     |
| DCB1800M3T1 | 1800 Watt Portable Power Station & Parallel Batteny Charger<br>with 3 20V Max* 5Ah Batteries and 1 60V Max* Flexvolt® Battery                                                               |

#### **Hollow Drill Bits**

|         | Cat. No. | Diameter | Overall Length | Usable Length | Recommended Hammer Drill |
|---------|----------|----------|----------------|---------------|--------------------------|
|         | DWA54012 | 1/2"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
| CDC .   | DWA54916 | 9/16"    | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
| 503+    | DWA54058 | 5/8"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
|         | DWA54034 | 3/4"     | 14-1/2"        | 9-3/4"        | DCH133 / DCH273 / DCH293 |
|         | DWA58058 | 5/8"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58034 | 3/4"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
| SDS Max | DWA58078 | 7/8"     | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58001 | 1"       | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |
|         | DWA58118 | 1-1/8"   | 23-5/8"        | 15-3/4"       | DCH481 / D25603K         |





#### **GENERAL INFORMATION**

#### **PURE GP**<sup>™</sup>

Epoxy Injection Adhesive Anchoring System

#### **PRODUCT DESCRIPTION**

The Pure GP is a two-component adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment.

Pure GP is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in solid concrete base materials.

#### **GENERAL APPLICATIONS AND USES**

- · Bonding threaded rod and reinforcing bar into hardened concrete
- · Evaluated for installation and use in dry and wet holes
- Can be installed in a wide range of base material temperatures

#### FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes

#### **APPROVALS AND LISTINGS**

- Conforms to requirements of ASTM C 881 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes B & C (also meets Type III except for elongation)
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

#### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Adhesive anchoring system shall be Pure GP as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

#### **SECTION CONTENTS**

| General Information           | 118  |
|-------------------------------|------|
| Reference Installation Tables | 119  |
| Performance Data              | 120  |
| Installation Instructions     |      |
| (Solid Base Materials)        | .121 |
| Ordering Information          | 122  |



#### PACKAGING

Dual (side-by-side Cartridge)

• 21 fl. oz. (620 ml), 1:1 mix ratio

#### **STORAGE LIFE & CONDITIONS**

Two years in a dry, dark environment with temperature ranging from 41°F and 86°F (5°C to 30°C)

#### ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1" diameter threaded rod
- No. 3 to No. 8 rebar

#### **SUITABLE BASE MATERIALS**

Normal-weight Concrete

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry Concrete
- Water Saturated Concrete

**PURE GP<sup>TM</sup>** 

#### **REFERENCE INSTALLATION TABLES**

#### Installation Table for Pure GP (Solid Concrete Base Materials)

| Dimension/Property             | Notation         | Units       | Nominal Anchor Size |                 |                 |                      |                 |                 |
|--------------------------------|------------------|-------------|---------------------|-----------------|-----------------|----------------------|-----------------|-----------------|
| Threaded Rod                   | -                | in.         | 3/8                 | 1/2             | -               | 5/8                  | 3/4             | 1               |
| Reinforcing Bar                | -                | -           | #3                  | -               | #4              | #5                   | #6              | #8              |
| Nominal anchor diameter        | da               | in.<br>(mm) | 0.375<br>(9.5)      | 0.500<br>(12.7) | 0.500<br>(12.7) | 0.625<br>(15.9)      | 0.750<br>(19.1) | 1.000<br>(25.4) |
| Carbide drill bit nominal size | dbit             | in.         | 7/16<br>ANSI        | 9/16<br>ANSI    | 5/8<br>ANSI     | 11/16 or 3/4<br>ANSI | 7/8<br>ANSI     | 1-1/8<br>ANSI   |
| Embedment                      | h <sub>nom</sub> | in.<br>(mm) | 3-3/8<br>(95)       | 4-1/2<br>(114)  | 4-1/2<br>(114)  | 5-5/8<br>(143)       | 6-3/4<br>(172)  | 9<br>(229)      |
|                                |                  |             |                     |                 |                 |                      |                 |                 |

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The minimum base material thickness should be 1.5 hnom.

#### Hole Cleaning Equipment Selection Table for Pure GP

| Rod<br>Diameter<br>(inch) | Rebar Size<br>(No.) | ANSI Drill Bit<br>Diameter'<br>(inch) | Brush Length, L<br>(inches) | Steel Wire<br>Brush <sup>23</sup><br>(Cat. #) | Blowout<br>Tool           | Number of<br>cleaning<br>actions |
|---------------------------|---------------------|---------------------------------------|-----------------------------|-----------------------------------------------|---------------------------|----------------------------------|
|                           |                     |                                       | Solid Base Material         |                                               |                           |                                  |
| 3/8                       | #3                  | 7/16                                  | 6-3/4                       | 08284                                         |                           |                                  |
| 1/2                       | -                   | 9/16                                  | 6-3/4                       | 08285                                         |                           |                                  |
| -                         | #4                  | 5/8                                   | 6-3/4                       | 08275                                         |                           |                                  |
| E /0                      | #5                  | 11/16                                 | 7-7/8                       | 08286                                         | nozzle only,              | 2x blowing                       |
| 5/6                       |                     | 3/4                                   | 7-7/8                       | 08278                                         | Cat #8292<br>(min_90 psi) | 2x blowing                       |
| 3/4                       | #6                  | 7/8                                   | 7-7/8                       | 08287                                         | (11111. 90 psi)           |                                  |
| 7/8                       | #7                  | 1                                     | 11-7/8                      | 08288                                         |                           |                                  |
| 1                         | #8                  | 1-1/8                                 | 11-7/8                      | 08289                                         |                           |                                  |

1. For installations with 5/8-inch threaded rod and #5 rebar size, the preferred ANSI drill bit diameter is 3/4-inch. If an 11/16-inch ANSI drill bit is used the user must check before injecting the adhesive to verify that the steel anchor element can be inserted into the cleaned borehole without resistance.

2. An SDS-plus adaptor (Cat. #08283) or Jacobs chuck style adaptor (Cat. #08296) is required to attach a steel wire brush to the drill tool.

3. A brush extension (Cat. #08282) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

#### **Adhesive Piston Plugs**<sup>1</sup>

| Plug Size<br>(inch)                                     | ANSI Drill Bit<br>Diameter<br>(inch)                                    | Piston Plug<br>(Cat. #)                                     | Piston Plug |
|---------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|-------------|
|                                                         | Solid Base                                                              | e Materials                                                 |             |
| 11/16                                                   | 11/16                                                                   | 08258                                                       |             |
| 3/4                                                     | 3/4                                                                     | 08259                                                       |             |
| 7/8                                                     | 7/8                                                                     | 08300                                                       |             |
| 1                                                       | 1                                                                       | 08301                                                       |             |
| 1-1/8                                                   | 1-1/8                                                                   | 08303                                                       |             |
| A All had a shall be tall that a set of the line of the | And a state of the second state of the state of the second state of the | The second second second second second second second second |             |

1. All horizontal installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 8 inches.

#### Gel (working) Time and Curing Table

| Temperature of<br>base material                                              |    | Gel (working) time | Full curing time |  |
|------------------------------------------------------------------------------|----|--------------------|------------------|--|
| ۴                                                                            | °C |                    |                  |  |
| 50                                                                           | 10 | 90 minutes         | 24 hours         |  |
| 68                                                                           | 20 | 25 minutes         | 8 hours          |  |
| 86                                                                           | 30 | 20 minutes         | 8 hours          |  |
| 95                                                                           | 35 | 15 minutes         | 6 hours          |  |
| 104                                                                          | 40 | 12 minutes         | 4 hours          |  |
| Linear interpolation for intermediate base material temperature is possible. |    |                    |                  |  |

#### **PERFORMANCE DATA**

# Ultimate and Allowable Load Capacities for Pure GP Adhesive Installed with Threaded Rod into Normal-Weight Concrete<sup>1,2,3,4,5,6</sup>

|                          |                              |                            | Based on Bond/C                                      | oncrete Strength          | Based on St                                                             | eel Strength                              |
|--------------------------|------------------------------|----------------------------|------------------------------------------------------|---------------------------|-------------------------------------------------------------------------|-------------------------------------------|
| Rod / Anchor<br>Diameter | Nominal<br>ANSI<br>Drill Bit | Embedment<br>Depth<br>hnom | Concrete Compressive Strength, f 'c $\geq$ 3,000 psi |                           | ASTM A36 /<br>A307 Grade C<br>ASTM F1554, Grade 36<br>(Fu = 58,000 psi) | ASTM A193, Grade B7<br>(Fu = 125,000 psi) |
| ua<br>in.                | Diameter                     | in.<br>(mm)                | Tens                                                 | sion                      | Tension                                                                 | Tension                                   |
|                          | WEUK                         | ()                         | Ultimate<br>Ibs.<br>(kN)                             | Allowable<br>Ibs.<br>(kN) | Allowable<br>Ibs.<br>(kN)                                               | Allowable<br>Ibs.<br>(kN)                 |
| 3/8                      | 7/16                         | 3-3/8<br>(86)              | 8,090<br>(36.0)                                      | 2,025<br>(9.0)            | 2,115<br>(9.4)                                                          | 4,555<br>(20.3)                           |
| 1/2                      | 9/16                         | 4-1/2<br>(114)             | 13,065<br>(58.1)                                     | 3,265<br>(14.5)           | 3,760<br>(16.7)                                                         | 8,100<br>(36.0)                           |
| 5/8                      | 11/16 or 3/4                 | 5-5/8<br>(143)             | 21,045<br>(93.6)                                     | 5,260<br>(23.4)           | 5,870<br>(26.1)                                                         | 12,655<br>(56.3)                          |
| 3/4                      | 7/8                          | 6-3/4<br>(171)             | 28,055<br>(124.8)                                    | 7,015<br>(31.2)           | 8,455<br>(37.6)                                                         | 18,225<br>(81.1)                          |
| 1                        | 1-1/8                        | 9<br>(229)                 | 47,970<br>(213.4)                                    | 11,995<br>(53.4)          | 15,035<br>(66.9)                                                        | 32,400<br>(144.1)                         |
| 1 Allewskie leed ee      |                              |                            |                                                      |                           |                                                                         |                                           |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

2. The tabulated load values are applicable to single anchor installed at critical edge and spacing distances and where the minimum member thickness is greater than or equal to 1.5\* hom.

3. The tabulated load values are for applicable for dry or wet concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit.

4. Adhesives experiences reductions in capacity at elevated temperature. Tabulated load values are applicable for temperature range of 40°F - 130°F (4°C - 54°C).

5. Allowable bond/concrete strength capacities must be checked against allowable steel strength.

6. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

# Ultimate and Allowable Load Capacities for Pure GP Adhesive Installed with Reinforcing Bar into Normal-Weight Concrete<sup>1,2,3,4,5,6</sup>

|                          |                              |                    | Based on Bond/C                                                           | oncrete Strength            | Based on St                                                   | eel Strength                                                         |
|--------------------------|------------------------------|--------------------|---------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|
| Rod / Anchor<br>Diameter | Nominal<br>ANSI<br>Deill Pit | Embedment<br>Depth | $\begin{array}{l} \mbox{Concrete Compr}\\ \mbox{f'c} \geq 3, \end{array}$ | essive Strength,<br>000 psi | ASTM A 706, Grade 60<br>(Fu = 80,000 psi,<br>Fy = 60,000 psi) | ASTM A 615, Grade 60<br>( $F_u$ = 90,000 psi,<br>$F_y$ = 60,000 psi) |
| da<br>in.                | Diameter                     | in.                | Tens                                                                      | sion                        | Tension                                                       | Tension                                                              |
|                          | dbit                         | dbit (mm)          | Ultimate<br>Ibs.<br>(kN)                                                  | Allowable<br>Ibs.<br>(kN)   | Allowable<br>Ibs.<br>(kN)                                     | Allowable<br>Ibs.<br>(kN)                                            |
| #3                       | 7/16                         | 3-3/8              | 8,855                                                                     | 2,215                       | 2,650                                                         | 2,650                                                                |
| (3/8)                    |                              | (86)               | (39.4)                                                                    | (9.9)                       | (11.8)                                                        | (11.8)                                                               |
| #4                       | 5/8                          | 4-1/2              | 15,015                                                                    | 3,755                       | 4,710                                                         | 4,710                                                                |
| (1/2)                    |                              | (114)              | (66.8)                                                                    | (16.7)                      | (21.0)                                                        | (21.0)                                                               |
| #5                       | 3/4                          | 5-5/8              | 22,025                                                                    | 5,505                       | 7,365                                                         | 7,365                                                                |
| (5/8)                    |                              | (143)              | (98.0)                                                                    | (24.5)                      | (32.8)                                                        | (32.8)                                                               |
| #6                       | 7/8                          | 6-3/4              | 28,910                                                                    | 7,230                       | 10,605                                                        | 10,605                                                               |
| (3/4)                    |                              | (171)              | (128.6)                                                                   | (32.2)                      | (47.2)                                                        | (47.2)                                                               |
| #8                       | 1-1/8                        | 9                  | 49,940                                                                    | 12,485                      | 18,850                                                        | 18,850                                                               |
| (1)                      |                              | (229)              | (222.1)                                                                   | (55.5)                      | (83.8)                                                        | (83.8)                                                               |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

2. The tabulated load values are applicable to single anchor installed at critical edge and spacing distances and where the minimum member thickness is greater than or equal to 1.5\*hom.

3. The tabulated load values are for applicable for dry or wet concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit.

4. Adhesives experiences reductions in capacity at elevated temperature. Tabulated load values are applicable for temperature range of 40°F - 130°F (4°C - 54°C).

5. Allowable bond/concrete strength capacities must be checked against allowable steel strength.

6. Allowable shear capacity is controlled by allowable steel strength for the given conditions.



**ADHESIVES** 

Epoxy Injection Adhesive Anchoring System

PUR

#### **INSTALLATION INSTRUCTIONS (SOLID BASE MATERIALS)**





- 10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference gel time and curing table) by using a calibrated torque wrench.
- Take care not to exceed the maximum torque for the selected anchor.

FECHNICAL GUIDE – ADHESIVES ©2018 DEWALT – REV. D

#### **ORDERING INFORMATION**

#### **Pure GP Cartridges**

| Cat No.                                                                                   | Description                  | Std. Carton | Pallet |
|-------------------------------------------------------------------------------------------|------------------------------|-------------|--------|
| 08821                                                                                     | Pure GP 21 fl. oz. cartridge | 12          | 540    |
| Pure GP mixing nozzles must be used to ensure complete and proper mixing of the adhesive. |                              |             |        |

#### **Cartridge System Mixing Nozzles**

| Cat. No. | Description                       | Std. Pkg. | Std. Ctn. |
|----------|-----------------------------------|-----------|-----------|
| 08294    | Mixing nozzle (with 8" extension) | 2         | 24        |
| 08281    | Mixing nozzle extension, 8" long  | 2         | 24        |
| 08297    | Mixing nozzle extension, 20" long | 1         | 12        |

#### **Dispensing Tools for Injection Adhesive**

| Cat No.  | Description                                    | Std. Box | Std. Carton |  |
|----------|------------------------------------------------|----------|-------------|--|
| 08409    | 21 fl. oz. Standard metal manual tool          | 1        | 10          |  |
| 08421    | 21 fl. oz. High performance manual tool        | 1        | 10          |  |
| 08459    | 21 fl. oz. Pneumatic tool                      | 1        | -           |  |
| DCE591D1 | 21 fl. oz. 20v Battery powered dispensing tool | 1        | -           |  |

#### **Adhesive Piston Plugs**

| Cat No. | Description | ANSI Drill Bit Dia. | Std.<br>Bag |
|---------|-------------|---------------------|-------------|
| 08302   | 9/16" Plug  | 9/16"               | 10          |
| 08304   | 5/8" Plug   | 5/8"                | 10          |
| 08258   | 11/16" Plug | 11/16"              | 10          |
| 08259   | 3/4" Plug   | 3/4"                | 10          |
| 08300   | 7/8" Plug   | 7/8"                | 10          |
| 08301   | 1" Plug     | 1"                  | 10          |
| 08303   | 1-1/8" Plug | 1-1/8"              | 10          |

# Hole Cleaning Tools and Accessories

| Cat No. | Description                                                     | Std. Box |
|---------|-----------------------------------------------------------------|----------|
| 08284   | Wire brush for 7/16" or 1/2" ANSI hole, 6-3/4" length           | 1        |
| 08285   | Wire brush for 9/16" ANSI hole, 6-3/4" length                   | 1        |
| 08275   | Wire brush for 5/8" ANSI hole, 6-3/4" length                    | 1        |
| 08286   | Wire brush for 11/16" ANSI hole, 7-7/8" length                  | 1        |
| 08278   | Wire brush for 3/4" ANSI hole, 7-7/8" length                    | 1        |
| 08287   | Wire brush for 7/8" ANSI hole, 7-7/8" length                    | 1        |
| 08288   | Wire brush for 1" ANSI hole, 11-7/8" length                     | 1        |
| 08289   | Wire brush for 1-1/8" ANSI hole, 11-7/8" length                 | 1        |
| 08283   | SDS-plus adapter for steel brushes                              | 1        |
| 08296   | Standard drill adapter for steel brushes<br>(e.g. Jacobs Chuck) | 1        |
| 08282   | Steel brush extension, 12" length                               | 1        |
| 08292   | Air compressor nozzle with extension, 18" length                | 1        |







TECHNICAL GUIDE - ADHESIVES ©2018 DEWALT - REV. D



#### **GENERAL INFORMATION**

# **PE1000+**®

Epoxy Injection Adhesive Anchoring System

#### PRODUCT DESCRIPTION

The PE1000+ is a two-component, high strength adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The PE1000+ is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in concrete and solid masonry base materials.

#### **GENERAL APPLICATIONS AND USES**

- · Bonding threaded rod and reinforcing bar into hardened concrete and grouted masonry units
- Evaluated for use in dry and water-saturated concrete (including water-filled holes)
- · Cracked and uncracked concrete
- · Seismic and wind loading
- Hammer-drill and diamond core drilled hole
- · Oversized hammer-drilled holes in concrete, for short term loading only (contact DEWALT for details)
- · Can be installed in a wide range of base material temperatures

#### FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Consistent performance in low and high strength concrete (2,500 to 8,500 psi)
- + Evaluated and recognized for freeze/thaw performance
- + Evaluated and recognized for long term and short term loading (see performance tables for applicable temperature ranges)
- + Evaluated and recognized for variable embedments (see installation specifications)
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Easy dispensing reduces applicator fatigue

#### **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES) ESR-2583
- Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ACI 355.4 and AC308 for use in structural concrete according to (Strength Design) ACI 318-14 Chapter 17 and ACI 318-11/08 Appendix D.
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Compliant with NSF/ANSI Standard 61 for drinking water system components health effects; minimum requirements for materials in contact with potable waterand water treatment
- Conforms to requirements of ASTM C 881 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes B & C (also meets type III except for elongation)
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

#### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Adhesive anchoring system shall be PE1000+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

#### SECTION CONTENTS

| General Information                                 | 123 |
|-----------------------------------------------------|-----|
| Reference Data (ASD)                                | 124 |
| Strength Design (SD)                                | 128 |
| Installation Instructions<br>(Solid Base Materials) | 138 |
| Reference Tables<br>For Installation                | 140 |
| Ordering Information                                | 141 |



#### PACKAGING

#### Dual (side-by-side) Cartridge

- 13 fl. oz. (385 ml), 3:1 mix ratio
- 20 fl. oz. (585ml), 3:1 mix ratio

#### **STORAGE LIFE & CONDITIONS**

Two years in a dry, dark environment with temperature ranging from 41°F to 95°F (5°C to 35°C)

#### ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)

#### SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete
- Grouted concrete masonry

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry concrete
- Water-saturated concrete (wet)
- Water-filled holes (flooded)



#### **REFERENCE DATA (ASD)**

| Dimension/Property                                | Notation               | Units         |                |                               |               | 1                       | Nominal A       | nchor Siz       | e               |                 |                 |                 |
|---------------------------------------------------|------------------------|---------------|----------------|-------------------------------|---------------|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Threaded Rod                                      | -                      | -             | 3/8"           | 1/2"                          | -             | 5/8"                    | 3/4"            | 7/8"            | 1"              | -               | 1-1/4"          | -               |
| Reinforcing Bar                                   | -                      | -             | #3             | -                             | #4            | #5                      | #6              | #7              | #8              | #9              | -               | #10             |
| Nominal anchor diameter                           | d                      | in.<br>(mm)   | 0.375<br>(9.5) | 0.500<br>(12.7)               |               | 0.625<br>(15.9)         | 0.750<br>(19.1) | 0.875<br>(22.2) | 1.000<br>(25.4) | 1.125<br>(28.6) | 1.250<br>(31.8) | 1.250<br>(31.8) |
| Carbide drill bit nominal size                    | do [dbit]              | in.           | 7/16<br>ANSI   | /16 9/16 5/8<br>NSI ANSI ANSI |               | 11/16<br>or 3/4<br>ANSI | 7/8<br>ANSI     | 1<br>ANSI       | 1-1/8<br>ANSI   | 1-3/8<br>ANSI   | 1-3/8<br>ANSI   | 1-1/2<br>ANSI   |
| Diamond core bit nominal size                     | d₀ [d <sub>bit</sub> ] | in.           | [ - ]          | 5                             | /8            | 3/4                     | 7/8             | 1               | 1-1/8           | -               | -               | -               |
| Minimum nominal embedment                         | h <sub>nom</sub>       | in.<br>(mm)   | 2-3/8<br>(61)  | 3/8 2-3/4<br>i1) (70)         |               | 3-1/8<br>(79)           | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)      | 4-1/2<br>(114)  | 5<br>(127)      | 5<br>(127)      |
| Minimum spacing distance                          | S <sub>min</sub>       | in.<br>(mm)   | 1-7/8<br>(48)  | 2-1<br>(6                     | 1/2<br>52)    | 3-1/8<br>(80)           | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)      | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159)  |
| Minimum edge distance                             | Cmin                   | in<br>(mm)    |                |                               | 5d whe        | ere d is no             | minal outs      | side diame      | eter of the     | anchor          |                 |                 |
| Minimum edge distance, reduced <sup>4</sup>       | Cmin,red               | in<br>(mm)    | 1-3/4<br>(44)  | 1-3/4<br>(44)                 | 1-3/4<br>(44) | 1-3/4<br>(44)           | 1-3/4<br>(44)   | 1-3/4<br>(44)   | 1-3/4<br>(44)   | 2-3/4<br>(70)   | 2-3/4<br>(70)   | 2-3/4<br>(70)   |
| Max. Torque <sup>1</sup>                          | Tmax                   | ft-lbs        | 15             | 3                             | 3             | 60                      | 105             | 125             | 165             | 200             | 280             | 280             |
| Max. Torque <sup>1,2</sup> (A36/Grade 36 rod)     | Tmax                   | ft-lbs        | 10             | 2                             | :5            | 50                      | 90              | 125             | 165             | N/A             | 280             | N/A             |
| Max. Torque <sup>1,3</sup> (Class 1 SS rod)       | T <sub>max</sub>       | ft-lbs        | 5              | 2                             | .0            | 40                      | 60              | 100             | 165             | N/A             | 280             | N/A             |
| Effective cross sectional area of threaded rod    | Ase                    | in.²<br>(mm²) | 0.078<br>(50)  | 0.142<br>(92)                 |               | 0.226<br>(146)          | 0.335<br>(216)  | 0.462<br>(298)  | 0.606<br>(391)  | -               | 0.969<br>(625)  | -               |
| Effective cross sectional area of reinforcing bar | Ase                    | in.²<br>(mm²) | 0.110<br>(71)  | 0.2<br>(1)                    | 200<br>29)    | 0.310<br>(200)          | 0.440<br>(284)  | 0.600<br>(387)  | 0.790<br>(510)  | 1.000<br>(645)  | -               | 1.270<br>(819)  |

#### Installation Table for PF1000+ (Solid Concrete Rase Materials)

Torque may not be applied until the full cure time of the adhesive has been achieved.

2. Applies to ASTM A36/F 1554 Grade 36 carbon steel threaded rods only.

3. These torque values apply to ASTM A193 Grade B8/B8m (Class 1) stainless steel threaded rods only.

4. For installations at the reduced minimum edge, cmin,red, the max torque, Tmax, must be multiplied by a reduction factor of 0.45.



**Detail of Steel Hardware Elements** used with Injection Adhesive System

#### Nomenclature

- = Diameter of anchor = Diameter of drilled hole d
- d<sub>bit</sub>
- h
- Base material thickness
   The minimum value of h should be 1.5hnom or 3", whichever is greater.
- $h_{nom}$  = Minimum embedment depth

| Steel Description<br>(General) | Steel Specification<br>(ASTM)           | Nominal Anchor<br>Size (inch)         | Minimum<br>Yield<br>Strength<br>fy (ksi) | Minimum<br>Ultimate<br>Strength<br>fu (ksi) |
|--------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------------|
|                                | A 36 or F 1554,<br>Grade 36             |                                       | 36.0                                     | 58.0                                        |
| Carbon Rod                     | F 1554 Grade 55                         | 3/8 through 1-1/4                     | 55.0                                     | 75.0                                        |
|                                | A 193, Grade B7 or<br>F 1554, Grade 105 |                                       | 105.0                                    | 125.0                                       |
| Stainless Rod                  | F 593                                   | 3/8 through 5/8                       | 65.0                                     | 100.0                                       |
| (Alloy 304 / 316)              | Condition CW                            | 3/4 through 1-1/4                     | 45.0                                     | 85.0                                        |
| Grade 60<br>Reinforcing Bar    | A 615, or<br>A 767, A 996               | 3/8 through 1-1/4<br>(#3 through #10) | 60.0                                     | 90.0                                        |
| Grade 40<br>Reinforcing Bar    | A 615                                   | 3/8 through 3/4<br>(#3 through #6)    | 40.0                                     | 60.0                                        |



# Allowable Load Capacities for PE1000+ Installed into Uncracked Normal-Weight Concrete with Threaded Rod and Reinforcing Bar (Based on Bond Strength/Concrete Capacity)<sup>1,2,3,4,5,6</sup>

|                      |                      | Minimum Concrete Compressive Strength, (f'c) |           |               |           |  |  |  |  |  |
|----------------------|----------------------|----------------------------------------------|-----------|---------------|-----------|--|--|--|--|--|
| Nominal<br>Rod/Rebar | Minimum<br>Embedment | 3,000 psi                                    | 4,000 psi | 5,000 psi     | 6,000 psi |  |  |  |  |  |
| (in. or #)           | (in.)                |                                              | Tei<br>(  | nsion<br>Ibs) |           |  |  |  |  |  |
|                      | 2-3/8                | 1,195                                        | 1,235     | 1,270         | 1,300     |  |  |  |  |  |
| 3/8 or #3            | 3-1/2                | 1,760                                        | 1,825     | 1,875         | 1,915     |  |  |  |  |  |
|                      | 4-1/2                | 2,265                                        | 2,345     | 2,410         | 2,460     |  |  |  |  |  |
|                      | 2-3/4                | 1,770                                        | 1,835     | 1,885         | 1,925     |  |  |  |  |  |
| 1/2 or #4            | 4-3/8                | 2,820                                        | 2,915     | 2,995         | 3,065     |  |  |  |  |  |
|                      | 6                    | 3,865                                        | 4,000     | 4,110         | 4,200     |  |  |  |  |  |
|                      | 3-1/8                | 2,420                                        | 2,505     | 2,575         | 2,630     |  |  |  |  |  |
| 5/8 or #5            | 5-1/4                | 4,145                                        | 4,290     | 4,405         | 4,505     |  |  |  |  |  |
|                      | 7-1/2                | 5,970                                        | 6,180     | 6,345         | 6,485     |  |  |  |  |  |
|                      | 3-1/2                | 2,870                                        | 2,970     | 3,050         | 3,120     |  |  |  |  |  |
| 3/4 or #6            | 6-1/4                | 5,715                                        | 5,915     | 6,075         | 6,210     |  |  |  |  |  |
|                      | 9                    | 8,560                                        | 8,860     | 9,100         | 9,300     |  |  |  |  |  |
|                      | 3-1/2                | 2,870                                        | 2,970     | 3,050         | 3,120     |  |  |  |  |  |
| 7/8 or #7            | 7                    | 7,285                                        | 7,540     | 7,745         | 7,915     |  |  |  |  |  |
|                      | 10-1/2               | 11,700                                       | 12,110    | 12,440        | 12,715    |  |  |  |  |  |
|                      | 4                    | 3,505                                        | 3,630     | 3,725         | 3,810     |  |  |  |  |  |
| 1 or #8              | 8                    | 9,570                                        | 9,905     | 10,175        | 10,400    |  |  |  |  |  |
|                      | 12                   | 15,635                                       | 16,185    | 16,625        | 16,990    |  |  |  |  |  |
|                      | 4-1/2                | 4,185                                        | 4,330     | 4,445         | 4,545     |  |  |  |  |  |
| 1-1/8 or #9          | 9                    | 12,025                                       | 12,445    | 12,785        | 13,065    |  |  |  |  |  |
|                      | 13-1/2               | 19,865                                       | 20,560    | 21,120        | 21,585    |  |  |  |  |  |
|                      | 5                    | 4,900                                        | 5,070     | 5,210         | 5,325     |  |  |  |  |  |
| 1-1/4 or #10         | 10                   | 15,030                                       | 15,560    | 15,980        | 16,335    |  |  |  |  |  |
|                      | 15                   | 25,165                                       | 26,045    | 26,755        | 27,345    |  |  |  |  |  |

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and at the minimum member thickness.

4. The tabulated load values are for applicable for dry concrete. Holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in wet concrete or in water-filled holes may require a reduction in capacity. Contact DEWALT for more information concerning these installation conditions.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load. Allowable shear capacity is controlled by steel strength for the given conditions.



**ADHESIVES** 

# **PE1000+®** Epoxy Injection Adhesive Anchoring System

Allowable Load Capacities for Threaded Rod and Reinforcing Bar (Based on Steel Strength)<sup>12,34,5</sup>

|                                        |                         |                      |                           |                      |                                           |                      | Steel Ele               | ements -             | Threaded                       | I Rod and            | d Reinfor               | cing Bar             |                         |                      |                                     |                      |                                |                      |
|----------------------------------------|-------------------------|----------------------|---------------------------|----------------------|-------------------------------------------|----------------------|-------------------------|----------------------|--------------------------------|----------------------|-------------------------|----------------------|-------------------------|----------------------|-------------------------------------|----------------------|--------------------------------|----------------------|
| Nominal<br>Rod<br>Diameter<br>or Rebar | A36 or<br>Grad          | F1554,<br>le 36      | A36 or F1554,<br>Grade 55 |                      | A 193, Grade<br>B7 or F1554,<br>Grade 105 |                      | F 593, CW (SS)          |                      | ASTM A615<br>Grade 40<br>Rebar |                      | ASTM<br>Grad<br>Rei     | A615<br>le 60<br>bar | ASTM<br>Grad<br>Rei     | A706<br>e 60<br>bar  | 06 ASTM A615<br>0 Grade 75<br>Rebar |                      | ASTM A706<br>Grade 80<br>Rebar |                      |
| Size<br>(in. or #)                     | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)                   | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)             | Shear<br>Ibs<br>(kN) | Tension<br>Ibs.<br>(kN)        | Shear<br>Ibs<br>(kN) |
| 3/8 or #3                              | 2,115<br>(9.4)          | 1,090<br>(4.8)       | 2,735<br>(12.2)           | 1,410<br>(6.3)       | 4,555<br>(20.3)                           | 2,345<br>(10.4)      | 3,645<br>(16.2)         | 1,880<br>(8.4)       | 2,210<br>(9.8)                 | 1,125<br>(5.0)       | 2,650<br>(11.8)         | 1,690<br>(7.5)       | 2,650<br>(11.8)         | 1,500<br>(6.7)       | 2,650<br>(11.8)                     | 1,875<br>(8.3)       | 2,650<br>(11.8)                | 1,875<br>(8.3)       |
| 1/2 or #4                              | 3,760<br>(16.7)         | 1,935<br>(8.6)       | 4,860<br>(21.6)           | 2,505<br>(11.1)      | 8,100<br>(36.0)                           | 4,170<br>(18.5)      | 6,480<br>(28.8)         | 3,340<br>(14.9)      | 3,925<br>(17.5)                | 2,005<br>(8.9)       | 4,710<br>(21.0)         | 3,005<br>(13.4)      | 4,710<br>(21.0)         | 2,670<br>(11.9)      | 4,710<br>(21.0)                     | 3,335<br>(14.8)      | 4,710<br>(21.0)                | 3,335<br>(14.8)      |
| 5/8 or #5                              | 5,870<br>(26.1)         | 3,025<br>(13.5)      | 7,595<br>(33.8)           | 3,910<br>(17.4)      | 12,655<br>(56.3)                          | 6,520<br>(29.0)      | 10,125<br>(45.0)        | 5,215<br>(23.2)      | 6,135<br>(27.3)                | 3,130<br>(13.9)      | 7,365<br>(32.8)         | 4,695<br>(20.9)      | 7,365<br>(32.8)         | 4,170<br>(18.5)      | 7,365<br>(32.8)                     | 5,215<br>(23.2)      | 7,365<br>(32.8)                | 5,215<br>(23.2)      |
| 3/4 or #6                              | 8,455<br>(37.6)         | 4,355<br>(19.4)      | 10,935<br>(48.6)          | 5,635<br>(25.1)      | 18,225<br>(81.1)                          | 9,390<br>(41.8)      | 12,390<br>(55.1)        | 6,385<br>(28.4)      | 8,835<br>(39.3)                | 4,505<br>(20.0)      | 10,605<br>(47.2)        | 6,760<br>(30.1)      | 10,605<br>(47.2)        | 6,010<br>(26.7)      | 10,605<br>(47.2)                    | 7,510<br>(33.4)      | 10,605<br>(47.2)               | 7,510<br>(33.4)      |
| 7/8 or #7                              | 11,510<br>(51.2)        | 5,930<br>(26.4)      | 14,885<br>(66.2)          | 7,665<br>(34.1)      | 24,805<br>(110.3)                         | 12,780<br>(56.8)     | 16,865<br>(75.0)        | 8,690<br>(38.7)      | -                              | -                    | 14,430<br>(64.2)        | 9,200<br>(40.9)      | 14,430<br>(64.2)        | 8,180<br>(36.4)      | 14,430<br>(64.2)                    | 10,220<br>(45.5)     | 14,430<br>(64.2)               | 10,220<br>(45.5)     |
| 1 or #8                                | 15,035<br>(66.9)        | 7,745<br>(34.5)      | 19,440<br>(86.5)          | 10,015<br>(44.5)     | 32,400<br>(144.1)                         | 16,690<br>(74.2)     | 22,030<br>(98.0)        | 11,350<br>(50.5)     | -                              | -                    | 18,850<br>(83.8)        | 12,015<br>(53.4)     | 18,850<br>(83.8)        | 10,680<br>(47.5)     | 18,850<br>(83.8)                    | 13,350<br>(59.4)     | 18,850<br>(83.8)               | 13,350<br>(59.4)     |
| #9                                     | -                       | -                    | -                         | -                    | -                                         | -                    | -                       | -                    | -                              | -                    | 23,985<br>(106.7)       | 15,290<br>(68.0)     | 23,985<br>(106.7)       | 13,590<br>(60.5)     | 23,985<br>(106.7)                   | 16,990<br>(75.6)     | 23,985<br>(106.7)              | 16,990<br>(75.6)     |
| 1-1/4                                  | 23,490<br>(104.5)       | 12,100<br>(53.8)     | 30,375<br>(135.1)         | 15,645<br>(69.6)     | 50,620<br>(225.2)                         | 26,080<br>(116.0)    | 34,425<br>(153.1)       | 17,735<br>(78.9)     | -                              | -                    | -                       | -                    | -                       | -                    | -                                   | -                    | -                              | -                    |
| #10                                    | -                       | -                    | -                         | -                    | -                                         | -                    | -                       | -                    | -                              | -                    | 30,405<br>(135.2)       | 19,380<br>(86.2)     | 30,405<br>(135.2)       | 17,230<br>(76.6)     | 30,405<br>(135.2)                   | 21,535<br>(95.8)     | 30,405<br>(135.2)              | 21,535<br>(95.8)     |

1. AISC defined steel strength (ASD) for threaded rod: Tensile =  $0.33 \bullet F_u \bullet A_{nom}$ , Shear =  $0.17 \bullet F_u \bullet A_{nom}$ 

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

5. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances and where the minimum member thickness is the greater of [hnom + 1-1/4"] and [hnom + 2dwi]

#### In-Service Temperature Chart for Allowable Load Capacities<sup>1</sup>

| Base Material                                    | Temperature                            | Rand Strength Reduction Factor for Townsysters |
|--------------------------------------------------|----------------------------------------|------------------------------------------------|
| °F                                               | °C                                     | Bond Strength Reduction Factor for Temperature |
| 41                                               | 5                                      | 1.00                                           |
| 50                                               | 10                                     | 1.00                                           |
| 68                                               | 20                                     | 1.00                                           |
| 75                                               | 14                                     | 1.00                                           |
| 104                                              | 40                                     | 0.85                                           |
| 110                                              | 43                                     | 0.82                                           |
| 122                                              | 50                                     | 0.76                                           |
| 140                                              | 60                                     | 0.69                                           |
| 1. Linear interpolation may be used to derive re | eduction factors between those listed. |                                                |



# Ultimate Load Capacities for Threaded Rod Installed with PE1000+ into the Block Face of Grout-Filled Concrete Masonry Walls<sup>1,2</sup>

| Nominal               | Drill                               | Minimum              | Minimum                         | Minimum                 | Ultimat                 | e Load <sup>3</sup>   | Allowable Load          |                       |  |
|-----------------------|-------------------------------------|----------------------|---------------------------------|-------------------------|-------------------------|-----------------------|-------------------------|-----------------------|--|
| Diameter<br>d.<br>in. | Diameter<br>d <sub>bit</sub><br>in. | Depth<br>in.<br>(mm) | Edge<br>Distance<br>in.<br>(mm) | Distance<br>in.<br>(mm) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) |  |
| 3/8                   | 7/16                                | 3<br>(76.2)          | 2-1/2<br>(63.5)                 | 2-1/2<br>(63.5)         | 3,350<br>(14.9)         | 2,100<br>(9.3)        | 670<br>(2.9)            | 420<br>(1.9)          |  |
| 1/2                   | 9/16                                | 4<br>(101.6)         | 3<br>(76.2)                     | 3<br>(76.2)             | 4,575<br>(20.3)         | 2,550<br>(11.3)       | 915<br>(4.1)            | 510<br>(2.3)          |  |
| 5/8                   | 11/16                               | 5<br>(127.0)         | 3-3/4<br>(95.3)                 | 4<br>(101.6)            | 6,900<br>(30.7)         | 5,275<br>(23.5)       | 1,380<br>(6.1)          | 1,055<br>(4.7)        |  |

1. Tabulated load values are for anchors installed in minimum 8" wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90 that have reached a designated minimum compressive strength at the time of installation (f'm ≥1,500 psi). Mortar must be type N, S or M.

2. Anchor installations are limited to one per masonry cell. Shear loads may be applied in any direction.

3. The values listed are ultimate load capacities which should be reduced by a minimum safety factor of 5.0 or greater to determine the allowable working load. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

#### Load Capacities for Threaded Rod Installed with PE1000+ in the Top of Grout-Filled Concrete Masonry Walls<sup>1,2</sup>

| Nominal               | Drill                   | Minimum              | Minimum                         | Minimum                 | Ultimat                 | e Load <sup>3</sup>   | Allowable Load          |                       |  |
|-----------------------|-------------------------|----------------------|---------------------------------|-------------------------|-------------------------|-----------------------|-------------------------|-----------------------|--|
| Diameter<br>d.<br>in. | Diameter<br>dbit<br>in. | Depth<br>in.<br>(mm) | Eage<br>Distance<br>in.<br>(mm) | Distance<br>in.<br>(mm) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) |  |
| 1/2                   | 9/16                    | 6<br>(152.4)         | 1-3/4<br>(44.5)                 | 3<br>(76.2)             | 5,950<br>(26.4)         | 1,450<br>(6.5)        | 1,190<br>(5.3)          | 290<br>(1.3)          |  |
| 5/8                   | 11/16                   | 8<br>(203.2)         | 1-3/4<br>(44.5)                 | 4<br>(101.6)            | 9,450<br>(42.0)         | 1,700<br>(7.5)        | 1,890<br>(8.4)          | 340<br>(1.4)          |  |

1. Tabulated load values are for anchors installed in a minimum Grade N, Type II, lightweight, medium-weight or normal-weight masonry units conforming to ASTM C 90 that have reached a designated minimum compressive strength at the time of installation (f'm ≥1,500 psi). Mortar must be type N, S or M.

2. Anchor installations are limited to one per masonry cell. Shear loads may be applied in any direction.

3. The values listed are ultimate load capacities which should be reduced by a minimum safety factor of 5.0 or greater to determine the allowable working load. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.



Face Shell Permissible Anchor Locations (Un-hatched Area / Through Face Shell)



**Top of Wall** 

TECHNICAL GUIDE – ADHESIVES © 2018 DEWALT – REV. D



#### **STRENGTH DESIGN (SD)**

#### Installation Specifications for Threaded Rod and Reinforcing Bar



| Dimension/Property                                | Notation                           | Units                                  | s Nominal Anchor Size       |                           |                 |                         |                 |                 |                       |                 |                 |                |
|---------------------------------------------------|------------------------------------|----------------------------------------|-----------------------------|---------------------------|-----------------|-------------------------|-----------------|-----------------|-----------------------|-----------------|-----------------|----------------|
| Threaded Rod                                      | -                                  | -                                      | 3/8"                        | 1/2"                      | -               | 5/8"                    | 3/4"            | 7/8"            | 1"                    | -               | 1-1/4"          | -              |
| Reinforcing Bar                                   | -                                  | -                                      | #3                          | -                         | #4              | #5                      | #6              | #7              | #8                    | #9              | -               | #10            |
| Nominal anchor diameter                           | d                                  | in.<br>(mm)                            | 0.375 0.500<br>(9.5) (12.7) |                           | 0.625<br>(15.9) | 0.750<br>(19.1)         | 0.875<br>(22.2) | 1.000<br>(25.4) | 1.125<br>(28.6)       | 1.250<br>(31.8) | 1.250<br>(31.8) |                |
| Carbide drill bit nominal size                    | do [dbit]                          | in.                                    | 7/16<br>ANSI                | 9/16<br>ANSI              | 5/8<br>ANSI     | 11/16<br>or 3/4<br>ANSI | 7/8<br>ANSI     | 1<br>ANSI       | 1-1/8<br>ANSI         | 1-3/8<br>ANSI   | 1-3/8<br>ANSI   | 1-1/2<br>ANSI  |
| Diamond core bit nominal size                     | d <sub>o</sub> [d <sub>bit</sub> ] | in.                                    | -                           | 5/                        | /8              | 3/4                     | 7/8             | 1               | 1-1/8                 | -               | -               | -              |
| Minimum embedment                                 | h <sub>ef,min</sub>                | in.<br>(mm)                            | 2-3/8<br>(61)               | 2-3<br>(7                 | 3/4<br>0)       | 3-1/8<br>(79)           | 3-1/2<br>(89)   | 3-1/2<br>(89)   | 4<br>(102)            | 4-1/2<br>(114)  | 5<br>(127)      | 5<br>(127)     |
| Maximum embedment⁴                                | h <sub>ef,max</sub>                | in.<br>(mm)                            | 4-1/2<br>(114)              | 1<br>(25                  | 0<br>54)        | 12-1/2<br>(318)         | 15<br>(381)     | 17-1/2<br>(445) | 20<br>(508)           | 22-1/2<br>(572) | 25<br>(635)     | 25<br>(635)    |
| Minimum concrete member thickness                 | h <sub>min</sub>                   | in.<br>(mm)                            | ľ                           | 1ef + 1-1/4<br>(hef + 30) | 1               |                         |                 |                 | h <sub>ef</sub> + 2d₀ |                 |                 |                |
| Minimum spacing distance                          | Smin                               | in.<br>(mm)                            | 1-7/8<br>(48)               | 2-1<br>(6                 | 1/2<br>2)       | 3-1/8<br>(80)           | 3-3/4<br>(95)   | 4-3/8<br>(111)  | 5<br>(127)            | 5-5/8<br>(143)  | 6-1/4<br>(159)  | 6-1/4<br>(159) |
| Minimum edge distance                             | Cmin                               | in<br>(mm)                             |                             |                           | 5d whe          | ere d is no             | minal outs      | side diame      | eter of the           | anchor          |                 |                |
| Minimum edge distance, reduced5                   | Cmin,red                           | in<br>(mm)                             | 1-3/4<br>(44)               | 1-3/4<br>(44)             | 1-3/4<br>(44)   | 1-3/4<br>(44)           | 1-3/4<br>(44)   | 1-3/4<br>(44)   | 1-3/4<br>(44)         | 2-3/4<br>(70)   | 2-3/4<br>(70)   | 2-3/4<br>(70)  |
| Max. Torque <sup>2</sup>                          | Tmax                               | ft-lbs                                 | 15                          | 3                         | 3               | 60                      | 105             | 125             | 165                   | 200             | 280             | 280            |
| Max. Torque <sup>2,3</sup> (A36/Grade 36 rod)     | T <sub>max</sub>                   | ft-lbs                                 | 10                          | 2                         | 5               | 50                      | 90              | 125             | 165                   | N/A             | 280             | N/A            |
| Max. Torque <sup>2,4</sup> (Class 1 SS rod)       | T <sub>max</sub>                   | ft-lbs                                 | 5                           | 5 20                      |                 | 40                      | 60              | 100             | 165                   | N/A             | 280             | N/A            |
| Effective cross sectional area of threaded rod    | Ase                                | in.²<br>(mm²)                          | 0.078<br>(50)               | 0.078 0.142<br>(50) (92)  |                 | 0.226<br>(146)          | 0.335<br>(216)  | 0.462<br>(298)  | 0.606<br>(391)        | -               | 0.969<br>(625)  | -              |
| Effective cross sectional area of reinforcing bar | Ase                                | in. <sup>2</sup><br>(mm <sup>2</sup> ) | 0.110<br>(71)               | 0.2<br>(12                | 200<br>29)      | 0.310<br>(200)          | 0.440<br>(284)  | 0.600<br>(387)  | 0.790<br>(510)        | 1.000<br>(645)  | -               | 1.270<br>(819) |

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m. For pound-inch units: 1 mm = 0.03937 inch, 1 N-m = 0.7375 ft-lbf.

1. For use with the design provisions of ACI 318-14 Ch.17 or ACI 318-11 Appendix D as applicable, ICC-ES AC308 Section 4.2 and ESR-2583

 $\ \ 2. \ \ {\rm Torque\ may\ not\ be\ applied\ to\ the\ anchors\ until the\ full\ cure\ time\ of\ the\ adhesive\ has\ been\ achieved }$ 

3. These torque values apply to ASTM A36/F 1554 Grade 36 carbon steel threaded rods only.

4. These torque values apply to ASTM A197 Grade B8/BBM (Class 1) stainless steel threaded rods only

5. For installation at the reduced minimum edge distance, Cmin,red, the max torque, Tmax must be multiplied by a reduction factor of 0.45.

6. The maximum embedment is limited to 12 diameters for the horizontal and upwardly inclined installations and for installations in water-filled (flooded) holes with a carbide drill bit.

# Detail of Steel Hardware Elements used with Injection Adhesive System



| Steel Description<br>(General)          | Steel Specification<br>(ASTM)                      | Nominal Anchor<br>Size (inch)      | Minimum<br>Yield<br>Strength<br>fy (ksi) | Minimum<br>Ultimate<br>Strength<br>fu (ksi) |
|-----------------------------------------|----------------------------------------------------|------------------------------------|------------------------------------------|---------------------------------------------|
|                                         | A 36 or F 1554,<br>Grade 36                        |                                    | 36.0                                     | 58.0                                        |
| Carbon Rod                              | Carbon Rod F 1554 Grade 55 3<br>A 193, Grade B7 or | 3/8 through 1-1/4                  | 55.0                                     | 75.0                                        |
| A 193, Grade B7 or<br>F 1554, Grade 105 |                                                    | 105.0                              | 125.0                                    |                                             |
| Stainless Rod                           | F 593 3/8 through 5/8                              |                                    | 65.0                                     | 100.0                                       |
| (Alloy 304 / 316)                       | Condition CW                                       | 3/4 through 1-1/4                  | 45.0                                     | 85.0                                        |
| Grade 60                                | A 615, or<br>A 767, A 996                          | 3/8 through 1-1/4                  | 60.0                                     | 90.0                                        |
| Reinforcing Bar                         | A 706                                              | (#3 through #10)                   | 60.0                                     | 80.0                                        |
| Grade 40<br>Reinforcing Bar             | A 615                                              | 3/8 through 3/4<br>(#3 through #6) | 40.0                                     | 60.0                                        |

### www.**DeWALT**.com

**Design Information** 

Threaded rod nominal outside diameter

1-1/4

1.250

(31.8)

#### Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)

Symbol

d

Units

inch

(mm)

3/8

0.375

(9.5)

1/2

0.500

(12.7)

5/8

0.625

(15.9)



1

1.000

(25.4)

Nominal Rod Diameter<sup>1</sup> (inch)

3/4

0.750

(19.1)

7/8

0.875

(22.2)

| 10  |
|-----|
| Ш   |
| >   |
| 5   |
| Ш   |
| I   |
|     |
| - 1 |

| Threaded rod                                                                | effective cross-sectional area                                       | Ase             | inch²<br>(mm²) | 0.0775<br>(50)  | 0.1419<br>(92)   | 0.2260<br>(146)   | 0.3345<br>(216)   | 0.4617<br>(298)   | 0.6057<br>(391)   | 0.9691<br>(625)    |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------|----------------|-----------------|------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--|--|
|                                                                             | Nominal strength as governed by                                      | Nsa             | lbf<br>(kN)    | 4,495<br>(20.0) | 8,230<br>(36.6)  | 13,110<br>(58.3)  | 19,400<br>(86.3)  | 26,780<br>(119.1) | 35,130<br>(156.3) | 56,210<br>(250.0)  |  |  |
| ASTM A 36<br>and                                                            | steel strength (for a single anchor)                                 | Vsa             | lbf<br>(kN)    | 2,695<br>(12.0) | 4,940<br>(22.0)  | 7,860<br>(35.0)   | 11,640<br>(51.8)  | 16,070<br>(71.4)  | 21,080<br>(93.8)  | 33,725<br>(150.0)  |  |  |
| ASTM F 1554                                                                 | Reduction factor for seismic shear                                   | O(V,seis        | -              | 0.80            | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |  |
|                                                                             | Strength reduction factor for tension <sup>2</sup>                   | $\phi$          | -              |                 |                  |                   | 0.75              |                   |                   |                    |  |  |
|                                                                             | Strength reduction factor for shear <sup>2</sup>                     | φ               | -              |                 |                  |                   | 0.65              |                   |                   |                    |  |  |
|                                                                             | Nominal strength as governed by                                      | Nsa             | lbf<br>(kN)    | 5,810<br>(25.9) | 10,640<br>(47.3) | 16,950<br>(75.4)  | 25,085<br>(111.6) | 34,625<br>(154.0) | 45,425<br>(202.0) | 72,680<br>(323.3)  |  |  |
| ASTM F 1554                                                                 | steel strength(for a single anchor)                                  | Vsa             | lbf<br>(kN)    | 3,485<br>(15.5) | 6,385<br>(28.4)  | 10,170<br>(45.2)  | 15,050<br>(67.0)  | 20,775<br>(92.4)  | 27,255<br>(121.2) | 43,610<br>(194.0)  |  |  |
| Grade 55                                                                    | Reduction factor for seismic shear                                   | O(V,seis        | -              | 0.80            | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |  |
|                                                                             | Strength reduction factor for tension <sup>2</sup>                   | $\phi$          | -              | 0.75            |                  |                   |                   |                   |                   |                    |  |  |
|                                                                             | Strength reduction factor for shear <sup>2</sup>                     | $\phi$          | -              | 0.65            |                  |                   |                   |                   |                   |                    |  |  |
|                                                                             | Nominal strength as governed by                                      | Nsa             | lbf<br>(kN)    | 9,685<br>(43.1) | 17,735<br>(78.9) | 28,250<br>(125.7) | 41,810<br>(186.0) | 57,710<br>(256.7) | 75,710<br>(336.8) | 121,135<br>(538.8) |  |  |
| Grade B7<br>and                                                             | steel strength (for a single anchor)                                 | Vsa             | lbf<br>(kN)    | 5,815<br>(25.9) | 10,640<br>(7.3)  | 16,950<br>(75.4)  | 25,085<br>(111.6) | 34,625<br>(154.0) | 45,425<br>(202.1) | 72,680<br>(323.3)  |  |  |
| ASTM F 1554                                                                 | Reduction factor for seismic shear                                   | OlV,seis        | -              | 0.80            | 0.80             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |  |
| Grade 105                                                                   | Strength reduction factor for tension <sup>2</sup>                   | $\phi$          | -              |                 |                  |                   | 0.75              |                   |                   |                    |  |  |
|                                                                             | Strength reduction factor for shear <sup>2</sup>                     | $\phi$          | -              |                 |                  |                   | 0.65              |                   |                   |                    |  |  |
|                                                                             | Nominal strength as governed by steel strength (for a single anchor) | N <sub>sa</sub> | lbf<br>(kN)    | 7,750<br>(34.5) | 14,190<br>(63.1) | 22,600<br>(100.5) | 28,430<br>(126.5) | 39,245<br>(174.6) | 51,485<br>(229.0) | 82,370<br>(366.4)  |  |  |
| ASTM F 593<br>CW Stainless                                                  |                                                                      | Vsa             | lbf<br>(kN)    | 4,650<br>(20.7) | 8,515<br>(37.9)  | 13,560<br>(60.3)  | 17,060<br>(75.9)  | 23,545<br>(104.7) | 30,890<br>(137.4) | 49,425<br>(219.8)  |  |  |
| (Types 304<br>and 316)                                                      | Reduction factor for seismic shear                                   | OlV,seis        | -              | 0.70            | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |  |
| und o roj                                                                   | Strength reduction factor for tension <sup>3</sup>                   | $\phi$          | -              |                 |                  |                   | 0.65              |                   |                   |                    |  |  |
|                                                                             | Strength reduction factor for shear <sup>3</sup>                     | $\phi$          | -              |                 |                  |                   | 0.60              |                   |                   |                    |  |  |
| ASTM A 193                                                                  | Nominal strength as governed by                                      | Nsa             | lbf<br>(kN)    | 4,420<br>(19.7) | 8,090<br>(36.0)  | 12,880<br>(57.3)  | 19,065<br>(84.8)  | 26,315<br>(117.1) | 34,525<br>(153.6) | 55,240<br>(245.7)  |  |  |
| Grade B8/B8M,<br>Class 1                                                    | steel strength (for a single anchor) <sup>4</sup>                    | Vsa             | lbf<br>(kN)    | 2,650<br>(11.8) | 4,855<br>(21.6)  | 7,730<br>(34.4)   | 11,440<br>(50.9)  | 15,790<br>(70.2)  | 20,715<br>(92.1)  | 33,145<br>(147.4)  |  |  |
| Stainless<br>(Types 304                                                     | Reduction factor for seismic shear                                   | OlV,seis        | -              | 0.70            | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |  |
| and 316)                                                                    | Strength reduction factor for tension <sup>2</sup>                   | $\phi$          | -              |                 |                  |                   | 0.75              |                   |                   |                    |  |  |
|                                                                             | Strength reduction factor for shear <sup>2</sup>                     | $\phi$          | -              |                 |                  |                   | 0.65              |                   |                   |                    |  |  |
| ASTM A 193                                                                  | Nominal strength as governed by                                      | Nsa             | lbf<br>(kN)    | 7,365<br>(32.8) | 13,480<br>(60.0) | 21,470<br>(95.5)  | 31,775<br>(141.3) | 43,860<br>(195.1) | 57,545<br>(256.0) | 92,065<br>(409.5)  |  |  |
| Grade B8/<br>B8M2,<br>Class 2B —<br>Stainless —<br>(Types 304 —<br>and 316) | steel strength (for a single anchor)                                 | Vsa             | lbf<br>(kN)    | 4,420<br>(19.7) | 8,085<br>(36.0)  | 12,880<br>(57.3)  | 19,065<br>(84.8)  | 26,315<br>(117.1) | 34,525<br>(153.6) | 55,240<br>(245.7)  |  |  |
|                                                                             | Reduction factor for seismic shear                                   | O(V,seis        | -              | 0.70            | 0.70             | 0.80              | 0.80              | 0.80              | 0.80              | 0.80               |  |  |
|                                                                             | Strength reduction factor for tension <sup>2</sup>                   | $\phi$          | -              |                 |                  |                   | 0.75              |                   |                   |                    |  |  |
|                                                                             | Strength reduction factor for shear <sup>2</sup>                     | φ               | -              |                 |                  |                   | 0.65              |                   |                   |                    |  |  |
| For SI: 1 inch $= 25$                                                       | 4 mm 1 lbf - 4 448 N For pound inch units                            | 1 mm - 0.02     | 027 inchos     | 1 N - 0 22/8    | lbf              |                   |                   |                   |                   |                    |  |  |

1. Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

2. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements.

3. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14.5.3 or ACI 318-11.9.2, as applicable, are used in accordance with ACI 318-14.17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements

4. In accordance with ACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/B8M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9 fy or 57,000 psi (393 MPa).



# Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)



▶ E '.'/+

ENGINEERED BY Powers

|                |                                                    |                  |                |                  |                  | Nomina            | l Reinforcin      | ng Bar Size (                                              | (Rebar) <sup>1</sup> |                    |                    |  |
|----------------|----------------------------------------------------|------------------|----------------|------------------|------------------|-------------------|-------------------|------------------------------------------------------------|----------------------|--------------------|--------------------|--|
|                | Design Information                                 | Symbol           | Units          | No. 3            | No. 4            | No. 5             | No. 6             | No. 7                                                      | No. 8                | No. 9              | No. 10             |  |
| Rebar nomin    | al outside diameter                                | d                | inch<br>(mm)   | 0.375<br>(9.5)   | 0.500<br>(12.7)  | 0.625<br>(15.9)   | 0.750<br>(19.1)   | 0.875<br>(22.2)                                            | 1.000<br>(25.4)      | 1.125<br>(28.7)    | 1.250<br>(32.3)    |  |
| Rebar effectiv | ve cross-sectional area                            | A <sub>se</sub>  | inch²<br>(mm²) | 0.110<br>(71.0)  | 0.200<br>(129.0) | 0.310<br>(200.0)  | 0.440<br>(283.9)  | 0.600<br>(387.1)                                           | 0.790<br>(509.7)     | 1.000<br>(645.2)   | 1.270<br>(819.4)   |  |
|                | Nominal strength as governed by                    | Nsa              | lbf<br>(kN)    | 11,000<br>(48.9) | 20,000<br>(89.0) | 31,000<br>(137.9) | 44,000<br>(195.7) | 60,000<br>(266.9)                                          | 79,000<br>(351.4)    | 100,000<br>(444.8) | 127,000<br>(564.9) |  |
| ASTM           | steel strength (for a single anchor)               | Vsa              | lbf<br>(kN)    | 6,600<br>(29.4)  | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | 36,000<br>(160.1)                                          | 47,400<br>(210.8)    | 60,000<br>(266.9)  | 76,200<br>(338.9)  |  |
| Grade 75       | Reduction factor for seismic shear                 | <i>O</i> ℓV,seis | -              | 0.70             | 0.70             | 0.80              | 0.80              | 0.80                                                       | 0.80                 | 0.80               | 0.80               |  |
|                | Strength reduction factor for tension <sup>3</sup> | $\phi$           | -              |                  |                  |                   | 0.                | 65                                                         |                      |                    |                    |  |
|                | Strength reduction factor for shear <sup>3</sup>   | $\phi$           | -              |                  |                  |                   | 0.                | 60                                                         |                      |                    |                    |  |
| ASTM<br>A 615  | Nominal strength as governed by                    | Nsa              | lbf<br>(kN)    | 9,900<br>(44.0)  | 18,000<br>(80.1) | 27,900<br>(124.1) | 39,600<br>(176.1) | 54,000<br>(240.2)                                          | 71,100<br>(316.3)    | 90,000<br>(400.3)  | 114,300<br>(508.4) |  |
|                | steel strength (for a single anchor)               | Vsa              | lbf<br>(kN)    | 5,940<br>(26.4)  | 10,800<br>(48.0) | 16,740<br>(74.5)  | 23,760<br>(105.7) | 32,400<br>(144.1)                                          | 42,660<br>(189.8)    | 54,000<br>(240.2)  | 68,580<br>(305.0)  |  |
| Grade 60       | Reduction factor for seismic shear                 | <i>O</i> ℓV,seis | -              | 0.70             | 0.70             | 0.80              | 0.80              | 0.80                                                       | 0.80                 | 0.80               | 0.80               |  |
|                | Strength reduction factor for tension <sup>2</sup> | $\phi$           | -              | 0.75             |                  |                   |                   |                                                            |                      |                    |                    |  |
|                | Strength reduction factor for shear <sup>2</sup>   | $\phi$           | -              |                  |                  |                   | 0.                | 65                                                         |                      |                    |                    |  |
|                | Nominal strength as governed by                    | Nsa              | lbf<br>(kN)    | 8,800<br>(39.1)  | 16,000<br>(71.2) | 24,800<br>(110.3) | 35,200<br>(156.6) | 48,000<br>(213.5)                                          | 63,200<br>(281.1)    | 80,000<br>(355.9)  | 101,600<br>(452.0) |  |
| ASTM A 706     | steel strength (for a single anchor)               | Vsa              | lbf<br>(kN)    | 5,280<br>(23.5)  | 9,600<br>(42.7)  | 14,880<br>(66.2)  | 21,120<br>(94.0)  | 28,800<br>(128.1)                                          | 37,920<br>(168.7)    | 48,000<br>(213.5)  | 60,960<br>(271.2)  |  |
| Grade 60       | Reduction factor for seismic shear                 | ØV,seis          | -              | 0.70             | 0.70             | 0.80              | 0.80              | 0.80                                                       | 0.80                 | 0.80               | 0.80               |  |
|                | Strength reduction factor for tension <sup>2</sup> | $\phi$           | -              |                  |                  |                   | 0.                | 75                                                         |                      |                    |                    |  |
|                | Strength reduction factor for shear <sup>2</sup>   | $\phi$           | -              |                  |                  |                   | 0.                | 65                                                         |                      |                    |                    |  |
|                | Nominal strength as governed by                    | Nsa              | lbf<br>(kN)    | 6,600<br>(29.4)  | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | In accor                                                   | dance with           | ASTM A 615         | 5. Grade           |  |
| ASTM A 615     | steel strength (for a single anchor)               | Vsa              | lbf<br>(kN)    | 3,960<br>(17.6)  | 7,200<br>(32.0)  | 11,160<br>(49.6)  | 15,840<br>(70.5)  | 40 bars are furnished only in sizes No. 3<br>through No. 6 |                      |                    |                    |  |
| Grade 40       | Reduction factor for seismic shear                 | <i>O</i> ℓV,seis | -              | 0.70             | 0.70             | 0.80              | 0.80              |                                                            |                      |                    |                    |  |
|                | Strength reduction factor for tension <sup>2</sup> | $\phi$           | -              |                  |                  |                   | 0.                | 75                                                         |                      |                    |                    |  |
|                | Strength reduction factor for shear <sup>2</sup>   | $\phi$           | -              |                  |                  |                   | 0.                | 65                                                         |                      |                    |                    |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements. In accordance with ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)(a), as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-14 20.2.2.4 and 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.

3. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.

**Design Information** 

Effectiveness factor for

cracked concrete

Effectiveness factor for

uncracked concrete

Minimum embedment

Maximum embedment

Minimum anchor spacing

Minimum edge distance<sup>2</sup>

Minimum edge distance, reduced<sup>2</sup>

Minimum member thickness

Critical edge distance-splitting (for

uncracked concrete only)

Strength reduction factor for tension,

concrete failure modes. Condition B4 Strength reduction factor for shear,

concrete failure modes, Condition B4

1-1/4 or

#10

5

(127)

25

(635)

6-1/4

(159)

2-3/4

(70)

#### **Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars** (For use with loads combinations taken from ACI 318-14 Section 5.3)

3/8 or #3

Not

Applicable

2-3/8

(60)

7-1/2

(191)

1-7/8

(48)

1 - 3/4

(45)

1/2 or #4

2-3/4

(70)

10

(254)

2-1/2

(64)

1-3/4

(45)

 $h_{ef} + 1 - 1/4$ 

(hef + 30)

5/8 or #5

3-1/8

(79)

12-1/2

(318)

3-1/8

(79)

1 - 3/4

(45)

Units

(SI)

(SI)

inch

(mm)

inch

(mm)

inch

(mm)

inch

(mm) inch

(mm)

inch

(mm)

inch

(mm)

Symbol

Kc.cr

kc,uncr

h<sub>ef,min</sub>

h<sub>ef,max</sub>

Smin

Cmin

Cmin,red

h<sub>min</sub>

Cac

φ

φ



#9

4-1/2

(114)

22-1/2

(572)

5-5/8 (143)

2 - 3/4

(70)

Nominal Rod Diameter (inch) / Reinforcing Bar Size

24

(10.0)

5d where d is nominal outside diameter of the anchor

 $C_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{1160}\right)^{0.4} \cdot [3.1-0.7 \frac{h}{h_{ef}}]$ 

 $C_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{8}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$ 

0.65

0.70

7/8 or #7

17

(7.1)

3-1/2

(89)

17-1/2

(445)

4-3/8

(111)

1 - 3/4

(45)

1 or #8

4

(102)

20

(508)

5 (127)

1 - 3/4

(45)

 $h_{ef} + 2d_0$  where  $d_0$  is hole diameter;

3/4 or #6

3-1/2

(89)

15

(381)

3-3/4

(95)

1 - 3/4

(45)

| 7 | , | ١ |  |
|---|---|---|--|
| T | Î | ĺ |  |
|   |   |   |  |
| 7 | , |   |  |
| T |   |   |  |
|   | • |   |  |
| 4 |   |   |  |
| - | 1 | 1 |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, Cmin, and the reduced minimum edge distance, Cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3.  $T_{k,uncr}$  need not be taken as greater than:  $T_{k,uncr} = k_{uncr} \cdot \sqrt{h_{ef} \cdot f'_{c}}$  and  $\frac{h}{h}$  need not be taken as larger than 2.4. ha

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4.

#### FLOWCHART FOR THE ESTABLISHMENT OF DES IGN BOND STRENGTH



#### 1-800-4 DEWALT

FECHNICAL GUIDE – ADHESIVES ©2018 DEWALT – REV. D

π•d
**PE1000+®** Epoxy Injection Adhesive Anchoring System



## Bond Strength Design Information for Threaded Rods and Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit (For use with load combinations taken from ACI 318-14 Section 5.3)<sup>1</sup>



|                                                                          |                                                                         |                                     |                | Nominal Rod Diameter (inch) / Reinforcing B |                |                 |                |                 |                |                 | lar Size       |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|----------------|---------------------------------------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|--|--|--|
| Design In                                                                | formation                                                               | Symbol                              | Units          | 3/8 or<br>#3                                | 1/2 or<br>#4   | 5/8 or<br>#5    | 3/4 or<br>#6   | 7/8 or<br>#7    | 1 or #8        | #9              | 11/4 or<br>#10 |  |  |  |
| Minimum                                                                  | embedment                                                               | h <sub>ef,min</sub>                 | inch<br>(mm)   | 2-3/8<br>(60)                               | 2-3/4<br>(70)  | 3-1/8<br>(79)   | 3-1/2<br>(89)  | 3-1/2<br>(89)   | 4<br>(102      | 4-1/2<br>(114)  | 5<br>(127)     |  |  |  |
| Mavimum ambadmant                                                        | Dry concrete and saturated concrete <sup>7</sup>                        | h <sub>ef,max</sub>                 | inch<br>(mm)   | 4-1/2<br>(114)                              | 10<br>(254)    | 12-1/2<br>(318) | 15<br>(381)    | 17-1/2<br>(445) | 20<br>(508)    | 22-1/2<br>(572) | 25<br>(635)    |  |  |  |
|                                                                          | Water-filled hole (flooded)                                             | hef,max                             | inch<br>(mm)   | 4-1/2<br>(114)                              | 6<br>(152)     | 7-1/2<br>(190)  | 9<br>(225)     | 10-1/2<br>(267) | 12<br>(305)    | 13-1/2<br>(343) | 15<br>(381)    |  |  |  |
| 110°F (43°C)<br>Maximum Long-Term<br>Service Temperature;                | Characteristic bond<br>strength in<br>cracked concrete <sup>5,8</sup>   | $	au_{k,cr}$                        | psi<br>(N/mm²) | N/A                                         | 576<br>(4.0)   | 474<br>(3.3)    | 441<br>(3.0)   | 416<br>(2.9)    | 416<br>(2.9)   | 416<br>(2.9)    | 416<br>(2.9)   |  |  |  |
| 140°F (60°C)<br>Maximum Short-Term<br>Service Temperature <sup>2,4</sup> | Characteristic bond<br>strength in<br>uncracked concrete <sup>5,9</sup> | $	au_{k,uncr}$                      | psi<br>(N/mm²) | 1,223<br>(8.4)                              | 1,156<br>(8.0) | 1,106<br>(7.6)  | 1,067<br>(7.4) | 1,036<br>(7.1)  | 1,010<br>(7.0) | 986<br>(6.8)    | 966<br>(6.7)   |  |  |  |
| 110°F (43°C)<br>Maximum Long-Term<br>Service Temperature;                | Characteristic bond<br>strength in<br>cracked concrete <sup>5,8</sup>   | $\mathcal{T}$ k,cr                  | psi<br>(N/mm²) | N/A                                         | 455<br>(3.1)   | 374<br>(2.6)    | 349<br>(2.4)   | 329<br>(2.3)    | 329<br>(2.3)   | 329<br>(2.3)    | 329<br>(2.3)   |  |  |  |
| 176°F (80°C)<br>Maximum Short-Term<br>Service Temperature <sup>3,4</sup> | Characteristic bond<br>strength in<br>uncracked concrete <sup>5,9</sup> | $	au_{k,uncr}$                      | psi<br>(N/mm²) | 966<br>(6.7)                                | 913<br>(6.3)   | 874<br>(6.0)    | 843<br>(5.8)   | 819<br>(5.6)    | 798<br>(5.5)   | 779<br>(5.4)    | 763<br>(5.3)   |  |  |  |
|                                                                          | Dry concrete                                                            | $\phi_{ m d}$                       | -              | 0.65                                        | 0.65           | 0.65            | 0.65           | 0.65            | 0.65           | 0.65            | 0.65           |  |  |  |
|                                                                          | Water esturated esperate                                                | $\phi_{\scriptscriptstyle { m WS}}$ | -              | 0.45                                        | 0.45           | 0.45            | 0.45           | 0.45            | 0.45           | 0.45            | 0.45           |  |  |  |
| Permissible installation<br>conditions <sup>6</sup>                      | Waler-Saluraleu Concrete                                                | $\kappa_{ws}$                       |                | 0.93                                        | 0.9            | 0.96            | 1.0            | 1.0             | 1.0            | 1.0             | 0.99           |  |  |  |
|                                                                          | Water filled belo (fleeded)                                             | $\phi_{ m wf}$                      | -              | 0.45                                        | 0.45           | 0.45            | 0.45           | 0.45            | 0.45           | 0.45            | 0.45           |  |  |  |
|                                                                          | water-nneu noie (nooueu)                                                | $\kappa_{ m wf}$                    |                | 0.93                                        | 0.83           | 0.75            | 0.70           | 0.65            | 0.62           | 0.59            | 0.56           |  |  |  |
| Reduction factor                                                         | for seismic tension                                                     | lphaN,seis                          | -              |                                             |                |                 | 1              | .0              |                |                 |                |  |  |  |

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)<sup>612</sup> [For SI: (f'c / 17.2)<sup>612</sup>].

The maximum short-term service temperature may be increased to 162°F (72°C) provided characteristic bond strengths are reduced by 10 percent. Long-term and short-term temperatures
meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category B.

3. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category A.

4. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

5. Characteristic bond strengths are for sustained loads including dead and live loads.

6. Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

7. Maximum embedment is limited to twelve anchor diameters for horizontal and upwardly inclined installations.

8. For structures assigned to Seismic Design Categories C, D, E or F, bond strength values for cracked concrete do not require an additional reduction factor applied for seismic tension ( $\alpha_{\text{Nuses}} = 1.0$ ), where seismic design is applicable.

9. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

# Bond Strength Design Information for Threaded Rods and Reinforcing Bars in Holes Drilled with a Core Drill and Diamond Core Bit (For use with load combinations taken from ACI 318-14 Section 5.3)

| Design Cl                                                                                                                            | naractoristic                                                     | Notation                            | Unite          | Nominal Rod Diameter (inch) / Reforcing Bar Size |                 |                |                 |              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|----------------|--------------------------------------------------|-----------------|----------------|-----------------|--------------|--|--|--|
| Design of                                                                                                                            |                                                                   | notation                            | Units          | 1/2" or #4                                       | 5/8" or #5      | 3/4" or #6     | 7/8" or #7      | 1" or #8     |  |  |  |
| Minimum                                                                                                                              | embedment                                                         | hef,min                             | in.<br>(mm)    | 2-3/4<br>(70)                                    | 3-1/8<br>(79)   | 3-1/2<br>(89)  | 3-1/2<br>(89)   | 4<br>(102)   |  |  |  |
| Maximum embedment <sup>7</sup>                                                                                                       |                                                                   | hef,max                             | in.<br>(mm)    | 10<br>(54)                                       | 12-1/2<br>(318) | 15<br>(381)    | 17-1/2<br>(445) | 20<br>(508)  |  |  |  |
| 110°F (43°C)<br>Maximum Long-Term<br>Service Temperature;<br>140°F (60°C)<br>Maximum Short-Term<br>Service Temperature <sup>24</sup> | Characteristic bond strength in uncracked concrete <sup>5,8</sup> | $\mathcal{T}_{k,uncr}$              | psi<br>(N/mm²) | 1,133<br>(7.8)                                   | 1,075<br>(7.4)  | 1,033<br>(7.1) | 1,022<br>(6.9)  | 975<br>(6.7) |  |  |  |
| 110°F (43°C)<br>Maximum Long-Term<br>Service Temperature;<br>176°F (80°C)<br>Maximum Short-Term<br>Service Temperature <sup>34</sup> | Characteristic bond strength in uncracked concrete <sup>5,8</sup> | $\mathcal{T}_{k,uncr}$              | psi<br>(N/mm²) | 895<br>(6.2)                                     | 849<br>(5.9)    | 816<br>(5.6)   | 791<br>(5.5)    | 770<br>(5.3) |  |  |  |
|                                                                                                                                      | Dry concrete                                                      | $\phi_{ m d}$                       | -              | 0.55                                             | 0.45            | 0.45           | 0.45            | 0.45         |  |  |  |
|                                                                                                                                      | Water esturated esperate                                          | $\phi_{\scriptscriptstyle { m WS}}$ | -              | 0.45                                             | 0.45            | 0.45           | 0.45            | 0.45         |  |  |  |
| Permissible Installation<br>Conditions <sup>6</sup>                                                                                  | Water-saturated concrete                                          | Kws                                 | -              | 1.0                                              | 1.0             | 1.0            | 1.0             | 1.0          |  |  |  |
| oonationo                                                                                                                            | Water filled belo (fleeded)                                       | $\phi_{ m ws}$                      | -              | 0.45                                             | 0.45            | 0.45           | 0.45            | 0.45         |  |  |  |
|                                                                                                                                      | water-inieu noie (nooded)                                         | $\kappa_{ m wf}$                    | -              | 0.94                                             | 0.95            | 0.95           | 0.95            | 0.96         |  |  |  |

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

Bond strength values correspond to a normal-weight concrete compressive strength fc = 2,500 psi (17.2 MPa). For concrete compressive strength, fc between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (fc / 2,500)<sup>612</sup> [For SI: (fc / 17.2)<sup>612</sup>].

The maximum short-term service temperature may be increased to 162°F (72°C) provided characteristic bond strengths are reduced by 10 percent. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category B.

3. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category A.

4. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

5. Characteristic bond strengths are for sustained loads including dead and live loads.

• E'.'/•

6. Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

7. Maximum embedment is limited to twelve anchor diameters for horizontal and upwardly inclined installations.

8. For structures assigned to Seismic Design Categories C, D, E or F, bond strength values for cracked concrete do not require an additional reduction factor applied for seismic tension ( $\alpha_{N,seis} = 1.0$ ), where seismic design is applicable.

9. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.



#### Tension and Shear Design Strength Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 110°F (43°C) Maximum Long-Term Service Temperature; 140°F (60°C) Maximum Short-Term Service Temperature<sup>1,2,4,5,6,7,8,9</sup>



|                                 |                       |                                                     |                                    |                                                     | Minim                              | um Concrete (                                   | Compressive St                     | trength                                         |                                    |                                                 |                                                |
|---------------------------------|-----------------------|-----------------------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------------------|
| Nominal                         | Embed.                | f'c = 2,                                            | ,500 psi                           | f'c = 3                                             | ,000 psi                           | f'c = 4                                         | ,000 psi                           | f'c = 6                                         | ,000 psi                           | f'c = 8                                         | ,000 psi                                       |
| Rod/Rebar<br>Size<br>(in. or #) | Depth<br>hef<br>(in.) | $\Phi_{ m Ncb}$ or $\Phi_{ m Na}$ Tension<br>(lbs.) | ФVcb or<br>ФVcp<br>Shear<br>(lbs.) | $\Phi_{ m Ncb}$ or $\Phi_{ m Na}$ Tension<br>(lbs.) | ФVcb or<br>ФVcp<br>Shear<br>(lbs.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | DVcb or<br>DVcp<br>Shear<br>(lbs.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | DVcb or<br>DVcp<br>Shear<br>(lbs.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | $\Phi$ Vcb or<br>$\Phi$ Vcp<br>Shear<br>(lbs.) |
|                                 | 2-3/8                 | 2,225                                               | 2,330                              | 2,275                                               | 2,450                              | 2,355                                           | 2,535                              | 2,470                                           | 2,660                              | 2,555                                           | 2,755                                          |
| 3/8 or #3                       | 3                     | 2,810                                               | 3,460                              | 2,870                                               | 3,825                              | 2,975                                           | 4,480                              | 3,120                                           | 5,595                              | 3,230                                           | 6,550                                          |
|                                 | 4-1/2                 | 4,215                                               | 6,320                              | 4,310                                               | 6,985                              | 4,460                                           | 8,175                              | 4,680                                           | 10,085                             | 4,845                                           | 10,435                                         |
|                                 | 2-3/4                 | 3,245                                               | 3,185                              | 3,320                                               | 3,520                              | 3,435                                           | 4,120                              | 3,605                                           | 5,145                              | 3,730                                           | 6,025                                          |
| 1/0 or #1                       | 4                     | 4,720                                               | 5,990                              | 4,825                                               | 6,620                              | 4,995                                           | 7,755                              | 5,245                                           | 9,680                              | 5,430                                           | 11,335                                         |
| 1/2 01 #4                       | 6                     | 7,080                                               | 10,915                             | 7,240                                               | 12,065                             | 7,495                                           | 14,125                             | 7,865                                           | 16,945                             | 8,145                                           | 17,540                                         |
|                                 | 10                    | 11,805                                              | 23,250                             | 12,065                                              | 25,690                             | 12,490                                          | 26,895                             | 13,110                                          | 28,240                             | 13,570                                          | 29,230                                         |
|                                 | 3-1/8                 | 4,310                                               | 4,120                              | 4,510                                               | 4,595                              | 4,665                                           | 5,375                              | 4,900                                           | 6,715                              | 5,070                                           | 7,860                                          |
| 5/0 er //5                      | 5                     | 7,060                                               | 9,175                              | 7,215                                               | 10,140                             | 7,465                                           | 11,870                             | 7,840                                           | 14,825                             | 8,115                                           | 17,355                                         |
| C# 10 8/C                       | 7-1/2                 | 10,585                                              | 16,710                             | 10,820                                              | 18,465                             | 11,200                                          | 21,620                             | 11,760                                          | 25,330                             | 12,170                                          | 26,220                                         |
|                                 | 12-1/2                | 17,645                                              | 35,610                             | 18,035                                              | 38,845                             | 18,670                                          | 40,210                             | 19,600                                          | 42,215                             | 20,285                                          | 43,695                                         |
|                                 | 3-1/2                 | 5,105                                               | 5,015                              | 5,480                                               | 5,700                              | 5,735                                           | 6,790                              | 6,000                                           | 8,480                              | 6,195                                           | 9,925                                          |
| 0/4 110                         | 6                     | 9,805                                               | 12,775                             | 10,020                                              | 14,115                             | 10,375                                          | 16,525                             | 10,890                                          | 20,635                             | 11,275                                          | 24,160                                         |
| 3/4 or #6                       | 9                     | 14,705                                              | 23,265                             | 15,035                                              | 25,710                             | 15,560                                          | 30,100                             | 16,335                                          | 35,185                             | 16,910                                          | 36,420                                         |
|                                 | 15                    | 24,510                                              | 49,560                             | 25,055                                              | 53,965                             | 25,935                                          | 55,860                             | 27,225                                          | 58,645                             | 28,185                                          | 60,705                                         |
| 7/8 or #7                       | 3-1/2                 | 5,085                                               | 4,930                              | 5,290                                               | 5,605                              | 5,625                                           | 6,855                              | 5,980                                           | 8,765                              | 6,175                                           | 10,260                                         |
|                                 | 7                     | 12,960                                              | 15,900                             | 13,245                                              | 17,570                             | 13,710                                          | 20,570                             | 14,395                                          | 25,690                             | 14,900                                          | 30,075                                         |
|                                 | 10-1/2                | 19,435                                              | 28,960                             | 19,865                                              | 32,000                             | 20,565                                          | 37,465                             | 21,590                                          | 46,500                             | 22,350                                          | 48,135                                         |
|                                 | 17-1/2                | 32,395                                              | 61,700                             | 33,110                                              | 68,185                             | 34,275                                          | 73,820                             | 35,985                                          | 77,500                             | 37,245                                          | 80,225                                         |
|                                 | 4                     | 6,240                                               | 6,115                              | 6,685                                               | 6,945                              | 7,110                                           | 8,495                              | 7,645                                           | 11,045                             | 7,895                                           | 12,930                                         |
| 1                               | 8                     | 16,500                                              | 19,225                             | 16,865                                              | 21,245                             | 17,455                                          | 24,870                             | 18,325                                          | 31,060                             | 18,970                                          | 36,360                                         |
| 1 OF #8                         | 12                    | 24,750                                              | 35,010                             | 25,295                                              | 38,690                             | 26,185                                          | 45,295                             | 27,490                                          | 56,570                             | 28,455                                          | 61,290                                         |
|                                 | 20                    | 41,250                                              | 74,605                             | 42,160                                              | 82,440                             | 43,640                                          | 94,000                             | 45,820                                          | 98,685                             | 47,430                                          | 102,150                                        |
|                                 | 4-1/2                 | 7,445                                               | 7,110                              | 8,105                                               | 8,080                              | 8,615                                           | 9,880                              | 9,350                                           | 13,025                             | 9,655                                           | 15,250                                         |
|                                 | 9                     | 20,385                                              | 22,755                             | 20,835                                              | 25,145                             | 21,570                                          | 29,440                             | 22,645                                          | 36,765                             | 23,440                                          | 43,045                                         |
| #9                              | 13-1/2                | 30,580                                              | 41,450                             | 31,255                                              | 45,805                             | 32,355                                          | 53,630                             | 33,965                                          | 66,970                             | 35,160                                          | 75,730                                         |
|                                 | 22-1/2                | 50,965                                              | 88,290                             | 52,095                                              | 97,570                             | 53,920                                          | 114,230                            | 56,610                                          | 121,930                            | 58,600                                          | 126,215                                        |
|                                 | 5                     | 8,720                                               | 8,170                              | 9,555                                               | 9,285                              | 10,495                                          | 11,355                             | 11,450                                          | 15,085                             | 11,870                                          | 17,755                                         |
| 4 4 / 4                         | 10                    | 24,660                                              | 26,380                             | 25,205                                              | 29,150                             | 26,090                                          | 34,130                             | 27,390                                          | 42,620                             | 28,350                                          | 49,895                                         |
| 1-1/4                           | 15                    | 36,985                                              | 48,045                             | 37,805                                              | 53,090                             | 39,130                                          | 62,155                             | 41,085                                          | 77,625                             | 42,525                                          | 90,880                                         |
|                                 | 25                    | 61,645                                              | 102,380                            | 63,005                                              | 113,140                            | 65,220                                          | 132,460                            | 68,470                                          | 147,480                            | 70,875                                          | 152,660                                        |
|                                 | 5                     | 8,720                                               | 8,160                              | 9,555                                               | 9,270                              | 10,375                                          | 11,335                             | 11,315                                          | 15,060                             | 11,725                                          | 17,725                                         |
|                                 | 10                    | 24,660                                              | 26,425                             | 25,205                                              | 29,200                             | 26,090                                          | 34,190                             | 27,390                                          | 42,695                             | 28,350                                          | 49,985                                         |
| #10                             | 15                    | 36,985                                              | 48,130                             | 37,805                                              | 53,190                             | 39,130                                          | 62,270                             | 41,085                                          | 77,765                             | 42,525                                          | 91,045                                         |
|                                 | 25                    | 61,645                                              | 102,530                            | 63,005                                              | 113,305                            | 65,220                                          | 132,655                            | 68,470                                          | 147,480                            | 70,875                                          | 152,660                                        |

#### - Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions:

-  $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$  -  $c_{a2}$  is greater than or equal to 1.5 times  $c_{a1}.$ 

Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2583.

 Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2583 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-2583.

 Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

- REV. D

Tension and Shear Design Strength Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 110°F (43°C) Maximum Long-Term Service Temperature;



|                                 |              | Minimum Concrete Compressive Strength           |                                    |                                                 |                                    |                                                 |                                    |                                                 |                                    |                                                 |                                                |
|---------------------------------|--------------|-------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------------------|
| Nominal                         | Embed.       | f'c = 2,                                        | 500 psi                            | f'c = 3,                                        | 000 psi                            | f'c = 4,                                        | 000 psi                            | f'c = 6,                                        | 000 psi                            | f'c = 8,000 psi                                 |                                                |
| Rod/Rebar<br>Size<br>(in. or #) | hef<br>(in.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | ФVcb or<br>ФVcp<br>Shear<br>(lbs.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | $\Phi$ Vcb or<br>$\Phi$ Vcp<br>Shear<br>(lbs.) |
|                                 | 2-3/4        | 1,615                                           | 2,275                              | 1,655                                           | 2,515                              | 1,710                                           | 2,945                              | 1,795                                           | 3,675                              | 1,860                                           | 4,005                                          |
| 1/2 or #/                       | 4            | 2,350                                           | 4,280                              | 2,405                                           | 4,730                              | 2,490                                           | 5,360                              | 2,615                                           | 5,630                              | 2,705                                           | 5,825                                          |
| 1/2 01 #4                       | 6            | 3,530                                           | 7,600                              | 3,605                                           | 7,770                              | 3,735                                           | 8,040                              | 3,920                                           | 8,440                              | 4,055                                           | 8,740                                          |
|                                 | 10           | 5,880                                           | 12,665                             | 6,010                                           | 12,945                             | 6,220                                           | 13,400                             | 6,535                                           | 14,070                             | 6,760                                           | 14,565                                         |
|                                 | 3-1/8        | 1,890                                           | 2,940                              | 1,930                                           | 3,280                              | 2,000                                           | 3,840                              | 2,100                                           | 4,525                              | 2,175                                           | 4,680                                          |
| 5/8 or #5                       | 5            | 3,025                                           | 6,515                              | 3,090                                           | 6,660                              | 3,200                                           | 6,895                              | 3,360                                           | 7,235                              | 3,480                                           | 7,490                                          |
| 5/6 01 #5                       | 7-1/2        | 4,535                                           | 9,770                              | 4,640                                           | 9,990                              | 4,800                                           | 10,340                             | 5,040                                           | 10,855                             | 5,215                                           | 11,235                                         |
|                                 | 12-1/2       | 7,560                                           | 16,285                             | 7,730                                           | 16,645                             | 8,000                                           | 17,230                             | 8,400                                           | 18,090                             | 8,695                                           | 18,725                                         |
|                                 | 3-1/2        | 2,175                                           | 3,580                              | 2,265                                           | 4,070                              | 2,370                                           | 4,850                              | 2,480                                           | 5,340                              | 2,560                                           | 5,515                                          |
| 3/1 or #6                       | 6            | 4,050                                           | 8,730                              | 4,140                                           | 8,920                              | 4,290                                           | 9,235                              | 4,500                                           | 9,695                              | 4,660                                           | 10,035                                         |
| 5/4 01 #0                       | 9            | 6,080                                           | 13,090                             | 6,215                                           | 13,380                             | 6,430                                           | 13,850                             | 6,750                                           | 14,545                             | 6,990                                           | 15,055                                         |
|                                 | 15           | 10,130                                          | 21,820                             | 10,355                                          | 22,305                             | 10,720                                          | 23,085                             | 11,255                                          | 24,240                             | 11,650                                          | 25,090                                         |
| 7/8 or #7                       | 3-1/2        | 2,045                                           | 3,525                              | 2,125                                           | 4,000                              | 2,260                                           | 4,865                              | 2,400                                           | 5,170                              | 2,480                                           | 5,340                                          |
|                                 | 7            | 5,205                                           | 11,205                             | 5,320                                           | 11,455                             | 5,505                                           | 11,855                             | 5,780                                           | 12,450                             | 5,980                                           | 12,885                                         |
|                                 | 10-1/2       | 7,805                                           | 16,810                             | 7,975                                           | 17,180                             | 8,255                                           | 17,785                             | 8,670                                           | 18,670                             | 8,975                                           | 19,330                                         |
|                                 | 17-1/2       | 13,010                                          | 28,015                             | 13,295                                          | 28,635                             | 13,760                                          | 29,640                             | 14,450                                          | 31,120                             | 14,955                                          | 32,215                                         |
|                                 | 4            | 2,650                                           | 4,365                              | 2,755                                           | 4,960                              | 2,930                                           | 6,065                              | 3,150                                           | 6,780                              | 3,250                                           | 7,005                                          |
| 1 or #8                         | 8            | 6,795                                           | 13,730                             | 6,945                                           | 14,960                             | 7,190                                           | 15,485                             | 7,550                                           | 16,260                             | 7,815                                           | 16,830                                         |
| 101#0                           | 12           | 10,195                                          | 21,955                             | 10,420                                          | 22,440                             | 10,785                                          | 23,230                             | 11,325                                          | 24,390                             | 11,720                                          | 25,245                                         |
|                                 | 20           | 16,990                                          | 36,595                             | 17,365                                          | 37,405                             | 17,975                                          | 38,715                             | 18,870                                          | 40,645                             | 19,535                                          | 42,075                                         |
|                                 | 4-1/2        | 3,290                                           | 5,080                              | 3,420                                           | 5,770                              | 3,635                                           | 7,060                              | 3,945                                           | 8,495                              | 4,075                                           | 8,775                                          |
| #Q                              | 9            | 8,600                                           | 16,255                             | 8,790                                           | 17,960                             | 9,100                                           | 19,600                             | 9,555                                           | 20,575                             | 9,890                                           | 21,300                                         |
| 110                             | 13-1/2       | 12,900                                          | 27,790                             | 13,185                                          | 28,405                             | 13,650                                          | 29,400                             | 14,330                                          | 30,865                             | 14,835                                          | 31,950                                         |
|                                 | 22-1/2       | 21,505                                          | 46,315                             | 21,980                                          | 47,340                             | 22,750                                          | 49,000                             | 23,885                                          | 51,445                             | 24,725                                          | 53,250                                         |
|                                 | 5            | 4,090                                           | 5,835                              | 4,250                                           | 6,630                              | 4,520                                           | 8,110                              | 4,930                                           | 10,620                             | 5,110                                           | 11,010                                         |
| 1_1//                           | 10           | 10,620                                          | 18,840                             | 10,855                                          | 20,820                             | 11,235                                          | 24,200                             | 11,795                                          | 25,405                             | 12,210                                          | 26,295                                         |
| 1-1/4                           | 15           | 15,930                                          | 34,305                             | 16,280                                          | 35,065                             | 16,850                                          | 36,295                             | 17,690                                          | 38,105                             | 18,315                                          | 39,445                                         |
|                                 | 25           | 26,545                                          | 57,175                             | 27,135                                          | 58,440                             | 28,085                                          | 60,495                             | 29,485                                          | 63,510                             | 30,525                                          | 65,740                                         |
|                                 | 5            | 4,045                                           | 5,830                              | 4,205                                           | 6,620                              | 4,465                                           | 8,100                              | 4,870                                           | 10,495                             | 5,050                                           | 10,880                                         |
| #10                             | 10           | 10,620                                          | 18,875                             | 10,855                                          | 20,860                             | 11,235                                          | 24,200                             | 11,795                                          | 25,405                             | 12,210                                          | 26,295                                         |
| π10                             | 15           | 15,930                                          | 34,305                             | 16,280                                          | 35,065                             | 16,850                                          | 36,295                             | 17,690                                          | 38,105                             | 18,315                                          | 39,445                                         |
|                                 | 25           | 26,545                                          | 57,175                             | 27,135                                          | 58,440                             | 28,085                                          | 60,495                             | 29,485                                          | 63,510                             | 30,525                                          | 65,740                                         |

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$ , and with the following conditions:

-  $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$ 

-  $C_{a2}$  is greater than or equal to 1.5 times  $C_{a1}$ .

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2583.

 Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2583 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-2583.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.





## Tension and Shear Design Strength Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Core-Drill and Diamond Core Bit in a Dry Hole Condition 110°F (43°C) Maximum Long-Term Service Temperature;



140°F (60°C) Maximum Short-Term Service Temperature<sup>1,2,3,4,5,6,7,8,9</sup>

|                                 |              | Minimum Concrete Compressive Strength           |                                                |                                                 |                                                |                                                 |                                    |                                                 |                                                |                                                 |                                    |  |
|---------------------------------|--------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------|--|
| Nominal                         | Embed.       | f'c = 2,                                        | ,500 psi                                       | f <sup>i</sup> c = 3,                           | ,000 psi                                       | f'c = 4                                         | ,000 psi                           | f'C = 6,                                        | ,000 psi                                       | f'c = 8,000 psi                                 |                                    |  |
| Rod/Rebar<br>Size<br>(in. or #) | hef<br>(in.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | $\Phi$ Vcb or<br>$\Phi$ Vcp<br>Shear<br>(lbs.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | $\Phi$ Vcb or<br>$\Phi$ Vcp<br>Shear<br>(lbs.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | ФVcb or<br>ФVcp<br>Shear<br>(lbs.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | $\Phi$ Vcb or<br>$\Phi$ Vcp<br>Shear<br>(lbs.) | $\Phi$ Ncb<br>or $\Phi$ Na<br>Tension<br>(lbs.) | ФVcb or<br>ФVcp<br>Shear<br>(lbs.) |  |
|                                 | 2-3/4        | 2,690                                           | 3,160                                          | 2,750                                           | 3,490                                          | 2,850                                           | 4,085                              | 2,990                                           | 5,105                                          | 3,095                                           | 5,975                              |  |
| 1/2 or #1                       | 4            | 3,915                                           | 5,945                                          | 4,000                                           | 6,570                                          | 4,145                                           | 7,690                              | 4,350                                           | 9,605                                          | 4,500                                           | 11,245                             |  |
| 1/2 01 #4                       | 6            | 5,875                                           | 10,830                                         | 6,005                                           | 11,965                                         | 6,215                                           | 14,010                             | 6,525                                           | 16,605                                         | 6,755                                           | 17,190                             |  |
|                                 | 10           | 9,790                                           | 23,065                                         | 10,005                                          | 25,465                                         | 10,355                                          | 26,360                             | 10,875                                          | 27,675                                         | 11,255                                          | 28,650                             |  |
|                                 | 3-1/8        | 2,970                                           | 4,110                                          | 3,035                                           | 4,540                                          | 3,140                                           | 5,320                              | 3,295                                           | 6,640                                          | 3,410                                           | 7,775                              |  |
| 5/8 or #5                       | 5            | 4,750                                           | 9,090                                          | 4,855                                           | 10,045                                         | 5,025                                           | 11,760                             | 5,275                                           | 14,685                                         | 5,460                                           | 16,990                             |  |
| 5/0 01 #5                       | 7-1/2        | 7,125                                           | 16,555                                         | 7,280                                           | 18,290                                         | 7,535                                           | 21,415                             | 7,915                                           | 24,620                                         | 8,190                                           | 25,485                             |  |
|                                 | 12-1/2       | 11,875                                          | 35,260                                         | 12,135                                          | 37,755                                         | 12,560                                          | 39,080                             | 13,190                                          | 41,030                                         | 13,650                                          | 42,470                             |  |
|                                 | 3-1/2        | 3,570                                           | 5,015                                          | 3,720                                           | 5,700                                          | 3,855                                           | 6,700                              | 4,030                                           | 8,370                                          | 4,160                                           | 9,800                              |  |
| 2/1 or #6                       | 6            | 6,570                                           | 12,610                                         | 6,715                                           | 13,935                                         | 6,955                                           | 16,310                             | 7,300                                           | 20,370                                         | 7,555                                           | 23,510                             |  |
| 5/4 01 #0                       | 9            | 9,855                                           | 22,965                                         | 10,075                                          | 25,375                                         | 10,430                                          | 29,710                             | 10,950                                          | 34,065                                         | 11,335                                          | 35,260                             |  |
|                                 | 15           | 16,430                                          | 48,925                                         | 16,795                                          | 52,245                                         | 17,380                                          | 54,080                             | 18,250                                          | 56,775                                         | 18,890                                          | 58,770                             |  |
|                                 | 3-1/2        | 3,445                                           | 4,930                                          | 3,580                                           | 5,605                                          | 3,810                                           | 6,855                              | 4,015                                           | 8,645                                          | 4,145                                           | 10,125                             |  |
| 7/8 or #7                       | 7            | 8,675                                           | 15,690                                         | 8,870                                           | 17,340                                         | 9,180                                           | 20,300                             | 9,635                                           | 25,350                                         | 9,975                                           | 29,675                             |  |
| 110 01 #1                       | 10-1/2       | 13,015                                          | 28,575                                         | 13,300                                          | 31,580                                         | 13,770                                          | 36,970                             | 14,455                                          | 44,975                                         | 14,965                                          | 46,555                             |  |
|                                 | 17-1/2       | 21,690                                          | 60,885                                         | 22,170                                          | 67,280                                         | 22,950                                          | 71,400                             | 24,095                                          | 74,960                                         | 24,940                                          | 77,590                             |  |
|                                 | 4            | 4,350                                           | 6,115                                          | 4,520                                           | 6,945                                          | 4,810                                           | 8,495                              | 5,120                                           | 10,890                                         | 5,290                                           | 12,745                             |  |
| 1 or #8                         | 8            | 11,025                                          | 18,955                                         | 11,270                                          | 20,945                                         | 11,665                                          | 24,520                             | 12,250                                          | 30,625                                         | 12,680                                          | 35,855                             |  |
| 101#0                           | 12           | 16,540                                          | 34,520                                         | 16,905                                          | 38,150                                         | 17,500                                          | 44,665                             | 18,375                                          | 55,775                                         | 19,020                                          | 59,165                             |  |
|                                 | 20           | 27,565                                          | 73,560                                         | 28,175                                          | 81,285                                         | 29,165                                          | 90,740                             | 30,620                                          | 95,265                                         | 31,695                                          | 98,610                             |  |

#### Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{\text{min}}$ , and with the following conditions:

-  $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$ 

-  $c_{a2}$  is greater than or equal to 1.5 times  $c_{a1}$ .

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors ( $\phi$ ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2583.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2583 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.
 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included

in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-2583.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.





#### Tension Design of Steel Elements (Steel Strength)<sup>1,2</sup>

|                              | Steel Elements - Threaded Rod and Reinforcing Bar |                           |                                                         |                                                        |                                                                               |                                                                                 |                                |                                |                                |                                |  |  |
|------------------------------|---------------------------------------------------|---------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--|
| Nominal<br>Rod/Rebar<br>Size | ASTM A36<br>and ASTM<br>F1554<br>Grade 36         | ASTM F1554<br>Grade 55    | ASTM A193<br>Grade B7<br>and ASTM<br>F1554 Grade<br>105 | ASTM<br>F593 CW<br>Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M, Class<br>1 Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M2, Class<br>2B Stainless<br>(Types 304<br>and 316) | ASTM A615<br>Grade 75<br>Rebar | ASTM A615<br>Grade 60<br>Rebar | ASTM A706<br>Grade 60<br>Rebar | ASTM A615<br>Grade 40<br>Rebar |  |  |
| (III. OF NO.)                | ØNsa<br>Tension<br>(Ibs.)                         | ØNsa<br>Tension<br>(Ibs.) | ØNsa<br>Tension<br>(Ibs.)                               | ØNsa<br>Tension<br>(Ibs.)                              | ØNsa<br>Tension<br>(Ibs.)                                                     | ØNsa<br>Tension<br>(Ibs.)                                                       | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      | ØNsa<br>Tension<br>(Ibs.)      |  |  |
| 3/8 or #3                    | 3,370                                             | 4,360                     | 7,265                                                   | 5,040                                                  | 3,315                                                                         | 5,525                                                                           | 7,150                          | 7,425                          | 6,600                          | 4,950                          |  |  |
| 1/2 or #4                    | 6,175                                             | 7,980                     | 13,300                                                  | 9,225                                                  | 6,070                                                                         | 10,110                                                                          | 13,000                         | 13,500                         | 12,000                         | 9,000                          |  |  |
| 5/8 or #5                    | 9,835                                             | 12,715                    | 21,190                                                  | 14,690                                                 | 9,660                                                                         | 16,105                                                                          | 20,150                         | 20,925                         | 18,600                         | 13,950                         |  |  |
| 3/4 or #6                    | 14,550                                            | 18,815                    | 31,360                                                  | 18,480                                                 | 14,300                                                                        | 23,830                                                                          | 28,600                         | 29,700                         | 26,400                         | 19,800                         |  |  |
| 7/8 or #7                    | 20,085                                            | 25,970                    | 43,285                                                  | 25,510                                                 | 19,735                                                                        | 32,895                                                                          | 39,000                         | 40,500                         | 36,000                         |                                |  |  |
| 1 or #8                      | 26,350                                            | 34,070                    | 56,785                                                  | 33,465                                                 | 25,895                                                                        | 43,160                                                                          | 51,350                         | 53,325                         | 47,400                         |                                |  |  |
| #9                           | -                                                 |                           |                                                         |                                                        |                                                                               |                                                                                 | 65,000                         | 67,500                         | 60,000                         |                                |  |  |
| 1-1/4 or #10                 | 42,160                                            | 54,510                    | 90,850                                                  | 53,540                                                 | 41,430                                                                        | 69,050                                                                          | 82,550                         | 85,725                         | 76,200                         |                                |  |  |
| Charl Observable             |                                                   | -                         |                                                         |                                                        |                                                                               |                                                                                 |                                |                                |                                |                                |  |  |

- Steel Strength

1. Steel tensile design strength according to ACI 318-14 Ch. 17,  $\phi$ N<sub>sa</sub> =  $\phi$  • A<sub>se,N</sub> • f<sub>uta</sub>

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

#### Shear Design of Steel Elements (Steel Strength)<sup>1,2</sup>

|                              | Steel Elements - Threaded Rod and Reinforcing Bar |                                       |                                                         |                                                        |                                                                               |                                                                                 |                                |                                |                                |                                |  |  |
|------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--|
| Nominal<br>Rod/Rebar<br>Size | ASTM A36<br>and ASTM<br>F1554<br>Grade 36         | ASTM F1554<br>Grade 55                | ASTM A193<br>Grade B7<br>and ASTM<br>F1554 Grade<br>105 | ASTM<br>F593 CW<br>Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M, Class<br>1 Stainless<br>(Types 304<br>and 316) | ASTM A193<br>Grade B8/<br>B8M2, Class<br>2B Stainless<br>(Types 304<br>and 316) | ASTM A615<br>Grade 75<br>Rebar | ASTM A615<br>Grade 60<br>Rebar | ASTM A706<br>Grade 60<br>Rebar | ASTM A615<br>Grade 40<br>Rebar |  |  |
| (III. OF NO.)                | ØV <sub>sa</sub><br>Tension<br>(Ibs.)             | ØV <sub>sa</sub><br>Tension<br>(Ibs.) | ØVsa<br>Tension<br>(Ibs.)                               | ØVsa<br>Tension<br>(Ibs.)                              | ØV <sub>sa</sub><br>Tension<br>(Ibs.)                                         | ØVsa<br>Tension<br>(Ibs.)                                                       | ØVsa<br>Tension<br>(Ibs.)      | ØVsa<br>Tension<br>(Ibs.)      | ØVsa<br>Tension<br>(Ibs.)      | ØVsa<br>Tension<br>(Ibs.)      |  |  |
| 3/8 or #3                    | 1,755                                             | 2,265                                 | 3,775                                                   | 2,790                                                  | 1,725                                                                         | 2,870                                                                           | 3,960                          | 3,860                          | 3,430                          | 2,575                          |  |  |
| 1/2 or #4                    | 3,210                                             | 4,150                                 | 6,915                                                   | 5,110                                                  | 3,155                                                                         | 5,255                                                                           | 7,200                          | 7,020                          | 6,240                          | 4,680                          |  |  |
| 5/8 or #5                    | 5,115                                             | 6,610                                 | 11,020                                                  | 8,135                                                  | 5,025                                                                         | 8,375                                                                           | 11,160                         | 10,880                         | 9,670                          | 7,255                          |  |  |
| 3/4 or #6                    | 7,565                                             | 9,785                                 | 16,305                                                  | 10,235                                                 | 7,435                                                                         | 12,390                                                                          | 15,840                         | 15,445                         | 13,730                         | 10,295                         |  |  |
| 7/8 or #7                    | 10,445                                            | 13,505                                | 22,505                                                  | 14,130                                                 | 10,265                                                                        | 17,105                                                                          | 21,600                         | 21,060                         | 18,720                         |                                |  |  |
| 1 or #8                      | 13,700                                            | 17,715                                | 29,525                                                  | 18,535                                                 | 13,465                                                                        | 22,445                                                                          | 28,440                         | 27,730                         | 24,650                         |                                |  |  |
| #9                           | -                                                 |                                       |                                                         |                                                        |                                                                               |                                                                                 | 36,000                         | 35,100                         | 31,200                         |                                |  |  |
| 1-1/4 or #10                 | 21,920                                            | 28,345                                | 47,240                                                  | 29,655                                                 | 21,545                                                                        | 35,905                                                                          | 45,720                         | 44,575                         | 39,625                         |                                |  |  |
| - Steel Strenath             |                                                   |                                       |                                                         |                                                        |                                                                               |                                                                                 |                                |                                |                                |                                |  |  |

1. Steel shear design strength according to ACI 318-14 Ch. 17,  $\phi$ Vsa =  $\phi \bullet 0.60 \bullet A$ se,N  $\bullet f$ uta

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.



| INSTALLATION INSTRUCTIONS (SOLID BASE MATERIALS) |
|--------------------------------------------------|
| HAMMER DRILLING                                  |
| DRILLING                                         |
|                                                  |

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15. 201 • Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
- Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

| Carling and          | Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).                                                                                                                                                                                                                                                                          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>HOLE CLEANING</b> | (BLOW 4X, BRUSH 4X, BLOW 4X)                                                                                                                                                                                                                                                                                                                                             |
|                      | 2a- Starting from the bottom or back of the drilled anchor hole, blow the hole clean using a compressed air nozzle (min. 90 psi) or a hand pump (supplied by DEWALT) a minimum of four times (4x).                                                                                                                                                                       |
| 4X                   | <ul> <li>Use a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz.) for anchor rod 3/8" to 3/4" diameter or reinforcing bar (rebar) sizes #3 to #6.</li> </ul>                                                                                                                                                                                    |
|                      | • Use a compressed air nozzle (min. 90 psi) for anchor rod 7/8" to 1-1/4" diameter and rebar sizes #7 to #10. A hand pump shall not be used with these anchor sizes.                                                                                                                                                                                                     |
|                      | 2b- Determine wire brush diameter (reference hole cleaning equipment selection table) and attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of four times (4x). A brush extension (supplied by DEWALT, Cat. #08282) should be used for holes drilled deeper than the listed brush length. |
| 4 <b>4</b><br>4      | • The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole and come into contact with the sides of the drilled hole. If not the brush is too small and must be replaced.                                                                                                                                 |
|                      | <b>2c-</b> Finally, blow the hole clean again a minimum of four times (4x).                                                                                                                                                                                                                                                                                              |
| 4X                   | <ul> <li>Use a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz.) for anchor rod 3/8" to 3/4" diameter or reinforcing bar (rebar) sizes #3 to #6.</li> </ul>                                                                                                                                                                                    |
|                      | • Use a compressed air nozzle (min. 90 psi) for anchor rod 7/8" to 1-1/4" diameter and rebar sizes #7 to #10. A hand pump shall not be used with these anchor sizes.                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                          |

When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material. NEXT GO TO STEP 3.

#### **CORE DRILLING**

|                       | <ul> <li>1- Drill a hole into the base material with a core drill tool to the size and embedment required by the selected steel hardware element (reference installation table). The tolerances of the carbide drill bit must meet ANSI Standard B212.15.</li> <li>Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.</li> </ul> |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HOLE CLEANING         | (RINSE, BRUSH 4X, RINSE, BLOW 4X, BRUSH 4X, BLOW 4X)                                                                                                                                                                                                                                                                                                                                     |
|                       | 2a- Starting from the bottom or back of the drilled anchor hole, rinse/flush the hole clean with water (water line pressure) until clear water comes out.                                                                                                                                                                                                                                |
|                       | 2b- Determine brush diameter (see installation table) for drilled hole and attach the brush with adaptor to a rotary drill tool or battery screw gun.<br>Brush the hole with the selected wire brush a minimum of four times (4x). A brush extension (supplied by DEWALT) must be used for holes<br>drilled deeper than the listed brush length.                                         |
| <b>4</b> X<br>▼ ▲ ▼ ▲ | • The wire brush diameter must be checked periodically during use The brush should resist insertion into the drilled hole and come into contact with the sides of the drilled hole. If not the brush is too small and must be replaced.                                                                                                                                                  |
|                       | <b>2c-</b> Repeat Step 2a again by rinse/flush the hole clean with water.                                                                                                                                                                                                                                                                                                                |
|                       | Following this remove all standing water completely (e.g. vacuum, compressed air, etc.) prior to further cleaning. To attain a dried borehole a DEWALT compressed air nozzle is recommended.                                                                                                                                                                                             |
| ₹<br>₹<br>₹<br>4X     | 2d- Starting from the bottom or back of the drilled anchor hole, blow the hole clean (free of noticeable dust) a minimum if four times (4x). Use a compressed air nozzle (min. 90 psi) for all sizes of anchor rod and reinforcing bar (rebar)                                                                                                                                           |
|                       | <b>2e-</b> Repeat Step 2b again by brushing the hole with a wire brush a minimum of four times (4x).                                                                                                                                                                                                                                                                                     |
|                       | 2f- Repeat Step 2d again by blowing the hole clean a minimum of four times (4x).                                                                                                                                                                                                                                                                                                         |
|                       | When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.                                                                                                                                                                                                                                                                             |

NEXT GO TO STEP 3.

Epoxy Injection Adhesive Anchoring System

**PE1000+**<sup>®</sup>

#### PREPARING

ENGINEERED BY POWERS



- 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 41°F 95°F (5°C 35°C) when in use; for downward applications only the adhesive temperature may be up to 104°F (40°C). Consideration should be given to the reduced gel time of the adhesive in warm temperatures.
- Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool.
- A new mixing nozzle must be used for every working interruption longer than the published working times (reference gel time and curing time table) as well as for new cartridges.
- Note: Always use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive.



4- Prior to inserting the anchor rod or rebar into the filled bore hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.



- 5- For new cartridges and nozzles: prior to dispensing into the anchor hole, squeeze out separately a minimum three full strokes of the mixed adhesive. Discard non-uniform adhesives until the adhesive is a consistent RED color.
- Review and note the published working and cure times (reference gel time and curing time table) prior to injection of the mixed adhesive into the cleaned anchor hole.

#### INSTALLATION



- 6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. If the bottom or back of the anchor hole is not reached with the mixing nozzle only, a plastic extension tube must be used with the mixing nozzle (see reference tables for installation). Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids.
- WITH PISTON PLUG:
- and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.
   Attention! Do not install anchors overhead without proper training and installation hardware provided by the DEWALT. Contact DEWALT for

Piston plugs (see adhesive piston plug table) must be used with and attached to the mixing nozzle and extension tube for horizontal and overhead installations with anchor rod from 5/8" to 1-1/4" diameter and rebar size #5 to #10. Insert piston plug to the back of the drilled hole

details prior to use.
7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Air pockets are present when the threaded rod or rebar springs or air pockets burst during installation. In case of air pockets: remove rod or rebar, let the adhesive harden, re-drill the hole



4

8- Be sure that the anchor is fully seated at the bottom of the hole to the specified embedment. Adhesive must completely fill the annular gap between the anchor and the base material. Protect the anchor element threads from fouling with adhesive. For all installations the rebar must be restrained from movement throughout the specified curing period (as necessary) where necessary through the use of temporary wedges, external supports, or other methods. Minor adjustments to the position of the anchor element may be performed during the gel (working) time only.

#### **CURING AND LOADING**



- 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).
- Do not disturb, torque or load the anchor until it is fully cured.

and repeat the complete installation.



- 10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference gel time and curing table) by using a calibrated torque wrench.
- Take care not to exceed the maximum torque for the selected anchor.

## **REFERENCE TABLES FOR INSTALLATION**

#### Gel (working) Time and Curing Table

|                                              | <u> </u>                                       |                                                   |                    |  |  |
|----------------------------------------------|------------------------------------------------|---------------------------------------------------|--------------------|--|--|
| Temperature o                                | f Base Material                                | Col (working) Timo                                | Full Curing Time   |  |  |
| ۴                                            | °C                                             |                                                   |                    |  |  |
| 41                                           | 5                                              | 180 minutes                                       | 50 hours           |  |  |
| 50                                           | 10                                             | 120 minutes                                       | 30 hours           |  |  |
| 68                                           | 20                                             | 30 minutes                                        | 10 hours           |  |  |
| 86                                           | 30                                             | 20 minutes                                        | 6 hours            |  |  |
| 95                                           | 35                                             | 15 minutes                                        | 5 hours            |  |  |
| 104                                          | 40                                             | 12 minutes                                        | 4 hours            |  |  |
| Cartridge temperature must be between 41°F - | 95°F (5°C - 35°C) when in use: for downward ap | plications only the adhesive temperature may be u | p to 104°F (40°C). |  |  |

### Hole Cleaning Equipment Selection Table for PE1000+<sup>1,2,3</sup>

| Threaded rod<br>diameter<br>(inch)                                         | Rebar size<br>(no.)                                      | ANSI drill bit<br>diameter<br>(inch)                 | Core drill bit<br>diameter<br>(inch)                  | Brush length<br>(inches)                               | Steel wire<br>brush<br>(Cat. #) | Blowout<br>tool | Number of<br>cleaning actions           |
|----------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------|-----------------|-----------------------------------------|
| 3/8                                                                        | #3                                                       | 7/16                                                 | 7/16                                                  | 6-3/4                                                  | 08284                           |                 |                                         |
| 1/2                                                                        | -                                                        | 9/16                                                 | 9/16                                                  | 6-3/4                                                  | 08285                           | Hand-pump       |                                         |
| -                                                                          | #4                                                       | 5/8                                                  | 5/8                                                   | 6-3/4                                                  | 08275                           | Or<br>or        |                                         |
| F /0                                                                       |                                                          | 11/16                                                | 11/16                                                 | 7-7/8                                                  | 08286                           | air nozzle      |                                         |
| 5/8                                                                        | C#                                                       | 3/4                                                  | 3/4                                                   | 7-7/8                                                  | 08278                           | (min. 90 psi)   | 4x blowing<br>4x brushing<br>4x blowing |
| 3/4                                                                        | #6                                                       | 7/8                                                  | 7/8                                                   | 7-7/8                                                  | 08287                           | -               |                                         |
| 7/8                                                                        | #7                                                       | 1                                                    | 1                                                     | 11-7/8                                                 | 08288                           |                 |                                         |
| 4                                                                          |                                                          | 1-1/8                                                | 1-1/8                                                 | 11-7/8                                                 | 08289                           | Compressed air  |                                         |
| I                                                                          | #8                                                       | 1-1/4                                                | 1-1/4                                                 | 11-7/8                                                 | 08274                           | nozzle only     |                                         |
| 1-1/4                                                                      | #9                                                       | 1-3/8                                                | 1-3/8                                                 | 11-7/8                                                 | 08290                           | (min. 90 psi)   |                                         |
| -                                                                          | #10                                                      | 1-1/2                                                | 1-1/2                                                 | 11-7/8                                                 | 08291                           |                 |                                         |
| <ol> <li>An SDS-plus adapt</li> <li>For any case, it mutanairan</li> </ol> | tor (Cat. #08283) or Jaco<br>ust be possible for the ste | bs chuck style adaptor (<br>eel anchor element to be | Cat. #08296) is required<br>inserted into the cleaned | to attach a steel wire bru<br>hole without resistance. | sh to the drill tool.           | •               |                                         |

#### **Piston Plugs for Adhesive Anchors**<sup>1,2</sup>

| Plug Size<br>(inch)                              | ANSI Drill Bit<br>Diameter<br>(inch)                                                                                         | Plastic Plug<br>(Cat. #) | Piston Plug |  |  |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|--|--|--|--|
| 11/16                                            | 11/16                                                                                                                        | 08258                    |             |  |  |  |  |
| 3/4                                              | 3/4                                                                                                                          | 08259                    |             |  |  |  |  |
| 7/8                                              | 7/8                                                                                                                          | 08300                    |             |  |  |  |  |
| 1                                                | 1                                                                                                                            | 08301                    |             |  |  |  |  |
| 1-1/8                                            | 1-1/8                                                                                                                        | 08303                    |             |  |  |  |  |
| 1-1/4                                            | 1-1/4                                                                                                                        | 08307                    |             |  |  |  |  |
| 1-3/8                                            | 1-3/8                                                                                                                        | 08305                    |             |  |  |  |  |
| 1-1/2                                            | 1-1/2                                                                                                                        | 08309                    |             |  |  |  |  |
| 1. Overhead and horizontal installations require | 1 Overhead and horizontal installations require the use of niston pluos where one is tabulated together with the anchor size |                          |             |  |  |  |  |

A plastic extension tube (Cat. #08281 or Cat. #08297) or equivalent approved by DEWALT must be used with piston plugs.

PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

**Dry Concrete:** cured concrete that, at the time of adhesive anchor installation, has not been exposed to water for the preceding 14 days. **Water-Saturated Concrete (wet):** cured concrete that, at the time of adhesive anchor installation, has been exposed to water over a sufficient length of time to have the maximum possible amount of absorbed water into the concrete pore structure to a depth equal to the anchor embedment depth.

Water-Filled Holes (flooded): cured concrete that is water-saturated and where the drilled hole contains standing water at the time of anchor installation.

ADHESIVES

## **ORDERING INFORMATION**

DEWAL

ENGINEERED BY POWERS

#### PE1000+ Cartridge System

| Cat No.                                                    | Description                       | Std. Ctn. | Pallet |  |  |  |  |
|------------------------------------------------------------|-----------------------------------|-----------|--------|--|--|--|--|
| 0500SD                                                     | PE1000+ 13 fl. oz. dual cartridge | 12        | 540    |  |  |  |  |
| 0502SD                                                     | PE1000+ 20 fl. oz. dual cartridge | 12        | 540    |  |  |  |  |
| One PE1000+ mixing nozzle is packaged with each cartridge. |                                   |           |        |  |  |  |  |
| DE1000 11                                                  |                                   |           |        |  |  |  |  |

PE1000+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive.

#### **Extra Mixing Nozzles**

Cat No.

| Cat No. | Description                                            |   | Pallet |
|---------|--------------------------------------------------------|---|--------|
| 08294   | Extra mixing nozzle (with an 8" extension) for PE1000+ | 2 | 24     |
| 08281   | Mixing nozzle extension, 8" long                       | 2 | 24     |
| 08297   | Mixing nozzle extension, 20" long                      | 1 | 12     |

### **Dispensing Tools for Injection Adhesive**

| Cat No.  | Description                                                    | Std. Ctn. | Std. Carton |   |
|----------|----------------------------------------------------------------|-----------|-------------|---|
| 08298    | 13 fl. oz. and 20 fl. oz. Manual Tool                          | 1         | 6           | 1 |
| 08497SD  | 20 fl. oz. Pneumatic tool                                      | 1         | -           |   |
| DCE593D1 | 13 fl. oz. and 20 fl. oz. 20 v Battery powered dispensing tool | 1         | -           |   |

## **Hole Cleaning Tools and Accessories** Description

| 08284 | Wire brush for 7/16" or 1/2" ANSI hole, 6-3/4" length                                                                                                                                                                                | 1 | Management         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------|
| 08285 | Wire brush for 9/16" ANSI hole, 6-3/4" length                                                                                                                                                                                        | 1 |                    |
| 08275 | Wire brush for 5/8" ANSI hole, 6-3/4" length                                                                                                                                                                                         | 1 | 664444444444444444 |
| 08286 | Wire brush for 11/16" ANSI hole, 7-7/8" length                                                                                                                                                                                       | 1 | *GRADOMOUTO        |
| 08278 | Wire brush for 3/4" ANSI hole, 7-7/8" length                                                                                                                                                                                         | 1 |                    |
| 08287 | Wire brush for 7/8" ANSI hole, 7-7/8" length                                                                                                                                                                                         | 1 |                    |
| 08288 | Wire brush for 1" ANSI hole, 11-7/8" length                                                                                                                                                                                          | 1 |                    |
| 08289 | Wire brush for 1-1/8" ANSI hole, 11-7/8" length                                                                                                                                                                                      | 1 |                    |
| 08274 | Wire brush for 1-1/4" ANSI hole, 11-7/8" length                                                                                                                                                                                      | 1 | ***********        |
| 08290 | Wire brush for 1-3/8" ANSI hole, 11-7/8" length                                                                                                                                                                                      | 1 | (                  |
| 08291 | Wire brush for 1-1/2" ANSI hole, 11-7/8" length                                                                                                                                                                                      | 1 | ==>-eeeee          |
| 08283 | SDS-plus adapter for steel brushes                                                                                                                                                                                                   | 1 |                    |
| 08296 | Standard drill adapter for steel brushes (e.g. Jacobs Chuck)                                                                                                                                                                         | 1 | 5                  |
| 08282 | Steel brush extension, 12" length                                                                                                                                                                                                    | 1 | 1.                 |
| 08280 | Hand pump/dust blower (25 fl. oz. cylinder volume)                                                                                                                                                                                   | 1 |                    |
| 08292 | Air compressor nozzle with extension, 18" length                                                                                                                                                                                     | 1 |                    |
| 52073 | Adhesive cleaning kit, includes 4 wire brushes (08284, 08285, 08286, 08287),<br>steel brush extension (08282), SDS-plus adapter (08283), standard drill adapter<br>(08296), hand pump/dust blower (08280), gloves and safety glasses | 1 | -                  |

## **Adhesive Piston Plugs**

| Cat No. Description |             | ANSI Drill Bit Dia. | Std. |
|---------------------|-------------|---------------------|------|
|                     |             |                     | вад  |
| 08258               | 11/16" Plug | 11/16"              | 10   |
| 08259               | 3/4" Plug   | 3/4"                | 10   |
| 08300               | 7/8" Plug   | 7/8"                | 10   |
| 08301               | 1" Plug     | 1"                  | 10   |
| 08303               | 1-1/8" Plug | 1-1/8"              | 10   |
| 08307               | 1-1/4" Plug | 1-1/4"              | 10   |
| 08305               | 1-3/8" Plug | 1-3/8"              | 10   |
| 08309               | 1-1/2" Plug | 1-1/2"              | 10   |





mmm mmmm

**PE1000**+

Std. Box







## **GENERAL INFORMATION**

## HAMMER-CAPSULE®

Drive-In Capsule Adhesive

#### **PRODUCT DESCRIPTION**

The Hammer-Capsule system consists of a self contained, single use, two-part glass capsule into which threaded anchor rod or reinforcing bars can be directly driven without the need for a chisel point or spinning action. It is designed for use in the installation of 3/8" through 1" diameter threaded rod in solid concrete and masonry materials. It can also be used to install reinforcing bars.

A mixture of hardener and quartz aggregate is contained in the upper portion of the capsule while the lower portion contains an epoxy acrylate resin. Unlike traditional capsule anchors which required the use of chisel-pointed anchor rod and special installation tools, the Hammer-Capsule is designed for use with straight cut anchor rod.

#### **GENERAL APPLICATIONS AND USES**

- Anchoring rebar (doweling), and threaded anchor rods in solid concrete and grouted concrete masonry
- Steel erection including anchoring of equipment and column base plates
- · Resistant to vibratory loads introduced from machinery, moving vehicles, etc
- Barriers, fencing and railing attachments

#### FEATURES AND BENEFITS

- + Fast, easy installation no special adaptors required for setting
- + Excellent chemical resistance
- + Components are mixed during installation of rod or rebar
- + Pre-measured chemical component volumes no waste and simplified placement
- + Ideal for small projects

#### **APPROVALS AND LISTINGS**

- Department of Transportation listings see www.DEWALT.com or contact transportation agency
- Independently tested to ASTM E1512 and AC58 criteria including creep resistance

### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Capsule adhesive anchoring system shall be Hammer-Capsule as supplied by DEWALT, Towson, MD.

## **MATERIAL SPECIFICATIONS**

#### **Physical Properties**

| Shelf Life                              | 2 Years                                             |
|-----------------------------------------|-----------------------------------------------------|
| Storage Conditions                      | Store dry at 40° to 90°F and out of direct sunlight |
| Installation Temperature                | Condition capsules to 60°F minimum for best results |
| Color                                   | Mixed adhesive mortar – amber                       |
| Consistency<br>(mixed, prior to curing) | Paste mortar                                        |

### Curing Times

| Minimum Base<br>Material Temperature       | Curing Time |
|--------------------------------------------|-------------|
| 68°F (20°C)                                | 1 hour      |
| 50°F (10°C)                                | 2 hours     |
| 32°F (0°C)                                 | 5 hours     |
| 1. Cure time should be doubled for wet con | crete.      |

#### **SECTION CONTENTS**

| General Information         | 142  |
|-----------------------------|------|
| Material Specifications     | 142  |
| Installation Specifications | 143  |
| Steel Material              | .144 |
| Performance Data            | .145 |
| Design Criteria             | 4.40 |
| (Allowable Stress Design)   | 146  |
| Ordering Information        | 147  |



HAMMER-CAPSULE

#### STRAIGHT CUT THREADED ROD

#### ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1" diameter rod
- No. 3 to No. 8 reinforcing bar

#### **SUITABLE BASE MATERIALS**

- Normal-weight concrete
- Grouted concrete masonry

#### PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry concrete
- Water-saturated concrete (wet)



#### Hammer-Capsule<sup>1,2</sup>

| Dimonsion                        | Hammer-Capsule, Nominal Size |      |      |      |      |      |  |
|----------------------------------|------------------------------|------|------|------|------|------|--|
| Dimension                        | 3/8"                         | 1/2" | 5/8" | 3/4" | 7/8" | 1"   |  |
| Capsule Diameter (in.)           | 0.43                         | 0.51 | 0.67 | 0.78 | 0.87 | 0.95 |  |
| Capsule Length (in.)             | 3.50                         | 4.30 | 5.00 | 5.50 | 6.89 | 8.25 |  |
| Mortar Volume (in <sup>3</sup> ) | 0.40                         | 0.70 | 1.40 | 2.05 | 3.25 | 4.50 |  |
| Mortar Volume (fl. oz.)          | 0.22                         | 0.39 | 0.77 | 1.13 | 1.79 | 2.48 |  |

1. The mortar volume listed is for the mixed material.

2. The diameter and length may be different than capsules offered by other suppliers because of variations in air content. When comparing capsules, use the installed mortar volume.

#### Threaded Rod in Normal-Weight Concrete

| Dimension                                                | Hammer-Capsule, Nominal Size |       |       |       |        |         |  |
|----------------------------------------------------------|------------------------------|-------|-------|-------|--------|---------|--|
| Dimension                                                | 3/8"                         | 1/2"  | 5/8"  | 3/4"  | 7/8"   | 1"      |  |
| $A_{nom} = Nominal area of threaded rod (in2)$           | 0.111                        | 0.196 | 0.307 | 0.442 | 0.601  | 0.785   |  |
| $A_{se} =$ Tensile stress area of rod (in <sup>2</sup> ) | 0.078                        | 0.142 | 0.226 | 0.335 | 0.462  | 0.606   |  |
| d <sub>bit</sub> = Nominal bit diameter (in.)            | 7/16                         | 9/16  | 11/16 | 7/8   | 1      | 1-1/8   |  |
| $h_v =$ Minimum Embedment Depth (in.)                    | 3-1/2                        | 4-1/4 | 5     | 6 5/8 | 7      | 8-1/4   |  |
| $T_{max} = Max.$ tightening torque range (ftlbs.)        | 7.5-10                       | 11-15 | 26-35 | 56-75 | 75-100 | 112-150 |  |
| Mortar per inch (in <sup>3</sup> )                       | 0.094                        | 0.133 | 0.184 | 0.326 | 0.390  | 0.478   |  |

#### **Reinforcing Bar in Normal-Weight Concrete**

| Dimension                                                                                     | Reinforcing Bar Size                                                                                                                                   |       |       |       |       |       |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|--|
| Dimension                                                                                     | No.3                                                                                                                                                   | No.4  | No.5  | No.6  | No.7  | No.8  |  |
| $A_{nom} = Nominal area of threaded rod (in2)$                                                | 0.110                                                                                                                                                  | 0.200 | 0.310 | 0.440 | 0.600 | 0.790 |  |
| d <sub>bit</sub> = Nominal bit diameter (in.)                                                 | 1/2                                                                                                                                                    | 5/8   | 3/4   | 7/8   | 1     | 1-1/8 |  |
| $h_v =$ Minimum Embedment Depth (in.)                                                         | 3-1/2                                                                                                                                                  | 4-1/4 | 5     | 6     | 7     | 8-1/4 |  |
| Mortar per inch (in <sup>3</sup> )                                                            | 0.111                                                                                                                                                  | 0.142 | 0.176 | 0.220 | 0.252 | 0.537 |  |
| <ol> <li>Adhesive mortar volumes for reinforcing bar are<br/>deformations on bars.</li> </ol> | 1. Adhesive mortar volumes for reinforcing bar are based on smooth bars. Actual mortar volume required will be less due to raised deformations on bars |       |       |       |       |       |  |

#### Nomenclature

dh

hv

P

| d                | = | Diameter | of | ancl  | hor |
|------------------|---|----------|----|-------|-----|
| d <sub>bit</sub> | = | Diameter | of | drill | bit |

- Diameter of fixture =
- clearance hole
- h Base material thickness = The minimum value of h
  - should be 1.5hv
  - Minimum embedment depth =
  - Overall length of anchor =
- Tmax = Maximum tightening torque (only possible after curing time)



#### **Installation Guidelines**



1. Drill a hole using a carbide tipped bit meeting the diameter requirements of ANSI B212.15 to the minimum depth required as shown in the chart.

Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.

Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).



2. Starting from the bottom or back of the anchor hole, remove dust and debris from the hole (e.g. dust extractor) to remove loose particles from drilling, brush the hole with a nylon brush, and again remove any remaining loose particles. Anchor holes may be dry or damp, but should be free of standing water or frost. Vacuuming only is not sufficient. Blow out bulbs generally do not provide enough dust removal for most drilled anchor holes. Holes should be clean and sound



3. Prior to installation check the capsule to be sure it is not damaged and invert several times at 60°F or above to confirm all of the resin is in a liquid state. Insert the capsule into the hole.

Note! Be careful to observe the direction of insertion. The arrow on the capsule should point toward the bottom of the hole.



4. Drive the threaded rod or reinforcing bar into the anchor hole through the capsule until it is fully embedded. A 2-pound hammer and eye protection are recommended

A rotary hammer set in the hammering only mode and Chem-Stud drive adapters can also be used. Stop driving immediately upon reaching the bottom of the anchor hole.



5. Allow the Hammer-Capsule to cure for specified time before loading anchor. Do not disturb, torque or load the anchor once the material has begun to set.

**ADHESIVES** 

Note! Consideration must be given to installation direction. Overhead installations with glass capsules are sensitive and extremely dependent upon the skill and care taken by the user; additional equipment not supplied by DEWALT may be required. Consequently DEWALT does not recommend the use of the Hammer Capsule for overhead applications at this time. Use of the product in adverse installation conditions should not be done without proper training and direct supervision by the Design Professional.



TECHNICAL GUIDE – ADHESIVES © 2018 DEWALT – REV. B

### **STEEL MATERIAL**

#### **Material Properties for Threaded Rod and Reinforcing Bar**

| Anchor<br>Type  | Steel Description        | Steel Specification<br>(ASTM)      | Rod Dia. or Rebar Size<br>(inch or No.) | $\begin{array}{l} \mbox{Minimum Yield Strength,} \\ \mbox{f}_{\!\scriptscriptstyle Y} \mbox{ (ksi)} \end{array}$ | Minimum Ultimate<br>Strength, fu (ksi) |
|-----------------|--------------------------|------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                 |                          | A36                                | All                                     | 36.0                                                                                                             | 58.0                                   |
|                 | Standard carbon rod      | A307 Grade C or<br>F1554, Grade 36 | 3/8 thru 4                              | 36.0                                                                                                             | 58.0                                   |
| Threaded Rod    | High strength carbon rod | A 193, Grade B7                    | 3/8 thru 2-1/2                          | 105.0                                                                                                            | 120.0                                  |
|                 | Stainless Rod            | E 502 Condition CW                 | 3/8 thru 5/8                            | 65.0                                                                                                             | 100.0                                  |
|                 | (Type 304 / 316 SS)      | F 595, Contaition Gw               | 3/4 thru 1-1/2                          | 45.0                                                                                                             | 85.0                                   |
| Dainforaing Par | Grade 40 Rebar           | A 615, A 706, A 767                | ΔII                                     | 40.0                                                                                                             | 70.0                                   |
| Reinforcing Bar | Grade 60 Rebar           | or A996                            | All                                     | 60.0                                                                                                             | 90.0                                   |

#### Allowable Steel Strength Capacities for Threaded Rod

| Anohor                       |                             | Allowable                                 | e Tension                                |                                            |                             | Allowab                                   | le Shear                                 |                                            |
|------------------------------|-----------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------|
| Diameter<br>d<br>in.<br>(mm) | ASTM<br>A36<br>Ibs.<br>(kN) | ASTM<br>F1554<br>Grade 36<br>Ibs.<br>(kN) | ASTM<br>A193<br>Grade B7<br>Ibs.<br>(kN) | ASTM<br>F593<br>304/316 SS<br>Ibs.<br>(kN) | ASTM<br>A36<br>Ibs.<br>(kN) | ASTM<br>F1554<br>Grade 36<br>Ibs.<br>(kN) | ASTM<br>A193<br>Grade B7<br>Ibs.<br>(kN) | ASTM<br>F593<br>304/316 SS<br>Ibs.<br>(kN) |
| 3/8                          | 2,115                       | 2,115                                     | 4,375                                    | 3,630                                      | 1,090                       | 1,090                                     | 2,255                                    | 1,870                                      |
| (9.5)                        | (9.5)                       | (9.5)                                     | (19.7)                                   | (16.3)                                     | (4.9)                       | (4.9)                                     | (10.1)                                   | (8.4)                                      |
| 1/2                          | 3,755                       | 3,755                                     | 7,775                                    | 6,470                                      | 1,940                       | 1,940                                     | 4,055                                    | 3,330                                      |
| (12.7)                       | (16.9)                      | (16.9)                                    | (35.0)                                   | (29.1)                                     | (8.7)                       | (8.7)                                     | (18.2)                                   | (15.0)                                     |
| 5/8                          | 5,870                       | 5,870                                     | 12,150                                   | 10,130                                     | 3,025                       | 3,025                                     | 6,260                                    | 5,210                                      |
| (15.9)                       | (26.4)                      | (26.4)                                    | (54.7)                                   | (45.6)                                     | (13.6)                      | (13.6)                                    | (28.2)                                   | (23.4)                                     |
| 3/4                          | 8,455                       | 8,455                                     | 17,495                                   | 12,400                                     | 4,355                       | 4,355                                     | 9,010                                    | 6,390                                      |
| (19.1)                       | (38.0)                      | (38.0)                                    | (78.7)                                   | (55.8)                                     | (19.6)                      | (19.6)                                    | (40.5)                                   | (28.8)                                     |
| 7/8                          | 11,510                      | 11,510                                    | 23,810                                   | 16,860                                     | 5,930                       | 5,930                                     | 12,265                                   | 8,680                                      |
| (22.2)                       | (51.8)                      | (51.8)                                    | (107.1)                                  | (75.9)                                     | (26.7)                      | (26.7)                                    | (55.2)                                   | (39.1)                                     |
| 1                            | 15,035                      | 15,035                                    | 31,100                                   | 22,020                                     | 7,745                       | 7,745                                     | 16,020                                   | 11,340                                     |
| (25.4)                       | (67.7)                      | (67.7)                                    | (140.0)                                  | (99.1)                                     | (34.9)                      | (34.9)                                    | (72.1)                                   | (51.0)                                     |
| 1 Allowable steel            | etronath conocitios oro     | hacad on the standar                      | ninimum etronathe                        | of the tabulated materi                    | ale                         |                                           |                                          |                                            |

on the standard minimum strengths of the tab

### Allowable Steel Strength Capacities for Reinforcing Bar

| Bar<br>Size        | Ten:<br>Ib<br>(k        | sion<br>Is.<br>N)       | Shear<br>Ibs.<br>(kN) |          |  |  |
|--------------------|-------------------------|-------------------------|-----------------------|----------|--|--|
|                    | Grade 40                | Grade 60                | Grade 40              | Grade 60 |  |  |
| No. 3              | 2,200                   | 2,640                   | 1,310                 | 1,680    |  |  |
| (3/8")             | (9.9)                   | (11.9)                  | (5.9)                 | (7.6)    |  |  |
| No. 4              | 4,000                   | 4,800                   | 2,380                 | 3,060    |  |  |
| (1/2")             | (18.0)                  | (21.6)                  | (10.7)                | (13.8)   |  |  |
| No. 5              | 6,200                   | 7,440                   | 3,690                 | 4,740    |  |  |
| (5/8")             | (27.9)                  | (33.5)                  | (16.6)                | (21.3)   |  |  |
| No. 6              | 8,800                   | 10,560                  | 5,235                 | 6,730    |  |  |
| (3/4")             | (39.6)                  | (47.5)                  | (23.6)                | (30.3)   |  |  |
| No. 7              | 12,000                  | 14,400                  | 7,140                 | 9,180    |  |  |
| (7/8'')            | (54.0)                  | (64.8)                  | (32.1)                | (41.3)   |  |  |
| No. 8              | 15,800                  | 18,960                  | 9,400                 | 12,085   |  |  |
| (1")               | (71.1)                  | (85.3)                  | (42.3)                | (54.4)   |  |  |
| 1. Allowable steel | strength capacities are | e based on the requirer | ments of ASTM A 615.  |          |  |  |

#### Note: Allowable design load must be the lesser of allowable steel strength (as shown on this page) and the allowable bond capacities. Allowable steel strength values for threaded rod are based on the

following equations:  $T = 0.33 * f_{*} * A$ 

$$V = 0.17 * f_{u} * A_{nom}$$

And, the allowable steel strength values for reinforcing bar are based on the following equations:

$$\begin{array}{rcl} T & = & f_s * A_{br} \\ V & = & 0.17 * f_u * A_{br} \end{array}$$

Where:

Т V fu fs

- Allowable tension load (pounds).
   Allowable shear load (pounds).
   Minimum specified ultimate strength (psi).
- = Tensile stress area in reinforcement (psi).
- $A_{nom} = Nominal cross-sectional area of threaded rod (in<sup>2</sup>).$ Abr Nominal cross-sectional area of reinforcing bar (in<sup>2</sup>).

**ADHESIVES** 

HAMMER-CAPSULE® Drive-In Capsule Adhesive

HAMMER-CAPSULE® Drive-in Capsule Adhesive

## PERFORMANCE DATA

DEWALT

ENGINEERED BY POWERS

### Ultimate Load Capacities for Threaded Rod Installed with Hammer-Capsule in Normal-Weight Concrete<sup>1,2</sup>

|                     | Min               |          |                         |                       |                         | Minimum               | Concrete Con            | npressive Str         | ength (f´c)             |                       |                         |                       |
|---------------------|-------------------|----------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|
| Anchor<br>Dia.<br>d | Embed.<br>Depth   | Capsules | 2,00<br>(13.8           | 0 psi<br>MPa)         | 3,00<br>(20.7           | 0 psi<br>MPa)         | 4,00<br>(27.6           | 0 psi<br>MPa)         | 5,00<br>(34.5           | 0 psi<br>MPa)         | 6,000 psi<br>(41.4 MPa) |                       |
| in.<br>(mm)         | n√<br>in.<br>(mm) | Kequirea | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) |
| 3/8                 | 3-1/2<br>(88.9)   | One 3/8" | 4,920<br>(22.1)         | 4,440<br>(20.0)       | 5,880<br>(26.5)         | 4,440<br>(20.0)       | 6,120<br>(27.5)         | 4,440<br>(20.0)       | 6,320<br>(28.2)         | 4,440<br>(20.0)       | 6,320<br>(28.2)         | 4,440<br>(20.0)       |
| (9.5)               | 7<br>(177.8)      | Two 3/8" | 9,840<br>(44.3)         | 4,440<br>(20.0)       | 11,760<br>(52.9)        | 4,440<br>(20.0)       | 12,240<br>(55.1)        | 4,440<br>(20.0)       | 12,640<br>(56.4)        | 4,440<br>(20.0)       | 12,640<br>(56.4)        | 4,440<br>(20.0)       |
| 1/2                 | 4-1/4<br>(108.0)  | One 1/2" | 8,235<br>(37.1)         | 10,720<br>(48.2)      | 10,240<br>(45.7)        | 10,720<br>(48.2)      | 10,240<br>(45.7)        | 10,720<br>(48.2)      | 10,240<br>(45.7)        | 10,720<br>(48.2)      | 10,240<br>(45.7)        | 10,720<br>(48.2)      |
| (12.7) 8-1/2        | 8-1/2<br>(215.9)  | Two 1/2" | 16,470<br>(74.1)        | 10,720<br>(48.2)      | 20,460<br>(91.3)        | 10,720<br>(48.2)      | 20,460<br>(91.3)        | 10,720<br>(48.2)      | 20,460<br>(91.3)        | 10,720<br>(48.2)      | 20,460<br>(91.3)        | 10,720<br>(48.2)      |
| 5/8                 | 5<br>(127.0)      | One 5/8" | 10,160<br>(45.7)        | 17,160<br>(77.2)      | 13,080<br>(58.9)        | 17,160<br>(77.2)      | 15,060<br>(67.2)        | 17,160<br>(77.2)      | 15,060<br>(67.2)        | 17,160<br>(77.2)      | 15,060<br>(67.2)        | 17,160<br>(77.2)      |
| (15.9)              | 10<br>(254.0)     | Two 5/8" | 20,320<br>(91.4)        | 17,160<br>(77.2)      | 26,160<br>(117.7)       | 17,160<br>(77.2)      | 30,100<br>(134.4)       | 17,160<br>(77.2)      | 30,100<br>(134.4)       | 17,160<br>(77.2)      | 30,100<br>(134.4)       | 17,160<br>(77.2)      |
| 3/4                 | 6<br>(152.4)      | One 3/4" | 13,080<br>(58.9)        | 24,990<br>(112.5)     | 17,125<br>(77.1)        | 24,990<br>(112.5)     | 17,990<br>(81.0)        | 24,990<br>(112.5)     | 19,190<br>(86.4)        | 24,990<br>(112.5)     | 20,390<br>(91.8)        | 24,990<br>(112.5)     |
| (19.1)              | 12<br>(304.8)     | Two 3/4" | 26,160<br>(117.7)       | 24,990<br>(112.5)     | 34,250<br>(154.1)       | 24,990<br>(112.5)     | 35,980<br>(161.9)       | 24,990<br>(112.5)     | 38,380<br>(172.7)       | 24,990<br>(112.5)     | 40,780<br>(183.5)       | 24,990<br>(112.5)     |
| 7/8                 | 7<br>(177.8)      | One 7/8" | 16,265<br>(73.2)        | 35,600<br>(160.2)     | 21,065<br>(94.8)        | 35,600<br>(160.2)     | 24,640<br>(110.9)       | 35,600<br>(160.2)     | 28,425<br>(127.9)       | 35,600<br>(160.2)     | 29,500<br>(32.9)        | 35,600<br>(160.2)     |
| (22.2)              | 14<br>(355.6)     | Two 7/8" | 32,530<br>(146.4)       | 35,600<br>(160.2)     | 42,130<br>(189.6)       | 35,600<br>(160.2)     | 49,280<br>(221.8)       | 35,600<br>(160.2)     | 56,850<br>(255.8)       | 35,600<br>(160.2)     | 59,000<br>(263.4)       | 35,600<br>(160.2)     |
| 1                   | 8-1/4<br>(209.6)  | One 1"   | 28,720<br>(129.2)       | 46,840<br>(210.8)     | 32,265<br>(145.2)       | 46,840<br>(210.8)     | 32,495<br>(146.2)       | 46,840<br>(210.8)     | 35,205<br>(158.4)       | 46,840<br>(210.8)     | 37,920<br>(170.6)       | 46,840<br>(210.8)     |
| (25.4)              | 16-1/2<br>(419.1) | Two 1"   | 57,440<br>(258.5)       | 46,840<br>(210.8)     | 64,530<br>(290.4)       | 46,840<br>(210.8)     | 64,990<br>(292.5)       | 46,840<br>(210.8)     | 70,410<br>(316.8)       | 46,840<br>(210.8)     | 75,840<br>(341.3)       | 46,840<br>(210.8)     |

1. Ultimate load capacities should be reduced by a minimum safety factor of 4.0 or greater to determine the allowable working load. Consideration of safety factors of 10.0 or higher may be necessary depending on the application, such as life safety.

2. Linear interpolation may be used to determine ultimate load capacities for intermediate embedments and compressive strengths.

#### Allowable Load Capacities for Threaded Rod Installed with Hammer-Capsule in Normal-Weight Concrete<sup>1,2,3</sup>

|                     | Min                                              | Capsules |                         |                       |                         | Minimum                 | Concrete Con            | npressive Str         | ength (f´c)             |                       |                         |                       |
|---------------------|--------------------------------------------------|----------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|
| Anchor<br>Dia.<br>d | Embed.<br>Depth<br>h <sub>∨</sub><br>in.<br>(mm) |          | 2,00<br>(13.8           | 0 psi<br>MPa)         | 3,00<br>(20.7           | 3,000 psi<br>(20.7 MPa) |                         | 0 psi<br>MPa)         | 5,00<br>(34.5           | 0 psi<br>MPa)         | 6,000 psi<br>(41.4 MPa) |                       |
| in.<br>(mm)         |                                                  | Required | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN)   | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) | Tension<br>Ibs.<br>(kN) | Shear<br>Ibs.<br>(kN) |
| 3/8                 | 3-1/2<br>(88.9)                                  | One 3/8" | 1,230<br>(5.5)          | 1,110<br>(5.0)        | 1,470<br>(6.6)          | 1,110<br>(5.0)          | 1,530<br>(6.9)          | 1,110<br>(5.0)        | 1,580<br>(7.1)          | 1,110<br>(5.0)        | 1,580<br>(7.1)          | 1,110<br>(5.0)        |
| (9.5)               | 7<br>(177.8)                                     | Two 3/8" | 2,460<br>(11.1)         | 1,110<br>(5.0)        | 2,940<br>(13.2)         | 1,110<br>(5.0)          | 3,060<br>(13.8)         | 1,110<br>(5.0)        | 3,160<br>(14.1)         | 1,110<br>(5.0)        | 3,160<br>(14.1)         | 1,110<br>(5.0)        |
| 1/2                 | 4-1/4<br>(108.0)                                 | One 1/2" | 2,060<br>(9.3)          | 2,680<br>(12.1)       | 2,560<br>(11.4)         | 2,680<br>(12.1)         | 2,560<br>(11.4)         | 2,680<br>(12.1)       | 2,560<br>(11.4)         | 2,680<br>(12.1)       | 2,560<br>(11.4)         | 2,680<br>(12.1)       |
| (12.7)              | 8-1/2<br>(215.9)                                 | Two 1/2" | 4,120<br>(18.5)         | 2,680<br>(12.1)       | 5,115<br>(22.8)         | 2,680<br>(12.1)         | 5,115<br>(22.8)         | 2,680<br>(12.1)       | 5,115<br>(22.8)         | 2,680<br>(12.1)       | 5,115<br>(22.8)         | 2,680<br>(12.1)       |
| 5/8 (127.0)         | 5<br>(127.0)                                     | One 5/8" | 2,540<br>(11.4)         | 4,290<br>(19.3)       | 3,270<br>(14.7)         | 4,290<br>(19.3)         | 3,765<br>(16.8)         | 4,290<br>(19.3)       | 3,765<br>(16.8)         | 4,290<br>(19.3)       | 3,765<br>(16.8)         | 4,290<br>(19.3)       |
| (15.9)              | 10<br>(254.0)                                    | Two 5/8" | 5,080<br>(22.9)         | 4,290<br>(19.3)       | 6,540<br>(29.4)         | 4,290<br>(19.3)         | 7,525<br>(33.6)         | 4,290<br>(19.3)       | 7,525<br>(33.6)         | 4,290<br>(19.3)       | 7,525<br>(33.6)         | 4,290<br>(19.3)       |
| 3/4                 | 6<br>(152.4)                                     | One 3/4" | 3,270<br>(14.7)         | 6,250<br>(28.1)       | 4,280<br>(19.3)         | 6,250<br>(28.1)         | 4,500<br>(20.3)         | 6,250<br>(28.1)       | 4,800<br>(21.6)         | 6,250<br>(28.1)       | 5,100<br>(23.0)         | 6,250<br>(28.1)       |
| (19.1)              | 12<br>(304.8)                                    | Two 3/4" | 6,540<br>(29.4)         | 6,250<br>(28.1)       | 8,565<br>(38.5)         | 6,250<br>(28.1)         | 8,995<br>(40.5)         | 6,250<br>(28.1)       | 9,595<br>(43.2)         | 6,250<br>(28.1)       | 10,195<br>(45.9)        | 6,250<br>(28.1)       |
| 7/8                 | 7<br>(177.8)                                     | One 7/8" | 4,065<br>(18.3)         | 8,900<br>(40.1)       | 5,265<br>(23.7)         | 8,900<br>(40.1)         | 6,160<br>(27.7)         | 8,900<br>(40.1)       | 7,105<br>(32.0)         | 8,900<br>(40.1)       | 7,375<br>(32.9)         | 8,900<br>(40.1)       |
| (22.2)              | 14<br>(355.6)                                    | Two 7/8" | 8,135<br>(36.6)         | 8,900<br>(40.1)       | 10,535<br>(47.4)        | 8,900<br>(40.1)         | 12,320<br>(55.4)        | 8,900<br>(40.1)       | 14,215<br>(64.0)        | 8,900<br>(40.1)       | 14,750<br>(65.0)        | 8,900<br>(40.1)       |
| 1                   | 8-1/4<br>(209.6)                                 | One 1"   | 7,180<br>(32.3)         | 11,710<br>(52.7)      | 8,065<br>(36.3)         | 11,710<br>(52.7)        | 8,125<br>(36.6)         | 11,710<br>(52.7)      | 8,800<br>(39.6)         | 11,710<br>(52.7)      | 9,480<br>(42.7)         | 11,710<br>(52.7)      |
| (25.4)              | 16-1/2<br>(419.1)                                | Two 1"   | 14,360<br>(64.6)        | 11,710<br>(52.7)      | 16,135<br>(72.6)        | 11,710<br>(52.7)        | 16,250<br>(73.1)        | 11,710<br>(52.7)      | 17,605<br>(79.2)        | 11,710<br>(52.7)      | 18,960<br>(85.3)        | 11,710<br>(52.7)      |

1. Allowable bond capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10.0 or higher may be necessary depending on the application,

such as life safety.

2. Linear interpolation may be used to determine allowable bond capacities for intermediate embedments and compressive strengths.

3. Allowable design load should be the lesser of the bond or allowable steel strength.

Ultimate Load Capacities for Threaded Rod Installed with Hammer-Capsule in Grout-Filled Concrete Masonry<sup>1,2,3</sup>

|                                        | Anchor ins                                       |                                          |                                                    |                                            |                                           |                         |                                              |                                |
|----------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------|----------------------------------------------|--------------------------------|
| Anchor<br>Diameter<br>d<br>in.<br>(mm) | Drill Bit<br>Diameter<br>d <sub>bit</sub><br>in. | Minimum<br>Block<br>Width<br>in.<br>(mm) | Minimum<br>Embedment<br>Depth<br>h√<br>in.<br>(mm) | Minimum<br>Edge<br>Distance<br>in.<br>(mm) | Minimum<br>End<br>Distance<br>in.<br>(mm) | Tension<br>Ibs.<br>(kN) | Shear<br>Towards the<br>Edge<br>Ibs.<br>(KN) | Minimum End<br>Distance (Typ)  |
| 3/8<br>(9.5)                           | 7/16                                             | 6<br>(152.4)                             | 3-1/2<br>(88.9)                                    | 2-1/4<br>(57.2)                            | 4<br>(101.6)                              | 2,756<br>(12.4)         | 1,622<br>(7.3)                               |                                |
| 1/2<br>(12.7)                          | 9/16                                             | 6<br>(152.4)                             | 4-1/4<br>(108.0)                                   | 2-3/4<br>(69.9)                            | 4<br>(101.6)                              | 4,902<br>(22.0)         | 2,086<br>(9.3)                               | Minimum Edge<br>Distance (Typ) |
| 5/8<br>(15.9)                          | 11/16                                            | 8<br>(203.2)                             | 5<br>(127.0)                                       | 2-3/4<br>(69.9)                            | 11-1/4<br>(285.8)                         | 6,189<br>(27.7)         | 1,877<br>(8.4)                               | Top of Wall                    |
| 3/4<br>(19.1)                          | 7/8                                              | 8<br>(203.2)                             | 6-5/8<br>(168.3)                                   | 2-3/4<br>(69.9)                            | 11-1/4<br>(285.8)                         | 7,887<br>(35.3)         | 2,005<br>(9.0)                               |                                |
| 7/8<br>(22.2)                          | 1                                                | 8<br>(203.2)                             | 7<br>(177.8)                                       | 3-3/4<br>(95.3)                            | 11-1/4<br>(285.8)                         | 8,648<br>(38.8)         | 3,379<br>(15.1)                              |                                |
| 1<br>(25.4)                            | 1-1/8                                            | 8<br>(203.2)                             | 8-1/4<br>(209.6)                                   | 3-3/4<br>(95.3)                            | 11-1/4<br>(285.8)                         | 10,679<br>(47.9)        | 3,139<br>(14.1)                              |                                |

1. Tabulated load capacities are for anchors installed in minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90 that are fully grouted and have reached a designated minimum compressive strength at the time of installation. Mortar must be Types N, S or M.

2. The allowable loads are calculated using a safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

3. Masonry members must have a minimum nominal width of 8 inches with the exception of 3/8" and 1/2" diameter anchors which may be installed in minimum nominal 6-inch width masonry members.

## **DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)**

**≤ 1** 

#### **Combined Loading**

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

Where:

$$\left(\frac{\mathbf{N}\mathbf{u}}{\mathbf{N}\mathbf{n}}\right) + \left(\frac{\mathbf{V}\mathbf{u}}{\mathbf{V}\mathbf{n}}\right)$$

 $\begin{array}{l} N_u = \mbox{Applied Service Tension Load} \\ N_n = \mbox{Allowable Tension Load} \\ V_u = \mbox{Applied Service Shear Load} \\ V_n = \mbox{Allowable Shear Load} \\ \end{array}$ 

#### **In-Service Temperature**

Allowable tension and shear load bond strength reduction based on in-service temperature for the Hammer-Capsule adhesive.



| Temperature Conversion       |                           |                                     |  |  |  |  |  |  |  |
|------------------------------|---------------------------|-------------------------------------|--|--|--|--|--|--|--|
| Degree<br>Fahrenheit<br>(°F) | Degree<br>Celsius<br>(°C) | Percent<br>Allowable<br>Load<br>(%) |  |  |  |  |  |  |  |
| 32                           | 0                         | 63                                  |  |  |  |  |  |  |  |
| 70                           | 21                        | 100                                 |  |  |  |  |  |  |  |
| 120                          | 49                        | 86                                  |  |  |  |  |  |  |  |
| 150                          | 65                        | 71                                  |  |  |  |  |  |  |  |
| 180                          | 82                        | 59                                  |  |  |  |  |  |  |  |
| 240                          | 115                       | 54                                  |  |  |  |  |  |  |  |
| 300                          | 149                       | 17                                  |  |  |  |  |  |  |  |

#### LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

#### **Anchor Installed in Normal-Weight Concrete**

| Anchor<br>Dimension | Load Type         | Critical Distance<br>(Full Anchor Capacity) | Critical<br>Load Factor | Minimum Distance<br>(Reduced Capacity) | Minimum<br>Load Factor                 |  |
|---------------------|-------------------|---------------------------------------------|-------------------------|----------------------------------------|----------------------------------------|--|
| Spacing (s)         | Tension and Shear | $s_{cr} = 8d$                               | $F_{NS} = F_{VS} = 1.0$ | $s_{min} = 4d$                         | $F_{\text{NS}} = F_{\text{VS}} = 0.70$ |  |
| Edgo Distanco (o)   | Tension           | $c_{cr} = 8d$                               | Fnc = 1.0               | $C_{min} = 4d$                         | Fnc = 0.60                             |  |
| Euge Distance (C)   | Shear             | $c_{cr} = 12d$                              | $F_{VC} = 1.0$          | $c_{\text{min}} = 4d$                  | $F_{VC} = 0.50$                        |  |

### Spacing, Tension (F<sub>NS</sub>) & Shear (F<sub>VS</sub>)

| ۵          | Dia. (in.) | 1/4  | 3/8   | 1/2  | 5/8   | 3/4  | 7/8   | 1    |
|------------|------------|------|-------|------|-------|------|-------|------|
|            | s∝ (in.)   | 2    | 3     | 4    | 5     | 6    | 7     | 8    |
| Smin (in.) |            | 1    | 1-1/2 | 2    | 2-1/2 | 3    | 3-1/2 | 4    |
|            | 1          | 0.70 | -     | -    | -     | -    | -     | -    |
|            | 1-1/2      | 0.85 | 0.70  | -    | -     | -    | -     | -    |
|            | 2          | 1.00 | 0.80  | 0.70 | -     | -    | -     | -    |
| (Se        | 2-1/2      | 1.00 | 0.90  | 0.78 | 0.70  | -    | -     | -    |
| l de       | 3          | 1.00 | 1.00  | 0.85 | 0.76  | 0.70 | -     | -    |
| i i        | 3-1/2      | 1.00 | 1.00  | 0.93 | 0.82  | 0.75 | 0.70  | -    |
| lg, s      | 4          | 1.00 | 1.00  | 1.00 | 0.88  | 0.80 | 0.74  | 0.70 |
| acir       | 5          | 1.00 | 1.00  | 1.00 | 1.00  | 0.90 | 0.83  | 0.78 |
| Sp         | 5-1/2      | 1.00 | 1.00  | 1.00 | 1.00  | 0.95 | 0.87  | 0.81 |
|            | 6          | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 0.91  | 0.85 |
|            | 7          | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 1.00  | 0.93 |
|            | 8          | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 |

Notes: For anchors loaded in tension and shear, the critical spacing (s<sub>er</sub>) is equal to 8 anchor diameters (8d) at which the anchor achieves 100% of load. Minimum spacing (s<sub>min</sub>) is equal to 4 anchor diameters (4d) at which the anchor achieves 70% of load.



#### Edge Distance, Tension (F<sub>NC</sub>)

| ۵          | )ia. (in.) | 1/4  | 3/8   | 1/2  | 5/8   | 3/4  | 7/8   | 1    |
|------------|------------|------|-------|------|-------|------|-------|------|
|            | Cor (in.)  | 2    | 3     | 4    | 5     | 6    | 7     | 8    |
| Cmin (in.) |            | 1    | 1-1/2 | 2    | 2-1/2 | 3    | 3-1/2 | 4    |
|            | 1          | 0.60 | -     | -    | -     | -    | -     | -    |
|            | 1-1/2      | 0.80 | 0.60  | -    | -     | -    | -     | -    |
| les)       | 2          | 1.00 | 0.73  | 0.60 | -     | -    | -     | -    |
| incl       | 2-1/2      | 1.00 | 0.87  | 0.70 | 0.60  | -    | -     | -    |
| ö          | 3          | 1.00 | 1.00  | 0.80 | 0.68  | 0.60 | -     | -    |
| Line Line  | 3-1/2      | 1.00 | 1.00  | 0.90 | 0.76  | 0.67 | 0.60  | -    |
| stai       | 4          | 1.00 | 1.00  | 1.00 | 0.84  | 0.73 | 0.66  | 0.60 |
| e Di       | 5          | 1.00 | 1.00  | 1.00 | 1.00  | 0.87 | 0.77  | 0.70 |
| Edg        | 6          | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 0.89  | 0.80 |
|            | 7          | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 1.00  | 0.90 |
|            | 8          | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 |

Notes: For anchors loaded in tension, the critical edge distance (c\_{r}) is equal to 8 anchor diameters (8d) at which the anchor achieves 100% of load.

Minimum edge distance  $({\tt Cmin})$  is equal to 4 anchor diameters (4d) at which the anchor achieves 60% of load.



#### Edge Distance, Shear (Fvc)

| [    | Dia. (in.) | 1/4  | 3/8   | 1/2  | 5/8   | 3/4  | 7/8    | 1    |
|------|------------|------|-------|------|-------|------|--------|------|
|      | Cor (in.)  | 3    | 4-1/2 | 6    | 7-1/2 | 9    | 10-1/2 | 12   |
|      | Cmin (in.) | 1    | 1-1/2 | 2    | 2-1/2 | 3    | 3-1/2  | 4    |
|      | 1-1/2      | 0.63 | 0.50  | -    | -     | -    | -      | -    |
|      | 2          | 0.75 | 0.58  | 0.50 | -     | -    | -      | -    |
|      | 2-1/2      | 0.88 | 0.67  | 0.56 | 0.50  | -    | -      | -    |
| (s   | 3          | 1.00 | 0.75  | 0.63 | 0.55  | 0.50 | -      | -    |
| che  | 3-1/2      | 1.00 | 0.83  | 0.69 | 0.60  | 0.54 | 0.50   | -    |
| E I  | 4          | 1.00 | 0.92  | 0.75 | 0.65  | 0.58 | 0.54   | 0.50 |
| e,   | 4-1/2      | 1.00 | 1.00  | 0.81 | 0.70  | 0.63 | 0.57   | 0.53 |
| and  | 5          | 1.00 | 1.00  | 0.88 | 0.75  | 0.67 | 0.61   | 0.56 |
| Dist | 5-1/2      | 1.00 | 1.00  | 0.94 | 0.80  | 0.71 | 0.64   | 0.59 |
| ge   | 6          | 1.00 | 1.00  | 1.00 | 0.85  | 0.75 | 0.68   | 0.63 |
| B    | 7-1/2      | 1.00 | 1.00  | 1.00 | 1.00  | 0.88 | 0.79   | 0.72 |
|      | 9          | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 0.89   | 0.81 |
|      | 10-1/2     | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 1.00   | 0.91 |
|      | 12         | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 1.00   | 1.00 |

Notes: For anchors loaded in shear, the critical edge distance ( $c_{cr}$ ) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance  $(c_{\min})$  is equal to 4 anchor diameters (4d) at which the anchor achieves 50% of load.



### **ORDERING INFORMATION**

#### **Hammer-Capsule**

| Cat.No.                                                | Description         | Standard Box | Std. Carton |  |  |  |  |  |  |  |
|--------------------------------------------------------|---------------------|--------------|-------------|--|--|--|--|--|--|--|
| 6702                                                   | 3/8" Hammer-Capsule | 10           | 500         |  |  |  |  |  |  |  |
| 6703                                                   | 1/2" Hammer-Capsule | 10           | 200         |  |  |  |  |  |  |  |
| 6704                                                   | 5/8" Hammer-Capsule | 10           | 100         |  |  |  |  |  |  |  |
| 6705                                                   | 3/4" Hammer-Capsule | 6            | 60          |  |  |  |  |  |  |  |
| 6706                                                   | 7/8" Hammer-Capsule | 6            | 60          |  |  |  |  |  |  |  |
| 6707                                                   | 1" Hammer-Capsule   | 6            | 60          |  |  |  |  |  |  |  |
| For availability of threaded rod please contact DEWALT |                     |              |             |  |  |  |  |  |  |  |



**ADHESIVES** 





