

TECHNICAL GUIDE FOR DESIGN PROFESSIONALS

ANCHORS & FASTENERS

OSHA COMPLIANT

HEAVY DUTY UNDERCUT ANCHORS

E LISTED

ICC-ES ESR-4810

CCU+[™] CRITICAL CONNECTION UNDERCUT ANCHORING SYSTEM

When critical mechanical anchor connections are required, consider the DEWALT[®] Critical Connection Undercut (CCU+TM). The 3/8", 1/2", 5/8" and 3/4" diameter CCU+TM anchor range combine with Hollow Stop and Undercutting Bits, 60V MAX* rotary hammers and HEPA dust extractors for an OSHA Table 1 compliant cordless system. CCU+ anchors are available in 3 steel grades and are all 100% Made in the USA for Buy America construction projects.

* System is compliant to the Exposure Control Methods described in Table 1 of 29 CFR 1926.1153 when outlined components are operating and maintained in accordance to manufacturer's instructions

DEWALT BRUSHLESS

ANCHORS MADE IN THE * * * *

GUARANTEED TOUGH.

CCU+[™] ANCHORS

TECHNICAL GUIDE FOR DESIGN PROFESSIONALS

3RD EDITION

ANCHORS & FASTENERS

CODE COMPLIANCES

☑ ACI 318 (-19, -14)
 ☑ CSA A23.3 (-19, -14)
 ☑ ASCE 7 (-16, -10)

KEY FEATURES AND BENEFITS

Base Plate Anchorage

The standard tool to use when considering anchorage to concrete, allows complete geometric flexibility with the anchor patterns or base plate shape. Designs are calculated to be compliant with the latest major published design criteria and use products that have been independently tested and qualified by approval bodies for performance.

Equipment Anchorage

Further extending the functionality of base plate designs, you can now leverage this tool to model wind and seismic forces acting on equipment and resolve optimal anchorage solutions in accordance with ASCE 7.

Anchorage to Deck Members

Into the floor or overhead, this functionality considers the unique designs where anchoring to concrete deck members is required. Various considerations are taken into account for the multiple cast-in or post-installed products DEWALT has to offer in this composite base material.

Base Plate Thickness Tool

Using finite element analysis, this tool discretizes the baseplate into elements to calculate and check the thickness to determine when the plate is sufficiently rigid. A heat map is generated to highlight the distribution of the stresses on the plate.

Post-Installed Rebar Design

Enables the design of post-installed rebar connections and rebar development length applications for specifically qualified adhesive systems in accordance with ACI 318 Chapter 12 and Chapter 25.

Anchor Comparisons

Comparisons of anchors can occur in several ways within D_EWALT Design Assist. For a broad analysis, quickly calculate and filter the entire anchor library with a click of a button. To take a more detailed look, use the Anchor Comparison Tool to quickly see differences across anchor types, sizes and brands. It can help to intelligently and effectively select the best product for your design.

Independently Verified

To provide the best possible design aid DEWALT has partnered with leading engineering firms for the development of the core calculation logic. In addition to extensive internal software testing, various design scenarios were independently validated to ensure accuracy and precision.

Versatility

Adaptable approach in DDA allows designer to choose between pre-defined or customized load combinations. In addition, the advanced interaction of tension and shear forces feature allows designer to choose to optimize between trilinear (1.2) option and traditional (5/3) approach.

1 ES SOFT GN

A

hel

hoin 5.75 mch

Descript

10

43 md

Reals 2.5 inch

Centile 1.75 inch

Calculate and Compare And

BASE MATE

Strengt

State

idge

Spacing Ten

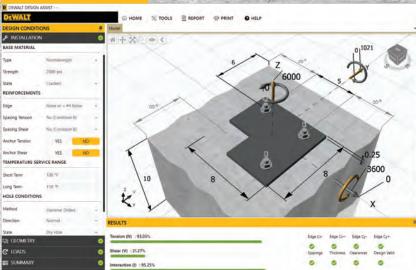
pacing Shear

ichor Tene

achor Shear

hoit Term

Long Term HOLE COND


4000

CE GEOMET

C LOADS

SUMM

DETAILS

COMPARE

PRODUCT COMPARISON

Anchor Image		E Paratite	0
Anchor Name	CCU+	Pure110+	Headed Heavy Hex Bolt
Anchor Material	Undercut Anchor	Epoxy Adhesive	Headed Bolt
Approval	ICC-ES ESR-4810	ICC-ES ESR-3298	e>
Issued	Jun,2021	Jul,2021	-
Diameter (in)	1/2"	1/2"	1/2"
Embedment,hnom (in)	5.375	5.375	5.375
Hmin (in)	7	6.625	2.25
Cmin (in)	3	2.5	0.75
Smin (in)	3.75	2.5	2
Design Valid	Satisfied	Satisfied 🥥	Satisfied 🥝
Tension	80.960%	81.000%	81.000%
Shear	7.470 %	6.230 %	6.230 %
Interaction	80.960 %	81.000 %	81.000 %

DOWNLOAD THE L SUITE AT 3 DEWALT.COM/DDA

ANCHORS & FASTENERS

SELECTION GUIDE

THER GORVERSES, O	999: ESPECTATION (* 1973)		Substrate								A	pprov	als and	l Listin	g		Re	cognit	ion	Size I	Range	Features				
DEWA ANCHORS & FAS	STENERS	Normal-Weight Concrete	Lightweight Concrete	Cracked Concrete	Concrete Over Metal Deck	Grout Filled CMU	Hollow CMU	Unreinforced Masonry	Clay Brick	ICC-ES Report (ESR No.)	City of Los Angeles Supplement	Florida Building Codes Supplement	Miami-Dade County Approved	UL Listed	FM Approved	NSF Listed	Seismic Recognition	High Wind Recognition	Post-Installed Rebar Connections	Nominal Anchor Diameter	Reinforcing Bar Size	DEWALT Design Assist Software	DUSTX+ Installation System	Made in the USA	DOT Listings	
				Ð		Ô	Ô	2		ස්	•	Ð		c (U) IS		NSF		*			- ST	DDA	<u>exerx:</u>	USA	0	
ADHESIVE ANCHORING SY Pure110+®											120		23				22		22			1	23	92		
High Strength Epoxy Anchoring System		~	~	~		~	~			3298	~	~				~	~	~	~	3/8 to 1-1/4	#3 to #11	~	~	~	~	
Pure50+ [™] Epoxy Anchoring System		~	~	~						3576	~	~				~	~	~		3/8 to 1-1/4	#3 to #10	~	~	~	~	
AC200+ [™] High Strength Acrylic Anchoring System	AC200+3	~	~	~						4027	~	~				~	~	~	~	3/8 to 1-1/4	#3 to #10	~	~		~	
AC100+ Gold [®] Vinylester Adhesive Anchoring System	AC100-Gold	~	~	~		~	~	~	~	2582 3200 4105	~	~				~	~	~		3/8 to 1-1/4	#3 to #10	~	~		~	A
EXPANSION ANCHORS										4105	20	362	100	262	2.3	83	265	. 0	8			8	2			
Power-Stud [®] + SD1 Carbon Steel Wedge-Anchor	4	v	V	~	v	~				2818 2966	~	~		~	~		~	v		1/4 to 1-1/4		~	~			
Power-Stud [®] + SD2 High Performance Carbon Steel Wedge-Anchor	BB	~	~	~	~	~				2502	~	~		~	~		~	~		3/8 to 3/4		~	~			
Power-Stud [®] + SD4 304 Stainless Steel Wedge-Anchor	-0	v	~	~		~				2502	~	~					~	~		1/4 to 3/4		~	~	✓ ^[1]		
Power-Stud [®] + SD6 316 Stainless Steel Wedge-Anchor	-	~	~	~		~				2502	~	~					~	~		1/4 to 3/4		~	~	[1]		
Power-Stud [®] HD5 Hot-Dip Galvanized Wedge Expansion Anchor		v	~	v		~												~		3/8 to 3/4			~			
SCREW ANCHORS														24	I			30	38	58. T				Ъ.		
Screw-Bolt+	-	~	V	~	~	~			~	3889 4042	~	~					~	~		1/4 to 3/4		~	~			
316 Stainless Steel Wedge-Bolt [™] Screw Anchor		~	~			~														1/4 to 1/2			~			
UltraCon [®] + Concrete Screw Anchor	Q	~	~		~	~	~		~	3068 3196 3213 3042	~	~	~					~		3/16 and 1/4		~	~			and a
UltraCon [®] Concrete and Masonry Fasteners		~	~			~	~			3042		~	~					~		5/16			~			Cale.
UltraCon [®] SS4 410 SS Concrete and Masonry Fasteners		~				~	~					~	~					~		1/4			~			
Crete-Flex [®] 410 SS Concrete and Masonry Fasteners		~				~	~					~	~					~		3/16 and #14			~			Sec.
Aggre-Gator® 300 SS Bi-Metal Concrete and Masonry Fasteners		~				~	~		~			~	~					~		1/4			~			10.5
SPECIALTY ANCHORS				10			12) Ça	74	22	190	32	20	10	25	36	57	3	87.	139	1 Mar	6,3	1	150		Inc
CCU+ [™] Heavy Duty Undercut Anchor	-(~	~	~	~					4810	~	~					~	~		3/8 to 3/4		~	٢	~	~	1 EAC
Power-Bolt [®] + Heavy Duty Sleeve Anchor	(~	~	~	~					3260	~						~	~		1/4 to 3/4		~	~			1.1.
MEP THREADED ROD HAN	GING ANCHORS		204	22	3	2	3	1	6	273	163	12		37	3	14	30		12		192.4	21	-0	P.	12	
Snake+® Rod Hanger / Screw Anchor		~	~	~	~					2272	~	~			~		~	~		1/4 to 1/2		~	~			3.1.2
Hangermate [®] + Rod Hanging Anchor	-	~	~	~	~					3889	~	~			~		~	~		1/4 to 1/2		~	~			9.4
Mini-Undercut+ [™] Rod Hanger for PT Slabs and Hollow Core Plank		~	~	~	v					3912	~	~					~	~		3/8		~	~			and the
CAST IN PLACE ANCHORS		No.	2.0	19		3	(B)	12		1	All a	P. P.	100				15	10				1		10		and a
Bang-It [®] + Metal deck cast in place anchor		~	~	~	r					3657	~	~		v	~		~	~		1/4 to 3/4		~				Mittenann
Wood-Knocker [®] II+ Cast-in-Place Anchor for Forms		~	~	~						3657	~	~		v	~		~	r		1/4 to 3/4		~				
Pan-Knocker [®] II+ Cast-in-Place Concrete Insert Anchor		~	~	~	r					3657	~	~		v	~		~	~		1/4 to 3/4		~				TRAAAAAAA
DDI+ TM (Deck Insert) Metal Deck Cast In Place Anchor	T	~	~	~	r					3958	~	~		~	~		~	~		3/8 to 7/8		~				

For technical support please contact a DEWALT Product & Code Expert at 800-524-3244 or visit our website at www.DEWALT.com 1. Domestically produced Power-Stud SD4/SD6 available by special order. See Ordering Information for product availability and details.

TABLE OF CONTENTS

GENERAL INFORMATION	
ANCHOR SELECTION GUIDE	2
ADDITIONAL PRODUCTS	6
ANCHOR TECHNOLOGY	9
ADHESIVE ANCHORS	
SELECTION GUIDE	27
AC200+™	28
AC100+ GOLD®	49
PURE110+®	72
PURE50+™	97
MECHANICAL ANCHORS	
SELECTION GUIDE	113
UNDERCUT ANCHORS	
CCU+™	114
EXPANSION ANCHORS	
POWER-BOLT®+	127
POWER-STUD®+ SD1	136
POWER-STUD®+ SD2	152
POWER-STUD®+ SD4/SD6	162
POWER-STUD® HD5	174
SCREW ANCHORS	
SCREW-BOLT+™	180
316 STAINLESS STEEL WEDGE-BOLT™	199
ULTRACON® +	206
ULTRACON®	219
ULTRACON® SS4	224
CRETE-FLEX®	228
AGGRE-GATOR®	233
ROD HANGING ANCHORS	
HANGERMATE®+	238
SNAKE+®	247
MINI-UNDERCUT+ [™]	256
CAST-IN ANCHOR INSERTS	
SELECTION GUIDE	265
WOOD-KNOCKER® II+	266
PAN-KNOCKER™ II+	266
BANG-IT®+	279
DDI+ [™] (DECK INSERT)	295
	School

FOR MORE INFORMATION VISIT WWW.DEWALT.COM OR REFER TO DEWALT BUYERS GUIDE

MECHANICAL ANCHORS

The Power-Stud anchor is a fully threaded, torquecontrolled, wedge expansion anchor designed for use in uncracked concrete and grout-filled masonry. It is available in 304 and 316 stainless steel.

The Power-Bolt anchor, is a heavy duty sleeve style, self-locking anchor which is vibration resistant and removable. It is available with a finished hex head or flat head with a hex key insert and can be used in concrete, block, brick, or stone.

The Lok-Bolt AS is an all-steel pre-assembled single unit sleeve anchor which is designed for use in concrete or masonry base materials. The anchors are available in multiple head styles for multiple applications and a finished appearance. Anchor extender sleeves can be added to create longer lengths.

The Smart DI is an all-steel, machine bolt anchor available in carbon steel. It can be used in solid concrete, hard stone, and solid block base materials. The Smart DI is specifically designed to be easier to fully set during installation as a benefit to the user.

The Steel Dropin is an all-steel, machine bolt anchor available in carbon steel and two types of stainless steel. It can be used in solid concrete, including lightweight concrete and concrete-filled steel deck members. The anchors can also be considered for hard stone and solid block base materials

The Hollow-Set Dropin anchor is designed for anchoring in hollow base materials such as hollow concrete block and precast hollow core plank. It can also be used in solid base materials

The Mini Dropin is a carbon steel machine bolt anchor for use in shallow embedment applications. In addition to solid concrete and precast hollow core plank, it can be used in post-tensioned concrete slabs and concrete pours over steel deck.

Suspender

The Suspender is a one-piece screw anchor designed for overhead MEP applications. The Suspender features heads that are both end-tapped and crosstapped to permit in-line or side mounting of threaded rod to concrete, steel, or wood substrates.

The Hangermate for Steel and Wood is a one-piece screw anchor designed for anchoring threaded rod into steel or wood base materials for overhead suspended MEP applications.

BOLT AND SHIELD ANCHORS

Bolt and shield anchors comprise a group of anchors that are particularly suited for substrates of questionable strength or consistence such as stone or weak masonry

Impact, Nail and Pin anchors comprise a group of anchors will well-known names, such as Spike, or Zamac Nailin. These anchors are function well for light and medium duty loads and have tamper-proof features among the many head styles and types.

LIGHT DUTY ANCHORS

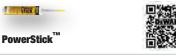
Light duty anchors comprise a group of anchors that are well suited for wall board anchoring and general purpose fastening into solid substrates.

Anchor

Hammer-Capsule[®]

The Hammer-Capsule system consists of a self contained, single use, two-part glass capsule into which threaded anchor rod or reinforcing bars can be directly driven without the need for a chisel point or spinning action.

AC50 is a two-component, adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The AC50 is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in solid concrete base materials.


EXPANSION FOAMS

PowerFoam TriggerFoam Pro

PowerFoam and TriggerFoam are single component moisture curing polyurethane expanding foam used for insulation, through wall penetrations and fire blocking available in a variety formulations depending on use.

ADHESIVE SEALANT

Powerstick is a single-component adhesive sealant with excellent bond characteristics and adhesive properties for general purpose use on most construction materials

ADHESIVE ACCESSORIES

Adhesive Accessories include dispensing and cleaning tools, mixing nozzles as well as screen tubes and piston plugs various installation scenarios

DUST EXTRACTORS

Dust extractors provided the necessary airflow for drilling, hammering, and grinding and are OSHAcompliant (1926.1153) for dust control with 99% or greater filter efficiency.

Steel Dropin[™]

ECHNICAL GUIDE -

©2022

2 DEWALT

FOR MORE INFORMATION VISIT WWW.DEWALT.COM OR REFER TO DEWALT BUYERS GUID

CORDLESS CONCRETE NAILER (CCN)

20V MAX* Cordless Concrete Nailer System

The 20V MAX* Cordless Concrete Nailer is a battery operated combustion-free nailer system designed for commercial framing and track installation into concrete and steel. The system can also install mechanical clips, lathing, installation and more.

For 20V MAX Maximum initial battery voltage measured without a workload is 20 volts. Nominal voltage is 18.

GAS ACTUATED FASTENING

Trak-It[®] C5 System

Fuel injected cordless concrete pin nailer; the lightest and smallest tool in its class. Power output at 105 Joules, shoots into even the hardest concrete. Pin styles: 0.102 & 0.145 diameter, short tapered, concrete, steel and spiral knurled, up to 1-1/2" length.

Rotary Hammers are available in cordless and corded platforms with SDS-Max, SDS-Plus, and spline shank styles for maximum flexibility in jobsite drilling.

DEWALT's high performance carbide offering includes both standard and hollow versions. Hollow Drill Bits extract dust while drilling for an OSHA Table 1 compliant dust control solution when used with DEWALT dust extractors.

POWDER ACTUATED DIRECT FASTENING

Powder-Actuated Fastening System

This system provides a cost-effective method of attaching members and fixtures in applications without pre-drilling holes. This family of products provides users with optimum performance in fastening to concrete, concrete over steel deck, masonry, and structural steel.

METAL CONSTRUCTION SCREWS

Drilit self-drilling fasteners eliminate separate drilling and tapping operations for faster, more economical installations.

Dril-Flex Structural Drill Screws are dual heat treated self-drilling tapping screws that provide the strength, ductility and resistance to embrittlement required for critical applications.

Bi-Flex[®]

Bi-Flex structural screws are bi-metal selfdrilling tapping screws that provide the corrosion resistance of 300 series stainless steel and the efficiency of drill screws. Bi-Flex screws are

suitable for use in both steel and aluminum.

Alumi-Flex[®]

Alumi-Flex structural drill screws are 300 series (18-8) stainless steel self-drilling tapping screws that are used for fastening to aluminum when corrosion resistance and galvanic reaction are a primary concem

Architectural Roof Clip Fasteners offer a low-profile head design for wood and steel applications.

ADDITIONAL PRODUCTS

Tap-Flex Thread-Forming Structural Screws are thread-forming, dual heat treated self-tapping fasteners that provide the strength, ductlity, and resistance to embrittlement failures required in critical curtain wall and dissimilar metal applications.

TapFast fasteners are high-performance fasteners designed specifically for attaching light gauge metal panels (18 ga. max.) to wood frame structures.

Vibration, either from inside or outside a building, can make ordinary fasteners loosen and back out. Fab-Lok fasteners combine a screw and a slotted aluminum sleeve to provide resistance to loosening in high-stress and high-vibration environments.

PanelMate[®]

PanelMate is a family of screw anchors available in both internally and externally threaded variations. Originally designed for installing hurricane panels, these versatile anchors can be used wherever 1/4"-20 threaded hardware needs to be attached to concrete, masonry or wood,

Vent-All explosion venting fasteners, a series of FMapproved collapsible washers on stainless steel fasteners, are designed to minimize injury and destruction of property from explosions caused by agricultural or industrial operations.

IMPACT WRENCHES

Vent-All[®]

DEWALT offers a wide range of cordless and corded impact wrenches for jobsite anchoring applications.

TORQUE WRENCHES

When exact torque requirements are needed for proper anchor installation per the specifications and drawings, DEWALT calibrated torque wrenches get the job done.

DISCLAIMER

DISCLAIMER FOR RECOMMENDATIONS, INFORMATION AND USE OF DATA

OUR PRODUCTS: The recommendations, information and data contained in this technical guide and on the Site are put together with the greatest care and accuracy possible. They are based on principles, equations and safety factors set out in the technical documentation of DEWALT, that are believed to be true and correct at the time of publication on October 1, 2022. The information and data is subject to change after such date as DEWALT reserves the right to change the designs, materials and specifications of the products on the Site without notice.

It is the responsibility of the design professional to ensure that suitable product is selected, properly designed and used in the intended application. This includes that the selected product and its use is compliant with applicable building codes and other legal requirements and will satisfy durability and performance criteria and margins of safety which the design professional determine are applicable. The products must be used, handled, applied and installed strictly in accordance with all current instructions for use published by DEWALT.

The performance data in the technical guide and on the Site are the result of the evaluation of tests conducted under laboratory conditions. It is the responsibility of the designer and installer in charge to consider the project conditions and to ensure the performance date set forth on the Site is applicable to the actual conditions. In particular the base materials and environmental conditions must be checked prior to installation. In case of doubt, contact the technical support of DEWALT.

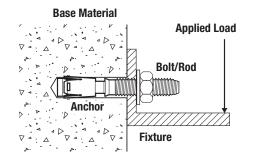
DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY: OUR EXPRESS WARRANTIES ARE LIMITED TO THOSE SPECIFIED WITH EACH PRODUCT. TO THE FULL EXTENT PERMISSIBLE BY APPLICABLE LAW, WE DISCLAIM ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL WE BE LIABLE TO ANY PARTY FOR ANY DAMAGES OF ANY KIND ARISING FROM THE USE OF THIS SITE OR FROM ANY INFORMATION, CONTENT, MATERIALS (INCLUDING SOFTWARE) OR SERVICES INCLUDED ON OR OTHERWISE MADE AVAILABLE TO YOU, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, AND CONSEQUENTIAL DAMAGES, LOST PROFITS OR REVENUES, COSTS OF REPLACEMENT, BUSINESS INTERRUPTIONS, LOSS OF DATA OR DAMAGES RESULTING FROM USE OF OR RELIANCE ON THE INFORMATION PRESENT, EVEN IF STANLEY BLACK & DECKER IS EXPRESSLY ADVISED ABOUT THE POSSIBILITY OF SUCH DAMAGES, UNLESS OTHERWISE SPECIFIED IN WRITING. CERTAIN STATE LAWS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EXCLUSION OR LIMITATION OF CERTAIN DAMAGES. IF THESE LAWS APPLY TO YOU, SOME OR ALL OF THE ABOVE DISCLAIMERS, EXCLUSIONS, OR LIMITATIONS MAY NOT APPLY TO YOU, AND YOU MIGHT HAVE ADDITIONAL RIGHTS. FURTHER, STANLEY BLACK & DECKER SHALL HAVE NO LIABILITY WITH RESPECT TO CHANGES IN THE DESIGN, MATERIALS AND SPECIFICATIONS IN THE PRODUCTS, NOR WITH RESPECT TO ANY PRODUCT WHICH HAS BEEN MODIFIED OR INSTALLED IMPROPERLY, REGARDLESS OF ANY SPECIFIC INSTRUCTIONS TO THE INSTALLER. THE RESPONSIBLE DESIGNER AND INSTALLER SHALL HOLD STANLEY BLACK & DECKER HARMLESS FROM AND AGAINST ANY AND ALL CLAIMED LOSS OR DAMAGE OCCASIONED, IN WHOLE OR IN PART, BY ANY MODIFIED PRODUCTS OR DEVIATIONS IN PRODUCT INSTALLATION PROCEDURES.

LEGAL NOTICE FOR NEW JERSEY RESIDENTS: Under the New Jersey Truth-in-Consumer Contract, Warranty and Notice ACT ("TCCWNA"), N.J.S.A. 56:12-14 et seq., consumers may not be offered any written contract which includes any provision that violates any clearly established legal right of a consumer, or responsibility of a seller, as established by state or federal law. In addition, under the TCCWNA, no consumer contract may state that any of its provisions are or may be void, unenforceable or inapplicable in some jurisdictions without specifying which provisions are or are not void, unenforceable or inapplicable in New Jersey. Therefore, the following provisions of these Terms shall not be applicable to New Jersey residents: (1) in the Disclaimer of Warranties and Limitation of Liability section, (a) the provision concerning limiting our liability for any loss or damage is not applicable to New Jersey residents to the extent we were negligent or have breached our obligation to you, and (b) the provision concerning the exclusion or limitation of certain damages is not applicable to New Jersey residents with respect to punitive damages, loss of data, and loss of or damage to property; and (c) the provision concerning the indemnification by you is not applicable to New Jersey residents unless you were negligent or have breached these requirements.

ANCHORING AND FASTENING SYSTEMS

FOR CONCRETE AND MASONRY

INTRODUCTION


A wide variety of post-installed anchors, cast-in place anchors and fastening systems are available. In construction, these products are commonly installed into concrete, masonry and steel base materials. This includes but is not limited to mechanical expansion and screw anchors, adhesive anchoring systems, self-drilling screws, and direct fastening technologies (e.g. powder actuated, cordless battery actuated, gas actuated). Although the variety of choice provides the user with the opportunity to select the best product for a specific application, it also makes the selection process more difficult. For this reason, the load capacities and other criteria (e.g. material, finish) used to determine the type, size, and number of anchors or fasteners to be used for any given application need to be taken into consideration. As in all applications, the load capacity and other criteria used to determine an anchoring system's suitability should be reviewed and verified by the design professional responsible for the actual product installation. The following is intended to guide the user of this information toward an anchor or fastening system that is best suited for the application.

SECTION CONTENTS

Introduction	8
Fastened Assembly	8
Base Materials	8
Testing & Data Fundamentals	.12
Applied Loads	.12
Anchor Behavior and Material	.14
Corrosion Resistance	.16
Installation Guidelines	.18
Design Criteria	.20

FASTENED ASSEMBLY

Before selection can take place, several factors should be considered and reviewed to determine their effect on the application including the key components of the fastened assembly. The following diagram shows a typical fastened assembly using an post-installed anchor:

Some critical items to consider in the selection of a product include the following:

- 1. Base material (e.g. type and strength) in which the anchor or fastener will be installed.
- 2. Load level and type of loads applied to the fixture or material to be fastened.
- 3. Anchor or fastener material and the bolt / threaded rod in the assembly (e.g. internally threaded anchors) as applicable
- 4. Installation procedures including the method of drilling, hole preparation, and installation tool used.
- 5. Dimensions of the base material including the material thickness, anchor or fastener spacing, and edge distance.
- 6. Effects of corrosion and service environment.

BASE MATERIALS

The materials used in building construction vary widely. Although fastening can occur in many materials, the base materials are often the weak link in the assembly design. The base material is a critical factor in the selection of an anchor or fastener because it must be able to sustain the applied loads. Base material strength can vary widely, and is a key factor in the performance of an anchor or fastener. Generally, products installed in dense concrete and stone can withstand far greater stress than those installed in softer materials such as lightweight concrete, block, or brick. The following sections provide a descriptive summary of typical base materials for reference purposes. Refer to the individual product sections for details on suitable base materials. Individual standards, national/local codes and the authority having jurisdiction should also be considered.

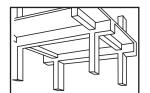
CONCRETE

Reinforced concrete is formed using concrete meeting a certain compressive strength combined with reinforcing steel (rebar). The function of the concrete is to resist compressive forces while the reinforcing steel resists the tensile forces. Two primary characteristics of concrete are workability and strength. Fresh concrete must have the proper consistency or workability to enable it to be properly placed. Hardened concrete must be able to achieve the specified performance factors including the required compressive strength.

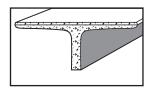
Steel reinforcement such as deformed reinforcing bars or welded wire fabric are placed in the forms prior to the pouring of concrete to resist tensile forces in the base material. For prestressed or post-tensioned concrete construction, bars, wire, or strands may be used as the reinforcement. Smooth dowel bars are also used in certain applications primarily to resist shear loads. Steel reinforcement should not be drilled/cored through without authorization from the design professional responsible for the project. Dimensions, deformation requirements and strengths of standard deformed reinforcing bars (e.g. Grade 60) are most common according to ASTM A615 and A706.

The design and construction requirements for reinforced concrete buildings and structures in the United States are published by the American Concrete Institute (ACI) in document ACI 318, Building Code Requirements for Structural Concrete.

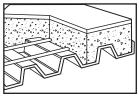
1-800-4 **DEWALT**

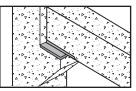

TECHNICAL GUIDE – ANCHOR TECHNOLOGY ©2022 DEWALT

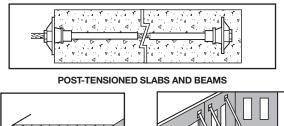
Concrete is a mixture of aggregate, cement, water, and additives. Its strength is achieved through the hydration of the cement component (usually Portland) which is used to bind the aggregate together. The type of cement used depends on the requirements of the structure into which the concrete will be placed. The requirements and standards specifications are outlined in ASTM C150. A concrete mix design consists of both fine and coarse aggregates. Fine aggregate is usually particles of sand less than 3/16-inch in diameter while the coarse aggregate is crushed stone or gravel greater than 3/16-inch in diameter as outlined in ASTM C33 for normal-weight concrete.

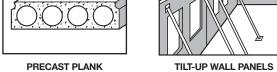

The aggregate used in normal-weight concrete ranges in weight from 135 to 165 pcf. For lightweight concrete, the aggregate such as that manufactured from expanded shale, slate, clay, or slag has a weight range of 55 to 75 pcf as listed in ASTM C330. The unit weight for normal-weight concrete ranges from 145 to 155 pcf while lightweight concrete ranges from 100 to 115 pcf. Lightweight concrete is used where it is desirable to decrease the weight of the building structure. It also has better fire resistance than normal-weight concrete. Precast autoclaved aerated concrete (AAC) describes another lightweight concrete building material which is mainly available in block form.

Admixtures are specified in a mix design to modify the concrete, either for placement characteristics or hardened properties. Air entraining admixtures which disperse tiny air bubbles throughout the concrete mix help to improve the freeze thaw resistance and increase workability. While the type of cement, aggregate, and admixtures have an impact on the compressive strength of the concrete, the watercement ratio is the primary factor affecting the strength. Typically, as the water-cement ratio decreases, the compressive strength of the concrete increases. In order to determine the compressive strength of concrete, test specimens are formed in cylinders according to ASTM C31. The cylinders are broken according to ASTM C39 at specified time intervals, and the resulting strength is calculated and reported in psi.


Examples of common construction methods in which reinforced concrete is used are shown in the following figures:


POURED IN PLACE CONCRETE USING A FORM SYSTEM





COMPOSITE SLABS POURED OVER STEEL DECK

PRECAST BEAMS AND COLUMNS

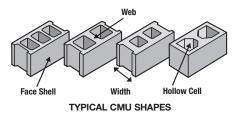
Anchors or fasteners installed in lightweight concrete have load capacities which are approximately 40% less than those installed in normal-weight concrete. Job site tests are recommended if specific data is not available for this base material for a given product.

Unless otherwise noted (e.g. qualification tests in cracked concrete), the tests to determine load capacities listed in this guide were conducted in unreinforced test locations/members. This was done to provide baseline data which is usable regardless of the possible benefit of reinforcement.

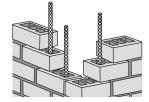
The load capacities for installations in normal-weight and lightweight concrete listed in this guide are for concrete which has achieved its designated 28 day compressive strength. Concrete is considered at early strength or 'green' if less than 21 days old which can have an effect on performance of anchors and fasteners. It is recommended that anchors and fasteners not be made in concrete which has cured for less than 7 days unless specific site testing is conducted to the satisfaction of the design professional responsible for the project. For concrete that has not cured at least 21 days, expected load capacities for metal anchors and fasteners would correlate to the actual compressive strength of the base material at the time of installation. For use of adhesive anchors in concrete that has not cured at least 21 days, site testing should be considered if product specific testing is not available from the adhesive anchor supplier to evaluate any possible effects. Job site tests are recommended for installations in concrete where the material strength or condition is unknown or questionable.

MASONRY MATERIALS

The strength of masonry walls is typically less than that of concrete and the consistency of masonry materials can vary on a regional basis. To form a wall, individual masonry units are bonded together with a cement mortar. A vertical row is called a course and a horizontal row is called a wythe. The strength of the mortar is often the critical factor in this type of base material assembly and typically limits anchor product performance. Generally, anchors or fasteners may be installed in the horizontal mortar joint or directly into most types of masonry units. The vertical mortar joint should generally be avoided since this joint location is typically not fully mortared.


Note: Hollow base materials require special care as the anchor or fastener must be properly sized to coincide and engagewith the wall thickness or selected to properly expand in the void (e.g. toggle and sleeve type anchors). When using anchors in these materials, spalling

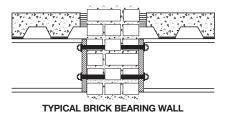
can occur during the drilling process prior to installation, further decreasing the wall thickness. Manufacturers of hollow base materials often specify a maximum load that can be applied to the material. Since the strength of masonry materials varies widely, job site tests are recommended to determine actual load capacities for fasteners in critical applications or where specific data is not available. In field testing, products should be installed and loaded to simulate the actual placement. The reaction bridge used should span the joint or unit to provide an unrestrained test.


Concrete Block (CMU)

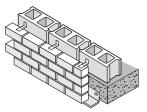
Masonry block is found in a variety of sizes and shapes depending upon the age and location of a building. Both hollow and solid styles which can be classified as load-bearing or non-load bearing are used. Load-bearing block, known as a concrete masonry unit (CMU) is generally suitable for anchoring or fastening. ASTM C90 describes hollow and solid load-bearing concrete masonry units made from portland cement, water, and mineral aggregates which are available in normal, medium and lightweight blocks. One of the critical factors contributing to the strength of a masonry wall is the type of mortar used to bond the masonry units together. Mortar is made from a mixture of cement, very fine aggregate, and water.

Typical shapes for concrete masonry units are shown in the following diagrams. The term "face shell" refers to the outside face of the block while the term "web" refers to the interior portions between the hollow cells.

Typical minimum dimensions for the face shell and web thickness are given in ASTM C90. The minimum compressive strength from the ASTM specification is 1,900 psi. Typical dimensions are nominally 8" x 8" x 16" with a minimum face shell thickness of 1-1/4" to 1-1/2". The difference between hollow and solid block is based on the cross sectional bearing area of the block. Solid block is defined as having a cross sectional bearing area which is not less than 75% of the gross area of the block measured in the same plane. To provide greater resistance to lateral loads, concrete masonry units are often strengthened with steel reinforcing bars. In this case, hollow units are grout filled to allow them to act together with the reinforcing bars.

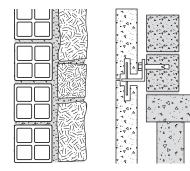

GROUT-FILLED CONCRETE MASONRY

Experience has shown that the consistency of grout-filled block can vary and voided areas are often present a problem. Therefore, job site


job site tests are recommended to determine actual load capacities for fasteners in critical applications or where specific data is not available. In this, guide load capacities are published for some products installed in the face shell of hollow load-bearing concrete masonry units and at various embedments into grout filled units. Unless otherwise noted, the load capacities listed in this guide were conducted in unreinforced test locations/members to provide baseline data which is usable regardless of the possible benefit of reinforcement unless otherwise noted.

Brick

Brick units are found in a variety of shapes, sizes, and strengths depending upon the age and location of a building. Brick is manufactured from clay or shale which is extruded / wire-cut, machine molded, or handmade to shape then hardened through a firing process. Brick can be used to form a load bearing wall or used as a veneer or facade.


Brick is produced as a solid masonry unit or with cores during extrusion. The cores (also known as weep holes) reduce the weight of the brick and help it to lay better. ASTM C652 describes hollow brick masonry units. Hollow brick is defined as having a cross sectional bearing area which is less than 75% of the gross area of the brick measured in the same plane. ASTM C62 describes solid building brick while C216 describes solid facing brick. To provide greater resistance to lateral loads, walls are often strengthened with steel rod and wire reinforcing. When brick is used as a building facade, it is important to properly tie it to the backup wall and structure which is often done using anchors manufactured from a corrosion-resistant material such as stainless steel.

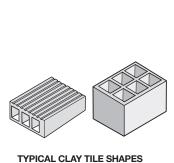
Note: Brick cores can often create a problem when attempting to install traditional anchors because of the cavities. In this case, an alternative anchor, such as an adhesive anchor could be considered. Also, brick is generally not suitable for power-actuated fasteners.

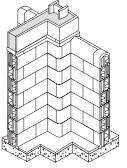
Stone

Natural stone is available in a variety of types, colors, and textures for use in many building applications. The strength and the quality of stone can vary dramatically from each stone quarry and for different geological locations. Naturally occurring rock which has been fabricated to a specific size and shape is referred to as dimension stone. Dimension stone units can be used to form a load bearing wall and as a veneer or façade.

STONE WITH TILE BACKUP

STONE FACADE


Generally, anchors installed in softer material such as limestone or sandstone will have capacities similar to those obtained in 2,000 psi concrete. In harder stone such as granite or marble, the capacities will be similar to 4,000 or 6,000 psi concrete. Job site tests are recommended because of the wide variation in the strengths of natural stone. ASTM C119 describes dimensional stone for use in building construction. Specifications for individual stone types include C503 for marble, C568 for limestone, C615 for granite, and C616 for quartz-based material.

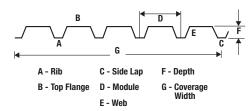

When stone is used as a building facade, it is important that the stone be properly tied to the backup wall using anchors manufactured from a corrosion-resistant material such as stainless steel. ASTM C119 describes dimensional stone for use in building construction. Specifications for individual stone types include C503 for marble, C568 for limestone, C615 for granite, and C616 for quartz-based material.

Note: Stone is not generally considered a suitable base material for power-actuated fasteners.

Structural Clay Tile

Structural clay tile units are found in a variety of shapes, sizes, and strengths for use primarily in walls. The tile units are manufactured from clay, shale, or fire clay which is extruded to shape then hardened through a firing process. During the extrusion process. several continuous cells or hollow spaces are formed within the exterior shell of the tile. The typical thickness of the outer shell is 3/4" with a 1/2" thick interior web. End-construction tile is designed to be placed in a wall with the axis of the cells vertical while sideconstruction tile is placed with the axis of the cells horizontal.

STRUCTURAL CLAY PARTITION


Structural clay tile units can be used to form a load bearing wall and as a veneer or facade. ASTM C34 describes structural clay tile for load bearing walls. Structural clay facing tile is described in ASTM

C212. For non-load bearing applications, ASTM C56 describes structural clay tile used primarily for partitions. This type of tile is sometimes referred to as architectural terra cotta although this term is more appropriately applied to ornamental building units.

Note: These materials present a problem when attempting to install anchors and fasteners because the relatively thin walls cannot sustain the high stresses applied by typical anchors. For light duty loads, a hollow wall anchor which opens behind the face shell may be used (e.g. toggle bolts). For heavier loading, an adhesive anchor installed using a screen tube inserted through the face shell and interior web is suggested. Since the strength and condition of these materials can vary, job site tests are recommended. Structural clay tile is not a suitable base material for power-actuated fasteners.

Steel Deck

Steel deck is available in many configurations for use as a floor deck (both composite and non-composite) or a roof deck. It is usually cold formed from steel sheet to provide the combination of deck type, depth, and gage (thickness) to meet the application requirements. A rib shape, formed in various depths and sizes, adds strength in flexure depending upon the length of span. Steel deck may be supplied uncoated, painted, or zinc coated according to ASTM A525 in various thicknesses. The following diagram shows a typical steel deck cross section.

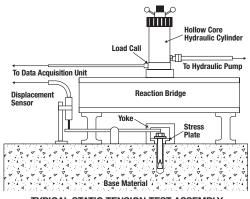
Industry standards for the design, manufacture and use of steel deck are provided by the Steel Deck Institute (SDI). Material requirements are also listed in ASTM A611 and A446. The yield strength of the steel deck typically varies from 25,000 to 80,000 psi, depending on the grade. Steel deck is commonly specified by a decimal thickness but often also correlated to a gauge number.

Steel floor deck used for composite construction with concrete fill has typical rib depths of 1-1/2", 2", and 3" with deeper depths available. This type of deck is normally manufactured to a minimum yield strength of 33,000 psi. Non-composite steel form deck is used as a permanent form for concrete slabs with rib depths ranging from 1/2" to 2". For steel roof deck, the ribs are classified as narrow, intermediate, or wide with a 1-1/2" minimum depth spaced at 6" on center. Deep rib deck with a 3" minimum depth with ribs spaced at 8" on center is also available. Other types of steel decking include acoustical sound absorbing floor or roof decks, long span roof decks, and cellular roof decks.

TESTING AND DATA FUNDAMENTALS

The fundamentals of anchor and fastener design include the determination and calculation of design load capacities based on laboratory test data conducted to simulate typical field conditions. This guide provides published design load capacities for anchors and fasteners installed in concrete and masonry units along with other appropriate base materials.

TEST PROCEDURES AND CRITERIA


The general test data for anchors and fasteners published in this guide was developed according to the following standards (as applicable): *ASTM E488, Standard Test Methods for Strength of Anchors in Concrete; ASTM E1190, Standard Test Methods for Strength of Power-Actuated Fasteners Installed in Structural Members; ACI 355.2, Qualification of Post-Installed Mechanical Anchors in Concrete; ACI 355.4, Qualification of Post-Installed Adhesive Anchors in Concrete; ICC-ES AC01, Expansion Anchors in Masonry Elements; ICC-ES AC58, Adhesive Anchors in Masonry Elements; ICC-ES AC193, Mechanical Anchors in Concrete Elements; ICC-ES AC308, Post-installed Adhesive Anchors in Concrete Elements; ICC-ES AC446, Headed Cast-in Specialty Inserts in Concrete.*

TENSION AND SHEAR TEST DATA

Tension test data is sometimes referred to as pullout or tensile test data. A typical hydraulic test assembly used to perform an unconfined tension test on an anchor is illustrated. A similar assembly can be used for testing other fasteners (e.g. power-actuated), however, deflection may not be measured unless specified by the prevailing criteria.

The test equipment frame is designed to support the hydraulic test unit and span the test area so that reaction loading does not influence the test results. However, in some cases a confined testing setup is more desirable depending on the product and test purpose (e.g. isolating bond strength of adhesive anchors, proof loading).

In a shear test, the test load is applied perpendicular to the anchor across the cross-section of the product body. This type of loading is also applied typically using a hydraulic equipment test setup. When a shear load is applied to an anchor, the anchor body resists the applied load by placing a bearing stress against the base material. In addition, the anchor will tend to bend as a shear load is applied.

TYPICAL STATIC TENSION TEST ASSEMBLY

and as the base material begins to crush. The applied load will actually be resisted by a combination of the bearing strength of the base material and the tension capacity of the anchor.

During testing, load is gradually applied to the anchor by a hydraulic cylinder while the displacement is measured using an electronic displacement sensor. The load is measured by a hollow core load cell and the resulting performance is recorded by a data acquisition unit. Loading is continued until the ultimate (failure) load is achieved. The ultimate load capacity is recorded and normally associated with a typical failure mode.

EVALUATION OF TEST DATA (ASD)

Two primary methods of evaluating test data to determine the suitable working loads for anchors in concrete and masonry are currently used. The first and still most common, because of its long history and relative ease of use, is the application of a global safety factor which is used in conjunction with allowable stress design (ASD). Using this method, an appropriate safety factor is applied to the average ultimate load obtained from testing to establish an allowable load:

Allowable load = Ultimate load / Safety factor

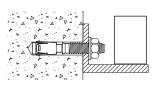
Safety factors are used and assumed to account for field variations which may differ from the testing conditions in the laboratory. Typical minimum safety factors established by industry are 4:1 for concrete and 5:1 for masonry materials. Actual safety factors to be used should be determined by the design professional responsible for the product application and installation, based on the governing building code and after examining all influencing factors.

A second method which is used less frequently, but sometimes used as an alternative to applying straight safety factors is a statistical method in which the allowable working loads are based in part on the coefficient of variation (COV) obtained during testing. In most cases, the results obtained using the safety factor method are similar to those obtained when using the statistical method unless COV values are very high (e.g. greater than 15 to 20% for concrete or masonry base materials respectively).

EVALUATION OF TEST DATA (SD)

Strength Design for anchors in concrete for structural and nonstructural connections is becoming more the norm as the International Building Code (IBC) has been adopted and accepted in most jurisdictions within the United States; Canada is also following closely with the National Building Code of Canada (NBC). This method applies reduction factors to characteristic values determined from comprehensive qualification testing requirements and assessment which results in factored design capacities. Specific details of the procedure to properly evaluate such data can be found in ACI 355.2 and ACI 355.4. These requirements provide consideration for anchor behavior and different types of failure modes. Strength Design as it applies to anchorage to concrete is detailed in ACI 318 Chapter 17. This method is referenced directly by the IBC and is recommended where applicable.

FECHNICAL GUIDE – ANCHOR TECHNOLOGY ©2022 DEWALT



APPLIED LOADS

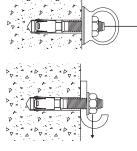
The type of load and the manner in which it is applied by the fixture or other attachment is a principle consideration in the selection of an anchor. Applied loads can be generically described as static, dynamic, or shock. Some anchor types are suitable for use with static loads only, while others can be subjected to dynamic or shock loads. The suitability of an anchor for a specific application should be determined by a qualified design professional responsible for the product installation.

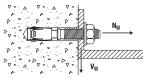
STATIC LOADS

These are non-moving, constant loads such as those produced by an interior sign, cabinet, equipment, or other. A typical static load could be a combination of the dead load

(weight of fixture) and the live load a fixture must support. Basic static load conditions are tension, shear, or a combination of both.

Tension Load


A tension load is applied directly in line with the axis of the anchor.

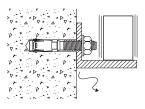

Shear Load

A shear load is applied perpendicularly across the anchor directly at the surface of the base material.

Combined Load

Most anchor installations are subjected to a combination of shear and tension loads.

BENDING LOAD


One often overlooked result of static load is bending. It is frequently necessary to place shims or spacers between the fixture and the material for alignment or leveling. When this occurs, it is often the strength of the anchor material or bolt material that determines the capacity of the connection. The load is applied at a distance from the surface of the base material creating a lever-type action on the anchor. Typical examples of this type of loading are the installation of windows using plastic horse shoe shims or machinery installations with shims below the base plate. In loading such as this, it is often the physical strength of the anchor material, not the tension and shear load capacities, that limit the strength of the anchorage.

The bending load should be calculated by a design professional based on the material. In concrete or masonry materials, the bending arm used in the calculation should be increased to allow for spalling around the top of the anchor hole which can be, approximated by 1/2 to 1 anchor diameter.

DYNAMIC AND SHOCK LOADS

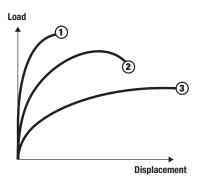
Dynamic Loads

Dynamic loads are intermittent and varying loads such as those imposed by central air conditioning units, manufacturing machinery or earthquakes. They are normally the alternating or pulsating loads associated with vibration.

Shock Loads

Shock loads are instantaneous, periodic loads of high intensity such as those applied by an automobile striking a guard rail support or a truck hitting a dock bumper.

Standard industry practice with


regard to safety factors varies depending upon the frequency and intensity of the load. However, safety factors for dynamic or shock load conditions may require 10:1 or higher. Determination of the appropriate safety factor should be made by the design professional in charge of the project and application considering all the relevant details of the connection.

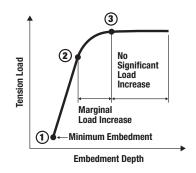
ANCHOR BEHAVIOR AND MATERIAL

The selection and specification of an anchor requires an understanding of basic anchor behavior or performance. A variety of performance attributes can be expected depending upon the type or style of anchor.

DISPLACEMENT

As an anchor is loaded to its ultimate (failure) load capacity, displacement or movement of the anchor relative to the base material will occur. The amount of displacement will be affected by the anchor preload, the anchor material strength, the design of the expansion mechanism, and the strength of the base material. Typical load versus displacement curves are shown in the following diagram for three anchor types.

Curve (1) shows the typical performance of an adhesive anchor. These anchors normally exhibit elastic behavior up to the ultimate load capacity. Performance will vary depending upon the type of adhesive used, the base material strength, and the strength of the steel anchor rod. A heavy duty undercut anchor may also exhibit this type of behavior and can also provide ductility often needed in design for critical connections, including loads due to earthquakes.


Typical performance of a torque controlled anchor is shown in Curve (2). Displacement begins to occur after the initial preload in the anchor has been exceeded until the ultimate load capacity is achieved.

Anchors for use in light duty applications often exhibit the behavior shown in Curve (3). Once the working load has been exceeded, the anchor begins to displace significantly or stretch until failure occurs.

DEPTH OF EMBEDMENT

The depth of embedment published for each anchor in the load capacity charts is critical to achieving the expected load capacities. This nominal depth is measured from the surface of the base material to the bottom of the anchor. For mechanical expansion anchors, this would be the depth measured to the bottom of the anchor prior to setting (e.g. applying torque). For each anchor type, a minimum embedment depth is specified. This depth is typically the minimum required for proper anchor installation and reliable functioning. In some masonry materials, the minimum depth may be decreased depending upon the anchor style and as noted in the load tables in specific product sections.

The load capacity of some anchor types will increase with deeper embedments. For anchors which exhibit this behavior, multiple embedment depths and the corresponding load capacity are listed. As the embedment depth is increased, the load capacity will increase up to a transition point. This point is usually the maximum embedment depth listed. At this point, mechanical anchors may experience material failure or localized failure of the base material around the expansion mechanism. Adhesive anchors may reach the capacity of the bond strength, the steel anchor rod material, or the capacity of the base material. For applications requiring installation at embedment depths between those published, linear interpolation can be considered (see information in specific product sections). The following diagram shows an illustration of tension performance of a mechanical anchor installed in concrete as embedment increases.

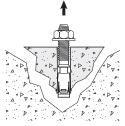


MODES OF FAILURE

As an anchor is loaded to its ultimate capacity, the following modes of failure can occur.

Anchor Pullout

This type of failure occurs when the applied load is greater than the friction or engagement force developed between the anchor body and the base material. The anchor is unable to fully transfer the load to develop the strength of the base material. For adhesive anchors, this can occur with products which have a low bond strength or have been installed in a poorly prepared anchor hole.



Base Material Failure

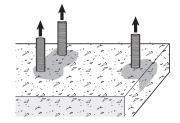
When the applied load is greater than the strength of the base material, the material pulls out or fails. In concrete, a shear prism/ cone can be pulled, usually for anchors installed at a relatively shallow depth. The angle of the shear prism/cone has been assumed to

be 35-45°, however, this can vary slightly depending upon the anchor style and embedment depth.

As the embedment of some anchor styles is increased to six diameters or beyond, the concrete can sustain the applied compression

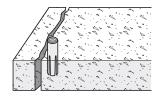
force and the load capacity of the anchor will increase up to a point at which either the capacity of the expansion mechanism or the bond is reached. In masonry, part of the individual unit may be pulled from the wall, especially in cases where prism strength or the strength of the mortar may be low.

Anchor Material Failure


A failure of the anchor body or rod will occur when the applied load exceeds the strength of the material from which the anchor is

manufactured. For mechanical anchors, this usually occurs for anchors which are embedded deep enough to develop the full strength of the expansion mechanism and the base material. For adhesive anchors, this will occur when the base material and bond strength of the adhesive is greater than the strength of the anchor rod.

Spacing or Edge Failure


The spacing and edge distance of installed anchors will affect the mode of failure along with the resulting ultimate load capacity. Anchors which are spaced close together

will have a compound influence on the base material resulting in lower individual ultimate load capacities. For anchors installed close to an unsupported edge, the load capacity will be affected by both the direction of the load and the distance from the edge. As load is applied, a concrete cone type of failure will occur. This can be caused by the compressive forces generated by the expansion mechanism or by the stresses created by the applied load.

Base Material Splitting

Concrete and masonry units must be of sufficient size to prevent cracking or splitting during anchor installation and as load applied. This is

especially important in unreinforced base materials and for cases such as groups of anchors near the corner of a concrete or masonry member. The critical dimensions include the thickness and the width of the base material.

ANCHOR PRELOAD

Anchor preload is developed by the setting action in a displacement controlled anchor or the tightening of a bolt/nut in a torque controlled anchor. When a load is applied to an anchor, significant displacement will not occur until the preload in the anchor has been exceeded. The amount of preload normally does not have significant effect on ultimate load capacity provided the anchor is properly set.

By tightening a torque controlled anchor a particular number of turns or to a specific torque level, the anchor is initially preloaded. This action will reduce the overall displacement of the anchor and normally ensures that elastic behavior will occur in the working load range (but should not be counted on where cracking of the concrete may occur, e.g. seismic event). A preload may also be applied to achieve a clamping force between the fixture and the base material.

LONG TERM BEHAVIOR

Various additional influences may need consideration for the proper long term behavior of an anchoring or fastening system. These important considerations include but are not limited to effects of concrete state (uncracked, cracked), earthquake loading, fatigue, freezing/thawing effects, sustained loading (i.e. creep), elevated temperature, fire, corrosion and/or chemical resistance.

DEWALT offers several of adhesive anchoring systems that have been independently tested and qualified to meet or exceed the creep requirements of ACI 355.4, ICC-ES AC308 and AC58 (see information in specific product sections).

ANCHOR MATERIAL SELECTION

The material from which an anchor is manufactured is generally capable of sustaining the published tension and shear loads. However, other conditions such as bending loads should be checked. In certain loading situations, the material strength may be the weak link. Bolts, threaded rods or other materials in assemblies (e.g. steel inserts, rod couplers) used in conjunction with an anchor should be capable of sustaining the applied load and should be installed to the minimum recommended thread engagement. For reference purposes, the minimum expected mechanical properties of commonly used carbon steel and stainless steel materials are listed in various standards. The typical standards used are for externally threaded parts as assigned by the Society of Automotive Engineers (SAE), Industrial Fasteners Institute (IFI), American Iron and Steel Institute (AISI) or the American Society for Testing and Materials (ASTM). Variations in strength will occur during manufacture due to heat treating, strain hardening, or cold working. Consult the individual standards for details.

In addition to the load capability of the material, an anchor should be manufactured from material which is compatible with its intended use. For example, anchors and/or critical components manufactured from a material with a melting point of less than 1000°F are not normally recommended for overhead applications due to fire considerations (e.g. Zamac Nailin anchor bodies). Special materials may be required for corrosive environments and connections involving dissimilar metals which have potential for galvanic reaction.

CORROSION RESISTANCE

The corrosive environment in which an anchor or fastener will be installed should be considered. Corrosion can be described broadly as the destruction of a material due to chemical or electrochemical reactions based upon the application environment. Industry estimates of the annual cost of corrosion place it in the billions of dollars. The subject of corrosion is very complex and knowledge is constantly being gained based on industry experience. Chemical and electrochemical corrosion are described in the following two sections to provide a basic understanding of the process

CHEMICAL CORROSION

Direct chemical attack occurs when an anchor or fastener is immersed in the corrosive substance, typically a liquid or a gas. For example, an anchor used to restrain equipment in a water treatment tank would have to be made from a material which would be resistant to chlorine or other corrosive liquids present. This type of corrosion can also occur when a stone facade is attached to a backup wall. Mild acids can be formed in the wall cavity due to reaction of condensation with the attached stone. The product selected would have to be resistant to the type of acid formed.

ELECTROCHEMICAL CORROSION

All metals have an electrical potential which has been measured through research and ranked into an electromotive force series. When two metals of different electric potential are brought into contact in the presence of an electrolyte(e.g. water), the metal with the lower potential (least noble) will form the anode while the metal with the higher potential (most noble) will form the cathode.

As current flows from the anode to the cathode, a chemical reaction will take place. The metal forming the anode will corrode and will

+ Corroded End (Anodic or least noble)
Magnesium
Magnesium alloys
Zinc
Aluminum 1100
Cadmium
Aluminum 2024-T4
Steel or Iron
Cast Iron
Chromium-iron (active)
Ni-Resist cast iron
Type 304 Stainless (active)
Type 316 Stainless (active)
Lead tin solders
Lead
Tin
Nickel (active)
Inconel nickel-chromium alloy (active)
Hastelloy Alloy C (active)
Brasses
Copper
Bronzes
Copper-nickel alloys
Monel nickel-copper alloy
Silver solder
Nickel (passive)
Inconel nickel-chromium
alloy (passive)
Chromium-iron (passive)
Type 304 Stainless (passive)
Type 316 Stainless (passive)
Hastelloy Alloy C (passive)
Silver
Titanium
Graphite
Gold
Platinum
- Protected End (Cathodic or most noble)

deposit a layer of material on the metal forming the cathode. As the electric potential between two dissimilar metals increases, the stronger the current flow and corresponding rate of corrosion. The rate of corrosion will also be influenced by the conductivity of the electrolyte.

Galvanic Series

In order to provide a more practical approach to understanding the electromotive force series, testing was conducted on commercial alloys and metals in sea water to develop a chart called the Galvanic Series. One of the reasons sea water was used as the electrolyte was because it has a high conductivity rate. The above chart lists a representative sample of dissimilar metals and indicates their relative potential for galvanic corrosion. When two dissimilar metals are in contact (coupled) in the presence of a conductive solution or electrolyte (i.e. water) electric current flows from the less noble (anodic) metal to the more noble (cathodic) metal. In any couple, the less noble metal is more active and corrodes while the more noble metal is galvanically protected.

To prevent galvanic corrosion, the following precautions can be used:

- 1. Use the same or similar metals in an assembly. Select metals which are close together in the Galvanic Series.
- When dissimilar metals are connected in the presence of a conductive solution, separate them with dielectric materials such as insulation, a sealing washer, or a coating. Coatings should be kept in good repair to prevent accelerated attack at any imperfection.
- Avoid combinations where the area of the less noble material is relatively small. It is good practice to use anchors or fasteners made from a metal which is more noble than that of the material being fastened.

In critical applications, testing should be conducted to simulate actual conditions. Other types of electrochemical corrosion such as stress corrosion may need to be considered depending upon the application. In all cases, it is important to evaluate the application, materials and the service environment to make a proper selection.

COATINGS AND PLATINGS

A variety of coatings and platings are offered by industry to resist various extremes of corrosion. A plating metal which is less noble (lower electric potential) than the base metal it is designed to protect is usually selected. When subjected to an electrochemical reaction, the plating will corrode or sacrifice while the base metal remains protected. Once the plating has been reduced significantly, the base material will then begin to corrode. If a plating metal which is more noble is selected, the base metal would begin to corrode immediately if the plating is damaged.

Zinc Plating and Coatings

For carbon steel anchors and fasteners, zinc is one of the most common plating materials used because it can be applied in a broad thickness range and because it is less noble than carbon steel. Zinc may be applied by electroplating, mechanical methods, or hot dip galvanizing.

The following table shows the typical mean corrosion rate of zinc based on data compiled by ASTM. Theoretically, the life expectancy of a zinc plating would be the thickness of the plating divided by the corrosion rate. These values are provided for reference and should only be used as a guide since actual performance will vary with local conditions.

Atmosphere	Mean Corrosion Rate
Industrial	5.6 microns (0.00022") per year
Urban non-industrial or marine	1.5 microns (0.00006") per year
Suburban	1.3 microns (0.00005") per year
Rural	0.8 microns (0.00003") per year
Indoors	Considerably less than 0.5 microns (0.00002") per year
Note: Reproduced from ASTM; the mean corror corrosion rate when zinc is passivated or in corr	sion rate given pertains to zinc only and does not include a ntact with other materials.

The standard zinc plating used on carbon steel anchors is applied using electroplating (often called 'commercial bright' zinc). The anchor components are immersed in a water based solution containing a zinc compound. An electrical current is then induced into the solution causing the zinc to precipitate out, depositing it onto the components. DEWALT carbon steel anchors are typically electroplated according to ASTM B633, SC1, Type III. SC1 signifies Service Condition 1 which is for a mild environment with an average coating thickness of 5 microns (0.0002"). This condition is also classified as Fe/Zn 5. Type III indicates that a supplementary clear chromate treatment is applied over the zinc plating. Prior to applying the chromate treatment, heat treated products which are electroplated are normally baked to provide relief from any hydrogen trapped in the granular matrix and/ or acid-free cleaning processes are used to ensure hydrogen is not introduced during production and manufacture.

Note: Hardened fasteners such as carbon steel concrete screws and power-actuated fasteners are designed to be used in a non-corrosive atmosphere unless application specific corrosion testing has been performed. To reduce the possibility of the embrittlement of a heat treated part, a mechanically applied zinc meeting the requirements of ASTM B695, Class 5 is used. Class 5 signifies an average minimum coating thickness of 5 microns (0.0002").

Zinc platings or coatings are often described using the term "galvanized". Another zinc coating which is available on some carbon steel anchors is mechanically applied (e.g. mechanical galvanized). To apply this coating, the anchor components and glass beads are placed in a chamber on an agitating machine. As the chamber is agitated, powdered zinc compound is gradually added allowing the glass beads to pound the zinc onto the surface of the anchor components. Carbon steel products which are coated using this method are mechanically galvanized according to ASTM, B695. ASTM A153, Type C describes the requirements for applying a zinc coating using a hot dip method. According to this specification, the anchor components are placed in a bath of molten zinc for a specified time to allow a metallurgical reaction which bonds the zinc to the steel surface.

Barrier Coatings (e.g. Stalgard®)

To provide increased protection from the effects of corrosion on smaller diameter anchors and fasteners used in some industrial applications, proprietary coatings have been developed. Some of these coatings have shown to provide better resistance to corrosion and abrasion than traditional zinc electroplating or mechanical galvanizing. Coatings of this type are often called barrier coatings because they seal the part as opposed to zinc platings which are sacrificial.

One of these barrier coatings is called Stalgard[®] (formerly known as Perma-Seal[™]). When a component is coated with Stalgard, a zinc enriched base is first applied to the surface followed by a proprietary process during which a polymer based paint is bonded over the base coat. This creates a finish which is resistant to the environments such as those created by the high saline (salt) content of most insulation boards, and the acids which are produced by ponded water in many built-up or single ply roofing systems

Coatings of this type are typically tested according to DIN Standard 50018, 2.0S, which is a test method referred to as a Kesternich Test. As a measure of corrosion resistance when using this test method, Factory Mutual Standard 4470 (now FM Global) establishes an

allowable surface corrosion (red rust) limit of 15% of the surface area after 15 cycles of exposure. The Stalgard coating with undamaged coating surface exceeds this requirement withstanding 30 cycles of exposure with less than 15% surface corrosion (red rust). Additional testing conducted in a salt spray chamber according to ASTM B117 shows that the Stalgard coating with undamaged coating surface can withstand over 1,000 hours of exposure with less than 5% surface corrosion. The coating has also been tested to ICC-ES AC257, *Acceptance Criteria for Corrosion-resistant Fasteners and Evaluation of Corrosion Effect of Wood Treatment Chemicals.*

In all cases, it is important to evaluate the application and the service environment to make a proper selection. The suitability of an anchor for a specific application should be determined by a qualified design professional responsible for the product installation.

Note: Environmental, application and other factors can affect the service life of anchors and fasteners. Current test standards for corrosion resistance do not enable test results to be directly correlated into expected service life; as such, it is impossible to accurately predict the service life of a specific installation.

CORROSION RESISTANT MATERIALS

In addition to coatings and platings, a variety of other anchor and fastener materials are available which provide varying degrees of corrosion resistance.

Stainless Steel

Stainless steels were originally named according to their chromium and nickel content. Chromium-nickel alloys are known as 300 series stainless steels while chromium alloys are 400 series. Stainless steels develop their resistance to corrosion by forming a thin, self healing, passive film of chromium oxide on their surface.

The most common for fastener applications are produced from 300 series stainless steels. These are austenitic alloys which are nonmagnetic and are not heat treatable, although they can be annealed. Anchors made from 300 series stainless steel can exhibit very slight magnetic properties due to the manufacturing process. In order to achieve higher tensile strengths, this series of stainless must be cold worked. For some components, a minimum yield strength is specified based on the work hardening which occurs during the cold forming process. In the industry, the term 18-8 is still used to generically describe the 300 series of alloys, especially Types 302, 303, and 304. Type 303 is used where machinability is required for products. This type of stainless steel has a higher sulfur content than Type 304 which reduces drag on cutting tools, especially when forming internal threads.

Type 304 and 304 Cu (302 HQ) stainless steels are used to cold form anchor components. This type of stainless steel is one of the most widely specified. It is commonly used outdoors in a nonmarine environment and for applications in the food processing industry. For more severe corrosive environments, Type 316 stainless steel is available. Type 316 has a higher nickel content than Type 304 and the addition of molybdenum. This provides increased resistance to pitting caused by chlorides (salts) and corrosive attack by sulfurous acids such as those used in the paper industry.

Note: The use of Type 304 stainless steel in environments where pitting and stress corrosion is likely (e.g. chloride/chlorine environments) should be avoided due to the possibility of sudden failure without visual warning.

INSTALLATION GUIDELINES

As with any building component, proper installation is the key to a successful application once a fastener has been designed and properly selected.

ANCHOR ALIGNMENT

Anchors should be installed perpendicular to the surface of the base material. Within the industry, +/- 6° is typically used as the permissible deviation from perpendicular. If anchors are installed beyond this point, calculations to ensure that a bending load has not been created may need to be performed. Job site tests may be required to determine actual load capacities if anchors are not installed perpendicular to the surface of the base material.

DRILLED HOLE (POST-INSTALLED ANCHORS)

A properly drilled hole is a critical factor both for ease of installation and optimum anchor performance. The anchors selected and the drill bits to be used should be specified as part of the total anchoring system. Most DEWALT anchors are designed to be installed in holes drilled with carbide tipped bits meeting the requirements of the American National Standards Institute (ANSI) Standard B212.15 unless otherwise specified. If alternate bit types are used, the tip tolerance should be within the ANSI range unless otherwise permitted. The following table lists the nominal drill bit diameter along with the tolerance range established by ANSI for the carbide tip.

Nominal Drill	ANSI Standard	Nominal Drill	ANSI Standard
1/8"	0.134 - 0.140"	11/16"	0.713 - 0.723"
5/32"	0.165 - 0.171"	3/4"	0.775 - 0.787"
11/64"	0.181- 0.187"	27/32"	0.869- 0.881"
3/16"	0.198 - 0.206"	7/8"	0.905 - 0.917"
7/32"	0.229 - 0.237"	15/16"	0.968 - 0.980"
1/4"	0.260 - 0.268"	1"	1.030 - 1.042"
9/32"	0.296 - 0.304"	1-1/8"	1.160 - 1.175"
5/16"	0.327- 0.335"	1-1/4"	1.285 - 1.300"
3/8"	0.390 - 0.398"	1-3/8"	1.410 - 1.425"
7/16"	0.458 - 0.468"	1-1/2"	1.535 - 1.550"
1/2"	0.520 - 0.530"	1-5/8"	1.655 - 1.675"
9/16"	0.582 - 0.592"	1-3/4"	1.772 - 1.792"
5/8"	0.650 - 0.660"	2"	2.008 - 2.028"

When drilling an anchor hole using a carbide tipped bit, the rotary hammer or hammer drill used transfers impact energy to the bit which forms the hole primarily due to a chiseling action. This action forms an anchor hole which has roughened walls.

During the drilling operation, bit wear should be monitored to ensure that the carbide tip does not wear below the following limits to ensure proper anchor functioning. The age of the base material as well as strength and hardness will affect drilling speed, drill bit wear, and drill bit life. This is especially important when using mechanical anchors (including screw anchors). Generally, mechanical anchors can be installed in holes drilled with bits which have worn, but are still in the acceptable range. This depends on the base material, so this information should be used as a guide.

Nominal Drill	Lower Wear	Nominal Drill	Lower Wear
3/16"	0.190"	5/8"	0.639"
1/4"	0.252"	3/4"	0.764"
5/16"	0.319"	7/8"	0.897"
3/8"	0.381"	1"	1.022"
1/2"	0.510"	1-1/4"	1.270"

Anchor holes should be drilled to the proper depth which is based on the anchor style. The recommended drilling depth is commonly listed in the installation instructions for the individual products. Anchor holes should be thoroughly cleaned prior to installation of the anchor unless otherwise noted. This procedure is easily accomplished using hollow drill bits and a HEPA vacuum (e.g. DustX+), compressed air, or a vacuum with an extension. Dust and other debris must be removed from the hole to allow an anchor to be installed to the required embedment and to ensure that the expansion, engagement and/or bond can be properly actuated. Extra care must be taken when using adhesives for anchoring. The drilled hole should be thoroughly cleaned with suitable equipment to ensure that a proper bond is developed. See specific product information concerning suitability of specific conditions like installations in submerged environments.

Mechanical and adhesive anchors should not be installed in holes drilled with diamond tipped core bits unless specific testing has been conducted to verify performance. A diamond tipped core bit drills a hole which creates smoother walls which can cause some anchor types to slip and perform poorly.

FIXTURE CLEARANCE HOLES

Post-installed anchors of fractional sizes are designed to be installed in holes drilled in concrete and masonry base materials with carbide tipped drill bits meeting the requirements of ANSI B212.15 as listed in the previous section unless otherwise noted. The actual hole diameter drilled in the base material using an ANSI Standard carbide tipped bit is larger than the nominal diameter. For example, a 1/2" nominal diameter drill bit has an actual 0.D. of 0.520" to 0.530". When choosing the diameter of the hole to be formed in a fixture, consideration should be given so the resulting fixture hole selected allows for proper anchor installation as applicable.

For through fixture installations (e.g. through-bolting), it is necessary to pre-drill or punch a minimum clearance hole in the fixture which is large enough to allow the carbide tipped bit and the anchor to pass through. For example, through-bolting with mechanical wedge anchors require a pre-drilled hole in the fixture which is large enough for the expansion mechanism to be driven through. Normally, for mechanical expansion anchor sizes up to 7/8", the clearance hole required is the anchor diameter plus 1/16". For sizes 1" and larger, the clearance hole is the anchor diameter plus 1/8". This clearance hole should be adjusted to allow for any coating applied to the fixture.

In contrast, in the case a larger than necessary fixture hole is considered for the selected anchor, the design professional should verify how the oversized fixture hole will transfer shear, as applicable. A common approach in construction using anchor bolts is to utilize oversized washers to increase the shear bearing area.

As in all applications, the design professional responsible for the installation should determine the appropriate clearance hole to be used based on the anchor or fastener selected and relevant requirements of the connection.

OVERSIZED DRILLED HOLES (ADHESIVE ANCHORS)

Unless otherwise noted, the performance values for DEWALT adhesive anchor systems are based upon testing of anchors installed in holes drilled with carbide-tipped bits typically with either 1/16-inch or 1/8inch greater than the nominal diameter of the steel anchor element. However, some products have undergone specific qualification testing for use in oversized holes (see information in specific product sections). Some cases may warrant the consideration of oversizing the drilled holes (e.g. due to placement issues, construction adjustments).

Depending upon the application/conditions and product, oversizing the drilled hole can have an effect on performance. Site testing should be considered if product specific testing is not available from the anchor supplier to evaluate any possible effects. As in all applications, the design professional responsible for the installation should determine the drill hole size to be used based on the anchor selected and relevant requirements of the connection.

Note: It is not recommended to install mechanical anchors in oversized holes.

CORE DRILLED HOLES

Unless otherwise noted, the performance values for DEWALT anchor systems are generally based upon testing of anchors installed in holes drilled with carbide-tipped bits. However, some products have undergone specific qualification testing for use in core drilled holes (see information in specific product sections).

As in all applications, the design professional responsible for the installation should determine the clearance hole to be used based on the anchor selected and relevant requirements of the connection.

Note: Unless specific qualification testing or specific project testing has been conducted, it is not recommended to install anchors in core drilled holes.

TEMPERATURE (ADHESIVE ANCHORS)

The product installation temperature and base material temperature can have an effect on performance of adhesive anchors. The selected product must be suitable for the application and installation conditions. It is recommended that the product be conditioned and installed in accordance with published instructions for best results.

For influence of in-service temperature including elevated temperature and freeze-thaw effects, reference the information in the specific product sections.

Note: When adhesive anchors are installed in concrete which is in the freezing range, frost or ice can form on the walls of the drilled hole. If this occurs, the adhesive may not properly bond to the walls of the drilled hole. A torch should normally not be used because it carbonates the concrete on the walls of the drilled hole creating a residual dust. Job site tests are recommended where a torch is used to dry the drilled hole prior to anchor installation.

INSTALLATION TORQUE

Certain anchor styles, sometimes referred to as torque controlled anchors, are actuated by tightening a bolt or nut. For typical field installations, especially where it is not practical to measure the torque, the commonly suggested tightening procedure for such anchors is to apply 3 to 5 turns to the head of the bolt or nut from the finger tight position or to within the maximum guide torque range. This is usually sufficient to initially expand the anchors and is standard industry practice. In some cases, it may be desirable to specify an installation torque for an anchor or a maximum torque as in the case for adhesive anchors.

The frictional characteristics which govern the torque-tension relationship for an anchor will vary depending upon the anchor type and the base material. Other factors which may affect the relationship are the effects of fixture coatings or platings, lubrication of the anchor components due to the use of sealants around the anchor hole, and the anchor material. DEWALT publishes guide installation torque values for anchors that are actuated by tightening a bolt or nut. These values are based on standard product installations, and with the exception of torque-controlled expansion anchors which have a specified value based on testing, should be used as a guideline since performance may vary depending upon the application. For other anchor types such as adhesive anchors, a maximum torque may be published for use as a guide to prevent overloading when applying a clamping force to a fixture.

Note: These values may have to be reduced for installations in hollow and/or masonry materials. Suggested allowable torque range values are also provided in the product sections.

TEST TORQUE

To establish application specific installation torque values, a job site test is recommended. A typical procedure includes the following: Install the anchor duplicating the actual application. Using a torque wrench, apply the recommended number of full turns from the finger tight position. The number of turns may vary depending upon the base material strength. Upon completion of the final turn, record the torque reading from the wrench. This should be performed on a minimum sample of 5 anchors averaging the results to establish an installation torque range. Care should be taken by the design professional responsible for the installation to consider the material strength and composition of the anchor so that the tests do not damage the anchor or cause undue damage to the test location.

Should anchor failures occur during this job site test procedure, average ultimate torque values should be compared to published torque recommendations and an appropriate factor of safety should be applied (typically in the range of 2 to 2.5) subject to the design professional and/or building official as applicable.

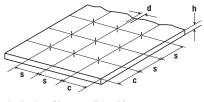
If previously installed anchors are to be inspected with a torque wrench, it should be noted that anchors experience a relaxation of preload which begins immediately after tightening due to creep within the concrete or masonry material. The torque value measured after installation is typically 50% of that initially applied to set the anchor.

DESIGN CRITERIA

ALLOWABLE STRESS DESIGN (ASD)

The historical standards established by industry for anchoring and fastening is to reduce the ultimate load (i.e. mean average) capacity by a minimum safety factor depending upon the type of base material and governing construction code to calculate the allowable working load.

Allowable load = Ultimate load / Safety factor $(F_{\text{allow}} ~=~ F_{\text{m}}~/~\Omega)$


For example, a post-installed mechanical anchor which has an average ultimate tension load capacity in solid normal-weight concrete of 12,000 pounds for a given set of conditions would have a maximum allowable working load anchor of 3,000 pounds when utilizing a safety factor of 4 to 1. Connections such as overhead applications and/or involving dynamic loading, shock loads, fatigue loading, corrosion and fire considerations may require higher safety factors depending on product, base material and conditions. The allowable loads are recommendations, however, and local construction codes should be consulted to determine the required safety factors and design methodology. For adhesive anchors, both the strength of the adhesive at in-service temperature and the steel anchor element must also be considered (the lower of the strengths must govern). As in all applications, the actual safety factors and design load capacities used should be reviewed and verified by a design professional responsible for the actual product installation.

In allowable stress design (ASD), the design professional must design the anchorage so that the service loads do not exceed the allowable loads for a given anchor or anchor group (where T = tension and V = shear):

 $T_{service} \le T_{allowable}$ $V_{service}$

 $V_{\text{Service}} \leq V_{\text{allowable}}$

The design professional must take the allowable load from the relevant published data and adjust the allowable load for all applicable design parameters for the anchor. This includes but is not limited to center-to-center spacing distance, edge distance and base material in-service temperature, as applicable.

d - Anchor Size c - Edge Distance s - Spacing h - Base Material Thickness

Applicable load-adjustment factors for the anchors for the design conditions must be applied cumulatively. See the applicable product information for the product specific load adjustment factors and guidance for the use of linear interpolation for geometric conditions, where applicable. For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\begin{pmatrix} Nu \\ Nn \end{pmatrix} + \begin{pmatrix} Vu \\ Vn \end{pmatrix} \le 1 \text{ or } \left(\frac{Nu}{Nn} \right)^{\frac{5}{3}} + \begin{pmatrix} Vu \\ Vn \end{pmatrix}^{\frac{5}{3}} \le$$

 $\begin{array}{l} N_u^u = Applied \ Service \ Tension \ Load \\ N_u^u = Allowable \ Tension \ Load \\ V_u^u = Applied \ Service \ Shear \ Load \\ V_n^u = Allowable \ Shear \ Load \end{array}$

[Straight Line and Parabolic Interaction Equations]

The straight line equation is typically given as default; the parabolic equation is applicable where testing has been performed to qualify the use of this parabolic interaction relationship.

STRENGTH DESIGN (SD)

For Strength Design, also known as LRFD, the design professional must design the anchorage so that the required strength (i.e. factored load) does not exceed the lowest design strength of the anchor or anchor group in concrete (considering all possible failure modes):

$$N_{ua} \le \phi N_n$$
 $V_{ua} \le \phi V_n$

Calculations are performed in accordance with the design provisions of ACI 318 Chapter 17 for cast-in-place, mechanical and adhesive anchors. The characteristic strengths and design data for post-installed anchors are derived from comprehensive independent testing and assessment in accordance with ACI 355.2 (ICC-ES AC193) for mechanical anchors and ACI 355.4 (ICC-ES AC308) for adhesive anchors, including consideration of cracked and uncracked concrete. Characteristic strengths are 5% fractile strengths calculated from the average ultimate load and associated coefficient of variation from test results. The 5% fractile strength is defined as the characteristic strength for which there is a 90% confidence that there is a 95% probability of the actual strength exceeding the characteristic strength.

For anchors loaded in both tension and shear, the combination of loads is typically be proportioned as follows:

$$\left(\frac{\boldsymbol{N}_{ua}}{\boldsymbol{\phi}\boldsymbol{N}_{n}}\right) + \left(\frac{\boldsymbol{V}_{ua}}{\boldsymbol{\phi}\boldsymbol{V}_{n}}\right) \leq 1.2$$

 $\begin{array}{l} N_{ua} = Factored \mbox{ Tensile Applied to an Anchor} \\ or \mbox{ Group of Anchors} \\ N_n \ = Nominal \mbox{ Strength in Tension} \\ V_{ua} = Factored \mbox{ Shear Load Applied to an} \end{array}$

Anchor or Group of Anchors $V_n = Nominal Strength in Shear$ $\phi = Strength Reduction Factor$

For anchors tested and qualified with ACI 355.2 or ACI 355.4, the parabolic interaction equation (shown previously) may also be considered for combined loading conditions.

For anchors that are designed using ACI 318 Chapter 17 it is possible to convert design strengths to allowable loads using the following approach from ICC-ES AC193 and AC308:

Tallowable, ASD
$$\frac{\phi N_n}{\alpha}$$
 and $V_{\text{allowable, ASD}} = \frac{\phi V_n}{\alpha}$

Where:

 $T_{\text{allowable, ASD}} = Allowable Tension Load V_{\text{allowable, ASD}} = Allowable Shear Load$

 α = Conversion factor calculated as a weighted average of the load factors for the controlling load combination. In addition, the conversion factor, α , shall include all applicable factors to account for non-ductile failure modes and required over-strength. For consideration of complete details, consult the individual product sections and associated product evaluation reports or contact DEWALT.

21

1-800-4 DEWALT

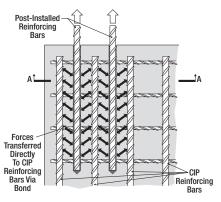
LIMIT STATE DESIGN

Much like Strength Design, the philosophy of Limit State Design method is to see that the structure remains fit for use throughout its designed life by remaining within the acceptable limit of safety and serviceability requirements based on the risks involved. The limit state design method for anchor design in concrete is given in CSA A23.3. In principle, the limit state design method for anchorage to concrete follows strength design provisions but utilizes different strength reduction factors. Post-installed anchors qualified for use with this design method are subject to comprehensive independent testing and assessment in accordance with ACI 355.2 (ICC-ES AC193) and ACI 355.4 (ICC-ES AC308) to determine characteristic strengths and design data.

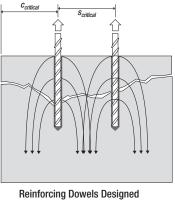
ANCHORS FOR USE IN SEISMIC DESIGN

Seismic design as based on the building codes require that building structures resist the effects of ground motion induced by an earthquake. Each structure is assigned to a seismic design category/ zone based on the location of the building site as referenced in the building codes.

Seismic design is complex as it considers several influencing factors such as site geology and soil characteristics, building occupancy categories, building configuration, structural systems, and lateral forces. Lateral forces are critical because of an earthquakes tendency to shake the building structure from side to side.


Anchors to be used for seismic loads will not be fully loaded in place until an earthquake occurs. Standard test methods have been developed to provide a methodology to simulate seismic load cycles in order to obtain statistical data for the performance of anchors in such conditions. In shear, anchors are tested and are subjected to alternating load applications. Internationally recognized assessment criteria is utilized for evaluating the performance of post-installed anchors when subjected to such simulated seismic loading.

The criteria used as conditions of acceptance for seismic performance of anchors is based on independent testing according to ACI qualification and ICC-ES acceptance criteria. Anchors qualified for seismic applications must have evidence of performance in cracked concrete in accordance with these standards. For seismic design, anchors in concrete must be designed following Strength Design provisions of ACI 318 Chapter 17 or CSA A23.3, as applicable.


POST-INSTALLED REBAR CONNECTIONS

Post-installed rebar connections can also be designed according to the principles of reinforced concrete design (e.g. ACI 318) to provide development of non-contact bar splices. These connections utilize rebars installed and bonded into drilled holes in hardened concrete with a tested and qualified structural injection adhesive. Testing and qualification of the structural injection adhesive is conducted and evaluated specifically for this application (e.g. in accordance with ICC-ES AC308). The post-installed rebars are assessed and shown to provide equivalent bond strength and basic tensile behavior to cast-in reinforcement for the purposes of design and construction.

Although post-installed rebars behave like cast-in reinforcement, other influences of reinforced concrete design should also be considered such as fire, as applicable. Utilizing proper design and installation practices, the post-installed rebar connections in the structure can be considered monolithic (i.e. uniform structural member).

Post-installed Reinforcing Bar Designed As A Lap Splice

Using Anchor Theory

Situations where the concrete needs to take up tensile loads from the anchorage or in cases where rebars are designed to carry shear loads, the design should be according to anchor design principles as given in ACI 318 Chapter 17 or CSA A23.3, as applicable. Unlike in anchor applications, reinforcement design is normally done to achieve yielding of the steel, often in nested groups, in order to obtain ductile behavior of the structure with good serviceability.

SD REFERENCE GUIDE - STRENGTH DESIGN: ANCHORAGE TO CONCRETE IN ACCORDANCE WITH ACI 318

The following is a reference tool for the design of anchors into concrete using ACI 318 (-19 or -14) Chapter 17 and ACI 318-11 Appendix D.

In general, the following steps should be considered when determining the controlling design strength (i.e. factored resistance, factored nominal strength) of the anchor system:

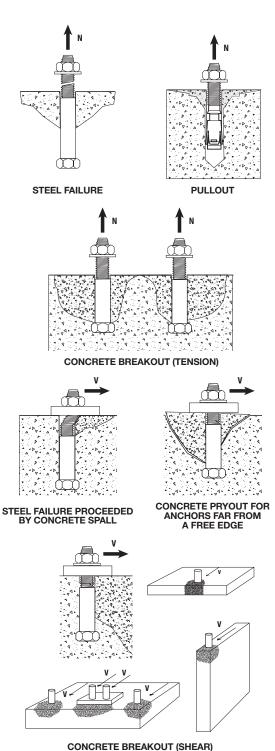
In all cases, the anchor system must be designed as follows: $\phi \mathbf{N}_n \ge \mathbf{N}_{ua}$ (Tension Check)

Failure modes:

where ϕN_n is the lowest design strength capacity in tension from all appropriate failure modes;

- For mechanical expansion and screw anchors, ϕN_n is the lowest design strength in tension of an anchor or group of anchors as determined from consideration of steel strength, concrete breakout strength or pullout strength; ϕN_{sa} , ϕN_{cb} , ϕN_{cbg} , or ϕN_{pn} .
- For adhesive anchors, ϕN_n is the lowest design strength in tension of an anchor or group of anchors as determined from consideration of steel strength, concrete breakout strength or bond strength; ϕN_{sa} , ϕN_{cb} , ϕN_{cbg} , ϕN_a or ϕN_{ag} . (bond strength failure mode not pictured)

A supplemental design check and an additional strength reduction is required for adhesive anchors subjected to sustained tensile loads or load combinations with a sustained load component.


• For cast-in anchors, ϕN_n is the lowest design strength in tension of an anchor or group of anchors as determined from consideration of steel strength, concrete breakout strength, side-face blowout strength or pullout strength; ϕN_{sa} , ϕN_{cb} , ϕN_{cbg} , ϕN_{sb} , ϕN_{sbg} , or ϕN_{pn} . (side-face blowout strength failure mode not pictured)

$\phi \mathbf{V}_n \geq \mathbf{V}_{ua}$ (Shear Check)

where ϕV_n is the lowest design strength capacity in shear from all appropriate failure modes;

- For mechanical expansion and screw anchors, ϕV_n is the lowest design strength in shear of an anchor or group of anchors as determined from consideration of steel strength, concrete breakout strength or pryout strength; ϕV_{sa} , ϕV_{cb} , ϕV_{cbg} , ϕV_{cp} , or ϕV_{cpg} .
- For adhesive anchors, ϕV_n is the lowest design strength in shear of an anchor or group of anchors as determined from consideration of steel strength, concrete breakout strength or pryout strength; ϕV_{sa} , ϕV_{cb} , $\phi V_{cbg}, \phi V_{cp} \text{ Or } \phi V_{cpa}.$
- For cast-in anchors, ϕV_n is the lowest design strength in shear of an anchor or group of anchors as determined from consideration of steel strength, concrete breakout strength or pryout strength; ϕV_{sa} , ϕV_{cb} , $\phi V_{cbq}, \phi V_{cp}, \text{ or } \phi V_{cpq}.$

For anchors loaded in both tension and shear, the combination of loads must also be considered using the interaction equation(s) from ACI 318.

FIELD TECHNICAL SUPPORT

DEWALT

ANCHORS & FASTENERS

TRAINING PRESENTATIONS

ANCHORING 101 – BACK TO BASICS

Understanding the basics of post installed anchoring codes and DEWALT product offering

WEBSITE RESOURCES & DEWALT TECHNICAL SUPPORT

A comprehensive review of the DEWALT Anchoring & Fastening website content, Field Technical support offerings

SUBMITTAL TRAINING

Understanding the submittal process, where to find the relevant anchoring information in the project documents and a demonstration on creating an effective and detailed submittal

PRODUCT KNOWLEDGE, TRAINING, CERTIFICATIONS

ANCHOR INSTALLATION

"Manufacturer's Training" available for all of DEWALT Post Installed and Cast In Place Anchoring solutions

POWDER ACTUATED TOOL TRAINING AND CERTIFICATION

In accordance with current OSHA Standards

DEWALT ADHESIVE ANCHOR INSTALLER CERTIFICATION

In accordance with current ACI 318 recommendations

FIELD TECHNICAL SUPPORT

TECHNICAL TRAINING FOR PROFESSIONAL DEVELOPMENT, CONTINUING EDUCATION FOR ENGINEERS

Hangers and Bracing

Non-structural anchorage for gravity hangers and seismic bracing with review of prescriptive and design codes for MEP and Fire Protection Applications. Includes current ASCE 7 & ACI 318 requirements.

(1.0 Contact Hour)

DEWALT Design Assist (DDA)

Detailed overview of DDA software functionality and key features such as custom anchor layout, load combinations, comparative anchor design, equipment anchorage and post-installed rebar design in accordance with ACI 318.

(1.0 Contact Hour)

Hands-On Anchor Training

Discuss anchors specified for commercial construction from the perspectives of design, installation, and inspection. Attendees install anchors in a concrete block (pre-drilled, office friendly). This presentation is ideal for those who have not had an opportunity to install anchors or observe anchor installation at a jobsite.

(1.5 Contact Hours)

Technical sessions are conducted by DEWALT Field Engineers in an office or jobsite environment and are accredited by NCSEA for professional development.

ADHESIVE ANCHORING SYSTEMS

DIWALT

SELECTION GUIDE	27
FAST CURE ACRYLICS	
AC200+™	28
AC100+ GOLD®	49
STANDARD CURE EPOXIES	
PURE110+®	72
PURE50+™	97

DEWALT

DIWALT

Gintititi

DEWALT

(i)

-

DEWAL

-

AC200-F =

ADHESIVE ANCHORS SELECTION GUIDE

				Bas	se N	later	rial			Nominal Anchor Size										Hole Drill Method* Condition							nsta Temp Guid		Approvals and Listings																
		Concrete	Lightweight Concrete	Grout-filled Concrete Masonry	Hollow Concrete Masonry	Solid Brick	Hollow Brick	Stone	Structural Clay Tile	1/4"	3/8" (#3)	1/2" (#4 or 10M)	5/8" (#5 or 15M)	3/4" (#6 or 20M)	7/8" (#7)	1" (#8 or 25M)	1-1/8" (#9)	1-1/4" (#10 or 30M)	1-3/8" (#11 or 35M)	1-1/2"	1-3/4" (#14 or 45M)	2"	Hammer-drill	Core-drill	Dry	Wet or Water-filled	Underwater	Oversize	Cold Climate	Moderate Climate	Hot Climate	Building Code / Jurisdiction Recognition													
Fast cure acrylics (Hybrid / Ester Base Chemistry)	AC200+™	•	•	•	0	•	0	0		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	ICC-ES ESR-4027 IBC, NBC, City of LA, FBC, NSF, LEED, ASTM C881, DOT													
Fast Cure (HYBRID / E CHEMI	AC100+ Gold®	•	•	•	•	•	•	0	0		•	•	•	•	•	•	•	•	0	0			•		•	•			•	•	0	ICC-ES ESR-2582 ESR-3200, ESR-4105 IBC, NBC, City of LA, FBC, NSF, LEED, ASTM C881, DOT													
STANDARD CURE EPOXIES (EPOXY BASE CHEMISTRY)	Pure110+®	•	•	•	•	0	0	0		0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	ICC-ES ESR-3298 IBC, NBC, City of LA, FBC, NSF, LEED, ASTM C881, DOT													
STANDARD CI (EPOXY BASE	Pure50+™	•	•	•		•		•			•	•	•	•	•	•	•	•	0	0			•	•	•	•		•		•	•	ICC-ES ESR-3576 IBC, FBC, NSF, LEED, ASTM C881, DOT													
	- ,			lls or	rock	drills	with	a ca	rbide	drill l	oit (in	cludi	ng ha	ollow	drill t	oits);	core-	drill i	.e. cc	re-dr	ill wit	th a d	liamor	id core	e-drill	bit.						May be Suitable Hammer-drill, i.e. rotary impact drills or rock drills with a carbide drill bit (including hollow drill bits); core-drill i.e. core-drill with a diamond core-drill bit.													

rylic Injection Adhesive Anchoring System

GENERAL INFORMATION

AC200+[™]

Acrylic Injection Adhesive Anchoring System and Post-Installed Reinforcing Bar Connections

PRODUCT DESCRIPTION

The AC200+ is a two-component, high strength adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. AC200+ is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in concrete base materials and for post-installed reinforcing bar connections (rebar development).

GENERAL APPLICATIONS AND USES

- High strength anchoring: bonding threaded rod and reinforcing bar into hardened concrete
- Rebar development length connections in concrete up to 60d embedments
- Evaluated for installation and use in dry and wet concrete (including water-filled holes)
- Can be installed in a wide range of base material temperatures
- Cracked and uncracked concrete conditions as well as wind and seismic loading (SDC A F)
- Oversized hammer-drilled holes in concrete, for short term loading only (see www.DEWALT.com)
- Can also be used to fill large cracks and abandoned holes in concrete and masonry

FEATURES AND BENEFITS

- + Fast curing system which can be applied in structural applications as low as 14°F (-10°C)
- + Evaluated and recognized for freeze/thaw performance
- + Can be used in a wide range of embedments in low and high strength concrete
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Rated for in-service temperatures of up to 320°F (160°C)

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES) ESR-4027 for cracked and uncracked concrete
- Code Compliant with the International Building Code/International Residential Code: 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ACI 355.4, ASTM E488, and ICC-ES AC308 for use in structural concrete with design according to ACI 318 (-19 & -14), Chapter 17 and ACI 318-11 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including static, wind and seismic loading
- Tested and qualified for use in post-installed rebar connections and rebar development length applications in accordance with ICC-ES AC308 Table 3.8 and ACI 318 Chapter 12 and Chapter 25
- City of Los Angeles, LABC and LARC Supplement (within ESR-4027)
- Florida Building Code, FBC Supplement including HVHZ (within ESR-4027)
- Compliant with NSF/ANSI 61 for drinking water system components health effects
- Compliant to California DPH for VOC emissions and South Coast AQMD for VOC content (LEED v4.1)
- Conforms to requirements of ASTM C881 including C882 and AASHTO M235, Types I, II, IV and V, Grade 3, Class A and conforms to requirements of ASTM C881 Types I and IV, Grade 3, Class B.
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, and 05 05 19 Post-Installed Concrete Anchors. Adhesive anchoring system shall be AC200+ as supplied by DEWALT. Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	28
Installation Specifications	29
Strength Design Information	30
Design Strength Tables (SD)	35
Post-Installed Rebar Development Length Tables	42
Installation Instructions (Solid Base Materials)	44
Installation Instructions Post-Installed for Rebar	
Connections	45
Reference Installation Tables	46
Ordering Information	47

AC200+ ADHESIVE IN CARTRIDGE (STANDARD THREADED ROD AND REBAR STEEL SUPPLIED BY OTHERS)

PACKAGING (10:1 MIX RATIO)

Coaxial Cartridge

- 9.5 fl. oz. (280 mL or 17 in³)
- 14 fl. oz. (420 mL or 25.5 in³)

Dual Cartridge (side-by-side)

28 fl. oz. (825 mL or 50 in³)

STORAGE LIFE & CONDITIONS

Eighteen months in a dry, dark environment with temperature ranging from 41°F to 77°F (5°C to 25°C)

ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)
- 10M to 30M reinforcing bar (CA rebar)

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete

PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Drv concrete
- Water-saturated concrete (wet)
- Water-filled holes (flooded)

TECHNICAL GUIDE - ADHESNES ©2022 DEWALT

- REV. K

INSTALLATION SPECIFICATIONS

DEWALT

ANCHORS & FASTENERS

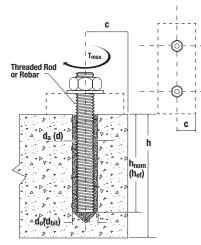
Installation Specifications for Threaded Rod and Reinforcing Bar

Dimension/Property	Notation	Units								Nomin	al Anch	or Size																																									
Threaded Rod (in.)	-	-	3/8	-		1/2	-	5/8	-	-	3/4	-	7/8	-	1	-	-	1-1/4	-																																		
Reinforcing Bar (No.)	-	-	-	#3	10M	-	#4	-	#5	15M	#6	20M	#7	25M	#8	#9	30M	-	#10																																		
Nominal anchor diameter	da (d)	in. (mm)	0.3 (9		0.445 (11.3)				0.625 (15.9)																																				0.750 (19.1)	0.768 (19.5)	0.875 (22.2)	0.992 (25.2)	1.000 (25.4)	1.125 (28.6)	1.177 (29.9)	1.2 (31	
Nominal drill bit size (ANSI)	d₀ [dbit]	in.	7/16	1/2	9/16	9/16			3/4	3/4	7/8	1	1	1-1/4	1-1/8	1-3/8	1-1/2	1-3/8	1-1/2																																		
Minimum embedment ^{1,2}	hef,min	in. (mm)	2-3 (6		2.8 (70)		3/4 '0)	3-1/8 (79)		3.1 (79)	3-1/2 (43)	3.5 (43)	3-1/2 (89)	3.9 (100)	4 (102)	4-1/2 (114)	4.7 (120)		5 27)																																		
Maximum embedment ^{1,2}	hef,max	in. (mm)	7- ⁻ (19		8.9 (225)		0 54)	12-1/2 (318)		12.6 (320)	15 (381)	15.4 (390)	17-1/2 (445)	19.8 (505)	20 (508)	22-1/2 (572)	23.5 (600)	2 (63																																			
Minimum concrete member thickness	hmin	in. (mm)			lef + 1-1/ (h _{ef} + 30								hef +	- 2d₀	-																																						
Min. spacing distance	Smin	in. (mm)		7/8 8)	2 (50)		2-1/2 (62)				3 (76)																										3-5/8 (92)	3.9 (100)	4-1/4 (108)	4.9 (125)	4-3/4 (121)	5-1/4 (133)	5.9 (150)	5- (14	7/8 19)								
Min. edge distance (Up to 100% T _{max})	Cmin	in. (mm)	1-{ (4	5/8 1)	1.7 (43)	1-: (4	3/4 4)		2 (51)																2-3/8 (60)	2-3/8 (60)	2-1/2 (64)	2.7 (70)	2-3/4 (70)	3 (75)	3 (75)	3- ⁻ (8																					
Maximum Torque ³	Tmax	ft-lbs (N-m)		5 ^[4] O)	-	-	30 (41)		44 (60)												66 (90)	66 (90)	96 (130)	-	147 (199)	185 (251)	-	22 (30	· ·																								
Min. edge distance, reduced $^{\rm 5.6}$ (45% $T_{\rm max})$	Cmin,red	in (mm)		-	-		_	1-3 (4		1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)	2-3 (7																																			

1. Embedment range qualified for use with the anchor design provisions of ACI 318 (-19 and -14) Ch. 17 or ACI 318-11 Appendix D as applicable, ICC-ES AC308, and ESR-4027.

2. For rebar development lengths with embedments up to 60d, see the table for Installation Parameters for Common Post-installed Reinforcing Bar Connections.

3. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.


4. For ASTM A36/F1554 Grade 36 carbon steel threaded rods with 3/8-inch-diameter, Tmax = 11 ft.-lbs.

s

5. For installations below the minimum edge distance, cmin, down to the reduced minimum edge distance, cmin,red, the reduced maximum toque is 0.45*Tmax.

6. For installations below the minimum edge distance, cmin, down to the reduced minimum edge distance, cmin,red, the minimum anchor spacing, smin is 5da.

Detail of Steel Hardware Elements used with Injection Adhesive System

Nomenclature

	olataro
da (d)	= Diameter of anchor
do (dbit)	= Diameter of drilled hole
h	= Base material thickness
h _{nom} (h _{ef})	 Embedment depth
S	= Spacing of anchors
С	= Edge distance
Tmax	= Maximum torque

Steel Description (General)	Steel Specification	Nominal Anchor Size	Minimum Ultimate Strength fu psi (MPa)	Minimum Yield Strength fy psi (MPa)
	ASTM A36 or F1554, Grade 36		58,000 (400)	36,000 (250)
	ASTM F1554 Grade 55	3/8" through 1-1/4"	75,000 (517)	55,000 (380)
Carbon Rod	ASTM A193 Grade B7 or ASTM F1554 Grade 105		125,000 (860)	105,000 (724)
	ASTM A449	3/8" through 1"	120,000 (828)	92,000 (635)
	AS1M A449	1-1/4"	105,000 (720)	81,000 (560)
	ASTM F568M Class 5.8	3/4" through 1-1/4"	72,500 (500)	58,000 (400)
	ASTM F593 CW1	3/8" through 5/8"	100,000 (690)	65,000 (450)
Stainless Rod (Alloy 304 / 316)	ASTM F593 CW2	3/4" through 1-1/4"	85,000 (590)	45,000 (310)
	ASTM A193/A193M Grade B8/B8M2, Class 2B	3/8" through 1-1/4"	95,000 (655)	75,000 (515)
	ASTM A615, A767 Grade 75	#3 through #10	100,000 (690)	75,000 (517)
Dainforcing Dar	ASTM A615, A767, A996 Grade 60	#2 through #10	90,000 (620)	60,000 (414)
Reinforcing Bar	ASTM A706, A767 Grade 60	#3 through #10 -	80,000 (550)	60,000 (414)
	ASTM A615 Grade 40	#3 through #6	60,000 (415)	40,000 (275)
Metric Reinforcing Bar (CA)	CAN/CSA G30.18, Grade 400	10M through 30M	78,300 (540)	58,000 (400)

ADHESIVES

STRENGTH DESIGN INFORMATION

Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete

	Design Information	Symbol	Units			Nominal	Rod Diamete	er' (inch)				
	Design information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4		
Threaded rod	nominal outside diameter	d	inch	0.375	0.500	0.625	0.750	0.875	1.000	1.250		
Threaded rod	effective cross-sectional area	Ase	(mm) inch ² (mm ²)	(9.5) 0.0775 (50)	(12.7) 0.1419 (92)	(15.9) 0.2260 (146)	(19.1) 0.3345 (216)	(22.2) 0.4617 (298)	(25.4) 0.6057 (391)	(31.8) 0.9691 (625)		
	Nominal strength as governed by	Nsa	lbf (kN)	4,495 (20.0)	8,230 (36.6)	13,110 (58.3)	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,210 (250.0)		
ASTM A36 and	steel strength (for a single anchor)	V _{sa}	lbf (kN)	2,695 (12.0)	4,940 (22.0)	7,860	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,725 (150.0)		
ASTM F1554 Grade 36	Reduction factor for seismic shear	ØV,seis	-	(12.0)	(22.0)	(00.0)	0.60	(71.4)	(00.0)	(100.0)		
	Strength reduction factor for tension ² Strength reduction factor for shear ²	φ	-				0.75 0.65					
		φ	- Ibf	5,810	10,640	16,950	25,085	34,625	45,425	72,680		
	Nominal strength as governed by steel strength(for a single anchor)	Nsa	(kN) Ibf	(25.9) 3.485	(47.3)	(75.4)	(111.6)	(154.0)	(202.0)	(323.3) 43.610		
ASTM F1554 Grade 55		Vsa	(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.2)	(194.0)		
Glade 55	Reduction factor for seismic shear	OlV,seis	-				0.60					
	Strength reduction factor for tension ² Strength reduction factor for shear ²	ϕ ϕ	-				0.75 0.65					
		φ Nsa	lbf (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)		
ASTM A193 Grade B7	Nominal strength as governed by steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.1)	72,680 (323.3)		
ASTM F1554			-	0.60								
Grade 105	Strength reduction factor for tension ²	φ	-	0.75								
	Strength reduction factor for shear ²	φ	-	0.65 9,300 17,025 27,120 40,140 55,905 72,685 101,755								
	Nominal strength as governed by steel strength	N _{sa}	lbf (kN)	(41.4)	(75.7)	(120.6)	(178.5)	(248.7)	(323.3)	(452.6)		
ASTM A449	governed by steel strength (for a single anchor)	Vsa	lbf (kN)	5,580 (24.8)	10,215 (45.4)	16,270 (72.4)	24,085 (107.1)	33,540 (149.2)	43,610 (194.0)	61,050 (271.6)		
	Reduction factor for seismic shear	<i>OC</i> V,seis	-	0.60								
	Strength reduction factor for tension ²	φ	-				0.75					
	Strength reduction factor for shear ²	φ	-	E 600	10.000	16.005	0.65	00 A7E	42.015	70.000		
	Nominal strength as governed by	N _{sa}	lbf (kN)	5,620 (25.0)	10,290 (45.8)	16,385 (72.9)	24,250 (107.9)	33,475 (148.9)	43,915 (195.4)	70,260 (312.5)		
ASTM F568M	steel strength (for a single anchor)	Vsa	lbf	3,370	6,175	9,830	14,550	20,085	26,350	42,155		
Class 5.8	Deduction factor for aciemic cheer		(kN)	(15.0)	(27.5)	(43.7)	<u>(64.7)</u> 0.60	(89.3)	(117.2)	(187.5)		
	Reduction factor for seismic shear Strength reduction factor for tension ²	OV,seis Ø	-				0.65					
	Strength reduction factor for shear ²	ϕ	-				0.60					
		Nsa	lbf (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,370 (366.4)		
ASTM F593 CW Stainless	Nominal strength as governed by steel strength (for a single anchor)	Vsa	lbf (kN)	4,650	8,515	13,560	17,060	23,545	30,890	49,425		
(Types 304	Reduction factor for seismic shear	QV,seis	(KIN) -	(20.7)	(37.9)	(60.3)	(75.9) 0.60	(104.7)	(137.4)	(219.8)		
and 316)	Strength reduction factor for tension ²	φ	-				0.65					
Strength reduction factor for she		ϕ	-				0.60					
ASTM A193 Grade B8/	Nominal strength as governed by	N _{sa}	lbf (kN)	7,365 (32.8)	13,480 (60.0)	21,470 (95.5)	31,775 (141.3)	43,860 (195.1)	57,545 (256.0)	92,065 (409.5)		
B8M2, Class 2B	steel strength (for a single anchor)	V _{sa}	lbf (kN)	4,420 (19.7)	8,085 (36.0)	12,880 (57.3)	19,065 (84.8)	26,315 (117.1)	34,525 (153.6)	55,240 (245.7)		
Stainless	Reduction factor for seismic shear	<i>Ol</i> V,seis	-	(10.1)	100.0/	(01.0)	0.60		(100.0)			
(Types 304	Strength reduction factor for tension ²	ϕ	-				0.75					
and 316)	Strength reduction factor for shear ²	ϕ	-				0.65					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

For Si: 1 inch = 25,4 mm, 1 bit = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbt.
1. Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b) or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 bor ACI 318-11 Eq. (D-2) and Eq. (D-2), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.
2. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 9.5 or ACI 318-11 7.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete

	61# 0A
CODE LISTED ICC-ES ESR-4027	(\mathbf{O})

	B					Nomina	al Reinforcin	ıg Bar Size	(Rebar) ¹				
	Design Information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10		
Rebar nomi	nal outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)		
Rebar effect	tive cross-sectional area	Ase	inch² (mm²)	0.110 (71.0)	0.200 (129.0)	0.310 (200.0)	0.440 (283.9)	0.600 (387.1)	0.790 (509.7)	1.000 (645.2)	1.270 (819.4)		
	Nominal strength as governed by	Nsa	lbf (kN)	11,000 (48.9)	20,000 (89.0)	31,000 (137.9)	44,000 (195.7)	60,000 (266.9)	79,000 (351.4)	100,000 (444.8)	127,000 (564.9)		
ASTM A615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	36,000 (160.1)	47,400 (210.8)	60,000 (266.9)	76,200 (338.9)		
Grade 75	Reduction factor for seismic shear	<i>O</i> ∕v,seis	-		0.65								
	Strength reduction factor for tension ³	ϕ	-				0.	65					
	Strength reduction factor for shear ³	ϕ	-				0.	60					
	Nominal strength as governed by	N _{sa}	lbf (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)	71,100 (316.3)	90,000 (400.3)	114,300 (508.4)		
ASTM A615, A767, A996 Grade 60	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)		
Grade 60	Reduction factor for seismic shear	<i>O</i> ℓv,seis	-	0.65									
	Strength reduction factor for tension ²	ϕ	-	0.65									
	Strength reduction factor for shear ²	φ	-				0.	60					
	Nominal strength as governed by	Nsa	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)		
ASTM A706	steel strength (for a single anchor)	Vsa	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)		
Grade 60	Reduction factor for seismic shear	<i>O</i> ℓV,seis					0.	65					
	Strength reduction factor for tension ²	ϕ	-				0.	75					
	Strength reduction factor for shear ²	ϕ	-			-	0.	65					
	Nominal strength as governed by	Nsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	In a	ccordance v	vith ASTM A	615.		
ASTM A 615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	In accordance with ASTM A615, Grade 40 bars are furnished only in size No. 3 through No. 6					
Grade 40	Reduction factor for seismic shear	<i>O</i> ∕v,seis	-	0.65									
	Strength reduction factor for tension ²	ϕ	-				0.	65					
	Strength reduction factor for shear ²	ϕ	-				0.	60					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b) or ACI 318-19 Eq. 17.6.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of \u03c6 applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-14 & -19) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14, 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \u03c6 must be determined in accordance with ACI 318 D.4.4.

	Desire before align	Complex	Unite		Nominal F	Reinforcing Bar Siz	e (Rebar) ¹		
	Design Information	Symbol	Units	10M	15M	20M	25M	30M	
Reinforcing	Reinforcing bar O.D. Reinforcing bar effective cross-sectional area		mm (in.)	11.4 (0.445)	16.0 (0.630)	19.5 (0.768)	25.2 (0.992)	29.9 (1.177)	
Reinforcing			mm² (inch²)	100.3 (0.155)	201.1 (0.312)	298.6 (0.463	498.8 (0.773)	702.2 (1.088)	
	Nominal strength as governed by steel strength (for a single anchor)	Nsa	kN (lb)	54.0 (12,175)	108.5 (24,410)	161.5 (36,255)	270.0 (60,550)	380.0 (85,240)	
CAN/CSA G30.18		Vsa	kN (lb)	32.5 (7,305)	65.0 (14,645)	97.0 (21,755)	161.5 (36,330)	227.5 (51,145)	
Grade 400	Reduction factor for seismic shear	ØV,seis	-			0.65			
	Strength reduction factor for tension ²	ϕ	-			0.65			
	Strength reduction factor for shear ²	ϕ	-			0.60			

1. Values provided for common bar material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b) or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

Concrete Breakout Design Information for Threaded Rod and in Holes Drilled with a Hammer Drill and Carbide Bit¹

CODE LISTED

ICC-ES ESR-4027

Decise Information	Cumhal	Units	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4		
Effectiveness factor for cracked concrete	k _{c,cr}	- (SI)									
Effectiveness factor for uncracked concrete	k _{c,uncr}	- (SI)			_			_			
Minimum embedment	hef,min	inch (mm)							5 (127)		
Maximum embedment	hef,max	inch (mm)									
Minimum anchor spacing	Smin	inch (mm)							5-7/8 (150)		
Minimum edge distance ²	Cmin	inch (mm)							3-1/4 (80)		
Minimum edge distance, reduced ² (45% T _{max})	Cmin,red	inch (mm)	-	-					2-3/4 (70)		
Minimum member thickness	h _{min}	inch (mm)				h _{ef} + 2d _o v	where d₀ is hole	e diameter;			
Critical edge distance—splitting (for uncracked concrete only) ³	Cac	inch I mm	$c_{ac} = h_{ef} \cdot (\frac{\tau_{uncr}}{1160})^{0.4} \cdot [3.1-0.7 \frac{h}{h_{ef}}] c_{ac} = h_{ef} \cdot (\frac{\tau_{uncr}}{8})^{0.4} \cdot [3.1-0.7 \frac{h}{h_{ef}}]$								
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	ϕ	-	0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	φ	-				0.70					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. $\mathcal{T}_{k,uner}$ need not be taken as greater than: $\mathcal{T}_{k,uner} = \frac{k_{uner} \cdot \sqrt{h_{ef} \cdot f'_C}}{\pi \cdot d}$ and $\frac{h}{h_{ef}}$ need not be taken as larger than 2.4.

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Threaded Rod in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Infor	mation	Symbol	Units			Nominal	Rod Diame	ter (inch)		
Design mon	dment dment Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete Characteristic bond strength in uncracked concrete	Symbol	UIIIIS	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Minimum emb	= (50°C) Maximum in cracked concrete Nervice Temperature; Characteristic bond strengti = (80°C) Maximum in uncracked concrete n Service Temperature; Characteristic bond strengti = (72°C) Maximum in cracked concrete n Service Temperature; Characteristic bond strengti (120°C) Maximum in cracked concrete n Service Temperature? Characteristic bond strengti erature Range C (100°C) Maximum n Service Temperature; Characteristic bond strengti (100°C) Maximum Service Temperature; (160°C) Maximum Characteristic bond strengti n Service Temperature; Characteristic bond strengti (160°C) Maximum Service Temperature; 0 Service Temperature; Characteristic bond strengti 0 Service Temperature; Characteristic bond strengti 0 Service Temperature; Anchor Category 0 Strength reduction factor Strength reduction factor -saturated concrete Strength reduction factor	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	5 (127)
Maximum eml	pedment	h _{ef,max}	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	25 (635)
Temperature Range A 122°F (50°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ extsf{k,cr}}$	psi (N/mm²)	1,041 (7.2)	1,041 (7.2)	1,111 (7.7)	1,219 (8.4)	1,212 (8.4)	1,206 (8.3)	1,146 (7.9)
Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2,601 (17.9)	2,415 (16.7)	2,262 (15.6)	2,142 (14.8)	2,054 (14.2)	2,000 (13.8)	1,990 (13.7)
Temperature Range B 161°F (72°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	psi (N/mm²)	905 (6.2)	906 (6.2)	966 (6.7)	1060 (7.3)	1054 (7.3)	1049 (7.2)	997 (6.9)
Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2,263 (15.6)	2,101 (14.5)	1,968 (13.6)	1,863 (12.8)	1,787 (12.3)	1,740 (12.0)	1732 (11.9)
Temperature Range C 212°F (100°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	psi (N/mm²)	652 (4.5)	653 (4.5)	696 (4.8)	764 (5.3)	760 (5.2)	756 (5.2)	719 (5.0)
Long-Term Service Temperature; 320°F (160°C) Maximum Short-Term Service Temperature ²³	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1631 (11.2)	1514 (10.4)	1418 (9.8)	1343 (9.3)	1288 (8.9)	1254 (8.6)	1248 (8.6)
Dry concrata	Anchor Category	-	-				1			
Dry concrete	Strength reduction factor	$\phi_{ m d}$	-				0.65			
Water saturated concrete	Anchor Category	-	-				2			
water-saturated concrete	Strength reduction factor	$\phi_{ m ws}$	-				0.55			
Water-filled holes	Anchor Category	-	-				3			
Walti-IIIitu IIVito	Strength reduction factor	$\phi_{\scriptscriptstyle \mathrm{wf}}$	-				0.45			
Reduction factor for s	eismic tension [®]	$lpha_{ m N,seis}$	-				0.95			

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)¹¹⁰ [For SI: (f'c / 17.2)¹¹⁰].

2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

 Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C.

 \mathbf{O}

CODE LISTED

ICC-ES ESR-4027

CODE LISTED ICC-ES ESR-4027

Concrete Breakout Design Information for Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit

DEWALI

ANCHORS & FASTENERS

Design Information	Symbol	Units			Non	ninal Bar Size	e (US Custom	ary)			
Design mormation	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10	
Effectiveness factor for cracked concrete	k _{c,cr}	- (SI)	17 (7.1)								
Effectiveness factor for uncracked concrete	k _{c,uncr}	- (SI)				2 (10	4).0)				
Minimum embedment	h _{ef,min}	inch (mm)	2-3/8 (60)	(60) (70) (79) (89) (89) (102) (114) (127)							
Maximum embedment	hef,max	inch (mm)									
Minimum anchor spacing	Smin	inch (mm)	1-7/8 2-1/2 3 3-5/8 4-1/4 4-3/4 5-1/4 (48) (64) (79) (92) (105) (120) (133)						5-7/8 (150)		
Minimum edge distance ²	Cmin	inch (mm)	1-5/8 (41)	1-3/4 (44)	2 (51)	2-3/8 (60)	2-1/2 (64)	2-3/4 (70)	3 (75)	3-1/4 (80)	
Minimum edge distance, reduced ² (45% T _{max})	Cmin,red	inch (mm)	-	-	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	2-3/4 (70)	2-3/4 (70)	
Minimum member thickness	hmin	inch (mm)	h _{ef} + (h _{ef} -			hef +	- 2d₀ where d	₀ is hole diam	eter;		
Critical edge distance—splitting (for uncracked concrete only) ³	Cac	inch I mm	$n \qquad \qquad c_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{1160}\right)^{0.4} \cdot [3.1 - 0.7 \frac{h}{h_{ef}}] c_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{8}\right)^{0.4} \cdot [3.1 - 0.7 \frac{h}{h_{ef}}]$								
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	φ	-	0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	ϕ	-				0.	70				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. $\tau_{k,uner}$ need not be taken as greater than: $\tau_{k,uner} = \frac{k_{uner} \cdot \sqrt{h_{ef} \cdot f'_{C}}}{\sqrt{h_{ef} \cdot f'_{C}}}$ and $\frac{h}{h}$ need not be taken as larger than 2.4. hef

π•d

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit

mation	Cumhal	Unite			Nomin	al Bar Size	e (US Cust	omary)		
mauon	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
pedment	h _{ef,min}	inch (mm)	2-3/8 (60.0)	2-3/4 (70.0)	3-1/8 (79.0)	3-1/2 (89.0)	3-1/2 (89.0)	4 (102.0)	4-1/2 (114.0)	5 (127.0)
pedment	h _{ef,max}	inch (mm)	7-1/2 (191.0)	10 (254.0)	12-1/2 (318.0)	15 (381.0)	17-1/2 (445.0)	20 (508.0)	22-1/2 (572.0)	25 (635.0)
Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	psi (N/mm²)	1,088 (7.5)	1,053 (7.3)	1,128 (7.8)	1,169 (8.1)	1,174 (8.1)	1,156 (8.0)	1,141 (7.9)	1,164 (8.0)
Characteristic bond strength in uncracked concrete	$ au_{ ext{k,uncr}}$	psi (N/mm²)	2,200 (15.2)	2,101 (14.5)	2,028 (14.0)	1,969 (13.6)	1,921 (13.2)	1,881 (13.0)	1,846 (12.7)	1,815 (12.5)
Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	psi (N/mm²)	947 (6.5)	916 (6.3)	982 (6.8)	1,017 (7.0)	1,021 (7.0)	1,006 (6.9)	993 (6.8)	1,012 (7.0)
Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1,914 (13.2)	1,828 (12.6)	1,764 (12.2)	1,713 (11.8)	1,672 (11.5)	1,636 (11.3)	1,616 (11.1)	1,579 (10.9)
Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	psi (N/mm²)	682 (4.7)	660 (4.6)	707 (4.9)	733 (5.1)	736 (5.1)	725 (5.0)	715 (4.9)	730 (5.0)
Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1,379 (9.5)	1,317 (9.1)	1,271 (8.8)	1,235 (8.5)	1,205 (8.3)	1,179 (8.1)	1,157 (8.0)	1,138 (7.8)
Anchor Category	-	-					1			
Strength reduction factor	$\phi_{ m d}$	-				0.	65			
Anchor Category	-	-								
Strength reduction factor		-						-		
Anchor Category	-	-								
Strength reduction factor	$\phi_{ m wf}$	-				0.	45			
eismic tension [®]	$lpha_{ m N,seis}$	-	0.	95			1.	00		
122°F (50°C) Maximum in cracked concrete .ong-Term Service Temperature; Characteristic bond strength 176°F (80°C) Maximum in uncracked concrete Short-Term Service Temperature? Characteristic bond strength 161°F (72°C) Maximum in cracked concrete Characteristic bond strength in uncracked concrete Short-Term Service Temperature; Characteristic bond strength 248°F (120°C) Maximum Characteristic bond strength Short-Term Service Temperature? Characteristic bond strength 212°F (100°C) Maximum Long- Characteristic bond strength Short-Term Service Temperature; 220°F (160°C) Maximum Long- Characteristic bond strength Service Temperature; 320°F (160°C) Maximum Long- Characteristic bond strength in uncracked concrete Characteristic bond strength Dry concrete Anchor Category Strength reduction factor Anchor Category Water-saturated concrete Anchor Category Water-filled holes Anchor Category		Dedment her,min bedment her,min bedment her,max Characteristic bond strength in cracked concrete Tk,cr Characteristic bond strength in uncracked concrete Tk,uner Strength reduction factor Ød Anchor Category - Strength reduction factor Øws Anchor Category - Strength reduction factor Øws Anchor Category - Strength reduction factor Øws	pedmenther,mininch (mm)bedmenther,mininch (mm)bedmenther,maxinch (mm)Characteristic bond strength in cracked concrete $\mathcal{T}_{k,cr}$ psi (N/mm²)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,uncr}$ psi (N/mm²)Anchor CategoryStrength reduction factor ϕ_{ws} -Anchor CategoryAnchor CategoryAnchor CategoryStrength reduction factor ϕ_{wr} -Strength reduction factor ϕ_{wr} -Characteristic function factor ϕ_{wr} -	Pedment $h_{ef,min}$ inch (mm)2-3/8 (60.0)pedment $h_{ef,max}$ inch (mm)2-3/8 (60.0)pedment $h_{ef,max}$ inch (mm)7-1/2 (191.0)Characteristic bond strength in cracked concrete $\mathcal{T}_{k,cr}$ psi (N/mm²)7.5/2 (15.2)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,uner}$ psi (N/mm²)2,200 (15.2)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,uner}$ psi (N/mm²)2,200 (15.2)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,uner}$ psi (N/mm²)947 (6.5)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,uner}$ psi (N/mm²)1,914 (13.2)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,uner}$ psi (N/mm²)682 (4.7)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,uner}$ psi (N/m²)6,95)Anchor CategoryStrength reduction factor $\boldsymbol{\phi}_{vs}$ Anchor CategoryAnchor CategoryAnchor CategoryAnchor CategoryAnchor CategoryAnchor CategoryAnchor CategoryAnchor CategoryAnchor Category-<	Image: space of the system of the	mation Symbol Units #3 #4 #5 pedment $h_{et,min}$ inch (mm) 2-3/8 2-3/4 3-1/8 pedment $h_{et,max}$ (mm) 2-3/8 (2-3/8) 2-3/4 3-1/8 pedment $h_{et,max}$ inch (mm) 7-1/2 10 12-1/2 (254.0) (318.0) Characteristic bond strength in cracked concrete $\mathcal{T}_{k,crr}$ psi (N/mm ²) 1,088 1,053 1,128 Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,unor}$ psi (N/mm ²) 2,200 2,101 2,028 Characteristic bond strength in cracked concrete $\mathcal{T}_{k,unor}$ psi (N/mm ²) 947 916 982 Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,unor}$ psi (N/mm ²) 1,914 1,828 1,764 Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,unor}$ psi (N/mm ²) 1,317 1,271 Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,unor}$ psi (N/mm ²) 682 660 707 Characteristic	mation Symbol Units #3 #4 #5 #6 pedment $h_{et,min}$ inch (mm) 2-3/8 (60.0) 2-3/4 (70.0) 3-1/2 (79.0) 3-1/2 (89.0) pedment $h_{et,max}$ inch (mm) 7-1/2 (191.0) 10 12-1/2 15 pedment $h_{et,max}$ inch (mm) 7-1/2 (191.0) 10 12-1/2 15 Characteristic bond strength in cracked concrete $\mathcal{T}_{k,orr}$ psi (N/mm) 1,088 1,053 1,128 1,169 Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,uner}$ psi (N/mm) 16.5) 2,200 2,101 2,028 1,969 Characteristic bond strength in cracked concrete $\mathcal{T}_{k,unr}$ psi (N/mm) 947 916 982 1,017 Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,unr}$ psi (N/mm) 1,914 1,828 1,764 1,713 Characteristic bond strength in uncracked concrete $\mathcal{T}_{k,unr}$ psi (N/mm) 682 660 707 733 Characteristic bond strength in uncrac	mation Symbol Units #3 #4 #5 #6 #7 pedment $h_{et,min}$ inch (mm) 2-3/8 2-3/4 3-1/8 3-1/2 3-1/2 (89.0) (31.0) (31	Pedment $h_{et,min}$ inch (mm)2-3/8 (60.0)2-3/4 (70.0)3-1/8 (79.0)3-1/2 (89.0)3-1/2 (89.0)4 (102.0)pedment $h_{et,max}$ inch (mm)7-1/2 (191.0)10 (254.0)12-1/2 (318.0)15 (381.0)17-1/2 (45.0)20 (508.0)Characteristic bond strength in cracked concrete $\mathcal{T}_{k.cr}$ psi (N/mm²)1,088 (7.5)1,053 (7.3)1,128 (7.3)1,169 (18.0)1,174 (18.0)1,156 (18.0)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k.uner}$ psi (N/mm²)2,200 (15.2)2,101 (14.5)2,028 (14.5)1,969 (14.0)1,921 (13.6)1,881 (13.2)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k.uner}$ psi (N/mm²)947 (6.5)916 (6.3)982 (6.3)1,017 (14.0)1,021 (13.6)1,006 (13.2)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k.uner}$ psi (N/mm²)947 (13.2)916 (12.6)982 (12.2)1,017 (11.8)1,021 (11.8)1,006 (15.1)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k.uner}$ psi (N/mm²)947 (13.2)916 (12.6)982 (12.2)1,173 (11.8)1,672 (15.1)1,636 (15.1)Characteristic bond strength in uncracked concrete $\mathcal{T}_{k.uner}$ psi (N/mm²)947 (9.5)916 (4.6)982 (4.9)1,11.8)1,152 (15.1)1,650 (5.1)Characteristic bond stren	symbol Units #3 #4 #5 #6 #7 #8 #9 pedment $h_{et,min}$ $inch$ (mm) 2-3/8 2-3/4 3-1/8 3-1/2 3-1/2 4 4-1/2 pedment $h_{et,max}$ inch (mm) 7-1/2 10 12-1/2 15 17-1/2 20 22-1/2 Characteristic bond strength in cracked concrete $\pi_{k,cr}$ psi 1,088 1,053 1,128 1,169 1,174 1,156 1,141 Characteristic bond strength in cracked concrete $\pi_{k,urcr}$ psi 2,200 2,101 2,028 1,969 1,921 1,881 1,846 Characteristic bond strength in cracked concrete $\pi_{k,urcr}$ psi 2,200 2,101 2,028 1,969 1,921 1,881 1,846 Characteristic bond strength in cracked concrete $\pi_{k,urcr}$ psi (15.2) (14.0) (13.2) (13.0) (6.8) (7.0) (7.0) (6.9) (6.8) Characteristic bond strength in cracked concrete <t< td=""></t<>

or SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (t'c / 2,500)¹⁰ [For SI: (t'c / 17.2)^{0.19}].

2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

3. Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C

Concrete Breakout Design Information for Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Information	Symbol	Units	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Design information	Symbol	Units	10M	15M	20M	25M	30M		
Effectiveness factor for cracked concrete	k _{c,cr}	SI (-)		(17)					
Effectiveness factor for uncracked concrete	K _{c,uncr}	SI (-)							
Minimum embedment	h _{ef,min}	mm (in.)					120 (4.7)		
Maximum embedment	hef,max	mm (in.)					600 (23.5)		
Minimum anchor spacing	Smin	mm (in.)					150 (5-7/8)		
Minimum edge distance ²	Cmin	mm (in.)					85 (3-1/8)		
Minimum edge distance, reduced ² (45% T _{max})	Cmin,red	mm (in.)	-				70 (2-3/4)		
Minimum member thickness	hmin	mm (in.)			hef + 2	d₀ where d₀ is hole di	ameter;		
Critical edge distance—splitting (for uncracked concrete only) ³	Cac	inch I mm							
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	ϕ	-	0.65						
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	ϕ	-			0.70				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. $\tau_{k,uncr}$ need not be taken as greater than: $\tau_{k,uncr} \cdot \sqrt{h_{ef} \cdot f'_{C}}$ and $\frac{h}{h_{er}}$ need not be taken as larger than 2.4. h_{ef}

π•d 4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carhide Rit¹

Bond Strength Design In with a Hammer Drill and		Reinford	cing Bar	s in Holes	Drilled		CODE LI ICC-ES ESI	STED R-4027			
Destan Lefe			Nominal Bar Size (CA)								
Design Infor	mation	Symbol	Units	10M	15M	20M	25M	30M			
Minimum em	bedment	h _{ef,min}	mm (in.)	70 (2.8)	80 (3.1)	90 (3.5)	100 (3.9)	120 (4.7)			
Maximum em	bedment	h _{ef,max}	mm (in.)	225 (8.9)	320 (12.6)	390 (15.4)	505 (19.8)	600 (23.5)			
Temperature Range A 122°F (50°C) Maximum Long-Term Service Temperature;	Characteristic bond strength in cracked concrete	$ au_{ ext{k,cr}}$	N/mm² (psi)	7.2 (1,041)	7.5 (1,087)	7.2 (1,045)	6.7 (965)	6.3 (915)			
176°F (80°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{ extsf{k}, extsf{uncr}}$	N/mm² (psi)	14.5 (2,110)	13.2 (1,916)	12.5 (1,814)	11.7 (1,690)	11.1 (1,612)			
Temperature Range B 161°F (72°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ ext{k,cr}}$	N/mm² (psi)	6.2 (906)	6.5 (946)	6.3 (909)	5.8 (840)	5.5 (796)			
Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{ extsf{k}, extsf{uncr}}$	N/mm² (psi)	12.7 (1,836)	11.5 (1,667)	10.9 (1,578)	10.1 (1,470)	9.7 (1,402)			
Temperature Range C 212°F (100°C) Maximum Long- Term Service Temperature; 320°F	Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	N/mm² (psi)	5.6 (806)	5.8 (841)	5.6 (809)	5.2 (747)	4.9 (708)			
(160°C) Maximum Short-Term Service Temperature ^{2,3}	Characteristic bond strength in uncracked concrete	auk,uncr	N/mm² (psi)	9.1 (1,633)	8.3 (1,201)	7.8 (1,137)	7.3 (1,059)	7.0 (1,010)			
Dry concrete	Anchor Category	-	-			1					
Dry concrete	Strength reduction factor	$\phi_{ m d}$	-			0.65					
Water esturated esperate	Anchor Category	-	-			2					
Water-saturated concrete Strength reduction factor	$\phi_{ m ws}$	-			0.55						
Water-filled holes	Anchor Category	-	-			3					
Waler-IIIIeu IIUIes	Strength reduction factor	$\phi_{ m wf}$	-			0.45					
Reduction factor for a	seismic tension [®]	$lpha_{N,seis}$	-	0.9	95		1.00				

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength fc = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa) and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.00} [For SI: (f'c / 17.2)^{0.00}].

2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C. 3.

DESIGN STRENGTH TABLES (SD)

ANCHORS & FASTENERS

Tension and Shear Design Strength for Threaded Rod Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	$\phi_{\rm Ncb} \\ or \phi_{\rm Na} \\ Tension \\ (lbs.)$	$\phi_{V_{CD}}$ or $\phi_{V_{CD}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	φ _{Ngb} or φ _{Na} Tension (lbs.)	$\phi_{v_{CP}}$ or $\phi_{v_{CP}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{V_{CP}}$ or $\phi_{V_{CP}}$ Shear (lbs.)	φ _{Nçb} or φ _{Na} Tension (Ibs.)	$\phi_{V_{CD}}$ or $\phi_{V_{CD}}$ Shear (lbs.)
	2-3/8	2,855	2,570	3,125	2,920	3,610	3,575	4,425	4,745	5,105	5,500
0./0	3	4,055	4,010	4,440	4,555	5,125	5,570	6,280	7,400	6,710	8,775
3/8	4-1/2	7,445	7,935	8,155	9,015	9,395	11,015	9,785	13,710	10,070	16,015
	7-1/2	14,940	18,190	15,215	20,070	15,655	23,445	16,305	29,180	16,780	34,085
	2-3/4	3,555	3,305	3,895	3,755	4,500	4,590	5,510	6,095	6,365	7,455
1/0	4	6,240	6,700	6,835	7,610	7,895	9,310	9,665	12,365	11,080	15,080
1/2	6	11,465	13,235	12,560	15,035	14,500	18,390	16,150	23,515	16,620	27,470
	10	24,660	31,215	25,110	34,445	25,845	40,235	26,915	50,085	27,700	58,500
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,720	6,675	7,600	7,710	9,295
E /0	5	8,720	9,985	9,555	11,345	11,030	13,875	13,510	18,430	15,600	22,540
5/8	7-1/2	16,020	19,725	17,550	22,410	20,265	27,410	23,635	35,695	24,325	41,695
	12-1/2	34,470	46,550	36,750	52,320	37,825	61,110	39,390	76,070	40,540	87,310
	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,910	9,255	9,135	11,320
0/4	6	11,465	13,595	12,560	15,445	14,500	18,895	17,760	25,095	20,505	30,695
3/4	9	21,060	26,855	23,070	30,510	26,640	37,320	32,225	49,325	33,165	57,615
	15	45,315	63,370	49,640	72,000	51,575	84,420	53,710	105,080	55,280	119,060
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,910	9,100	9,135	11,130
7/0	7	14,445	16,605	15,825	18,865	18,275	23,075	22,380	30,650	25,840	37,485
7/8	10-1/2	26,540	32,800	29,070	37,265	33,570	45,580	41,115	60,540	43,290	71,360
	17-1/2	57,100	77,405	62,550	87,940	67,315	104,575	70,100	130,170	72,150	152,045
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,665	11,280	11,160	13,800
4	8	17,650	19,750	19,335	22,435	22,325	27,440	27,340	36,450	31,570	44,580
1	12	32,425	39,005	35,520	44,315	41,015	54,200	50,230	71,990	55,055	86,235
	20	69,765	92,055	76,425	104,585	85,610	126,375	89,155	157,310	91,755	183,745
	5	8,720	8,170	9,555	9,285	11,030	11,355	13,510	15,085	15,600	18,450
4 4 / 4	10	24,665	26,380	27,020	29,975	31,200	36,660	38,210	48,690	44,125	59,555
1-1/4	15	45,315	52,110	49,640	59,200	57,320	72,410	70,200	96,175	81,060	117,630
	25	97,500	122,990	106,805	139,730	123,330	170,905	138,610	219,325	142,655	256,185

🔲 - Concrete Breakout Strength 📃 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-19 17.5.2.2 or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and

information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-4027. 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

Tension and Shear Design Strength in Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

					Minim	um Concrete C	compressive St	trength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	,000 psi	f'c = 4,	.000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	ϕ_{Ncb} or ϕ_{Na} Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	$\phi_{ m Ncb}$ or $\phi_{ m Na}$ Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{ m Vcb}$ or $\phi_{ m Vcp}$ Shear (lbs.)
	2-3/8	1,895	1,835	1,930	2,075	1,985	2,135	2,065	2,225	2,125	2,290
3/8	3	2,390	2,865	2,435	3,255	2,505	3,980	2,610	5,285	2,685	5,785
3/0	4-1/2	3,585	5,665	3,655	6,440	3,760	7,865	3,915	8,435	4,030	8,680
	7-1/2	5,980	12,875	6,090	13,115	6,265	13,495	6,525	14,055	6,715	14,465
	2-3/4	2,520	2,360	2,760	2,680	3,065	3,280	3,190	4,355	3,285	5,325
1/2	4	4,250	4,785	4,330	5,435	4,455	6,650	4,640	8,830	4,775	10,285
1/2	6	6,375	9,455	6,495	10,740	6,685	13,135	6,960	14,990	7,165	15,430
	10	10,630	22,300	10,825	23,315	11,140	23,995	11,600	24,985	11,940	25,715
	3-1/8	3,050	2,940	3,345	3,340	3,860	4,085	4,730	5,430	4,980	6,640
5/8	5	6,175	7,135	6,765	8,105	7,430	9,910	7,740	13,165	7,965	16,100
0/0	7-1/2	10,635	14,090	10,830	16,005	11,145	19,575	11,610	25,000	11,945	25,730
	12-1/2	17,725	33,250	18,050	37,370	18,575	40,010	19,345	41,670	19,910	42,885
	3-1/2	3,620	3,580	3,965	4,070	4,575	4,980	5,605	6,610	6,470	8,085
3/4	6	8,120	9,710	8,895	11,035	10,270	13,495	12,225	17,925	12,585	21,925
3/4	9	14,920	19,185	16,340	21,795	17,610	26,655	18,340	35,230	18,875	40,655
	15	28,005	45,265	28,520	51,425	29,350	60,300	30,565	65,835	31,460	67,755
	3-1/2	3,620	3,525	3,965	4,000	4,575	4,895	5,605	6,500	6,470	7,950
7/0	7	10,230	11,860	11,210	13,475	12,945	16,485	15,850	21,895	17,030	26,775
7/8	10-1/2	18,800	23,430	20,590	26,620	23,780	32,555	24,820	43,240	25,545	50,970
	17-1/2	37,900	55,290	38,595	62,815	39,720	74,695	41,365	89,095	42,570	91,695
	4	4,420	4,365	4,840	4,960	5,590	6,065	6,845	8,060	7,905	9,855
4	8	12,500	14,105	13,695	16,025	15,815	19,600	19,365	26,035	22,130	31,845
I	12	22,965	27,860	25,160	31,655	29,050	38,715	32,255	51,425	33,200	61,595
	20	49,255	65,755	50,160	74,705	51,625	90,270	53,760	112,365	55,330	119,170
	5	6,175	5,835	6,765	6,630	7,815	8,110	9,570	10,775	11,050	13,175
1-1/4	10	17,470	18,845	19,140	21,410	22,100	26,185	27,065	34,780	31,255	42,540
1-1/4	15	32,095	37,220	35,160	42,285	40,600	51,720	47,895	68,695	49,290	84,020
	25	69,060	87,850	74,475	99,810	76,650	122,075	79,820	156,660	82,150	176,940

- Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- Ca1 is greater than or equal to the critical edge distance, Cac - C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-19 17.5.2.2 or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-4027.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

- 11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength requires an additional reduction factor applied for seismic tension (auses), where seismic design is applicable.
- 12. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

36

Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	$\phi_{N_{Cb}}$ or ϕ_{Na} Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{Cb}}$ or $\phi_{v_{Cp}}$ Shear (lbs.)	$\phi_{\rm Ncb}$ or $\phi_{\rm Na}$ Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{V_{Cb}}$ or $\phi_{V_{Cp}}$ Shear (lbs.)	ϕ_{Ncb} or ϕ_{Na} Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)
	2-3/8	2,855	2,570	3,125	2,920	3,610	3,575	4,365	4,705	4,495	4,840
#3	3	4,055	4,010	4,440	4,555	5,125	5,570	5,515	7,025	5,675	8,205
#3	4-1/2	7,445	7,935	7,720	8,820	7,945	10,300	8,275	12,820	8,515	14,975
	7-1/2	12,635	17,010	12,870	18,770	13,245	21,925	13,790	27,290	14,195	30,570
	2-3/4	3,555	3,305	3,895	3,755	4,500	4,590	5,510	6,095	6,365	7,455
#4	4	6,240	6,700	6,835	7,610	7,895	9,310	9,365	12,210	9,640	14,260
#4	6	11,465	13,235	12,560	15,035	13,490	17,870	14,050	22,240	14,460	25,980
	10	21,450	29,525	21,845	32,580	22,485	38,055	23,415	47,370	24,100	51,905
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,725	6,675	7,600	7,710	9,295
щЕ	5	8,720	10,005	9,555	11,365	11,030	13,900	13,510	18,465	14,540	21,955
#5	7-1/2	16,020	19,760	17,550	22,450	20,265	27,460	21,190	34,235	21,805	39,985
	12-1/2	32,355	45,455	32,950	50,155	33,910	58,585	35,315	72,925	36,345	78,280
	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,910	9,255	9,135	11,320
#6	6	11,465	13,595	12,560	15,445	14,500	18,895	17,760	25,095	20,325	30,585
#0	9	21,060	26,855	23,070	30,510	26,640	37,320	29,625	47,690	30,490	55,705
	15	45,235	63,325	46,065	69,880	47,410	81,620	49,370	101,600	50,815	109,445
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,910	9,100	9,135	11,130
#7	7	14,445	16,605	15,825	18,865	18,275	23,075	22,380	30,650	25,840	37,485
#7	10-1/2	26,540	32,800	29,070	37,265	33,570	45,580	39,340	59,480	40,485	69,475
	17-1/2	57,100	77,405	61,170	87,160	62,960	101,810	65,565	126,730	67,475	145,335
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,665	11,280	11,160	13,800
#8	8	17,650	19,750	19,335	22,435	22,325	27,440	27,340	36,450	31,570	44,580
#0	12	32,425	39,005	35,520	44,315	41,015	54,200	50,230	71,990	51,780	84,145
	20	69,765	92,055	76,425	104,585	80,520	123,310	83,850	153,495	86,295	179,295
	4-1/2	7,445	7,110	8,155	8,080	9,420	9,880	11,535	13,125	13,320	16,055
#9	9	21,060	23,055	23,070	26,190	26,640	32,035	32,625	42,550	37,675	52,040
#9	13-1/2	38,690	45,540	42,380	51,740	48,940	63,280	59,940	84,050	64,315	99,830
	22-1/2	83,245	107,440	91,190	122,065	100,010	146,245	104,150	182,045	107,190	212,640
	5	8,720	8,160	9,555	9,270	11,030	11,335	13,510	15,060	15,600	18,420
#10	10	24,665	26,430	27,020	30,025	31,200	36,725	38,210	48,780	44,125	59,660
#10	15	45,315	52,205	49,640	59,310	57,320	72,545	70,200	96,350	78,065	116,085
	25	97,500	123,170	106,805	139,935	121,395	170,075	126,420	211,705	130,110	247,285

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-19 17.5.2.2 or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-4027.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

					Minim	um Concrete C	compressive St	rength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	,000 psi	f'c = 4,	.000 psi	f'C = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{\rm CD}}$ or $\phi_{v_{\rm CP}}$ Shear (lbs.)	φ _{Νcb} or φ _{Na} Tension (lbs.)	$\phi_{_{Vcb}}$ or $\phi_{_{Vcp}}$ Shear (lbs.)	$\phi_{\rm Ncb}$ or $\phi_{\rm Na}$ Tension (lbs.)	$\phi_{v_{\rm Cp}}$ or $\phi_{v_{\rm Cp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	φ _{νcb} or φ _{νcp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{V_{CD}}$ or $\phi_{V_{CD}}$ Shear (lbs.)
	2-3/8	1,980	1,835	2,015	2,085	2,075	2,235	2,160	2,325	2,225	2,395
#3	3	2,500	2,865	2,545	3,255	2,620	3,980	2,730	5,020	2,810	5,860
#3	4-1/2	3,750	5,665	3,820	6,300	3,930	7,355	4,090	8,815	4,210	9,070
	7-1/2	6,250	12,150	6,365	13,405	6,550	14,105	6,820	14,690	7,020	15,120
	2-3/4	2,520	2,360	2,760	2,680	3,100	3,280	3,225	4,355	3,320	5,325
#4	4	4,300	4,785	4,380	5,435	4,505	6,650	4,695	8,720	4,830	10,185
#4	6	6,450	9,455	6,570	10,740	6,760	12,765	7,040	15,165	7,245	15,610
	10	10,750	21,090	10,950	23,270	11,270	24,270	11,735	25,275	12,075	26,015
	3-1/8	3,050	2,940	3,345	3,340	3,860	4,090	4,730	5,430	5,055	6,640
ще	5	6,175	7,145	6,765	8,120	7,545	9,930	7,855	13,190	8,085	15,680
#5	7-1/2	10,795	14,115	10,995	16,035	11,315	19,615	11,785	24,455	12,130	26,125
	12-1/2	17,995	32,465	18,325	35,825	18,860	40,625	19,640	42,305	20,215	43,540
	3-1/2	3,620	3,580	3,965	4,070	4,575	4,980	5,605	6,610	6,470	8,085
#6	6	8,120	9,710	8,895	11,035	10,270	13,495	11,725	17,925	12,065	21,845
#0	9	14,920	19,185	16,340	21,795	16,890	26,655	17,585	34,065	18,100	38,985
	15	26,855	45,235	27,350	49,915	28,150	58,300	29,310	63,135	30,170	64,975
	3-1/2	3,620	3,525	3,965	4,000	4,575	4,895	5,605	6,500	6,470	7,950
#7	7	10,230	11,860	11,210	13,475	12,945	16,485	15,850	21,895	16,495	26,775
#7	10-1/2	18,800	23,430	20,590	26,620	23,085	32,555	24,040	42,485	24,745	49,625
	17-1/2	36,710	55,290	37,385	62,260	38,475	72,720	40,070	86,300	41,240	88,820
	4	4,420	4,365	4,840	4,960	5,590	6,065	6,845	8,060	7,905	9,855
<i>щ</i> о	8	12,500	14,105	13,695	16,025	15,815	19,600	19,365	26,035	21,215	31,845
#8	12	22,965	27,860	25,160	31,655	29,050	38,715	30,920	51,425	31,820	60,105
	20	47,210	65,755	48,080	74,705	49,485	88,080	51,530	109,640	53,035	114,230
	4-1/2	5,275	5,080	5,780	5,770	6,670	7,060	8,170	9,375	9,435	11,465
40	9	14,920	16,465	16,340	18,710	18,870	22,880	23,110	30,390	26,500	37,170
#9	13-1/2	27,405	32,530	30,020	36,955	34,665	45,200	38,625	60,035	39,750	71,305
	22-1/2	58,965	76,740	60,060	87,190	61,815	104,460	64,375	130,030	66,250	142,695
	5	6,175	5,830	6,765	6,620	7,815	8,100	9,570	10,755	11,050	13,155
#10	10	17,470	18,880	19,140	21,445	22,100	26,230	27,065	34,840	31,255	42,615
#10	15	32,095	37,290	35,160	42,365	40,600	51,815	48,645	68,825	50,065	82,920
	25	69,060	87,980	75,645	99,955	77,855	121,485	81,075	151,220	83,440	176,635

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- C_{a1} is greater than or equal to the critical edge distance, C_{ac} Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength] Databation who be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based onACl 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-19 17.5.2.2 or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information

included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-4027. 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength requires an additional reduction factor applied for seismic tension (causes), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (\$\phi\$) for bond strength in the determination of controlling design strength values, as applicable.

DEWALT. ANCHORS & FASTENERS

Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f ⁱ c = 2,	500 psi	f'c = 3,	,000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
	Depth	(17.2	MPa)	(20.7	MPa)	(27.6	MPa)	(41.4	MPa)	(55.2	MPa)
Rebar Size	hef in. (mm)	$\begin{array}{c} \phi_{\text{Ncb}} \text{ or } \phi_{\text{Na}} \\ \text{ Tension} \\ \text{ Ibs.} \\ \text{ (MPa)} \end{array}$	φ _{νcb} or φ _{νcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	φ _{νcb} or φ _{νcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	φ _{νcb} or φ _{νcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	φ _{νcb} or φ _{νcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	φ _{νcb} or φ _{νcp} Shear Ibs. (MPa)
	2.4	2,900	2,580	3,175	2,930	3,670	3,585	4,495	4,760	5,170	5,550
	(61)	(12.9)	(11.5)	(14.1)	(13.0)	(16.3)	(15.9)	(20.0)	(21.2)	(23.0)	(24.7)
	3.6	5,235	5,440	5,735	6,180	6,625	7,560	7,445	9,370	7,665	10,820
	(90)	(23.3)	(24.2)	(25.5)	(27.5)	(29.5)	(33.6)	(33.1)	(41.7)	(34.1)	(48.1)
10M	5.3	9,620	10,755	10,420	12,075	10,725	13,940	11,170	17,075	11,495	19,715
	(136)	(42.8)	(47.8)	(46.4)	(53.7)	(47.7)	(62.0)	(49.7)	(76.0)	(51.1)	(87.7)
	7.5	14,375	18,220	14,640	19,960	15,070	23,045	15,690	28,225	16,150	32,595
	(191)	(63.9)	(81.0)	(65.1)	(88.8)	(67.0)	(102.5)	(69.8)	(125.6)	(71.8)	(145.0)
	3.1	4,255	4,050	4,665	4,600	5,385	5,625	6,595	7,475	7,615	9,140
	(79)	(18.9)	(18.0)	(20.8)	(20.5)	(24.0)	(25.0)	(29.3)	(33.3)	(33.9)	(40.7)
1511	5.0	8,825	10,105	9,665	11,480	11,160	14,045	13,555	17,950	13,950	20,725
	(128)	(39.3)	(44.9)	(43.0)	(51.1)	(49.6)	(62.5)	(60.3)	(79.8)	(62.1)	(92.2)
15M	7.6	16,210	19,960	17,760	22,680	19,525	26,695	20,335	32,695	20,930	37,750
	(192)	(72.1)	(88.8)	(79.0)	(100.9)	(86.9)	(118.7)	(90.5)	(145.4)	(93.1)	(167.9)
	12.6	31,050	44,995	31,620	49,290	32,545	56,915	33,890	69,705	34,880	75,125
	(320)	(138.1)	(200.1)	(140.7)	(219.3)	(144.8)	(253.2)	(150.8)	(310.1)	(155.2)	(334.2)
	3.5	5,105	4,995	5,595	5,675	6,460	6,945	7,910	9,220	9,135	11,280
	(89)	(22.7)	(22.2)	(24.9)	(25.2)	(28.7)	(30.9)	(35.2)	(41.0)	(40.6)	(50.2)
20M	6.1	11,870	14,045	13,005	15,955	15,015	19,515	18,390	25,390	19,620	29,320
	(156)	(52.8)	(62.5)	(57.8)	(71.0)	(66.8)	(86.8)	(81.8)	(112.9)	(87.3)	(130.4)
ZUIVI	9.2	21,810	27,750	23,890	31,525	27,460	37,770	28,595	46,260	29,430	53,415
	(234)	(97.0)	(123.4)	(106.3)	(140.2)	(122.1)	(168.0)	(127.2)	(205.8)	(130.9)	(237.6)
	15.4	43,665	63,590	44,470	69,660	45,765	80,435	47,660	98,515	49,050	105,650
	(390)	(194.2)	(282.9)	(197.8)	(309.9)	(203.6)	(357.8)	(212.0)	(438.2)	(218.2)	(470.0)
	3.9	6,005	5,855	6,580	6,650	7,600	8,135	9,305	10,805	10,745	13,215
	(99)	(26.7)	(26.0)	(29.3)	(29.6)	(33.8)	(36.2)	(41.4)	(48.1)	(47.8)	(58.8)
25M	7.9	17,440	19,590	19,105	22,255	22,060	27,220	27,020	36,155	30,525	41,845
	(202)	(77.6)	(87.1)	(85.0)	(99.0)	(98.1)	(121.1)	(120.2)	(160.8)	(135.8)	(186.1)
ZJIVI	11.9	32,040	38,700	35,100	43,970	40,530	53,780	44,490	66,015	45,790	76,230
	(302)	(142.5)	(172.1)	(156.1)	(195.6)	(180.3)	(239.2)	(197.9)	(293.6)	(203.7)	(339.1)
	19.8	67,940	90,755	69,190	99,420	71,205	114,800	74,155	140,600	76,320	162,350
	(504)	(302.2)	(403.7)	(307.8)	(442.2)	(316.7)	(510.7)	(329.9)	(625.4)	(339.5)	(722.2)
	4.7	7,950	7,510	8,705	8,530	10,055	10,435	12,315	13,860	14,215	16,950
	(119)	(35.4)	(33.4)	(38.7)	(37.9)	(44.7)	(46.4)	(54.8)	(61.7)	(63.2)	(75.4)
30M	9.4	22,540	24,470	24,695	27,805	28,515	34,005	34,920	45,165	40,325	53,080
	(239)	(100.3)	(108.8)	(109.8)	(123.7)	(126.8)	(151.3)	(155.3)	(200.9)	(179.4)	(236.1)
JUIVI	14.1	41,410	48,350	45,365	54,930	52,380	67,185	59,745	83,745	61,490	96,700
	(359)	(184.2)	(215.1)	(201.8)	(244.3)	(233.0)	(298.9)	(265.8)	(372.5)	(273.5)	(430.1)
	23.5	89,105	114,045	92,910	126,110	95,620	145,620	99,575	178,350	102,480	205,940
	(598)	(396.4)	(507.3)	(413.3)	(561.0)	(425.3)	(647.8)	(442.9)	(793.3)	(455.9)	(916.1)

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac} - c_{a2} is greater than or equal to 1.5 times c_{a1} .

 Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\$) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-19 17.5.2.2 or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-4027.

Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diumal cycling.
 The there are intervals are the period of t

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

ADHESIVES

AC200+TM Acrylic Injection Adhesive Anchoring System

ADHESIVES

orir	e Ancho	Adhesiv	hjection	Acrylic
------	---------	---------	----------	---------

bystem

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Stren	igth)
Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition	HOTH DE
Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;	
	1

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

						um Concrete C	ompressive St	rength			
Nominal	Embed.	f ⁱ c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
	Depth	(17.2	MPa)	(20.7	MPa)	(27.6	MPa)	(41.4	MPa)	(55.2	MPa)
Rebar Size	hef in. (mm)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	φ _{vcb} or φ _{vcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	φ _{Vcb} or φ _{Vcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	φ _{vcb} or φ _{vcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	φ _{vcb} or φ _{vcp} Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	ϕ_{Vcb} or ϕ_{Vcp} Shear Ibs. (MPa)
	2.4	2,055	1,670	2,250	1,830	2,600	2,115	3,180	2,590	3,675	2,990
	(61)	(9.1)	(7.4)	(10.0)	(8.1)	(11.6)	(9.4)	(14.1)	(11.5)	(16.3)	(13.3)
1014	3.6	3,710	3,255	4,065	3,565	4,690	4,120	5,745	5,045	6,635	5,825
	(90)	(16.5)	(14.5)	(18.1)	(15.9)	(20.9)	(18.3)	(25.6)	(22.4)	(29.5)	(25.9)
10M	5.3	6,815	5,935	7,465	6,500	8,620	7,505	10,560	9,195	11,495	10,615
	(136)	(30.3)	(26.4)	(33.2)	(28.9)	(38.3)	(33.4)	(47.0)	(40.9)	(51.1)	(47.2)
	7.5	11,350	9,810	12,430	10,745	14,355	12,410	15,690	15,200	16,150	17,550
	(191)	(50.5)	(43.6)	(55.3)	(47.8)	(63.9)	(55.2)	(69.8)	(67.6)	(71.8)	(78.1)
	3.1	3,015	2,890	3,305	3,190	3,815	3,685	4,670	4,515	5,395	5,210
	(79)	(13.4)	(12.9)	(14.7)	(14.2)	(17.0)	(16.4)	(20.8)	(20.1)	(24.0)	(23.2)
1514	5.0	6,250	6,595	6,845	7,225	7,905	8,345	9,685	10,220	11,180	11,800
	(128)	(27.8)	(29.3)	(30.4)	(32.1)	(35.2)	(37.1)	(43.1)	(45.5)	(49.7)	(52.5)
15M	7.6	11,480	12,015	12,580	13,165	14,525	15,200	17,790	18,615	20,540	21,495
	(192)	(51.1)	(53.4)	(56.0)	(58.6)	(64.6)	(67.6)	(79.1)	(82.8)	(91.4)	(95.6)
	12.6	24,705	25,620	27,065	28,065	31,250	32,405	33,890	39,690	34,880	45,830
	(320)	(109.9)	(114.0)	(120.4)	(124.8)	(139.0)	(144.1)	(150.8)	(176.5)	(155.2)	(203.9)
	3.5	3,620	3,570	3,965	4,055	4,575	4,730	5,605	5,790	6,470	6,685
	(89)	(16.1)	(15.9)	(17.6)	(18.0)	(20.4)	(21.0)	(24.9)	(25.8)	(28.8)	(29.7)
	6.1 (156)	8,410 (37.4)	9,390 (41.8)	9,210 (41.0)	10,285 (45.7)	10,635 (47.3)	11,875 (52.8)	13,030 (58.0)	14,545 (64.7)	15,045 (66.9)	16,795 (74.7)
20M	9.2 (234)	15,450 (68.7)	17,105 (76.1)	16,925 (75.3)	18,740 (83.4)	19,540 (86.9)	21,640 (96.3)	23,935 (106.5)	26,500 (117.9)	27,635 (122.9)	30,600 (136.1)
	15.4	33,240	36,430	36,415	39,905	42,045	46,080	47,660	56,435	49,050	65,165
	(390)	(147.9)	(162.0)	(162.0)	(177.5)	(187.0)	(205.0)	(212.0)	(251.0)	(218.2)	(289.9)
	3.9	4,255	4,180	4,660	4,750	5,385	5,810	6,590	7,125	7,610	8,230
	(99)	(18.9)	(18.6)	(20.7)	(21.1)	(24.0)	(25.8)	(29.3)	(31.7)	(33.9)	(36.6)
0514	7.9	12,355	13,355	13,535	14,630	15,625	16,890	19,140	20,685	22,100	23,890
	(202)	(55.0)	(59.4)	(60.2)	(65.1)	(69.5)	(75.1)	(85.1)	(92.0)	(98.3)	(106.3)
25M	11.9	22,695	24,325	24,865	26,650	28,710	30,770	35,160	37,685	40,600	43,515
	(302)	(101.0)	(108.2)	(110.6)	(118.5)	(127.7)	(136.9)	(156.4)	(167.6)	(180.6)	(193.6)
	19.8	48,835	51,810	53,495	56,755	61,770	65,535	74,155	80,260	76,320	92,680
	(504)	(217.2)	(230.5)	(238.0)	(252.5)	(274.8)	(291.5)	(329.9)	(357.0)	(339.5)	(412.3)
	4.7	5,630	5,365	6,165	6,095	7,120	7,455	8,720	9,230	10,070	10,660
	(119)	(25.0)	(23.9)	(27.4)	(27.1)	(31.7)	(33.2)	(38.8)	(41.1)	(44.8)	(47.4)
0014	9.4	15,965	16,900	17,490	18,510	20,195	21,375	24,735	26,180	28,565	30,230
	(239)	(71.0)	(75.2)	(77.8)	(82.3)	(89.8)	(95.1)	(110.0)	(116.5)	(127.1)	(134.5)
30M	14.1	29,335	30,785	32,135	33,725	37,105	38,940	45,445	47,690	52,475	55,070
	(359)	(130.5)	(136.9)	(142.9)	(150.0)	(165.1)	(173.2)	(202.1)	(212.1)	(233.4)	(245.0)
	23.5	63,115	65,565	69,140	71,820	79,835	82,930	97,780	101,570	102,480	117,280
	(598)	(280.7)	(291.6)	(307.6)	(319.5)	(355.1)	(368.9)	(434.9)	(451.8)	(455.9)	(521.7)

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- C_{a1} is greater than or equal to the critical edge distance, C_{ac} - C_{a2} is greater than or equal to 1.5 times C_{a1} .

Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in FSR-4027.

Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see 5. ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-19 17.5.2.2 or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-4027.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength requires an additional reduction factor applied for seismic tension (cause), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (a) for bond strength in the determination of controlling design strength values, as applicable

Tension Design of Steel Elements (Steel Strength)^{1,2}

Steel Elements - Threaded Rod and Reinforcing Bar													
Nominal Rod/Rebar Size	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar	CAN/CSA G30.18 Grade 400	
	ØNsa Tension Ibs	ØNsa Tension Ibs	ØN₅a Tension Ibs	ØN≊ Tension Ibs	ØNsa Tension Ibs	ØNsa Tension Ibs	ØNsa Tension Ibs	ØNsa Tension Ibs	ØN₅a Tension Ibs	ØN₅a Tension Ibs	ØNsa Tension Ibs	ØNsa Tension Ibs (KN)	
3/8" or #3	3,370	4,360	7,265	6,975	3,655	5,040	5,525	7,150	6,435	6,600	4,290		
10M												7,915 (35.2)	
1/2" or #4	6,175	7,980	13,300	12,770	6,690	9,225	10,110	13,000	11,700	12,000	7,800		
5/8" or #5	9,835	12,715	21,190	20,340	10,650	14,690	16,105	21,150	18,135	18,600	12,090		
15M												15,870 (70.6)	
3/4" or #6	14,550	18,815	31,360	30,105	15,765	18,480	23,830	28,600	25,740	26,400	17,160		
20M												23,560 (104.8)	
7/8" or #7	20,085	25,970	43,285	41,930	21,760	25,510	32,895	39,000	35,100	36,000			
25M												39,360 (175.1)	
1" or #8	26,350	34,070	56,785	54,515	28,545	33,465	43,160	51,350	46,215	47,400			
#9								65,000	58,500	60,000			
30M												55,410 (246.5)	
1-1/4" or #10	42,160	54,510	90,850	76,315	45,670	53,540	69,050	82,550	74,295	76,200			
🗖 - Steel Strengt	h												

1. Steel tensile design strength according to ACI 318 Ch.17, $\phi_{Nsa} = \phi \bullet_{Ase,N} \bullet_{futa}$.

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

Shear Design of Steel Elements (Steel Strength)^{1,2,3}

				Steel El	Steel Elements - Threaded Rod and Reinforcing Bar													
Nominal Rod/Rebar Size	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar	CAN/CSA G30.18 Grade 400						
	ØVsa Shear Ibs	ØV∞ Shear Ibs	ØV∞ Shear Ibs	ØVsa Shear Ibs	ØV∞ Shear Ibs	ØV∞ Shear Ibs	ØV:a Shear Ibs	ØV∞ Shear Ibs	ØV∞ Shear Ibs	ØV:a Shear Ibs	ØV∞ Shear Ibs	ØVsa Shear Ibs (kN)						
3/8" or #3	1,755	2,265	3,775	3,625	2,020	2,790	2,870	3,960	3,565	3,430	2,375	-						
10M												4,385 (19.5)						
1/2" or #4	3,210	4,150	3,915	6,640	3,705	5,110	5,255	7,200	6,480	6,240	4,320							
5/8" or #5	5,115	6,610	11,020	10,575	2,900	8,135	8,375	11,160	10,045	9,670	6,695							
15M												8,790 (39.1)						
3/4" or #6	7,565	9,785	16,305	15,655	8,730	10,235	12,390	15,840	14,255	13,730	9,505							
20M												13,050 (58.0)						
7/8" or #7	10,445	13,505	22,505	21,805	12,050	14,130	17,105	21,600	19,440	18,720								
25M												21,800 (97.0)						
1" or #8	13,700	17,715	29,525	28,345	15,810	18,535	22,445	28,440	25,595	24,650								
#9								36,000	32,400	31,200								
30M												30,685 (136.5)						
1-1/4" or #10	21,920	28,345	47,250	39,685	25,295	25,295	35,905	45,720	41,150	39,625								

1. Steel shear design strength according to ACI 318 Ch.17, ϕ Vsa = $\phi \cdot 0.60 \cdot A_{se,V} \cdot f_{uta}$.

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

3. In the determination of the shear design strength values in cracked concrete, the steel strength requires an additional reduction factor applied for seismic shear (av.ses), where seismic design is applicable.

41

Design Information

POST-INSTALLED REBAR DEVELOPMENT LENGTH TABLES

Symbol

Development Lengths for Common Reinforcing Bar Connections^{1,2,3,6}

Reference

Standard

Units

#3

#4

#5

#10

Nominal Rebar Size (US)

#7

#8

#9

#6

ADHESIVES

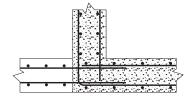
Acrylic Injection Adhesive Anchoring System AC200+

Nominal rebar diameter	d _b	ASTM A615/A706, Grade 60	in. (mm)	0.375 (9.5)	0.5 (12.7)	0.625 (15.9)	0.75 (19.1)	0.875 (22.2)	1 (25.4)	1.128 (28.6)	1.27 (32.3)
Nominal rebar area	Ab	$(f_y = 60 \text{ ksi})$	in² (mm²)	0.11 (71)	0.2 (127)	0.31 (198)	0.44 (285)	0.6 (388)	0.79 (507)	1 (645)	1.27 (817)
Development length in f'c = 2,500 psi concrete ^{4,5}			in. (mm)	12 (305)	14.4 (366)	18 (457)	21.6 (549)	31.5 (800)	36 (914)	40.6 (1031)	45.7 (1161)
Development length in $f'c = 3,000$ psi concrete ^{4,5}		ACI 318-19 25.4.2.4.	in. (mm)	12 (305)	13.1 (334)	16.4 (417)	19.7 (501)	28.8 (730)	32.9 (835)	37.1 (942)	41.7 (1060)
Development length in $f'c = 4,000$ psi concrete ^{4,5}	ld	ACI 318-14 25.4.2.3 or ACI	in. (mm)	12 (305)	12 (305)	14.2 (361)	17.1 (434)	24.9 (633)	28.5 (723)	32.1 (815)	36.2 (920)
Development length in f'c = 6,000 psi concrete ^{4,5}		318-11 12.2.3 as applicable	in. (mm)	12 (305)	12 (305)	12 (305)	13.9 (354)	20.3 (516)	23.2 (590)	26.2 (666)	29.5 (750)
Development length in $f'c = 8,000$ psi concrete ^{4,5}			in. (mm)	12 (305)	12 (305)	12 (305)	12.1 (307)	17.6 (443)	20.1 (511)	22.7 (577)	25.6 (649)
		Reference				N	ominal Rel	oar Size (C	(A)		
Design Information	Symbol		Units					— ì			
Design Information	Symbol	Standard	Units	10M		15M		M	25M		30M
Design Information Nominal rebar diameter	Symbol d _b	Standard CSA G30.18	Units mm (in.)	10M 11.3 (0.445		15M 16.0 (0.630)).5	25M 25.2 (0.992)		30M 29.9 (1.177)
		Standard	mm	11.3	ō)	16.0	19 (0.7 30).5	25.2		29.9
Nominal rebar diameter	db	Standard CSA G30.18 Grade 400	mm (in.) mm²	11.3 (0.445 100	5))	16.0 (0.630) 200	19 (0.7 30 (0.4	0.5 768) 00 46)	25.2 (0.992) 500		29.9 (1.177) 700
Nominal rebar diameter Nominal rebar area Development length in	db	Standard CSA G30.18 Grade 400 (fy = 58 ksi) ACI 318-19	mm (in.) mm² (in²) mm	11.3 (0.44 100 (0.16 315))	16.0 (0.630) 200 (0.31) 445	19 (0.7 30 (0.4 67 (26) 67	0.5 (68) (00 (46) 78	25.2 (0.992) 500 (0.77) 876		29.9 (1.177) 700 (1.09) 1041
Nominal rebar diameter Nominal rebar area Development length in f'c = 2,500 psi concrete ^{4,6} Development length in	db	Standard CSA G30.18 Grade 400 (fy = 58 ksi) ACI 318-19 25.4.2.4, ACI 318-14 25.4.2.3 or	mm (in.) mm² (in²) mm (in.) mm	11.3 (0.44 100 (0.16 315 (12.4 305)))	16.0 (0.630) 200 (0.31) 445 (17.5) 407	19 (0.7 30 (0.4 (26) 62 (24) 62 (24) 55	0.5 (68) (00 (46) (78 (5.7) (20)	25.2 (0.992) 500 (0.77) 876 (34.5) 800		29.9 (1.177) 700 (1.09) 1041 (41.0) 950
Nominal rebar diameter Nominal rebar area Development length in f'c = 2,500 psi concrete ^{4,6} Development length in f'c = 3,000 psi concrete ^{4,6} Development length in	d _b	Standard CSA G30.18 Grade 400 (fy = 58 ksi) ACI 318-19 25.4.2.4, ACI 318-14	mm (in.) mm² (in²) mm (in.) mm (in.) mm	11.3 (0.44! 100 (0.16 315 (12.4 305 (12.0 305))))	16.0 (0.630) 200 (0.31) 445 (17.5) 407 (16.0) 353	19 (0.7 30 (0 66 (26 62 (24 55 (21 43	20.5 268) 200 46) 78 5.7) 20 1.4) 36	25.2 (0.992) 500 (0.77) 876 (34.5) 800 (31.5) 693		29.9 (1.177) 700 (1.09) 1041 (41.0) 950 (37.4) 823

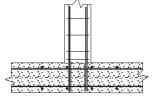
For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa; for pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

1. Calculated development lengths in accordance with ACI 318-19 25.4.2.4, ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3, as applicable, for reinforcing bars are valid for static, wind, and earthquake loads.

2. Calculated development lengths in SDC C through F must comply with ACI 318 (-19 or -14) Chapter 18 or ACI 318-11 Chapter 21, as applicable.

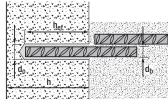

3. For Class B splices, minimum length of lap for tension lap splices is 1.3*la in accordance with ACI 318 (-19 or -14) 25.5.2 and ACI 318-11 12.15.1, as applicable.

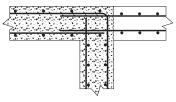
4. For lightweight concrete, λ = 0.75; therefore multiply development lengths by 1.33 (increase development length by 33 percent), unless the provisions of ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit alternate values of λ (e.g for sand-lightweight concrete, λ = 0.85; therefore multiply development lengths by 1.18). Refer


to ACI 318 (-19 or -14) 19.2.4 or ACI 318-11 8.6.1, as applicable. $\left(\frac{C_b + K_{tr}}{d_b}\right) = 2.5, \psi_{t=1.0}, \psi_{s}=0.8$ for $d_b \le #6$, and $d_b <= 19$ mm, 1.0 for $d_b > #6$ and $d_b > 19$ mm. Refer to ACI 318-19 17.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4, 5. $\int_{as}^{b} J^{-}$

6. Calculations may be performed for other steel grades and concrete compressive strengths per ACI 318 (-19 or -14) Chapter 25 or ACI 318-11 Chapter 12, as applicable.

Examples of Development Length Application Details for Post-Installed Reinforcing Bar Connections Provided for Illustration


Tension Lap Splice with Existing Reinforcement for Footing and Foundation Extensions


Tension Development of Column, Cap or Wall Dowels

<u> </u>	
A - Y - Y - Y - Y - Y - Y - Y - Y - Y - 	
I _{d,splice}	

Tension Lap Splice with Existing Flexural Reinforcement For Slab and Beam Extensions

> d_b = nominal bar diameter $d_0 = nominal \ hole \ diameter$ hef = effective embedment h = member thickness

Installation Parameters for Common Post-Installed Reinforcing Bar Connections

Parameter	Symbol	Units					Nominal Rel	bar Size (US)				
Falailletei	Symbol	Units	#3	#4		#5	#6	#7	#8	#	#9	#10
Nominal hole diameter ¹	d₀	in.	1/2	5/8		3/4	7/8	1	1-1/8 1-1/4	1-	3/8	1-1/2
Effective embedment	h _{ef}	in.	Up to 22-1/2	Up to 30	0	Up to 37-1/2	Up to 45	Up to 52-1/2	Up to 60		o to -1/2	Up to 75
Parameter	Symbol	Units					Nominal Rel	bar Size (CA)				
Falailletei	Symbol	Units	10M			15M	20	M	25M			30M
Nominal hole diameter ¹	d₀	in.	9/16			3/4		1	1-1/4			1-1/2
Effective embedment	hef	mm	Up to 68	30		Up to 960	Up to	1170	Up to 1510		Up	to 1795

For SI: 1 inch = 25.4 mm; for pound-inch units: 1 mm = 0.03937 inches.

1. For any case, it must be possible for the reinforcing bar (rebar) to be inserted into the cleaned hole without resistance.

Consideration should be given regarding the commercial availability of carbide drill bits (including hollow drill bits), as applicable, with lengths necessary to achieve effective embedments for
post-installed reinforcing bar connections.

post-installeu	reiniorcing	Udi	CONTRECTIONS.	

DEWALI

ANCHORS & FASTENERS

Hole Cleaning Tools and Accessories for Post-Installed Rebar Connections^{1,2,3,4,5,6,7}

Rebar Size	Drill Bit Size (inch)	Brush Size (inch)	Brush Length (inches)	Wire Brush (Cat. No.)	Plug Size (inch)	Piston Plug (Cat. No.)
No. 3	1/2	1/2	6	PFC1671010	-	-
10M	9/16	9/16	6	PFC1671150	-	-
No. 4	5/8	5/8	6	PFC1671200	5/8	PFC1691510
No. 5	3/4	3/4	6	PFC1671250	3/4	PFC1691520
15M	3/4	3/4	6	PFC1671250	3/4	PFC1691520
No. 6	7/8	7/8	6	PFC1671300	7/8	PFC1691530
20M	1	1	6	PFC1671350	1	PFC1691540
No. 7	1	1	6	PFC1671350	1	PFC1691540
25M	1-1/4	1-1/4	6	PFC1671450	1-1/4	PFC1691555
No. 8	1-1/8	1-1/8	6	PFC1671425	1-1/8	PFC1691550
NU. 0	1-1/4	1-1/4	6	PFC1671450	1-1/4	PFC1691555
No. 9	1-3/8	1-3/8	6	PFC1671450	1-3/8	PFC1691560
30M	1-1/2	1-1/2	6	PFC1671500	1-1/2	PFC1691570
No. 10	1-1/2	1-1/2	6	PFC1671500	1-1/2	PFC1691570
1 If the DEWALT	DustX+ extraction sv	stem is used to auto	matically clean the h	oles durina drillina is	tandard hole cleaning	n (brushing and

dimmont

Wire Brush

Brush Extension

1. If the DEWALT DustX+ extraction system is used to automatically clean the holes during drilling, standard hole cleaning (brushing and blowing following drilling) is not required.

2. Holes may be drilled with hammer-drill, i.e. rotary impact drills or rock drills with a carbide drill bit (including hollow bits).

3. For any case, it must be possible for the reinforcing bar to be inserted into the cleaned drill hole without resistance.

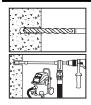
4. A brush extension (Cat.#PFC1671820) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

5. Brush adaptors for power tool connections are available for SDS (Cat.#PFC1671830).

 A flexible extension tube (Cat.#08297-PWR) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used if the bottom or back of the anchor hole is not reached with the mixing nozzle only.

7. All overhead (i.e upwardly inclined) installations require the use of piston plugs during where one is tabulated together with the anchor size (see table). All horizontal installations require the use of piston plugs where the embedment depth is greater than 10 inches and the drill bit size is larger than 5/8-inch. A flexible extension tube (Cat.#08297-PWR) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used with piston plugs.

DustX+[™] System (hollow bits with HEPA dust extraction)


DRILLING	
	 1 - Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15. Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
	 Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compress air, etc.) prior to cleaning.
	Drilling in dry base material is recommended when using hollow drill bits (vacuum must be on).
	GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED); OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.
HOLE CLEANING	
2X	2a- Starting from the bottom or back of the anchor hole, blow the hole clean with compressed air (min. 90 psi / 6 bar) a minimum of two times (2). If the back of the drilled hole is not reached an extension shall be used.
2X	2b- Determine brush diameter (see hole cleaning equipment selection table) for the drilled hole and brush the hole by hand or attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use. The brus should resist insertion into the drilled hole, if not, the brush is too small and must be replaced with proper brush diameter (i.e. new wire brush).
2X	2c- Finally blow the hole clean again with compressed air (min. 90 psi / 6 bar) a minimum of two times (2x). If the back of the drilled hole is not reached an extension shall be used. When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.
PREPARING	
	3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperatur must be between 41°F - 104°F (5°C - 40°C) when in use; except for installations in base material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge adhesive temperature must be conditioned to 50°F (10°C) minimum. Review published working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of the base material temperature, see published gel and curing times.
	 Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element inside the nozzle. Load the cartridge into the correct dispensing tool. Note: Always use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) til of the adhesive.
	4- Prior to inserting the anchor rod or rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.
3X	 5- Adhesives must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color. Review and note the published working and cure times (reference gel time and curing time table) prior to injection of the mixed adhesive into the cleaned anchor hole.
INSTALLATION	C Fill the closed hale entroving the two thirds full with mixed adhesive starting from the battom or head, of the enchar hale. Clouds with draw the mixed
	6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixin nozzle as the hole fills to avoid creating air pockets or voids. A plastic extension tube (Cat# 08281-PWR or 08297-PWR) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle (see reference tables for installation).
WITH PISTON PLUG:	 Note! Piston plugs (see hole cleaning equipment selection table) must be used with and attached to the mixing nozzle and extension tube for: Overhead installations and installations between horizontal and overhead in concrete with anchors larger than 1/2", #4 and 10M. All installations with drill hole depth > 10" (250mm)
	 All installations with drift hole depth > 10 (200mm) Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.
	 In the case that flexible tubing is used (Cat. #PFC1640600), the mixing nozzle may be trimmed at the preforation on the front port before attachment of the tubing. Verify the mixing element is inside the nozzle before use. Attention! Do not install anchors overhead or upwardly inclined without installation hardware supplied by DEWALT and also receiving proper training
	 and/or certification. Contact DEWALT for details prior to use, as applicable. 7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.
	 8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. F all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the use of
	temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during the g (working) time only.
CURING AND LO	
68°F	9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).Do not disturb, torque or load the anchor until it is fully cured.
0.5 hr	
	10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference installation specifications for threaded rod and reinforcing bar table) by using a calibrated torque wrench.

ADHESIVES

INSTALLATION INSTRUCTIONS POST-INSTALLED FOR REBAR CONNECTIONS

HAMMER DRILLING

•

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
 - Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).

GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+[™] EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED); OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.

	GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED); OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.
HOLE CLEANING	
2X	2a- Starting from the bottom or back of the drilled hole, blow the hole clean a minimum of two times (2x).Use a compressed air nozzle (min. 90 psi) for all sizes of reinforcing bar (rebar).
2X	2b- Determine brush diameter (see hole cleaning accessories for post-installed rebar selection table) for the drilled hole and brush the hole by hand or attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too small and must be replaced with proper brush diameter (i.e. new wire brush).
V 4 V 4	2c- Repeat Step 2a again by blowing the hole clean a minimum of two times (2x).
2X 2X	When finished the hole should be clean and free of dust, debris, oil or other foreign material.
PREPARING	
	 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Review published gel (working) and cure times. Cartridge adhesive temperature must be between 41°F - 104°F (5°C - 40°C) when in use; except for installations in base material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge adhesive temperature must be conditioned to 50°F (10°C) minimum. Note: Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For the permitted range of the base material temperature see published gel and cure times. Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element is
	 inside the nozzle. Load the cartridge into the correct dispensing tool. Note: Always use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive.
	4- Prior to inserting the rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.
38	 5- Adhesive must be properly mixed to achieve published properties. Prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color. Review and note the published gel (working) and cure times prior to injection of the mixed adhesive into the cleaned anchor hole.
INSTALLATION	
	6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. A flexible extension tube (Cat.# 08297-PWR) or flexible extension hose (Cat.# PFC1640600) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle (see reference tables for installation). (see hole cleaning tools and accessories for post-installed rebar table).
WITH PISTON PLUG:	Note! Piston plugs must be used with and attached to mixing nozzle and extension tube for overhead (i.e. upwardly inclined) installations and horizontal installations with rebar sizes larger than #4 and 10M. Insert piston plug to the back of the drilled hole and inject as described in the method above. During injection of the adhesive the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.
	 In the case that flexible tubing is used (Cat. #PFC1640600), the mixing nozzle may be trimmed at the preforation on the front port before attachment of the tubing. Verify the mixing element is inside the nozzle before use.
	Attention! Do not install anchors overhead or upwardly inclined without installation hardware supplied by DEWALT and also receiving proper training and/or certification. Contact DEWALT for details prior to use, as applicable.
	7- The reinforcing bar should be free of dirt, grease, oil or other foreign material. Push clean rebar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.
	8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. For all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the use of temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during the gel (working) time only.
CURING AND LO	ADING
68°F	9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).
68°F (0.5) hr	• Do not disturb, torque or load the anchor until it is fully cured.
	10- After full curing of the rebar connection, new concrete can be poured (placed) to the installed rebar connection.

1-800-4 **DEWALT**

REFERENCE INSTALLATION TABLES

Gel (working) Time and Curing Table

Temperature of base material	Gel (working) time	Full curing time			
14°F (-10°C) to 22°F (-6°C)	60 minutes	24 hours			
23°F (-5°C) to 31°F (-1°C)	50 minutes	5 hours			
32°F (0°C) to 40°F (4°C)	25 minutes	3.5 hours			
41°F (5°C) to 49°F (9°C)	15 minutes	2 hours			
50°F (10°C) to 58°F (14°C)	10 minutes	1 hour			
59°F (15°C) to 67°F (19°C)	6 minutes	40 minutes			
68°F (20°C) to 85°F (29°C)	3 minutes	30 minutes			
86°F (30°C) to 104°F (40°C)	2 minutes	30 minutes			

Linear interpolation for intermediate base material temperature is possible.

Cartridge temperature must be between 41°F (5°C) and 104°F (40°C) when in use; except for installations in base material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge temperature must be conditioned to 50°F (10°C) minimum.

Wire Brush Selection Table for AC200+ Adhesive Anchors^{1,2,3}

Nominal Wire Brush Size (inch)	ANSI Drill Bit Diameter (inch)	Brush Length (inches)	Steel Wire Brush ^{1,2} (Cat. #)	Blowout Tool
7/16	7/16	6	PFC1671050	
1/2	1/2	6	PFC1671100	
9/16	9/16	6	PFC1671150	
5/8	5/8	6	PFC1671200	
11/16	11/16	6	PFC1671225	Compressed air nozzle only, Cat #08292-PWR
3/4	3/4	6	PFC1671250	
7/8	7/8	6	PFC1671300	
1	1	6	PFC1671350	(min. 90 psi)
1-1/8	1-1/8	6	PFC1671400	-
1-1/4	1-1/4	6	PFC1671450	
1-3/8	1-3/8	6	PFC1671450	
1-1/2	1-1/2	6	PFC1671500	

1. An SDS-plus adaptor (Cat. #PFC1671830) is required to attach a steel wire brush to hammer drill. For hand brushing, attach manual brush wood handle (Cat. #PFC1671000) to the steel brush. 2. A brush extension (Cat. #PFC1671820) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

3. If the DEWALT DustX+ extraction system is used to automatically clean holes during drilling, standard hole cleaning (i.e. brushing and removing dust/debris following drilling) is not required.

Piston Plug Selection Table for Adhesive Anchors^{1,2,3,4}

Plug Size (inch)	ANSI Drill Bit Diameter (inch)	Piston Plug (Cat. #)	Premium Piston Plug (Cat. #)
11/16	11/16	08258-PWR	PFC1691515
3/4	3/4	08259-PWR	PFC1691520
7/8	7/8	08300-PWR	PFC1691530
1	1	08301-PWR	PFC1691540
1-1/8	1-1/8	08303-PWR	PFC1691550
1-1/4	1-1/4	08307-PWR	PFC1691555
1-3/8	1-3/8	08305-PWR	PFC1691560
1-1/2	1-1/2	08309-PWR	PFC1691570
1-3/4	1-3/4	-	PFC1691580
2	2	-	PFC1691590
2-3/16	2-3/16	-	PFC1691600

1. All overhead or upwardly inclined installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All installations require the use of piston plugs where the embedment depth is greater than 10 inches and drill bit size is larger than 5/8-inch.

3. The use of piston plugs is also recommended for underwater installations where one is tabulated together with the anchor size.

4. A flexible plastic extension tube (Cat. #08281-PWR or #08297-PWR) or equivalent approved by DEWALT must be used with piston plugs.

46

ORDERING INFORMATION

DEWALT

ANCHORS & FASTENERS

AC200+ Cartridges (10:1 mix ratio)

Cat. No.	Description	Pack Qty.	Std. Ctn.	Pallet	
PFC1271050	AC200+ 9.5 fl. oz. Quick-Shot	12	36	648	
PFC1271110	AC200+ 14 fl. oz. coaxial cartridge	-	12	540	
PFC1271150	AC200+ 28 fl. oz. dual cartridge	-	8	240	
An AC200+ mixi	An AC200+ mixing nozzle is packaged with each cartridge.				

AC200+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive.

Cartridge System Mixing Nozzles

Cat. No.	Description	Pack Qty.	Std. Ctn.
PFC1641600	Mixing nozzle (with 8" extension)	2	24
08281-PWR	Mixing nozzle extension, 8" long	2	24
08297-PWR	Mixing nozzle extension, 20" long	1	12

Dispensing Tools for Injection Adhesive

Cat. No.	Description	Pack Qty.	Std. Ctn.	6
08437-PWR	Manual caulking gun for Quick-Shot	1	12	
DCE560D1	Cordless 20v battery powered dispensing tool for Quick-Shot	1	-	
08414-PWR	14 fl. oz. Standard metal manual tool	1	-	
08494-PWR	28 fl. oz. Standard metal manual tool	1	-	
08496-PWR	28 fl. oz. High performance pneumatic tool	1	-	
DCE595D1	28 fl. oz. cordless 20v battery powered dispensing tool	1	-	

Hole Cleaning Tools and Accessories

Cat No.	Description	Pack Qty.
PFC1671050	Premium Wire brush for 7/16" ANSI hole, 6" length	1
PFC1671100	Premium Wire brush for 1/2" ANSI hole, 6" length	1
PFC1671150	Premium Wire brush for 9/16" ANSI hole, 6" length	1
PFC1671200	Premium Wire brush for 5/8" ANSI hole, 6" length	1
PFC1671225	Premium Wire brush for 11/16" ANSI hole, 6" length	1
PFC1671250	Premium Wire brush for 3/4" ANSI hole, 6" length	1
PFC1671300	Premium Wire brush for 7/8" ANSI hole, 6" length	1
PFC1671350	Premium Wire brush for 1" ANSI hole, 6" length	1
PFC1671400	Premium Wire brush for 1-1/8" ANSI hole, 6" length	1
PFC1671450	Premium Wire brush for 1-1/4" and 1-3/8" ANSI hole, 6" length	1
PFC1671500	Premium Wire brush for 1-1/2" ANSI hole, 6" length	1
PFC1671830	SDS-plus adapter for premium steel brushes	1
PFC1671000	Premium manual brush wood handle	1
PFC1671820	Premium steel brush extension, 12" length	1
08292-PWR	Air compressor nozzle with extension, 18" length	1
	Std. Wire Brushes for Large Diameter Holes	
08299-PWR	Std. Wire brush for 1-3/4" ANSI hole, 11" length	1
08271-PWR	Std. Wire brush for 2" ANSI hole, 11" length	1
08272-PWR	Std. Wire brush for 2-3/16" ANSI hole, 11" length	1
08282-PWR	Std. steel brush extension, 12" length	1
08283-PWR	SDS-Plus adaptor for Std. steel brushes	1

Piston Plugs for Adhesive Anchors

Fiston Flugs for Autesive Auctions										
Description	ANSI Drill Bit Dia.	Pack Qty.								
11/16" Plug	11/16"	10								
3/4" Plug	3/4"	10								
7/8" Plug	7/8"	10								
1" Plug	1"	10								
1-1/8" Plug	1-1/8"	10								
1-1/4" Plug	1-1/4	10								
1-3/8" Plug	1-3/8"	10								
1-1/2" Plug	1-1/2"	10								
	Description 11/16" Plug 3/4" Plug 7/8" Plug 1" Plug 1-1/8" Plug 1-1/4" Plug 1-3/8" Plug	Description ANSI Drill Bit Dia. 11/16" Plug 11/16" 3/4" Plug 3/4" 7/8" Plug 7/8" 1" Plug 1" 1.1/16" 1" 1.1/16" 1.1/16" 3/4" Plug 1/4" 1.1/14" Plug 1-1/4" 1.3/8" Plug 1-3/8"								

Piston Plugs for Post-Installed Rebar Connections

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.							
PFC1691510	5/8" Plug	5/8"	1							
PFC1691515	11/16" Plug	11/16"	1							
PFC1691520	3/4" Plug	3/4"	1							
PFC1691530	7/8" Plug	7/8"	1							
PFC1691540	1" Plug	1"	1							
PFC1691550	1-1/8" Plug	1-1/8"	1							
PFC1691555	1-1/4" Plug	1-1/4"	1							
PFC1691560	1-3/8" Plug	1-3/8"	1							
PFC1691570	1-1/2" Plug	1-1/2"	1							
PFC1691580	1-3/4" Plug	1-3/4"	1							
PFC1691590	2" Plug	2"	1							
PFC1691600	2-3/16" Plug	2-3/16"	1							

ADHESIVES

AC200+™ Acrylic Injection Adhesive Anchoring System

Cat. No.	Diameter	Usable Length	Overall Length
DW5806	5/8"	8"	13-1/2"
DW5809	5/8"	16"	21-1/2"
DW5807	5/8"	31"	36"
DW5808	11/16"	16"	21-1/2"
DW5810	3/4"	8"	13-1/2"
DW5812	3/4"	16"	21-1/2"
DW5813	3/4"	31"	36"
DW5814	13/16"	16"	21-1/2"
DW5815	7/8"	8"	13-1/2"
DW5816	7/8"	16"	21-1/2"
DW5851	7/8"	31"	36"
DW5817	27/32"	16"	21-1/2"
DW5818	1"	8"	13-1/2"
DW5819	1"	16"	22-1/2"
DW5852	1"	24"	29"
DW5820	1"	31"	36"
DW5821	1-1/8"	10"	15"
DW5822	1-1/8"	18"	22-1/2"
DW5853	1-1/8"	24"	29"
DW5854	1-1/8"	31"	36"
DW5824	1-1/4"	10"	15"
DW5825	1-1/4"	18"	22-1/2"

SDS Max 4-Cutter Carbide Drill Bits

Cat. No.	Diameter	Usable Length	Overall Length
DW5502	3/16"	2"	4-1/2"
DW5503	3/16"	4"	6-1/2"
DW5504	3/16"	5"	8-1/2"
DW5506	3/16"	10"	12"
DW5512	7/32"	8"	10"
DW5517	1/4"	4"	6"
DW5518	1/4"	6"	8-1/2"
DW55200	1/4"	10"	12"
DW5521	1/4"	12"	14"
DW5524	5/16"	4"	6"
DW5526	5916"	10"	12"
DW5527	3/8"	4"	6-1/2"
DW5529	3/8"	8"	10"
DW55300	3/8"	10"	12"
DW5531	3/8"	16"	18"
DW5537	1/2"	4"	6"
DW5538	1/2"	8"	10-1/2"
DW5539	1/2"	10"	12"
DW5540	1/2"	16"	18"

5 **SDS+ Full Head Carbide Drill Bits**

1070101010701

SDS+ 4-Cu	SDS+ 4-Cutter Carbide Drill Bits									
Cat. No.	Diameter	Usable Length	Overall Length							
DW5471	5/8"	8"	10"							
DW5472	5/8"	16"	18"							
DW5474	3/4"	8"	10"							
DW5475	3/4"	16"	18"							
DW5477	7/8"	8"	10"							
DW5478	7/8"	16"	18"							
DW5479	1"	8"	10"							
DW5480	1"	16"	18"							
DW5481	1-1/8"	8"	10"							
DW5482	1-1/8"	6"	18"							

Dust Extraction

Cat. No.	Description
DWV012	10 Gallon Wet/Dry Hepa/Rrp Dust Extractor DWV9402 Fleece bag (5 pack) for DEWALT dust extractors DWV9316 Replacement Anti-Static Hose DWV9320 Replacement HEPA Filter Set (Type 1)
DWH050K	Dust Extraction with two interchangeable drilling heads
DCB1800M3T1	1800 Watt Portable Power Station & Parallel Battery Charger with (3) 20V Max* 5Ah Batteries and (1) 60V Max* Flexvolt® Battery

DUSTX+

Hollow Drill Bits

Shank	Cat. No.	Diameter	Overall Length	Usable Length	Recommended Hammer		
	DWA54012	1/2"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293		
SDS+	DWA54916	9/16"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293		
	DWA54058	5/8"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293		
	DWA54034	3/4"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293		
	DWA58058	5/8"	23-5/8"	15-3/4"	DCH481 / D25603K		
	DWA58958	5/8"	47-1/4"	39-3/8"	DCH481 / D25603K		
	DWA58116	11/16"	24-3/4"	15-3/4"	DCH481 / D25603K		
	DWA58034	3/4"	23-5/8"	15-3/4"	DCH481 / D25603K		
	DWA58934	3/4"	47-1/4"	39-3/8"	DCH481 / D25603K		
	DWA58078	7/8"	23-5/8"	15-3/4"	DCH481 / D25603K		
SDS Max	DWA58001	1"	23-5/8"	15-3/4"	DCH481 / D25603K		
SDS IVIAX	DWA58901	1"	47-1/4"	39-3/8"	DCH481 / D25603K		
	DWA58118	1-1/8"	23-5/8"	15-3/4"	DCH481 / D25603K		
	DWA58918	1-1/8"	47-1/4"	39-3/8"	DCH481 / D25603K		
	DWA58115	1-1/4"	23-5/8"	15-3/4"	DCH481 / D25603K		
	DWA58114	1-1/4"	47-1/4"	39-3/8"	DCH481 / D25603K		
	DWA58138	1-3/8"	47-1/4"	39-3/8"	DCH481 / D25603K		
	DWA58112	1-1/2"	47-1/4"	39-3/8"	DCH481 / D25603K		

• •

GENERAL INFORMATION

AC100+ GOLD®

Vinylester Injection Adhesive Anchoring System

PRODUCT DESCRIPTION

The AC100+ Gold is a two-component vinylester adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The adhesive is designed for bonding threaded rod and reinforcing bar elements into drilled holes in concrete and masonry base materials. It can be considered for use in solid base materials as well as hollow base materials with screen tubes.

GENERAL APPLICATIONS AND USES

- Bonding threaded rod and reinforcing bar into hardened concrete and masonry
- Evaluated for use in drv and water-saturated concrete (including water filled holes)
- Suitable to resist loads in cracked or uncracked concrete base materials
- Adhesive system can be installed in a wide range of base material temperatures: qualified for structural applications in concrete and masonry as low as 14°F (-10°C)
- Qualified for seismic (earthquake) and wind loading (SDC A F)

FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Consistent performance in low and high strength concrete
- + Evaluated and recognized for freeze/thaw performance
- + Evaluated and recognized for a range of embedments
- + Versatile low odor formula with optimized cure time
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Universal product for concrete and masonry (hollow and solid base materials)

APPROVALS AND LISTIN

- International Code Council, Evaluation Service (ICC-ES) ESR-2582 for concrete
- International Code Council, Evaluation Service (ICC-ES) ESR-3200 for masonry
- International Code Council, Evaluation Service (ICC-ES) ESR-4105 for Unreinforced Masonry (URM)
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ASTM E488 / ACI 355.4 and ICC-ES AC308 for use in structural concrete with design according to ACI 318 (-19 & -14) Chapter 17 and ACI 318 Appendix D
- Tested in accordance with ICC-ES AC58 and ICC-ES AC60 for use in masonry walls
- Compliant with NSF/ANSI Standard 61 for drinking water system components health effects
- Compliant to California DPH for VOC emissions and South Coast AQMD for VOC content (LEED v4.1)
- Conforms to requirements of ASTM C881 including C882 and AASHTO M235, Types I, II, IV and V, Grade 3, Class A and conforms to requirements of ASTM C881 Types I and IV, Grade 3, Class B
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

GUIDE SPECIFICATIO

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Adhesive anchoring system shall be AC100+ Gold as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

1-800-4 DEWALT

CODE LISTED **CODE LISTED** -ES ESR-2582 ICC-ES ESR-3200 CONCRETE MASONRY

IIRM

General Information49	
Installation Specifications	
Performance Data (ASD)51	
Strength Design Information58	;
Design Strength Tables (SD)63	
Installation Instructions (Solid Base Materials)67	,
Installation Instructions (Unreinforced Masonry [URM Walls] and Hollow Base Materials)68	
Reference Installation Tables 69	
Ordering Information70)

AC100+ GOLD ADHESIVE IN CARTRIDGE (STANDARD THREADED ROD AND REBAR STEEL SUPPLIED BY OTHERS)

PACKAGING (10:1 MIX RATIO)

Coaxial / Foil Cartridge

- 9.5 fl. oz. (280 mL or 17.1 in³)
- 14 fl. oz. (420 mL or 25.6 in³)

Dual Cartridge (side-by-side)

• 28 fl. oz. (825 mL or 50.3 in³)

STORAGE LIFE & CONDITIONS

Eighteen months in a dry, dark environment with temperature ranging from 32°F and 86°F (-0°C to 30°C)

ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete
- Grouted concrete masonry (CMU)
- Hollow concrete masonry (CMU)
- Hollow core concrete
- Brick masonry
- Unreinforced Masonry (URM Walls)

PERMISSIBLE INSTALLATION **CONDITIONS (ADHESIVE)**

- Drv concrete
- Water-saturated concrete (wet)
- Water-filled holes (flooded)

FECHNICAL GUIDE – ADHESIVES ©2022 DEWALT – REV.

49

Vinylester Injection Adhesive Anchoring System

GOLD®

AC100+

INSTALLATION SPECIFICATIONS

Installation Table for AC100+ Gold (Solid Concrete Base Materials)

Parameter	Symbol	Units			Fr	actional Non	ninal Rod Dia	ameter (Inch) / Reinforci	ng Bar Size		
i di dificici	Symbol	Units	3/8 or #3	1/2	#4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4	#10
Threaded rod outside diameter	da (d)	inch (mm)	0.375 (9.5)	0.5 (12	500 2.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	-	1.250 (31.8)	-
Rebar nominal outside diameter	da (d)	inch (mm)	0.375 (9.5)	0.5 (12	500 2.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	-	1.250 (31.8)
Nominal drill bit size (ANSI)6	do (dbit)	inch	7/16	9/16	5/8	11/16 or 3/4	7/8	1	1-1/8	1-3/8	1-3/8	1-1/2
Minimum embedment ¹	hef,min	inch (mm)	2-3/8 (60)	2-3 (7	3/4 0)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)	5 (127)
Maximum embedment ¹	hef,max	inch (mm)	4-1/2 (114)	6 (152)		7-1/2 (191)	9 (229)	10-1/2 (267)	12 (305)	13-1/2 (343)	15 (381)	15 (381)
Minimum member thickness	h _{min}	inch (mm)		+ 1-1/4 + 30)		h _{er} + 2d _o						
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2- ⁻ (6	1/2 4)	3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Minimum edge distance (up to 100% T _{max})	Cmin	inch (mm)	1-7/8 (48)	2- ⁻ (6	1/2 4)	3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Max. rod torque ²	T _{max}	ft-lbs	15	3	3	60	105	125	165	-	280	-
Minimum edge distance, reduced ^{4,5}	Cmin,red	inch (mm)	1-3/4 (45)	1-: (4	3/4 5)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)	2-3/4 (70)
Max. torque ^{2,3} (low strength rods)	Tmax,Is-rod	ft-lbs	7	2	0	40	60	100	165	-	280	-

For pound-inch units: 1 mm = 0.03937 inch, 1 N-m = 0.7375 ft-lbf. For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

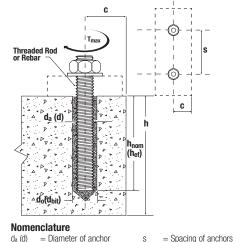
5. Embedment range gualified for use with the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D as applicable and ICC-ES AC308, and ESR-2582. 6. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

7. These torque values apply to ASTM A36 / F1554 Grade 36 carbon steel threaded rods and ASTM A193 Grade B8/B8M (Class 1) stainless steel threaded rods.

8. For installation below the minimum edge distance, cmin, down to the reduced minimum edge distance, cmin.red, the reduced maximum torque is 0.45*Tmax.

9. For installations down to the reduced minimum edge distance, Cmin,red, the minimum anchor spacing, Smin, is 5da.

10. The listed drill bit sizes are also applicable to installations into grouted concrete masonry.


Installation Table for AC100+ Gold (Hollow Base Material with Screen Tube)

Parameter	Symbol Units Nominal Tube Size - Stainless Steel					Nominal Tube Size - Plastic					
Nominal threaded rod size	-	in.	1/4	3/8	1/2	5/8	3.	/4	3/8	1/2	5/8
Nominal threaded rod diameter	d	in.	0.250	0.375	0.500	0.625	0.7	'50	0.375	0.500	0.625
Reinforcing bar size	-	No.	-	-	#3	#4	#5	#6	-	-	-
Nominal rebar diameter	d	in.	-	-	0.375	0.500	0.625	0.750	-	-	-
Nominal screen tube diameter	-	in.	1/4	3/8	1/2	5/8	3/4	15/16	3/8	1/2	5/8
Nominal drill bit size (ANSI)	dbit	in.	3/8	1/2	5/8	3/4	7/8	1	9/16	3/4	7/8
Maximum torque ¹	T _{max}	ft-lbs	3	6	10	10	10	10	5	8	8

1. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

For Unreinforced Masonry (URM Walls) see separate installation details and information in these tech pages for 'Retrofit Bolt Anchors in URM Walls'

Detail of Steel Hardware Elements used with Injection Adhesive System

= Diameter of anchor da (d) S = Diameter of drilled hole do (dbit) С = Edge distance h = Base material thickness Tmax = Maximum torque h_{nom} (h_{ef}) = Embedment depth

Threaded Re	od and Deformed Reinfo	orcing Bar Mate	erial Prop	erties
Steel Description	Steel Specification (ASTM)	Nominal Anchor Size (inch/No.)	Minimum Yield Strength, f _y	Minim Ultima Streng

Description (General)	(ASTM)	Nominal Anchor Size (inch/No.)	Yield Strength, fy (psi)	Ultimate Strength, f. (psi)
	ASTM A36 and F1554 Grade 36	3/8 through 1-1/4	36,000	58,000
Carbon rod	ASTM F1554 Grade 55	3/8 through 1-1/4	55,000	75,000
	ASTM A449	3/8 through 1	92,000	120,000
	A31101 A449	1-1/4	81,000	105,000
	ASTM A193 Grade B7 and F1554 Grade 105	3/8 through 1-1/4	105,000	125,000
	ASTM F593 Condition CW	3/8 through 5/8	65,000	100,000
	ASTIVI F593 CONULION CW	3/4 through 1-1/4	45,000	85,000
Stainless rod (Alloy 304/316)	ASTM A193 Grade B8/B8M, Class 1	3/8 through 1-1/4	30,000	75,000
	ASTM A193 Grade B8/B8M2, Class 2B	3/8 through 1-1/4	75,000	95,000
	ASTM A615, A767, Grade 75	#3 through #10	75,000	100,000
Reinforcing Bar	ASTM A615, A767, Grade 60	#3 through #10	60,000	90,000
neimorung dai	ASTM A706, A767, Grade 60	#3 through #10	60,000	80,000
	ASTM A615, A767, Grade 40	#3 through #6	40,000	60,000
	properties are provided for reference; ot 6 Grade 80 reinforcing bars.	her steel hardware elemer	nts may also be o	considered

TECHNICAL GUIDE - ADHESIVES ©2022 DEWALT

- REV. I

Minimum

(AgD)

PERFORMANCE DATA (ASD)

Ultimate and Allowable Load Capacities for AC100+ Gold Installed into Normal Weight Concrete with Threaded Rod and Reinforcing Bar (based on bond strength/concrete capacity)^{1,2,3,4,5,6}

				Min	imum Concrete C	ompressive Stre	igth		
Nominal Rod	Minimum	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 5,	000 psi	f'C = 6,	000 psi
Diameter or Rebar Size d in. or No.	Embedment Depth hnom in.	Ultimate Tension Load Capacity Ibs (kN)	Allowable Tension Load Capacity Ibs (kN)						
	2-3/8	4,840 (21.5)	1,210 (5.4)	5,040 (22.4)	1,260 (5.6)	5,180 (23.0)	1,295 (5.8)	5,320 (23.7)	1,330 (5.9)
3/8 or #3	3-1/2	7,140 (31.8)	1,785 (7.9)	7,420 (33.0)	1,855 (8.3)	7,640 (34.0)	1,910 (8.5)	7,820 (34.8)	1,955 (8.7)
	4-1/2	9,180 (40.8)	2,295 (10.2)	9,540 (42.4)	2,385 (10.6)	9,820 (43.7)	2,455 (10.9)	10,060 (44.7)	2,515 (11.2)
	2-3/4	7,980 (35.5)	1,995 (8.9)	8,280 (36.8)	2,070 (9.2)	8,540 (38.0)	2,135 (9.5)	8,740 (38.9)	2,185 (9.7)
1/2 or #4	4-3/8	12,720 (56.6)	3,180 (14.1)	13,200 (58.7)	3,300 (14.7)	13,580 (60.4)	3,395 (15.1)	13,900 (61.8)	3,475 (15.5)
	6	17,420 (77.5)	4,355 (19.4)	18,100 (80.5)	4,525 (20.1)	18,620 (82.8)	4,655 (20.7)	19,080 (84.9)	4,770 (21.2)
	3-1/8	11,220 (49.9)	2,805 (12.5)	11,660 (51.9)	2,915 (13.0)	12,000 (53.4)	3,000 (13.3)	12,300 (54.7)	3,075 (13.7)
5/8 or #5	5-1/4	19,200 (85.4)	4,800 (21.4)	19,960 (88.8)	4,990 (22.2)	20,540 (91.4)	5,135 (22.8)	21,020 (93.5)	5,255 (23.4)
	7-1/2	27,660 (123.0)	6,915 (30.8)	28,720 (127.8)	7,180 (31.9)	29,560 (131.5)	7,390 (32.9)	30,280 (134.7)	7,570 (33.7)
	3-1/2	13,320 (59.3)	3,330 (14.8)	13,820 (61.5)	3,455 (15.4)	14,220 (63.3)	3,555 (15.8)	14,560 (64.8)	3,640 (16.2)
3/4 or #6	6-1/4	26,880 (119.6)	6,720 (29.9)	27,900 (124.1)	6,975 (31.0)	28,720 (127.8)	7,180 (31.9)	29,420 (130.9)	7,355 (32.7)
	9	40,440 (179.9)	10,110 (45.0)	42,000 (186.8)	10,500 (46.7)	43,220 (192.3)	10,805 (48.1)	44,260 (196.9)	11,065 (49.2)
	3-1/2	13,320 (59.3)	3,330 (14.8)	13,820 (61.5)	3,455 (15.4)	14,220 (63.3)	3,555 (15.8)	14,560 (64.8)	3,640 (16.2)
7/8 or #7	7	36,680 (163.2)	9,170 (40.8)	38,080 (169.4)	9,520 (42.3)	39,200 (174.4)	9,800 (43.6)	40,140 (178.6)	10,035 (44.6)
	10-1/2	60,040 (267.1)	15,010 (66.8)	62,340 (277.3)	15,585 (69.3)	64,180 (285.5)	16,045 (71.4)	65,700 (292.2)	16,425 (73.1)
	4	16,260 (72.3)	4,065 (18.1)	16,880 (75.1)	4,220 (18.8)	17,380 (77.3)	4,345 (19.3)	17,800 (79.2)	4,450 (19.8)
1 or #8	8	46,540 (207.0)	11,635 (51.8)	48,300 (214.8)	12,075 (53.7)	49,740 (221.3)	12,435 (55.3)	50,920 (226.5)	12,730 (56.6)
	12	76,820 (341.7)	19,205 (85.4)	79,740 (354.7)	19,935 (88.7)	82,080 (365.1)	20,520 (91.3)	84,060 (373.9)	21,015 (93.5)
	5	22,740 (101.2)	5,685 (25.3)	23,600 (105.0)	5,900 (26.2)	24,300 (108.1)	6,075 (27.0)	24,880 (110.7)	6,220 (27.7)
1-1/4 or #10	10	65,880 (293.0)	16,470 (73.3)	68,400 (304.3)	17,100 (76.1)	70,420 (313.2)	17,605 (78.3)	72,100 (320.7)	18,025 (80.2)
	15	93,775 (417.1)	23,445 (104.3)	97,350 (433.1)	24,340 (108.3)	100,225 (445.8)	25,055 (111.5)	102,615 (456.5)	25,655 (114.1)

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances of 3 times embedment and where the minimum member thickness is the greater of [hnom + 1-1/4] and [hoom + 2dba].

4. The tabulated load values are applicable for dry uncracked concrete installed into holes drilled with a hammer drill and an ANSI carbide drill bit. Installations into saturated (wet) concrete or water-filled holes require a reduction in capacity for tabulated values of 15 percent, respectively.

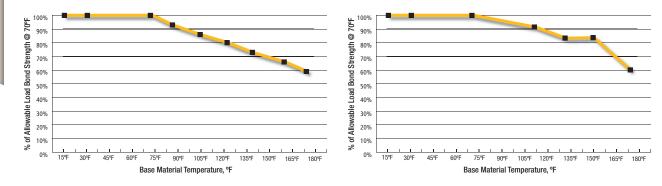
5. Adhesives experience reductions in capacity at elevated temperatures. See the In-Service Temperature chart for allowable loads capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

ADHESIVES

Allowable Load Capacities for Threaded Rod and Reinforcing Bar (Based on Stee	I Strength) ^{1,2,3,4}
---	--------------------------------

Steel Elements - Threaded Rod and Reinforcing Bar									Threaded	ements -	Steel Ele							
ASTM A706 Grade 80 Rebar		'M A6 ade 7 Rebar		le 60	ASTM A706 Grade 60 Rebar		ASTM A615 Grade 60 Rebar		ASTM Grad Rei	:W (SS)	F593, (A36 or F1554, Grade 55 Grade 105				Nominal Rod Diameter or Rebar		
Tension Shear Ibs. Ibs (kN) (kN)	bs	-	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Size (in. or No.)
2,650 1,875 (11.8) (8.3)			2,650 (11.8)	1,500 (6.7)	2,650 (11.8)	1,690 (7.5)	2,650 (11.8)	1,125 (5.0)	2,210 (9.8)	1,880 (8.4)	3,645 (16.2)	2,345 (10.4)	4,555 (20.3)	1,410 (6.3)	2,735 (12.2)	1,090 (4.8)	2,115 (9.4)	3/8 or #3
4,710 3,335 (21.0) (14.8)			4,710 (21.0)	2,670 (11.9)	4,710 (21.0)	3,005 (13.4)	4,710 (21.0)	2,005 (8.9)	3,925 (17.5)	3,340 (14.9)	6,480 (28.8)	4,170 (18.5)	8,100 (36.0)	2,505 (11.1)	4,860 (21.6)	1,935 (8.6)	3,760 (16.7)	1/2 or #4
7,365 5,215 (32.8) (23.2)			7,365 (32.8)	4,170 (18.5)	7,365 (32.8)	4,695 (20.9)	7,365 (32.8)	3,130 (13.9)	6,135 (27.3)	5,215 (23.2)	10,125 (45.0)	6,520 (29.0)	12,655 (56.3)	3,910 (17.4)	7,595 (33.8)	3,025 (13.5)	5,870 (26.1)	5/8 or #5
10,605 7,510 (47.2) (33.4)			10,605 (47.2)	6,010 (26.7)	10,605 (47.2)	6,760 (30.1)	10,605 (47.2)	4,505 (20.0)	8,835 (39.3)	6,385 (28.4)	12,390 (55.1)	9,390 (41.8)	18,225 (81.1)	5,635 (25.1)	10,935 (48.6)	4,355 (19.4)	8,455 (37.6)	3/4 or #6
14,430 10,220 (64.2) (45.5)	, .		14,430 (64.2)	8,180 (36.4)	14,430 (64.2)	9,200 (40.9)	14,430 (64.2)	-	-	8,690 (38.7)	16,865 (75.0)	12,780 (56.8)	24,805 (110.3)	7,665 (34.1)	14,885 (66.2)	5,930 (26.4)	11,510 (51.2)	7/8 or #7
18,850 13,350 (83.8) (59.4)			18,850 (83.8)	10,680 (47.5)	18,850 (83.8)	12,015 (53.4)	18,850 (83.8)	-	-	11,350 (50.5)	22,030 (98.0)	16,690 (74.2)	32,400 (144.1)	10,015 (44.5)	19,440 (86.5)	7,745 (34.5)	15,035 (66.9)	1 or #8
23,985 16,990 (106.7) (75.6)			23,985 (106.7)	13,590 (60.5)	23,985 (106.7)	15,290 (68.0)	23,985 (106.7)	-	-	-	-	-	-	-	-	-	-	#9
	-		-	-	-	-	-	-	-	17,735 (78.9)		26,080 (116.0)	50,620 (225.2)	15,645 (69.6)	30,375 (135.1)		23,490 (104.5)	1-1/4
30,405 21,535 (135.2) (95.8)			30,405 (135.2)		30,405 (135.2)		30,405 (135.2)	-	-	-	-	-	-	-	-	-	-	#10
	3.4) ,220 5.5) ,350 9.4) ,990 5.6) - ,535	(3) (3) (4) (4) (5) (5) (7) (7) (7) (7) (7)	(47.2) 14,430 (64.2) 18,850 (83.8) 23,985 (106.7) - 30,405	(26.7) 8,180 (36.4) 10,680 (47.5) 13,590 (60.5) - 17,230	(47.2) 14,430 (64.2) 18,850 (83.8) 23,985 (106.7) - 30,405	(30.1) 9,200 (40.9) 12,015 (53.4) 15,290 (68.0) - 19,380	(47.2) 14,430 (64.2) 18,850 (83.8) 23,985 (106.7) - 30,405			6,385 (28.4) 8,690 (38.7) 11,350 (50.5) - 17,735 (78.9)	(55.1) 16,865 (75.0) 22,030 (98.0) - 34,425 (153.1)	(41.8) 12,780 (56.8) 16,690 (74.2) - 26,080	(81.1) 24,805 (110.3) 32,400 (144.1) - 50,620	(25.1) 7,665 (34.1) 10,015 (44.5) - 15,645	(48.6) 14,885 (66.2) 19,440 (86.5) - 30,375	(19.4) 5,930 (26.4) 7,745 (34.5) - 12,100	(37.6) 11,510 (51.2) 15,035 (66.9) - 23,490	7/8 or #7 1 or #8 #9 1-1/4


1. AISC defined steel strength (ASD) for threaded rod: Tensile = $0.33 \bullet F_u \bullet A_{nom}$, Shear = $0.17 \bullet F_u \bullet A_{nom}$

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

In-Service Temperature Chart For Allowable Load Capacities Concrete Base Materials Masonry Units

Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Grout-Filled Concrete Masonry (Based on Bond Strength/Masonry Strength)^{1,2,3,7,9,12}

Anchor Diameter d inch	Minimum Embedment hnom inch	Critical Spacing Distance Sα inch	Minimum Edge Distance Cmin inch	Minimum End Distance Cmin inch	Tension Load Ibs	Direction of Shear Loading	Shear Load Ibs
		Anc	hor Installed Into Gr	outed Masonry Wall	Faces ^{4,5,6,8,10,11,13}		
			3	3	015	Towards Edge/End	275
0.10			3	3	615	Away From Edge/End	340
3/8	3	6	3	4	735	Any	490
			12	12	960	Any	855
			3	3	700	Towards Edge/End	430
			3	3	720	Away From Edge/End	1320
1/0			4	4		Any	655
1/2	4	8	12	12	960	Towards Edge/End	1430
			12	12		Away From Edge/End	1760
			7-3/4 (Bed Joint)	3	935	Load To Edge	460
			3	3	710	Towards Edge/End	460
			3	3	710	Away From Edge/End	1410
5/8	5	10	12	12	1005	Towards Edge/End	1530
			12	12	1095	Away From Edge/End	1880
			7-3/4 (Bed Joint)	3	1030	Load To Edge	590
			4	4	755	Towards Edge/End	630
			4	4	755	Away From Edge/End	1450
3/4	6	12	12	12	1100	Towards Edge/End	1570
			12	12	1160	Away From Edge/End	1930
			7-3/4 (Bed Joint)	4	945	Load To Edge	565
		An	chor installed into T	ops of Grouted Mas	onry Walls ^{14,15}		
chor Diameter d inch	Minimum Embedment hnom inch	Minimum Spacing Distance	Minimum Edge Distance Cmin inch	Minimum End Distance Cmin inch	Tension Load Ibs	Direction of Shear Loading	Shear Load Ibs
	2-3/4			4	595	Any	300
	4	1 anchor per cell		3	520	Load To Edge	190
1/2	4			3	520	Load To End	300
	10	1 anchor per block	1-3/4	10-1/2	1670	Load To Edge	190
	10			10-1/2	10/0	Load To End	300
	5	1 anchor per cell		3	745	Load To Edge	240
5/8	5			3	740	Load To End	300
5/0	12-1/2	1 anchor per block		10-1/2	2095	Load To Edge	240
	12-1/2		1-3/4	10-1/2	2090	Load To End	300
3/4	6	1 anchor per cell	1-0/4	4	1260	Load To Edge	410
3/4	6			4	1200	Load To End	490

1. Tabulated load values are for anchors installed in nominal 8-inch wide (203 mm) Grade N, Type II, lightweight, medium-weight or normal-weight grout filled concrete masonry units with a minimum masonry strength, f'm, of 1,500 psi (10.3 MPa) conforming to ASTM C90. If the specified compressive strength of the masonry, f'm, is 2,000 psi (13.8 MPa) minimum the tabulated values may be increased by 4 percent (multiplied by 1.04).

2. Allowable bond or masonry strengths in tension and shear are calculated using a safety factor of 5.0 and must be checked against the allowable tension and shear capacities for threaded rod based on steel strength to determine the controlling factor. See allowable load table based on steel strength.

3. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

4. Anchors may be installed in the grouted cells, cell webs and bed joints not closer than 1-1/2-inch from the vertical mortar joint (head joint) provided the minimum edge and end distances are maintained. Anchors may be placed in the head joint if the vertical joint is mortared full-depth.

5. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements.

6. The critical spacing, ser, for use with the anchor values shown in this table is 16 anchor diameters. The critical spacing, ser, distance is the distance where the full load values in the table may be used. The minimum spacing distance, smm, is the minimum anchor spacing for which values are available and installation is permitted. For 3/8-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.70 and a shear reduction factor of 0.45. For 3/4-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.85 and a shear reduction factor of 0.45. For 3/4-inch diameter anchors, the spacing may be reduced to 8 anchor diameters when using a tension reduction factor of 0.45.

7. Spacing distance is measured from the centerline to centerline between two anchors.

8. The minimum edge or end distance, cmin, is the minimum distance for which values are available and installation is permitted.

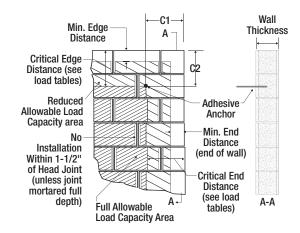
9. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

10. Linear interpolation of load values between the minimum spacing, smin, and critical spacing, scr, distances and between minimum edge or end distance, cmin is permitted.

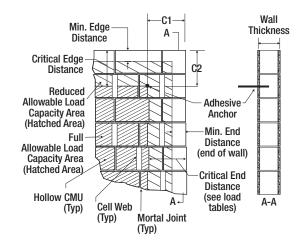
11. The tabulated values are applicable for anchors in the ends of grout-filled concrete masonry units where minimum edge and end distances are maintained.

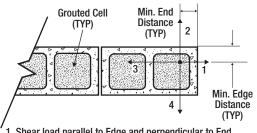
12. The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

13. Concrete masonry width (wall thickness) must be equal to or greater than 1.5 times the anchor embedment depth (e.g. 3/8-inch and 1/2-inch diameter anchors are permitted in nominally 6-inch-thick concrete masonry). The 5/8-inch and 3/4-inch diameter anchors must be installed in minimum nominally 8-inch-thck concrete masonry.

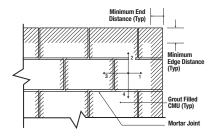

14. Anchors must be installed into the grouted cell; anchors are not permitted to be installed in a head joint, flange or web of the concrete masonry unit.

15. Allowable shear loads parallel or perpendicular to the edge of a masonry wall may be applied in or out of plane.


FECHNICAL GUIDE – ADHESIVES ©2022 DEWALT – REV.


AC100+ Gold Adhesive Anchors Installed into Grouted Concrete Masonry Wall

AC100+ Gold Adhesive Anchors Installed into Hollow Concrete Masonry Wall



AC100+ Gold Adhesive Anchors Installed into Top of Grouted Concrete Masonry Wall

- 1. Shear load parallel to Edge and perpendicular to End
- 2. Shear load parallel to End and perpendicular to Edge 3. Shear load parallel to Edge and perpendicular away
- 5. Sinear load parallel to Edge and perpendicular away from End
- 4. Shear load parallel to End and perpendicular to opposite Edge

Direction of Shear Loading in Relation to Edge and End of Masonry Wall

- 1. Shear load parallel to Edge and perpendicular to End
- 2. Shear load parallel to End and perpendicular to Edge
- 3. Shear load parallel to Edge and perpendicular away from End
- 4. Shear load parallel to End and perpendicular away from Edge

Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Hollow Concrete Masonry Walls with Stainless Steel and Plastic Screen Tubes^{12,3,4,5,6,7,8,9,10,11,12,13}

A			Critical				Allowable Load		
Anchor Diameter d inch	Screen Tube type	Minimum Embedment hnom inch	Spacing Distance Sar inch	Minimum Edge Distance Cmin inch	Minimum End Distance Cmin inch	Tension Load Ibs	Direction of Shear Loading	Shear Load Ibs	
				1-1/2	1-1/2	000	Towards Edge/End	140	
1/4	Stainless Steel	1-1/4	4	1-1/2	1-1/2	280	Away From Edge/End	235	
1/4	Stall liess Steel	1-1/4	4	3	3	350	Towards Edge/End	275	
				3	3	300	Away From Edge/End	465	
				1-7/8	1-7/8	320	Towards Edge/End	145	
	Stainless Steel	1-1/4	6	1-7/8	1-7/8	320	Away From Edge/End	245	
3/8	Stall 11655 Steel	1-1/4	0	3-3/4	3-3/4	400	Towards Edge/End	290	
5/0				3-3/4	3-3/4	400	Away From Edge/End	490	
	Plastic	1-1/4	1 anchor per cell	3	3	140	Towards Edge/End	235	
				3-3/4	3-3/4	000	Towards Edge/End	215	
	Stainless Steel	1-1/4	8	3-3/4	3-3/4	- 380 -	Away From Edge/End	365	
1/2	Stall liess Steel	1-1/4	0	11-1/4	11-1/4		400	400	Towards Edge/End
1/2				11-1/4	11-1/4	400	Away From Edge/End	730	
	Plastic	1-1/4	1 anchor per cell	3	3	150	Towards Edge/End	215	
				3-3/4	3-3/4	380	Towards Edge/End	215	
	Stainless Steel	1-1/4	8	3-3/4	3-3/4	300	Away From Edge/End	365	
5/8	Stainless Steel	1-1/4	8	11-1/4	11-1/4	400	Towards Edge/End	430	
5/0				11-1/4	11-1/4	400	Away From Edge/End	730	
P	Plastic	1-1/4	1 anchor per cell	3	3	150	Towards Edge/End	215	
				3-3/4	3-3/4	200	Towards Edge/End	215	
3/4	Ctainlana Ctarl	1-1/4	8	3-3/4	3-3/4	380	Away From Edge/End	365	
3/4	Stainless Steel	1-1/4	ŏ	11-1/4	11-1/4	400	Towards Edge/End	430	
				11-1/4	11-1/4	400	Away From Edge/End	730	

1. Tabulated load values are for anchors installed in hollow concrete masonry with minimum masonry strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be lightweight, medium-weight or normal-weight conforming to ASTM C90. Allowable loads have been calculated using a safety factor of 5.0.

2. Anchors must be installed into the hollow cell; anchors are not permitted to be installed in a mortar joint, flange or web of the concrete masonry unit.

3. A maximum of two anchor may be installed in a single masonry cell in accordance with the spacing and edge distance requirements, except as noted in the table.

4. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

5. Edge or end distance is measured from anchor centerline to the closest unrestrained edge of the CMU block.

6. The critical spacing, ser, for use with the anchor values shown in this table is 16 anchor diameters, except as noted in the table. The critical spacing, ser, distance is the distance where the full load values in the table may be used. The minimum spacing distance, smin, is the minimum anchor spacing for which values are available and installation is permitted. The spacing may be reduced to 8 anchor diameters by multiplying the tension load value by a reduction factor of 0.60 and multiplying the shear load value by a reduction factor of 0.45.

7. Spacing distance is measured from the centerline to centerline between two anchors.

8. Linear interpolation of load values between the minimum spacing, smin, and critical spacing, scr, distances and between minimum edge or end distance, cmin, is permitted if applicable.

9. Concrete masonry width (wall thickness) may be minimum nominal 6-inch-thick provided the minimum embedment (i.e. face shell thickness) is maintained.

10. The tabulated values are applicable for anchors in the ends of hollow concrete masonry units where minimum face shell thickness, minimum edge and end distances are maintained.

11. Anchors are recognized to resist dead, live and wind loads.

12. Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values.

13. The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

ADHESIVES

AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

Ultimate and Allowable Load Capacities for AC100+ Gold into Precast Hollow Core Concrete with Threaded Rod and Stainless Steel Screen Tubes^{1,2,3,4,5,6,7}

Icl

Anchor	Drill Bit	Minimum	Minimum End	Minimum Edge Ult		Ultimate Load		Allowable Load	
Diameter d in.	Diameter dbit in.	Embedment hnom in. (mm)	Distance in. (mm)	Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
1/4	3/8	1-1/2 (38)	4 (102)	4 (102)	900 (4.0)	1,550 (6.9)	180 (0.8)	310 (1.4)	
3/8	1/2	1-1/2 (38)	6 (152)	6 (152)	1,975 (8.8)	3,650 (16.2)	395 (1.8)	730 (3.2)	
1/2	5/8	1-1/2 (38)	8 (203)	8 (203)	4,400 (19.6)	5,875 (26.1)	880 (3.9)	1,175 (5.2)	

1. Tabulated load values are for anchors installed in precast hollow core concrete with minimum strength, f'm, of 5,000 psi (34.5 MPa). Allowable loads have been calculated using a safety factor of 5.0. The allowable load capacities may be increased by a factor of (f 'c / 5000)^{e13} for concrete compressive strength between 5,000 psi and 8000 psi.

2. Anchors must be installed into the hollow core; anchors are not permitted to be installed in a cell web of the hollow core concrete member.

3. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

4. Edge or end distance is measured from anchor centerline to the closest unrestrained edge of the concrete member.

5. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distance is measured from the centerline between two anchors.

6. Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values.

7. The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

Ultimate and Allowable Load Capacities for Threaded Rod Installed with AC100+ Gold into Brick Masonry Walls^{1,2,3,4}

Anchor	Drill	Minimum	Minimum End	Minimum Edge	Ultimat	e Load	Allowab	le Load
Diameter d in.	Diameter dbit in.	Embedment hnom in. (mm)	Distance in. (mm)	Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (KN)	Shear Ibs. (kN)
	· · · · ·		Anchors Installed	into the Face of Bri	ck Masonry Walls		· · · · · · · · · · · · · · · · · · ·	
		3-1/2 (89)	2-1/2 (64)	2-1/2 (64)	3,600 (16.0)	4,505 (20.0)	720 (3.2)	900 (4.0)
3/8	1/2	3-1/2 (89)	6 (152)	6 (152)	5,845 (26.0)	4,580 (20.4)	1,170 (5.2)	915 (4.1)
		6 (152)	6 (152)	6 (152)	10,420 (46.4)	4,580 (20.4)	2,085 (9.3)	915 (4.1)
1/2	5/8	6 (152)	8 (203)	8 (203)	11,500 (51.2)	9,300 (41.4)	2,300 (10.2)	1,860 (8.3)
E /0	2/4	3-1/8 (79)	9-1/2 (241)	9-1/2 (241)	4,715 (21.0)	7,700 (34.3)	945 (4.2)	1,540 (6.6)
5/8	3/4	6 (152)	9-1/2 (241)	9-1/2 (241)	9,925 (44.2)	7,700 (34.3)	1,985 (8.8)	1,540 (6.6)
			Anchors Installed	into the Top of Bri	k Masonry Walls			
3/8	1/2	3-1/2 (89)	2-1/2 (64)	2-1/2 (64)	3,665 (16.3)	2,435 (10.8)	735 (3.3)	485 (2.2)

1. Tabulated load values are for anchors installed in minimum 2 wythe, Grade SW, solid clay brick masonry conforming to ASTM C 62. Mortar and minimum mortar strength must meet Type N, S or M.

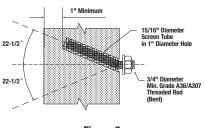
2. Allowable loads are calculated using an applied safety factor or 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

Allowable loads apply to installations in the face of brick or mortar joint. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity.
 The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable.

Allowable Load Capacities AC100+ Gold with for Threaded Rods and Reinforcing Bars or Rebar Dowel Installed in Unreinforced Masonry Walls with Stainless Steel Screen Tubes^{1,2} (Retrofit Bolt Anchors in URM Walls with Low Minimum Mortar Strengths)

Shear Anchor - Configuration A (See Figure 1)

Varies	8"	Shear Anchor 3/4" Diameter Min. Grade A36/A307 Threaded Rod Rebar Dowel No. 4, No. 5, or No. 6 Min. Grade 40 Rebar
		. 15/16" Diameter Screen Tube in 1" Diameter Hole


Figure 1

Rod Dia. or Rebar Size d in.	Minimum Embed. hnom in. (mm)	Minimum Wall Thickness in. (mm)	Allowable Tension Ibs. (KN)	Allowable Shear Ibs. (KN)
3/4	8 (203)	13 (330)	See note 3	1,000 (4.5)
No. 4	8 (203)	13 (330)	See note 3	500 (2.3)
No. 5	8 (203)	13 (330)	See note 3	750 (3.4)
No. 6	8 (203)	13 (330)	See note 3	1,000 (4.5)
A Allo shite to set at a	Produkter and the large	The set of	the set of the second second second second	1

1. Allowable load values are applicable only where in-place shear tests indicate minimum mortar strength of 35 psi net.

2. The anchors installed in unreinforced brick walls are limited to resisting seismic or wind loads only.

3. Tension loading for these anchors is outside the scope of ICC-ES ESR-4105 and AC60.

22-1/2° Combination Anchor – Configuration B (See Figure 2)

		ooningaradon i	(eee ngule _/		
Rod Dia. d in.	Minimum Minimum Embed. Wall h∞m Thickness in. in. (mm) (mm)		Allowable Tension Ibs. (KN)	Allowable Shear Ibs. (kN)	
3/4	Within 1 inch (25mm) of opposite wall surface	13 (330)	1,200 (5.4)	1,000 (4.5)	

Figure 2

1. Allowable load values are applicable only where in-place shear tests indicate minimum mortar strength of 35 psi net. 2. The anchors installed in unreinforced brick walls are limited to resisting seismic or wind loads only.

Anchor Description	Minimum Vertical Spacing in.	Minimum Horizontal Spacing in.	Minimum Edge Distance in.
Shear Anchor - Configuration A (See Figure 1)	16	16	16
22-1/2° Combination Anchor - Configuration B (See Figure 2)	16	16	16

ADHESIVES

STRENGTH DESIGN INFORMATION

Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete

	Design Information	Symbol	Units			Nominal	Rod Diamete	er¹ (inch)				
	Design Information	Symbol	UIIIts	3/8	1/2	5/8	3/4	7/8	1	1-1/4		
Threaded rod	nominal outside diameter	da	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)		
Threaded rod	effective cross-sectional area	A _{se}	inch ² (mm ²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.969		
	Naminal atranath as gavarned by	Nsa	lbf (kN)	4,495 (20.0)	8,230 (36.6)	13,110 (58.3)	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,21 (250.0		
ASTM A36 and	Nominal strength as governed by steel strength (for a single anchor)	Vsa	lbf (kN)	2,695 (12.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,72 (150.0		
ASTM F1554	Reduction factor for seismic shear	O(V,seis	(NN)	0.80	0.80	0.80	0.80	0.80	0.80	0.80		
Grade 36	Strength reduction factor for tension ²	φ	-			,	0.75					
	Strength reduction factor for shear ²	φ	-				0.65					
	Nominal strength as governed by	Nsa	lbf (kN)	5,810 (25.9)	10,640 (47.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.0)	72,68 (323.3		
ASTM F1554	steel strength(for a single anchor)	Vsa	lbf (kN)	3,485 (15.5)	6,385 (28.4)	10,170 (45.2)	15,050 (67.0)	20,775 (92.4)	27,255 (121.2)	43,61 (194.0		
Grade 55	Reduction factor for seismic shear	OlV,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80		
	Strength reduction factor for tension ²	ϕ	-		-		0.75	-	-			
	Strength reduction factor for shear ²	ϕ	-				0.65					
ASTM A193	Nominal strength as governed by	N _{sa}	lbf (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,13 (538.8		
Grade B7 and	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.1)	72,68		
ASTM F1554 Grade 105	Reduction factor for seismic shear Strength reduction factor for tension ²	$\frac{QV,seis}{\phi}$	-	0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80								
	Strength reduction factor for shear ²	ϕ					0.75					
	Nominal strength as	φ Nsa	lbf (kN)	9,300 (41.4)	17,025 (75.7)	27,120 (120.6)	40,140 (178.5)	55,905 (248.7)	72,685 (323.3)	101,75		
ASTM A449	governed by steel strength (for a single anchor)	Vsa	lbf (kN)	5,580 (24.8)	10,215 (45.4)	16,270 (72.4)	24,085 (107.1)	33,540 (149.2)	43,610 (194.0)	61,05 (271.6		
//01////110	Reduction factor for seismic shear	OlV,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80		
	Strength reduction factor for tension ²	ϕ	-				0.75					
	Strength reduction factor for shear ²	ϕ	-				0.65					
	Nominal strength as governed by	N _{sa}	lbf (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,37 (366.4		
ASTM F593 CW Stainless (Types 304	steel strength (for a single anchor)	V _{sa}	lbf (kN)	4,650 (20.7)	8,515 (37.9)	13,560 (60.3)	17,060 (75.9)	23,545 (104.7)	30,890 (137.4)	49,42 (219.8		
and 316)	Reduction factor for seismic shear Strength reduction factor for tension ³	Olv,seis Ø	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80		
	Strength reduction factor for shear ³	ϕ	_				0.60			-		
ASTM A193	Nominal strength as governed by	Ψ N _{sa}	lbf (KN)	4,420 (19.7)	8,090 (36.0)	12,880 (57.3)	19,065 (84.8)	26,315 (117.1)	34,525 (153.6)	55,24 (245.7		
Grade B8/B8M, Class 1 Stainless	steel strength (for a single anchor) ⁴	Vsa	lbf (kN)	2,650 (11.8)	4,855 (21.6)	7,730 (34.4)	11,440 (50.9)	15,790 (70.2)	20,715 (92.1)	33,14 (147.4		
(Types 304	Reduction factor for seismic shear	OlV,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80		
and 316)	Strength reduction factor for tension ²	φ	-			-	0.75					
ASTM A193	Strength reduction factor for shear ²	φ Nsa	- Ibf (kN)	7,365 (32.8)	13,480 (60.0)	21,470 (95.5)	0.65 31,775 (141.3)	43,860 (195.1)	57,545 (256.0)	92,06 (409.5		
Grade B8/ B8M2,	Nominal strength as governed by steel strength (for a single anchor)	Vsa	lbf (kN)	4,420 (19.7)	8,085 (36.0)	12,880 (57.3)	19,065 (84.8)	26,315 (117.1)	34,525 (153.6)	55,24 (245.7		
Class 2B Stainless	Reduction factor for seismic shear	<i>O</i> (V,seis	-	0.70 0.70 0.80 0.80 0.80 0.80 0.80								
(Types 304	Strength reduction factor for tension ²	φ	-				0.75					
and 316)	Strength reduction factor for shear ²	φ	-				0.65					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

2. The tabulated value of \u03c6 applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \u03c6 must be determined in accordance with ACI 318 0.4.4. Values correspond to ductile steel elements.

The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-11 4.7.3.3 or ACI 318-11 0.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 0.4.4. Values correspond to brittle steel elements

4. In accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/88M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9fy or 57,000 psi (393 MPa).

ADHESIVES

AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete

CONF. LIGTER	AGTH OZ
ICC-ES ESR-2582	(\mathfrak{I})

						Nomina	I Reinforcin	g Bar Size ((Rebar) ¹		
	Design Information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Rebar nomir	al outside diameter	da	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)
Rebar effect	ive cross-sectional area	Ase	inch ² (mm ²)	0.110 (71.0)	0.200 (129.0)	0.310 (200.0)	0.440 (283.9)	0.600 (387.1)	0.790 (509.7)	1.000 (645.2)	1.270 (819.4)
	Nominal strength as governed by	Nsa	lbf (kN)	11,000 (48.9)	20,000 (89.0)	31,000 (137.9)	44,000 (195.7)	60,000 (266.9)	79,000 (351.4)	100,000 (444.8)	127,000 (564.9)
ASTM A615	steel strength (for a single anchor)	Vsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	36,000 (160.1)	47,400 (210.8)	60,000 (266.9)	76,200 (338.9)
Grade 75	Reduction factor for seismic shear	<i>O</i> ∕v,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ³	ϕ	-	0.65							
	Strength reduction factor for shear ³	ϕ	-				0.	60			
	Nominal strength as governed by	Nsa	lbf (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)	71,100 (316.3)	90,000 (400.3)	114,300 (508.4)
ASTM A615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)
Grade 60	Reduction factor for seismic shear	<i>O</i> ℓV,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ³	ϕ	-				0.	65	°		
	Strength reduction factor for shear ³	ϕ	-				0.	60			_
	Nominal strength as governed by	Nsa	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)
ASTM A706	steel strength (for a single anchor)	Vsa	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)
Grade 60	Reduction factor for seismic shear	<i>O</i> Xv,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ²	ϕ	-				0.	75			
	Strength reduction factor for shear ²	ϕ	-					65			
	Nominal strength as governed by		lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	In accorda	ance with As	STM A 615.	Grade 40
ASTM A615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	In accordance with ASTM A 615, Grade bars are furnished only in sizes No. 3 through No. 6			
Grade 40	Reduction factor for seismic shear	Ø∕v,seis	-	0.70	0.70	0.80	0.80				
	Strength reduction factor for tension ³	ϕ	-	0.65							
	Strength reduction factor for shear ³	ϕ	-				0.	60			

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements. In accordance with ACI 318-19 17.10.5.3(a)(vi), ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)(6, as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-19 20.2.2, ACI 318-14 20.2.2.4 and 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.

3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.

Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars

DEWALI

ANCHORS & FASTENERS

					Nominal Ro	d Diameter (in	ich) / Reinford	ing Bar Size		
Design Information	Symbol	Units	3/8 or #3	1/2 or #4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4 or #10
Effectiveness factor for cracked concrete	K _{c,cr}	(SI)	Not Applicable				17 (7.1)			
Effectiveness factor for uncracked concrete	k _{c,uncr}	- (SI)					24).0)			
Minimum embedment	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)
Maximum embedment	h _{ef,max}	inch (mm)	4-1/2 (114)	6 (152)	7-1/2 (191)	9 (229)	10-1/2 (267)	12 (305)	13-1/2 (343)	15 (381)
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2-1/2 (64)	3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)
Minimum edge distance ²	Cmin	inch (mm)			5 <i>d</i> where <i>d</i> i	s nominal out	side diameter	of the anchor		
Minimum edge distance, reduced ² (45% T _{max})	Cmin,red	inch (mm)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)
Minimum member thickness	h _{min}	inch (mm)	h _{ef} + (h _{ef} +	1-1/4 ⊦ 30)		h _{ef} -	+ 2d₀ where d	₀ is hole diam	eter;	
Critical edge distance—splitting		inch			Cac	$h = h_{ef} \cdot (\frac{\tau_{uncr}}{1160})$	^{0.4} · [3.1-0.7	h_] []] lef		
(for uncracked concrete only) ³	Cac	(mm)	(mm) $C_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{8}\right)^{\alpha_4} \cdot [3.1\text{-}0.7 \frac{h}{h_{ef}}]$							
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	φ	-				0.	65			
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	φ	-	0.70							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. τ_{kumer} need not be taken as greater than: $\tau_{kumer} = \frac{kumer \cdot \sqrt{h_{ef} \cdot f'_{C}}}{\pi \cdot d}$ and $\frac{h}{h_{ef}}$ need not be taken as larger than 2.4.

4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Threaded Rods

DEWALI

ANCHORS & FASTENERS

					Nomii	nal Rod Diam	eter (Inch) / F	Reinforcing Ba	ar Size	
Design Info	ormation	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Minimum er	nbedment	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	5 (127)
Maximum er	nbedment	h _{ef,max}	inch (mm)	4-1/2 (114)	6 (152)	7-1/2 (191)	9 (229)	10-1/2 (267)	12 (305)	15 (381)
Temperature Range A 122°F (50°C)	Characteristic bond strength in cracked concrete ^{4,7}	$ au_{ m k,cr}$	psi (N/mm²)	Not Applicable	498 (3.4)	519 (3.6)	519 (3.6)	519 (3.6)	519 (3.6)	525 (3.6)
Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Shart Term	Characteristic bond strength in	Tk.uncr	psi	823	823	823	823	823	743 (5.1)	588 (4.1) licable in
Service Temperature ^{3,4} uncracked concrete		ν, uici	(N/mm²)	(5.7)	(5.7)	(5.7)	(5.7)	(5.7)	water-fi	lled hole n condition
Temperature Range B 162°F (72°C <u>)</u>	Characteristic bond strength in cracked concrete ^{4,7}	$ au_{k,cr}$	psi (N/mm²)	Not Applicable	245 (1.7)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)
Maximum Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ^{3,4}	Characteristic bond strength in uncracked concrete ^{4,8}	auk,uncr	psi (N/mm²)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	water-fi	366 (2.5) licable in lled hole	Not Applicable
	Dry concrete	Anchor Category	-			1	1	motandido		1
		$\phi_{ m d}$	-				0.65			
Permissible installation	Water-saturated concrete	Anchor Category	-				2			
conditions ⁶	concrete	$\phi_{\scriptscriptstyle m WS}$	-				0.55			
	Water-filled hole	Anchor Category	-				3			
	(flooded)	$\phi_{ m wf}$	-	0.45						
		$\kappa_{ m wf}$			0.	78		0.70	0.69	0.67
Reduction factor fo	Reduction factor for seismic tension		-				0.95			

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{a13} [For SI: (f'c / 17.2)^{a13}].

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-19 17.2.4.1, ACI 318-14 17.2.6 where applicable.

3. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 9.1, Temperature Category A.

4. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

5. Characteristic bond strengths are for sustained loads including dead and live loads. Characteristic bond strengths are also applicable to short-term loading. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased by 43 percent for Temperature Range A and 122 percent for Temperature Range B.

6. Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

7. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete must be adjusted by an additional reduction factor, $\alpha_{N,seis}$, as given in this table.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

ADHESIVES

AC100+ GOLD[®] Vinylester Injection Adhesive Anchoring System

Bond Strength Design Information for Reinforcing Bar

Decise Infe		Symbol	Units		N	lominal Rod	Diameter (Ir	nch) / Reinfo	rcing Bar Siz	ze			
Design Info	ormation	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10		
Minimum er	nbedment	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)		
Maximum er	nbedment	h _{ef,max}	inch (mm)	4-1/2 (114)	6 (152)	7-1/2 (191)	9 (229)	10-1/2 (267)	12 (305)	13-1/2 (343)	15 (381)		
Temperature Range A 122°F (50°C) Maximum Long-Term	Characteristic bond strength in cracked concrete ^{4,7}	$ au_{ extsf{k,cr}}$	psi (N/mm²)	Not Applicable	331 (2.3)	345 (2.4)	345 (2.4)	345 (2.4)	345 (2.4)	349 (2.4)	349 (2.4)		
Service Temperature; 176°F (80°C) Maximum Short-Term	Characteristic bond strength in	$ au_{ m k.uncr}$	psi	823	823	823	823	823	743 (5.1)	655 (4.5)	588 (4.1)		
Service Temperature ^{3,4}	uncracked concrete4,8	$ au_{ ext{k,uncr}}$	¢k,uncr		^{(,uncr} (N/mm²)	⁽¹⁾ (N/mm ²) (5.7)	(5.7)	(5.7)	(5.7)	(5.7)		able in water allation cond	
Temperature Range B 162°F (72°C) Maximum Long-Term	Characteristic bond strength in cracked concrete ^{4,7}	$ au_{ extsf{k,cr}}$	psi (N/mm²)	Not Applicable	163 (1.1)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2)		
Service Temperature; 248°F (120°C) Maximum Short-Term	Characteristic bond strength in	$ au_{ ext{k.uncr}}$	psi	405 405 405		405	405 (2.8)	366 (2.5)	329 (2.3)	Not			
Service Temperature ^{3,4}	uncracked concrete ^{4,8}	¢k,uncr	(N/mm²)	(2.8)	(2.8)	(2.8)	(2.8)	Not applicable in water-filled hole Applicable installation condition					
	Dry concrete	Anchor Category	-					1					
		$\phi_{ m d}$	-				0.	65					
Permissible installation	Water-saturated	Anchor Category	-					2					
conditions ⁶	concrete	$\phi_{\scriptscriptstyle m WS}$	-				0.	.55					
of the test of		Anchor Category	-					3					
		$\phi_{\scriptscriptstyle \mathrm{wf}}$	-				0.	45					
		$\kappa_{ m wf}$			0.	78		0.70	0.69	0.68	0.67		
Reduction factor fo	r seismic tension	$lpha_{ m N,seis}$	-				1	.0					

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

Bond strength values correspond to a normal-weight concrete compressive strength fc = 2,500 psi (17.2 MPa). For concrete compressive strength, fc between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (fc / 2,500)⁶¹³ [For SI: (fc / 17.2)⁶¹³].

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-19 17.2.4.1, ACI 318-14 17.2.6 where applicable.

3. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 9.1, Temperature Category A.

4. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

5. Characteristic bond strengths are for sustained loads including dead and live loads. Characteristic bond strengths are also applicable to short-term loading. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased by 43 percent for Temperature Range A and 122 percent for Temperature Range B.

6. Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

7. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete must be adjusted by an additional reduction factor, CM. ends, as given in this table.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

 \mathbf{e}

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strength for Threaded Rod and Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

		Minimum Concrete Compressive Strength									
Nominal	Embed.	f'c = 2,5	i00 (psi)	f'c = 3,0)00 (psi)	f'c = 4,0)00 (psi)	f'c = 6,0	000 (psi)	f'c = 8,0	000 (psi)
Rod/Rebar Size (in. or #)	Depth hef (in.)	ØNcb or ØNa Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)	∲N₀ or ØNª Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)	∲N₀ or ØNª Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)	∲N₀ or Ø№ Tension (lbs.)	φVcb or φVcp Shear (Ibs.)	∲N₀₀ or ØNª Tension (Ibs.)	¢V∞ or ΦV∞ Shear (Ibs.)
	2-3/8	1,495	1,610	1,535	1,650	1,590	1,715	1,675	1,805	1,740	1,875
3/8 or #3	3	1,890	2,955	1,935	3,270	2,010	3,830	2,120	4,565	2,200	4,735
	4-1/2	2,835	5,395	2,905	5,965	3,015	6,495	3,180	6,845	3,300	7,105
	2-3/4	2,310	2,780	2,365	3,075	2,455	3,605	2,590	4,505	2,690	5,280
1/2 or #4	4	3,360	5,230	3,440	5,785	3,575	6,780	3,765	8,110	3,910	8,420
	6	5,040	9,530	5,165	10,540	5,360	11,545	5,650	12,170	5,865	12,630
	3-1/8	3,280	3,695	3,360	4,085	3,490	4,785	3,680	5,990	3,820	7,020
5/8 or #5	5	5,250	8,155	5,380	9,015	5,585	10,565	5,885	12,675	6,110	13,160
	7-1/2	7,880	14,850	8,065	16,420	8,375	18,035	8,825	19,015	9,165	19,735
	3-1/2	4,285	4,730	4,380	5,230	4,535	6,130	4,760	7,670	4,925	8,990
3/4 or #6	6	7,565	11,515	7,745	12,730	8,040	14,925	8,475	18,250	8,795	18,950
	9	11,345	20,970	11,615	23,190	12,060	25,975	12,710	27,380	13,195	28,420
	3-1/2	4,370	4,930	4,475	5,470	4,635	6,410	4,865	8,020	5,040	9,400
7/8 or #7	7	10,295	14,500	10,540	16,035	10,940	18,795	11,535	23,510	11,975	25,790
	10-1/2	15,440	26,410	15,810	29,210	16,415	34,235	17,300	37,265	17,960	38,685
	4	5,210	6,045	5,325	6,685	5,515	7,835	5,795	9,800	6,000	11,490
1 or #8	8	12,140	17,000	12,430	18,800	12,905	22,040	13,600	27,565	14,120	30,410
	12	18,205	30,965	18,645	34,245	19,355	40,140	20,400	43,940	21,180	45,615
	5	5,795	6,845	5,925	7,570	6,135	8,875	6,445	11,100	6,670	13,010
#9	10	13,545	19,320	13,865	21,365	14,395	25,045	15,175	31,325	15,755	33,930
	15	20,315	35,195	20,800	38,920	21,595	45,620	22,760	49,025	23,630	50,895
	5	6,575	7,695	6,720	8,510	6,955	9,975	7,305	12,480	7,565	14,625
1-1/4	10	15,010	21,630	15,370	23,920	15,955	28,035	16,820	35,065	17,460	37,605
	15	22,515	39,390	23,055	43,560	23,930	51,060	25,225	54,335	26,190	56,405
	5	6,490	7,685	6,635	8,495	6,870	9,960	7,215	12,455	7,470	14,600
#10	10	15,010	21,665	15,370	23,960	15,955	28,085	16,820	35,130	17,460	37,605
	15	22,515	39,465	23,055	43,640	23,930	51,155	25,225	54,335	26,190	56,405

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

- Ca1 is greater than or equal to the critical edge distance, Cac

- Ca2 is greater than or equal to 1.5 times Ca1.

1-800-4 DEWALT

2. Calculations were performed according to ACI 318 (-19 or -14), Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based onACl 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 - 19 17.5.2.2, ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14), Ch.17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14), Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14), Ch.17 and ICC-ES AC308 and ESR-2582.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

63

ADHESIVES

Tension and Shear Design Strength for Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 122°F (50°C) Maximum Long-Term ServiceTemperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

					Minim	um Concrete C	compressive St	rength			
Nominal	Embed.	f'c = 2,5	500 (psi)	f'c = 3,0)00 (psi)	f'c = 4,0	000 (psi)	f'c = 6,0)00 (psi)	f'c = 8,000 (psi)	
Rod/Rebar Size (in.)	Depth hef (in.)	∲N₀₀ or ØNª Tension (Ibs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)	∲N₀₀ or ØNª Tension (Ibs.)	$\phi_{\mathbf{V}_{\mathrm{cb}}}$ or $\phi_{\mathbf{V}_{\mathrm{cp}}}$ Shear (lbs.)	∲N₀₀ or ØNª Tension (Ibs.)	$\phi_{\mathbf{V}_{\mathrm{cb}}}$ or $\phi_{\mathbf{V}_{\mathrm{cp}}}$ Shear (lbs.)	∲N₀₀ or ØNª Tension (Ibs.)	φV₀ or φV₀ Shear (Ibs.)	ØN₀₀ or ØNª Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)
	2-3/4	1,400	1,985	1,430	2,195	1,485	2,575	1,565	3,220	1,625	3,505
1/2	4	2,035	3,735	2,085	4,130	2,160	4,655	2,280	4,910	2,365	5,095
	6	3,050	6,570	3,125	6,730	3,245	6,985	3,420	7,365	3,550	7,645
	3-1/8	2,070	2,640	2,120	2,915	2,200	3,420	2,320	4,275	2,410	5,015
5/8	5	3,310	5,825	3,390	6,440	3,520	7,550	3,710	7,995	3,855	8,300
	7-1/2	4,970	10,605	5,085	10,955	5,280	11,375	5,565	11,990	5,780	12,445
	3-1/2	2,705	3,380	2,760	3,735	2,860	4,380	3,000	5,480	3,105	6,420
3/4	6	4,770	8,225	4,885	9,095	5,070	10,660	5,345	11,510	5,550	11,950
	9	7,155	14,980	7,325	15,780	7,605	16,380	8,015	17,265	8,320	17,925
	3-1/2	2,755	3,525	2,820	3,910	2,920	4,580	3,070	5,730	3,180	6,715
7/8	7	6,490	10,360	6,645	11,455	6,900	13,425	7,275	15,665	7,550	16,265
	10-1/2	9,735	18,865	9,970	20,865	10,350	22,295	10,910	23,500	11,325	24,395
	4	3,640	4,320	3,720	4,775	3,855	5,595	4,045	7,000	4,190	8,205
1	8	8,480	12,145	8,680	13,430	9,015	15,740	9,500	19,690	9,865	21,240
	12	12,720	22,120	13,025	24,460	13,520	28,670	14,250	30,695	14,795	31,865
	5	5,870	5,495	6,000	6,080	6,210	7,125	6,525	8,915	6,755	10,445
1-1/4	10	13,400	15,450	13,720	17,085	14,245	20,025	15,015	25,050	15,590	29,360
	15	20,100	28,135	20,585	31,115	21,370	36,470	22,525	45,620	23,385	50,365

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.

 Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-2582.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength requires an additional reduction factor applied for seismic tension (*Cateores*), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,5	500 (psi)	f'c = 3,0)00 (psi)	f'c = 4,0)00 (psi)	f'c = 6,0	000 (psi)	f'c = 8,000 (psi)	
Rod/Rebar Size (#)	Depth hef (in.)	∲N₀₀ or ØNª Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)	∲N₀₀ or ØNª Tension (Ibs.)	ΦVcb or ΦVcp Shear (lbs.)	∲N₀₀ or ØNª Tension (Ibs.)	ΦVcb or ΦVcp Shear (Ibs.)	∲N₀₀ or ØNª Tension (Ibs.)	φVcb or φVcp Shear (Ibs.)	∲N₀₀ or ØNª Tension (Ibs.)	$\phi_{\mathbf{V}_{\mathrm{cb}}}$ or $\phi_{\mathbf{V}_{\mathrm{cp}}}$ Shear (Ibs.)
	2-3/4	930	1,985	950	2,050	990	2,130	1,040	2,245	1,080	2,330
#4	4	1,350	2,910	1,385	2,980	1,435	3,095	1,515	3,265	1,575	3,385
	6	2,030	4,365	2,075	4,470	2,155	4,645	2,270	4,895	2,360	5,080
	3-1/8	1,375	2,640	1,410	2,915	1,465	3,150	1,540	3,320	1,600	3,445
#5	5	2,200	4,740	2,255	4,855	2,340	5,040	2,465	5,315	2,560	5,515
	7-1/2	3,300	7,115	3,380	7,285	3,510	7,560	3,700	7,970	3,840	8,275
	3-1/2	1,795	3,380	1,835	3,735	1,900	4,095	1,995	4,300	2,065	4,450
#6	6	3,170	6,830	3,245	6,990	3,370	7,260	3,550	7,650	3,690	7,945
	9	4,755	10,240	4,870	10,490	5,055	10,890	5,330	11,475	5,530	11,915
	3-1/2	1,830	3,525	1,875	3,910	1,945	4,185	2,040	4,395	2,110	4,550
#7	7	4,315	9,295	4,420	9,515	4,585	9,880	4,835	10,415	5,020	10,810
	10-1/2	6,475	13,940	6,630	14,275	6,880	14,820	7,255	15,620	7,530	16,215
	4	2,420	4,320	2,475	4,775	2,560	5,515	2,690	5,795	2,785	6,000
#8	8	5,635	12,140	5,770	12,430	5,990	12,905	6,315	13,600	6,555	14,120
	12	8,455	18,210	8,655	18,645	8,985	19,355	9,475	20,405	9,835	21,180
	5	3,090	4,890	3,155	5,410	3,270	6,340	3,435	7,395	3,555	7,655
#9	10	7,215	13,800	7,390	15,260	7,670	16,520	8,085	17,415	8,395	18,080
	15	10,825	23,315	11,085	23,870	11,505	24,780	12,130	26,125	12,590	27,120
	5	3,855	5,490	3,940	6,070	4,080	7,115	4,280	8,900	4,435	9,550
#10	10	8,910	15,475	9,120	17,115	9,470	20,060	9,980	21,500	10,365	22,320
	15	13,365	28,190	13,685	29,470	14,205	30,595	14,975	32,250	15,545	33,480

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- Ca2 is greater than or equal to 1.5 times Ca1.

ANCHORS & FASTENERS

 Calculations were performed according to ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-2582.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-2582 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 - 19 17.5.2.2, ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch.17, ICC-ES AC308 and information

included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch.17 and ICC-ES AC308 and ESR-2582.
 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diumal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength requires an additional reduction factor applied for seismic tension ($\alpha_{\text{N,seeb}}$), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete or water-filled hole applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

5

Tension Design of Steel Elements (Steel Strength)^{1,2}

Nominal Rod/Rebar Size	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
(in. or No.)	ØNsa Tension (lbs.)	ØN≊ Tension (lbs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)
3/8 or #3	3,370	4,360	7,265	5,040	3,315	5,525	7,150	6,435	6,600	4,290
1/2 or #4	6,175	7,980	13,300	9,225	6,070	10,110	13,000	11,700	12,000	7,800
5/8 or #5	9,835	12,715	21,190	14,690	9,660	16,105	20,150	18,135	18,600	12,090
3/4 or #6	14,550	18,815	31,360	18,480	14,300	23,830	28,600	25,740	26,400	17,160
7/8 or #7	20,085	25,970	43,285	25,510	19,735	32,895	39,000	35,100	36,000	
1 or #8	26,350	34,070	56,785	33,465	25,895	43,160	51,350	46,215	47,400	
#9	-						65,000	58,500	60,000	
1-1/4 or #10	42,160	54,510	90,850	53,540	41,430	69,050	82,550	74,295	76,200	

- Throaded Red and Reinforcing Rar

1. Steel tensile design strength according to ACI 318 (-19 or -14) Ch.17 or ACI 318 Appendix D, ϕ Nsa = ϕ • Ase N • futa.

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode,

the lowest load level controls.

Shear Design of Steel Elements (Steel Strength)^{1,2,3}

	Steel Elements - Threaded Rod and Reinforcing Bar											
Nominal Rod/Rebar Size	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar		
(in. or No.)	ØVsa Shear (lbs.)	ØV₅a Shear (lbs.)	ØV₅a Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØV₅a Shear (lbs.)	ØVsa Shear (Ibs.)	ØV₅ Shear (lbs.)	ØV₅ Shear (lbs.)	ØVsa Shear (Ibs.)		
3/8 or #3	1,755	2,265	3,775	2,790	1,725	2,870	3,960	3,565	3,430	2,375		
1/2 or #4	3,210	4,150	6,915	5,110	3,155	5,255	7,200	6,480	6,240	4,320		
5/8 or #5	5,115	6,610	11,020	8,135	5,025	8,375	11,160	10,045	9,670	6,695		
3/4 or #6	7,565	9,785	16,305	10,235	7,435	12,390	15,840	14,255	13,730	9,505		
7/8 or #7	10,445	13,505	22,505	14,130	10,265	17,105	21,600	19,440	18,720			
1 or #8	13,700	17,715	29,525	18,535	13,465	22,445	28,440	25,595	24,650	-		
#9							36,000	32,400	31,200	-		
1-1/4 or #10	21,920	28,345	47,240	29,655	21,545	35,905	45,720	41,150	39,625	-		

- Steel Strength

1. Steel shear design strength according to ACI 318 (-19 or -14) Ch.17 or ACI 318 Appendix D, ϕ Vsa = $\phi \cdot 0.60 \cdot A_{se,V} \cdot f_{uta.}$

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

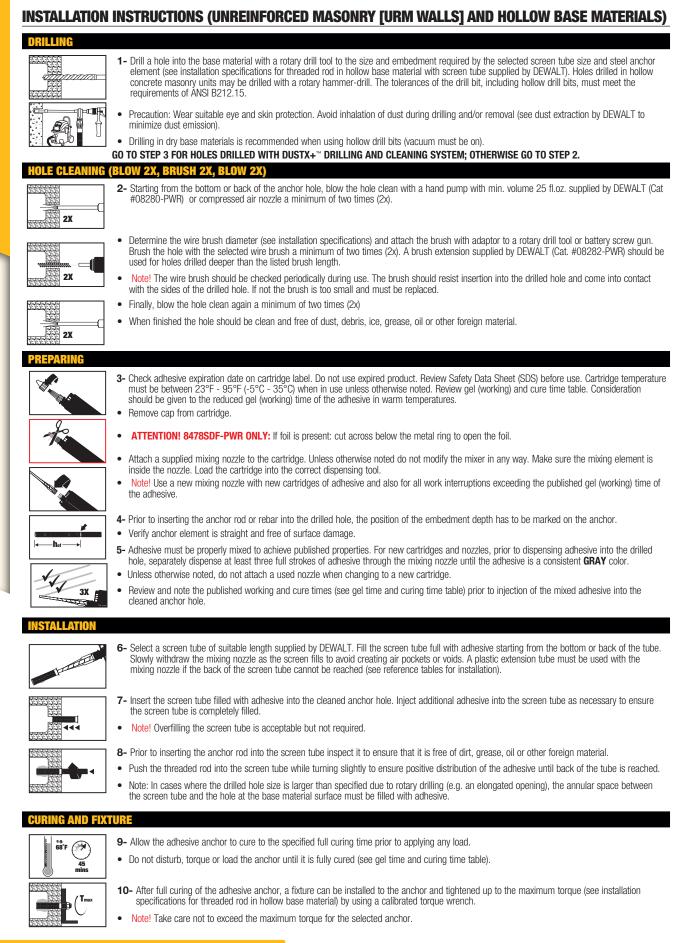
3. In the determination of the shear design strength values in cracked concrete, the steel strength requires an additional reduction factor applied for seismic shear (Qv.seis), where seismic design is applicable.

ADHESIVES

INSTALLATION INSTRUCTIONS (SOLID BASE MATERIALS)

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
 - Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal (see optional dust extraction equipment supplied by DEWALT to minimize dust emission).

- Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.
- Drilling in dry base material is recommended when using hollow drill bits (vacuum must be on).
- GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+™ DRILLING AND CLEANING SYSTEM; OTHERWISE GO TO STEP 2A.
- 2a- Starting from the bottom or back of the anchor hole, blow the hole clean using a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz.) supplied by DEWALT) a minimum of four times (4x). Use a compressed air nozzle or a hand pump for anchor rod diameters 3/8" to 3/4" or reinforcing bar (rebar) sizes #3 to #6. • **4X** Use a compressed air nozzle for anchor rod diameter 7/8" to 1-1/4" and rebar sizes #7 to #10. Do not use a hand pump for these sizes. 2b- Determine wire brush diameter (see installation specifications) and attach the brush with adaptor to a rotary drill tool or battery screwgun. Brush the hole with the selected wire brush a minimum of four times (4x). A brush extension (supplied by DEWALT) should be used for holes drilled deeper than the listed brush length. **4X** Note! The wire brush diameter should be checked periodically during use. The brush should resist insertion into the drilled hole and come into contact with the sides of the drilled hole. If not the brush is too small and must be replaced. 2c- Finally, blow the hole clean again using a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl.oz.) supplied by DEWALT a minimum of four times (4x). Use a compressed air nozzle or a hand pump for anchor rod diameters 3/8" to 3/4" or reinforcing bar (rebar) sizes #3 to #6. • 4X • Use a compressed air nozzle for anchor rod diameters 7/8" to 1-1/4" and rebar sizes #7 to #10. Do not use a hand pump for these sizes. When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material. PREPA 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 23°F - 95°F (-5°C - 35°C) when in use unless otherwise noted. Review gel (working) and cure time table. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. Remove cap from cartridge. ATTENTION! 8478SDF-PWR ONLY: If foil is present: cut across below the metal ring to open the foil. Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way. Make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool. Note! Use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published gel (working) time of • the adhesive. 4- Prior to inserting the anchor rod or rebar into the drilled hole, the position of the embedment depth has to be marked on the anchor. · Verify anchor element is straight and free of surface damage. 5- Adhesive must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color. Unless otherwise noted, do not attach a used nozzle when changing to a new cartridge. 3X 📕 Review and note the published working and cure times (see gel time and curing time table) prior to injection of the mixed adhesive into the cleaned anchor hole. TITT 6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. If the bottom or back of the anchor hole is not reached with the mixing 1 nozzle only, a plastic extension tube supplied by DEWALT must be used with the mixing nozzle (see reference tables for installation). Piston plugs must be used with and attached to mixing nozzle and extension tube for overhead (i.e. upwardly inclined) installations and horizontal WITH PISTON PLUG: installations with anchor sizes as indicated in the piston plug selection table. Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure. Attention! Do not install anchors overhead without proper training and installation hardware provided by DEWALT. Contact DEWALT for details.) E 7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time. 8- Be sure the rod or rebar is fully seated at the bottom of the hole to the specified embedment. Adhesive must completely fill the annular gap between the anchor and the base material. Protect exposed anchor threads from fouling with adhesive. For all installations the anchor must be restrained from movement throughout the specified curing period (as necessary) where necessary through the use of temporary wedges, external supports, or other methods. Minor adjustments to the position of the anchor element may be performed during the gel (working) time only. 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table). Do not disturb, torque or load the anchor until it is fully cured. 10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference gel time


5

ADHESIVE

67

1-800-4 DEWALT

68

www.DEWALT.com

REFERENCE INSTALLATION TABLES

Gel (working) Time and Curing Table

Temperature	of Base Material	Gel (working) Time	Full Curing Time								
۴	°C										
14	-10	90 minutes	24 hours								
23	-5	90 minutes	14 hours								
32	0	45 minutes	7 hours								
41	5	25 minutes	2 hours								
50	10	15 minutes	90 minutes								
68	20	6 minutes	45 minutes								
86	30	4 minutes	25 minutes								
95	95 35		20 minutes								
104	40	1.5 minutes	15 minutes								

The gel (working) times listed for 32'F to 95'F are also applicable for the temperature of the adhesive and use of mixing nozzes during installation. For installations in base material temperatures between 14'F and 23'F (-10°C and -5°C) the cartridge temperature must be conditioned to between 68'F and 95'F (20'C - 35'C).

Wire Brush Selection Table for AC100+ Gold^{1,2}

Nominal Wire Brush Size (inch)	ANSI Drill Bit Diameter (inch)	Brush Length (inches)	Steel Wire Brush (Cat. #)	Blowout Tool
		Solid Base Material		
7/16	7/16	7	08284-PWR	
9/16	9/16	7	08285-PWR	Hand-pump
5/8	5/8	7	08275-PWR	(Cat #08280-PWR)
11/16	11/16	9	08286-PWR	or compressed
3/4	3/4	9	08278-PWR	air nozzle
7/8	7/8	9	08287-PWR	
1	1	11	08288-PWR	
1-1/8	1-1/8	11	08289-PWR	Compressed air
1-3/8	1-3/8	11	08290-PWR	nozzle only
1-1/2	1-1/2	11	08291-PWR	
	Hol	low Base Material (with Screen Tu	be)	
3/8	3/8 (SS screen)	7	08284-PWR	
1/2	1/2 (SS screen)	7	08284-PWR	
9/16	9/16 (plastic screen)	7	08285-PWR	
5/8	5/8 (SS screen)	7	08275-PWR	– – Hand pump (Cat# 08280-PWR) or
3/4	3/4 (plastic screen)	9	08278-PWR	
3/4	3/4 (SS screen)	9	08278-PWR	compressed air nozzl
7/8	7/8 (plastic screen)	9	08287-PWR	1
7/8	7/8 (SS screen)	9	08287-PWR	
1	1 (SS screen)	11	08288-PWR	

1. An SDS-plus adaptor (Cat. #08283-PWR) or Jacobs chuck style adaptor (Cat. #08296-PWR) is available to attach a steel wire brush to the drill tool.

2. A brush extension (Cat. #08282-PWR) must be used for holes drilled deeper than the listed brush length.

For Retrofit Bolt Anchors in URM Walls, including separate installation details, see the table in this tech section entitled "Allowable Load Capacities for AC100+ Gold with Threaded Rods and Reinforcing Bars or Rebar Dowel Installed in Unreinforced Masonry Walls with Stainless Steel Screen Tubes"

Piston Plug Selection Table for Adhesive Anchors^{1,2,3,4}

Drill Bit Diameter (inch)	Plug Size (inch)	Piston Plug (Cat. #)	Premium Piston Plug (Cat. #)
11/16	11/16	08258-PWR	PFC1691515
3/4	3/4	08259-PWR	PFC1691520
7/8	7/8	08300-PWR	PFC1691530
1	1	08301-PWR	PFC1691540
1-1/8	1-1/8	08303-PWR	PFC1691550
1-1/4	1-1/4	08307-PWR	PFC1691555
1-3/8	1-3/8	08305-PWR	PFC1691560
1-1/2	1-1/2	08309-PWR	PFC1691570
1-3/4	1-3/4	-	PFC1691580
2	2	-	PFC1691590
2-3/16	2-3/16	-	PFC1691600

1. All overhead or upwardly inclined installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All horizontal installations require the use of piston plugs where the embedment depth is greater than 8 inches and the drill bit size is larger than 5/8-inch.

3. The use of piston plugs is also recommended for underwater installations where one is tabulated together with the anchor size.

4. A flexible plastic extension tube (Cat. #08281-PWR or #08297-PWR) or equivalent approved by DEWALT must be used with piston plugs.

ORDERING INFORMATION

AC100+ Gold Cartridges (10:1 mix ratio)

Cat. No.	Description	Description Pack Qty. Std. Ca		Pallet
8478SD-PWR	AC100+ Gold 9.5 fl. oz. Quick-Shot	12	36	648
8478SDF-PWR	VR AC100+ Gold 9.5 fl. oz. Quick-Shot Foil 12 36		36	648
8578SD-PWR	8578SD-PWR AC100+ Gold 14 fl. oz. coaxial cartridge		12	540
8490SD-PWR AC100+ Gold 28 fl. oz. dual cartridge - 8 2-		240		
An AC100+ Gold mixing nozzle is packaged with each cartridge.				

AC100+ Gold mixing nozzles must be used to ensure complete and proper mixing of the adhesive.

Cartridge System Mixing Nozzles

Cat. No. Pack Qty. Carton Qty. Description 08293-PWR Mixing nozzle for AC100+ Gold 2 24 08294-PWR Long mixing nozzle (with an 8" extension) for AC100+ Gold 2 24 08281-PWR 2 24 Mixing nozzle extension, 8" long 08297-PWR 36 Flexible extension tubing, 20" long 12

Dispensing Tools for Injection Adhesive

Cat. No.	Description	Pack Qty.
08437-PWR	Manual caulking gun for Quick-Shot	1
DCE560D1	Quick-Shot 20v battery powered caulking gun	1
08414-PW	14 fl. oz. standard metal manual tool	1
08494-PWR	AC100+ Gold 28 oz. std. metal manual tool	1
08496-PWR	28 oz. pneumatic tool	1
DCE595D1	28 oz. 20v battery powered dispensing tool	1

Hole Cleaning Tools and Accessories

	ing tools and Accessories	
Cat. No.	Description	Pack Qty.
08284-PWR	Wire brush for 7/16" or 1/2" ANSI hole, 7" length	1
08285-PWR	Wire brush for 9/16" ANSI hole, 7" length	1
08275-PWR	Wire brush for 5/8" ANSI hole, 7" length	1
08286-PWR	Wire brush for 11/16" ANSI hole, 9" length	1
08278-PWR	Wire brush for 3/4" ANSI hole, 9" length	1
08287-PWR	Wire brush for 7/8" ANSI hole, 9" length	1
08288-PWR	Wire brush for 1" ANSI hole, 11" length	1
08289-PWR	Wire brush for 1-1/8" ANSI hole, 11" length	1
08276-PWR	Wire brush for 1-1/4" ANSI hole, 11" length	1
08290-PWR	Wire brush for 1-3/8" ANSI hole, 11" length	1
08291-PWR	Wire brush for 1-1/2" ANSI hole, 11" length	1
08299-PWR	Wire brush for 1-3/4" ANSI hole, 11" length	1
08271-PWR	Wire brush for 2" ANSI hole, 11" length	1
08272-PWR	Wire brush for 2-3/16" ANSI hole, 11" length	1
08283-PWR	SDS-plus adapter for steel brushes	1
08296-PWR	Standard drill adapter for steel brushes (e.g. Jacobs Chuck)	1
08282-PWR	Steel brush extension, 12" length	1
08280-PWR	Hand pump/dust blower (25 fl. oz. clylinder volume)	1
08292-PWR	Air compressor nozzle with extension, 18" length	1

Premium Piston Pluas

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.		
PFC1691510	5/8" Plug	5/8"	1		
PFC1691515	11/16" Plug	11/16"	1		
PFC1691520	3/4" Plug	3/4"	1		
PFC1691530	7/8" Plug	7/8"	1		
PFC1691540	1" Plug	1"	1		
PFC1691550	1-1/8" Plug	1-1/8"	1		
PFC1691555	1-1/4" Plug	1-1/4"	1		
PFC1691560	1-3/8" Plug	1-3/8"	1		
PFC1691570	1-1/2" Plug	1-1/2"	1		
PFC1691580	1-3/4" Plug	1-3/4"	1		
PFC1691590	2" Plug	2"	1		
PFC1691600	2-3/16" Plug	2-3/16"	1		

Stainless Steel Screen Tubes

Cat. No.	Description	Drill Bit Dia.	Pack Qty
07960-PWR	1/4" x 2" Screen Tube	3/8"	25
07862-PWR	1/4" x 6" Screen Tube*	3/8"	25
07864-PWR	1/4" x 8"Screen Tube*	3/8"	25
07856-PWR	3/8" x 2" Screen Tube	1/2"	25
07961-PWR	3/8" x 3-1/2" Screen Tube	1/2"	25
07962-PWR	3/8" x 6" Screen Tube*	1/2"	25
07963-PWR	3/8" x 8" Screen Tube*	1/2"	25
07964-PWR	3/8" x 10" Screen Tube*	1/2"	25
07959-PWR	3/8" x 12" Screen Tube*	1/2"	25
07857-PWR	1/2" x 2" Screen Tube	5/8"	25
07965-PWR	1/2" x 3-1/2" Screen Tube	5/8"	25
07966-PWR	1/2" x 6" Screen Tube	5/8"	25
07967-PWR	1/2" x 8" Screen Tube*	5/8"	25
07968-PWR	1/2" x 10" Screen Tube*	5/8"	25
07858-PWR	5/8" x 2" Screen Tube	3/4"	25
07969-PWR	5/8" x 4-1/2" Screen Tube	3/4"	20
07970-PWR	5/8" x 6" Screen Tube	3/4"	20
07971-PWR	5/8" x 8" Screen Tube	3/4"	20
07972-PWR	5/8" x 10" Screen Tube	3/4"	20
07859-PWR	3/4" x 2" Screen Tube	7/8"	25
07973-PWR	3/4" x 6 Screen Tube	7/8"	10
07977-PWR	3/4" x 8 Screen Tube	7/8"	10
07974-PWR	3/4" x 10 Screen Tube	7/8"	10
07975-PWR	3/4" x 13 Screen Tube	7/8"	10
07978-PWR	3/4" x 17 Screen Tube	7/8"	10
07855-PWR	15/16" x 2" Screen Tube	1"	25
07865-PWR	15/16" x 8" Screen Tube	1"	10
07867-PWR	15/16" x 13" Screen Tube	1"	10
07869-PWR	15/16" x 17" Screen Tube	1"	10

listed indicates the matching rod diameter (except for the 15/16" screen tubes). 15/16" screen tubes can accept 3/4" diameter threaded rods and #4, #5 or #6 reinforcing bars for unreinforced masonry wall applications (URM).

*Includes extension tubing.

Piston Plugs for Adhesive Anchors

Cat. No.	Description	Drill Bit Dia.	Pack Qty.	Carton Qty.
08304-PWR	5/8" Plug	5/8"	10	100
08258-PWR	11/16" Plug	11/16"	10	100
08259-PWR	3/4" Plug	3/4"	10	100
08300-PWR	7/8" Plug	7/8"	10	100
08301-PWR	1" Plug	1"	10	100
08303-PWR	1-1/8" Plug	1-1/8"	10	100
08305-PWR	1-3/8" Plug	1-3/8"	10	100
08307-PWR	1-1/4" Plug	1-1/4"	10	100
08309-PWR	1-1/2" Plug	1-1/2"	10	100
A plastic extension tube (Cat# 08281-PWR or 08297-PWR) or equivalent approved by				

plastic extension tube (Cat# 08281-PWR or 08297-PWR) or equivalent approved by DEWALT must be used with piston plugs.

Plastic Screen Tubes

Cat. No.	Description	Drill Bit Dia.	Pack Qty.
08310-PWR	3/8" x 3-1/2" Plastic Screen	9/16"	25
08311-PWR	3/8" x 6" Plastic Screen	9/16"	25
08313-PWR	3/8" x 8" Plastic Screen	9/16"	25
08315-PWR	1/2" x 3-1/2" Plastic Screen	3/4"	25
08317-PWR	1/2" x 6" Plastic Screen	3/4"	25
08321-PWR	5/8" x 6" Plastic Screen	7/8"	25
08323-PWR	3/4" x 6" Plastic Screen	1"	10
The nominal diamet	er of the screen listed indicates the	matching rod diame	eter.

SDS+ Full Head Carbide Drill Bits Cat. No. Diameter **Usable Length Overall Length** DW5527 3/8" 4" 6-1/2" 8" DW5529 3/8" 10" 12" DW55300 3/8" 10" DW5531 3/8" 16" 18" DW5537 1/2" 4" 6" DW5538 1/2" 8" 10-1/2" DW5539 1/2" 10" 12" DW5540 1/2" 16" 18"

4999999999999999999999999 SDS Max 4-Cutter Carbide Drill Rits

ouller carbine		
Diameter	Usable Length	Overall Length
5/8"	8"	13-1/2"
5/8"	16"	21-1/2"
5/8"	31"	36"
11/16"	16"	21-1/2"
3/4"	8"	13-1/2"
3/4"	16"	21-1/2"
3/4"	31"	36"
13/16"	16"	21-1/2"
7/8"	8"	13-1/2"
7/8"	16"	21-1/2"
7/8"	31"	36"
1"	8"	13-1/2"
1"	16"	22-1/2"
1"	24"	29"
1"	31"	36"
1-1/8"	10"	15"
1-1/8"	18"	22-1/2"
1-1/8"	24"	29"
1-1/8"	31"	36"
1-1/4"	10"	15"
1-1/4"	18"	22-1/2"
	Diameter 5/8" 5/8" 5/8" 11/16" 3/4" 3/4" 3/4" 3/4" 13/16" 7/8" 7/8" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1.1/8" 1-1/8" 1-1/8" 1-1/8"	$5/8^{"}$ $8^{"}$ $5/8^{"}$ $16^{"}$ $5/8^{"}$ $31^{"}$ $11/16^{"}$ $16^{"}$ $3/4^{"}$ $8^{"}$ $3/4^{"}$ $16^{"}$ $3/4^{"}$ $16^{"}$ $3/4^{"}$ $16^{"}$ $3/4^{"}$ $16^{"}$ $3/4^{"}$ $31^{"}$ $13/16^{"}$ $16^{"}$ $7/8^{"}$ $8^{"}$ $7/8^{"}$ $31^{"}$ $1^{"}$ $8^{"}$ $7/8^{"}$ $31^{"}$ $1^{"}$ $8^{"}$ $1^{"}$ $24^{"}$ $1^{"}$ $24^{"}$ $1^{-1}/8^{"}$ $10^{"}$ $1-1/8^{"}$ $18^{"}$ $1-1/8^{"}$ $31^{"}$

SDS+ 4-Cutter Carbide Drill Bits

1

Cat. No.	Diameter	Usable Length	Overall Length
DW5471	5/8"	8"	10"
DW5472	5/8"	16"	18"
DW5474	3/4"	8"	10"
DW5475	3/4"	16"	18"
DW5477	7/8"	8"	10"
DW5478	7/8"	16"	18"
DW5479	1"	8"	10"
DW5480	1"	16"	18"
DW5481	1-1/8"	8"	10"
DW5482	1-1/8"	6"	18"

2000000

AC100+ GOLD® Vinylester Injection Adhesive Anchoring System

ADHESIVES

DUSTX+

Dust Extraction

Cat. No.	Description
DWV012	10 Gallon Wet/Dry Hepa/Rrp Dust Extractor DWV9402 Fleece bag (5 pack) for DEWALT dust extractors DWV9316 Replacement Anti-Static Hose DWV9320 Replacement HEPA Filter Set (Type 1)
DWH050K	Dust Extraction with two interchangeable drilling heads
DCB1800B	1800 Watt Portable Power Station & Parallel Battery Charger Bare Unit

Hollow Drill Bits

Shank	Cat. No.	Diameter	Overall Length	Usable Length	Recommended Hammer
	DWA54012	1/2"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
SDS+	DWA54916	9/16"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
303+	DWA54058	5/8"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54034	3/4"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA58058	5/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58958	5/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58116	11/16"	24-3/4"	15-3/4"	DCH481 / D25603K
	DWA58034	3/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58934	3/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58078	7/8"	23-5/8"	15-3/4"	DCH481 / D25603K
SDS Max	DWA58001	1"	23-5/8"	15-3/4"	DCH481 / D25603K
SUS Wax	DWA58901	1"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58118	1-1/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58918	1-1/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58115	1-1/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58114	1-1/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58138	1-3/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58112	1-1/2"	47-1/4"	39-3/8"	DCH481 / D25603K

GENERAL INFORMATION

PURE110+®

Epoxy Injection Adhesive Anchoring System and Post-Installed Reinforcing Bar Connections

PRODUCT DESCRIPTION

The Pure110+ is a two-component, high strength adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. Pure110+ is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in concrete base materials and for post-installed reinforcing bar connections (rebar development).

GENERAL APPLICATIONS AND USES

- · Bonding threaded rod and reinforcing bar into hardened concrete
- Rebar development length connections in concrete up to 60d embedments
- Evaluated for installation and use in dry and wet holes, including water filled and submerged
- Can be installed in a broad range of base material temperatures with good working times
- Cracked and uncracked concrete conditions as well as wind and seismic loading (SDC A F)
- Can be considered for anchoring into core drilled holes in concrete (see www.DEWALT.com)
- Oversized hammer-drilled holes in concrete, for short term loading only (see www.DEWALT.com)

FEATURES AND BENEFITS

- + Standard curing system which offers good working times even in warm temperatures
- + Evaluated and recognized for freeze/thaw performance
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Same bond strength at room temperature and at 110°F (43°C)

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES) ESR-3298 for cracked and uncracked concrete
- Code Compliant with 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ACI 355.4/ASTM E488, and ICC-ES AC308 for use in structural concrete with design according to ACI 318 (-19 & -14) Chapter 17 and ACI 318 Appendix D
- Tested and qualified for use in post-installed reinforcing bar connections and rebar development length applications in accordance with ICC-ES AC308, Table 3.8 and ACI 318 Chapter 12 and Chapter 25
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including static, wind and seismic loading
- City of Los Angeles, LABC and LARC Supplement (within ESR-3298)
- Florida Building Code, FBC Supplement including HVHZ (within ESR-3298)
- Compliant with NSF/ANSI/CAN 61 for drinking water system components health effects
- Also classified as lead free in accordance with NSF/ANSI/CAN 372
- Compliant to California DPH for VOC emissions and South Coast AQMD for VOC content (LEED v4.1)
- Conforms to requirements of ASTM C881 including C882 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes B & C (also meets Type III except for elongation)
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 Masonry Anchors and 05 05 19 Post-Installed Concrete Anchors. Adhesive anchoring system shall be Pure110+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

SECTION CONTENTS

General Information72
Installation Specifications73
Performance Data (ASD)74
Strength Design Information78
Design Strength Tables (SD)82
Post-Installed Rebar Development Length Tables
Installation Instructions for Adhesive Anchors (Solid Base Materials)
Installation Instructions for Adhesive Anchors (Hollow Base Materials)
Installation Instructions for Post-Installed Rebar Connections 92
Reference Installation Tables94
Ordering Information

PURE110+ ADHESIVE IN CARTRIDGE (STANDARD THREADED ROD AND REBAR STEEL SUPPLIED BY OTHERS)

PACKAGING (1:1 MIX RATIO)

Coaxial Cartridge

• 9 fl. oz. (265 ml or 16 in³)

Dual Cartridge (side-by-side)

- 20.5 fl. oz. (610 ml or 37 in³)
- 50.5 fl. oz. (1500 ml or 91.5 in³)

STORAGE LIFE & CONDITIONS

Dual cartridge: Two years Coaxial cartridge: Eighteen months Store in a dry, dark environment with temperature ranging from 41°F to 86°F (5°C to 30°C)

ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 11 reinforcing bar (rebar)

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete
- Grouted Concrete Masonry
- Hollow Concrete Masonry

PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry concrete
- Water-saturated concrete (wet)
- · Water-filled holes (flooded)
- Underwater concrete (submerged)

ADHESIVES

- REV. H

TECHNICAL GUIDE - ADHESIVES ©2022 DEWALT

PURE110+®

INSTALLATION SPECIFICATIONS

DEWALT

ANCHORS & FASTENERS

Installation Specifications for Threaded Rod and Reinforcing Bar

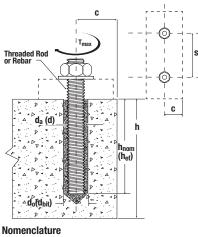
					Fractio	nal Nomina	Rod Diam	eter (Inch) /	Reinforcing	g Bar Size (No.)	
Parameter	Symbol	Units	3/8 or #3	1/2	#4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4	#10
Threaded rod outside diameter	d _a (d)	inch (mm)	0.375 (9.5)	0.5 (12	500 2.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	-	1.250 (31.8)	-
Rebar nominal outside diameter	d _a (d)	inch (mm)	0.375 (9.5)	0.5 (12	500 2.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	-	1.250 (31.8)
Nominal drill bit diameter (ANSI)	d _o (d _{bit})	inch	7/16			11/16 or 3/4	7/8	1	1-1/8	1-3/8	1-3/8	1-1/2
Minimum embedment ^{1,6}	h _{ef,min}	inch (mm)	2-3/8 (60)	2-: (7		3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)	5 (127)
Maximum embedment ^{1,6}	h _{ef,max}	inch (mm)	7-1/2 (191)			12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	22-1/2 (572)	25 (635)	25 (635)
Minimum member thickness	h _{min}	inch (mm)		⊦ 1-1/4 + 30)		h _{ef} + 2d _o						
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2- ⁻ (6		3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Minimum edge distance (up to 100% T _{max})	Cmin	inch (mm)	1-7/8 (48)	2- ⁻ (6		3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Max. torque ²	Tmax	ft-lbs (N-m)	15 (20)	30 (41)		60 (81)	105 (142)	125 (169)	165 (221)	200 (280)	280 (379)	280 (379)
Max. torque ^{2,3} (low strength rods)	Tmax,Is-rod	ft-lbs (N-m)	7 (9)	20		40 (54)	60 (81)	100 (136)	165 (223)	-	280 (379)	-
Min. edge distance, reduced ^{4,5} (45% T _{max})	Cmin,red	inch (mm)	1-3/4 (45)	1-: (4	3/4 5)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)	2-3/4 (70)

For pound-inch units: 1 mm = 0.03937 inch, 1 N-m = 0.7375 ft-lbf. For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. Embedment range qualified for use with the anchoring design provisions of ACI 318 (-19 & -14) or ACI 318 Appendix D as applicable, ICC-ES AC308, Section 4.2 and ESR-3298.

2. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

3. These torque values apply to ASTM A36 / F1554 Grade 36 carbon steel threaded rods; and ASTM A193 Grade B8/B8M (Class 1) stainless steel threaded rods.


4. For installations below the minimum edge distance, cmm, down to the reduced minimum edge distance, cmm,red, the reduced maximum torque is 0.45*Tmax.

т

5. For installations below the minimum edge distance, cmin, and down to the reduced minimum edge distance, cmin,red, the minimum anchor spacing, smin is 5da.

6. For rebar development lengths with embedments up to 60d, see the table for Installation Parameters for Common Post-installed Reinforcing Bar Connections.

Detail of Steel Hardware Elements used with Injection Adhesive System

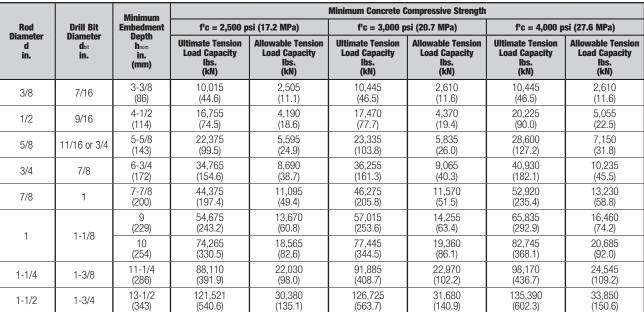
Ua (U)	= Diameter of anchor
do (dbit)	= Diameter of drilled hole
h	= Base material thickness
hnom (hef)	= Embedment depth

= Spacing of anchors S

= Edge distance С

= Maximum torque Tma

hropdod	Rod and	I Defermed	Poinforcing	Bar Materia	Dronartias
III GAUGU	nvu anu	I DGIVIIIIGU	NGIIII UI GIII4	Dai Malcha	ΓΙΟΝΟΙ μος


Steel Description (General)	Steel Specification (ASTM)	Nominal Anchor Size (inch/No.)	Minimum Yield Strength, f _y (psi)	Minimum Ultimate Strength, fu (psi)
	A36 or F1554 Grade 36	0/0 through 1 1/4	36,000	58,000
Description	F1554 Grade 55	3/8 through 1-1/4	55,000	75,000
0	A449	3/8 through 1	92,000	120,000
Carbon rod	A449	1-1/4	81,000	105,000
	A193, Grade B7 or F1554 Grade 105	3/8 through 1-1/4	105,000	125,000
	F568M Class 5.8	3/4 through 1-1/4	58,000	72,500
	F593 Condition CW	3/8 through 5/8	65,000	100,000
		3/4 through 1-1/4	45,000	85,000
Stainless rod	A193/193M Grade B8/B8M, Class 1	3/8 through 1-1/4	30,000	75,000
	A193/A193M Grade B8/B8M2, Class 2B	3/8 through 1-1/4	75,000	95,000
	A615, A767, Grade 40	#3 through #6	40,000	60,000
	A615, A767, Grade 60	#3 through #10	60,000	90,000
Reinforcing Bar	A706, A767, Grade 60	#3 uii0dyl1#10	60,000	80,000
Reinforcing Bar	A615, A767, Grade 75	#3 through #10	75,000	100,000
	A706, A767, Grade 80	#3 through #10	80,000	100,000
Tabulated material	properties are provided for referer	nce; other steel hardware e	elements may also be	considered.

AşD

PERFORMANCE DATA (ASD)

Ultimate and Allowable Load Capacities for Pure110+ Installed with Threaded Rod into Normal Weight Concrete (based on bond strength/concrete capacity)^{1,2,3,4,5,6}

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances of 3 times the embedment depth and where the minimum member thickness is the greater of [h_{nom} + 1-1/4"] and [h_{nom} + 2d_{bit}].

4. The tabulated load values are applicable for dry uncracked concrete installed into holes drilled with a hammer drill and an ANSI carbide drill bit. Installations in water-saturated concrete (wet) or in water-filled holes (flooded) require a 15% reduction in capacity. Installations in underwater concrete (submerged) require a 30% reduction in capacity.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

 Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

Ultimate and Allowable Load Capacities for Pure110+ Installed with Reinforcing Bar into Normal Weight Concrete (based on bond strength/concrete capacity)^{12,3,4,5,6}

		Minimum			Minimum Concrete (Compressive Strength				
Bar Size d No. #3 #4 #5 #6 #7	Drill Bit	Embedment	f'c = 2,500 p	si (17.2 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	f'c = 4,000 psi (27.6 MPa)		
d	Diameter d _{bit} in.	Depth hnom in. (mm)	Ultimate Tension Load Capacity Ibs. (kN)	Allowable Tension Load Capacity Ibs. (kN)	Ultimate Tension Load Capacity Ibs. (kN)	Allowable Tension Load Capacity Ibs. (kN)	Ultimate Tension Load Capacity Ibs. (kN)	Allowable Tension Load Capacity Ibs. (kN)		
#3	7/16	3-3/8 (86)	10,695 (47.6)	2,675 (11.9)	11,155 (49.6)	2,790 (12.4)	11,155 (49.6)	2,790 (12.4)		
#4	9/16	4-1/2 (114)	17,005 (75.6)	4,250 (18.9)	17,735 (78.9)	4,435 (19.7)	19,200 (85.4)	4,800 (21.4)		
ще	11/16 or 3/4	4 (102)	16,055 (71.4)	4,015 (17.9)	16,740 (74.5)	4,185 (18.6)	16,910 (75.2)	4,230 (18.8)		
#3	11/10/01/5/4	5-5/8 (143)	22,460 (99.9)	5,615 (25.0)	23,420 (104.2)	5,855 (26.0)	25,705 (114.3)	6,425 (28.6)		
#6	7/8	6-3/4 (172)	32,860 (146.2)	8,215 (36.5)	34,266 (152.4)			10,195 (45.3)		
#7	1	7-7/8 (200)	39,520 (175.8)			10,305 (45.8)	44,030 (195.9)	11,010 (49.0)		
#8	1-1/8	9 (229)	52,875 (235.2)	13,220 (58.8)	55,140 (245.3)	13,785 (61.3)	63,670 (283.2)	15,920 (70.8)		
#9	1-3/8	10-1/8 (257)	61,275 (272.6)	15,320 (68.1)				17,070 (75.9)		
#10	1-1/2	11-1/4 (286)	77,425 (344.4)	19,355 80,740 20,185 86,265 (86.1) (359.2) (89.8) (383.7)				21,565 (95.9)		
#11	1-3/4	12-3/8 (314)	95,680 (425.6)	23,920 (106.4)	99,755 (443.8)	24,945 (111.0)	106,595 (474.2)	26,650 (118.5)		

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances of 3 times the embedment depth and where the minimum member thickness is the greater of [hnom + 1-1/4"] and [hnom + 2dbit].

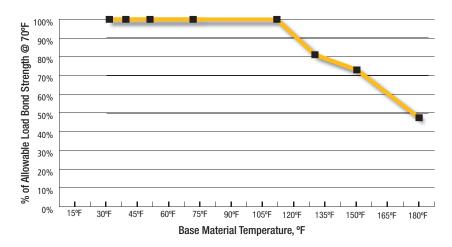
4. The tabulated load values are applicable for dry uncracked concrete installed into holes drilled with a hammer drill and an ANSI carbide drill bit. Installations in water-saturated concrete (wet) or in water-filled holes (flooded) require a 15% reduction in capacity. Installations in underwater concrete (submerged) require a 30% reduction in capacity.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

ASD

ADHESIVES


Nominal							Steel Ele	ements -	Threaded	l Rod and	d Reinfor	cing Bar						
Rod Diameter or Rebar	A36 or F1554, Grade 36				A36 or F1554, Grade 55 Grade 105		F 593, (F 593, CW (SS) ASTM A615 Grade 40 Rebar		ASTM A615 Grade 60 Rebar		ASTM A706 Grade 60 Rebar		ASTM A615 Grade 75 Rebar		ASTM A706 Grade 80 Rebar		
Size (in. or No.)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)	Tension Ibs. (kN)	Shear Ibs (kN)
3/8 or #3	2,115 (9.4)	1,090 (4.8)	2,735 (12.2)	1,410 (6.3)	4,555 (20.3)	2,345 (10.4)	3,645 (16.2)	1,880 (8.4)	2,210 (9.8)	1,125 (5.0)	2,650 (11.8)	1,690 (7.5)	2,650 (11.8)	1,500 (6.7)	2,650 (11.8)	1,875 (8.3)	2,650 (11.8)	1,875 (8.3)
1/2 or #4	3,760 (16.7)	1,935 (8.6)	4,860 (21.6)	2,505 (11.1)	8,100 (36.0)	4,170 (18.5)	6,480 (28.8)	3,340 (14.9)	3,925 (17.5)	2,005 (8.9)	4,710 (21.0)	3,005 (13.4)	4,710 (21.0)	2,670 (11.9)	4,710 (21.0)	3,335 (14.8)	4,710 (21.0)	3,335 (14.8)
5/8 or #5	5,870 (26.1)	3,025 (13.5)	7,595 (33.8)	3,910 (17.4)	12,655 (56.3)	6,520 (29.0)	10,125 (45.0)	5,215 (23.2)	6,135 (27.3)	3,130 (13.9)	7,365 (32.8)	4,695 (20.9)	7,365 (32.8)	4,170 (18.5)	7,365 (32.8)	5,215 (23.2)	7,365 (32.8)	5,215 (23.2)
3/4 or #6	8,455 (37.6)	4,355 (19.4)	10,935 (48.6)	5,635 (25.1)	18,225 (81.1)	9,390 (41.8)	12,390 (55.1)	6,385 (28.4)	8,835 (39.3)	4,505 (20.0)	10,605 (47.2)	6,760 (30.1)	10,605 (47.2)	6,010 (26.7)	10,605 (47.2)	7,510 (33.4)	10,605 (47.2)	7,510 (33.4)
7/8 or #7	11,510 (51.2)	5,930 (26.4)	14,885 (66.2)	7,665 (34.1)	24,805 (110.3)	12,780 (56.8)	16,865 (75.0)	8,690 (38.7)	-	-	14,430 (64.2)	9,200 (40.9)	14,430 (64.2)	8,180 (36.4)	14,430 (64.2)	10,220 (45.5)	14,430 (64.2)	10,220 (45.5)
1 or #8	15,035 (66.9)	7,745 (34.5)	19,440 (86.5)	10,015 (44.5)	32,400 (144.1)	16,690 (74.2)	22,030 (98.0)	11,350 (50.5)	-	-	18,850 (83.8)	12,015 (53.4)	18,850 (83.8)	10,680 (47.5)	18,850 (83.8)	13,350 (59.4)	18,850 (83.8)	13,350 (59.4)
#9	-	-	-	-	-	-	-	-	-	-	23,985 (106.7)		23,985 (106.7)		23,985 (106.7)	16,990 (75.6)	23,985 (106.7)	16,990 (75.6)
1-1/4	23,490 (104.5)		30,375 (135.1)	15,645 (69.6)	50,620 (225.2)		34,425 (153.1)		-	-	-	-	-	-	-	-	-	-
#10	-	-	-	-	-	-	-	-	-	-	30,405 (135.2)		30,405 (135.2)		30,405 (135.2)			
1-1/2	33,805 (150.4)		43,715 (194.5)		72,860 (324.1)				-	-	-	-	-	-	-	-	-	-
#11	-	-	-	-	-	-	-	-	-	-			37,440 (166.5)					

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = $0.17 \bullet F_u \bullet A_{nom}$

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

In-Service Temperature Chart For Allowable Load Capacities

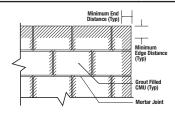
Ultimate and Allowable Load Capacities for Threaded Rod Installed with Pure110+ into Grout-Filled Masonry^{1,234,57}

			Anchor Installe	d Into Grouted Mas	onry Wall Faces				
Nominal	Nominal	Minimum	Minimum	Minimum	Ultimat	te Load	Allowable Load		
Diameter d in.	Drill Bit dbit Diameter in.	Embed. hnom in. (mm)	End Distance in. (mm)	Edge Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
3/8	7/16	3 (76)	12 (305)	12 (305)	6,005 (26.7)	5,200 (23.1)	1,200 (5.3)	1,040 (4.6)	
1/2	9/16	4 (102)	12 (305)	12 (305)	8,650 (38.5)	8,845 (39.3)	1,730 (7.7)	1,770 (7.9)	
5/8	11/16	5 (127)	12 (305)	12 (305)	12,840 (57.1)	8,430 (37.5)	2,570 (11.4)	1,685 (7.5)	
3/4	7/8	6 (153)	20 (508)	20 (508)	19,560 (87.0)	12,685 (56.4)	3,910 (17.4)	2,540 (11.3)	
			Anchor Installed in	n the Tops of Grout	ed Masonry Walls				

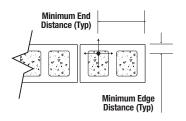
Nominal	Nominal	Minimum	Minimum	Minimum	Ultimat	te Load	Allowat	Allowable Load		
Diameter d in.	Drill Bit dbit Diameter in.	Embed. hnom in. (mm)	End Distance in. (mm)	Edge Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
1/2	9/16	4 (102)	4 (102)	1-3/4 (45)	5,135 (22.8)	1,750 (7.8)	1,030 (4.6)	350 (1.6)		
5/8	11/16	5 (127)	4 (102)	2-3/4 (70)	5,360 (23.6)	3,130 (13.9)	1,070 (4.8)	625 (2.8)		

Tabulated load values are for 3/8" and 1/2" diameter anchors installed in minimum 6" wide, Grade N, Type II, lightweight concrete masonry units conforming to ASTM C90 that have reached 1. the minimum designated ultimate compressive strength at the time of installation (f'm \geq 1.500 psi). Grout must have a minimum compressive strength of 2.000 psi. Mortar and minimum mortar strength must be Types M, S or N.

 Tabulated load values are for 5/8" and 3/4" diameter anchors installed in 8" wide, Grade N, Type II, lightweight concrete masonry units conforming to ASTM C90 that have reached the minimum designated ultimate compressive strength at the time of installation (f'm ≥ 1,500 psi). Grout must have a minimum compressive strength of 2,000 psi. Mortar and minimum mortar strength must be Types M, S or N.


3. Anchors must be installed in grouted cells and the minimum edge and end distances must be maintained.

4. Allowable load capacities listed are calculated using an applied safety factor of 5.0 and must be checked against the allowable tension and shear capacities for threaded rod based on steel strength to determine the controlling allowable load.


5. The tabulated values are applicable for anchors installed into grouted masonry wall faces and masonry wall tops at a critical spacing distance, ser, between anchors of 3 times the embedment depth. Minimum spacing distance for anchors installed into grouted masonry wall faces may be reduced to 1.5 times embedment depth provided the tabulated allowable tension load values are multiplied by a reduction factor of 0.65 and the allowable shear load values are multiplied by a reduction factor of 0.50. Linear interpolation may be used to determine values for intermediate spacing distances.

6. Anchor installations into tops of grouted masonry walls are limited to one per masonry cell.

The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable. 7.

Wall Face **Permissible Anchor Locations** (Un-hatched Area)

Top of Wall

Ultimate and Allowable Load Capacities for Threaded Rod Installed with Pure110+ into Hollow Concrete Masonry Walls with Plastic Screen Tubes^{1,2,3,4,5}

Nominal Anchor	Nominal Drill	Minimum End	Minimum Edge		Ultimat	te Load	Allowable Load		
Diameter / Screen Tube Size in.	Bit Diameter dbit in.	Distance in. (mm)	Distance in. (mm)	ASTM C90 Block	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
3/8	9/16	3-3/4 (95)	3-3/4 (95)	Lightweight	790 (3.5)	900 (4.0)	160 (0.7)	180 (0.8)	
1/2	5/8	3-3/4 (95)	3-3/4 (95)	Lightweight	1,255 (5.6)	1,350 (6.0)	250 (1.1)	270 (1.2)	
5/8	3/4	3-3/4 (95)	3-3/4 (95)	Normal-weight ⁴	1,545 (6.9)	1,675 (7.5)	310 (1.4)	335 (1.5)	
3/4	1	3-3/4 (95)	3-3/4 (95)	Normal-weight⁴	1,545 (6.9)	1,675 (7.5)	310 (1.4)	335 (1.5)	

1. Tabulated load values are for anchors installed in minimum 8" wide, Grade N, Type II, lightweight or normal weight concrete masonry units conforming to ASTM C 90 that have reached a designated ultimate compressive strength at the time of installation (f'm ≥ 1,500 psi). Mortar and minimum mortar strength must meet Type N, S or M.

2. Allowable loads are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

3. Anchor spacing is limited to one per masonry cell.

4. The tabulated load values are applicable to normal-weight concrete masonry units with a minimum face shell thickness of 1-1/2 inches.

The tabulated values must be adjusted for increased in-service base material temperatures in accordance with the In-Service Temperature chart, as applicable

เก

77

STRENGTH DESIGN INFORMATION

Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete

Design Information	Symbol	Ilpite			Nominal	Rod Diamete	er' (inch)		
บธราชที่ ที่ที่เป็นที่มีเป็นเป็น	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
nominal outside diameter	d	inch	0.375	0.500	0.625	0.750	0.875	1.000	1.25
									(31.8
effective cross-sectional area	Ase	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625
	Nsa	lbf	4,495	8,230	13,110	19,400	26,780	35,130	56,21
								· · · · ·	(250. 33,72
	Vsa	(kN)							(150.
Reduction factor for seismic shear	OV,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	φ	-							
			5.810	10.640	16 950		34 625	45 425	72,6
Nominal strength as governed by	N _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.0)	(323.
steel strength(for a single anchor)	Vsa	lbf			10,170	15,050	20,775	27,255	43,6
Beduction factor for seismic shear		(KIN) -							(194.
Strength reduction factor for tension ²	¢	-	0.00	0.00	0.00	0.75	0.00	0.00	0.00
Strength reduction factor for shear ²	ϕ	-				0.65			
Nominal strangth as governed by	N _{sa}				28,250				121,1 (538.
									72,68
	Vsa	(kN)	(25.9)	(7.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.
	Otv,seis	-	0.80	0.80	0.80		0.80	0.80	0.8
		-							
		lbf	9,300	17,025	27,120	40,140	55,905	72,685	101,7
	INsa	(kN)	(41.4)	(75.7)	(120.6)		(248.7)		(452
(for a single anchor)	V_{sa}								61,0 (271
Reduction factor for seismic shear	OV,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.8
Strength reduction factor for tension ²	ϕ	-				0.75			
Strength reduction factor for shear ²	ϕ	- Ibf	E 600	10.000	16.005		00.475	42.015	
Nominal strength as governed by	Nsa								-5
steel strength (for a single anchor)	Vec	lbf	3,370	6,175	9.830	14,550	20,085	26,350	_5
Paduation factor for aciamic about		· · · · ·							_5
		-	0.00	0.00	0.00	0.60	0.00	0.00	
Strength reduction factor for shear ³	ϕ	-				0.60			
	Nsa	lbf	7,750	14,190	22,600		39,245	51,485	82,3
									(366
cool of only and the children and the	V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.
Reduction factor for seismic shear	Otv,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
	1								
		lbf	4,420	8,090	12,880	19,065	26,315	34,525	55,24
Nominal strength as governed by	INsa	(kN)	(19.7)	(36.0)	(57.3)	(84.8)	(117.1)	(153.6)	(245.
steel strength (for a single anchor) ⁴	Vsa				7,730				33,14 (147.
Reduction factor for seismic shear	OV,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
Strength reduction factor for tension ²	ϕ	-				0.75			
Strength reduction factor for shear ²	φ	-	7.005	10.400	01 470		40.000	EZEAE	
Nominal strength as governed by	N _{sa}				(95.5)	31,775 (141.3)			92,00 (409.
steel strength (for a single anchor)	V	lbf	4,420	8,085	12,880	19,065	26,315	34,525	55,24
- ,	Vsa	(kN)	(19.7)	(36.0)	(57.3)	(84.8)	(117.1)	(153.6)	(245.
Reduction factor for seismic shear Strength reduction factor for tension ²	OV,seis Ø	-	0.70	0.70	0.80	0.80 0.75	0.80	0.80	0.80
	effective cross-sectional area Nominal strength as governed by steel strength (for a single anchor) Reduction factor for seismic shear Strength reduction factor for tension ² Strength reduction factor for shear ² Nominal strength as governed by steel strength(for a single anchor) Reduction factor for seismic shear Strength reduction factor for tension ² Strength reduction factor for shear ² Nominal strength as governed by steel strength (for a single anchor) Reduction factor for seismic shear Strength reduction factor for tension ² Strength reduction factor for shear ² Nominal strength as governed by steel strength (for a single anchor) Reduction factor for seismic shear Strength reduction factor for tension ² Strength reduction factor for shear ² Nominal strength as governed by steel strength (for a single anchor) Reduction factor for seismic shear Strength reduction factor for tension ² Strength reduction factor for tension ² Strength reduction factor for shear ² Nominal strength as governed by steel strength (for a single anchor) Reduction factor for seismic shear Strength reduction factor for shear ³ Nominal strength as governed by steel strength (for a single anchor) Reduction factor for seismic shear Strength reduction factor for tension ³ Strength reduction factor for shear ³ Nominal strength as governed by steel strength (for a single anchor) Reduction factor for seismic shear Strength reduction factor for tension ³ Strength reduction factor for tension ³ Strength reduction factor for shear ³ Nominal strength as governed by steel strength (for a single anchor) ⁴ Reduction factor for seismic shear Strength reduction factor for tension ² Strength reduction factor for shear ³ Nominal strength as governed by steel strength (for a single anchor) ⁴ Reduction factor for seismic shear Strength reduction factor for shear ² Nominal strength as governed by steel strength (for a single anchor) ⁴	nominal outside diameter d effective cross-sectional area Ase Nominal strength as governed by steel strength (for a single anchor) Nsa Reduction factor for seismic shear cw.seis Strength reduction factor for shear? φ Nominal strength as governed by steel strength (for a single anchor) Nsa Reduction factor for seismic shear cw.seis Strength reduction factor for tension? φ Nominal strength as governed by steel strength (for a single anchor) Nsa Reduction factor for seismic shear cw.seis Strength reduction factor for tension? φ Nominal strength as governed by steel strength (for a single anchor) Nsa Vsa Reduction factor for seismic shear cw.seis Strength reduction factor for tension? φ Strength reduction factor for seismic shear cw.seis Strength reduction factor for tension? φ Nominal strength as governed by steel strength (for a single anchor) Vsa Reduction factor for seismic shear cw.seis Strength reduction factor for tension? φ Nominal strength as governed by steel strength (for a si	nominal outside diameterdinch (mm)effective cross-sectional areaAseinch² (mm²)Nominal strength as governed by steel strength (for a single anchor)Nsalbf (kN)Reduction factor for seismic shear $casses$ -Strength reduction factor for shear? ϕ -Strength reduction factor for shear? ϕ -Nominal strength as governed by steel strength (for a single anchor)Nsalbf (kN)Neaduction factor for seismic shear $casses$ -Strength reduction factor for tension? ϕ -Strength reduction factor for tension? ϕ -Strength reduction factor for tension? ϕ -Strength reduction factor for shear? ϕ -Nominal strength as governed by steel strength (for a single anchor)NsalbfNominal strength as governed by steel strength reduction factor for shear? ϕ -Strength reduction factor for tension? ϕ -Nominal strength as governed by steel strength (for a single anchor)NsalbfNamial strength as governed by steel strength (for a single anchor)NsalbfNominal strength as governed by steel strength (for a single anchor)NsalbfNominal strength as governed by steel strength (for a single anchor)NsalbfNamia	Ame378nominal outside diameterdinch? (mm?)0.375 (mm?)effective cross-sectional area A_{se} inch? (mm?)0.0775 (50)Nominal strength as governed by steel strength (for a single anchor) N_{sa} Ibf (kN)2.695 (kN)Reduction factor for seismic shear αv_{sels} -0.80Strength reduction factor for tension? ϕ Strength reduction factor for shear? ϕ Nominal strength as governed by steel strength (for a single anchor) N_{sa} Ibf5.810 (kN)(k1) (25.9)Neal duction factor for seismic shear αv_{sels} -0.80Strength reduction factor for seismic? ϕ Strength reduction factor for seismic? ϕ Strength reduction factor for shear? ϕ Nominal strength as governed by steel strength (for a single anchor)NsaIbf9.685 (KN)Namial strength as governed by steel strength (for a single anchor) V_{sa} Ibf9.300 (KN)Nominal strength as (for a single anchor)NsaIbf9.300 (KN)(24.8)Reduction factor for seismic shear αv_{sels} -0.80Strength reduction factor for shear? ϕ Nominal strength as (for a single anchor)NsaIbf3.370 (KN)(24.8)Reduction factor for seismic shear αv_{sels} -0.80Strength reduction factor for	The second se	Design informationSymbolUnits $3/8$ $1/2$ $5/8$ nominal outside diameterdinch (mm) 0.375 0.500 0.625 effective cross-sectional area A_{we} inch' (mm') 0.0775 0.1419 0.2280 fective cross-sectional area A_{we} inch' (k0) (20.0) (36.6) (58.3) Nominal strength as governed by steel strength (for a single anchor) V_{ss} (k0) (22.0) (36.6) (58.3) Reduction factor for seismic shear cv_{sem} - 0.80 0.80 0.80 0.80 Strength reduction factor for shear* ϕ Strength reduction factor for seismic shear cv_{sem} - 0.80 0.80 0.80 Nominal strength as governed by steel strength (for a single anchor) w_{as} (bf) $5,810$ 10.640 $16,950$ Nominal strength as governed by steel strength (for a single anchor) ψ Strength reduction factor for shear* ϕ Nominal strength as governed by steel strength (for a single anchor) N_{as} (bf) $9,685$ $17,735$ $28,250$ Nominal strength as governed by steel strength (for a single anchor) V_{as} v_{as} $ 0.80$ 0.80 0.80 Strength reduction factor for shear* ϕ Nominal strength as governed by steel strength (for a single anchor) V_{as} (bf) 9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3/8 1/2 5/8 3/4 7/8 nominal outside diameter d inch 0.375 0.500 0.625 0.750 0.875 (12.7) (15.9) (19.1) (22.16) (22.9) (22.16) (22.9) (23.64) 0.4617 (22.16) (22.9) (3.66.5) (8.6.3) (11.9.1) (29.0) (3.66.5) (8.6.3) (11.9.1) (29.0) (3.66.5) (8.6.3) (11.9.1) (29.0) (3.6.6) (8.3.3) (11.9.1) (29.0) (3.6.6) (8.3.3) (11.9.1) (29.0) (3.6.0) (8.0) </td <td></td>	

 Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(p) or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements

4. In accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/B8M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9f, or 57,000 psi (393 MPa).

5. The referenced standard includes rod diameters up to and including 1-inch (24 mm).

ASTM A615

Grade 40

CODE LISTED

No. 3 through No. 6

Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete

Steel Tens	ion and Snear Design for K	eintorcir	ig bars	IN NORN	nal weig		rete		ICO	C-ES ESR-3298	ALLEY	
	Design Information	Grandial	Units			Nomina	I Reinforcin	g Bar Size	(Rebar) ¹			
	Design information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	
Rebar nom	inal outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)	
Rebar effec	tive cross-sectional area	Ase	inch ² (mm ²)	0.110 (71.0)	0.200 (129.0)	0.310 (200.0)	0.440 (283.9)	0.600 (387.1)	0.790 (509.7)	1.000 (645.2)	1.270 (819.4)	
	Nominal strength as governed by	Nsa	lbf (kN)	11,000 (48.9)	20,000 (89.0)	31,000 (137.9)	44,000 (195.7)	60,000 (266.9)	79,000 (351.4)	100,000 (444.8)	127,000 (564.9)	
ASTM A615	steel strength (for a single anchor)	Vsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	36,000 (160.1)	47,400 (210.8)	60,000 (266.9)	76,200 (338.9)	
Grade 75	Reduction factor for seismic shear	<i>O</i> ∕v,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80	
	Strength reduction factor for tension ³	ϕ	-				0.	65				
	Strength reduction factor for shear ³		-		0.60							
	Nominal strength as governed by	N _{sa}	lbf (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)	71,100 (316.3)	90,000 (400.3)	114,300 (508.4)	
ASTM A615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)	
Grade 60	Reduction factor for seismic shear	Ø√v,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80	
	Strength reduction factor for tension ³	φ	-				0.	65				
	Strength reduction factor for shear ³	ϕ	-				0.	60				
	Nominal strength as governed by	Nsa	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)	
ASTM A706	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)	
Grade 60	Reduction factor for seismic shear	<i>O</i> ℓV,seis		0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80	
	Strength reduction factor for tension ²	ϕ	-				0.	75				
	Strength reduction factor for shear ²	ϕ	-				0.	65				
	Nominal strength as governed by	Nsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	In accordance with ASTM A 615,			615,	
	steel strength (for a single anchor)	Vea	lbf	3,960	7,200	11,160	15,840	Grade 40 bars are furnished only in				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

Reduction factor for seismic shear

Strength reduction factor for tension³

Strength reduction factor for shear³

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

(17.6)

0.70

(32.0)

0.70

(49.6)

0.80

(70.5)

0.80 0.65

0.60

(kN)

-

 $lpha_{\rm V,seis}$

φ

φ

2. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements. In accordance with ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)6, as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-14 20.2.2.4 and 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.

3. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3, or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.

Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars

Symbol	Symbol	Symbol	Symbol			Symbol	Symbol	Symbol	Symbol	Symbol	Symbol	Symbol	Symbol	Symbol	Symbol	Symbol				Nominal Roo	d Diameter (in	ch) / Reinforc	ing Bar Size		
Symbol	Units	3/8 or #3	1/2 or #4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4 or #10																
k _{c,cr}	- (SI)		17 (7.1)																						
k _{c,uncr}	- (SI)																								
hef,min	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)																
hef,max	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	22-1/2 (572)	25 (635)																
Smin	inch (mm)	1-7/8 (48)	2-1/2 (64)	3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)																
Cmin	inch (mm)			5 <i>d</i> where <i>d</i> i	s nominal outs	side diameter o	of the anchor																		
Cmin,red	inch (mm)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)																
h _{min}	inch (mm)				h _{ef} -	+ 2d₀ where d	₀ is hole diam	eter;																	
	inch			Cac	$h_{\rm ef} = h_{\rm ef} \cdot (rac{ au_{ m uncr}}{1160})$	^{₀.₄} · [3.1-0.7 <mark>/</mark>	<u>]</u>]																		
Cac	(mm)			Cac	$h_{\rm ef} = h_{\rm ef} \cdot (\frac{\tau_{\rm uncr}}{8})$	₀₄ · [3.1-0.7 <u>h</u>	<u>]</u>]																		
φ	-	0.65																							
φ	-	0.70																							
	kc,cr kc,unor hef,min hef,max Smin Cmin Cmin,red hmin Cac	ke,cr Sinch ke,unor (SI) hef,min inch (mm) hef,min inch (mm) Smin inch (mm) Cmin,red inch (mm) Cmin,red inch (mm) hmin inch (mm) Cae (mm) ϕ -	kc,cr $\overline{(S)}$ kc,unor $\overline{(S)}$ hef,min inch (mm) 2-3/8 (60) hef,min inch (mm) 7-1/2 (191) Smin inch (mm) 1-7/8 (48) Cmin inch (mm) 1-3/4 (45) hmin inch (mm) 1-3/4 (45) Cmin,red inch (mm) 1-3/4 (45) hmin inch (mm) her + (her - \overline{Cac} inch (mm) 1-3/4 ϕ - -	J J	Symbol Units 3/8 or #3 1/2 or #4 5/8 or #5 $k_{c,crr}$ $\bar{(S1)}$ - -	Symbol Units 3/8 or #3 1/2 or #4 5/8 or #5 3/4 or #6 $k_{c,cr}$ $\bar{(S)}$	Symbol Units 3/8 or #3 1/2 or #4 5/8 or #5 3/4 or #6 7/8 or #7 $k_{c,crr}$ $\ddot{(S)}$ - - 17 - <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Symbol Units 3/8 or #3 1/2 or #4 5/8 or #5 3/4 or #6 7/8 or #7 1 or #8 #9 kc_arr (S) </td></t<>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Symbol Units 3/8 or #3 1/2 or #4 5/8 or #5 3/4 or #6 7/8 or #7 1 or #8 #9 kc_arr (S)																

SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin.red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. T_{kuner} need not be taken as greater than: $T_{kuner} = \frac{kuner}{\bullet \sqrt{her} \bullet fc}$ and $\frac{h}{her}$ need not be taken as larger than 2.4.

π•d 4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of *φ* applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Threaded Rods and Reinforcing Bars^{1,2}

	-
DE LISTED C-ES ESR-3298	$ \mathbf{O} $

		Grandhal	Units			Nom	inal Rod D)iameter (inch)		
Ľ	Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1	1/4
Minimum embedment		h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)		5 27)
Maximum embedment		h _{ef,max}	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)		5 35)
110°F (43°C) Maximum Long-Term Service Temperature;	Characteristic bond strength in cracked concrete ^{6.9}	$ au_{ extsf{k,cr}}$	psi (N/mm²)	1,206 (8.3)	1,206 (8.3)	1,206 (8.3)	1,206 (8.3)	1,206 (8.3)	1,206 (8.3)		206 .3)
140°F (60°C) Maximum Short-Term Service Temperature ^{3,5}	Characteristic bond strength in uncracked concrete ^{6,8}	$ au_{k,uncr}$	psi (N/mm²)	1,829 (12.6)	1,738 (12.0)	1,671 (11.5)	1,617 (11.1)	1,567 (10.8)	1,538 (10.6)		179).2)
110°F (43°C) Maximum Long-Term Service Temperature;	Characteristic bond strength in cracked concrete ^{6.9}	$ au_{k,cr}$	psi (N/mm²)	882 (6.1)	882 (6.1)	882 (6.1)	882 (6.1)	882 (6.1)	882 (6.1)		32 .1)
176°F (80°C) Maximum Short-Term Service Temperature ^{4,5}	Characteristic bond strength in uncracked concrete ^{6,8}	$ au_{k,uncr}$	psi (N/mm²)	1,334 (9.2)	1,262 (8.7)	1,218 (8.4)	1,175 (8.1)	1,146 (7.9)	1,117 (7.7))73 .4)
, r	Design Information			Nominal Bar Size							
	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10	
Minimum embedment		h _{ef,min}	inch (mm)	2-3/8 (60.0)	2-3/4 (70.0)	3-1/8 (79.0)	3-1/2 (89.0)	3-1/2 (89.0)	4 (102.0)	4-1/2 (114.0)	5 (127.0)
Maximum embedment		h _{ef,max}	inch (mm)	7-1/2 (191.0)	10 (254.0)	12-1/2 (318.0)	15 (381.0)	17-1/2 (445.0)	20 (508.0)	22-1/2 (572.0)	25 (635.0)
110°F (43°C) Maximum Long-Term Service Temperature;	Characteristic bond strength in cracked concrete ^{6.9}	$ au_{ extsf{k,cr}}$	psi (N/mm²)	1,206 (8.3)	1,170 (8.1)	1,122 (7.7)	1,122 (7.7)	1,122 (7.7)	1,122 (7.7)	1,122 (7.7)	1,122 (7.7)
140°F (60°C) Maximum Short-Term Service Temperature ^{3,5}	Characteristic bond strength in uncracked concrete $^{\epsilon,\epsilon}$	$ au_{k,uncr}$	psi (N/mm²)	1,829 (12.6)	1,738 (12.0)	1,671 (11.5)	1,617 (11.1)	1,567 (10.8)	1,538 (10.6)	1,507 (10.4)	1,479 (10.2)
110°F (43°C) Maximum Long-Term Service Temperature;	Characteristic bond strength in cracked concrete ^{6.9}	$ au_{k,cr}$	psi (N/mm²)	882 (6.1)	848 (5.8)	814 (5.6)	814 (5.6)	814 (5.6)	814 (5.6)	814 (5.6)	814 (5.6)
176°F (80°C) Maximum Short-Term Service Temperature ^{4,5}	Characteristic bond strength in uncracked concrete ^{6,8}	$ au_{k,uncr}$	psi (N/mm²)	1,334 (9.2)	1,262 (8.7)	1,218 (8.4)	1,175 (8.1)	1,146 (7.9)	1,117 (7.7)	1,102 (7.6)	1,073 (7.4)
	Dry concrete	Anchor	Category					1			
Dermissible			þ _d				-	65			
Permissible installation	Water-saturated concrete, or Water-filled hole (flooded)		Category		-			2	-	-	
conditions ⁷		ϕ_{ws}, ϕ_{wf} Anchor Category		0.55							
	Underwater (submerged)			0.55 0.45							
Reduction factor for seisr	nic tension [®]	· · · · ·	V.seis	1.0							
			200 -								

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)⁰²³ [For SI: (f'c / 17.2)⁰²³].

2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-19 17.2.4.1, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

3. The maximum short-term service temperature may be increased to 162°F (72°C) provided characteristic bond strengths are reduced by 3 percent. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category B.

4. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category A.

5. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

6. Characteristic bond strengths are for sustained loads including dead and live loads. Characteristic bond strengths are also applicable to short-term loading.

7. Permissible installation conditions include dry concrete, water-saturated concrete, water-filled holes and underwater (submerged) applications. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

9. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete do not require an additional reduction factor applied for seismic tension ($\alpha_{N,seis} = 1.0$), where seismic design is applicable.

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strength for Threaded Rod Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

		Minimum Concrete Compressive Strength													
Nominal	Embed.	f'c = 2,5	500 (psi)	f'c = 3,0	000 (psi)	f'c = 4,0)00 (psi)	f'c = 6,0)00 (psi)	f'c = 8,0)00 (psi)				
Rod/Rebar Size (in.)	Depth hef (in.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	ΦVcb or ΦVcp Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	ΦVcb or ΦVcp Shear (lbs.)	ØN₀₀ or ØNª Tension (Ibs.)	φVcb or φVcp Shear (lbs.)	ØNcb or ØNa Tension (Ibs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)				
	2-3/8	2,855	2,570	3,125	2,920	3,610	3,575	4,070	4,380	4,345	4,680				
3/8	3	4,055	4,010	4,380	4,530	4,680	5,370	5,140	6,830	5,490	8,095				
3/0	4-1/2	6,305	7,420	6,575	8,270	7,020	9,805	7,710	12,465	8,235	14,775				
	7-1/2	10,505	15,800	10,955	17,600	11,705	20,865	12,845	26,530	13,725	29,565				
	2-3/4	3,555	3,305	3,895	3,755	4,500	4,590	5,510	6,095	6,365	7,455				
1/2	4	6,240	6,700	6,835	7,610	7,895	9,310	8,680	11,845	9,275	14,045				
1/2	6	10,645	12,850	11,105	14,315	11,865	16,970	13,020	21,575	13,915	25,585				
	10	17,745	27,370	18,505	30,485	19,770	36,150	21,705	45,955	23,190	49,945				
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,725	6,675	7,600	7,710	9,295				
F /0	5	8,720	10,005	9,555	11,365	11,030	13,900	13,040	18,205	13,935	21,585				
5/8	7-1/2	15,995	19,745	16,680	22,000	17,820	26,080	19,565	33,160	20,900	39,315				
	12-1/2	26,660	42,065	27,800	46,860	29,700	55,560	32,605	70,225	34,835	75,030				
	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,910	9,255	9,135	11,320				
0/4	6	11,465	13,595	12,560	15,445	14,500	18,895	17,760	25,095	19,415	30,030				
3/4	9	21,060	26,855	23,070	30,510	24,835	36,285	27,260	46,130	29,125	54,695				
	15	37,145	58,530	38,740	65,200	41,390	77,305	45,435	97,855	48,540	104,550				
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,910	9,100	9,135	11,130				
7/0	7	14,445	16,605	15,825	18,865	18,275	23,075	22,380	30,650	25,610	37,355				
7/8	10-1/2	26,540	32,800	29,070	37,265	32,755	45,135	35,955	57,380	38,415	68,035				
	17-1/2	49,000	72,810	51,095	81,105	54,590	96,165	59,930	122,255	64,025	137,905				
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,665	11,280	11,160	13,800				
_	8	17,650	19,750	19,335	22,435	22,325	27,440	27,340	36,450	31,570	44,580				
1	12	32,425	39,005	35,520	44,315	41,015	54,200	46,095	69,560	49,250	82,475				
	20	62,815	88,270	65,505	98,330	69,985	116,585	76,825	148,215	82,080	175,735				
	5	8,720	8,170	9,555	9,285	11,030	11,355	13,510	15,085	15,600	18,450				
4 4 / 4	10	24,665	26,380	27,020	29,975	31,200	36,660	38,210	48,690	44,125	59,555				
1-1/4	15	45,315	52,110	49,640	59,200	57,320	72,410	69,260	95,655	74,000	113,420				
	25	94,380	121,400	98,420	135,235	105,155	160,345	115,435	203,845	123,330	241,695				

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- Ca1 is greater than or equal to the critical edge distance, Cac

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B was assumed.

 Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3298.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3298 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch. 17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch. 17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308 and ESR-3298.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For other installation conditions such as water-saturated concrete, water-filled holes or underwater applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

- REV. H

Tension and Shear Design Strength for Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

					Minim	um Concrete C	compressive St	rength			
Nominal	Embed.	f'c = 2,5	500 (psi)	f'c = 3,0	000 (psi)	f'c = 4,0	000 (psi)	f'c = 6,0	000 (psi)	f ⁱ c = 8,000 (psi)	
Rod/Rebar Size (in. or #)	Depth h _{ef} (in.)	∲N₀ or ØNª Tension (lbs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)	∲N∞ or ØNª Tension (Ibs.)	$\phi_{\mathbf{V}_{\mathrm{cb}}}$ or $\phi_{\mathbf{V}_{\mathrm{cp}}}$ Shear (lbs.)	∲N☆ or ØN₂ Tension (lbs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)	<i>φ</i> Ν₀ or <i>φ</i> Ν₄ Tension (lbs.)	ϕ V or ϕ V Shear (Ibs.)	<i>φ</i> Ν₀ or <i>φ</i> Ν₄ Tension (lbs.)	φv _{cb} or φv _{cp} Shear (lbs.)
	2-3/8	2,020	1,835	2,215	2,085	2,445	2,555	2,685	2,890	2,865	3,085
3/8	3	2,770	2,865	2,890	3,235	3,085	3,835	3,390	4,875	3,620	5,785
3/0	4-1/2	4,155	5,300	4,335	5,905	4,630	7,005	5,085	8,900	5,430	10,555
	7-1/2	6,925	11,285	7,225	12,570	7,715	14,905	8,470	18,245	9,050	19,495
	2-3/4	2,520	2,360	2,760	2,680	3,185	3,280	3,905	4,355	4,425	5,325
1/2	4	4,420	4,785	4,840	5,435	5,490	6,650	6,025	8,460	6,435	10,030
1/2	6	7,390	9,180	7,705	10,225	8,230	12,125	9,035	15,410	9,655	18,275
	10	12,315	19,550	12,840	21,775	13,720	25,820	15,060	32,435	16,090	34,655
	3-1/8	3,050	2,940	3,345	3,340	3,860	4,090	4,730	5,430	5,460	6,640
F /0	5	6,175	7,145	6,765	8,120	7,815	9,930	9,415	13,005	10,055	15,415
5/8 -	7-1/2	11,350	14,105	12,040	15,715	12,860	18,630	14,120	23,685	15,085	28,080
	12-1/2	19,240	30,045	20,065	33,470	21,435	39,685	23,530	50,455	25,140	54,150
	3-1/2	3,620	3,580	3,965	4,070	4,575	4,980	5,605	6,610	6,470	8,085
3/4	6	8,120	9,710	8,895	11,035	10,270	13,495	12,580	17,925	14,480	21,450
3/4	9	14,920	19,185	16,340	21,795	18,520	25,920	20,330	32,950	21,720	39,070
	15	27,705	41,805	28,890	46,570	30,870	55,220	33,885	70,200	36,205	77,975
	3-1/2	3,620	3,525	3,965	4,000	4,575	4,895	5,605	6,500	6,470	7,950
7/8	7	10,230	11,860	11,210	13,475	12,945	16,485	15,850	21,895	18,305	26,680
//0	10-1/2	18,800	23,430	20,590	26,620	23,780	32,240	27,675	40,985	29,565	48,595
	17-1/2	37,710	52,005	39,325	57,935	42,015	68,690	46,120	87,325	49,275	103,540
	4	4,420	4,365	4,840	4,960	5,590	6,065	6,845	8,060	7,905	9,855
1	8	12,500	14,105	13,695	16,025	15,815	19,600	19,365	26,035	22,365	31,845
I	12	22,965	27,860	25,160	31,655	29,050	38,715	35,580	49,685	38,615	58,910
	20	49,255	63,050	51,365	70,235	54,875	83,275	60,240	105,870	64,360	125,525
	5	6,175	5,835	6,765	6,630	7,815	8,110	9,570	10,775	11,050	13,175
1-1/4	10	17,470	18,845	19,140	21,410	22,100	26,185	27,065	34,780	31,255	42,540
1-1/4	15	32,095	37,220	35,160	42,285	40,600	51,720	49,725	68,325	57,415	81,015
	25	69,060	86,715	75,655	96,595	85,745	114,530	94,125	145,605	100,565	172,640

🔲 - Concrete Breakout Strength 📃 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according toACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3298.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3298 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch. 17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch. 17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308 and ESR-3298.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength does not require an additional reduction factor applied for seismic tension ($\alpha_{N,seis} = 1.0$), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete, water-filled holes or underwater applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,5	500 (psi)	f'c = 3,0)00 (psi)	f'c = 4,0)00 (psi)	f'c = 6,0	000 (psi)	f ⁱ c = 8,000 (psi)	
Rod/Rebar Size (#)	Depth hef (in.)	ØN₀₀ or ØNª Tension (Ibs.)	φV₀ or φV₀ Shear (Ibs.)	ØN₀₀ or ØNª Tension (Ibs.)	φV₀ or φV₀ Shear (lbs.)	<i>φ</i> Ν₀ or <i>φ</i> Νª Tension (Ibs.)	φV₀ or φV₀ Shear (Ibs.)	<i>φ</i> N₀₀ or <i>φ</i> Nª Tension (Ibs.)	φV₀ or φV₀ Shear (Ibs.)	<i>φ</i> N₀₀ or <i>φ</i> Nª Tension (lbs.)	φVcb or φVcp Shear (lbs.)
	2-3/8	2,855	2,570	3,125	2,920	3,610	3,575	4,070	4,380	4,345	4,680
#3	3	4,055	4,010	4,380	4,530	4,680	5,370	5,140	6,830	5,490	8,095
#3	4-1/2	6,305	7,420	6,575	8,270	7,020	9,805	7,710	12,465	8,235	14,775
	7-1/2	10,505	15,800	10,955	17,600	11,705	20,865	12,845	26,530	13,725	29,565
	2-3/4	3,555	3,305	3,895	3,755	4,500	4,590	5,510	6,095	6,365	7,455
	4	6,240	6,700	6,835	7,610	7,895	9,310	8,680	11,845	9,275	14,045
#4	6	10,645	12,850	11,105	14,315	11,865	16,970	13,020	21,575	13,915	25,585
	10	17,745	27,370	18,505	30,485	19,770	36,150	21,705	45,955	23,190	49,945
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,725	6,675	7,600	7,710	9,295
	5	8,720	10,005	9,555	11,365	11,030	13,900	13,040	18,205	13,935	21,585
#5	7-1/2	15,995	19,745	16,680	22,000	17,820	26,080	19,565	33,160	20,900	39,315
	12-1/2	26,660	42,065	27,800	46,860	29,700	55,560	32,605	70,225	34,835	75,030
#6	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,910	9,255	9,135	11,320
	6	11,465	13,595	12,560	15,445	14,500	18,895	17,760	25,095	19,415	30,030
#0	9	21,060	26,855	23,070	30,510	24,835	36,285	27,260	46,130	29,125	54,695
	15	37,145	58,530	38,740	65,200	41,390	77,305	45,435	97,855	48,540	104,55
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,910	9,100	9,135	11,130
	7	14,445	16,605	15,825	18,865	18,275	23,075	22,380	30,650	25,610	37,355
#7	10-1/2	26,540	32,800	29,070	37,265	32,755	45,135	35,955	57,380	38,415	68,035
	17-1/2	49,000	72,810	51,095	81,105	54,590	96,165	59,930	122,255	64,025	137,90
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,665	11,280	11,160	13,800
#8	8	17,650	19,750	19,335	22,435	22,325	27,440	27,340	36,450	31,570	44,580
#8	12	32,425	39,005	35,520	44,315	41,015	54,200	46,095	69,560	49,250	82,475
	20	62,815	88,270	65,505	98,330	69,985	116,585	76,825	148,215	82,080	175,73
	4-1/2	7,445	7,110	8,155	8,080	9,420	9,880	11,535	13,125	13,320	16,055
"0	9	21,060	23,055	23,070	26,190	26,640	32,035	32,625	42,550	37,675	52,040
#9	13-1/2	38,690	45,540	42,380	51,740	48,940	63,280	57,165	82,475	61,075	97,785
	22-1/2	77,895	104,620	81,230	116,545	86,790	138,185	95,270	175,670	101,790	208,29
	5	8,720	8,160	9,555	9,270	11,030	11,335	13,510	15,060	15,600	18,420
	10	24,665	26,430	27,020	30,025	31,200	36,725	38,210	48,780	44,125	59,660
#10	15	45,315	52,205	49,640	59,310	57,320	72,545	69,260	95,835	74,000	113,62
	25	94.380	121,580	98,420	135,435	105,155	160,580	115,435	204,145	123,330	242,05

🔲 - Concrete Breakout Strength 📃 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3298.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3298 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch. 17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch. 17, ICC-ES AC308 and

information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308 and ESR-3298.
9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cvolino.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For other installation conditions such as water-saturated concrete, water-filled holes or underwater applications, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

84

ADHESIVES

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength)

Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,5	i00 (psi)	f'c = 3,0)00 (psi)	f'c = 4,0)00 (psi)	f'c = 6,0)00 (psi)	f'c = 8,0	000 (psi)
Rod/Rebar Size (#)	Depth h _{ef} (in.)	ØΝ☆ or Ø№ Tension (lbs.)	∳V∞ or ψV∞ Shear (lbs.)	ØΝ☆ or Ø№ Tension (lbs.)	∳V∞ or ψV∞ Shear (lbs.)	ØNcb or ØN₄ Tension (Ibs.)	∳V₀ or ψVφ Shear (lbs.)	<i>Φ</i> Νcb or <i>Φ</i> Na Tension (Ibs.)	∳V∞ or ψV∞ Shear (lbs.)	<i>φ</i> Ν∞ or <i>φ</i> Νª Tension (Ibs.)	∳V₀ or ψV₀ Shear (lbs.)
	2-3/8	2,020	1,835	2,215	2,085	2,445	2,555	2,685	2,890	2,865	3,085
#3	3	2,770	2,865	2,890	3,235	3,085	3,835	3,390	4,875	3,620	5,785
#3	4-1/2	4,155	5,300	4,335	5,905	4,630	7,005	5,085	8,900	5,430	10,555
	7-1/2	6,925	11,285	7,225	12,570	7,715	14,905	8,470	18,245	9,050	19,495
	2-3/4	2,520	2,360	2,760	2,680	3,185	3,280	3,905	4,355	4,295	5,325
#4	4	4,420	4,785	4,840	5,435	5,325	6,650	5,845	8,460	6,245	10,030
6		7,170	9,180	7,475	10,225	7,985	12,125	8,765	15,410	9,365	18,275
	10	11,945	19,550	12,455	21,775	13,310	25,820	14,610	31,470	15,610	33,620
	3-1/8	3,050	2,940	3,345	3,340	3,860	4,090	4,730	5,430	5,380	6,640
#5	5	6,175	7,145	6,765	8,120	7,815	9,930	8,755	13,005	9,355	15,415
C#	7-1/2	10,740	14,105	11,200	15,715	11,965	18,630	13,135	23,685	14,035	28,080
12-	12-1/2	17,900	30,045	18,665	33,470	19,945	39,685	21,890	47,155	23,390	50,380
	3-1/2	3,620	3,580	3,965	4,070	4,575	4,980	5,605	6,610	6,470	8,085
#6	6	8,120	9,710	8,895	11,035	10,270	13,495	12,580	17,925	13,475	21,450
#0	9	14,920	19,185	16,130	21,795	17,230	25,920	18,915	32,950	20,210	39,070
	15	25,775	41,805	26,880	46,570	28,720	55,220	31,525	67,900	33,680	72,545
	3-1/2	3,620	3,525	3,965	4,000	4,575	4,895	5,605	6,500	6,470	7,950
#7	7	10,230	11,860	11,210	13,475	12,945	16,485	15,850	21,895	18,305	26,680
#7	10-1/2	18,800	23,430	20,590	26,620	23,455	32,240	25,745	40,985	27,505	48,595
	17-1/2	35,085	52,005	36,585	57,935	39,090	68,690	42,910	87,325	45,845	98,740
	4	4,420	4,365	4,840	4,960	5,590	6,065	6,845	8,060	7,905	9,855
#8	8	12,500	14,105	13,695	16,025	15,815	19,600	19,365	26,035	22,365	31,845
#0	12	22,965	27,860	25,160	31,655	29,050	38,715	33,625	49,685	35,925	58,910
	20	45,825	63,050	47,785	70,235	51,055	83,275	56,045	105,870	59,880	125,525
	4-1/2	5,275	5,080	5,780	5,770	6,670	7,060	8,170	9,375	9,435	11,465
110	9	14,920	16,465	16,340	18,710	18,870	22,880	23,110	30,390	26,685	37,170
#9	13-1/2	27,405	32,530	30,020	36,955	34,665	45,200	42,455	58,910	45,470	69,845
	22-1/2	57,995	74,730	60,480	83,245	64,615	98,700	70,930	125,480	75,785	148,775
	5	6,175	5,830	6,765	6,620	7,815	8,100	9,570	10,755	11,050	13,155
#10	10	17,470	18,880	19,140	21,445	22,100	26,230	27,065	34,840	31,255	42,615
#10	15	32,095	37,290	35,160	42,365	40,600	51,815	49,725	68,455	56,135	81,160
	25	69,060	86,840	74,665	96,740	79,775	114,700	87,570	145,820	93,560	172,890

🔲 - Concrete Breakout Strength 🛄 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3298.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3298 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 - 19 17.5.2.2, ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch. 17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch. 17, ICC-ES AC308 and

information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308 and ESR-3298.
9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cvclino.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength does not require an additional reduction factor applied for seismic tension ($\alpha_{N,sels} = 1.0$), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete, water-filled holes or underwater applications, see the associated strength reduction factors (φ) for bond strength in the determination of controlling design strength values, as applicable.

Tension Design of Steel Elements (Steel Strength)^{1,2}

	Steel Elements - Threaded Rod and Reinforcing Bar											
Nominal Rod/Rebar Size (in. or No.)	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8 and IS0 898-1 Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (lbs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØN₅a Tension (lbs.)
3/8 or #3	3,370	4,360	7,265	6,975	3,655	5,040	3,315	5,525	7,150	6,435	6,600	4,290
1/2 or #4	6,175	7,980	13,300	12,770	6,690	9,225	6,070	10,110	13,000	11,700	12,000	7,800
5/8 or #5	9,835	12,715	21,190	20,340	10,650	14,690	9,660	16,105	20,150	18,135	18,600	12,090
3/4 or #6	14,550	18,815	31,360	30,105	15,765	18,480	14,300	23,830	28,600	25,740	26,400	17,160
7/8 or #7	20,085	25,970	43,285	41,930	21,760	25,510	19,735	32,895	39,000	35,100	36,000	-
1 or #8	26,350	34,070	56,785	54,515	28,545	33,465	25,895	43,160	51,350	46,215	47,400	-
#9									65,000	58,500	60,000	-
1-1/4 or #10	42,160	54,510	90,850	76,315		53,540	41,430	69,050	82,550	74,295	76,200	-
- Steel Strenat	h											

- Steel Strength

1. Steel tensile design strength according to ACI 318 (-19 or -14) Ch. 17 and ACI 318 Appendix D, ϕ Nsa = $\phi \bullet$ Ase $N \bullet$ futa.

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode,

the lowest load level controls.

Shear Design of Steel Elements (Steel Strength)^{1,2,3}

	Steel Elements - Threaded Rod and Reinforcing Bar											
Nominal Rod/Rebar Size (in. or No.)	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8 and IS0 898-1 Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)
3/8 or #3	1,755	2,265	3,775	3,625	2,025	2,790	1,725	2,870	3,960	3,565	3,430	2,375
1/2 or #4	3,210	4,150	6,915	6,640	3,705	5,110	3,155	5,255	7,200	6,480	6,240	4,320
5/8 or #5	5,115	6,610	11,020	10,575	5,900	8,135	5,025	8,375	11,160	10,045	9,670	6,695
3/4 or #6	7,565	9,785	16,305	15,655	8,730	10,235	7,435	12,390	15,840	14,255	13,730	9,505
7/8 or #7	10,445	13,505	22,505	21,805	12,050	14,130	10,265	17,105	21,600	19,440	18,720	
1 or #8	13,700	17,715	29,525	28,345	15,810	18,535	13,465	22,445	28,440	25,595	24,650	
#9									36,000	32,400	31,200	
1-1/4 or #10	21,920	28,345	47,240	39,685		29,655	21,545	35,905	45,720	41,150	39,625	

- Steel Strength

1. Steel shear design strength according to ACI 318 (-19 or -14) Ch. 17 and ACI 318 Appendix D, $\phi_{Vsa} = \phi \cdot 0.60 \cdot A_{sav} \cdot f_{uta}$.

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

3. In the determination of the shear design strength values in cracked concrete, the steel strength requires an additional reduction factor applied for seismic shear ($\alpha_{v,seis}$), where seismic design is applicable.

ADHESIVES

POST-INSTALLED REBAR DEVELOPMENT LENGTH TABLES

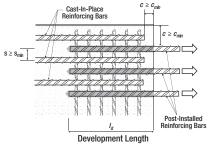
Development Lengths for Common Reinforcing Bar Connections^{1,2,3,6}

Design Information	Symbol	Reference	Units				Nomina	al Rebar S	ize (US)			
Design information	Symbol	Standard	UIIIIS	#3	#4	#5	#6	#7	#8	#9	#10	#11
Nominal rebar diameter	d₅	ASTM A615/A706,	in. (mm)	0.375 (9.5)	0.5 (12.7)	0.625 (15.9)	0.75 (19.1)	0.875 (22.2)	1 (25.4)	1.128 (28.6)	1.27 (32.3)	1.41 (35.8)
Nominal rebar area	Ab	Grade 60 $(f_y = 60 \text{ ksi})$	in² (mm²)	0.11 (71)	0.2 (127)	0.31 (198)	0.44 (285)	0.6 (388)	0.79 (507)	1 (645)	1.27 (817)	1.56 (1006)
Development length in $f'c = 2,500$ psi concrete ^{4,5}		ACI 318-19 25.4.2.4, ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3 as applicable	in. (mm)	12 (305)	14.4 (366)	18 (457)	21.6 (549)	31.5 (800)	36 (914)	40.6 (1031)	45.7 (1161)	50.8 (1290)
Development length in f'c = 3,000 psi concrete ^{4,5}			in. (mm)	12 (305)	13.1 (334)	16.4 (417)	19.7 (501)	28.8 (730)	32.9 (835)	37.1 (942)	41.7 (1060)	46.3 (1177)
Development length in $f'c = 4,000$ psi concrete ^{4,5}	la		in. (mm)	12 (305)	12 (305)	14.2 (361)	17.1 (434)	24.9 (633)	28.5 (723)	32.1 (815)	36.2 (920)	40.1 (1019)
Development length in $f'c = 6,000$ psi concrete ^{4,5}			in. (mm)	12 (305)	12 (305)	12 (305)	13.9 (354)	20.3 (516)	23.2 (590)	26.2 (666)	29.5 (750)	32.8 (832)
Development length in f'c = 8,000 psi concrete ^{4,5}			in. (mm)	12 (305)	12 (305)	12 (305)	12.1 (307)	17.6 (443)	20.1 (511)	22.7 (577)	25.6 (649)	28.4 (721)

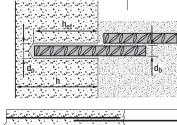
For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa; for pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

1. Calculated development lengths in accordance with ACI 318 -19 25.4.2.4, ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3, as applicable, for reinforcing bars are valid for static, wind, and earthquake loads.

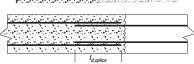
2. Calculated development lengths in SDC C through F must comply with ACI 318 (-19 or -14) Chapter 18 or ACI 318-11 Chapter 21, as applicable.

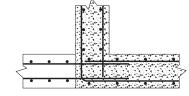

3. For Class B splices, minimum length of lap for tension lap splices is 1.3*le in accordance with ACI 318 (-19 OR -14) 25.5.2 and ACI 318-11 12.15.1, as applicable.

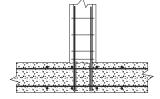
4. For lightweight concrete, λ = 0.75; therefore multiply development lengths by 1.33 (increase development length by 33 percent), unless the provisions of ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit alternate values of λ (e.g for sand-lightweight concrete, $\lambda = 0.85$; therefore multiply development lengths by 1.18). Refer to ACI 318-14 19.2.4 or ACI 318-11 8.6.1, as applicable. $\left(\frac{C_b + K_t}{d_b}\right) = 2.5, \psi_t = 1.0, \psi_s = 0.8$ for $d_b \le \#6, 1.0$ for $d_b > \#6$. Refer to ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4, as applicable.

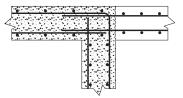

5 dь

Calculations may be performed for other steel grades and concrete compressive strengths per ACI 318 (-19 or -14) Chapter 25 or ACI 318-11 Chapter 12, as applicable. 6.


Installation Detail for Post-Installed Reinforcing Bar Connection


c = edge distance s = spacing


d_b = nominal bar diameter d_o = nominal hole diameter $h_{ef} = effective embedment$ h = member thickness


Examples of Development Length Application Details for Post-Installed Reinforcing Bar Connections Provided for Illustration

Tension Lap Splice with Existing Reinforcement for Footing and Foundation Extensions

Tension Development of Column, Cap or Wall Dowels

Tension Lap Splice with Existing Flexural Reinforcement For Slab and Beam Extensions

ADHESIVES

Epoxy Injection Adhesive Anchoring System

PURE110+®

Installation Parameters for Common Post-Installed Reinforcing Bar Connections²³

Parameter	Symbol	nbol Units	Nominal Rebar Size (US)								
			#3	#4	#5	#6	#7	#8	#9	#10	#11
Nominal hole diameter ¹	d₀	in.	7/16	5/8	3/4	7/8	1	1-1/8	1-3/8	1-1/2	1-3/4
Effective embedment	h _{ef}	in.	Up to 7-1/2	Up to 10	Up to 12-1/2	Up to 15	Up to 17-1/2	Up to 20	Up to 22-1/2	Up to 25	Up to 27-1/2
Nominal hole diameter ¹	d₀	in.	1/2	5/8	3/4	1	1-1/8	1-1/4	1-3/8	1-1/2	1-3/4
Effective embedment	hef	in.	Up to 22-1/2	Up to 30	Up to 37-1/2	Up to 45	Up to 52-1/2	Up to 60	Up to 67-1/2	Up to 75	Up to 82-1/2

For SI: 1 inch = 25.4 mm,; for pound-inch units: 1 mm = 0.03937 inches.

1. For any case, it must be possible for the reinforcing bar (rebar) to be inserted into the cleaned hole without resistance.

2. Consideration should be given regarding the commercial availability of carbide drill bits (including hollow drill bits) and diamond core bits, as applicable, with lengths necessary to achieve effective embedments for post-installed reinforcing bar connections.

3. For fractional reinforcing bars where the effective embedment is listed for two nominal hole diameters, either nominal hole diameter may be used.

Hole Cleaning Tools and Accessories for Post-Installed Rebar Connections^{1,2,3,4,5,6,7}

Rebar Size (No.)	Drill Bit Size (inch)	Brush Size (inch)	Brush Length (inches)	Wire Brush (Cat. No.)	Plug Size (inch)	Piston Plug (Cat. No.)
3	7/16	7/16	7	08284-PWR	-	-
3	1/2	1/2	7	08285-PWR	-	-
4	5/8	5/8	7	08275-PWR	-	-
5	3/4	3/4	9	08278-PWR	3/4	PFC1691520
6	7/8	7/8	9	08287-PWR	7/8	PFC1691530
0	1	1	11	08288-PWR	1	PFC1691540
7	1	1	11	08288-PWR	1	PFC1691540
'	1-1/8	1-1/8	11	08289-PWR	1-1/8	PFC1691550
8	1-1/8	1-1/8	11	08289-PWR	1-1/8	PFC1691550
°	1-1/4	1-1/4	11	08290-PWR	1-1/4	PFC1691555
9	1-3/8	1-3/8	11	08290-PWR	1-3/8	PFC1691560
10	1-1/2	1-1/2	11	08291-PWR	1-1/2	PFC1691570
11	1-3/4	1-3/4	11	08299-PWR	1-3/4	PFC1691580

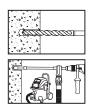
1. If the DEWALT DustX+ extraction system is used to automatically clean the holes during drilling, standard hole cleaning (brushing and blowing following drilling) is not required.

Holes may be drilled with hammer-drill, i.e. rotary impact drills or rock drills with a carbide drill bit (including hollow bits) or core-drill, i.e. core drill with a diamond core drill bit.

3. For any case, it must be possible for the reinforcing bar to be inserted into the cleaned hole without resistance.

4. A brush extension (Cat.#08282-PWR) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

5. Brush adaptors for power tool connections are available for drill chuck (Cat.#08296-PWR) and SDS (Cat.#08283-PWR).


 A flexible extension tube (Cat.#08297-PWR) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used if the bottom or back of the anchor hole is not reached with the mixing nozzle only.

7. All overhead (i.e upwardly inclined) installations require the use of piston plugs during where one is tabulated together with the anchor size (see table). All horizontal installations require the use of piston plugs where the embedment depth is greater than 8 inches and the drill bit size is larger than 5/8-inch. A flexible extension tube (Cat.#08297-PWR) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used with piston plugs.

INSTALLATION INSTRUCTIONS FOR ADHESIVE ANCHORS (SOLID BASE MATERIALS)

DRILLING

•

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
- Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).

GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+[™] EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED). OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.

IN THE CASE OF AN UNDERWATER (SUBMERGED) INSTALLATION CONDITION GO TO STEP 2UW-I FOR SEPARATE SPECIFIC HOLE CLEANING INSTRUCTIONS.

HOLE CLEANING DRY OR WET/WATER-SATURATED HOLES (BLOW 2X, BRUSH 2X, BLOW 2X)

- 2a- Starting from the bottom or back of the drilled anchor hole, blow the hole clean a minimum of two times (2x).
- Use a compressed air nozzle (min. 90 psi) for all sizes of anchor rod and reinforcing bar (rebar).

2X

- 2b- Determine wire brush diameter (see hole cleaning equipment selection table) for the drilled hole and attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length.
- The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too
 small and must be replaced with proper brush diameter (i.e. new wire brush).
- **2c-** Repeat Step 2a again by blowing the hole clean a minimum of two times (2x).
 - When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.

NEXT GO TO STEP 3.

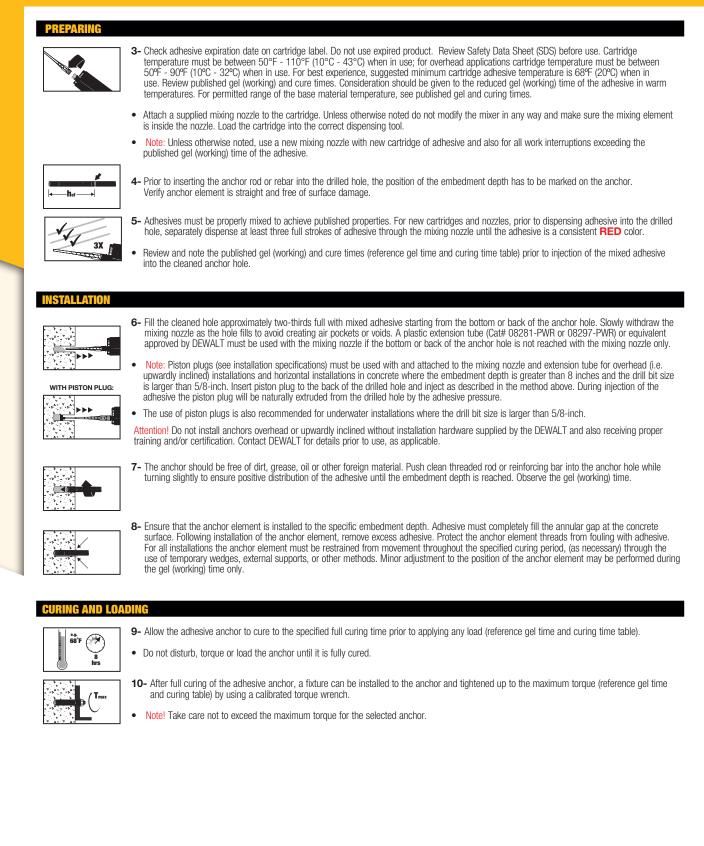
HOLE CLEANING UNDERWATER INSTALLATION (FLUSH, BRUSH 2X, FLUSH)

2uw-i- Starting from the bottom or back of the drilled anchor hole, rinse/flush the hole clean with air/water (air/water line pressure) until clear water comes out.

2uw-ii- Determine brush diameter (see hole cleaning equipment selection table) for the drilled hole and attach the brush with adaptor to a rotary drill tool. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length.

- The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if not, the brush is too small and must be replaced with proper brush diameter (i.e. new wire brush).
- **2uw-iii-** Repeat Step 2a again by rinse/flushing the hole clean with air/water.
- When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.

NEXT GO TO STEP 3.


10+

Ë

5

ADHESIVE

ADHESIVES

TECHNICAL GUIDE - ADHESIVES ©2022 DEWALT

- REV. H

INSTALLATION INSTRUCTIONS FOR ADHESIVE ANCHORS (HOLLOW BASE MATERIALS)

1- Drill a hole into the base material with a rotary drill tool to the size and embedment for the required screen size (see installation specifications for threaded rod in hollow concrete base material with screen tube supplied by DEWALT). Holes drilled in hollow concrete masonry units may be drilled with a rotary hammer-drill. The tolerances of the drill bit used should meet the requirements of ANSI B212.15. Precaution: Wear suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal. Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on). 2- Starting from the bottom or back of the anchor hole, blow the hole clean with a hand pump (min. volume 25 fl.oz. supplied by DEWALT) or compressed air nozzle a minimum of two times (2x) 2X Determine the wire brush diameter (see installation specifications) and attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension should be used for holes drilled deeper than the listed brush length. 2X The wire brush should be checked periodically during use. The brush should resist insertion into the drilled hole and come into contact with the sides of the drilled hole. If not the brush is too small and must be replaced. Finally, blow the hole clean again a minimum of two times (2x) When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material. 2X 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 50°F - 110°F (10°C - 43°C) when in use. For best experience, suggested minimum cartridge adhesive temperature is 68°F (20°C) when in use. Review gel (working) time and curing time table. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element • is inside the nozzle. Load the cartridge into the correct dispensing tool. Note: Unless otherwise noted, use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published working time of the adhesive. 4- Prior to inserting the anchor rod into the filled screen tube, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage. 5- Adhesive must be properly mixed to achieve published properties. Prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent RED color. Do not attach a used nozzle when changing to a new cartridge. 3X Review and note the published working and cure times (see gel time and curing time table) prior to injection of the mixed adhesive into the screen tube. Select a screen tube of suitable length (supplied by DEWALT). Fill the screen tube full with adhesive starting from the bottom or back of the 100 tube. Slowly withdraw the mixing nozzle as the screen fills to avoid creating air pockets or voids. A plastic extension tube (Cat# 08281-PWR or 08297-PWR) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the screen tube is not reached with the mixing nozzle only. 7- Insert the screen tube filled with adhesive into the cleaned anchor hole. Note: Overfilling the screen tube is acceptable but not required. 8- Prior to inserting the anchor rod into the screen tube inspect it to ensure that it is free of dirt, grease, oil or other foreign material. Push the threaded rod into the screen tube while turning slightly to ensure positive distribution of the adhesive until back of the tube is reached. Note: In cases where the drilled hole size is larger than specified due to rotary drilling (e.g. an elongated opening), the annular space between the screen tube and the hole at the base material surface must be filled with adhesive. AND FIXTURE 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load. Do not disturb, torque or load the anchor until it is fully cured (see gel time and curing time table). 10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (see installation specifications for threaded rod in hollow base material) by using a calibrated torque wrench.

- Note! Take care not to exceed the maximum torque for the selected anchor.
- 1-800-4 DEWALT

5

ADHESIVE

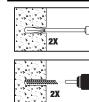
Epoxy Injection Adhesive Anchoring System

Ë

B

INSTALLATION INSTRUCTIONS FOR POST-INSTALLED REBAR CONNECTIONS

HAMMER DRILLING


DRILLIN

v.,,

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- (00) 0000 ∰=⊂∎Æ A ÎÌ
 - Precaution: Use suitable eve and skin protection. Avoid inhalation of dust during drilling and/or removal.
 - Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.
 - Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).

GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED). OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.

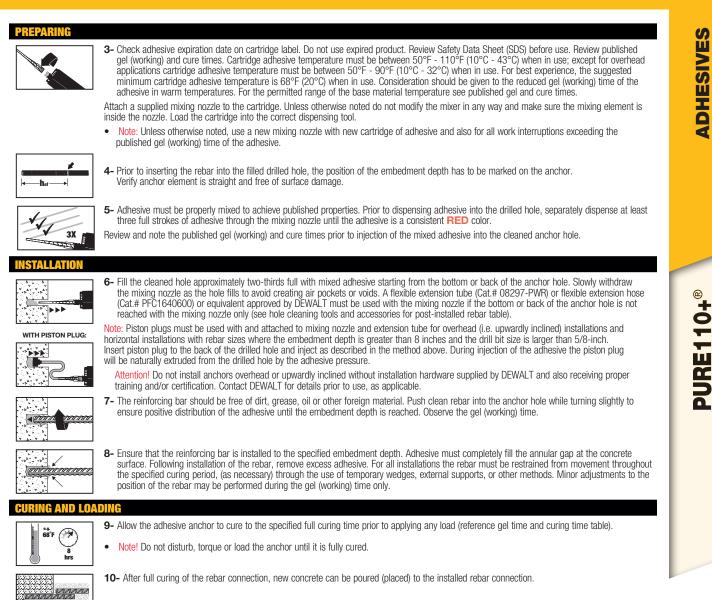
NET HOLES (BLOW 2X. BRUSH 2X. BLOW 2X)

- 2a- Starting from the bottom or back of the drilled hole, blow the hole clean a minimum of two times (2x). Use a compressed air nozzle (min. 90 psi) for all sizes of reinforcing bar (rebar).
- 2b- Determine brush diameter (see hole cleaning accessories for post-installed rebar selection table) for the drilled hole and brush the hole by hand or attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x).
- A brush extension (supplied by DEWALT) must be used for drill hole depth than the listed brush length. The wire brush diameter must be checked periodically during use; The brush should resist insertion into the drilled hole, if not the brush is too small and must be replaced with the proper brush diameter (i.e. new wire brush).
- 2c- Repeat Step 2a again by blowing the hole clean a minimum of two times (2x).
 - When finished the hole should be clean and free of dust, debris, oil or other foreign material.

NEXT GO TO STEP 3.

CORE DRILLING

2X


COKE DKILLING	
DRILLING	
▼	1 - Drill a hole into the base material with a core drill tool to the size and embedment required by the selected steel hardware element
	Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
HOLE CLEANING	(RINSE, BRUSH 2X, RINSE, BLOW 2X)
	2a- Starting from the bottom or back of the drilled hole, rinse/flush the hole clean with air/water (air/water line pressure) until clear water comes out.
	2b- Determine brush diameter (see hole cleaning accessories for post-installed rebar selection table) for drilled hole and attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x).
	 A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length. The wire brush diameter must be checked periodically during use The brush should resist insertion into the drilled hole, if not the brush is small and must be replaced with the proper brush diameter (i.e. new wire brush).
	2c- Repeat Step 2a by rinse/flush the hole clean with water.
	2d- Starting from the bottom or back of the drilled anchor hole, blow the hole clean a minimum if two times (2x). Use a compressed air nozzle (min. 90 psi) for all sizes of anchor rod and reinforcing bar (rebar)
्रेः ुः 2 X	When finished the hole should be clean and free of water, debris, oil or other foreign material.

- **2e-** Repeat Step 2b again by brushing the hole with a wire brush a minimum if two times (2x).
- 2f- Repeat Step 2d again by blowing the hole clean a minimum if two times (2x).
- When finished the hole should be clean and free of water, debris, oil or other foreign material.

NEXT GO TO STEP 3.

Epoxy Injection Adhesive Anchoring System

REFERENCE INSTALLATION TABLES

Gel (working) Time and Curing Table

doi (itoriting) timo ana oai			
Temperature	of base material	Gel (working) time	Full curing time
°F	°C		
41	5	120 minutes	48 hours
50	10	90 minutes	24 hours
68	20	25 minutes	8 hours
86	30	20 minutes	6 hours
95	35	15 minutes	6 hours
104	40	12 minutes	4 hours
110	43	10 minutes	4 hours

Linear interpolation for intermediate base material temperature is possible.

Cartridge adhesive temperature must be between 50°F - 110°F (10°C - 43°C) when in use; for overhead applications cartridge adhesive temperature must be between 50°F - 90°F (10°C - 32°C) when in use. For best adhesive dispensing experience, suggested minimum cartridge adhesive temperature is 68°F (20°C) when in use.

Wire Brush Selection Table for Pure110+ Adhesive Anchors^{1,2,3}

Drill Bit Diameter [®] (inch)	Nominal Wire Brush Size (inch)	Brush Length (inches)	Steel Wire Brush ²³ (Cat. #)	Blowout Tool
		Solid Base Material	•	•
7/16	7/16	7	08284-PWR	
9/16	9/16	7	08285-PWR	
5/8	5/8	7	08275-PWR	
11/16	11/10	9	08286-PWR	
3/4	11/16	9	08278-PWR	Compressed air nozzle only,
7/8	7/8	9	08287-PWR	Cat #8292-PWR (min. 90 psi)
1	1	11	08288-PWR	(11111. 30 p3)
1-1/8	1-1/8	11	08289-PWR	
1-3/8	1-3/8	11	08290-PWR	
1-1/2	1-1/2	11	08291-PWR	
·	Hollow	Base Material (with plastic scree	n tube)	
9/16 (3/8 screen tube)	9/16	7	08285-PWR	
3/4 (1/2 screen tube)	3/4	9	08278-PWR	Compressed air nozzle only,
7/8 (5/8 screen tube)	7/8	9	08287-PWR	Cat #8292-PWR (min. 90 psi)
1 (3/4 screen tube)	1	11	08288-PWR	(11111. 30 pSI)

1. An SDS-plus adaptor (Cat. #08283-PWR) or Jacobs chuck style adaptor (Cat. #08296-PWR) is required to attach a steel wire brush to the drill tool.

2. A brush extension (Cat. #08282-PWR) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

3. If the DEWALT DustX+ extraction system is used to automatically clean holes during drilling, standard hole cleaning (i.e. brushing and removing dust/debris following drilling) is not required.

Piston Plug Selection Table for Adhesive Anchors^{1,2,3,4}

Drill Bit Diameter (inch)	Plug Size (inch)	Piston Plug (Cat. #)	Premium Piston Plug (Cat. #)
·	Solid Bas	e Materials	
11/16	11/16	08258-PWR	PFC1691515
3/4	3/4	08259-PWR	PFC1691520
7/8	7/8	08300-PWR	PFC1691530
1	1	08301-PWR	PFC1691540
1-1/8	1-1/8	08303-PWR	PFC1691550
1-1/4	1-1/4	08307-PWR	PFC1691555
1-3/8	1-3/8	08305-PWR	PFC1691560
1-1/2	1-1/2	08309-PWR	PFC1691570
1-3/4	1-3/4	-	PFC1691580
2	2	-	PFC1691590
2-3/16	2-3/16	-	PFC1691600

1. All overhead or upwardly inclined installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All horizontal installations require the use of piston plugs where the embedment depth is greater than 8 inches and the drill bit size is larger than 5/8-inch.

3. The use of piston plugs is also recommended for underwater installations where one is tabulated together with the anchor size.

4. A flexible plastic extension tube (Cat. #08281-PWR or #08297-PWR) or equivalent approved by DEWALT must be used with piston plugs.

ORDERING INFORMATION

Pure110+ Cartridges (1:1 mix ratio)

Cat. No.	Description	Pack Qty.	Pallet Qty.		
08310SD-PWR	Pure110+ 9 fl. oz. Quick-Shot cartridge	12	432		
08321SD-PWR	Pure110+ 20.5 fl. oz. dual cartridge	12	540		
08351SD-PWR	08351SD-PWR Pure110+ 50.5 fl. oz. dual cartridge				
A mixing nozzle is pad	kaged with each cartridge.				

Pure110+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive.

Cartridge System Mixing Nozzles and Nozzle Extensions

Cat. No.	Description	Pack Qty.	Carton Qty.
PFC1641600	Mixing nozzle (with 8" extension) for Pure110+ Quick-Shot	2	24
08609-PWR	High flow mixing nozzle (with 8" extension) for Pure110+ dual cartridge	2	24
08281-PWR	Mixing nozzle extension, 8" long	2	24
08297-PWR	Mixing nozzle extension, 20" long	1	12
PFC1640600	Flexible Extension Hose, 25 ft.	1	12

Dispensing Tools for Injection Adhesive

Cat. No.	Description	Pack Qty.	Carton Qty.
08437-PWR	Manual caulking gun for Quick-Shot cartridge	1	12
DCE560D1	Cordless 20v Battery powered dispensing tool for Quick-Shot	1	-
08409-PWR	20.5 fl. oz. Standard metal manual tool	1	10
DCE591D1	20.5 fl. oz. cordless 20v Battery powered dispensing tool	1	-
08459-PWR	20.5 fl. oz. Pneumatic tool	1	-
08438-PWR	50.5 fl. oz. Pneumatic tool	1	-

Hole Cleaning Tools and Accessories

Cat. No.	Description	Pack Qty.
08284-PWR	Wire brush for 7/16" or 1/2" hole, 7" length	1
08285-PWR	Wire brush for 9/16" hole, 7" length	1
08275-PWR	Wire brush for 5/8" hole, 7" length	1
08286-PWR	Wire brush for 11/16" hole, 9" length	1
08278-PWR	Wire brush for 3/4" hole, 9" length	1
08287-PWR	Wire brush for 7/8" hole, 9" length	1
08288-PWR	Wire brush for 1" hole, 11" length	1
08289-PWR	Wire brush for 1-1/8" hole, 11" length	1
08276-PWR	Wire brush for 1-1/4" hole, 11" length	1
08290-PWR	Wire brush for 1-3/8" hole, 11" length	1
08291-PWR	Wire brush for 1-1/2" hole, 11" length	1
08273-PWR	Wire brush for 1-5/8" hole, 11" length	1
08299-PWR	Wire brush for 1-3/4" hole, 11" length	1
08271-PWR	Wire brush for 2" hole, 11" length	1
08272-PWR	Wire brush for 2-3/16" hole, 11" length	1
08283-PWR	SDS-plus adapter for steel brushes	1
08296-PWR	Standard drill adapter for steel brushes (e.g. Jacobs Chuck)	1
08282-PWR	Steel brush extension, 12" length	1
08292-PWR	Air compressor nozzle with extension, 18" length	1

Piston Plugs for Adhesive Anchors

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.						
08258-PWR	11/16" Plug	11/16"	10						
08259-PWR	3/4" Plug	3/4"	10						
08300-PWR	7/8" Plug	7/8"	10						
08301-PWR	1" Plug	1"	10						
08303-PWR	1-1/8" Plug	1-1/8"	10						
08305-PWR	1-3/8" Plug	1-3/8"	10						
08309-PWR	1-1/2" Plug	1-1/2"	10						
	08258-PWR 08259-PWR 08300-PWR 08301-PWR 08303-PWR 08305-PWR	08258-PWR 11/16" Plug 08259-PWR 3/4" Plug 08300-PWR 7/8" Plug 08301-PWR 1" Plug 08303-PWR 1-1/8" Plug 08303-PWR 1-1/8" Plug 08303-PWR 1-3/8" Plug	08258-PWR 11/16" Plug 11/16" 08259-PWR 3/4" Plug 3/4" 08300-PWR 7/8" Plug 7/8" 08301-PWR 1" Plug 1" 08303-PWR 1-1/8" Plug 1" 08303-PWR 1-1/8" Plug 1-1/8" 08305-PWR 1-3/8" Plug 1-3/8"						

Piston Plugs for Post-Installed Rebar Connections

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.						
PFC1691510	5/8" Plug	5/8"	1						
PFC1691515	11/16" Plug	11/16"	1						
PFC1691520	3/4" Plug	3/4"	1						
PFC1691530	7/8" Plug	7/8"	1						
PFC1691540	1" Plug	1"	1						
PFC1691550	1-1/8" Plug	1-1/8"	1						
PFC1691555	1-1/4" Plug	1-1/4"	1						
PFC1691560	1-3/8" Plug	1-3/8"	1						
PFC1691570	1-1/2" Plug	1-1/2"	1						
PFC1691580	1-3/4" Plug	1-3/4"	1						
PFC1691590	2" Plug	2"	1						
PFC1691600	2-3/16" Plug	2-3/16"	1						

ADHESIVES

ADHESIVES

PURE110+® Epoxy Injection Adhesive Anchoring System

Plastic Screen Tubes

Plastic Scre	en Tubes				
Cat. No.	Description	ANSI Drill Diameter	Pack Qty.		
08310-PWR	3/8" x 3-1/2" Plastic Screen	9/16"	25		
08311-PWR	3/8" x 6" Plastic Screen	9/16"	25		
08313-PWR	3/8" x 8" Plastic Screen	9/16"	25		
08315-PWR	1/2" x 3-1/2" Plastic Screen	3/4"	25		
08317-PWR	1/2" x 6" Plastic Screen	3/4"	25		
08321-PWR	5/8" x 6" Plastic Screen	7/8"	25		
08323-PWR	3/4" x 6" Plastic Screen	1"	10		

SDS Max 4-Cutter Carbide Drill Bits

Cat. No.	Diameter	Usable Length	Overall Length
DW5806	5/8"	8"	13-1/2"
DW5809	5/8"	16"	21-1/2"
DW5807	5/8"	31"	36"
DW5808	11/16"	16"	21-1/2"
DW5810	3/4"	8"	13-1/2"
DW5812	3/4"	16"	21-1/2"
DW5813	3/4"	31"	36"
DW5814	13/16"	16"	21-1/2"
DW5815	7/8"	8"	13-1/2"
DW5816	7/8"	16"	21-1/2"
DW5851	7/8"	31"	36"
DW5817	27/32"	16"	21-1/2"
DW5818	1"	8"	13-1/2"
DW5819	1"	16"	22-1/2"
DW5852	1"	24"	29"
DW5820	1"	31"	36"
DW5821	1-1/8"	10"	15"
DW5822	1-1/8"	18"	22-1/2"
DW5853	1-1/8"	24"	29"
DW5854	1-1/8"	31"	36"
DW5824	1-1/4"	10"	15"
DW5825	1-1/4"	18"	22-1/2"

Dust Extraction

Cat. No.	Description
DWV012	10 Gallon Wet/Dry Hepa/Rrp Dust Extractor DWV9402 Fleece bag (5 pack) for DEWALT dust extractors DWV9316 Replacement Anti-Static Hose DWV9320 Replacement HEPA Filter Set (Type 1)
DWH050K	Dust Extraction with two interchangeable drilling heads
DCB1800B	1800 Watt Portable Power Station & Parallel Battery Charger Bare Unit

Hollow Drill Bits

nonow i					
Shank	Cat. No.	Diameter	Overall Length	Usable Length	Recommended Hammer
	DWA54012	1/2"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
CDC .	DWA54916	9/16"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
SDS+	DWA54058	5/8"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54034	3/4"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA58058	5/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58958	5/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58116	11/16"	24-3/4"	15-3/4"	DCH481 / D25603K
	DWA58034	3/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58934	3/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58078	7/8"	23-5/8"	15-3/4"	DCH481 / D25603K
CDC May	DWA58001	1"	23-5/8"	15-3/4"	DCH481 / D25603K
SDS Max	DWA58901	1"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58118	1-1/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58918	1-1/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58115	1-1/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58114	1-1/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58138	1-3/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58112	1-1/2"	47-1/4"	39-3/8"	DCH481 / D25603K

Cat. No.	Diameter	Usable Length	Overall Length
DW5502	3/16"	2"	4-1/2"
DW5503	3/16"	4"	6-1/2"
DW5504	3/16"	5"	8-1/2"
DW5506	3/16"	10"	12"
DW5512	7/32"	8"	10"
DW5517	1/4"	4"	6"
DW5518	1/4"	6"	8-1/2"
DW55200	1/4"	10"	12"
DW5521	1/4"	12"	14"
DW5524	5/16"	4"	6"
DW5526	5/16"	10"	12"
DW5527	3/8"	4"	6-1/2"
DW5529	3/8"	8"	10"
DW55300	3/8"	10"	12"
DW5531	3/8"	16"	18"
DW5537	1/2"	4"	6"
DW5538	1/2"	8"	10-1/2"
DW5539	1/2"	10"	12"
DW5540	1/2"	16"	18"

SDS+ Full Head Carbide Drill Bits

SDS+ 4-Cutter Carbide Drill Bits

0201 1 00	ttoi ourbido bi		
Cat. No.	Diameter	Usable Length	Overall Length
DW5471	5/8"	8"	10"
DW5472	5/8"	16"	18"
DW5474	3/4"	8"	10"
DW5475	3/4"	16"	18"
DW5477	7/8"	8"	10"
DW5478	7/8"	16"	18"
DW5479	1"	8"	10"
DW5480	1"	16"	18"
DW5481	1-1/8"	8"	10"
DW5482	1-1/8"	6"	18"

S

ADHESIVE

Epoxy Injection Adhesive Anchoring System

E5

2

ם

GENERAL INFORMATION

PURE50+™

Epoxy Injection Adhesive Anchoring System

PRODUCT DESCRIPTION

The Pure50+ is a two-component adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. Pure50+ epoxy is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in solid concrete base materials. It can also be considered for bonding together cured concrete and masonry materials together as well as filling large cracks and abandoned holes.

GENERAL APPLICATIONS AND USES

- Bonding and anchoring threaded rod and reinforcing bar into hardened concrete
- · Evaluated for installation and use in dry and wet holes, including water-filled holes
- Can be installed in a wide range of base material temperatures with good working times
- Cracked and uncracked concrete conditions as well as seismic and wind loading (SDC A F)

FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Evaluated and recognized for freeze/thaw performance
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Oversized hammer-drilled holes in concrete, for short term loading only (see www.DEWALT.com)

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES) ESR-3576 for cracked and uncracked concrete
- Code Compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ACI 355.4/ASTM E488, and ICC-ES AC308 for use in structural concrete with designs according to ACI 318 (-19 & -14) Chapter 17 and ACI 318 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Florida Building Code, FBC Supplement including HVHZ (within ESR-3576)
- Compliant with NSF/ANSI/CAN Standard 61 for drinking water system components health effects
- Also classified as lead free in accordance with NSF/ANSI/CAN 372
- Compliant with California DPH for VOC emissions and South Coast AQMD for VOC content (LEED v4.1)
- Conforms to requirements of ASTM C881 including C882 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes B & C (also meets Type III except for elongation)
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors. and 05 05 19 - Post-Installed Concrete Anchors. Adhesive anchoring system shall be Pure50+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	97
Installation Specifications	98
Performance Data (ASD)	99
Strength Design Information	101
Design Strength Tables (SD)	105
Installation Instructions	
(Solid Base Materials)	108
Reference Installation Tables	109
Ordering Information	110

PURE110+ ADHESIVE IN CARTRIDGE (STANDARD THREADED ROD AND REBAR STEEL SUPPLIED BY OTHERS)

PACKAGING (1:1 MIX RATIO)

Coaxial Cartridge

- 9 fl. oz. ((265 mL or 16 in³))
- Dual Cartridge (side-by-side)
- 20.5 fl. oz. (610 mL or 37 in³)
- 50.5 fl. oz. (1500 mL or 91.5 in³)

STORAGE LIFE & CONDITIONS

Dual cartridge: Two years Coaxial cartridge: Eighteen months Store in a dry, dark environment with temperature ranging from 41°F to 86°F (5°C to 30°C)

ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry Concrete
- Water Saturated Concrete
- Water-Filled Holes (flooded)

1-800-4 **DEWALT**

INSTALLATION SPECIFICATIONS

Installation Specifications for Threaded Rod and Reinforcing Bar

		Fractional Nominal Rod Diameter (Inch) / Reinforcing Bar Size										
Parameter	Symbol	Units	3/8 or #3	1/2	#4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4	#10
Threaded rod outside diameter	d _a (d)	inch (mm)	0.375 (9.5)	0.500 (12.7)		0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	-	1.250 (31.8)	-
Rebar nominal outside diameter	da (d)	inch (mm)	0.375 (9.5)	0.5 (12	00 7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	-	1.250 (31.8)
Nominal drill bit size (ANSI)	d _o (d _{bit})	inch	7/16	9/16	5/8	11/16 or 3/4	7/8	1	1-1/8	1-3/8	1-3/8	1-1/2
Minimum embedment ¹	h _{ef,min}	inch (mm)	2-3/8 (60)			3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)	5 (127)
Maximum embedment1	h _{ef,max}	inch (mm)	7-1/2 (191)			12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	22-1/2 (572)	25 (635)	25 (635)
Minimum member thickness	h _{min}	inch (mm)		h _{ef} + 1-1/4 (h _{ef} + 30)		h _{ef} + 2d _o						
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	1-7/8 2-1/2		3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Minimum edge distance (up to 100% T _{max})	Cmin	inch (mm)	1-7/8 (48)		1/2 4)	3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Max. torque ²	Tmax	ft-lbs (N-m)	15 (20)	3 (4		60 (81)	105 (142)	125 (169)	165 (221)	200 (280)	280 (379)	280 (379)
Max. torque ^{2,3} (low strength rods)	Tmax,Is-rod	ft-lbs (N-m)	5 (9)	5 20		40 (54)	60 (81)	100 (136)	165 (223)	-	280 (379)	-
Min. edge distance, reduced $^{\rm 4.5}$ (up to 45% $T_{\rm max}$)	Cmin,red	inch (mm)	1-3/4 (45)		3/4 5)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)	2-3/4 (70)

For pound-inch units: 1 mm = 0.03937 inch, 1 N-m = 0.7375 ft-lbf. For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

s

1. Embedment range for use with the design provisions of 318 (-19 & -14) or ACI 318 Appendix D as applicable, ICC-ES AC308, Section 4.2 and ESR-3576.

2. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

3. These torque values apply to ASTM A36 / F1554 Grade 36 carbon steel threaded rods; and ASTM A193 Grade B8/B8M (Class 1) stainless steel threaded rods.

4. For installations below the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the reduced maximum torque is 0.45*Tmax.

5. For installations below the minimum edge distance, cmin, down to the reduced minimum edge distance, cmin,red, the minimum anchor spacing, smin is 5da.

С Threaded Rod or Rebar C d_a (d) h (h_{ef}) do(dbit) D

Detail of Steel Hardware Elements

used with Injection Adhesive System

Nomenclature

- = Diameter of anchor da (d)
- = Diameter of drilled hole do (dbit) = Base material thickness h
- hnom (hef) = Embedment depth
- = Spacing of anchors S

= Edge distance С Tma

ADHESIVES

= Maximum torque

Threaded R	od and Deformed Re	einforcing Bar N	laterial Pro	perties
Steel Description (General)	Steel Specification (ASTM)	Nominal Anchor Size (inch/No.)	Minimum Yield Strength, fy (psi)	Minimum Ultimate Strength, fu (psi)
	A36 or F1554 Grade 36		36,000	58,000
	F1554 Grade 55	3/8 through 1-1/4	55,000	75,000
	A449	3/8 through 1	92,000	120,000
Carbon rod	A449	1-1/4	81,000	105,000
	A193, Grade B7 or F1554, Grade 105	3/8 through 1-1/4	105,000	125.0
	F568M Class 5.8	3/4 through 1-1/4	58,000	72,500
	F593 Condition CW	3/8 through 5/8	65,000	100,000
	F593 CONDITION CW	3/4 through 1-1/4	45,000	85,000
Stainless rod	A193/193M Grade B8/B8M, Class 1	3/8 through 1-1/4	30,000	75,000
	A193/A193M Grade B8/B8M2, Class 2B	3/8 through 1-1/4	75,000	95,000
	A615, A767, Grade 40	#3 through #6	40,000	60,000
	A615, A767, Grade 60	#3 through #10	60,000	90,000
Reinforcing Bar	A706, A767, Grade 60	#3 till0uyir#10	60,000	80,000
	A615, A767, Grade 75	#3 through #10	75.000	100.000

Deleteration Devisited at Devised in

Threaded Rod and Deformed Reinforcing Bar Material Properties											
Steel Description (General)	Steel Specification (ASTM)	Nominal Anchor Size (inch/No.)	Minimum Yield Strength, f _y (psi)	Minimum Ultimate Strength, fu (psi)							
	A36 or F1554 Grade 36	0/0 through 1 1/4	36,000	58,000							
	F1554 Grade 55	3/8 through 1-1/4	55,000	75,000							
	4440	3/8 through 1	92,000	120,000							
Carbon rod	A449	1-1/4	81,000	105,000							
	A193, Grade B7 or F1554, Grade 105	3/8 through 1-1/4	105,000	125.0							
	F568M Class 5.8	3/4 through 1-1/4	58,000	72,500							
	F593 Condition CW	3/8 through 5/8	65,000	100,000							
		3/4 through 1-1/4	45,000	85,000							
Stainless rod	A193/193M Grade B8/B8M, Class 1	3/8 through 1-1/4	30,000	75,000							
	A193/A193M Grade B8/B8M2, Class 2B	3/8 through 1-1/4	75,000	95,000							
	A615, A767, Grade 40	#3 through #6	40,000	60,000							
	A615, A767, Grade 60	#3 through #10	60,000	90,000							
Reinforcing Bar	A706, A767, Grade 60	#3 uii0uyii #10	60,000	80,000							
	A615, A767, Grade 75	#3 through #10	75,000	100,000							
	A706, A767, Grade 80	#3 through #10	80,000	100,000							
Tabulated material	properties are provided for referer	nce; other steel hardware e	elements may also b	e considered.							

PERFORMANCE DATA (ASD)

Ultimate and Allowable Load Capacities for Pure50+ Installed with Threaded Rod into Normal-Weight Concrete (based on bond strength/concrete capacity) $^{\rm 1,2,3,4,5,6}$

		Minimum			Minimum Concrete C	ompressive Strength	I		
Rod Diameter	Drill Diameter	Embedment	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,000 psi		
d (in.)	dbit (in.)	Depth hnom (in.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	
3/8	7/16	3-3/8	9,515	2,380	9,925	2,480	9,925	2,480	
1/2	9/16	4-1/2	15,750	3,940	16,420	4,110	19,010	4,750	
5/8	11/16 or 3/4	5-5/8	21,930	5,485	22,870	5,720	28,030	7,005	
3/4	7/8	6-3/4	31,985	7,995	33,355	8,340	37,655	9,415	
7/8	1	7-7/8	40,380	10,095	42,110	10,530	48,155	12,040	
1	1-1/8	9	50,300	12,575	52,455	13,115	60,570	15,145	
	1-1/0	10	66,840	16,710	69,700	17,425	74,470	18,615	
1-1/4	1-3/8	11-1/4	81,060	20,270	84,535	21,130	90,315	22,580	
1-1/2	1-3/4	13-1/2	110,585	27,645	115,320	28,830	123,205	30,805	

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances of 3 times embedment and where the minimum member thickness is greater of [hnom + 1-1/4"] and [hnom + 2duit].

4. The tabulated load values are for applicable for dry uncracked concrete in holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water saturated (wet) concrete or in water-filled holes (flooded) require a 15% reduction in capacity.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

Ultimate and Allowable Load Capacities for Pure50+ Installed with Reinforcing Bar into Normal-Weight Concrete (based on bond strength/concrete capacity)^{1,2,3,4,5,6}

		Minimum			Minimum Concrete C	compressive Strength	I	
Bar Size	Drill Diameter	Embedment	f'c = 2,	500 psi	f'c = 3,	,000 psi	f'c = 4,	,000 psi
d No.	d _{bit} (in.)	Depth h.om (in.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)
#3	7/16	3-3/8	9,730	2,435	10,150	2,540	10,150	2,540
#4	9/16	4-1/2	16,155	4,040	16,850	4,215	18,240	4,560
#5	11/16 or 2/4	4	15,735	3,935	16,405	4,100	16,570	4,145
#3	11/16 or 3/4 4 5-5/8		22,010	5,505	22,950	5,740	25,190	6,295
#6	7/8	6-3/4	30,890	7,720	32,210	8,050	38,330	9,585
#7	1	7-7/8	37,545	9,385	39,150	9,790	41,830	10,460
#8	1-1/8	9	50,230	12,560	52,385	13,095	60,485	15,125
#9	1-3/8	10-1/8	59,435	14,860	61,985	15,495	66,220	16,560
#10	1-1/2	11-1/4	74,330	18,580	77,510	19,380	82,815	20,700
#11	1-3/4	12-3/8	90,895	22,725	94,765	23,700	101,265	25,320

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance).. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances of 3 times embedment and where the minimum member thickness is greater of [hnom + 1-1/4"] and [hnom + 2duit].

4. The tabulated load values are for applicable for dry uncracked concrete in holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water saturated (wet) concrete or in water-filled holes (flooded) require a 15% reduction in capacity.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

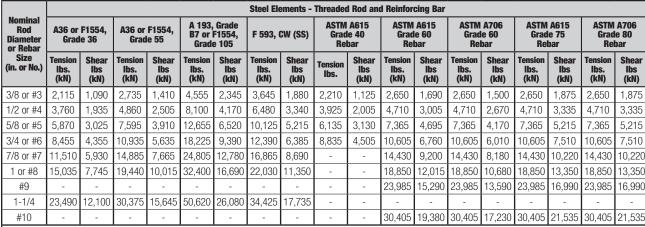
Allowable Load Capacities for Pure50+ Installed with Threaded Rod into Normal-Weight Concrete with 1-3/4" Edge Distance (Based on Bond Strength / Concrete Capacity)^{1,2,3,4,5,6}

ASI

Nominal	Minimum		Mi	nimum Concrete Comp	ressive Strength - f'c (j	psi)		
Anchor	Embedment	2,500 psi			0 psi	4,000 psi		
Diameter d (in.)	Depth hnom (in.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)	
3/8	3-3/8	1,615	1,800	1,675	1,800	1,775	1,800	
1/2	4-1/2	2,405	2,480	2,495	2,480	2,645	2,480	
5/8	5-5/8	2,900	3,195	3,010	3,195	3,190	3,195	
3/4	6-3/4	3,100	2,590	3,215	2,590	3,405	2,590	

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

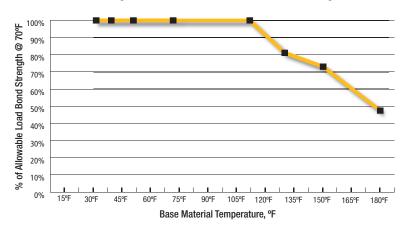

3. The tabulated load values are applicable to single anchors at critical spacing distance of 3 times embedment where the minimum member thickness is greater of [hnom + 1-1/4"] and [hnom + 2dua].

4. The tabulated load values are for applicable for dry uncracked concrete in holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water-saturated concrete (wet) or in water-filled holes (flooded) require a 15% reduction in capacity.

5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.

6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.

Allowable Load Capacities for Threaded Rod and Reinforcing Bar (Based on Steel Strength)12.3.4


1. AISC defined steel strength (ASD) for threaded rod: Tensile = $0.33 \bullet F_u \bullet A_{nom}$, Shear = $0.17 \bullet F_u \bullet A_{nom}$

2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom

3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety or overhead.

4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

In-Service Temperature Chart For Allowable Load Capacities

STRENGTH DESIGN INFORMATION

Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete

	Desire laformation	Growth all	Unite			Nominal	Rod Diamete	er' (inch)		
	Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Threaded rod	nominal outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)
Threaded rod	effective cross-sectional area	Ase	inch ² (mm ²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.9691 (625)
	Nominal strength as governed by	N _{sa}	lbf (kN)	4,495 (20.0)	8,230 (36.6)	13,110 (58.3)	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,210 (250.0)
ASTM A36 and	steel strength (for a single anchor)	V _{sa}	lbf (kN)	2,695 (12.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,725 (150.0)
ASTM F1554 Grade 36	Reduction factor for seismic shear	<i>O</i> (V,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Grade 30	Strength reduction factor for tension ²	φ	-	0.00	0.00	0.000	0.75	0.000	0.000	0.000
	Strength reduction factor for shear ²	ϕ	-				0.65			
	Nominal strength as governed by	N _{sa}	lbf (kN)	5,810 (25.9)	10,640 (47.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.0)	72,680 (323.3)
ASTM F1554 Grade 55	steel strength(for a single anchor)	Vsa	lbf (kN)	3,485 (15.5)	6,385 (28.4)	10,170 (45.2)	15,050 (67.0)	20,775 (92.4)	27,255 (121.2)	43,610 (194.0)
	Reduction factor for seismic shear	O(V,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ² Strength reduction factor for shear ²	ϕ ϕ	-				0.75			
			lbf	9,685	17,735	28,250	41,810	57,710	75,710	121,135
ASTM A193	Nominal strength as governed by	Nsa	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
Grade B7	steel strength (for a single anchor)	V _{sa}	lbf	5,815	10,640	16,950	25,085	34,625	45,425	72,680
and	Deduction factor for opionic choor		(kN)	(25.9)	(7.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM F1554 Grade 105	Reduction factor for seismic shear Strength reduction factor for tension ²	O(V,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
UIQUE 100	Strength reduction factor for shear ²	ϕ ϕ	-				0.75			
	U		lbf	9,300	17,025	27,120	40,140	55,905	72,685	101,755
	Nominal strength as	Nsa	(kN)	(41.4)	(75.7)	(120.6)	(178.5)	(248.7)	(323.3)	(452.6)
ASTM A449	governed by steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,580 (24.8)	10,215 (45.4)	16,270 (72.4)	24,085 (107.1)	33,540 (149.2)	43,610 (194.0)	61,050 (271.6)
	Reduction factor for seismic shear	C/ℓV,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ²	φ	-		-		0.75			
	Strength reduction factor for shear ²	φ	- Ibf	5,620	10,290	10.005	0.65	33,475	42.015	
	Nominal strength as governed by	Nsa	(kN)	(25.0)	(45.8)	16,385 (72.9)	24,250 (107.9)	(148.9)	43,915 (195.4)	_5
ASTM F568	steel strength (for a single anchor)	Vsa	lbf	3,370	6,175	9,830	14,550	20,085	26,350	_5
Class 5.8		Vsa	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	
(ISO 898-1)	Reduction factor for seismic shear	OlV,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	_5
	Strength reduction factor for tension ³	φ	-				0.65			
	Strength reduction factor for shear ³	φ	lbf	7,750	14,190	22,600	0.60	39,245	51,485	82,370
	Nominal strength as governed by	Nsa	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	(366.4)
ASTM F593	steel strength (for a single anchor)	Vsa	lbf	4,650	8,515	13,560	17,060	23,545	30,890	49,425
CW Stainless (Types 304		Vsa	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.8)
and 316)	Reduction factor for seismic shear	OlV,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
,	Strength reduction factor for tension ³ Strength reduction factor for shear ³	φ	-				0.65			
		φ	- Ibf	4,420	8,090	12,880	19.065	26,315	34,525	55,240
ASTM A193	Nominal strength as governed by	Nsa	(kN)	(19.7)	(36.0)	(57.3)	(84.8)	(117.1)	(153.6)	(245.7)
Grade B8/B8M, Class 1	steel strength (for a single anchor)⁴	Vsa	lbf (kN)	2,650 (11.8)	4,855 (21.6)	7,730 (34.4)	11,440 (50.9)	15,790 (70.2)	20,715 (92.1)	33,145 (147.4)
Stainless	Reduction factor for seismic shear	<i>Ol</i> V,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
(Types 304 and 316)	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ²	ϕ	-				0.65			
ASTM A193 Grade B8/	Nominal strength as governed by	Nsa	lbf (kN)	7,365 (32.8)	13,480 (60.0)	21,470 (95.5)	31,775 (141.3)	43,860 (195.1)	57,545 (256.0)	92,065 (409.5)
B8M2,	8M2, steel strength (for a single anchor)	V _{sa}	lbf	4,420	8,085	12,880	19,065	26,315	34,525	55,240
Class 2B	Reduction factor for seismic shear		(kN)	(19.7)	(36.0)	(57.3)	(84.8)	(117.1)	(153.6)	(245.7)
Stainless (Types 304	Strength reduction factor for tension ²	$\frac{\partial W}{\partial \phi}$	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
and 316)	Strength reduction factor for shear ²	ϕ	-				0.65			
,	.4 mm, 1 lbf = 4.448 N. For pound-inch units		037 inches	1 N - 0 22/8	hf		0.00	0		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

2. The tabulated value of *φ* applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *φ* must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements.

3. The tabulated value of \u03c6 applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \u03c6 must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements

 In accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/B8M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9fy or 57,000 psi (393 MPa).
 The referenced standard includes rod diameters up to and including 1-inch (24 mm). **ADHESIVES**

Epoxy Injection Adhesive Anchoring System

Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete

DEWALI

CODE LISTED ICC-ES ESR-3576

	Design Information	Cumhal	Unite			Nomina	al Reinforcin	g Bar Size	(Rebar)		
	75 Reduction factor for seismic shear 75 Strength reduction factor for tensio Strength reduction factor for shear 8 Nominal strength as governed by steel strength (for a single anchor) 76 Reduction factor for seismic shear 8 Strength reduction factor for seismic shear 8 Strength reduction factor for seismic shear 9 Strength reduction factor for seismic shear 9 Strength reduction factor for seismic shear 706 Nominal strength as governed by steel strength (for a single anchor) 706 Reduction factor for seismic shear 706 Strength reduction factor for seismic shear 706 Nominal strength as governed by steel strength reduction factor for tensio 706 Strength reduction factor for seismic shear 706 Nominal strength as governed by steel strength reduction factor for shear 706 Nominal strength as governed by steel strength (for a single anchor)	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Rebar nomi	nal outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)
Rebar effect	tive cross-sectional area	Ase	inch ² (mm ²)	0.110 (71.0)	0.200 (129.0)	0.310 (200.0)	0.440 (283.9)	0.600 (387.1)	0.790 (509.7)	1.000 (645.2)	1.270 (819.4)
	Nominal strength as governed by	Nsa	lbf (kN)	11,000 (48.9)	20,000 (89.0)	31,000 (137.9)	44,000 (195.7)	60,000 (266.9)	79,000 (351.4)	100,000 (444.8)	127,000 (564.9)
ASTM A615	steel strength (for a single anchor)	Vsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	36,000 (160.1)	47,400 (210.8)	60,000 (266.9)	76,200 (338.9)
Grade 75	Reduction factor for seismic shear	<i>O</i> ∕v,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ³	ϕ	-				0.	65			
	Strength reduction factor for shear ³	ϕ	-				0.	0.60			
	Nominal strength as governed by	N _{sa}	lbf (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)	71,100 (316.3)	90,000 (400.3)	114,30 (508.4)
ASTM A615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)
Grade 60	Reduction factor for seismic shear	<i>O</i> ℓV,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ³	ϕ	-	0.65							
	Strength reduction factor for shear ³	ϕ	-				0.	60			
	Nominal strength as governed by	Nsa	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,60 (452.0)
ASTM A706	steel strength (for a single anchor)	Vsa	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)
Grade 60	Reduction factor for seismic shear	<i>O</i> ℓv,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ²	ϕ	-				0.	75			
	Strength reduction factor for shear ²	ϕ	-				0.	65			
	Nominal strength as governed by	Nsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	ln ac	cordance w	ith ASTM A	615
ASTM A615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	In accordance with ASTM A615, Grade 40 bars are furnished only in s No. 3 through No. 6			
Grade 40	Reduction factor for seismic shear	<i>O</i> (V,seis	-	0.70	0.70	0.80	0.80				
	Strength reduction factor for tension ³	ϕ	-				0.	65			
	Strength reduction factor for shear ³	ϕ	-				0.	60			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-13 10.4.4. Values correspond to ductile steel elements. In accordance with ACI 318-19 17.10.5.3(a)(vi), ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)6, as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-19 20.2.2, ACI 318-14 20.2.2.4 and 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.

3. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.

1-1/4 or

#10

5

(127)

25

(635)

6-1/4

(159)

2-3/4

(70)

CODE LISTED

ICC-ES ESB-3576

#9

4 - 1/2

(114)

22-1/2

(572)

5-5/8

(143)

2-3/4

(70)

Nominal Rod Diameter (inch) / Reinforcing Bar Size

17

(7.1)

24

(10.0)

5d where d is nominal outside diameter of the anchor

 $c_{ac} = h_{ef} \cdot (\frac{\tau_{uncr}}{1160})^{0.4} \cdot [3.1 - 0.7 \frac{h}{h_{ef}}]$

 $C_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{8}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$

0.65

0.70

3/4 or #6

3-1/2

(89)

15

(381)

3-3/4

(95)

1-3/4

(45)

7/8 or #7

3-1/2

(89)

17-1/2

(445)

4-3/8

(111)

1-3/4

(45)

hef + 2do where do is hole diameter;

1 or #8

4

(102)

20

(508)

5

(127)

1-3/4

(45)

Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars

3/8 or #3

2 - 3/8

(60)

7-1/2

(191)

1-7/8

(48)

1-3/4

(45)

1/2 or #4

2-3/4

(70)

10

(254)

2-1/2

(64)

1-3/4

(45)

h_{ef} + 1-1/4

(hef + 30)

5/8 or #5

3-1/8

(79)

12-1/2

(318)

3-1/8

(79)

1-3/4

(45)

Units

(SI)

(SI)

inch

(mm)

Symbol

Kc cr

k_{c,uncr}

h_{ef.min}

h_{ef,max}

Smin

Cmin

Cmin.red

h_{min}

Cac

φ

DEWALI

ANCHORS & FASTENERS

Design Information

Effectiveness factor for

cracked concrete

Effectiveness factor for

uncracked concrete

Minimum embedment

Maximum embedment

Minimum anchor spacing

Minimum edge distance²

Minimum edge distance, reduced²

(45% T_{max})

Minimum member thickness

Critical edge distance-splitting

(for uncracked concrete only)3

Strength reduction factor for tension.

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf. 1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, Cmin, and the reduced minimum edge distance, Cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. $T_{k,uncr}$ need not be taken as greater than: $T_{k,uncr} = k_{uncr} \cdot \sqrt{h_{ef} \cdot f'_{C}}$ and $\frac{h}{h}$ need not be taken as larger than 2.4. h_{ef}

π•d 4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

ADHESIVES

	Ē	=

103

ADHESIVES

Bond Strength Design Information for Threaded Rods and Reinforcing Bars

					Nor	ninal Rod D	iameter (in	ch) / Reinfo	orcing Bar	Size	
Design li	nformation	Symbol	Units	3/8 or #3	1/2 or #4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4 or #10
Minimum	embedment	hef,min	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)
Maximum	embedment	h _{ef,max}	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	22-1/2 (572)	25 (635)
110°F (43°C) Maximum Long-Term Service Temperature; 140°F	Characteristic bond strength in cracked concrete ^{6,9}	auk,cr	psi (N/mm²)	684 (4.7)	658 (4.5)	632 (4.4)	608 (4.2)	585 (4.0)	562 (3.9)	562 (3.9)	562 (3.9)
(60°C) Maximum Short-Term Service Temperature ^{3,5}	Characteristic bond strength in uncracked concrete ^{6,8}	$ au_{ extsf{k}, extsf{uncr}}$	psi (N/mm²)	1,444 (10.0)	1,389 (9.6)	1,335 (9.2)	1,283 (8.8)	1,234 (8.5)	1,184 (8.2)	1,184 (8.2)	1,184 (8.2)
110°F (43°C) Maximum Long-Term Service Temperature; 176°F	Characteristic bond strength in cracked concrete ^{6,9}	$ au_{k,cr}$	psi (N/mm²)	475 (3.3)	457 (3.2)	439 (3.0)	422 (2.9)	406 (2.8)	390 (2.7)	390 (2.7)	390 (2.7)
(80°C) Maximum Short-Term Service Temperature⁴⁵	Characteristic bond strength in uncracked concrete ^{6,8}	$ au_{ extsf{k}, extsf{uncr}}$	psi (N/mm²)	1,024 (7.1)	985 (6.8)	947 (6.5)	910 (6.3)	875 (6.0)	840 (5.8)	840 (5.8)	840 (5.8)
	Dry concrete	Anchor Category	-				-	1			
Permissible Installation		$\phi_{ m d}$	-				0.	65			
Conditions ⁷	Water-saturated concrete or	Anchor Category	-					2			
	Water-filled hole (flooded)	$\phi_{\scriptscriptstyle { m WS}}, \phi_{\scriptscriptstyle { m Wf}}$	-				0.	55			
Reduction factor	for seismic tension ⁹	Ø∕N,seis	-				1	.0			

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)⁴²³ [For SI: (f'c / 17.2)⁴²³].

See Section 4.1.4 of this report for bond strength determination.

The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-19 17.2.4.1, or ACI 318-14 17.2.6 where applicable.
 The maximum short-term service temperature may be increased to 162°F (72°C) provided characteristic bond strengths are reduced by 3 percent. Long-term and short-term temperatures

meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category B.

4. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category A.

5. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.

6. Characteristic bond strengths are for sustained loads including dead and live loads. Characteristic bond strengths are also applicable to short-term loading.

7. Permissible installation conditions include dry concrete, water-saturated concrete, and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.

8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

9. For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete do not require an additional reduction factor applied for seismic tension (*causes* = 1.0), where seismic design is applicable.

 \mathbf{e}

DESIGN STRENGTH TABLES (SD)

DEWALI

ANCHORS & FASTENERS

Tension and Shear Design Strength Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

		Minimum Concrete Compressive Strength												
Nominal	Embed.	f'c = 2,	500 (psi)	f'c = 3,	000 (psi)	f'c = 4,0	000 (psi)	f'c = 6,0	000 (psi)	f'c = 8,0)00 (psi)			
Rod/Rebar Size (in. or #)	Depth hef (in.)	∲N₀₀ or ØNª Tension (Ibs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)	<i>φ</i> Ν₀ or <i>φ</i> Νa Tension (Ibs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)	<i>φ</i> Ν₀ or <i>φ</i> Νa Tension (lbs.)	$\phi_{\mathbf{V}_{cb}}$ or $\phi_{\mathbf{V}_{cp}}$ Shear (lbs.)	<i>φ</i> Ν₀ or <i>φ</i> Ν₄ Tension (lbs.)	φVcb or φVcp Shear (Ibs.)	<i>φ</i> Ν₀ or <i>φ</i> Νa Tension (lbs.)	¢V₀₀ or ¢V₀₀ Shear (Ibs.)			
	2-3/8	2,625	2,490	2,740	2,770	2,925	3,150	3,210	3,460	3,430	3,695			
2/0 or #2	3	3,315	3,700	3,460	4,120	3,695	4,885	4,055	6,210	4,335	7,365			
3/8 or #3	4-1/2	4,975	6,755	5,190	7,525	5,545	8,920	6,085	11,340	6,500	13,445			
	7-1/2	8,295	14,375	8,650	16,010	9,240	18,985	10,145	21,845	10,835	23,340			
	2-3/4	3,555	3,305	3,895	3,755	4,345	4,525	4,770	5,755	5,095	6,825			
1/0 1/4	4	5,675	6,450	5,915	7,185	6,320	8,520	6,940	10,830	7,415	12,840			
1/2 or #4	6	8,510	11,750	8,875	13,085	9,480	15,515	10,405	19,725	11,120	23,390			
	10	14,180	25,020	14,790	27,875	15,800	33,050	17,345	37,360	18,530	39,915			
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,720	6,430	7,525	6,835	8,920			
E/0	5	8,520	9,895	8,885	11,020	9,490	13,065	10,420	16,610	11,130	19,695			
5/8 or #5	7-1/2	12,780	18,020	13,325	20,070	14,235	23,800	15,630	30,255	16,700	35,870			
	12-1/2	21,300	38,395	22,210	42,775	23,730	50,715	26,050	56,105	27,830	59,940			
	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,635	9,255	8,265	11,245			
3/4 or #6	6	11,465	13,595	12,295	15,315	13,135	18,160	14,420	23,090	15,405	27,375			
	9	17,685	25,045	18,440	27,900	19,705	33,080	21,630	42,050	23,110	49,775			
	15	29,475	53,355	30,735	59,435	32,840	70,470	36,050	77,645	38,515	82,955			
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,350	9,100	7,975	11,130			
	7	14,445	16,605	15,825	18,865	17,195	22,525	18,875	28,635	20,170	33,950			
7/8 or #7	10-1/2	23,150	31,060	24,145	34,595	25,795	41,020	28,315	52,150	30,250	61,830			
	17-1/2	38,585	66,175	40,240	73,715	42,990	87,400	47,195	101,645	50,420	108,600			
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,190	11,280	9,980	13,800			
	8	17,650	19,750	19,335	22,435	21,550	27,055	23,655	34,395	25,275	40,785			
1 or #8	12	29,015	37,310	30,255	41,560	32,325	49,280	35,485	62,650	37,910	74,280			
	20	48,355	79,500	50,425	88,560	53,875	105,005	59,140	127,380	63,185	136,095			
	4-1/2	7,445	7,110	8,155	8,080	9,420	9,880	11,335	13,125	12,300	16,055			
	9	21,060	23,055	23,070	26,190	26,640	32,035	29,940	41,110	31,990	48,745			
#9	13-1/2	36,720	44,600	38,290	49,680	40,910	58,905	44,910	74,885	47,985	88,790			
	22-1/2	61,200	94,995	63,820	105,825	68,185	125,475	74,850	159,515	79,970	172,245			
	5	8,720	8,170	9,555	9,285	11,030	11,355	13,510	15,085	15,190	18,450			
	10	24,665	26,380	27,020	29,975	31,200	36,660	36,965	48,050	39,490	56,970			
1-1/4	15	45,315	52,110	47,275	58,060	50,510	68,835	55,445	87,515	59,240	103,760			
	25	75,555	111,065	78,790	123,720	84,180	146,695	92,410	186,490	98,730	212,650			
	5	8,720	8,160	9,555	9,270	11,030	11,335	13,510	15,060	15,020	18,420			
	10	24,665	26,430	27,020	30,025	31,200	36,725	36,965	48,135	39,490	57,070			
#10	15	45,315	52,205	47,275	58,165	50,510	68,965	55,445	87,675	59,240	103,955			
	25	75,555	111,225	78,790	123,905	84,180	146,910	92,410	186,765	98,730	212,650			

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

 Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness, ha = hmin. and with the following conditions:

- C_{a1} is greater than or equal to the critical edge distance, C_{ac}

Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors ($\dot{\phi}$) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3576.

 Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3576 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch. 17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch. 17, ICC-ES AC308 and information

included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308 and ESR-3576. 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of

b) Long term concrete temperatures are roughly constant over significant periods or time. Short-term elevated temperatures are trouse that occur over oner intervals, e.g. as a result of diumal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For other installation conditions such as water-saturated concrete or water-filled holes, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

Tension and Shear Design Strength Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

							Compressive S				
Nominal	Embed.		500 (psi)		000 (psi)		000 (psi)		000 (psi)	f'c = 8,0	
Rod/Rebar Size (in. or #)	Depth hef (in.)	φN _{cb} or φNa Tension (lbs.)	ΦV₀₀ or ΦV₀₀ Shear (lbs.)	ΦNcb or ΦNa Tension (Ibs.)	ΦVcb or ΦVcp Shear (lbs.)	φN _{cb} or φNa Tension (Ibs.)	φV _{cb} or φV _{cp} Shear (lbs.)	φN _{cb} or φNa Tension (Ibs.)	ΦV₀₀ or ΦV₀₀ Shear (lbs.)	ØNcb or ØNa Tension (Ibs.)	φV₀₀ or φV₀ Shear (lbs.)
	2-3/8	1,245	1,340	1,295	1,395	1,385	1,495	1,520	1,640	1,625	1,750
0/0 1/0	3	1,570	2,645	1,640	2,945	1,750	3,490	1,920	4,140	2,055	4,425
3/8 or #3	4-1/2	2,355	4,825	2,460	5,295	2,625	5,655	2,885	6,210	3,080	6,635
	7-1/2	3,930	8,460	4,095	8,825	4,375	9,425	4,805	10,350	5,135	11,05
	2-3/4	1,850	2,360	1,925	2,680	2,060	3,235	2,260	4,110	2,415	4,875
1/0	4	2,685	4,605	2,800	5,130	2,995	6,085	3,285	7,080	3,510	7,565
1/2 or #4	6	4,030	8,390	4,205	9,055	4,490	9,675	4,930	10,620	5,265	11,34
	10	6,720	14,470	7,005	15,090	7,485	16,120	8,215	17,700	8,780	18,91
	3-1/8	2,365	2,940	2,500	3,340	2,720	4,085	3,045	5,375	3,235	6,375
	5	4,035	7,065	4,205	7,870	4,495	9,335	4,935	10,625	5,270	11,35
5/8 or #5	7-1/2	6,050	12,870	6,310	13,590	6,740	14,515	7,400	15,935	7,905	17,02
	12-1/2	10,085	21,715	10,515	22,645	11,235	24,195	12,330	26,560	13,175	28,37
	3-1/2	2,805	3,580	2,955	4,070	3,215	4,980	3,620	6,610	3,920	8,03
0/4 110	6	5,585	9,710	5,825	10,940	6,225	12,970	6,835	14,720	7,300	15,72
3/4 or #6	9	8,380	17,890	8,740	18,825	9,335	20,110	10,250	22,075	10,950	23,58
	15	13,970	30,085	14,565	31,370	15,560	33,520	17,085	36,795	18,250	39,31
	3-1/2	2,720	3,525	2,860	4,000	3,105	4,895	3,485	6,500	3,780	7,95
7/0 04 117	7	7,315	11,860	7,630	13,475	8,150	16,090	8,950	19,275	9,560	20,59
7/8 or #7	10-1/2	10,975	22,185	11,445	24,650	12,230	26,340	13,425	28,910	14,340	30,89
	17-1/2	18,290	39,400	19,075	41,085	20,380	43,895	22,370	48,185	23,905	51,48
	4	3,405	4,365	3,585	4,960	3,890	6,065	4,365	8,060	4,735	9,85
1	8	9,180	14,105	9,575	16,025	10,230	19,325	11,230	24,185	11,995	25,84
1 or #8	12	13,770	26,650	14,360	29,685	15,345	33,050	16,845	36,280	17,995	38,76
	20	22,950	49,435	23,935	51,555	25,575	55,080	28,070	60,465	29,995	64,60
	4-1/2	4,205	5,080	4,425	5,770	4,800	7,060	5,380	9,375	5,840	11,46
110	9	11,620	16,465	12,115	18,710	12,945	22,880	14,210	29,365	15,185	32,70
#9	13-1/2	17,430	31,855	18,175	35,485	19,420	41,825	21,315	45,915	22,775	49,05
	22-1/2	29,050	62,570	30,295	65,245	32,365	69,710	35,530	76,525	37,960	81,76
	5	5,190	5,835	5,465	6,630	5,925	8,110	6,645	10,775	7,210	13,17
1 1/4	10	14,345	18,845	14,960	21,410	15,985	26,185	17,545	34,320	18,745	40,37
1-1/4	15	21,520	37,220	22,440	41,470	23,975	49,170	26,320	56,685	28,120	60,56
	25	35,865	77,245	37,400	80,550	39,955	86,060	43,865	94,475	46,865	100,93
	5	5,135	5,830	5,405	6,620	5,860	8,100	6,570	10,755	7,130	13,15
#10	10	14,345	18,880	14,960	21,445	15,985	26,230	17,545	34,380	18,745	40,37
#10	15	21,520	37,290	22,440	41,545	23,975	49,260	26,320	56,685	28,120	60,56
	25	35,865	77,245	37,400	80,550	39,955	86,060	43,865	94,475	46,865	100,93

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- Ca2 is greater than or equal to 1.5 times Ca1.

2. Calculations were performed according to ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3576.

 Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3576 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2 or ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch. 17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308 and ESR-3576.

9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength does not require an additional reduction factor applied for seismic tension (*Clauses* = 1.0), where seismic design is applicable.

12. For other installation conditions such as water-saturated concrete or water-filled holes, see the associated strength reduction factors (ϕ) for bond strength in the determination of controlling design strength values, as applicable.

TECHNICAL GUIDE - ADHESIVES ©2022 DEWALT

- REV. H

Tension Design of Steel Elements (Steel Strength)^{1,2}

Steel Elements - Threaded Rod and Reinforcing Bar												
Nominal Rod/Rebar Size (in. or No.)	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8 and IS0 898-1 Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØN≊ Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØN≊ Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØN₅a Tension (Ibs.)
3/8 or #3	3,370	4,360	7,265	6,975	3,655	5,040	3,315	5,525	7,150	6,435	6,600	4,290
1/2 or #4	6,175	7,980	13,300	12,770	6,690	9,225	6,070	10,110	13,000	11,700	12,000	7,800
5/8 or #5	9,835	12,715	21,190	20,340	10,650	14,690	9,660	16,105	20,150	18,135	18,600	12,090
3/4 or #6	14,550	18,815	31,360	30,105	15,765	18,480	14,300	23,830	28,600	25,740	26,400	17,160
7/8 or #7	20,085	25,970	43,285	41,930	21,760	25,510	19,735	32,895	39,000	35,100	36,000	-
1 or #8	26,350	34,070	56,785	54,515	28,545	33,465	25,895	43,160	51,350	46,215	47,400	-
#9									65,000	58,500	60,000	-
1-1/4 or #10	42,160	54,510	90,850	76,315	-	53,540	41,430	69,050	82,550	74,295	76,200	-

- Steel Strength

1. Steel tensile design strength according to ACI 318 (-19 or -14) Ch. 17 and ACI 318 Appendix D, $\phi_{N_{sa}} = \phi \cdot A_{se,N} \cdot f_{uta}$.

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode,

the lowest load level controls.

Shear Design of Steel Elements (Steel Strength)^{1,2,3}

	Steel Elements - Threaded Rod and Reinforcing Bar											
Nominal Rod/Rebar Size (in. or No.)	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8 and ISO 898-1 Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØV≊ Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)
3/8 or #3	1,755	2,265	3,775	3,625	2,025	2,790	1,725	2,870	3,960	3,565	3,430	2,375
1/2 or #4	3,210	4,150	6,915	6,640	3,705	5,110	3,155	5,255	7,200	6,480	6,240	4,320
5/8 or #5	5,115	6,610	11,020	10,575	5,900	8,135	5,025	8,375	11,160	10,045	9,670	6,695
3/4 or #6	7,565	9,785	16,305	15,655	8,730	10,235	7,435	12,390	15,840	14,255	13,730	9,505
7/8 or #7	10,445	13,505	22,505	21,805	12,050	14,130	10,265	17,105	21,600	19,440	18,720	-
1 or #8	13,700	17,715	29,525	28,345	15,810	18,535	13,465	22,445	28,440	25,595	24,650	-
#9									36,000	32,400	31,200	-
1-1/4 or #10	21,920	28,345	47,240	39,685	-	29,655	21,545	35,905	45,720	41,150	39,625	-

- Steel Strength

1. Steel shear design strength according to ACI 318 (-19 or -14) Ch. 17 and ACI 318 Appendix D, ϕ V_{sa} = $\phi \cdot 0.60 \cdot A_{se,v} \cdot f_{uta.}$

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

3. In the determination of the shear design strength values in cracked concrete, the steel strength requires an additional reduction factor applied for seismic shear (*O*(v.seis)), where seismic design is applicable.

	1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
	 Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal. Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.
	Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on). GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+ [™] EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED). OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.
HOLE CLEANING	(BLOW 2X, BRUSH 2X, BLOW 2X)
····	 2a- Starting from the bottom or back of the drilled anchor hole, blow the hole clean a minimum of two times (2x). Use a compressed air nozzle (min. 90 psi) for all sizes of anchor rod and reinforcing bar (rebar).
	2b- Determine wire brush diameter (see installation specifications) for the drilled hole and attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length. The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if it does not come into contact with the sides of the drilled hole, the brush is too small and must be replaced.
	2c- Repeat Step 2a again by blowing the hole clean a minimum of two times (2x).
ر پر ۲۲ ۲۲ ۲۲	• When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.
PREPARING	
	3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 50°F - 104°F (10°C - 40°C) when in use; for overhead applications cartridge temperature must be between 50°F - 90°F (10°C - 30°C). Review published working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of the base material temperature, see published gel and curing times.
	 Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing elemen is inside the nozzle. Load the cartridge into the correct dispensing tool.
	• Note: Unless otherwise noted use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive.
rent market in the second sec	4- Prior to inserting the anchor rod or rebar into the filled bore hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.
AL	5- Adhesives must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color.
3X	• Review and note the published working and cure times (reference gel time and curing time table) prior to injection of the mixed adhesive into t cleaned anchor hole.
INSTALLATION	
	6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw th mixing nozzle as the hole fills to avoid creating air pockets or voids. A plastic extension tube (Cat# 08281-PWR or 08297-PWR) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle only
	 Note! Piston plugs (see adhesive piston plug table) must be used with and attached to the mixing nozzle and extension tube for horizontal installations where embedment is greater than 8 inches and where the drilled hole diameter is larger than 5/8-inch. Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.
	Attention! Do not install anchors overhead without proper training and installation hardware provided by the DEWALT. Contact DEWALT for deta prior to use.
	7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.
	8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. For all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the of temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during the gel time only.
CURING AND LOA	
68°F	9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).Do not disturb, torque or load the anchor until it is fully cured.
hrs hrs	10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference gel time
	 10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference gel time and curing table) by using a calibrated torque wrench. Note: Take care not to exceed the maximum torque for the selected anchor.
1 (1 1)))))))))))))))))))))))))))))))))))	

ADHESIVES

108

Epoxy Injection Adhesive Anchoring System

E50+"

PUR

REFERENCE INSTALLATION TABLES

Gel (working) Time and Curing Table^{1,2}

Temperature o	f base material	Gel (working) time	Full curing time			
°F	°C					
50	10	90 minutes	24 hours			
68	20	25 minutes	8 hours			
86	30	20 minutes	6 hours			
95	35	15 minutes	6 hours			
104	40	12 minutes	4 hours			

1. Linear interpolation for intermediate base material temperature is possible.

2. Cartridge adhesive temperature must be between 50°F - 110°F (10°C - 43°C) when in use; for overhead applications cartridge adhesive temperature must be between 50°F - 90°F (10°C - 32°C) when in use. For best adhesive dispensing experience, suggested minimum cartridge adhesive temperature is 68°F (20°C) when in use

Wire Brush Selection Table for Pure50+ Adhesive Anchors^{1,2,3}

ANSI Drill Bit Diameter' (inch)	Nominal Wire Brush Size (inch)	Brush Length (inches)	Steel Wire Brush ²³ (Cat. #)	Blowout Tool
7/16	7/16	7	08284-PWR	
9/16	9/16	7	08285-PWR	
5/8	5/8	7	08275-PWR	
11/16	11/16	9	08286-PWR	
3/4	11/10	9	08278-PWR	Compressed air nozzle only,
7/8	7/8	9	08287-PWR	Cat #08292-PWR (min. 90 psi)
1	1	11	08288-PWR	
1-1/8	1-1/8	11	08289-PWR	
1-3/8	1-3/8	11	08290-PWR	
1-1/2	1-1/2	11	08291-PWR	

1. An SDS-plus adaptor (Cat. #08283-PWR) or Jacobs chuck style adaptor (Cat. #08296-PWR) is required to attach a steel wire brush to the drill tool.

2. A brush extension (Cat. #08282-PWR) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

3. If the DEWALT DustX+ extraction system is used to automatically clean the holes during drilling, standard hole cleaning (i.e. brushing and removing dust/debris following drilling) is not required.

Piston Plug Selection Table for Adhesive Anchors^{1,2,3,4}

Drill Bit Diameter (inch)	Plug Size (inch)	Piston Plug (Cat. #)	Premium Piston Plug (Cat. #)
11/16	11/16	08258-PWR	PFC1691515
3/4	3/4	08259-PWR	PFC1691520
7/8	7/8	08300-PWR	PFC1691530
1	1	08301-PWR	PFC1691540
1-1/8	1-1/8	08303-PWR	PFC1691550
1-1/4	1-1/4	08307-PWR	PFC1691555
1-3/8	1-3/8	08305-PWR	PFC1691560
1-1/2	1-1/2	08309-PWR	PFC1691570
1-3/4	1-3/4	-	PFC1691580
2	2	-	PFC1691590
2-3/16	2-3/16	-	PFC1691600

1. All overhead installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All horizontal installations require the use of piston plugs where the embedment depth is greater than 8 inches and the drill bit size is larger than 5/8-inch.

3. The use of piston plugs is also recommended for underwater installations where one is tabulated together with the anchor size.

4. A flexible plastic extension tube (Cat. #08281-PWR or #08297-PWR) or equivalent approved by DEWALT must be used with piston plugs.

ORDERING INFORMATION

Pure50+ Cartridges

Cat. No.	Description	Pack Qty.	Pallet Qty		
08600-PWR	Pure50+ 9 fl. oz Quick-Shot cartridge	12	432		
08605-PWR	Pure50+ 20.5 fl. oz. cartridge	12	540		
08651-PWR	Pure50+ 50.5 fl. oz. cartridge	5	135		
	A Pure50+ mixing nozzle is packaged with each cartridge. Pure50+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive.				

Cartridge System Mixing Nozzles

Cat. No.	Description	Pack Qty.	Carton Qty.
PFC1641600	Mixing nozzle (with 8" extension) for Pure50+ Quick-Shot	1	12
08294-PWR	Mixing nozzle (with 8" extension)	2	24
08609-PWR	High flow mixing nozzle (with 8" extension)	2	24
08281-PWR	Mixing nozzle extension, 8" long	2	24
08297-PWR	Mixing nozzle extension, 20" long	1	12

Dispensing Tools for Injection Adhesive

	• •			
Cat. No.	Description	Pack Qty.	Carton Qty.	Ve T
08437-PWR	Manual caulking gun for Quick-Shot	1	12	
DCE560D1	Quik-Shot 20v Battery powered dispensing tool	1	-	,
08409-PWR	20.5 fl. oz. Standard metal manual tool	1	10	
DCE591D1	20.5 fl. oz. 20v Battery powered dispensing tool	1	-	
08459-PWR	20.5 fl. oz. Pneumatic tool	1	-	
08438-PWR	50.5 fl. oz. Pneumatic tool	1	-	

Hole Cleaning Tools and Accessories

Cat. No.	Description	Pack Qty.
08284-PWR	Wire brush for 7/16" or 1/2" ANSI hole, 7" length	1
08285-PWR	Wire brush for 9/16" ANSI hole, 7" length	1
08275-PWR	Wire brush for 5/8" ANSI hole, 7" length	1
08286-PWR	Wire brush for 11/16" ANSI hole, 9" length	1
08278-PWR	Wire brush for 3/4" ANSI hole, 9" length	1
08287-PWR	Wire brush for 7/8" ANSI hole, 9" length	1
08288-PWR	Wire brush for 1" ANSI hole, 11" length	1
08289-PWR	Wire brush for 1-1/8" ANSI hole, 11" length	1
08276-PWR	Wire brush for 1-1/4" ANSI hole, 11" length	1
08290-PWR	Wire brush for 1-3/8" h ANSI ole, 11" length	1
08291-PWR	Wire brush for 1-1/2" ANSI hole, 11" length	1
08273-PWR	Wire brush for 1-5/8" ANSI hole, 11" length	1
08299-PWR	Wire brush for 1-3/4" ANSI hole, 11" length	1
08271-PWR	Wire brush for 2" ANSI hole, 11" length	1
08272-PWR	Wire brush for 2-3/16" ANSI hole, 11" length	1
08283-PWR	SDS-plus adapter for steel brushes	1
08296-PWR	Standard drill adapter for steel brushes (e.g. Jacobs Chuck)	1
08282-PWR	Steel brush extension, 12" length	1
08292-PWR	Air compressor nozzle with extension, 18" length	1

Piston Plugs for Adhesive Anchors

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.			
08258-PWR	11/16" Plug	11/16"	10			
08259-PWR	3/4" Plug	3/4"	10			
08300-PWR	7/8" Plug	7/8"	10			
08301-PWR	1" Plug	1"	10			
08303-PWR	1-1/8" Plug	1-1/8"	10			
08305-PWR	1-3/8" Plug	1-3/8"	10			
08309-PWR	1-1/2" Plug	1-1/2"	10			

Premium Piston Plugs

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.
PFC1691510	5/8" Plug	5/8"	1
PFC1691515	11/16" Plug	11/16"	1
PFC1691520	3/4" Plug	3/4"	1
PFC1691530	7/8" Plug	7/8"	1
PFC1691540	1" Plug	1"	1
PFC1691550	1-1/8" Plug	1-1/8"	1
PFC1691555	1-1/4" Plug	1-1/4"	1
PFC1691560	1-3/8" Plug	1-3/8"	1
PFC1691570	1-1/2" Plug	1-1/2"	1
PFC1691580	1-3/4" Plug	1-3/4"	1
PFC1691590	2" Plug	2"	1
PFC1691600	2-3/16" Plug	2-3/16"	1

0-

SIVES

Epoxy Injection Adhesive Anchoring System PURE50+

Ĭ
T
4

SDS Max 4-Cutter Carbide Drill Bits

all Length
3-1/2"
1-1/2"
36"
21-1/2"
3-1/2"
21-1/2"
36"
1-1/2"
3-1/2"
21-1/2"
36"
1-1/2"
3-1/2"
2-1/2"
29"
36"
15"
2-1/2"
29"
36"
15"
2-1/2"

SDS+ Full H	ead Carbide [Drill Bits	
Cat. No.	Diameter	Usable Length	Overall Length
DW5502	3/16"	2"	4-1/2"
DW5503	3/16"	4"	6-1/2"
DW5504	3/16"	5"	8-1/2"
DW5506	3/16"	10"	12"
DW5512	7/32"	8"	10"
DW5517	1/4"	4"	6"
DW5518	1/4"	6"	8-1/2"
DW55200	1/4"	10"	12"
DW5521	1/4"	12"	14"
DW5524	5/16"	4"	6"
DW5526	5916"	10"	12"
DW5527	3/8"	4"	6-1/2"
DW5529	3/8"	8"	10"
DW55300	3/8"	10"	12"
DW5531	3/8"	16"	18"
DW5537	1/2"	4"	6"
DW5538	1/2"	8"	10-1/2"
DW5539	1/2"	10"	12"
DW5540	1/2"	16"	18"

Think is the second

201201050

0 **SDS+ 4-Cutter Carbide Drill Bits**

Cat. No.	Diameter	Usable Length	Overall Length
DW5471	5/8"	8"	10"
DW5472	5/8"	16"	18"
DW5474	3/4"	8"	10"
DW5475	3/4"	16"	18"
DW5477	7/8"	8"	10"
DW5478	7/8"	16"	18"
DW5479	1"	8"	10"
DW5480	1"	16"	18"
DW5481	1-1/8"	8"	10"
DW5482	1-1/8"	6"	18"

Dust Extraction

Cat. No.	Description
DWV012	10 Gallon Wet/Dry Hepa/Rrp Dust Extractor DWV9402 Fleece bag (5 pack) for DEWALT dust extractors DWV9316 Replacement Anti-Static Hose DWV9320 Replacement HEPA Filter Set (Type 1)
DWH050K	Dust Extraction with two interchangeable drilling heads
DCB1800B	1800 Watt Portable Power Station & Parallel Battery Charger Bare Unit

Hollow Drill Bits

Shank	Cat. No.	Diameter	Overall Length	Usable Length	Recommended Hammer
	DWA54012	1/2"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
000.	DWA54916	9/16"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
SDS+	DWA54058	5/8"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54034		14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA58058	5/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58958	5/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58116	11/16"	24-3/4"	15-3/4"	DCH481 / D25603K
	DWA58034	3/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58934	3/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58078	7/8"	23-5/8"	15-3/4"	DCH481 / D25603K
SDS Max	DWA58001	1"	23-5/8"	15-3/4"	DCH481 / D25603K
SDS IVIAX	DWA58901	1"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58118	1-1/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58918	1-1/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58115	1-1/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58114	1-1/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58138	1-3/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58112	1-1/2"	47-1/4"	39-3/8"	DCH481 / D25603K

DIWALT I

TECHNICAL GUIDE - ADHESIVES @2022 DEWALT - REV. H

MECHANICAL ANCHORING

DEWALT

DEWALT

DEWALT

DEWALT

0

 DEWAL

DEWALT

ann alle

DF

A.t.A.

SELECTION GUIDE	113	
UNDERCUT ANCHORS		
CCU+™	114	
EXPANSION ANCHORS		
POWER-BOLT®+	127	
POWER-STUD®+ SD1	136	
POWER-STUD®+ SD2	152	
POWER-STUD® SD4/SD6	162	
POWER-STUD [®] HD5	174	
SCREW ANCHORS		
SCREW-BOLT+"	180	
316 STAINLESS STEEL WEDGE-BOLT™	199	all -
ULTRACON® +	206	
ULTRACON®	219	13
ULTRACON® SS4	224	
CRETE-FLEX®	228	
AGGRE-GATOR®	233	
ROD HANGING SYSTEMS		
HANGERMATE [®] +	238	
SNAKE+®	247	D
MINI-UNDERCUT+™	256	ENGINE

DeWA

П
\mathbf{O}
0
Π
S
5
Ć
0
<u>ပ</u>
4
4
5
Π

					Bas	e N	late	rial						An	icho	or D	Dian	net	er				He	ead	Sty	le		Co	oati	ng/	'Ma'	teri	al	Approvals and Listings
		Concrete	Lightweight Concrete	Hollow Core Plank	Grout-filled Concrete Masonry	Hollow Concrete Masonry	Solid Brick	Hollow Brick	Stone	Structural Clay Tile	Wood	3/16"	1/4"	5/16"	3/8"	1/2"	5/8"	3/4"	7/8"	1=	1-1/4"	Finished Hex Head	Hex Head	Flat Head (Countersunk)	Removable	Tie-Wire Head	Internal Thread	Coated/Plated Carbon Steel	Galvanized Carbon Steel	Type 303/304 Stainless Steel	Type 316 Stainless Steel	Type 410 Stainless Steel	Stalgard Coated Steel	Building Code / Jurisdiction Recognition
UNDERCUT ANCHORS	CCU+™	•	•												•	•	•	•					•					•			•			ICC-ES ESR-4810 IBC, City of LA, FBC
	Power-Bolt®+	•	•		•				•				•		•	•	•	•				•			•			•						ICC-ES ESR-3260 IBC, City of LA
IORS	Power-Stud®+ SD1	•	•		•				•				•		•	•	•	•	•	•	•		•			•		•						ICC-ES ESR-2818 & 2966 IBC, NBC, City of LA, FBC, FM, UL
EXPANSION ANCHORS	Power-Stud®+ SD2	•	•		•				•						•	•	•	•					•					•						ICC-ES ESR-2502 IBC, NBC, City of LA, FBC, FM, UL
EXPA	Power-Stud®+ SD4/SD6	•	•		•				•				•		•	•	•	•					•							•	•			ICC-ES ESR-2502 IBC, NBC, City of LA, FBC
	Power-Stud® HD5	•	•		•				•						•	•	•	•					•						•					
	Screw-Bolt+ [™]	•	•	0	•	0	•		•				•		•	•	•	•				•		•	•			•	•					ICC-ES ESR-3889 IBC, City of LA, FBC
	316 Stainless Steel Wedge-Bolt™	•	•		•		•		•				•		•	•						•			•						•			
IRS	UltraCon®+	•	•	0	•	•	•	•			•	•	•									•		•	•			•					•	ICC-ES ESR-3068 IBC, City of LA, FBC Miami-Dade County
SCREW ANCHORS	UltraCon ®	•	•			•	•				•			•								•		•	•			•					•	Miami-Dade County
SC	UltraCon® SS4	•	0		•	•							•									•		•	•							•	•	Miami-Dade County
	Crete-Flex®	•			•	•					,	•	•									•		•	•							•	•	Miami-Dade County
	Aggre-Gator®	•	0		•	0	•	•			•		•									•		•	•					•			•	Miami-Dade County
TEMS	HangerMate®+	•	•	•	0								•		•	•											•	•						ICC-ES ESR-3889 IBC, City of LA, FBC, FM
ROD HANGING SYSTEMS	Snake+°	•	•		0								•		•	•											•	•						ICC-ES ESR-2772 IBC, City of LA, FBC, FM
ROD H	Mini-Undercut+™	•	•											•													•	•						ICC-ES ESR-3912 IBC, City of LA, FBC
 Suita 	ble 🔘 May be Suitable						_																											

GENERAL INFORMATION

CCU+[™]

Critical Connection Undercut Anchoring System

PRODUCT DESCRIPTION

The DEWALT Critical Connection Undercut (CCU+[™]) anchor is a post-installed structural anchor designed for static, dynamic and seismic loading in the tension zone of both cracked and uncracked concrete. The high capacity CCU+[™] anchor can be loaded immediately following installation and is available in zinc plated ASTM A36 (F1554 Grade 36) mild carbon steel and ASTM A193 Grade B7 high strength carbon steel. For exterior applications or where high corrosion resistance is required, the CCU+[™] is also available in ASTM A193 Grade 8BM, Class 2 high strength 316 stainless steel.

CCU+ anchors are installed into a fixed depth hole with a cone-shaped cavity at the bottom which is created in a secondary drilling operation using a specialty undercut drill bit supplied by DEWALT. The result is bottom-bearing post-installed anchor which keys into the base material with minimal expansive forces allowing for close edge distance and anchor spacing, similar to a cast-in-place headed stud. The heavy-wall expansion sleeve contributes to load transfer and improved shear capacities particularly for the thrubolt version.

GENERAL APPLICATIONS AND US

- Structural connections (e.g. beam, column)
- Safety related fastening and assemblies
- Bridge, tunnel and port structure attachments
- Water and wastewater treatment facility units
- Vessel, tank and containment wall anchorage
- Power generation plant / hydro dam anchors

Industrial machine and equipment mounts

- Utility system bracing, hangers and supports
- Barriers, guards, fencing and railing
- Retrofit anchors for cast-in anchor bolts
- Tension zone / cracked concrete
- Seismic attachments (SDC A F)

FEATURE AND BENEFITS

+ Load transfers to concrete through bearing not friction (similar to cast-in headed bolts)

- + Provides positive mechanical interlock into base material
- + Consistent predictable behavior and exceptional load capacities
- + Robust design minimizes anchor displacement under load
- + Anchor bearing area is more than two-and-a-half times the net tensile area of the anchor rod
- + Anchor rods can be designed for stretch length and ductile steel behavior for seismic loading
- + Close edge distance, anchor spacing, and slab thickness due to low expansive forces
- + Thrubolt version provides significant increase in shear capacities and variable fixture thickness
- + Length ID code and material ID marking stamped on head of each anchor
- + Undercut cavity is created in seconds with durable undercutting tool
- + DEWALT dust removal drilling system (with HEPA dust extractor) can be used for an OSHA 1926.1153 Table 1 compliant solution
- + CCU+ undercut anchors made in USA at time of publication; product certifications available by request (anchors@DEWALT.com)

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-4810 for cracked and uncracked concrete
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor category 1 for all sizes)
- City of Los Angeles, LABC Supplement (within ESR-4810)
- Florida Building Code, FBC Supplement including HVHZ (within ESR-4810)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 – Concrete Anchors and 05 05 19 – Post-Installed Concrete Anchors. Undercut anchors shall be CCU+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	114
Material Specifications	115
Anchor Specifications	115
Installation Specifications	116
Installation Instructions	118
Strength Design Information	119
Design Strength Tables (SD)	120
Performance Data (ASD)	122
Ordering Information	124

CCU+ UNDERCUT THRUBOLT (TB)

THREAD VERSION

UNC threaded stud (anchor rod)

ANCHOR SIZE RANGE (TYP.)

• 3/8" through 3/4" diameters (anchor rod diameter)

ANCHOR MATERIAL TYPE

- Zinc Plated Carbon Steel
- 316 Stainless Steel

ANCHOR VERSIONS

- Preset (PS)
- Thrubolt (TB)

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete

0 Diritical Connection Undercut Anchoring System CCU+

CA

CH

TECHNICATERCHINECALVEODANHOMECHNOHIOAIS ADIOHIZIADI KONZOTZ2

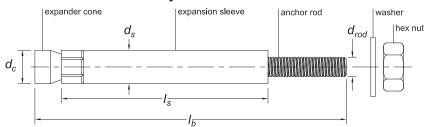
DENANC

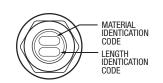
114

MATERIAL SPECIFICATIONS

	Anchor Designation / Material										
Anchor Component	Mild Carbon Steel High Strength Carbon Steel	High Strength Stainless Steel									
Anchor Rod (Threaded Rod)	ASTM A36 (F1554, Grade 36) ASTM A193, Grade B7	ASTM A193, Grade B8M, Class 2 (316 SS)									
Expansion Sleeve	Carbon Steel	AISI 316 SS									
Expansion Cone	Carbon Steel	AISI 316 SS									
Heavy Hex Nut	ASTM A563, Grade C	ASTM A194, Grade 8M (S1)									
Washer	ASTM F844; Meets ANSI/ASME B18.22.1, Type A plain (wide)	AISI 316 SS; meets ANSI/ASME B18.22.1, Type A plain (wide)									
Plating (carbon steel components)	Zinc plating, ASTM B633, SC1 (Fe/Zn 5); min. plating requirement for Mild Service Condition	Not applicable									

ANCHOR SPECIFICATIONS


Anchor	Anchor Rod		Rod	Anchor	Expansio	n Sleeve	Expander	Max. Fixture	
Description, Nominal Size and Length (in.)	Designation (ASTM)	Anchor Version	Diameter, d _{rod} (in.)	Length, I₀ (in.)	Length, Is (in.)	Diameter d₅ (in.)	Cone Dia., d. (in.)	Thickness, t _{max} (in.)	
	ASTM A36 or	Preset (PS)	3/8	6	4	11/16	11/16	7/8	
3/8 x 6	A193, Grade B7	Thrubolt (TB)	3/0	0	4-7/8	11/10	11/10	//0	
3/0 X 0	A193, Grade B8M (316 SS)	Preset (PS)	3/8	6	4	11/16	11/16	7/8	
	A195, GIAUE DOIVI (510 55)	Thrubolt (TB)	3/0	0	4-7/8	11/10	11/10	//0	
	ASTM A36 or	Preset (PS)	1/2	7-1/2	5	13/16	13/16	1-1/4	
1/2 x 7-1/2	A193, Grade B7	Thrubolt (TB)	1/2	1-1/2	6-1/4	13/10	13/10	1-1/4	
1/2 X /-1/2	A193, Grade B8M (316 SS)	Preset (PS)	1/2	7-1/2	5	13/16	13/16	1-1/4	
	A 195, GI due Doivi (510 55)	Thrubolt (TB)	1/2	1-1/2	6-1/4	13/10	13/10	1-1/4	
	ASTM A36 or	Preset (PS)	1/2	8-1/4	5	13/16	13/16	2	
1/2 x 8-1/4	A193, Grade B7	Thrubolt (TB)	1/2	0-1/4	7	13/10	13/10	۷	
	A193, Grade B8M (316 SS)	Preset (PS)	1/2	8-1/4	5	13/16	13/16	2	
	A195, Glade Dolvi (510-55)	Thrubolt (TB)	1/2	0-1/4	7	13/10	13/10	2	
	ASTM A36 or	Preset (PS)	5/8	10-3/4	7-1/2	1	1	1-5/8	
5/8 x 10-3/4	A193, Grade B7	Thrubolt (TB)	5/0	10-3/4	9-1/8			1-5/0	
J/0 X 10-3/4	A193. Grade B8M (316 SS)	Preset (PS)	5/8	10-3/4	7-1/2	1	1	1-5/8	
	A100, Glade Dom (010 00)	Thrubolt (TB)	5/0	10 0/4	9-1/8	'		10/0	
	ASTM A36 or	Preset (PS)	5/8	11-1/2	7-1/2	1	1	2-3/8	
5/8 x 11-1/2	A193, Grade B7	Thrubolt (TB)	5/0	11-1/2	9-7/8			2-3/0	
5/0 X 11 1/2	A193. Grade B8M (316 SS)	Preset (PS)	5/8	11-1/2	7-1/2	1	1	2-3/8	
		Thrubolt (TB)	0/0	11 1/2	9-7/8	'	· ·	2 0/0	
	ASTM A36 or	Preset (PS)	3/4	14	10	1-1/4	1-1/4	2	
3/4 x 14	A193, Grade B7	Thrubolt (TB)	0/1		12	1 1/ 1	1 1/ 1	<u></u>	
0/1/11	A193. Grade B8M (316 SS)	Preset (PS)	3/4	14	10	1-1/4	1-1/4	2	
		Thrubolt (TB)	0/1		12	1 1/ 1	1 1/ -	-	
	ASTM A36 or	Preset (PS)	3/4	16	10	1-1/4	1-1/4	4	
3/4 x 16	A193, Grade B7	Thrubolt (TB)	0,1	10	14		, .		
0/1 / 10	A193, Grade B8M (316 SS)	Preset (PS)	3/4	16	10	1-1/4	1-1/4	4	
	A130, Ulaue Dolvi (310 30)	Thrubolt (TB)	5/4	10	14	1-1/4	1-1/4	4	

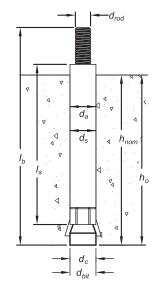

1. Preset anchors are designed so the top of the expansion sleeve is approximately flush with the base material after setting. Thrubolt anchors are designed so the expansion sleeve can be set through and can engage the fixture. See CCU+ undercut anchor detail and installation specifications.

2. Anchor rod (threaded rod) conforming to ASTM F1554, Grade 105 is strength equivalent to the tabulated ASTM A193, Grade B7 designation.

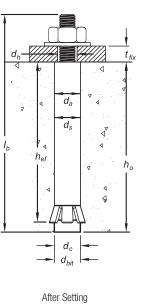
3. The listed anchor lengths are based on the anchor sizes commercially available at the time of publication; custom lengths can be produced by request. Custom length anchors not long enough to meet the minimum embedment requirements are outside the scope of ICC-ES ESR-4810.

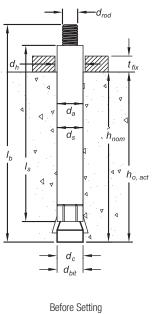
CCU+ Undercut Anchor Assembly

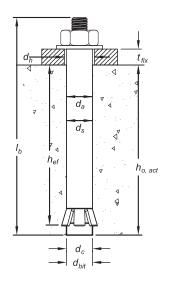
A36 = A36 anchor rod B7 = A193 Grade B7 anchor rod SS2 = A193 Gr. B8M (316 SS) anchor rod **ECHANICAL ANCHORS**



Anchor Length Code Identification System


		marking on rod head	A	B	C	D	E	F	G	H	Т	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	x
Γ	Anchor	From	1-1/2	2	2-1/2	3	3-1/2	4	4-1/2	5	5-1/2	6	6-1/2	7	7-1/2	8	8-1/2	9	9-1/2	10	11	12	13	14	15	16
	Length. I₀ (inches)	Up to but not including	2	2-1/2	3	3-1/2	4	4-1/2	5	5-1/2	6	6-1/2	7	7-1/2	8	8-1/2	9	9-1/2	10	11	12	13	14	15	16	17


INSTALLATION SPECIFICATIONS


CCU+ Undercut Anchor Detail

Before Setting

Preset (PS)

201010 0011

After Setting

Thrubolt (TB)

CCU+ Undercut Anchor Installation Specifications and Supplemental Information

Anchor Prop	erty/	Notation	Units				N	ominal A	nchor Size	e / Rod Di	ameter, d	Irod			
Setting Inform	ation	Notation	Units		3/8 inch	1		1/2 inch			5/8 inch			3/4 inch	
Anchor Rod Designati	on	ASTM	-	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193 Gr. B8M (316 SS)
Outside anchor diame expansion sleeve diar		da/ds	in. (mm)		0.6875 (17.5)			0.8125 (20.6)			1.000 (25.4)			1.25 (31.8)	,
Nominal drill bit diame	eter (ANSI)	d _{bit}	in.		11/16			13/16			1			1-1/4	
Nominal embedment	depth ¹	h _{nom}	in. (mm)		4-1/4 (108)			5-3/8 (137)			8 (203)			10-5/8 (270)	
Effective embedment		h _{ef}	in. (mm)		4 (102)			5 (127)			7-1/2 (191)			10 (254)	
Minimum hole depth, (see note 2 for thrubo	preset version It version)	h₀	in. (mm)		4-1/4 (108)			5-3/8 (137)			8 (203)			10-5/8 (270)	
Min. concrete member preset version (see note 3 for thrubo	,	h _{min}	in. (mm)		6 (152)			7 (178)			9-1/2 (241)			12 (305)	
Minimum edge distan	се	Cmin	in. (mm)		2-1/2 (64)			3 (76)			4-1/2 (114)			6 (152)	
Minimum spacing dis	tance	Smin	in. (mm)		3 (76)			3-3/4 (95)			5-5/8 (143)			7-1/2 (191)	
Minimum diameter of clearance hole in fixture	Preset (PS) Version Thrubolt (TB)	dh	in. (mm)		7/16 (11.1) 3/4			9/16 (14.3) 7/8			11/16 (17.5) 1-1/8			13/16 (20.6) 1-3/8	
Maximum thickness c	Version of fixture	tmax	in.		(19.1)				dimensior					(34.9)	
Installation torque		Tinst	ftlbf.	11		37	29	7	endent on	70	1	18	118	22	
Torque wrench / sock	iot oizo	-	(N-m) in.	(15)	11/16	50)	(40)	7/8	95)	(95)	1-1/16	60)	(160)	1-1/4)())
Nut height			in.		23/64			31/64			39/64			47/64	
Washer O.D.		-	in.		1			1-3/8			1-3/4			2	
Effective tensile stress (anchor rod)	s area	Ase	in.² (mm²)		0.078 (50)			0.142 (91)			0.226 (146)			0.334 (215)	
Minimum specified ul strength⁴	timate	futa	psi (N/mm²)	58,000 (400)	125,000 (860)	120,000 (827)	58,000 (400)	(860)	110,000 (758)	58,000 (400)	125,000 (860)	110,000 (758)	58,000 (400)	125,000 (860)	(758)
Minimum specified yie	eld strength	f _{ya}	psi (N/mm²)	36,000 (248)	105,000 (723)	95,000 (655)	36,000 (248)	105,000 (723)	95,000 (655)	36,000 (248)	105,000 (723)	95,000 (655)	36,000 (248)	105,000 (723)	95,00 (655)
Strength length of the	anchor rod⁵	-	in.	hnon	11/16	+ t _{fix}	hnorr	- 13/16	+ trix	h	nom - 1 + 1	tfix	hnor	n - 1-1/4 -	- t _{fix}
Mean axial stiffness ⁶	Uncracked concrete	$eta_{ ext{uncr}}$	lbf/in.		595,000			1,705,00	0		356,000			446,000	
ινισαπ αλιαί διίπτισδδ	cracked concrete	$eta_{ m cr}$	lbf/in.		398,000			744,000			445,000			354,000	

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor and equal to the hole depth.

2. For thrubolt applications the actual hole depth, hoast is dependent on the actual fixture thickness, tw. Actual hole depth for thrubolts is determined by taking the minimum hole depth plus the maximum thickness of fixture for the selected anchor less the actual fixture thickness being fastened to the base material (h_{0.act} = h₀ + t_{max} - t_m).

3. For thrubolt applications the minimum concrete member thickness, hmin.act is dependent on the actual fixture thickness, tm. Minimum concrete member thickness for thrubolts is determined by taking the minimum concrete member thickness plus the maximum thickness of fixture for the selected anchor less the actual fixture thickness being fastened to the base material $(h_{min,act} = h_{min} + t_{max} - t_{fix}).$

4. The anchor rod for the 3/8-inch stainless steel anchors is manufactured with a minimum specified ultimate strength of 120 ksi (827 N/mm^a).

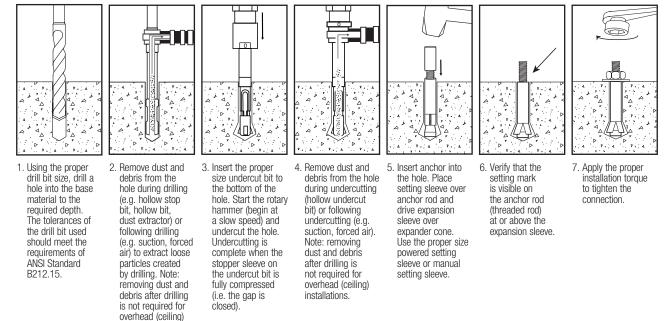
5. For CCU+ undercut anchors, the anchor rod, dred replaces the outside anchor diameter, dra (i.e. expansion sleeve diameter, da) for determination of stretch length and stretch length ratio. Stretch lengths of the anchor rod (threaded rod) in anchor assemblies for embedments listed are greater than eight anchor rod diameters, 8drod which meets the prescriptive requirements as given in ACI 318-19 17.10.5.3(a), ACI 318-14 17.2.3.4.3(a) and ACI 318-11 D.3.3.4.3(a).

6. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

MECHANICAL ANCHORS

TM

CCU


CCU+ Undercut Anchor Installation Accessories and Tools^{1,2}

Nominal	Nominal	Anchor		Primary Bit		Under	cut Bit	Rotary	Setting	Sleeves
Anchor Size	Hole Diameter	Version	HSB	HB	Conventional	HUCB	UCB	Hammer Drill	Powered	Manual
3/8"	11/16"	Preset (PS)	DFX11380 (SDS-Plus)	DWA54116 (SDS-Plus)	DW5808 4-Cutter	DFX21380 (SDS-Plus)	DFX21381 (SDS-Plus)	DCH416 or D25416	DFX313825 (SDS-Plus)	DFX313805
		Thrubolt (TB)	-	(SDS=F108)	(SDS-Max)	(SDS=F108)	(SDS=F103)	(SDS-Plus)	(SDS=F108)	
1/2"	13/16"	Preset (PS)	DFX11120 (SDS-Plus)	DWA54316 (SDS-Plus)	DW5814 4-Cutter	DFX21120 (SDS-Plus)	DFX21121 (SDS-Plus)	DCH416 or D25416	DFX311230 (SDS-Plus)	DFX311210
		Thrubolt (TB)	-	(SDS=F108)	(SDS-Max)	(3D3-F103)	(SDS=F103)	(SDS-Plus)	(303-Fius)	
5/8"	1"	Preset (PS)	DFX11580 (SDS-Max)	DWA58001 (SDS-Max)	DW5852 4-Cutter	DFX21580* (SDS-Plus)	DFX21581* (SDS-Plus)	DCH614 or D25614	DFX315835 (SDS-Max)	DFX315815
		Thrubolt (TB)	-	(SDS=IVIAX)	(SDS-Max)	(SDS=F108)	(SDS=F103)	(SDS-Max)	(SDS-IVIAX)	
3/4"	1-1/4"	Preset (PS)	DFX11340 (SDS-Max)	DWA58115	DW5855 4-Cutter	DFX21340	DFX21341	DCH614 or D25614	DFX313440	DFX313420
		Thrubolt (TB)	-	(SDS-Max)	(SDS-Max)	(SDS-Max)	(SDS-Max)	(SDS-Max)	(SDS-Max)	
*For rotary ham	mer drill connecto	r options, designa	ted drill bits can b	e considered for us	se with a DW5891	SDS-Max to SDS-	Plus adapter.			
1. The listed a	anchor installation	accessories and t	ools are based on	DEWALT equipme	nt commercially av	ailable at the time	of publication.			
2. CCU+ dust	removal drill bits	(e.g. HSB, HB, HU	CB) are used with	a vacuum dust ext	tractor (e.g. DWV0	10, DWV012, DCV	(585).			

CCU+ Dust Removal Drill Bits

INSTALLATION INSTRUCTIONS

CCU+ Undercut Anchor Installation Instructions

installations.

STRENGTH DESIGN INFORMATION

Design Information For Carbon Steel and Stainless Steel CCU+ Undercut Anchors^{1,2,8}

Anchor P	Property / Setting Information	Notation	Units				Nomi	nal Anch	or Size /	Rod Dia	meter, dra	od (in.)			
And IOF P	Toporty / Setung Information		Units		3/8			1/2			5/8			3/4	
Anchor cate	egory	-	-		1			1			1			1	
Anchor rod	designation	ASTM	-	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193, Gr. B8M (316 SS)	A36	A193, Gr. B7	A193 Gr. B8N (316 SS)
Outside dia	meter of anchor	da	in. (mm)		0.6875 (17.5)			0.8125 (20.6)			1.000 (25.4)			1.25 (31.8)	· /
Nominal en	nbedment depth	h _{nom}	in. (mm)		4-1/4 (108)			5-3/8 (137)			8 (203)			10-5/8 (270)	
Effective en	nbedment depth	h _{ef}	in. (mm)		4 (102)			5 (127)			7-1/2 (190)			10 (254)	
	STEEL STEEL	STRENGTH STRENGT	I IN TENSI H IN SHEA	ON (ACI Ar (ACI 3	318-19 1 18-19 17	7.6.1, AC	318-14 318-14	17.4.1 o	or ACI 318 ACI 318	8-11 D.5. -11 D.6.1	.1), I),	11 0 2 2	2)		
Steel strenç	AND STEEL STRENGTH IN gth in tension	Nsa	Ib. (kN)	4,525 (20.1)	9,750 (43.4)	9,360 (41.6)				13,110		24,860	19,370	41,750 (185.7)	
Reduction f	factor, steel strength in tension ^{3,4}	φ	-	(=3.1)	1 (1011)		(00.0)	(. 5.6)	· /	75	(.20.7)	((0012)	(11.00
Preset	Steel strength in shear, static	, V _{sa}	lb. (kN)	2,260 (10.1)	4,875 (21.7)	5,110 (22.7)	4,120 (18.3)	8,875 (39.5)	8,850 (39.4)	6,555 (29.1)	14,125 (62.8)	14,600 (64.9)	9,685 (43.1)	20,875 (92.9)	22,3 (99.
(PS)	Steel strength in shear, seismic	$V_{sa,eq}$	lb. (kN)	1,585 (7.0)	4,390 (19.5)	4,600 (20.5)	2,885 (12.8)	7,990 (35.5)	8,145 (36.2)	4,590 (20.4)	12,715 (56.6)	13,140 (58.5)	6,780 (30.2)	18,790 (83.6)	20,1 (89.
Thrubolt	Steel strength in shear, static	V _{sa}	lb. (kN)	2,260 (10.1)	14,200 (63.2)	15,555 (79.2)	4,120 (18.3)	18,715 (83.3)	24,205 (107.7)	6,555 (29.1)	28,980 (128.9)	38,795 (172.6)	9,685 (43.1)	41,640 (185.2)	57,7 (256
(TB)	Steel strength in shear, seismic	$V_{sa,eq}$	lb. (kN)	1,585 (7.0)	12,790 (56.9)	10,895 (48.5)	2,885 (12.8)	16,840 (74.9)	19,365 (86.1)	4,590 (20.4)	26,080 (116.0)	31,345 (139.4)	6,780 (30.2)	33,315 (148.2)	
Reduction f	factor, steel strength in shear ^{3,4}	φ	-						0.						
	CONCRETE BR	EAKOUT S		in tensi	ON (ACI 3 6	18-19 17	7.6.2, AC	318-14 7-1/2	17.4.2 0	r ACI 318		2)		15	
	e distance (uncracked concrete) ⁷	Cac	in. (mm)		(152)			(191)			(241)			(305)	
	ss factor, uncracked concrete	Kuncr	-		30 24			30 24			30 24			30 24	
	ss factor, cracked concrete n factor for cracked and concrete ⁵	kcr Ψc,N	-	le	1.0 see note	5)	le	1.0 see note !	5)	10	1.0 see note	5)	le	1.0 see note	5)
	factor, concrete breakout	φ	-	(2		. ().65 (Cor	ndition B.	no supp	lementar	v reinforc	ement) o ent preser	r		J)
	PULLOU	T STRENG	TH IN TEN	SION (AC	318-19	17.6.3.	ACI 318-1	4 17.4.3	or ACI 3	18-11 D.	5.3)				
Charaotoria	AND PULLOUT STRENGTH II stic pullout strength,	N TENSION	FOR SEIS	MIC APP	LICATION	S (ACI 3 1	8-19 17	.10.3, AC	1 318-14	17.2.3.3	or ACI 3	18-11 D.:	3.3.3)		
uncracked	concrete (2,500 psi)	Np,uncr	(kN) Ib.		See note			See note	-		See note			See note	
cracked co	ncrete (2,500 psi)	Np,cr	(kN)		See note			See note	-		See note			See note	-
seismic (2,		Np,eq Ø	id. (kN)		See note	6	0	See note	6 0.65 (Co		See note	6	0	See note	6
าเซินนิมีเป็าไป	CONCRETE BI	REAKOUT S	TRENGTH	IN SHEA	R (ACI 31	8-19 17	.7.2, ACI	318-14 1	17.5.2 or	ACI 318-	-11 D.6.2)			
	AND PRY	OUT STRE		HEAR (A	<u>CI 318-19</u> 4	9 17.7.3,	ACI 318-		3 or ACI	318-11 [10	
Load bearir	ng length of anchor	le	in. (mm)		(102)			5 (127)			7-1/2 (190)			10 (254)	
0 111 1	for pryout strength	k _{cp}	-		2.0		70 /0~-	2.0	00 0000	omenter	2.0	omont) -	r	2.0	
		φ	-								y reinforc nforceme	ement) o			
Reduction f strength in	factor, concrete breakout shear⁴ factor, pryout strength in shear⁴	φ 				0		, ,	0.70 (Co	, , , , , , , , , , , , , , , , , , , ,			ių		

2. Installation must comply with manufacturer's printed installation instructions and details.

3. The anchors are considered ductile steel elements as defined by ACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable. See anchor installation specifications and supplemental information table for the determination of stretch length, as applicable.

4. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4. For installations where supplementary reinforcement is present, the strength reduction factors described in ACI 318-19 17.5.3, ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A.

5. Select the appropriate effectiveness factor for cracked concrete (k_{or}) or uncracked concrete (k_{unor}) and use $\psi_{c,N} = 1.0$.

6. Pullout strength does not control design of indicated anchors and does not need to be calculated for indicated anchor size and embedment.

7. In lieu of ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, the modification factor y_{epN} = 1.0 for all cases. In accordance with ACI 318-19 17.9.5, ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable, tension tests in accordance with ACI 355.2 have determined splitting failure under external load does not govern the resistance of the CCU+ undercut anchors, i.e. c_{are} = 1.5h_e. Therefore, this calculation is not required for design. For reference, values of c_{are}, critical edge distance determined by c_{are} = 1.5h_e are provided.

8. For the use of anchors in lightweight concrete, the modification factor λ_a equal to 1.0 λ is applied to all values of (f 'c)^{0.5} affecting N_n and V_n.

For ACI 318-19 (2021 IBC), ACI 318-14 (2018 and 2015 IBC), and ACI 318-11 (2012 IBC), λ shall be determined in accordance with the corresponding version of ACI 318: for sand-lightweight concrete, λ = 0.85; for all-lightweight concrete, λ = 0.75.

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strengths for Carbon Steel CCU+ Preset Version (PS) Installed in Cracked Concrete^{1,2,3,4,5,6,8}

							Mi	nimum C	oncrete C	ompress	ive Streng	jth					
Nominal Anchor	Nominal Embed.		f'c = 3,	000 psi			f'c = 4,	000 psi			f'c = 6,	000 psi			f'c = 8,	000 psi	
Size / Rod Diameter	Depth hnom		ension s.)		Shear Is.)		ension s.)		Shear Is.)		ension s.)		Shear Is.)		ens ion s.)		Shear Is.)
(in.)	(in.)	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	4-1/4	3,395	6,835	1,470	3,170	3,395	7,315	1,470	3,170	3,395	7,315	1,470	3,170	3,395	7,315	1,470	3,170
1/2	5-3/8	6,175	9,555	2,680	5,770	6,175	11,030	2,680	5,770	6,175	13,315	2,680	5,770	6,175	13,315	2,680	5,770
5/8	8	9,835	17,550	4,260	9,180	9,835	20,265	4,260	9,180	9,835	21,190	4,260	9,180	9,835	21,190	4,260	9,180
3/4	10-5/8	14,530	27,020	6,295	13,570	14,530	31,200	6,295	13,570	14,530	31,315	6,295	13,570	14,530	31,315	6,295	13,570
🔲 - Anchor F	Pullout/Pryout	Strength C	ontrols 🔲	- Concrete	e Breakout	Strength C	ontrols 🔳	- Steel Str	ength Cont	rols							

Tension and Shear Design Strengths for Carbon Steel CCU+ Preset Version (PS) Installed in Uncracked Concrete^{1,2,3,4,5,6,7}

							Mi	nimum C	oncrete C	ompressi	ive Streng	th					
Nominal Anchor	Nominal Embed.		f'c = 3,	000 psi			f'c = 4,	000 psi			f'c = 6,	000 psi			f'c = 8,	000 psi	
Size / Rod Diameter	Depth hnom		ension Is.)		Shear Is.)		ension Is.)		Shear Is.)		'ension Is.)		Shear Is.)		'ension Is.)	ØV₀ \$ (Ib	Shear Is.)
(in.)	(in.)	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	4-1/4	3,395	7,315	1,470	3,170	3,395	7,315	1,470	3,170	3,395	7,315	1,470	3,170	3,395	7,315	1,470	3,170
1/2	5-3/8	6,175	11,940	2,680	5,770	6,175	13,315	2,680	5,770	6,175	13,315	2,680	5,770	6,175	13,315	2,680	5,770
5/8	8	9,835	21,190	4,260	9,180	9,835	21,190	4,260	9,180	9,835	21,190	4,260	9,180	9,835	21,190	4,260	9,180
3/4	10-5/8	14,530	31,315	6,295	13,570	14,530	31,315	6,295	13,570	14,530	31,315	6,295	13,570	14,530	31,315	6,295	13,570
- Anchor	Pullout/Pryout	Strength C	ontrols 🔲	- Concrete	e Breakout	Strength C	ontrols	- Steel Str	ength Cont	rols							

Tension and Shear Design Strengths for Carbon Steel CCU+ Thrubolt Version (TB) Installed in Cracked Concrete^{1,2,3,4,5,6,7,8}

L						Mi	nimum C	oncrete C	ompressi	ve Streng	jth					
ominal		f'c = 3,	000 psi			f'c = 4,	000 psi			f'c = 6,	000 psi			f'c = 8,	000 psi	
Depth hnom															∕⊅V n \$ (1b	Shear Is.)
(in.)	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
4-1/4	3,395	6,835	1,470	4,650	3,395	7,315	1,470	5,370	3,395	7,315	1,470	6,580	3,395	7,315	1,470	7,595
5-3/8	6,175	9,555	2,680	6,845	6,175	11,030	2,680	7,905	6,175	13,315	2,680	9,685	6,175	13,315	2,680	11,180
8	9,835	17,550	4,260	11,965	9,835	20,265	4,260	13,815	9,835	21,190	4,260	16,920	9,835	21,190	4,260	18,835
10-5/8	14,530	27,020	6,295	17,930	14,530	31,200	6,295	20,705	14,530	31,315	6,295	25,355	14,530	31,315	6,295	27,065
4 5	nbed. epth nom (in.) -1/4 -3/8 8 0-5/8	Deck. epth (b) DNn TC (b) -1/4 3,395 -3/8 6,175 8 9,835 0-5/8 14,530	A36 A193, Gr. B7 -1/4 3,395 6,835 -3/8 6,175 9,555 8 9,835 17,550 0-5/8 14,530 27,020	Impedie $\mathcal{P} = 3,000$ ps/s $\mathcal{P} N_n$ Tension $\mathcal{P} N_n$ (lbs.) $\mathcal{A} 36$ $\mathcal{A} 193,$ $-1/4$ $3,395$ $6,835$ $-3/8$ $6,175$ $9,555$ $2,680$ 8 $9,835$ $17,550$ $4,260$ $0-5/8$ $14,530$ $27,020$ $6,295$	Methods Ø№ Tension Ø№ Shear Ø№ Tension Ø№ Shear (ibs.) A36 A193, Gr. B7 A36 A193, Gr. B7 -1/4 3,395 6,835 1,470 4,650 -3/8 6,175 9,555 2,680 6,845 8 9,835 17,550 4,260 11,965 0-5/8 14,530 27,020 6,295 17,930	A36 A193, Gr. B7 A36 -1/4 3,395 6,835 1,470 4,650 3,395 -3/8 6,175 9,555 2,680 6,845 6,175 8 9,835 17,550 4,260 11,965 9,835 0-5/8 14,530 27,020 6,295 17,930 14,530	A36 A193, Gr. B7 -1/4 3,395 6,835 1,470 4,650 3,395 7,315 -3/8 6,175 9,555 2,680 6,845 6,175 11,030 8 9,835 17,550 4,260 11,965 9,835 20,265 0-5/8 14,530 27,020 6,295 17,930 14,530 31,200	Anbed. epth nom (lbs.) $\mathcal{P} = 3,000$ psi $\mathcal{P} = 3,000$ psi $\mathcal{P} = 3,000$ psi $\mathcal{P} M_n$ Tension (lbs.) $\mathcal{P} $	A36 A193, Gr. B7 A36 A193, Gr. B7	Anbed. epth nom (lbs.) $U = 3,000$ psi U	Anbed. epth nom (ib.) <i>DV</i> is constructed by an intersection (ib.) <th< td=""><td>Anbed. epth nom (lbs.) $U = 3,000$ psi dPN_n Tension (lbs.) dPV_n Tension (lbs.) <t< td=""><td>Ase A193, Gr. B7 A36 A193, Gr. B7</td><td>Ande- epth nom (lbs.) $U = 3,000$ ps/s $U = 3,000$</td><td>Interprint DV_{Ir} Tersion DV_{Ir} Shear DV_{Ir} S</td><td>Ande- epth nom (lbs.) $U = 3,000$ ps/s $P M_n$ Tension (lbs.) $Q M_n$ Tension (lbs.) <td< td=""></td<></td></t<></td></th<>	Anbed. epth nom (lbs.) $U = 3,000$ psi dPN_n Tension (lbs.) dPV_n Tension (lbs.) <t< td=""><td>Ase A193, Gr. B7 A36 A193, Gr. B7</td><td>Ande- epth nom (lbs.) $U = 3,000$ ps/s $U = 3,000$</td><td>Interprint DV_{Ir} Tersion DV_{Ir} Shear DV_{Ir} S</td><td>Ande- epth nom (lbs.) $U = 3,000$ ps/s $P M_n$ Tension (lbs.) $Q M_n$ Tension (lbs.) <td< td=""></td<></td></t<>	Ase A193, Gr. B7 A36 A193, Gr. B7	Ande- epth nom (lbs.) $U = 3,000$ ps/s $U = 3,000$	Interprint DV_{Ir} Tersion DV_{Ir} Shear DV_{Ir} S	Ande- epth nom (lbs.) $U = 3,000$ ps/s $P M_n$ Tension (lbs.) $Q M_n$ Tension (lbs.) <td< td=""></td<>

🗖 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔳 - Steel Strength Controls

Tension and Shear Design Strengths for Carbon Steel CCU+ Thrubolt Version (TB) Installed in Uncracked Concrete^{1,2,3,4,5,6,7}

							Mi	nimum C	oncrete C	ompressi	ive Streng	jth					
Nominal Anchor	Nominal Embed.		f'c = 3,	000 psi			f'c = 4,	000 psi			f'c = 6,	000 psi			f'c = 8,	000 psi	
Size / Rod Diameter	Depth hnom		ension Is.)		Shear Is.)		ension (s.)		Shear Is.)		ension (s.)		Shear Is.)		ension s.)		Shear Is.)
(in.)	(in.)	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	4-1/4	3,395	7,315	1,470	6,510	3,395	7,315	1,470	7,520	3,395	7,315	1,470	9,210	3,395	7,315	1,470	9,230
1/2	5-3/8	6,175	11,940	2,680	9,585	6,175	13,315	2,680	11,070	6,175	13,315	2,680	12,165	6,175	13,315	2,680	12,165
5/8	8	9,835	21,190	4,260	16,750	9,835	21,190	4,260	18,835	9,835	21,190	4,260	18,835	9,835	21,190	4,260	18,835
3/4	10-5/8	14,530	31,315	6,295	25,100	14,530	31,315	6,295	27,065	14,530	31,315	6,295	27,065	14,530	31,315	6,295	27,065
🔲 - Anchor F	Pullout/Pryout	Strength C	ontrols 🔲	- Concrete	e Breakout	Strength C	ontrols 🔲	- Steel Str	ength Cont	rols							

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = 1.5^{+}h_{min}$, and with the following conditions:

Ca1 ≥ 1.5hef
 Ca2 ≥ 1.5Ca1.

2- Calculations were performed following methodology in ACI 318-19, Chapter 17. The load level corresponding to the failure mode listed (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

3- Strength reduction factors (ø) are in accordance with ACI 318-19 Section 17.5.3; it is assumed that supplementary reinforcement not present. Strength reduction factors for steel strength are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements.

4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 Chapter 17, Section 17.8.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-19 Chapter 17 and information contained in this

product supplement. For other design conditions including seismic considerations please see ACI 318-19 Chapter 17. 7- The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load

combination.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout must be multiplied by a factor of 0.75.

www.DEWALT.com

				Mir	nimum Concrete C	ompressive Stren	gth		
Nominal Anchor	Nominal Embed.	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Size / Rod Diameter	Depth hnom	<i>Ф</i>№ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)	∕⊅N₁ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)	<i>Ф</i>№ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)	∕ DN₁ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)
(in.)	(in.)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	4-1/4	6,835	3,320	7,020	3,320	7,020	3,320	7,020	3,320
1/2	5-3/8	9,555	5,755	11,030	5,755	11,715	5,755	11,715	5,755
5/8	8	17,550	9,490	18,645	9,490	18,645	9,490	18,645	9,490
3/4	10-5/8	27,020	14,520	27,555	14,520	27,555	14,520	27,555	14,520
- Anchor Pul	out/Prvout Stren	ath Controls 🔲 - Co	ncrete Breakout Stre	nath Controls 🔲 - S	teel Strength Control	3			

Tension and Shear Design Strengths for Stainless Steel CCU+ Preset Version (PS) Installed in Cracked Concrete^{1,2,3,4,5,6,7,8}

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Stainless Steel CCU+ Preset Version (PS) Installed in Uncracked Concrete^{1,2,3,4,5,6,7}

				Mi	nimum Concrete C	compressive Stren	gth		
Nominal	Nominal Embed.	f'c = 3,	,000 psi	f'c = 4,	,000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Anchor Size / Rod Diameter	Depth hnom	<i>Ф</i>N₁ Tension (lbs.)	∕ ∂V₁ Shear (lbs.)	<i>Ф</i>N₁ Tension (lbs.)	∕ ∂V₁ Shear (lbs.)	<i>Ф</i>N₁ Tension (lbs.)	∕ DV₁ Shear (lbs.)	∕⊅N₁ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)
(in.)	(in.)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	4-1/4	7,020	3,320	7,020	3,320	7,020	3,320	7,020	3,320
1/2	5-3/8	11,715	5,755	11,715	5,755	11,715	5,755	11,715	5,755
5/8	8	18,645	9,490	18,645	9,490	18,645	9,490	18,645	9,490
3/4	10-5/8	27,555	14,520	27,555	14,520	27,555	14,520	27,555	14,520
Anobor Dul	lout/Druout Ctror	ath Controlo 🗖 . Co	voorata Draalkaut Otra	nath Controla 🗖 C	tool Ctrongth Control	<u>_</u>			

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Stainless Steel CCU+ Thrubolt Version (TB) Installed in Cracked Concrete^{1,2,3,4,5,6,7,8}

				Mir	nimum Concrete C	ompressive Stren	gth		
Nominal Anchor	Nominal Embed.	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Size / Rod Diameter	Depth hnom	<i>Ф</i>№ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)	∕⊅N₁ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)	<i>Ф</i>№ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)	<i>Ф</i>№ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)
(in.)	(in.)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	4-1/4	6,835	4,650	7,020	5,370	7,020	6,580	7,020	7,595
1/2	5-3/8	9,555	6,845	11,030	7,905	11,715	9,685	11,715	11,180
5/8	8	17,550	11,965	18,645	13,815	18,645	16,920	18,645	19,540
3/4	10-5/8	27,020	17,930	27,555	20,705	27,555	25,355	27,555	29,280

🗖 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Stainless Steel CCU+ Thrubolt Version (TB) Installed in Uncracked Concrete^{1,2,3,4,5,6,7}

				Mir	nimum Concrete C	ompressive Stren	gth		
Nominal Anchor	Nominal Embed.	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Size / Rod Diameter	Depth hnom	<i>Ф</i>№ Tension (lbs.)	∕ ⊉V₁ Shear (lbs.)	<i>Ф</i>№ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)	ØN₁ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)	ØN₁ Tension (lbs.)	<i>Ф</i> V₁ Shear (lbs.)
(in.)	(in.)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	4-1/4	7,020	6,510	7,020	7,520	7,020	9,210	7,020	10,110
1/2	5-3/8	11,715	9,585	11,715	11,070	11,715	13,555	11,715	15,655
5/8	8	18,645	16,750	18,645	19,345	18,645	23,690	18,645	25,215
3/4	10-5/8	27,555	25,100	27,555	28,985	27,555	35,500	27,555	37,520
Anchor Pul	lout/Priout Stron	ath Controle 🔲 Ca	noroto Broakout Stro	nath Controle 🔲 S	tool Strongth Control				

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, h_a = 1.5*h_{min}, and with the following conditions:
 C_{a1} ≥ 1.5h_{ef}

2- Calculations were performed following methodology in ACI 318-19, Chapter 17. The load level corresponding to the failure mode listed (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

3- Strength reduction factors (ø) are in accordance with ACI 318-19 Section 17.5.3; it is assumed that supplementary reinforcement not present. Strength reduction factors for steel strength are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements.

4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 Chapter 17, Section 17.8.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-19 Chapter 17 and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318-19 Chapter 17.

7- The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout must be multiplied by a factor of 0.75.

FECHNICAL GUIDE – MECHANICAL ANCHORS © 2022 DEWALT – REV. C

Ca1 ≥ 1.5Πet
 Ca2 ≥ 1.5Ca1.

PERFORMANCE DATA (ASD)

Converted Allowable Loads for Carbon Steel CCU+ Preset Version (PS) Installed in Cracked Concrete^{1,2}

							Mi	inimum C	oncrete C	ompressi	ve Streng	th					
Nominal Anchor	Nominal		f'c = 3,	000 psi			f'c = 4,	000 psi			f'c = 6,	000 psi			f'c = 8,	000 psi	
Size / Rod Diameter	Embed. Depth hnom (in.)		able,ASD Sion S.)		able,ASD ear IS.)	Ten	able,ASD Sion IS.)	Sh	able,ASD Car S.)	Ten	able,ASD Sion IS.)	Vallowa Shi (Ib			ible,ASD Sion S.)	Vallowa Shi (Ib	
(in.)	()	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	4-1/4	2,425	4,880	1,050	2,265	2,425	5,225	1,050	2,265	2,425	5,225	1,050	2,265	2,425	5,225	1,050	2,265
1/2	5-3/8	4,410	6,825	1,915	4,120	4,410	7,880	1,915	4,120	4,410	9,510	1,915	4,120	4,410	9,510	1,915	4,120
5/8	8	7,025	12,535	3,045	6,555	7,025	14,475	3,045	6,555	7,025	15,135	3,045	6,555	7,025	15,135	3,045	6,555
3/4	10-5/8	10,380	19,300	4,495	9,695	10,380	22,285	4,495	9,695	10,380	22,370	4,495	9,695	10,380	22,370	4,495	9,695

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Carbon Steel CCU+ Preset Version (PS) Installed in Uncracked Concrete^{1,2}

							Mi	inimum C	oncrete C	ompressi	ive Streng	th					
Nominal Anchor	Nominal		f'c = 3,	000 psi			f'c = 4,	000 psi			f'c = 6,	000 psi			f'c = 8,	000 psi	
Size / Rod Diameter	Embed. Depth hnom (in.)		able,ASD Sion IS.)	Vallowa She (Ib	ear	Ten	able,ASD Sion S.)	Vallowa Shi (Ib	ear	Ten	able,ASD Sion IS.)	Vallowa Shi (Ib		Ten	able,ASD Sion IS.)		able,ASD ear s.)
(in.)	(,	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	4-1/4	2,425	5,225	1,050	2,265	2,425	5,225	1,050	2,265	2,425	5,225	1,050	2,265	2,425	5,225	1,050	2,265
1/2	5-3/8	4,410	8,530	1,915	4,120	4,410	9,510	1,915	4,120	4,410	9,510	1,915	4,120	4,410	9,510	1,915	4,120
5/8	8	7,025	15,135	3,045	6,555	7,025	15,135	3,045	6,555	7,025	15,135	3,045	6,555	7,025	15,135	3,045	6,555
3/4	10-5/8	10,380	22,370	4,495	9,695	10,380	22,370	4,495	9,695	10,380	22,370	4,495	9,695	10,380	22,370	4,495	9,695

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Carbon Steel CCU+ Thrubolt Version (TB) Installed in Cracked Concrete^{1,2}

							M	inimum C	oncrete C	ompressi	ve Streng	th					
Nominal Anchor	Nominal		f'c = 3,	000 psi			f'c = 4,	000 psi			f'c = 6,	000 psi			f'c = 8,	000 psi	
Size / Rod Diameter	Embed. Depth hnom (in.)	Ten	able,ASD Sion S.)	Sh	able,ASD Car I S.)	Ten	able,ASD Sion IS.)	Sh	able,ASD ear IS.)	Ten	able,ASD Sion IS.)		able,ASD ear IS.)		able,ASD Sion IS.)		able,ASD ear IS.)
(in.)	()	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	4-1/4	2,425	4,880	1,050	3,320	2,425	5,225	1,050	3,835	2,425	5,225	1,050	4,700	2,425	5,225	1,050	5,425
1/2	5-3/8	4,410	6,825	1,915	4,890	4,410	7,880	1,915	5,645	4,410	9,510	1,915	6,920	4,410	9,510	1,915	7,985
5/8	8	7,025	12,535	3,045	8,545	7,025	14,475	3,045	9,870	7,025	15,135	3,045	12,085	7,025	15,135	3,045	13,455
3/4	10-5/8	10,380	19,300	4,495	12,805	10,380	22,285	4,495	14,790	10,380	22,370	4,495	18,110	10,380	22,370	4,495	19,330
A A11	In the state of		to to all the second			C		D			1912 I						

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Carbon Steel CCU+ Thrubolt Version (TB) Installed in Uncracked Concrete¹²

							Mi	inimum C	oncrete C	ompressi	ive Streng	th					
Nominal Anchor	Nominal		f'c = 3,	000 psi			f'c = 4,	000 psi			f'c = 6,	000 psi			f'c = 8,	000 psi	
Size / Rod Diameter	Embed. Depth hnom (in.)	Tens	able,ASD Sion S.)	Sh	able,ASD ear is.)		ible,ASD Sion S.)		able,ASD ear IS.)	Ten	able,ASD Sion IS.)		able,ASD ear IS.)	Ten	able,ASD Sion IS.)	Sh	able,ASD Car I S.)
(in.)	(,	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7	A36	A193, Gr. B7
3/8	4-1/4	2,425	5,225	1,050	4,650	2,425	5,225	1,050	5,370	2,425	5,225	1,050	6,580	2,425	5,225	1,050	6,595
1/2	5-3/8	4,410	8,530	1,915	6,845	4,410	9,510	1,915	7,905	4,410	9,510	1,915	8,690	4,410	9,510	1,915	8,690
5/8	8	7,025	15,135	3,045	11,965	7,025	15,135	3,045	13,455	7,025	15,135	3,045	13,455	7,025	15,135	3,045	13,455
3/4	10-5/8	10,380	22,370	4,495	17,930	10,380	22,370	4,495	19,330	10,380	22,370	4,495	19,330	10,380	22,370	4,495	19,330
1. Allowab	le load valu	es are calc	ulated usin	a a conver	sion factor.	α , from th	e Factored	Design Str	enoth Tabl	es and con	ditions show	vn previous	slv.				

calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

MECHANICAL

Converted Allowable Loads for Stainless Steel CCU+ Preset Version (PS) Installed in Cracked Concrete^{1,2}

			Minimum Concrete Compressive Strength									
Nominal Anchor	Nominal	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi			
Size / Rod Diameter	Embed. Depth hnom (in.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)			
(in.)	(,	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)			
3/8	4-1/4	4,880	2,370	5,015	2,370	5,015	2,370	5,015	2,370			
1/2	5-3/8	6,825	4,110	7,880	4,110	8,370	4,110	8,370	4,110			
5/8	8	12,535	6,780	13,320	6,780	13,320	6,780	13,320	6,780			
3/4	10-5/8	19,300	10,370	19,680	10,370	19,680	10,370	19,680	10,370			

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Stainless Steel CCU+ Preset Version (PS) Installed in Uncracked Concrete^{1,2}

				Mi	inimum Concrete C	ompressive Streng	th		
Nominal Anchor	Nominal	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Size / Rod Diameter	Embed. Depth h (in.)	Tallowable,ASD Tension (lbs.)	Valiowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)
(in.)	(,	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	4-1/4	5,015	2,370	5,015	2,370	5,015	2,370	5,015	2,370
1/2	5-3/8	8,370	4,110	8,370	4,110	8,370	4,110	8,370	4,110
5/8	8	13,320	6,780	13,320	6,780	13,320	6,780	13,320	6,780
3/4	10-5/8	19,680	10,370	19,680	10,370	19,680	10,370	19,680	10,370

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Stainless Steel CCU+ Thrubolt Version (TB) Installed in Cracked Concrete^{1,2}

			Mi	inimum Concrete C	ompressive Streng	jth		
Nominal	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Depth hnom	Tallowable,ASD Tension (Ibs.)	Valiowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)
()	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
4-1/4	4,880	3,320	5,015	3,835	5,015	4,700	5,015	5,425
5-3/8	6,825	4,890	7,880	5,645	8,370	6,920	8,370	7,985
8	12,535	8,545	13,320	9,870	13,320	12,085	13,320	13,955
10-5/8	19,300	12,805	19,680	14,790	19,680	18,110	19,680	20,915
	Embed. Depth hnom (in.) 4-1/4 5-3/8 8	Embed. Depti- hrom (in.) Tallowable.ASD Tension (lbs.) A193, Gr. BBM (316 SS) 4-1/4 4,880 5-3/8 6,825 8 12,535	Embed. Deptity hrom (in.) Tailcowable ASD Tension (lbs.) Valuewable ASD Shear (lbs.) A193, Gr. B8M (316 SS) A193, Gr. B8M (316 SS) 4-1/4 4,880 3,320 5-3/8 6,825 4,890 8 12,535 8,545	Tailowabie ASD Valiowabie ASD Tailowabie ASD Deptin hom (in.) Tailowabie ASD Valiowabie ASD Tailowabie ASD A193, Gr. B8M A193, Gr. B8M A193, Gr. B8M A193, Gr. B8M 4-1/4 4,880 3,320 5,015 5-3/8 6,825 4,890 7,880 8 12,535 8,545 13,320	Image: Nominal Embed; Depth from (in.) I'c = 3,000 psi I'c = 4,000 psi Tailowabie ASD Tension (ibs.) Tailowabie ASD Tension (ibs.) Vallowabie ASD Tension (ibs.) Vallowabie ASD Shear (ibs.) A193, Gr. B8M (316 SS) 4-1/4 4,880 3,320 5,015 3,835 5-3/8 6,825 4,890 7,880 5,645 8 12,535 8,545 13,320 9,870	Tailovable ASD Depth hom (in.) Tailovable ASD Tension (lbs.) Tailovable ASD Tension (lbs.) Tailovable ASD Tension (lbs.) Tailovable ASD Tension (lbs.) Tailovable ASD Tension (lbs.) Tailovable ASD Shear (lbs.) Tailovable ASD Tension (lbs.) Tailovable ASD Tension (lbs.) Tailovable ASD Shear (lbs.) Tailovable ASD Tension (lbs.) A193, Gr. B8M (316 SS) A193, Gr.	Embed. Deptile hom (in.) Tatowable ASD Tension (lbs.) Valuenable ASD Shear (lbs.) Tatowable ASD Shear (lbs.) Tatowable ASD Shear (lbs.) Tatowable ASD Tension (lbs.) Valuenable ASD Shear (lbs.) 4-1/4 4,880 3,320 5,015 3,835 5,015 4,700 5-3/8 6,825 4,890 7,880 5,645 8,370 6,920 8 12,535 8,545 13,320 9,870 13,320 12,085	Image: Nominal Embed, Depth from (in.) f'c = 3,000 psi f'c = 4,000 psi f'c = 6,000 psi f'c = 8,000 psi Tailowable,ASD Tension (ibs.) Tailowable,ASD Tension (ibs.) Valowable,ASD Tension (ibs.) Tailowable,ASD Tension (ibs.) A193, Gr. B8M (316 SS) A193, Gr. B

1. Allowable load values are calculated using a conversion factor, α , from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.

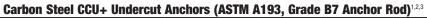
Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Stainless Steel CCU+ Thrubolt Version (TB) Installed in Uncracked Concrete^{1,2}

				Mi	inimum Concrete C	ompressive Streng	jth		
Nominal Anchor	Nominal	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	,000 psi
Size / Rod Diameter	Embed. Depth hnom (in.)	Tallowable,ASD Tension (lbs.)	Valiowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)
(in.)	(,	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)	A193, Gr. B8M (316 SS)
3/8	4-1/4	5,015	4,650	5,015	5,370	5,015	6,580	5,015	7,220
1/2	5-3/8	8,370	6,845	8,370	7,905	8,370	9,680	8,370	11,180
5/8	8	13,320	11,965	13,320	13,820	13,320	16,920	13,320	18,010
3/4	10-5/8	19,680	17,930	19,680	20,705	19,680	25,355	19,680	26,800
1 Allowek		an are coloulated usin	a a conversion factor	. from the Footored	Dealan Ctronath Table	a and conditions abo	up provieuchu		

1. Allowable load values are calculated using a conversion factor, α, from the Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L.


Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

ORDERING INFORMATION

Carbon Steel CCU+ Undercut Anchors (ASTM A36 Anchor Rod)^{1,2,3}

Cat. No.	Anchor Description, Nominal Size and Length (in.)	Anchor Version	Drill Hole Dia. (in.)	Max. Fixture Thickness, (in.)	Pack Qty.
DFM1311050	3/8 x 6	Preset (PS)	11/16	7/8	20
DFM1311550	5/0 X 0	Thrubolt (TB)	11/10	110	20
DFM1311100	1/2 x 7-1/2	Preset (PS)	13/16	1-1/4	12
DFM1311600	1/2 X /-1/2	Thrubolt (TB)	13/10	1-1/4	12
DFM1311150	1/2 x 8-1/4	Preset (PS)	13/16	2	12
DFM1311650	1/2 X 0-1/4	Thrubolt (TB)	13/10	2	12
DFM1311200	5/8 x 10-3/4	Preset (PS)	1	1-5/8	10
DFM1311700	J/0 X 10-3/4	Thrubolt (TB)		1-5/6	10
DFM1311250	5/8 x 11-1/2	Preset (PS)	1	2-3/8	10
DFM1311750	2/0 X 11-1/2	Thrubolt (TB)		2-3/0	10
DFM1311300	3/4 x 14	Preset (PS)	1-1/4	2	6
DFM1311800	3/4 X 14	Thrubolt (TB)] 1-1/4	2	6
DFM1311350	3/4 x 16	Preset (PS)	- 1-1/4	4	6
DFM1311850	J/4 X 10	Thrubolt (TB)	1-1/4	4	6

Cat. No.	Anchor Description, Nominal Size and Length (in.)	Anchor Version	Drill Hole Dia. (in.)	Max. Fixture Thickness, (in.)	Pack Qty.	
DFM1371050	3/8 x 6	Preset (PS)	11/16	7/8	20	
DFM1371550	3/0 X 0	Thrubolt (TB)	11/10	//0	20	
DFM1371100	1/2 x 7-1/2	Preset (PS)	13/16	1-1/4	12	
DFM1371600	1/2 X 7-1/2	Thrubolt (TB)	13/10	1-1/4	12	-
DFM1371150	1/2 x 8-1/4	Preset (PS)	13/16	2	12	
DFM1371650	1/2 X 0-1/4	Thrubolt (TB)	13/10	2	12	
DFM1371200	5/8 x 10-3/4	Preset (PS)	1	1-5/8	10	
DFM1371700	J/6 X 10-3/4	Thrubolt (TB)		1-5/6	10	
DFM1371250	5/8 x 11-1/2	Preset (PS)	1	2-3/8	10	
DFM1371750	J/0 X 11-1/2	Thrubolt (TB)		2=3/0	10	
DFM1371300	3/4 x 14	Preset (PS)	1-1/4	2	6	
DFM1371800	J/4 X 14	Thrubolt (TB)	1-1/4	2	6	
DFM1371350	3/4 x 16	Preset (PS)	1-1/4	4	6	
DFM1371850	5/4 X 10	Thrubolt (TB)	1-1/4	4	6	

Stainless Steel CCU+ Undercut Anchors (ASTM A193, Grade B8M, Class 2 Anchor Rod - 316 SS)^{1,2,3}

Cat. No.	Anchor Description, Nominal Size and Length (in.)	Anchor Version	Drill Hole Dia. (in.)	Max. Fixture Thickness, (in.)	Pack Qty.
DFM1361050	3/8 x 6	Preset (PS)	11/16	7/8	20
DFM1361550	3/0 X 0	Thrubolt (TB)	11/10	//0	20
DFM1361100	1/2 x 7-1/2	Preset (PS)	13/16	1-1/4	12
DFM1361600	1/2 X /-1/2	Thrubolt (TB)	13/10	1-1/4	12
DFM1361150	1/2 x 8-1/4	Preset (PS)	13/16	2	12
DFM1361650	1/2 X 0-1/4	Thrubolt (TB)	13/10	2	12
DFM1361200	5/8 x 10-3/4	Preset (PS)	1	1-5/8	10
DFM1361700	0/6 X 10-3/4	Thrubolt (TB)		0/6-1	10
DFM1361250	5/8 x 11-1/2	Preset (PS)	1	2-3/8	10
DFM1361750	2/0 X 11-1/2	Thrubolt (TB)		2-3/0	10
DFM1361300	3/4 x 14	Preset (PS)	1-1/4	2	6
DFM1361800	3/4 X 14	Thrubolt (TB)	1-1/4	2	6
DFM1361350	3/4 x 16	Preset (PS)	1-1/4	4	6
DFM1361850	J/4 X 10	Thrubolt (TB)	1-1/4	4	6

Notes for Anchor Ordering Information Tables:

- Standard preset anchors are designed so the top of the expansion sleeve is approximately flush with the base material after setting. Thrubolt
 anchors are designed so the expansion sleeve can be set through and can engage the fixture. See CCU+ undercut anchor detail and
 installation specifications.
- Undercut drill bits and setting sleeves are required for installation. See the available anchor installation accessories and tools commercially available from DEWALT at the time of publication.
- 3. The listed anchor lengths are based on the anchor sizes commercially available at the time of publication; custom lengths can be produced by request.

Setting Sleeves

DEWALT

ANCHORS & FASTENERS

Powered	Manual	Approximate Usable	Matching Nominal	Pack Qty.
Cat. No.	Cat. No.	Sleeve Length, (in.)	Anchor Size, (in.)	rack Qly.
DFX313825 (SDS-Plus)	-	2-3/4	3/8 (11/16 O.D.)	1
-	DFX313805	5		1
DFX311230 (SDS-Plus)	-	3-3/4	1/2 (13/16 O.D.)	1
-	DFX311210	5		1
DFX315835 (SDS-Max)	-	4-3/4	5/8 (1 O.D.)	1
-	DFX315815	5-1/4		1
DFX313440 (SDS-Max)	-	6-1/2	3/4 (1-1/4 O.D.)	1
-	DFX313420	7		1
Note: powered or manual s	setting sleeves are required	for the installation of CCU+ u	ndercut anchors: see installa	ation instructions

Manual setting sleeves may be stacked to create longer usable setting sleeve lengths. 0.D. = outside diameter

Rotary Hammer Drills

Cat. No.	Cat. No. Nominal Drill Bit Diameter Cin.) Approximate Impact Energy (J)		Pack Qty.
DCH416 or D25416	11/16	4.5	1
(SDS-Plus)	13/16	4.0	I
DCH614 or D25614	1	10.5	1
(SDS-Max)	1-1/4	10.5	I

Shank Type

Pack Qty. SDS-Max to SDS-Plus Adapter

1

Hollow Stop Bits (HSB)

Drill Chuck Adapter

Cat. No.

DW5891

Cat. No.	Nominal Drill Bit Diameter, (in.)	Max. Drilling Depth, (in.)	Shank Type	Pack Qty.
DFX11380	11/16	4-1/4	SDS-Plus	1
DFX11120	13/16	5-3/8	SDS-Plus	1
DFX11580	1	8	SDS-Max	1
DFX11340	1-1/4	10-5/8	SDS-Max	1
1 '	ed hole to the specified depth ee CCU+ undercut anchor de	1		

HSB dust removal drill bits are used with a vacuum dust extractor (e.g. DWV010, DWV012, DCV585).

Hollow Bits (HB)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Usable Length, (in.)	Shank Type	Pack Qty.		
DWA54116	11/16	9-3/4	SDS-Plus	1		
DWA54316	13/16	9-3/4	SDS-Plus	1		
DWA58001 1		15-3/4	SDS-Max	1		
DWA58115	1					
HB dust removal drill bits a	HB dust removal drill bits are used with a vacuum dust extractor (e.g. DWV010, DWV012, DCV585).					

Conventional Bits (4-Cutter)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Usable Length, (in.)	Shank Type	Pack Qty.
DW5808	11/16	16	SDS-Max	1
DW5814	13/16	16	SDS-Max	1
DW5852	1	24	SDS-Max	1
DW5855	1-1/4	24	SDS-Max	1

1-800-4 DEWALT

Hollow Undercut Bits (HUCB)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Max. Hole Depth, (in.)	Shank Type	Pack Qty.	
DFX21380	11/16	6	SDS-Plus	1	
DFX21120	13/16	8	SDS-Plus	1	
DFX21580*	1	11	SDS-Plus*	1	
DFX21340	1-1/4	15-1/4	SDS-Max	1	
*For rotary hammer drill connector options, a DW5891 SDS-Max to SDS-Plus adapter can be considered.					
HUCB dust removal drill bit	is are used with a vacuum di	ust extractor (e.g. DWV010,	DWV012, DCV585).		

Undercut Bits (UCB)

Cat. No.	Nominal Drill Bit Diameter, (in.)	Max. Hole Depth, (in.)	Shank Type	Pack Qty.
DFX21381	11/16	6	SDS-Plus	1
DFX21121	13/16	8	SDS-Plus	1
DFX21581*	1	11	SDS-Plus*	1
DFX21341	1-1/4	15-1/4	SDS-Max	1
1 [']	onnector options, a DW5891			

Note: HUCB or UCB are required for the installation of CCU+ undercut anchors; see installation instructions.

Note: HUCB or UCB are required for the installation of CCU+ undercut anchors; see installation instructions.

Replacement Cutter Blades for Undercut Bits

Cat. No.	Nominal Drill Bit	For Us	Pack Qty.			
Gal. NO.	Diameter, (in.)	Diameter, (in.) HUCB UCB		Fack Qly.		
DFX213825	11/16	DFX21380	DFX21381	1		
DFX211230	13/16	DFX21120	DFX21121	1		
DFX215835	1	DFX21580	DFX21581	1		
DFX213440	DFX213440 1-1/4 DFX21340 DFX21341		1			
Replacement cutter blades	Replacement cutter blades can be used with both hollow undercut drill bits (HUCB) and undercut drill bits (UCB) as indicated.					

Replacement Bow Jaws for Undercut Bits

Hopidoomont B								
Cat. No.	Nominal Drill Bit	For Us	For Use With					
Gat. NO.	Diameter, (in.)	HUCB	UCB	Pack Qty.				
DFX213807	11/16	DFX21380	-	1				
DFX213805	11/10	-	DFX21381	1				
DFX211212	13/16	DFX21120	-	1				
DFX211210	13/10	-	DFX21121	1				
DFX215817	1	DFX21580	-	1				
DFX215815		-	DFX21581	1				
DFX213422	1-1/4	DFX21340	-	1				
DFX213420	1-1/4	-	DFX21341	1				

Vacuums

Cat. No.	Cat. No. Description			
DWV010	8 Gallon HEPA/RRP Dust Extractor	1		
DWV012	10 Gallon Wet/Dry HEPA/RRP Dust Extractor	1		
DCV585	Flexvolt 60V Max Dust Extratcor (Tool only)	1		

GENERAL INFORMATION

POWER-BOLT®+

Heavy Duty Sleeve Anchor

PRODUCT DESCRIPTION

The Power-Bolt+ anchor is a torque controlled, heavy duty sleeve style anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete and lightweight concrete. The anchor is manufactured with a zinc plated carbon steel bolt, sleeve, cone and expansion clip. The Power-Bolt+ has a low profile finished hex head and a full size thick bearing sleeve to provide increased capacity in shear connections.

GENERAL APPLICATIONS AND USES

• Structural connections, i.e., beam and column anchorage

Seismic Attachments (SDC A - F)

Cracked concrete / tension zone applications

- Conveyors and Material Handling
- Base Plates and Racking
- Guards, Bumpers and Barriers
- Mounting Machinery

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Anchor design allows for follow-up expansion after setting under tensile loading
- + Drill bit size is the same as the nominal anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + High shear load capacity
- + Low profile finished hex bolt head
- + DEWALT dust removal drilling system (with HEPA dust extractor) can be used for an OSHA 1926.1153 Table 1 compliant solution

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3260 for cracked and uncracked concrete; code complaint with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor category 1 for 1/2" to 3/4" sizes)
- City of Los Angeles, LABC Supplement (within ESR-3260)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchoring and 05 05 19 - Post-Installed Concrete Anchors Expansion anchors shall be Power-Bolt+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel Hex Head
Internal bolt	SAE Grade 8 equivalent (f _y ≥ 130,000 psi)
Washer	Carbon steel, ASTM F844; meets dimensional requirements of ANSI B18.22.2, Type A Plain
Extension sleeve	Carbon Steel
Expansion clip	Carbon steel
Compression ring / Retention nut	Engineered plastic (Nylon)
Zinc plating	ASTM B633, SC1, Type III (Fe/Zn 5) – Mild service condition

SECTION CONTENTS

General Information	.127
Material Specifications	.127
Installation Specifications	.128
Installation Instructions	.128
Performance Data (ASD)	.129
Strength Design Information	.131
Design Strength Tables (SD)	.134
Ordering Information	.135

POWER-BOLT+ ASSEMBLY

HEAD STYLES

• Finished Hex Head

ANCHOR MATERIALS

 Zinc plated carbon steel bolt, washer, cone, sleeve, and expansion clip; assembled with a plastic compression ring and retainer nut

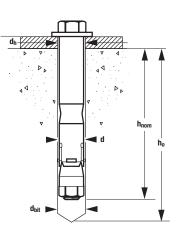
ANCHOR SIZE RANGE (TYP.)

• 1/4" through 3/4" diameters

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete

5


DEWALT

INSTALLATION SPECIFICATIONS

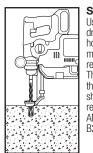
Power-Bolt+ Anchor Installation Specifications

Anchor Property/Setting	Notation Units		Nominal Anchor Diameter (in.)				
Information	Notation	Units	1/4	3/8	1/2	5/8	3/4
Anchor outside diameter	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Internal Bolt Diameter (UNC)	-	in. (mm)	#8 (4)	1/4 (6.4)	3/8 (9.5)	7/16 (11.1)	9/16 (14.3)
Nominal drill bit diameter (ANSI)	dbit	in.	1/4	3/8	1/2	5/8	3/4
Minimum diameter of hole clearance in fixture	Сh	in. (mm)	5/16 (8)	7/16 (11)	9/16 (14)	11/16 (17)	13/16 (21)
Minimum nominal embedment depth	hnom	in. (mm)	1-1/4 (32)	1-5/8 (41)	2-1/2 (64)	2-3/4 (70)	3 (76.2)
Minimum hole depth	h₀	in. (mm)	h _{nom} -	+ 1/4 (6)	h _{nom} + 3/8 (10)	h _{nom} -	+ 1/2 (13)
Minimum member thickness	hmin	in. (mm)	3-1/2 (89)	4-1/2 (114)	5 (127)	6-1/2 (165)	7 (178)
Minimum edge distance	Cmin	in. (mm)	1-3/4 (44)	2-3/4 (70)	3-1/4 (83)	4-1/2 (114)	6 (152)
Minimum spacing distance	Smin	in. (mm)	2 (51)	3-1/2 (89)	4-1/2 (114)	6 (152)	5 (127)
Installation torque	Tinst	ftlbf. (N-m)	4 (5)	20 (27)	40 (54)	60 (81)	110 (149)
Torque wrench/socket size	-	in.	3/8	1/2	5/8	3/4	15/16
Bolt Head Height	-	in. (mm)	1/8 (3)	13/64 (5)	9/32 (7)	5/16 (8)	3/8 (10)
Washer O.D.	-	in.	7/16	47/64	1	1-1/4	1-15/32

Head Marking

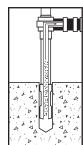
Legend

'PB+' Symbol = Power-Bolt+ Strength Design Compliant (see ordering information) Letter Code = Length Identification Mark

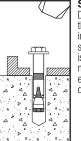


Length Identification

0																		
Mark	A	В	C	D	E	F	G	H	I	J	K	L	М	N	0	Р	Q	R
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"
Length identi	Length identification mark indicates the length of the anchor measured from under the washer to the end of the anchor.																	


INSTALLATION INSTRUCTIONS

Installation Instructions for Power-Bolt+ Anchor


MECHANICAL

Step 1 Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.



Step 2

Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling. Ensure the cone is snug and uniformly under the expansion wedge (clip) with the clip fingers overlapping the anchor cone, prior to installation using the retention nut (see photo below).

Step 3 Drive anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, hnom .

Step 4 Tighten the anchor with a torque wrench by applying the required installation torque, Tinst.

PERFORMANCE DATA (ASD)

Illtimate I oad	Canacities for	or Power-Bolt+ i	n Normal-Weight	
Ulullate Luau	Uanarines in	UI FUWGI-DUIL+ II	II IYUI IIIAI-WGIYIII	

Nominal	Minimum				Minim	um Concrete C	ompressive St	rength			
Anchor Diameter	Embed. Depth	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f ⁱ c = 4,000 p	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)	f'c = 8,000 p	si (55.2 MPa)
d in.	in. (mm) hnom	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	1-1/4	1,245	1,670	1,260	1,670	1,290	1,670	1,345	1,670	1,397	1,670
1/4	(32)	(5.5)	(7.4)	(5.6)	(7.4)	(5.7)	(7.4)	(6.0)	(7.4)	(6.2)	(7.4)
1/ 4	1-3/4	1,740	1,670	1,905	1,670	1,945	1,670	1,945	1,670	1,945	1,670
	(44)	(7.7)	(7.4)	(8.5)	(7.4)	(8.7)	(7.4)	(8.7)	(7.4)	(8.7)	(7.4)
	1-5/8	1,420	2,420	1,555	2,460	1,795	2,460	2,105	2,470	2,430	2,810
	(41)	(6.3)	(10.8)	(6.9)	(10.9)	(8.0)	(10.9)	(9.4)	(11.0)	(10.8)	(12.5)
3/8	2	2,740	3,990	3,000	3,990	3,465	3,990	4,140	3,990	4,425	3,990
5/0	(51)	(12.2)	(17.7)	(13.3)	(17.7)	(15.4)	(17.7)	(18.4)	(17.7)	(19.7)	(17.7)
	2-3/4	4,130	3,990	4,425	3,990	4,425	3,990	4,425	3,990	4,425	3,990
	(70)	(18.4)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)
	2-1/2	3,880	7,420	4,250	8,030	4,905	8,030	5,150	8,030	5,518	8,030
	(64)	(17.3)	(33.0)	(18.9)	(35.7)	(21.8)	(35.7)	(22.9)	(35.7)	(24.5)	(35.7)
1/2	3	5,190	8,030	5,685	8,030	6,560	8,030	7,985	8,030	9,065	8,030
172	(76)	(23.1)	(35.7)	(25.3)	(35.7)	(29.2)	(35.7)	(35.5)	(35.7)	(40.3)	(35.7)
	3-1/4	7,120	8,030	7,660	8,030	8,645	8,030	9,400	8,030	10,835	8,030
	(83)	(31.7)	(35.7)	(34.1)	(35.7)	(38.5)	(35.7)	(41.8)	(35.7)	(48.2)	(35.7)
	2-3/4	4,745	9,975	5,195	10,930	6,000	12,620	6,845	13,155	7,200	13,155
	(70)	(21.1)	(44.4)	(23.1)	(48.6)	(26.7)	(56.1)	(30.4)	(58.5)	(32.0)	(58.5)
5/8	3-1/2	6,995	9,975	7,660	10,930	8,845	12,620	11,325	13,155	12,900	13,155
0/0	(89)	(31.1)	(44.4)	(34.1)	(48.6)	(39.3)	(56.1)	(50.4)	(58.5)	(57.4)	(58.5)
	3-3/4	8,710	12,015	9,545	14,320	11,020	16,535	12,820	18,250	14,800	18,250
	(95)	(38.7)	(53.4)	(42.5)	(63.7)	(49.0)	(73.6)	(57.0)	(81.2)	(65.8)	(81.2)
	3	5,655	10,950	6,195	11,995	7,155	13,850	8,385	18,510	9,685	21,370
	(76)	(25.2)	(48.7)	(27.6)	(53.4)	(31.8)	(61.6)	(37.3)	(82.3)	(43.1)	(95.1)
3/4	4-3/8	10,870	18,635	11,910	20,415	13,750	23,575	14,705	23,575	16,975	23,575
5/7	(111)	(48.4)	(82.9)	(53.0)	(90.8)	(61.2)	(104.9)	(65.4)	(104.9)	(75.5)	(104.9)
	7	18,145	24,290	19,880	24,290	22,955	24,290	28,445	24,290	29,863	24,290
	(178)	(80.7)	(108.0)	(88.4)	(108.0)	(102.1)	(108.0)	(126.5)	(108.0)	(132.8)	(108.0)

1. The tabulated load values are applicable to single anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

Allowable Load Capacities for Power-Bolt+ in Normal-Weight Concrete^{1,2,3}

Nominal	Minimum				Minim	um Concrete C	ompressive St	rength			
Anchor Diameter	Embed. Depth	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)	f ⁱ c = 8,000 p	si (55.2 MPa)
d in.	in. (mm) hnom	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)						
	1-1/4	310	420	315	420	325	420	335	420	350	420
1/4	(32)	(1.4)	(1.9)	(1.4)	(1.9)	(1.4)	(1.9)	(1.5)	(1.9)	(1.6)	(1.9)
1/4	1-3/4 (44)	435 (1.9)	420 (1.9)	475 (2.1)	420 (1.9)	485 (2.2)	420 (1.9)	485 (2.2)	420 (1.9)	485 (2.2)	420 (1.9)
	1-5/8	355	605	390	615	450	615	525	620	610	705
	(41)	(1.6)	(2.7)	(1.7)	(2.7)	(2.0)	(2.7)	(2.3)	(2.8)	(2.7)	(3.1)
3/8	2	685	1,000	750	1,000	865	1,000	1,035	1,000	1,105	1,000
3/0	(51)	(3.0)	(4.4)	(3.3)	(4.4)	(3.8)	(4.4)	(4.6)	(4.4)	(4.9)	(4.4)
	2-3/4	1,035	1,000	1,105	1,000	1,105	1,000	1,105	1,000	1,105	1,000
	(70)	(4.6)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)
	2-1/2	970	1,855	1,065	2,010	1,225	2,010	1,290	2,010	1,380	2,010
	(64)	(4.3)	(8.3)	(4.7)	(8.9)	(5.4)	(8.9)	(5.7)	(8.9)	(6.1)	(8.9)
1/2	3	1,300	2,010	1,420	2,010	1,640	2,010	1,995	2,010	2,265	2,010
172	(76)	(5.8)	(8.9)	(6.3)	(8.9)	(7.3)	(8.9)	(8.9)	(8.9)	(10.1)	(8.9)
	3-1/4	1,780	2,010	1,915	2,010	2,160	2,010	2,350	2,010	2,710	2,010
	(83)	(7.9)	(8.9)	(8.5)	(8.9)	(9.6)	(8.9)	(10.5)	(8.9)	(12.1)	(8.9)
	2-3/4	1,185	2,495	1,300	2,735	1,500	3,155	1,710	3,290	1,800	3,290
	(70)	(5.3)	(11.1)	(5.8)	(12.2)	(6.7)	(14.0)	(7.6)	(14.6)	(8.0)	(14.6)
5/8	3-1/2	1,750	2,495	1,915	2,735	2,210	3,155	2,830	3,290	3,225	3,290
	(89)	(7.8)	(11.1)	(8.5)	(12.2)	(9.8)	(14.0)	(12.6)	(14.6)	(14.3)	(14.6)
	3-3/4 (95)	2,180 (9.7)	3,005 (13.4)	2,385 (10.6)	3,580 (15.9)	2,755 (12.3)	4,135 (18.4)	3,205 (14.3)	4,565 (20.3)	3,700 (16.5)	4,565 (20.3)
	(90)	1,415	2,740	· · · ·	· · · · ·	1,790	3,465	2,095	4,630	2,420	5,345
	(76)	(6.3)	(12.2)	1,550 (6.9)	3,000 (13.3)	(8.0)	(15.4)	(9.3)	(20.6)	(10.8)	(23.8)
	4-3/8	2.720	4,660	2,980	5.105	3.440	5.895	3.675	5.895	4,245	5,895
3/4	(111)	(12.1)	(20.7)	(13.3)	(22.7)	(15.3)	(26.2)	(16.3)	(26.2)	(18.9)	(26.2)
	7	4,535	6,075	4,970	6,075	5,740	6,075	7,110	6,075	7,465	6,075
	(178)	(20.2)	(27.0)	(22.1)	(27.0)	(25.5)	(27.0)	(31.6)	(27.0)	(33.2)	(27.0)
1 Allowable l	(-7	sted are calculate	· · · /	· · · /	, , ,	/		<u> </u>			

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0.

2. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

3. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

ASD

Load Adjustment Factors for Normal-Weight Concrete

Spacing Reduction Factors - Tension (F_{NS})

Spacing Reduction Factors - Tension (FNS)										
Diameter (in)		1/4	3/8	1/2	5/8	3/4				
Nominal Embedmen	nt h _{nom} (in)	1-1/4	2	2-1/2	2-3/4	3				
Minimum Spacing s	Smin (in)	2	3-1/2	4-1/2	6	5				
	2	0.78	-	-	-	-				
	2-1/2	0.82	-	-	-	-				
	3	0.87	-	-	-	-				
	3-1/2	0.91	0.80	-	-	-				
	4	0.96	0.83	-	-	-				
	4-1/2	1.00	0.86	0.83	-	-				
ches	5	1.00	0.89	0.85	-	0.77				
ju	5-1/2	1.00	0.92	0.88	-	0.79				
ance	6	1.00	0.95	0.91	0.85	0.81				
Dist	6-1/2	1.00	0.98	0.93	0.87	0.83				
- Bui	7	1.00	1.00	0.96	0.90	0.85				
Spacing Distance (inches)	7-1/2	1.00	1.00	0.98	0.92	0.87				
0	8	1.00	1.00	1.00	0.95	0.89				
	8-1/2	1.00	1.00	1.00	0.97	0.92				
	9	1.00	1.00	1.00	1.00	0.94				
	9-1/2	1.00	1.00	1.00	1.00	0.96				
	10	1.00	1.00	1.00	1.00	0.98				
	10-1/2	1.00	1.00	1.00	1.00	1.00				

Edge Distance Reduction Factors - Tension (F _{NC})										
Diameter (in)		1/4	3/8	1/2	5/8	3/4				
Nominal Embedmer	nt h _{nom} (in)	1-1/4	2	2-1/2	2-3/4	3				
Minimum Edge Dista	1Ce Cmin (in)	1-3/4	2-3/4	3-1/4	4-1/2	6				
	1-3/4	0.39	-	-	-	-				
	2	0.44	-	-	-	-				
	2-1/2	0.56	-	-	-	-				
	3	0.67	0.46	-	-	-				
	3-1/4	0.72	0.50	0.41	-	-				
Edge Distance (inches)	3-1/2	0.78	0.54	0.44	-	-				
u) e	4	0.89	0.62	0.50	-	-				
ance	4-1/2	1.00	0.69	0.56	0.75	-				
Dist	5	1.00	0.77	0.63	0.83	-				
dge	5-1/2	1.00	0.85	0.69	0.92	-				
Ш	6	1.00	0.92	0.75	1.00	0.75				
	6-1/2	1.00	1.00	0.81	1.00	0.81				
	7	1.00	1.00	0.88	1.00	0.88				
	7-1/2	1.00	1.00	0.94	1.00	0.94				
	8	1.00	1.00	1.00	1.00	1.00				

Spacing Reduction Factors - Shear (Fvs)

Diameter	(in)	1/4	3/8	1/2	5/8	3/4
Nominal Embedm	ent hnom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Spaci	ng smin (in)	2	3-1/2	4-1/2	6	5
	2	0.86	-	-	-	-
	2-1/2	0.89	-	-	-	-
	3	0.92	-	-	-	-
	3-1/2	0.94	0.88	-	-	-
	4	0.97	0.90	-	-	-
-	4-1/2	1.00	0.91	0.89	-	-
Spacing Distance (inches)	5	1.00	0.93	0.91	-	0.84
(inc	5-1/2	1.00	0.95	0.93	-	0.86
ance	6	1.00	0.97	0.94	0.89	0.87
Dista	6-1/2	1.00	0.99	0.96	0.91	0.88
- Gui	7	1.00	1.00	0.97	0.93	0.90
pac	7-1/2	1.00	1.00	0.99	0.94	0.91
	8	1.00	1.00	1.00	0.96	0.93
	8-1/2	1.00	1.00	1.00	0.98	0.94
	9	1.00	1.00	1.00	1.00	0.96
	9-1/2	1.00	1.00	1.00	1.00	0.97
	10	1.00	1.00	1.00	1.00	0.99
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors - Shear (Fvc)

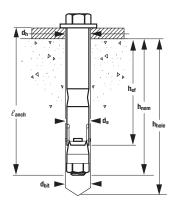
Euge Distance	s neuucu		1013 - 3	nicai (i	VC	
Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nominal Embedme	ent hnom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Edge Dista	nce cmin (in)	1-3/4	2-3/4	3-1/4	4-1/2	6
	1-3/4	0.39	-	-	-	-
	2	0.44	-	-	-	-
	2-1/2	0.56	-	-	-	-
	3	0.67	0.44	-	-	-
	3-1/4	0.72	0.48	0.41	-	-
	3-1/2	0.78	0.52	0.44	-	-
	4	0.89	0.59	0.51	-	-
les)	4-1/2	1.00	0.67	0.57	0.50	-
inch	5	1.00	0.74	0.63	0.56	-
) eo	5-1/2	1.00	0.81	0.70	0.61	-
Edge Distance (inches)	6	1.00	0.89	0.76	0.67	0.57
je Di	6-1/2	1.00	0.96	0.83	0.72	0.62
Edi	7	1.00	1.00	0.89	0.78	0.67
	7-1/2	1.00	1.00	0.95	0.83	0.71
	8	1.00	1.00	1.00	0.89	0.76
	8-1/2	1.00	1.00	1.00	0.94	0.81
	9	1.00	1.00	1.00	1.00	0.86
	9-1/2	1.00	1.00	1.00	1.00	0.90
	10	1.00	1.00	1.00	1.00	0.95
	10-1/2	1.00	1.00	1.00	1.00	1.00

STRENGTH DESIGN INFORMATION

Power-Bolt+ Anchor Installation Specifications in Concrete and Supplemental Information

Anohor Property/0-11	ing Information	Notation	linite		Nominal Anchor Diameter (in.)		
Anchor Property/Sett	ing information	Notation	Units	1/2	5/8	3/	4
Anchor outside diamete	r	da	in. (mm)	0.500 (12.7)	0.625 (15.9)	0.7 (19	
Internal bolt diameter (L	JNC)	-	in. (mm)	3/8 (9.5)	7/16 (11.1)	9/ ⁻ (14	
Minimum diameter of hole clearance in fixture)	dh	in. (mm)	9/16 (14.3)	11/16 (17.5)	13/ (21	
Nominal drill bit diameter	er (ANSI)	d _{bit}	in.	1/2	5/8	3/	4
Minimum nominal embedment depth		hnom	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3 (11	
Effective embedment		hef	in. (mm)	2-5/8 (67)	3 (76)	3-1 (8)	
Minimum hole depth		h _{hole}	in. (mm)	3-3/4 (95)	4-1/4 (108)	5 (12	
Minimum member thick	kness	h _{min}	in. (mm)	5 (127)	6-1/2 (165)	7 (17	
Minimum overall ancho	r length²	lanch	in. (mm)	3-1/2 (89)	4 (102)	4-1 (11	
Minimum edge distance	9	Cmin	in. (mm)	3-1/4 (83)	4-1/2 (114)	6 (152)	8 (203)
Minimum spacing dista	nce	Smin	in. (mm)	4-1/2 (114)	6 (152)	6 (152)	5 (127)
Installation torque		Tinst	ftlbf. (N-m)	40 (54)	60 (81)	11 (14	
Bolt Head Height		-	in. (mm)	9/32 (7.1)	5/16 (7.9)	3/ (9.	
Torque wrench/socket s	size	-	in.	5/8	3/4	15/	16
Washer O.D.		-	in.	1	1-1/4	1-15	/32
Minimum specified yield	d strength	fy	psi (N/mm²)	130,000 (896)	130,000 (896)	130, (89	
Minimum specified ultir strength ⁸	nate tensile	f _{uta}	psi (N/mm²)	150,000 (1,034)	150,000 (1,034)	150, (1,0	000
Effective tensile stress a (internal bolt threads)	area	A _{se, N}	in ² (mm ²)	0.0775 (50)	0.1063 (68.6)	0.18	320
Effective shear stress a (internal bolt shank)	rea	A _{se, v}	in ² (mm ²)	0.1069 (69)	0.1452 (93.7)	0.24 (153	
Mean axial stiffness ⁴	Uncracked concrete	$eta_{ ext{uncr}}$	lbf/in. (kN/mm)	366,000 (63)	871,000 (150)	256,000 (44)	
iviean axial sunness* –	axial stiffness ⁴ Cracked concrete		lbf/in. (kN/mm)	64,000 (11)	94,000 (16)	27,0 (5	

For SI:1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.


1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D.

2. The listed minimum overall anchor length is based on anchor sizes available at the time of publication compared with the requirements for the minimum nominal embedment depth and fixture attachment. The actual minimum anchor length must be determined by the taking the selected nominal embedment depth (e.g. required to obtain desired load capacity) and adding the thickness of the fixture, including any spacers or shims.

3. The maximum fixture thickness, tmax for selected anchors can be determined by taking the length of the selected anchor and subtracting the nominal embedment into the base material.

4. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

Power-Bolt+ Anchor Detail

015

6

5 П

e

B Ċ Heavy Duty Sleeve Anchor

ICC-ES ESR-3260

ANCHORS & FASTENERS

• F. '.'/

Design Characteristic	Notation	Units		Nominal Anchor Diameter	
Design Characteristic	Notation	Units	1/2	5/8	3/4
Anchor category	1,2 or 3	-	1	1	1
Nominal embedment depth	h _{nom}	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)
Effective embedment	h _{ef}	in. (mm)	2.625 (67)	3.00 (76)	3.50 (89)
STEEL STRENGTH IN TENS	ION (ACI 318	-19 17.6.1, A	CI 318-14 17.4.1 or ACI 31	8-11 D.5.1)⁴	
Steel strength in tension	Nsa	lb (kN)	9,685 (43.1)	13,285 (59.1)	27,300 (121.4)
Reduction factor for steel strength ³	φ	-	0.	75	0.65
CONCRETE BREAKOUT STRENGTH	IN TENSION (ACI 318-19 1	7.6.2, ACI 318-14 17.4.2 o	r ACI 318-11 D.5.2) ⁷	
Effectiveness factor for uncracked concrete	Kucr	-	27	27	24
Effectiveness factor for cracked concrete	k _{cr}	-	17	17	17
Modification factor for cracked and uncracked concrete ⁵	$\psi_{ ext{c,N}}$	-	1.0	1.0	1.0
Critical edge distance (uncracked concrete only)	Cac	in. (mm)	8 (203)	6 (152)	8 (203)
Reduction factor for concrete breakout strength ⁴	φ	-		0.65 (Condition B)	
PULLOUT STRENGTH IN TEN	SION (ACI 31	8-19 17.6.3,	ACI 318-14 17.4.3 or ACI 3	18-11 D.5.3) ⁷	
Characteristic pullout strength, uncracked concrete (2,500 psi)	N _{p,uncr}	lb (kN)	Not Applicable6	Not Applicable6	Not Applicable6
Characteristic pullout strength, cracked concrete (2,500 psi)	N _{p,cr}	lb (kN)	Not Applicable6	Not Applicable6	Not Applicable6
Reduction factor for pullout strength	ϕ	-		0.65 (Condition B)	
PULLOUT STRENGTH IN TENSION FOR SEISM	IC APPLICATIO	ONS (ACI 318	-19 17.10.3, ACI 318-14 17	7.2.3.3 or ACI 318-11 D.3.3	3.3) ⁷
Characteristic pullout strength, seismic (2,500 psi)	N _{p,eq}	lb (kN)	Not Applicable6	Not Applicable6	Not Applicable6
Reduction factor for pullout strength	φ	-		0.65 (Condition B)	

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm^2 ; 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with the manufacturer's published installation instructions.

3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3. The anchors are ductile steel elements as defined in ACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable, except for the 3/4-inch-diameter, which is considered a brittle steel element for the purposes of design.

4. The tabulated value of \$\phi\$ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-19 17.5.3, ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 9.2, as applicable, for Condition A are satisfied, the appropriate value of \$\phi\$ for concrete breakout strength must be determined in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for concrete breakout strength must be determined in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \$\phi\$ for concrete breakout strength must be determined in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.4.

5. For all design cases use $\Psi_{cN} = 1.0$. The appropriate effectiveness factor for cracked concrete (ker) or uncracked concrete (kurar) must be used.

6. Pullout strength does not control design and does not need to be calculated for indicated size and embedment.

7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8 λ is applied to all values of $\sqrt{f'c'}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

8. In accordance with ACI 318-19 17.6.1.2 and Eq. 17.6.1.1, ACI 318-14 17.4.1.2 and Eq. 17.4.1.2 or ACI 318-11 D.5.1.2 and Eq. D-2, as applicable, the nominal steel strength in tension is calculated using a limited value of fue of 125 ksi.

Shear Design information for Power-Bolt+ Anchor in Concrete

Design Characteristic	Notation	Units		Nominal Anchor Diameter					
	notation	UIIIIS	1/2	5/8	3/4				
Anchor category	1, 2 or 3	-	1	1	1				
Nominal embedment depth	hnom	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)				
Effective embedment	h _{ef}	in (mm)	2.625 (675)	3.000 (76)	3.500 (89)				
STEEL STRENGTH IN SHEAR (ACI 318-19 17.7.1, ACI 318-14 17.5.1 or ACI 318-11 D.6.1)									
Steel strength in shear ⁶	V _{sa}	lb (kN)	6,005 (26.7)	13,415 (59.7)	14,820 (65.9)				
Reduction factor for steel strength ³	φ	-	0.	65	0.60				
STEEL STRENGTH IN SHEAR FOR SEIS	MIC APPLICATI	ONS (ACI 318	3-19 17.10.1, ACI 318-14 17	7.2.3.3 or ACI 318-11 D.3.3.	3)				
Steel strength in shear, seismic ⁸	V _{sa, eq}	lb (kN)	4,565 (20.3)	7,425 (33.0)	14,820 (65.9)				
Reduction factor for steel strength in shear for seismic ³	ϕ	-	0.	65	0.60				
CONCRETE BREAKOUT STREN	GTH IN SHEAR	(ACI 318-19	17.7.2, ACI 318-14 17.5.2 (or ACI 318-11 D.6.2) ⁷					
Load bearing length of anchor	le	in (mm)	1.00 (25)	1.25 (32)	1.50 (51)				
Nominal anchor diameter	da	in (mm)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)				
Reduction factor for concrete breakout ⁴	φ	-		0.70 (Condition B)					
PRYOUT STRENGTH IN	SHEAR (ACI 31	8-19 17.7.3,	ACI 318-14 17.2.3.3 or ACI	318-11 D.6.3) ⁷					
Coefficient for pryout strength	Kcp	-	2.0	2.0	2.0				
Reduction factor for pryout strength ⁵	φ	-		0.70 (Condition B)					
For SI: 1 inch = 25.4 mm: 1 ksi = 6.894 N/mm ² : 1 lbf = 0.0044 kN.									

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with the manufacturer's published installation instructions.

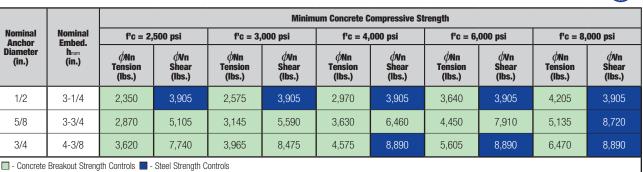
3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3. The anchors are ductile steel elements as defined inACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable, except for the 3/4-inch-diameter which is considered a brittle steel element for the purposes of design.

4. The tabulated value of \$\phi\$ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 Section 17.5.3, ACI 318-11 D.4.3, as applicable, for Condition A are satisfied, the appropriate value of \$\phi\$ for concrete breakout strength must be determined in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \$\phi\$ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.4.

5. The tabulated value of for pryout strength applies if the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *p* for pryout strength must be determined in accordance with ACI 318-11 D.4.4, for condition B.

6. Tabulated values for steel strength in shear must be used for design. The tabulated values for the shear stress area are listed conservatively and the results for the steel strength will be more conservative when using ACI 318-19 Section 17.7.1.2 and Eq. 17.7.1.2a, ACI 318-14 Eq. 17.5.1.2b or ACI 318-11 Eq. D-29, as applicable.

7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8 λ is applied to all values of \sqrt{fc} affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.


8. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6.

 (\mathbf{G})

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strengths for Power-Bolt+ in Cracked Concrete^{1,2,3,4,5,6,7,8}

Tension and Shear Design Strengths for Power-Bolt+ in Uncracked Concrete^{1,2,3,4,5,6,7}

		Minimum Concrete Compressive Strength, f'c (psi)										
Nominal Anchor	Nominal Embed.	f'c = 2,500 psi		f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi		
Diameter (in.)	hnom (in.)	ϕ Nn Tension (lbs.)	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (lbs.)	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (Ibs.)	ϕ Nn Tension (lbs.)	ØVn Shear (Ibs.)	ØNn Tension (lbs.)	ϕ Vn Shear (lbs.)	
1/2	3-1/4	3,730	3,905	4,090	3,905	4,720	3,905	5,780	3,905	6,675	3,905	
5/8	3-3/4	4,560	7,145	4,995	7,830	5,770	8,720	7,065	8,720	8,155	8,720	
3/4	4-3/8	5,105	8,890	5,595	8,890	6,460	8,890	7,910	8,890	9,135	8,890	
- Concrete	- Concrete Breakout Strenoth Controls 🗖 - Steel Strenoth Controls											

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = 1.5^{+}h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to 1.5 times the critical edge distance, c_{ac} (table values based on $c_{a1} = 1.5^*c_{ac}$).

- Ca2 is greater than or equal to 1.5 times Ca1.

2- Calculations were performed according to ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

3- Strength reduction factors (ø) were based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B is assumed.

4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 or -14) Chapter 17. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.

7- The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and pullout must be multiplied by a factor of 0.75.

ORDERING INFORMATION

Power-Bolt+ (Carbon Steel with Finished Hex Head)

		Approximate	Deals	Order		Suggested Al	ISI Carbide Dr	ill Bit Cat. No.	
Cat. No.	Anchor Size	Maximum Fixture Thickness	Pack Qty.	Carton Qty.	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max
6902SD-PWR	1/4" X 1-3/4"	1/2"	100	600	-	-	-	-	-
6906SD-PWR	1/4" X 3"	1-3/4"	100	600	-	-	-	-	-
6911SD-PWR	3/8" x 1-7/8"	1/4"	50	300	DW5527	DW5427	-	-	-
6910SD-PWR	3/8" X 2-1/4"	1/4"	50	300	DW5527	DW5427	-	-	-
6913SD-PWR	3/8" X 3"	1"	50	300	DW5527	DW5427	-	-	-
6914SD-PWR	3/8" X 3-1/2"	1-1/2"	50	300	DW5527	DW5427	-	-	-
6916SD-PWR	3/8" X 4"	2"	50	300	DW5527	DW5427	-	-	-
6930SD-PWR	1/2" x 2-3/4"	1/4"	50	200	DW5537	DW5429	DW5803	DWA54012	-
6932SD-PWR	1/2" x 3-1/2"	1/4"	50	200	DW5537	DW5429	DW5803	DWA54012	-
6934SD-PWR	1/2" x 4-3/4"	1-1/2"	25	150	DW5537	DW5429	DW5803	DWA54012	-
6936SD-PWR	1/2" x 5-3/4"	2-1/2"	25	150	DW5537	DW5429	DW5803	DWA54012	-
6940SD-PWR	5/8" x 3"	1/4"	20	120	-	DW5446	DW5806	DWA54058	DWA54058
6942SD-PWR	5/8" x 4"	1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA54058
6944SD-PWR	5/8" x 5"	1-1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA58058
6945SD-PWR	5/8" x 6"	2-1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA58058
6947SD-PWR	5/8" x 8-1/2"	4-3/4"	10	40	-	DW5447	DW5809	DWA54058	DWA58058
6950SD-PWR	3/4" x 3-1/4"	1/4"	15	90	-	DW5453	DW5809	DWA54034	DWA54034
6952SD-PWR	3/4" x 4-1/2"	1/8"	10	60	-	DW5453	DW5809	DWA54034	DWA54034
6954SD-PWR	3/4" x 5-1/4"	7/8"	10	60	-	DW5453	DW5809	DWA54034	DWA54034
6956SD-PWR	3/4" x 7-1/4"	2-7/8"	10	40	-	DW5453	DW5809	DWA54034	DWA54034
6957SD-PWR	3/4" x 8-1/4"	3-7/8"	10	40	-	DW5455	DW5809	DWA54034	DWA54034

Shaded catalog numbers denote sizes which are too small or lengths less than the minimum standard anchor length for strength design. Anchors not long enough to meet the minimum nominal embedments published for strength design are outside the scope of ICC-ES ESR-3260.

The published size includes the diameter and the length. The length is measured from below the washer to the end of the anchor.

The tabulated maximum fixture thickness is provided for reference and based on published nominal embedment depths. The actual maximum fixture thickness for the anchor is determined by subtracting the required nominal embedment depth for the application from the published length.

To determine the actual minimum anchor length, select the nominal embedment depth needed (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

Hollow drill bits must be used with a dust extraction vacuum (e.g. Cat. No. DW012).

•

ledge Expansion And

POWER-STUD®+ SD-

GENERAL INFORMATION

POWER-STUD®+ SD1

Wedge Expansion Anchor

PRODUCT DESCRIPTION

The Power-Stud+ SD1 anchor is a fully threaded, torgue-controlled, wedge expansion anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, lightweight concrete, concrete over steel deck and grouted concrete masonry. The anchor is manufactured with a zinc plated carbon steel body and expansion clip for premium performance. Nut and washer are included.

GENERAL APPLICATIONS AND USES

- · Structural connections, i.e., beam and column anchorage
- Safety-related attachments
- · Barriers and guards
- Fencing and railing
- Mezzanines and racking

- Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers
- Trapeze / overhead utilities
- · Ledgers, angles and brackets
- Equipment anchorage
- Seismic and wind loading (SDC A F)

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-2818 for cracked and uncracked concrete
- International Code Council, Evaluation Service (ICC-ES), ESR-2966 for masonry
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor Category 1)
- Tested in accordance with ASTM E488 and ICC-ES AC01 for use in masonry
- City of Los Angeles, LABC and LARC Supplement (within ESR-2818 and ESR-2966)
- Florida Building Code, FBC Supplement including HVHZ (within ESR-2818 and ESR-2966)
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes
- FM Approvals (Factory Mutual) see FM Approval Guide for sizes

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Expansion anchors shall be Power-Stud+ SD1 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification
Anchor Body	Medium carbon steel
Hex nut	Carbon steel, ASTM A563, Grade A
Washer	Carbon Steel, ASTM F844; meets dimensional requirements of ANSI B18.22.2, Type A Plain
Expansion wedge (clip)	Carbon Steel
Plating	Zinc plating according to ASTM B633, SC1 Type III (Fe/Zn 5) Minimum plating requirements for Mild Service Condition.
See Tension Design Informat	ion table for yield and ultimate strengths of the anchor body.

SECTION CONTENTS

General Information136	
Material Specifications136	
Installation Specifications137	
Installation Instructions137	
Performance Data (ASD)138	
Strength Design Information 146	
Design Strength Tables (SD) 150	
Ordering Information151	

POWER-STUD+ SD1 ASSEMBLY

THREAD VERSION

UNC threaded stud

ANCHOR MATERIALS

 Zinc plated carbon steel body with expansion clip, nut and washer

ANCHOR SIZE RANGE (TYP.)

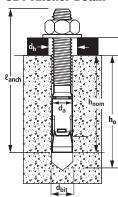
• 1/4" diameter through 1-1/4" diameter

SUITABLE BASE MATERIALS

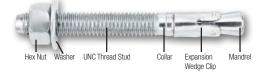
- Normal-weight concrete
- Lightweight concrete
- Concrete over steel deck
- Grouted concrete masonry (CMU)

CODE LISTED **CODE LISTED** ICC-ES ESR-2818 ICC-ES ESR-2966 CONCRETE MASONRY

INSTALLATION SPECIFICATIONS


Installation Specifications for Power-Stud+ SD1 in Concrete^{1,2,3}

Anchor Property/	Notation	Units				Nominal Anc	hor Diameter	ł		
Setting Information	Notation	Units	1/4	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Anchor diameter	da (d)	in.	0.250	0.375	0.500	0.625	0.750	0.875	1.000	1.250
Minimum diameter of hole clearance in fixture	dh	in.	5/16	7/16	9/16	11/16	13/16		1-1/8	1-3/8
Nominal drill bit diameter (ANSI)	d _{bit}	in.	1/4	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Minimum nominal embedment depth1	hnom	in.	1-1/8	1-5/8	2-1/4	2-3/4	3-3/8	3-7/8	4-1/2	5-1/2
Minimum hole depth	h₀	in.	h _{nom} ·	+ 1/8		h _{nom} + 1/4		h _{nom} -	+ 3/8	h _{nom} + 1/2
Installation torque	Tinst	ftlbf.	4	20	40	80	110	175	225	375
Torque wrench/socket size	-	in.	7/16	9/16	3/4	15/16	1-1/8	1-5/16	1-1/2	1-7/8
Nut height	-	in.	7/32	21/64	7/16	35/64	41/64	3/4	55/64	1-1/16
Washer O.D.	-	in.	5/8	13/16	1-1/16	1-5/16	1-15/32	1-3/4	2	2-1/2


See Strength Design Information for installation specifications in strict accordance with ICC-ES ESR-2818.

See Performance Data tables for additional embedment depths.
 The minimum base material thickness should be 1.5hnom or 3", whichever is greater.

Power-Stud+ SD1 Anchor Detail

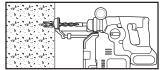
Power-Stud+ SD1 Anchor Assembly

Head Marking

= Length Identification Mark

= Carbon Steel Body and Expansion Clip (number 1 not on 1/4" diameter anchors)

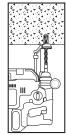
Length Identification


Foundari	INOIIC	mouu																		
Mark	A	В	C	D	E	F	G	H	I	J	к	L	м	N	0	Р	Q	R	S	т
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"	12"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"	12"	13"
Length iden	Length identification mark indicates overall length of anchor.																			

Ъ

U

INSTALLATION INSTRUCTIONS


Installation Instructions for Power-Stud+ SD1

Step 1

Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.

Installation Instructions for Power-Stud+ SD1 Tie Wire Version

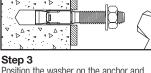
Step 1 Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.

▼ , ⊳^

.....

17

Step 2


• • •

Remove the dust and debris from the

hollow bit) or following drilling (e.g.

hole during drilling (e.g. dust extractor,

Step 2 Remove the dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Position the washer on the anchor and thread on the nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, hom.

*⊳⊳

0

Þ

Step 3

Drive the anchor

into the hole until

the head is firmly

the base material.

anchor is driven

to the required embedment depth.

seated against

Be sure the

Step 4

Tighten the anchor with a torque wrench by applying the required installation torque, T_{inst}. Note: The threaded stud will draw up during tightening of the nut; the expansion wedge (clip) remains in original position.

Vedge Expansion Anchor

S

LUD®+

POWER-ST

Strength Design Compliant Anchor (see ordering information)

PERFORMANCE DATA (ASD)

Ultimate Load Capacities for Power-Stud+ SD1 in Normal-Weight Concrete^{1,2}

Nominal	Minimum			Min	imum Concrete (Compressive Stre	ngth		
Anchor	Embedment Depth	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa
Diameter d in.	h _{nom} in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	1-1/8	1,320	1,160	1,435	1,255	1,660	1,255	1,660	1,255
1/4	(28)	(5.9)	(5.2)	(6.4)	(5.6)	(7.4)	(5.6)	(7.4)	(5.6)
17 -	1-3/4	2,775	1,255	2,775	1,255	2,775	1,255	2,775	1,255
	(44)	(12.4)	(5.6)	(12.4)	(5.6)	(12.4)	(5.6)	(12.4)	(5.6)
	1-5/8	2,240	2,320	2,685	2,540	3,100	2,540	3,100	2,540
3/8	(41)	(10.9)	(10.3)	(12)	(11.3)	(13.8)	(11.3)	(13.8)	(11.3)
0,0	2-3/8	3,485	2,540	3,815	2,540	4,410	2,540	5,400	2,540
	(60)	(15.5)	(11.3)	(17)	(11.3)	(19.6)	(11.3)	(24)	(11.3)
	2-1/4	3,800	3,840	4,155	4,195	4,800	4,195	4,800	4,195
	(57)	(16.9)	(17.1)	(18.5)	(18.7)	(21.4)	(18.7)	(21.4)	(18.7)
1/2	2-1/2	3,910	4,195	4,285	4,195	4,950	4,195	6,060	4,195
	(64)	(17.4)	(18.7)	(19.1)	(18.7)	(22)	(18.7)	(27)	(18.7)
	3-3/4	7,955	4,195	8,715	4,195	10,065	4,195	12,325	4,195
	(95)	(35.4)	(18.7)	(38.8)	(18.7)	(44.8)	(18.7)	(54.8)	(18.7)
	2-3/4	4,960	6,220	5,440	6,815	6,285	6,815	6,285	6,815
	(70)	(22.1)	(27.7)	(24.3)	(30.3)	(28)	(30.3)	(28)	(30.3)
5/8	3-3/8	6,625	6,815	7,260	6,815	8,380	6,815	10,265	6,815
	(86)	(29.5)	(30.3)	(32.3)	(30.3)	(37.3)	(30.3)	(45.7)	(30.3)
	4-5/8 (117)	11,260 (50.1)	6,815 (30.3)	12,335 (54.9)	6,815 (30.3)	14,245 (63.4)	6,815 (30.3)	14,465 (65.7)	6,815 (30.3)
	3-3/8	7,180	11.480	7,860	12,580	9.075		9.075	12,580
	(86)	(31.9)	(51.5)	(32.2)	(56.0)	(40.5)	12,580 (56.0)	(40.5)	(56.0)
	4	9.530	12.580	10.440	12.580	12.060	12.580	14.770	12,580
3/4	(102)	(42.4)	(56.0)	(46.5)	(56.0)	(53.6)	(56.0)	(65.7)	(56.0)
	5-5/8	17,670	12,580	19,355	12,580	22,350	12,580	25,065	12,580
	(143)	(78.6)	(56.0)	(86.1)	(56.0)	(99.4)	(56.0)	(111.5)	(56.0)
	3-7/8	9.120	10.680	10.005	11.690	11.555	11.690	11.555	11.690
	(98)	(40.6)	(47.5)	(44.5)	(52.0)	(51.4)	(52.0)	(51.4)	(52.0)
	4-1/2	11,320	11.690	12.405	11.690	15,125	11,690	19.470	11,690
7/8	(114)	(50.4)	(52.0)	(55.2)	(52.0)	(67.3)	(52.0)	(86.6)	(52.0)
	6-1/4	15.105	15,795	16,545	17,305	19,105	19,980	19,105	19,980
	(159)	67.2)	(70.3)	(73.6)	(77.0)	(85.0)	(88.9)	(85.0)	(88.9)
	4-1/2	12,400	19,320	13,580	21,155	15,680	21,155	15,680	21,155
	(114)	(55.2)	(85.9)	(60.4)	(94.1)	(69.7)	(94.1)	(69.7)	(94.1)
-	5-1/2	16,535	21,155	18,115	21,155	20,915	21,155	25,615	21,155
1	(140)	(73.6)	(94.1)	(80.6)	(94.1)	(93)	(94.1)	(114)	(94.1)
	8	19,640	21,155	21,530	21,155	24,865	21,155	24,865	21,155
	(203)	(87.4)	(94.1)	(95.8)	(94.1)	(110.6)	(94.1)	(110.6)	(94.1)
	5-1/2	18,520	26,560	20,275	29,105	23,410	29,105	23,410	29,105
1-1/4	(140)	(82.5)	(118.1)	(90.9)	(129.4)	(105.0)	(129.4)	(105.0)	(129.4
1~1/4	6-1/2	22,485	29,105	24,630	29,105	28,440	29,105	37,360	29,105
	(165)	(100.0)	(129.4)	(109.6)	(129.4)	(126.5)	(129.4)	(166.2)	(129.4

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

Allowable Load Capacities for Power-Stud+ SD1 in Normal-Weight Concrete^{1,2,3,4,5}

Nominal	Minimum			Min	imum Concrete C	compressive Stren	gth		
Anchor	Embedment Depth	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 ps	si (20.7 MPa)	f'c = 4,000 ps	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)
Diameter	hnom	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
d	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(in.)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
1/4	1-1/8	330	290	360	315	415	315	415	315
	(28)	(1.5)	(1.3)	(1.6)	(1.4)	(1.8)	(1.4)	(1.8)	(1.4)
1/4	1-3/4	695	315	695	315	695	315	695	315
	(44)	(3.1)	(1.4)	(3.1)	(1.4)	(3.1)	(1.4)	(3.1)	(1.4)
3/8	1-5/8	610	580	670	635	775	635	775	635
	(41)	(2.7)	(2.6)	(3.0)	(2.8)	(3.4)	(2.8)	(3.4)	(2.8)
3/0	2-3/8	870	635	955	635	1,105	635	1,350	635
	(60)	(3.9)	(2.8)	(4.2)	(2.8)	(4.9)	(2.8)	(6.0)	(2.8)
	2-1/4	950	960	1,040	1,050	1,200	1,050	1,200	1,050
	(57)	(4.2)	(4.3)	(4.6)	(4.7)	(5.3)	(4.7)	(5.3)	(4.7)
1/2	2-1/2	980	1,050	1,070	1,050	1,240	1,050	1,515	1,050
	(64)	(4.4)	(4.7)	(4.8)	(4.7)	(5.5)	(4.7)	(6.7)	(4.7)
	3-3/4	1,990	1,050	2,180	1,050	2,515	1,050	3,080	1,050
	(95)	(8.9)	(4.7)	(9.7)	(4.7)	(11.2)	(4.7)	(13.7)	(4.7)
	2-3/4	1,240	1,555	1,360	1,705	1,570	1,705	1,570	1,705
	(70)	(5.5)	(6.9)	(6.0)	(7.6)	(7.0)	(7.6)	(7.0)	(7.6)
5/8	3-3/8	1,655	1,705	1,815	1,705	2,095	1,705	2,565	1,705
	(86)	(7.4)	(7.6)	(8.1)	(7.6)	(9.3)	(7.6)	(11.4)	(7.6)
	4-5/8	2,815	1,705	3,085	1,705	3,560	1,705	3,615	1,705
	(117)	(12.5)	(7.6)	(13.7)	(7.6)	(15.8)	(7.6)	(16.1)	(7.6)
	3-3/8	1,795	2,870	1,965	3,145	2,270	3,145	2,270	3,145
	(86)	(8.0)	(12.8)	(8.7)	(14.0)	(10.1)	(14.0)	(10.1)	(14.0)
3/4	4	2,385	3,145	2,610	3,145	3,015	3,145	3,620	3,145
	(102)	(10.6)	(14.0)	(11.6)	(14.0)	(13.4)	(14.0)	(16.1)	(14.0)
	5-5/8	4,420	3,145	4,840	3,145	5,590	3,145	6,265	3,145
	(143)	(19.7)	(14.0)	(21.5)	(14.0)	(24.9)	(14.0)	(27.9)	(14.0)
	3-7/8	2,280	2,670	2,500	2,925	2,890	2,925	2,890	2,925
	(98)	(10.1)	(11.9)	(11.1)	(13.0)	(12.9)	(13.0)	(12.9)	(13.0)
7/8	4-1/2	2,830	2,925	3,100	2,925	3,780	2,925	4,870	2,925
	(114)	(12.6)	(13.0)	(13.8)	(13.0)	(16.8)	(13.0)	(21.7)	(13.0)
	6-1/4	3,775	3,950	4,135	4,325	4,775	4,995	4,775	4,995
	(159)	(16.8)	(17.6)	(18.4)	(19.2)	(21.2)	(22.2)	(21.2)	(22.2)
	4-1/2	3,100	4,830	3,395	5,290	3,920	5,290	3,920	5,290
	(114)	(13.8)	(21.5)	(15.1)	(23.5)	(17.4)	(23.5)	(17.4)	(23.5)
1	5-1/2	4,135	5,290	4,530	5,290	5,230	5,290	6,405	5,290
	(140)	(18.4)	(23.5)	(20.2)	(23.5)	(23.3)	(23.5)	(28.5)	(23.5)
	8	4,910	5,290	5,380	5,290	6,215	5,290	6,215	5,290
	(203)	(21.8)	(23.5)	(23.9)	(23.5)	(27.6)	(23.5)	(27.6)	(23.5)
1-1/4	5-1/2	4,630	6,640	5,070	7,275	5,850	7,275	5,850	7,275
	(140)	(20.6)	(29.5)	(22.6)	(32.4)	(26.0)	(32.4)	(26.0)	(32.4)
1-1/4	6-1/2	5,620	7,275	6,160	7,275	7,110	7,275	9,340	7,275
	(165)	(25.0)	(32.4)	(27.4)	(32.4)	(31.6)	(32.4)	(41.5)	(32.4)

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

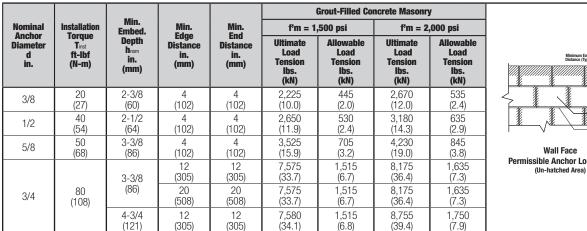
4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

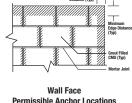
5. For lightweight concrete multiply tabulated allowable load values by a reduction factor of 0.60.

LOA	D ADJUSTM	ent f	ACTO	RS FO	R NOF	RMAL	-WEIG	HT CO	DNCRE	i I E												
Spac	cing Reduc	ction	Fact	ors -	Tens	ion (F _{NS})															
Dia	ameter (in)	1/4	1/4	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	3/4	7/8	7/8	7/8	1	1	1	1-1/4	1-1/4
Er	Nominal nbedment h ^{nom} (in)	1-1/8	1-3/4	1-5/8	2-3/8	2-1/4	2-1/2	3-3/4	2-3/4	3-3/8	4-5/8	3-3/8	4	5-5/8	3-7/8	4-1/2	6-1/4	4-1/2	5-1/2	8	5-1/2	6-1/2
	num Spacing smin (in)	1-1/2	2-1/4	2-1/4	3-1/2	3	4-1/2	5	3-3/4	6	4-1/4	4-1/2	6	6-1/2	5-1/4	6-1/2	5-1/4	6	8	6	7-1/2	8
	1-1/2	0.85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.92	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	0.95	0.78	0.86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.98	0.80	0.88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	1.00	0.83	0.91	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3	1.00	0.85	0.93	-	0.85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3-1/2	1.00	0.90	0.98	0.84	0.88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4	1.00	0.95	1.00	0.87	0.92	-	-	0.87	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-1/4	1.00	0.98	1.00	0.89	0.93	-	-	0.88	-	0.72	-	-	-	-	-	-	-	-	-	-	-
	4-1/2	1.00	1.00	1.00	0.90	0.95	0.91	-	0.90	-	0.73	0.86	-	-	-	-	-	-	-	-	-	-
	5	1.00	1.00	1.00	0.94	0.98	0.94	0.79	0.92	-	0.75	0.88	-	-	-	-	-	-	-	-	-	-
	5-1/2	1.00	1.00	1.00	0.97	1.00	0.97	0.81	0.95	-	0.77	0.91	-	-	0.87	-	0.77	-	-	-	-	-
	6	1.00	1.00	1.00	1.00	1.00	1.00	0.83	0.98	0.88	0.79	0.93	0.87	-	0.89	-	0.78	0.86	-	0.75	-	-
	6-1/2 7	1.00	1.00	1.00	1.00	1.00	1.00	0.86	1.00	0.90	0.80	0.95 0.98	0.89	0.79	0.91	0.85 0.87	0.79	0.87	-	0.76	-	-
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	0.93	0.82	1.00	0.91	0.81	0.93	0.87	0.80	0.89	-	0.77	- 0.85	-
	8	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	0.90	0.86	1.00	0.95	0.83	0.95	0.89	0.83	0.91	- 0.84	0.78	0.86	0.82
	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	0.88	1.00	0.95	0.85	0.97	0.91	0.84	0.93	0.85	0.79	0.88	0.83
ches	9	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.89	1.00	0.99	0.86	1.00	0.94	0.85	0.96	0.87	0.80	0.89	0.84
e (in	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.91	1.00	1.00	0.87	1.00	0.96	0.86	0.98	0.89	0.81	0.90	0.85
Spacing Distance (inches)	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93	1.00	1.00	0.89	1.00	0.98	0.87	1.00	0.90	0.82	0.92	0.86
Dis	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.90	1.00	1.00	0.88	1.00	0.92	0.83	0.93	0.87
cing	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.91	1.00	1.00	0.89	1.00	0.93	0.84	0.94	0.88
Spa	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.93	1.00	1.00	0.90	1.00	0.95	0.84	0.96	0.90
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.92	1.00	0.96	0.85	0.97	0.91
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.93	1.00	0.98	0.86	0.98	0.92
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.94	1.00	1.00	0.87	1.00	0.93
	13 1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.88	1.00	0.94
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.96	1.00	1.00	0.89	1.00	0.95
	14 1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.90	1.00	0.96
	15		1.00												1.00	1.00	0.98	1.00	1.00	0.90	1.00	0.97
	15 1/2	1.00	1.00		1.00		1.00		1.00	1.00	-	1.00		1.00		1.00	0.99	1.00	1.00	0.91	1.00	0.99
	16 1/2	1.00	1.00		1.00		1.00		1.00	1.00			1.00	1.00	I	1.00			1	0.93		1.00
	16	1	1.00		1.00			1.00		1.00		1.00	-	1.00		1.00	1.00	1.00	1.00	0.92		
	17		1.00		1.00	1.00			1.00	1.00		1.00		1.00		1.00	1.00	1.00	1.00	0.94		1.00
	17-1/2	1.00	1.00	1.00	1.00		1.00		1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95		1.00
	18	1.00	1.00	1.00	1.00	———	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96		1.00
	18-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00
	19	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00
	19-1/2	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98		1.00
	20		1.00	1	1.00	1.00			1.00		1.00	1.00		1.00		1.00			1.00		1.00	1.00
	20-5/8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors - Shear (Fvs)

	cing Reduc	1 1	1 1	1 1	1 1		ŕ т							-	_							
	ameter (in)	1/4	1/4	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	3/4	7/8	7/8	7/8	1	1	1	1-1/4	1-1/4
En	Nominal mbedment hnom (in)	1-1/8	1-3/4	1-5/8	2-3/8	2-1/4	2-1/2	3-3/4	2-3/4	3-3/8	4-5/8	3-3/8	4	5-5/8	3-7/8	4-1/2	6-1/4	4-1/2	5-1/2	8	5-1/2	6-1/2
	mum Spacing Smin (in)	1-1/2	2-1/4	2-1/4	3-1/2	3	4-1/2	5	3-3/4	6	4-1/4	4-1/2	6	6-1/2	5-1/4	6-1/2	5-1/4	6	8	6	7-1/2	8
	1-1/2	0.91	- 1	-	-	-	<u> </u>	-	-	- 1	<u> </u>	-	-	-	-	<u> </u>	-	- 1	-	- 1	<u> </u>	_
	1-3/4	0.93	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	[]	<u> </u>	[]	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	-	!
	2	0.95	<u> </u>	<u> </u>	-	[]	-	-	-	-	-	[]	-	-	-	-]	-	-	-	-	-	-
	2-1/4	0.97	0.85	0.92	-	<u> </u>	<u> </u>	<u> </u>	-	-	-	-	-	<u> </u>	[]	-	-	-	-	-	-	-
	2-1/2	0.99	0.87	0.93	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	[]	<u> </u>	[]	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	-
	2-3/4	1.00	0.88	0.95	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	-	-	-	-	-
	3	1.00	0.90	0.96	_)	0.91	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-	-	-	-	-	-	-
	3-1/2	1.00	0.93	0.99	0.90	0.93	-	-	-	-	-	<u> </u>	-	<u> </u>	-	<u> </u>	-	-	-	-	-	-
	4	1.00	0.97	1.00	0.92	0.95	-	-	0.93	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-1/4	1.00	0.98	1.00	0.93	0.96	<u> </u>	-	0.93	-	0.82	<u> </u>	-	<u> </u>	[]	<u> </u>	-	-	-	-	-	-
	4-1/2	1.00	1.00	1.00	0.94	0.97	0.95	[]	0.94	[<u> </u>	0.82	0.92	-	<u> </u>	[])	-	-	-	-	-	-
	5	1.00	1.00	1.00	0.96	0.99	0.97	0.86	0.96	-	0.83	0.93	-	<u> </u>	[]]	-)	-	-	-	-
	5-1/2	1.00	1.00	1.00	0.98	1.00	0.98	0.87	0.97	-	0.85	0.95	-	<u> </u>	0.93	-	0.87	-	-	<u> </u>	-	
	6	1.00	1.00	1.00	1.00	1.00	1.00	0.89	0.99	0.91	0.86	0.96	0.92	-	0.94)	0.88	0.92	-	0.86	-	-
	6-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	0.93	0.87	0.97	0.93	0.88	0.95	0.91	0.88	0.93	-	0.86	-	-
	7	1.00	1.00	1.00	1.00	1.00	1.00	0.92		0.95	0.88	0.99	0.94	0.88	0.96	0.92	0.89	0.94	-	0.87	- 1	-
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.93	1.00	0.97	0.89	1.00	0.96	0.89	0.97	0.93	0.90	0.95	-	0.87	0.91	-
	8	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.99	0.90	1.00	0.97	0.90	0.99	0.94	0.90	0.96	0.90	0.88	0.92	0.8
(Se	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.92	1.00	0.98	0.91	1.00	0.96	0.91	0.97	0.91	0.88	0.93	0.9
nch	9	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.93	1.00	0.99	0.92	1.00	0.97	0.91	0.98	0.92	0.89	0.94	0.9
Spacing Distance (inches)	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.94	1.00	1.00	0.92	1.00	0.98	0.92	0.99	0.93	0.89	0.94	0.9
stan	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.93	1.00	0.99	0.93	1.00	0.94	0.90	0.95	0.9
g Di	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.94	1.00	1.00	0.93	1.00	0.95	0.90	0.96	0.9
Iciné	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.94	1.00	0.96	0.91	0.97	0.9
Spa	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.96	1.00	1.00	0.95	1.00	0.97	0.91	0.98	0.94
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.95	1.00	0.98	0.92	0.98	0.9
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.96	1.00	0.99	0.92	0.99	0.9
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.93	1.00	0.9
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.97	1.00	1.00	0.93	1.00	0.9
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.94	1.00	0.9
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.94	1.00	0.9
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.95	1.00	0.9
	15-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.99
	16																				1.00	<u> </u>
	16-1/2	+ +	1.00	1 1	+ +		 		1 1		1 1			1.00		+		1 1	1 1	1 1	+ +	
	17		-	-	+ +	+ +	+ +	+ +	1 1		+ +					1 1						
	17-1/2												1 1	1 1					1 1			
	18		1 1							1.00				1.00				1.00				1.00
	18-1/2	1 1		1.00						1.00				1.00		1.00		1.00		1 1		
	19	+ +	i i	1 1	i i	i i	i i	i i		i i		i i	1.00	1.00	1.00	+ +			1.00			
	19-1/2		+ +		+ +	+ +		+ +		1.00			1.00	1.00	1.00		1.00	1.00	1.00			1.00
	20					1 1		1 1			1 1		1.00	1 1	1.00	+ +		1.00	1.00			1.00
	20-5/8		+ +		1.00				1.00					1.00								1.00
	LU-J/0		L0		L0		L.00	L		L			L		L	L.00 1	L	1.00	1.00	L	U.UU	, ı.U


a Distance Reduction Eactors - Tonsion (E...)


Edg	e Distance	Redu	ictio	n Fac	tors	- Ten	sion	(F _{NC})														
Di	ameter (in)	1/4	1/4	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	3/4	7/8	7/8	7/8	1	1	1	1-1/4	1-1/4
	Nominal mbedment hnom (in)	1-1/8	1-3/4	1-5/8	2-3/8	2-1/4	2-1/2	3-3/4	2-3/4	3-3/8	4-5/8	3-3/8	4	5-5/8	3-7/8	4-1/2	6-1/4	4-1/2	5-1/2	8	5-1/2	6-1/2
	Edge Distance cmin (in)	1-3/4	1-3/4	3	2-1/4	4	3-1/4	2-3/4	5	5-1/2	4-1/4	6	5	6	7	7	7	8	8	8	10	8
	1-3/4	0.50	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.57	0.57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	0.64	0.64	-	0.35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.71	0.71	-	0.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	0.79	0.79	-	0.42	-	-	0.34	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3	0.86	0.86	0.60	0.46	-	-	0.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3-1/4	0.93	0.93	0.65	0.50	-	0.41	0.41	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3-1/2	1.00	1.00	0.70	0.54	-	0.44	0.44	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4	1.00	1.00	0.80	0.62	0.57	0.50	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-1/4	1.00	1.00	0.85	0.65	0.61	0.53	0.53	-	-	0.43	-	-	-	-	-	-	-	-	-	-	-
	4-1/2	1.00	1.00	0.90	0.69	0.64	0.56	0.56	-	-	0.45	-	-	-	-	-	-	-	-	-	-	-
	5	1.00	1.00	1.00	0.77	0.71	0.63	0.63	0.59	-	0.50	-	0.45	-	-	-	-	-	-	-	-	-
	5-1/2	1.00	1.00	1.00	0.85	0.79	0.69	0.69	0.65	0.92	0.55	-	0.50	-	-	-	-	-	-	-	-	-
	6	1.00	1.00	1.00	0.92	0.86	0.75	0.75	0.71	1.00	0.60	0.60	0.55	0.38	-	-	-	-	-	-	-	-
	6-1/2	1.00	1.00	1.00	1.00	0.93	0.81	0.81	0.76	1.00	0.65	0.65	0.59	0.41	-	-	-	-	-	-	-	-
	7	1.00	1.00	1.00	1.00	1.00	0.88	0.88	0.82	1.00	0.70	0.70	0.64	0.44	0.61	0.61	0.33	-	-	-	-	-
	7-1/2	1.00	1.00	1.00	1.00	1.00	0.94	0.94	0.88	1.00	0.75	0.75	0.68	0.47	0.65	0.65	0.36	-	-	-	-	-
	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	0.80	0.80	0.73	0.50	0.70	0.70	0.38	0.59	0.67	0.29	-	0.40
	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.85	0.85	0.77	0.53	0.74	0.74	0.40	0.63	0.71	0.31	-	0.43
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.90	0.82	0.56	0.78	0.78	0.43	0.67	0.75	0.33	-	0.45
	9-1/2 10	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00	1.00	1.00	0.95	0.95	0.86	0.59	0.83	0.83	0.45	0.70 0.74	0.79	0.35	-	0.48
()	10-1/2	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00	1.00	1.00	1.00	0.91	0.63	0.87	0.87 0.91	0.48	0.74	0.83	0.36	0.57	0.50 0.53
Edge Distance (inches)	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.69	0.91	0.91	0.50	0.78	0.88	0.30	0.60	0.55
e (in	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.03	1.00	1.00	0.52	0.85	0.92	0.40	0.66	0.58
tanc	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.75	1.00	1.00	0.57	0.89	1.00	0.44	0.69	0.60
Dis	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.78	1.00	1.00	0.60	0.93	1.00	0.45	0.71	0.63
Edge	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.81	1.00	1.00	0.62	0.96	1.00	0.47	0.74	0.65
_	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	1.00	0.64	1.00	1.00	0.49	0.77	0.68
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.67	1.00	1.00	0.51	0.80	0.70
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.69	1.00	1.00	0.53	0.83	0.73
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.71	1.00	1.00	0.55	0.86	0.75
	15-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.74	1.00	1.00	0.56	0.89	0.78
	16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00		1.00	1.00	0.58	0.91	0.80
	16-1/2	1.00	1.00	1.00		1.00			1.00			1.00		1.00		1.00	0.79	1.00	1.00	0.60	0.94	
	17	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	0.81	1.00	-	0.62	0.97	0.85
	17-1/2	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83	1.00	1.00	0.64	1.00	0.88
	18	1.00	1.00	1.00			1.00		1.00	1.00	-	1.00	1.00	1.00		1.00	0.86		1.00	0.65	1.00	0.90
	18-1/2	1.00	1.00	-		1.00				•		1.00		1.00		1.00	0.88		-	0.67	1.00	
	19	1.00	1.00	1.00	1	1.00						1.00				-	0.90	1.00		0.69	1.00	
	19-1/2		1.00			1.00						1.00		1.00		1.00	0.93			0.71	1.00	
	20	1.00	1.00			1.00			1.00					1.00		1.00	0.95				1.00	
	21 22	1.00	1.00	1		1.00				-	1	1.00	1.00	1.00		1.00	1.00				1.00	
	22	1.00 1.00	1.00	1.00		1.00 1.00	_			1.00		1.00 1.00	1.00	1.00		1.00 1.00	1.00	1.00	1.00	-	1.00	
	23	1.00		1.00		1.00			1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.87	1.00	
	24	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.87	1.00	1.00
	26	1.00	1.00	1.00	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00
	27	1.00	1.00	1.00	-		1.00		1.00	1.00	1	1.00	1.00	1.00		1.00	1.00	1.00			1.00	
	27-1/2						_				1.00								1.00			1.00

Edge Distance Reduction Factors - Shear (F_{VC})

	e Distance ameter (in)	1/4	1/4	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	3/4	7/8	7/8	7/8	1	1	1	1-1/4	1 1/4
	Nominal mbedment hnom (in)				2-3/8							3-3/8	4	5-5/8				4-1/2		8	5-1/2	
Min.	Edge Distance Cmin (in)	1-3/4	1-3/4	3	2-1/4	4	3-1/4	2-3/4	5	5-1/2	4-1/4	6	5	6	7	7	7	8	8	8	10	8
	1-3/4	0.67	0.39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.76	0.44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	0.86	0.50	-	0.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.95	0.56	-	0.42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	1.00	0.61	-	0.46	-	-	0.28	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3	1.00	0.67	0.80	0.50	-	-	0.31	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3-1/4	1.00	0.72	0.87	0.54	-	0.54	0.33	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3-1/2	1.00	0.78	0.93	0.58	-	0.58	0.36	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4	1.00	0.89	1.00	0.67	0.76	0.67	0.41	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-1/4	1.00	0.94	1.00	0.71	0.81	0.71	0.44	-	-	0.35	-	-	-	-	-	-	-	-	-	-	-
	4-1/2	1.00	1.00	1.00	0.75	0.86	0.75	0.46	-	-	0.38	-	-	-	-	-	-	-	-	-	-	-
	5	1.00	1.00	1.00	0.83	0.95	0.83	0.51	0.78	-	0.42	-	0.53	-	-	-	-	-	-	-	-	-
	5-1/2	1.00	1.00	1.00	0.92	1.00	0.92	0.56	0.86	0.67	0.46	-	0.59	-	-	-	-	-	-	-	-	-
	6	1.00	1.00	1.00	1.00	1.00	1.00	0.62	0.94	0.73	0.50	0.80	0.64	0.42	-	-	-	-	-	-	-	-
	6-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.67	1.00	0.79	0.54	0.87	0.69	0.46	-	-	-	-	-	-	-	-
	7	1.00	1.00	1.00	1.00	1.00	1.00	0.72	1.00	0.85	0.58	0.93	0.75	0.49	0.81	0.67	0.44	-	-	-	-	-
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.77	1.00	0.91	0.63	1.00	0.80	0.53	0.87	0.71	0.48	-	-	-	-	-
	8	1.00	1.00	1.00	1.00	1.00	1.00	0.82	1.00	0.97	0.67	1.00	0.85	0.56	0.93	0.76	0.51	0.79	0.61	0.39	-	0.50
s)	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.87	1.00	1.00	0.71	1.00	0.91	0.60	0.99	0.81	0.54	0.84	0.65	0.41	-	0.53
Edge Distance (inches)	9	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	0.75	1.00	0.96	0.63	1.00	0.86	0.57	0.89	0.69	0.44	-	0.56
e (in	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.79	1.00	1.00	0.67	1.00	0.90	0.60	0.94	0.72	0.46	-	0.59
tanc	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83	1.00	1.00	0.70	1.00	0.95	0.63	0.99	0.76	0.48	0.76	0.62
Dist	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.74	1.00	1.00	0.67	1.00	0.80	0.51	0.80	0.65
dge	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	0.77	1.00	1.00	0.70	1.00	0.84	0.53	0.84	0.68
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.81	1.00	1.00	0.73	1.00	0.88	0.56	0.88	0.71
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	1.00	0.76	1.00	0.91	0.58	0.91	0.74
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.79	1.00	0.95	0.61	0.95	0.78
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.83	1.00	0.99	0.63	0.99	0.81
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.86	1.00	1.00	0.65	1.00	0.84
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.89	1.00	1.00	0.68	1.00	0.87
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	0.70	1.00	0.90
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.73	1.00	0.93
	15-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.75	1.00	0.96
	16				i —																1.00	
	16-1/2				1.00														1.00			
	17			1.00			1.00	1.00					1.00							0.82		
	17-1/2			1.00		1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00						
	18		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00		1.00			1.00						
	18-1/2		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00		1.00		0.90		
	19			1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00						
	19-1/2				1		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00					
	20				-		1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00			
	21	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

CODE LISTED

ICC-ES ESR-2966

DEV/4

ANCHORS & FASTENERS

ςI

Permissible Anchor Locations

Tabulated load values for 3/8", 1/2" and 5/8" diameter anchors are installed in minimum 6" wide, Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units 1. conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at specified minimum at the time of installation

Tabulated load values for 3/4" diameter anchors are installed in minimum 8" wide, Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM 2. C90. Mortar must be Type N, S or M. Masonry compressive strength must be at specified minimum at the time of installation.

3. Allowable load capacities listed are calculated using an applied safety factor of 5.0.

Min.

Embed

The tabulated values are applicable for anchors installed into grouted masonry wall faces at a critical spacing distance, sa, between anchors of 16 times the anchor diameter. The spacing 4. distance between two anchors may be reduced to minimum distance, smm, of 8 times the anchor diameter provided the allowable tension loads are multiplied by a reduction factor 0.80 and allowable shear loads are multiplied by a reduction factor of 0.90. Linear interpolation for calculation of allowable loads may be used for intermediate anchor spacing distances.

5. Anchors may be installed in the grouted cells and in cell webs and bed joints not closer than 1-3/8" from head joints. The minimum edge and end distances must also be maintained. Allowable tension values for anchors installed into bed joints of grouted masonry wall faces with a minimum of 12" edge distance and end distance may be increased by 20 percent for the 6.

1/2-inch diameter and 10 percent for the 5/8-inch diameter.

Ultimate and Allowable Load Capacities in Shear for Power-Stud+ SD1 in Grout Filled Concrete Masonry Wall Faces^{1,2,3,4,5}

Min.

Min.

f'm = 2,000 psi

Grout-Filled Concrete Masonry

f'm = 1,500 psi

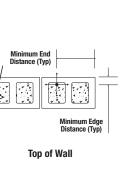
Installation Nominal

Anchor Diameter d in.	Tinst ft-Ibf (N-m)	Depth h _{nom} in. (mm)	Edge Distance in. (mm)	End Distance in. (mm)	Direction of Loading	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)
3/8	20 (27)	2-3/8 (60)	4 (102)	4 (102)	Perpendicular or parallel to wall edge or end	2,975 (13.4)	595 (2.7)	3,570 (16.1)	715 (3.2)
			4 (102)	12 (305)	Perpendicular or parallel to wall edge or end	2,800 (12.6)	560 (2.5)	3,360 (15.1)	670 (3.0)
1/2	40 (54)	2-1/2 (64)	12 (305)	4 (102)	Parallel to wall end	4,025	805	4,830	965
			4 (102)	12 (305)	Parallel to wall edge	(18.1)	(3.6)	(21.7)	(4.3)
			4 (102)	4 (102)	Perpendicular or parallel to wall edge or end	3,425 (15.4)	685 (3.1)	4,110 (18.5)	820 (3.7)
5/8	50 (68)	3-3/8 (86)	12 (305)	4 (102)	Parallel to wall end	5,325	1,065	6,390	1,280
			4 (102)	12 (305)	Parallel to wall edge	(24.0)	(4.8)	(28.8)	(5.8)
		3-3/8	12 (305)	12 (305)		8,850 (39.4)	1,770 (7.9)	9,375 (41.7)	1,875 (8.3)
3/4	80 (108)	(86)	20 (508)	20 (508)	Perpendicular or parallel to wall edge or end	10,200 (45.4)	2,040 (9.1)	10,800 (48.0)	2,160 (9.6)
		4-3/4 (121)	12 (305)	12 (305)		12,735 (56.7)	2,545 (11.3)	12,735 (56.7)	2,545 (11.3)
1. Tabulated I	oad values for 3/8	8", 1/2" and 5/8" o	diameter anchors	are installed in mi	nimum 6" wide, Grade N, Type II, lightw	eight, medium-we	eight or normal-we	ight concrete mas	sonry units

conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at specified minimum at the time of installation.

2. Tabulated load values for 3/4" diameter anchors are installed in minimum 8" wide, Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at specified minimum at the time of installation.

3. Allowable load capacities listed are calculated using an applied safety factor of 5.0.


4. The tabulated values are applicable for anchors installed into grouted masonry wall faces at a critical spacing distance, sa, between anchors of 16 times the anchor diameter. The spacing distance between two anchors may be reduced to minimum distance, smin, of 8 times the anchor diameter provided the allowable tension loads are multiplied by a reduction factor 0.80 and allowable shear loads are multiplied by a reduction factor of 0.90. Linear interpolation for calculation of allowable loads may be used for intermediate anchor spacing distances.

5. Anchors may be installed in the grouted cells and in cell webs and bed joints not closer than 1-3/8" from head joints. The minimum edge and end distances must also be maintained.

AşD

Ultimate and Allowable Load Capacities in Tension for Power-Stud+ SD1 in the Tops of Grout Filled Concrete Masonry Walls^{1,2,3,4}

					6	irout-Filled Co	ncrete Mason	у	
Nominal	Installation	Minimum Embed.	Min.	Min.	f'm = 1	,500 psi	f'm = 2	,000 psi	
Anchor Diameter d in.	Torque T _{inst} ft-Ibf (N-m)	Depth hnom in. (mm)	Edge Distance in. (mm)	End Distance in. (mm)	Ultimate Load Tension Ibs. (kN)	Allowable Load Tension Ibs. (kN)	Ultimate Load Tension Ibs. (kN)	Allowable Load Tension Ibs. (kN)	Minimum En Distance (Typ
3/8	20 (27)	2-3/8 (60)	1-3/4 (45)		1,475 (6.6)	295 (1.3)	1,770 (8.0)	355 (1.6)	
1/0	40	2-1/2 (64)	2-1/4		2,225 (9.9)	445 (2.0)	2,575 (11.5)	515 (2.3)	
1/2	(54)	5 (127)	(57)	12 (305)	3,425 (15.4)	685 (3.1)	4,110 (18.5)	820 (3.7)	Тор с
5/8	50	3-3/8 (86)	2-1/4		3,825 (17.2)	765 (3.4)	4,590 (20.7)	920 (4.1)	
5/6	(68)	6-1/4 (159)	(57)		3,825 (17.2)	765 (3.4)	4,590 (20.7)	920 (4.1)	

CODE LISTED

ICC-ES ESR-2966

1. Tabulated load values are for anchors installed in minimum 8-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. Anchors must be installed in the grouted cells and the minimum edge and end distances must be maintained.

4. The tabulated values are applicable for anchors installed in top of grouted masonry walls at a critical spacing distance, sa, between anchors of 16 times the anchor diameter.

Ultimate and Allowable Load Capacities in Shear for Power-Stud+ SD1 in Grout Filled the Tops of Concrete Masonry Walls^{1,2,3,4}

Grout-Filled Concrete Masonry Minimum Installation Min. Min. f'm = 1,500 psi f'm = 2,000 psi Nominal Embed. Torque Tinst Edge End Anchor Depth Distance Distance **Direction of Loading** Ultimate Allowable Ultimate Allowable Diameter hnom ft-lbf in. in. Load Load Load Load d in. (N-m) (mm) (mm) Shear Shear Shear Shear in. (mm) lbs. lbs. lbs. Ibs. (kN) (kN) (kN) (kN) 1,150 230 1,380 275 Perpendicular to wall toward minimum edge (5.2)(1.0)(6.2)(1.2)20 (27) 2 - 3/81 - 3/412 3/8 (45) (305) (60)2,425 2,910 485 580 Parallel to wall edge (10.9) (2.2)(13.1)(2.6)1,150 1.380 2 - 1/2230 275 Any (64) (5.2)(1.0)(6.2)(1.2)1.680 40 2 - 1/412 Perpendicular to wall 1.400 280 325 1/2 (54) (57) (305) toward minimum edge (6.3)(1.3)(7.6)(1.5)5 (127) 2.825 565 3.390 680 Parallel to wall edge 12.7 (2.5)(15.3)(3.1)3-3/8 1,380 1,150 230 275 Any (86) (5.2) (1.0)(6.2) (1.2)2-1/4 12 Perpendicular to wall 1.700 340 2.040 410 50 5/8 (68) (305) toward minimum edge (1.5)(1.8) 6-1/4 (57) (7.7)(9.2) (159)3,525 705 4,230 845 Parallel to wall edge (15.9)(3.2)(19.0)(3.8)

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. Anchors must be installed in the grouted cells and the minimum edge and end distances must be maintained.

4. The tabulated values are applicable for anchors installed in top of grouted masonry walls at a critical spacing distance, sa, between anchors of 16 times the anchor diameter.

STRENGTH DESIGN INFORMATION

Power-Stud+ SD1 Anchor Installation Specifications in Concrete

	nohor Proporty /							Nominal And	chor Diameter						
Se	nchor Property / atting Information	Notation	Units	1/4 inch	3/8 inch			/2 ich	5/8 inch		3/ in	/4 ch	7/8 inch	1 inch	1-1/4 inch
Anch	or diameter	da (d)	in. (mm)	0.250 (6.4)	0.375 (9.5)			500 2.7)	0.625		0.7		0.875 (22.2)	1.000 (25.4)	1.250
	num diameter of hole ance in fixture	d _h	in. (mm)	5/16 (7.5)	7/16		9.	/16 4.3)	11/16		13,	/16	(25.4)	1-1/8 (28.6)	1-3/8
	nal drill bit diameter	d _{bit}	in.	1/4	3/8			/2	5/8		3,	/4	7/8	1	1-1/4
	nal embedment depth	h _{nom}	in. (mm)	1-3/4 (44)	2-3/8 (60)		2-1/2 (64)	3-3/4 (95)	3-3/8 (86)	4-5/8 (117)	4 (102)	5-5/8 (143)	4-1/2 (114)	5-1/2 (140)	6-1/2 (165
Effect	tive embedment depth	hef	in. (mm)	1.50 (38)	2.00 (51)		2.00 (51)	3.25 (83)	2.75 (70)	4.00 (102)	3.125 (79)	4.75 (114)	3.50 (89)	4.375 (111)	5.37
Minin	num hole depth	h _{hole}	in. (mm)	1-7/8 (48)	2-1/2 (64)		2-3/4 (70)	4 (102)	3-3/4 (95)	5 (127)	4-1/4 (108)	5-7/8 (149)	4-7/8 (124)	5-7/8 (149)	7 (178
	num overall or length ^{2,7}	lanch	in. (mm)	2-1/4 (57)	3 (76)		3-3/4 (95)	4-1/2 (114)	4-1/2 (114)	6 (152)	5-1/2 (140)	7 (178)	6 (152)	9 (229)	9 (229
Instal	lation torque ⁶	Tinst	ftlbf. (N-m)	4 (5)	20 (27)			10 54)	80 (108)		(14	10 19)	175 (237)	225 (305)	375 (508
Torqu	ie wrench/socket size	-	in.	7/16	9/16		-	\$/4	15/16		1-		1-5/16	1-1/2	1-7/8
Nut h	eight ier O.D.	-	in. in.	7/32 5/8	21/64 13/16			/16 1/16	35/64 1-5/16		41,	/64 5/32	3/4 1-3/4	55/64 2	1-1/1 2-1/2
vvasi		-	<u> </u>	J/0		nchors	Installed in Co		<u> </u>		1 1-10	5/ 52	1-0/4		2-1/2
Minin thickr	num member ness	h _{min}	in. (mm)	3-1/4 (83)	3-3/4 (95)	4 (102)	4 (102)	6 (152)	6 (152)	7 (178)	6 (152)	10 (254)	10 (254)	10 (254)	12 (305
	num edge distance	Cmin	in. (mm)	1-3/4 (45)	6 2-3/4 (152) (70)	2-1/4 (57)	6 3-1/4 (152) (95)	4 2-3/4 (102) (70)	6 5-1/2 (152) (140)	4-1/4 (108)	5 (127)	6 (152)	7` (178)	8 (203)	8 (203
Minin	num spacing distance	Smin	in. (mm)	2-1/4 (57)	3-1/2 9 (89) (229)	3-3/4 (95)	4-1/2 10 (114) (254)	5 6 (127) (152)	6 11 (152) (270)	4-1/4 (108)	6 (152)	6-1/2 (165)	6-1/2 (165)	8 (203)	8 (203
Critica (uncra	al edge distance acked concrete only)	Cac	in. (mm)	3-1/2 (89)	6-1/2 (165)		8 (203)	8 (203)	6 (152)	10 (254)	11 (279)	16 (406)	11-1/2 (292)	12 (305)	20 (508
			4	Anchors	Installed in the	Topsid	e of Concrete-	illed Steel Deck	Assemblies ^{3,4}						
Minin thickr	num member topping ness	h _{min,deck}	in. (mm)	3-1/4 (83)	3-1/4 (83)		3-1/4 (83)								
Minin	num edge distance	Cmin,deck,top	in. (mm)	1-3/4 (45)	2-3/4 (70)		4-1/2 (114)	ote 3	See note 3		C to	C AIO	ote 3	ote 3	note 3
	num spacing distance	Smin,deck,top	in. (mm)	2-1/4 (57)	4 (102)		6-1/2 (165)	See note	See n				See note 3	See note 3	See n
Critica (uncra	al edge distance acked concrete only)	Cac,deck,top	in. (mm)	3-1/2 (89)	6-1/2 (165)		6 (152)								
			A	nchors I	nstalled Throug	jh the S	offit of Steel D	eck Assemblies	into Concrete ⁵						
2A	Minimum member topping thickness	hmin,deck	in. (mm)		3-1/4 (95)			1/4 95)	3-1/4 (95)		3- ⁻ (9		e	<u>e</u>	e
Figure	Minimum edge distance, lower flute	Cmin	in. (mm)		1-1/4 (32)			1/4 32)	1-1/4 (32)		1- ⁻ (3	1/4 2)	Not Applicable	Vot Applicable	Not Applicable
See	Minimum axial spacing distance along flute	Smin	in. (mm)	licable	6-3/4 (171)		6-3/4 (171)	9-3/4 (248)	8-1/4 (210)	12 (305)	9-3/8 (238)	ŕ	Not ⊭	Not /	Not 4
2B	Minimum member topping thickness	h _{min,deck}	in. (mm)	Not Applicable	2-1/4 (57)			1/4 57)	e				le	le	le
Figure	Minimum edge distance, lower flute	Cmin	in. (mm)		3/4 (19)			5/4 19)	Vot Applicable			NUL Applicable	Not Applicable	Not Applicable	Not Applicable
See	Minimum axial spacing distance along flute	Smin	in. (mm)		6 (152)		6 (152)	9-3/4 (248)	Not,		+04	INUL	Not ,	Not,	Not ,

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

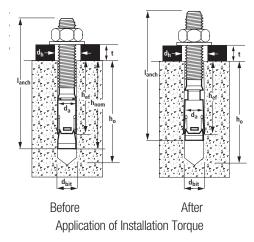
1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

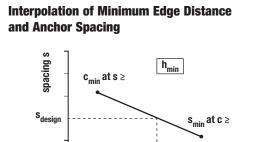
The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth, nut height and washer thickness, and consideration of a possible fixture attachment.

3. The 1/4-inch-diameter (6.4 mm) anchors may be installed in the topside of uncracked concrete-filled steel deck assemblies where concrete thickness above the upper flute meets the minimum member thicknesses specified in this table. The 3/8-inch (9.5 mm) through 1-1/4-inch-diameter (31.8 mm) anchors may be installed in the topside of cracked and uncracked concrete-filled steel deck assemblies where concrete thickness above the upper flute meets the minimum member thicknesses specified in this table under Anchors Installed in Concrete Construction.

4. For installations in the topside of concrete-filled steel deck assemblies, see the installation detail in Figure 1.

For installations through the soffit of steel deck assemblies into concrete, see the installation details in Figures 2A and 2B. In accordance with the figures, anchors shall have an axial spacing along the flute equal to the greater of 3her or 1.5 times the flute width.


6. For installation of 5/8-inch diameter anchors through the soffit of the steel deck into concrete, the installation torque is 50 ft.-lbf. For installation of 3/4-inch-diameter anchors through the soffit of the steel deck into concrete, installation torque is 80 ft.-lbf.


- 7. Anchors with the following minimum lengths are also suitable for installations without a fixture or for use with cold-formed steel members provided the thickness of the fixture attachment does not exceed 20 gauge (0.036-inch base metal thickness):
 - For 3/8-inch-diameter anchors with a 2-3/8-inch nominal embedment, 2-3/4-inch long anchors.

For 3/4-inch-diameter anchors with a 4-inch nominal embedment, 4-3/4-inch long anchors.

Power-Stud+ SD1 Anchor Detail

c_{design} edge distance c

This interpolation applies to the cases when two sets of minimum edge distances, c_{min}, and minimum spacing distances, s_{min}, are given for a selected anchor diameter effective embedment depth, h_{ef}, and corresponding minimum member thickness, h_{min}.

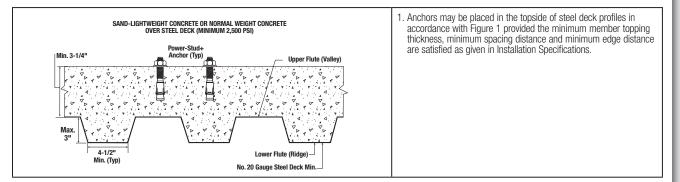
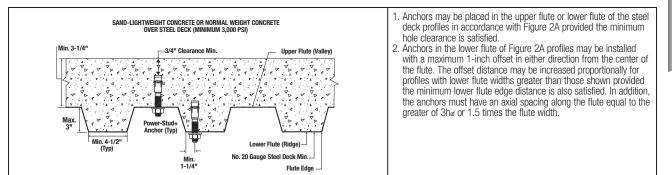
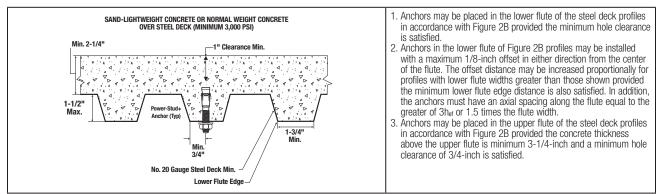




Figure 2A - Power-Stud+ SD1 Installation Detail for Anchors in the Soffit Of Concrete Over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)

Figure 2B - Power-Stud+ SD1 Installation Detail for Anchors in the Soffit Of Concrete Over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)

ledge Expansion Anchor

POWER-S

FECHNICAL GUIDE – MECHANICAL ANCHORS ©2022 DEWALT – REV. D

							Nominal	Anchor D	Diameter				
Design Characteristic	Notation	Units	1/4 inch	3/8 inch	1/2	inch	5/8		r	inch	7/8 inch	1 inch	1-1/ incl
Anchor category	1, 2 or 3	-	1	1	1	1	1		-	1	1	1	1
Nominal embedment depth	h _{nom}	in.	1-3/4	1-3/4	2-1/2	3-3/4	3-3/8	4-5/8	4	5-5/8	4-1/2	5-1/2	6-1/
Effective embedment depth	hef	(mm) in.	(44) 1.50	(44) 2.00	(64) 2.00	(95) 3.25	(86) 2.75	<u>(117)</u> 4.00	(102) 3.125	(143) 4.75	(114) 3.50	(140) 4.375	(165 5.37
'		(mm)	(38)	(51)	(51)	(83)	(70)	(102)	(79)	(114)	(89)	(111)	(13
SIEF	EL STRENGT		<u> </u>							1.0	50.0	50.0	50
Minimum specified yield strength	fya	ksi (N/mm²)	88.0 (606)	88.0 (606)	80 (55).0 51)	80 (55		(44	4.0 41)	58.0 (400)	58.0 (400)	58. (40
Minimum specified ultimate	futa ¹²	ksi	110.0	110.0	10	0.0	100	0.0	80).0	75.0	75.0	75.
tensile strength (neck)		(N/mm²) in²	(758)	(758) 0.0531	(68	89) 018	(68	/		52) 376	(517) 0.327	(517) 0.430	(51
Effective tensile stress area (neck)	A _{se,N}	(mm²)	(14.2)	(34.3)		018 5.7)	(104			376 0.9)	(207.5)	(273.1)	(48
Steel strength in tension⁴	Nsa ¹²	lb	2,255	5,455	9,0	080	14,4	465	19,0	000	24,500	32,250	56,
Reduction factor for steel strength ³	φ	(kN)	(10.0)	(24.3)	(40).4)	(64	1.3) 0.75	(ŏ4	4.5)	(109.0)	(143.5)	(25
CONCRETE B	<u> </u>	TRENGTH !	I TENSIO	N (ACI 318	2-19 17.6.	2. ACI 31	8-14 17.4		318-11 D.	5.2)°			
Effectiveness factor for uncracked concrete	Kuncr	-	24	24		4	2		24	24	24	24	2
Effectiveness factor for cracked concrete	Kcr	-	Not Applicable	17	1	7	1	7	21	17	21	24	2
Modification factor for cracked and uncracked concrete ⁵	Ψc,N	-	1.0	1.0	1	.0	1.	.0	1.	.0	1.0	1.0	1.
Critical edge distance (uncracked concrete only)	Cac	in. (mm)				See l	nstallation	Specificati	ions in con	icrete			
Reduction factor for concrete breakout strength ³	φ		<u> </u>				0.65	5 (Conditio	n B)				
v ·	OUT STRENG	TH IN TENS	SION (ACI 3	318-19 17	.6.3, ACI								
Characteristic pullout strength,	Np,uncr	lb	See	2,865	3,220	5,530	See	See		ee	See	See	S
uncracked concrete (2,500 psi) ⁶ Characteristic pullout strength,		(kN) Ib	note 7 Not	(12.8) 2,035	(14.3) See	(24.6) 2,505	note 7 See	note 7 4.450		te 7 ee	note 7 See	note 7 See	no 11,
cracked concrete (2,500 psi) ⁶	N _{p,cr}	(kN)	Applicable		See note 7	2,505 (11.2)	note 7	4,450 (19.8)		ee te 7	note 7	See note 7	(50
Reduction factor for pullout strength ³	φ	-	1 9- p					5 (Condition		<u> </u>			
PULLOUT STRENGTH IN	TENSION FO	DR SEISMIC		<u> </u>							,		
Characteristic pullout strength, seismic (2,500 psi)6.10	N _{p,eq}	lb (kN)	Not Applicable	2,035 (9.1)	See note 7	2,505 (11.2)	See note 7	4,450 (19.8)		ee te 7	See note 7	See note 7	11, (50
Reduction factor for pullout strength, seismic ³	φ	(KIV) -	Applicable	(9.1)	TIULE /	(11.2)		5 (Conditio		.e /		Note /	(00
PULLOUT STRENGTH IN TENSION FO		INSTALLED	THROUGH	THE SOFF	T OF SANI	D-LIGHTWE		<u> </u>		ONCRETE	OVER STEE	L DECK	
Characteristic pullout strength, uncracked concrete over steel deck(Figure 2A) ^{6,11}	N _{p,deck,uncr}	lb (kN)		1,940 (8.6)		205 4.2)	2,7 (12			230 1.4)			
Characteristic pullout strength, cracked	Np,deck,cr	lb		1,375	2,3	39Ó	1,9	980	2,8	325	1		
concrete over steel deck (Figure 2A) ^{6,11} Characteristic pullout strength, cracked concrete	Пир,аеск,ст	(kN) Ib	e e	(6.1) 1,375	(10		(8.			2.4) 325	- e	e	
over steel deck, seismic (Figure 2A)6,11	Np,deck,eq	(kN)	plicat	(6.1)	(10).6)	(8.			2.4)	plicat	plicat	
Characteristic pullout strength, uncracked concrete over steel deck (Figure 2B) ^{6,11}	Np,deck,uncr	lb (kN)	Vot Applicable	1,665 (7.4)	1,9 (8.	900 .5)		101C	4	3DIE	Not Applicable	Not Applicable	
Characteristic pullout strength, cracked concrete over steel deck (Figure 2B) ^{6,11}	N _{p,deck,cr}	lb (kN)		1,180 (5.2)	1,4	420 .3)		hhine		Not Applicable		2	
Characteristic pullout strength, cracked	Np,deck,eq	lb		1,180	1,4	120				101 4			
concrete over steel deck, seismic (Figure 2B) ^{6,11} Reduction factor for pullout strength, steel deck ³	Тър, deck, eq d	(kN)		(5.2)	(6	.3)		5 (Conditio		-			

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318 -11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, must apply.

2. Installation must comply with published instructions and details.

3. All values of \u03c6 apply to the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of \u03c6 must be determined in accordance with ACI 318-11 D4.4. For reinforcement that meets ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-19 17.5.3, ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate \u03c6 factor when the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 D.4.3(c), as applicable, for the appropriate \u03c6 factor when the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used.

4. The Power-Stud+ SD1 is considered a ductile steel element as defined by ACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable. Tabulated values for steel strength in tension are based on test results per ACI 355.2 and must be used for design.

5. For all design cases use $\Psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (ker) or uncracked concrete (kunor) must be used.

6. For all design cases use \u03c8_P = 1.0. For concrete compressive strength greater than 2,500 psi N_{pn} = (pullout strength from table)*(specified concrete compressive strength/2,500)^{o.5}. For concrete over steel deck the value of 2,500 must be replaced with the value of 3,000 in the denominator.

7. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

8. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8 λ is applied to all values of $\sqrt{f'c}$ affecting Nn and Vn. λ shall be determined in accordance with the corresponding version of ACI 318.

9. For anchors in the topside of concrete-filled steel deck assemblies, see Figure 1.

10. Tabulated values for characteristic pullout strength in tension are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.5.

11. Values for N_{p.deck} are for sand-lightweight concrete (f'c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, is not required for anchors installed in the deck soffit (flute).

148

) E V/A HI

ANCHORS & FASTENERS

MECHANICAL ANCHORS

Wedge Expansion Anchor

POWER-STUD®+ SD1

Shear Design Information for Power-Stud+ SD1 Anchor in Concrete

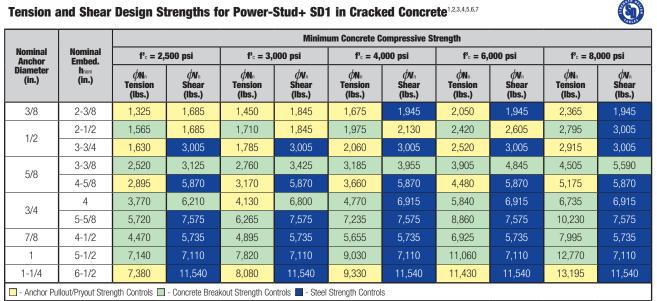
CODE LISTED ICC-ES ESR-2818

											_		
				1			Nomina	I Anchor I	Diameter				
Design Characteristic	Notation	Units	1/4 inch	3/8 inch	1/2	inch	5/8	inch	3/4	inch	7/8 inch	1 inch	1-1/4 inch
Anchor category	1, 2 or 3	-	1	1		1		1		1	1	1	1
Nominal embedment depth	h _{nom}	in. (mm)	1-3/4 (44)	1-3/4 (44)	2-1/2 (64)	3-3/4 (95)	3-3/8 (86)	4-5/8 (117)	4 (102)	5-5/8 (143)	4-1/2 (114)	5-1/2 (140)	6-1/2 (165)
Effective embedment	h _{ef}	in. (mm)	1.50 (38)	2.00 (51)	2.00 (51)	3.25 (83)	2.75 (70)	4.00 (102)	3.125 (79)	4.75 (114)	3.50 (88.9)	4.375 (111)	5.375 (137)
	STEEL STRE	NGTH IN SH	IEAR (ACI	318-19 1	7.7.1, ACI	318-14 17	7.5.1 or A	CI 318-11	D.6.1) ⁴				
Minimum specified yield strength (threads)	fya	ksi (N/mm²)	70.0 (482)	80.0 (552)).4 85)).4 85)		4.0 41)	58.0 (400)	58.0 (400)	58.0 (400)
Minimum specified ultimate strength (threads)	f _{uta}	ksi (N/mm²)	88.0 (606)	100.0 (689)		3.0 07)		3.0 07)).0 52)	75.0 (517)	75.0 (517)	75.0 (517)
Effective tensile stress area (threads)	A _{se,V}	in² (mm²)	0.0318 (20.5)	0.0775 (50.0)		419 1.5)		260 5.8)		345 2.4)	0.462 (293.4)	0.6060 (384.8)	0.969
Steel strength in shear ⁵	V _{sa}	lb (kN)	925 (4.1)	2,990 (13.3)		620 0.6))30).2)	10,640 (47.3)	11,655 (54.8)	8,820 (39.2)	10,935 (48.6)	17,75 (79.0
Reduction factor for steel strength ³	ϕ	-		-				0.65	-				
STEEL STRENGT	I IN SHEAR	FOR SEISM	IC APPLIC	ATIONS (A	CI 318-19	17.10.1,	ACI 318-1	4 17.2.3.3	B or ACI 31	8-11 D.3.	.3.3)		
Steel strength in shear, seismic [®]	V _{sa,eq}	lb (kN)	N/A	2,440 (10.9)		960 7.6)		000 6.7)	8,580 (38.2)	9,635 (42.9)	8,820 (39.2)	9,845 (43.8)	17,75 (79.0
Reduction factor for steel strength in shear for seismic ³	φ	-						0.65					, ,
CONCRE	TE BREAKOL	T STRENG	Th in she/	AR (ACI 31	8-19 17.7	.2, ACI 31	8-14 17.5	5.2 or ACI	318-11 D.	6.2) 6,7			
Load bearing length of anchor	le	in. (mm)	1.50 (38)	2.00 (51)	2.00 (51)	3.25 (83)	2.75 (70)	4.00 (102)	3.125 (79)	4.75 (114)	3.50 (88.9)	4.375 (111)	5.375
Nominal anchor diameter	da	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.5	500 2.7)		525 5.9)		750 9.1)	0.875 (22.2)	1.000 (25.4)	1.25
Reduction factor for concrete breakout ³	φ	-	(01.1)	(0.0)		,	L `	0 (Conditio	L `	,	1 ()		(5.15
	$\frac{\gamma}{\gamma}$	i Ngth in Sh	i IEAR (ACI :	318-19 17	.7.3. ACI	318-14 17		`					
Coefficient for pryout strength	Kcp	-	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Reduction factor for pryout strength ³	φ	-				1		0 (Conditio			1	1	
STEEL STRENGTH IN SHEAR FOR	FOR ANCHO	rs installi	L ED THROUG	GH THE SOF	FIT OF SAM	ND-LIGHTW	EIGHT AND	NORMAL-	WEIGHT CO	DINCRETE O	VER STEEL		
Steel strength in shear, concrete over steel deck (Figure 2A) ⁹	Vsa,deck	lb (kN)		2,120 (9.4)	2,2	290	3,7	710 6.5)	5,5	505 1.5)			
Steel strength in shear, concrete over steel deck, seismic (Figure 2A) ^a	Vsa,deck,eq	lb (kN)	Not Applicable	2,120 (9.4)	2,2	290 0.2)	3,7	710 6.5)	4,5	570).3)	Not Applicable	Not Applicable	licable
Steel strength in shear, concrete over steel deck (Figure 2B) ⁹	Vsa,deck	lb (kN)	lot App	2,120 (9.4)	2,7	785 2.4)	````			Applicable	lot App	lot App	Not Applicable
Steel strength in shear, concrete over steel deck, seismic (Figure 2B) ⁹	Vsa,deck,eq	lb (kN)		2,120 (9.4)	2,7	785 2.4)	Ž	Applicable	Ž	Applic			
Reduction factor for steel strength in shear, steel deck ³	φ	-						0.65					
For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mr	n²; 1 lbf = 0.0	1044 kN.											
1. The data in this table is intended to be use combinations the additional requirements of	d with the des of ACI 318-19	sign provisior 17.10, ACI	ns of ACI 31 318-14 17.	18 (-19 or - .2.3 or ACI	14) Chaptei 318-11 D.3	r 17 or ACI 3.3, as appli	318-11 Ap icable, mus	pendix D, a t apply.	s applicable	; for ancho	rs resisting	seismic loa	d
2. Installation must comply with published ins	tructions and	details.											
 All values of	value of ϕ misee ACI 318-1 or ACI 318-11	ust be deterr 9 17.5.3, A Section 9.2,	nined in acc Cl 318-14 1 as applicat	cordance wi 17.3.3(c) or ble, are use	th ACI 318 ACI 318-1 d.	-11 D.4.4. F 1 D.4.3(c), a	For reinforc as applicab	ement that le, for the a	meets ACI 3	318 (-19 or	r -14) Chapt	ter 17 or AC	CI 318-1
4. The Power-Stud+ SD1 is considered a duc				18 (-19 or -	14) 2.3 or <i>i</i>	ACI 318-11	D.1, as ap	plicable.					
 Tabulated values for steel strength in shea Anchors are permitted to be used in lightw 				on factor)	- onual to (182 is ann	lied to all v	alues of \sqrt{f}	C affecting	NL and V	2 chall be	a datarmina	d in
 Anchors are permitted to be used in lightwo accordance with the corresponding version 		piovided (N	e mounicali	υπ ιαύιθη Λ	a equal to t	vore is app	neu lu all Vi	aiues UI VI	~ anecung	ının dillü Vn.	୵⊾ ଚାଧା DE	5 UETELLIIII)6	u III

accordance with the corresponding version of ACI 318. 7. For anchors in the topside of concrete-filled steel deck assemblies, see Figure 1.

8. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6.

9. Tabulated values for V_{sa,deck} and V_{sa,deck,eq} are for sand-lightweight concrete (t^oc, min = 3,000 psi); additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, are not required for anchors installed in the deck soffit (flute).


10. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strengths for Power-Stud+ SD1 in Cracked Concrete^{1,2,3,4,5,6,7}

Tension and Shear Design Strengths for Power-Stud+ SD1 in Uncracked Concrete^{1,2,3,5,6}

					Minim	um Concrete C	Compressive S	trength			
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'₀ = 3,	000 psi	f'c = 4,	000 psi	f'₀ = 6,0	000 psi	f'c = 8,	000 psi
Diameter (in.)	hnom (in.)	ØN∩ Tension (lbs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (lbs.)	ØV∩ Shear (lbs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)
1/4	1-3/4	1,435	600	1,570	600	1,690	600	1,690	600	1,690	600
3/8	2-3/8	1,860	1,945	2,040	1,945	2,335	1,945	2,885	1,945	3,330	1,945
1/0	2-1/2	2,095	2,375	2,295	2,605	2,645	3,005	3,240	3,005	3,745	3,005
1/2	3-3/4	3,595	3,005	3,940	3,005	4,545	3,005	5,570	3,005	6,430	3,005
F /0	3-3/8	3,555	4,375	3,895	4,795	4,500	5,535	5,510	5,870	6,365	5,870
5/8	4-5/8	6,240	5,870	6,835	5,870	7,895	5,870	9,665	5,870	10,850	5,870
2/4	4	4,310	6,915	4,720	6,915	5,450	6,915	6,675	6,915	7,710	6,915
3/4	5-5/8	8,075	7,575	8,845	7,575	10,215	7,575	12,510	7,575	14,250	7,575
7/8	4-1/2	5,105	5,735	5,595	5,735	6,460	5,735	7,910	5,735	9,135	5,735
1	5-1/2	7,140	7,110	7,820	7,110	9,030	7,110	11,060	7,110	12,770	7,110
1-1/4	6-1/2	10,935	11,540	11,980	11,540	13,830	11,540	16,940	11,540	19,560	11,540

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = hmin, and with 1the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

- Ca2 is greater than or equal to 1.5 times Ca1.

2- Calculations were performed according to ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

- 3-Strength reduction factors (ø) were based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B is assumed.
- 4-Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) 5-Chapter 17.
- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 or -14) Chapter 17. 6-For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.
- 7- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and pullout strength must be multiplied by a factor of 0.75.

ORDERING INFORMATION

Power-Stud+ SD1 (Carbon Steel Body and Expansion Clip)

		Approx.	Pack	Carton		Suggested AN	SI Carbide Dri	I Bit (Cat. No.)	
Cat. No.	Anchor Size	Thread Length	Qty.	Qty.	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max
7400SD1-PWR	1/4" x 1-3/4"	3/4"	100	600	DW5517	DW5416	-	-	-
7402SD1-PWR	1/4" x 2-1/4"	1-1/4"	100	600	DW5517	DW5417	-	-	-
7404SD1-PWR	1/4" x 3-1/4"	2-1/4"	100	600	DW5517	DW5417	-	-	-
7410SD1-PWR	3/8" x 2-1/4"	7/8"	50	300	DW5527	DW5427	-	-	-
7412SD1-PWR	3/8" x 2-3/4"	1-3/8"	50	300	DW5527	DW5427	-	-	-
7413SD1-PWR	3/8" x 3"	1-5/8"	50	300	DW5527	DW5427	-	-	-
7414SD1-PWR	3/8" x 3-1/2"	2-1/8"	50	300	DW5527	DW5427	-	-	-
7415SD1-PWR	3/8" x 3-3/4"	2-3/8"	50	300	DW5527	DW5427	-	-	-
7416SD1-PWR	3/8" x 5"	3-5/8"	50	300	DW55300	DW5429	-	-	-
7417SD1-PWR	3/8" x 7"	5-5/8"	50	300	DW55300	DW5429	-	-	-
7420SD1-PWR	1/2" x 2-3/4"	1"	50	200	DW5537	DW5437	DW5803	DWA54012	-
7422SD1-PWR	1/2" x 3-3/4"	2"	50	200	DW5537	DW5437	DW5803	DWA54012	-
7423SD1-PWR	1/2" x 4-1/2"	2-3/4"	50	200	DW5539	DW5438	DW5803	DWA54012	-
7424SD1-PWR	1/2" x 5-1/2"	3-3/4"	50	150	DW5539	DW5438	DW5803	DWA54012	-
7426SD1-PWR	1/2" x 7"	5-1/4"	25	100	DW5539	DW5438	DW5803	DWA54012	-
7427SD1-PWR	1/2" x 8-1/2"	6-3/4"	25	100	DW5539	DW5439	DW5804	DWA54012	-
7428SD1-PWR	1/2" x 10"	8-1/4"	25	100	DW5539	DW5439	DW5804	DWA54012	-
7430SD1-PWR	5/8" x 3-1/2"	1-1/2"	25	100	-	DW5446	DW5806	DWA54058	DWA54058
7432SD1-PWR	5/8" x 4-1/2"	2-1/2"	25	100	-	DW5446	DW5806	DWA54058	DWA54058
7433SD1-PWR	5/8" x 5"	3"	25	100	-	DW5446	DW5806	DWA54058	DWA54058
7434SD1-PWR	5/8" x 6"	4"	25	75	-	DW5446	DW5806	DWA54058	DWA54058
7436SD1-PWR	5/8" x 7"	5"	25	75	-	DW5447	DW5806	DWA54058	DWA54058
7438SD1-PWR	5/8" x 8-1/2"	6-1/2"	25	50	-	DW5447	DW5809	DWA54058	DWA54058
7439SD1-PWR	5/8" x 10"	8"	25	75	-	DW5447	DW5809	DWA54058	DWA54034
7440SD1-PWR	3/4" x 4-1/4"	1-3/4"	20	60	-	DW5453	DW5810	DWA54034	DWA54034
7441SD1-PWR	3/4" x 4-3/4"	2-1/4"	20	60	-	DW5453	DW5810	DWA54034	DWA54034
7442SD1-PWR	3/4" x 5-1/2"	3"	20	60	-	DW5453	DW5810	DWA54034	DWA54034
7444SD1-PWR	3/4" x 6-1/4"	3-3/4"	20	60	-	DW5455	DW5810	DWA54034	DWA54034
7446SD1-PWR	3/4" x 7"	4-1/2"	20	60	-	DW5455	DW5810	DWA54034	DWA54034
7448SD1-PWR	3/4" x 8-1/2"	6"	10	40	-	DW5455	DW5812	DWA54034	DWA54034
7449SD1-PWR	3/4" x 10"	7-1/2"	10	30	-	DW5455	DW5812	DWA54034	DWA54034
7451SD1-PWR	3/4" x 12"	9-1/2"	10	30	-	DW5456	DW5812	DWA54034	DWA54034
7450SD1-PWR	7/8" x 6"	2-3/4"	10	20	-	-	DW5815	-	DWA54078
7452SD1-PWR	7/8" x 8"	4-3/4"	10	40	-	-	DW5815	-	DWA54078
7454SD1-PWR	7/8" x 10"	6-3/4"	10	30	-	-	DW5816	-	DWA54078
7461SD1-PWR	1" x 6"	2-3/8"	10	30	-	-	DW5818	-	DWA58001
7463SD1-PWR	1" x 9"	5-3/8"	10	30	-	-	DW5819	-	DWA58001
7465SD1-PWR	1" x 12"	8-3/8"	5	15	-	-	DW5819	-	DWA58001
7473SD1-PWR	1-1/4" x 9"	4-3/4"	5	15	-	-	DW5820	-	-
7475SD1-PWR	1-1/4" x 12"	7-3/4"	5	15			DW5825	_	

MECHANICAL ANCHORS

Shaded catalog numbers denote sizes which are less than the minimum standard anchor length for strength design. Anchors not long enough to meet the minimum nominal embedments published for strength design are outside the scope of ICC-ES ESR-2818.

The published size includes the diameter and the overall length of the anchor. Allow for fixture thickness (as applicable) plus one anchor diameter for the nut and washer thickness when selecting a length.

All anchors are packaged with nuts and washers.

Hollow drill bits must be used with a dust extraction vacuum (e.g. Cat. No. DW012).

Tie Wire Power-Stud+ SD1 (Carbon Steel Body and Expansion clip)

Cat. No.	Anchor Size	Eyelet Hole Size	Pack Qty.	Carton Qty.
7409SD1-PWR	1/4" x 2"	9/32"	100	500
The Tie Wire Power-S	tud+ is not listed in ICC-E	ES ESR-2818		
The minimum nomina	l embedment is 1-1/8" (s	ee performar	nce data in co	oncrete).

GENERAL INFORMATION

POWER-STUD®+ SD2

High Performance Wedge Expansion Anchor

PRODUCT DESCRIPTION

The Power-Stud+ SD2 anchor is a fully threaded, torque-controlled, wedge expansion anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, lightweight concrete and concrete over steel deck. The anchor is manufactured with a zinc plated carbon steel body and stainless steel expansion clip for premium performance.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Interior applications / low level corrosion environment
- Tension zone applications, i.e., safety-related attachments
- Seismic and wind loading (SDC A F)
- Utility supports, e.g. pipe, strut, trapeze, bracing
- Equipment anchorage, angles, brackets and ledgers
- Barriers, guards and fencing
- Mezzanines, racking and railing

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-2502 for cracked and uncracked concrete
- Code Compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)
- City of Los Angeles, LABC and LARC Supplement (within ESR-2502)
- Florida Building Code, FBC Supplement including HVHZ (within ESR-2502)
- $\bullet\,$ FM Approvals (Factory Mutual) see FM Approval Guide for sizes
- $\bullet\,$ Underwriters Laboratory (UL Listed) File No. EX1289 and VFXT7.EX1289, see listing for sizes

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 09 - Post-Installed Concrete Anchors. Expansion anchors shall be Power-Stud+ SD2 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification						
Anchor Body	Medium carbon steel						
Hex nut	Carbon steel, ASTM A563, Grade A						
Washer	Carbon Steel, ASTM F844; meets dimensional requirements of ANSI B18.22.2. Type A Plain						
Expansion wedge (clip)	316 Stainless Steel						
Plating (anchor body, nut and washer) Zinc plating according to ASTM B633, SC1 Type III (Fe/Zn 5) Minimum plating requirements for Mild Service Condition.							
See Tension Design Information table for yield an	d ultimate strengths of the anchor body.						

SECTION CONTENTS

General Information	152
Material Specifications	152
Installation Specifications	153
Installation Instructions	154
Strength Design Information	156
Design Strength Tables (SD)	159
Performance Data (ASD)	160
Ordering Information	161

POWER-STUD+ SD2 ASSEMBLY

THREAD VERSION

UNC threaded stud

ANCHOR MATERIALS

• Zinc plated carbon steel body with stainless steel expansion clip, zinc plated carbon steel nut and washer

ANCHOR SIZE RANGE (TYP.)

• 3/8" through 3/4" diameters

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete
- Concrete over steel deck
- Grouted-filled concrete masonry (CMU)

MECHANICAL

MECHANICAL ANCHORS

Igh Performance Wedge Expansion Anchor

INSTALLATION SPECIFICATIONS

Installation Table for Power-Stud+ SD2

Anchor Property/	Notation	Units					Nomir	al Anchor	Size			
Setting Information	Notation	Units	3/8"		1/	2"			5/8"		3/	4"
Anchor diameter	da	in. (mm)	0.375 (9.5)			500 2.7)			0.625 (15.9)			750 9.1)
Minimum diameter of hole clearance in fixture	dh	in. (mm)	7/16 (11.1)			16 I.3)			11/16 (17.5)			/16).6)
Nominal drill bit diameter (ANSI)	Cluit	in.	3/8		1	/2			5/8		3,	/4
Minimum nominal embedment depth ¹	hnom	in. (mm)	2-3/8 (60)	2- ⁻ (6	1/2 54)		3/4 15)	3-7/8 (98)		7/8 24)	4-1/2 (114)	5-3/4 (146)
Effective embedment	hef	in. (mm)	2 (51)		2 i1)		1/4 3)	3-1/4 (83)	4- ⁻ (10	1/4 08)	3-3/4 (95)	5 (127)
Minimum hole depth ²	h₀	in. (mm)	2-5/8 (67)		3/4 '0)		4 02)	4-1/4 (108)		1/4 33)	5 (127)	6-1/4 (159)
Minimum concrete member thickness	hmin	in. (mm)	4 (102)	4-1/2 (114)	6 (152)		3/4 46)	5-3/4 (146)	6-1/2 (165)	8 (203)	7 (178)	10 (254)
Minimum overall anchor length ³	lanch	in.	3	3-3	3/4	4-	1/2	4-3/4	6	3	5-1/2	7
Minimum edge distance ²	Cmin	in. (mm)	2-1/2 (64)	4 (102)	2-3/4 (70)	4 (102)	2-3/4 (70)	4-1/4 (108)	4- ⁻ (10	1/4 08)	5 (127)	4-1/2 (114)
Minimum spacing distance ²	Smin	in. (mm)	3-1/2 (89)	6 (152)	6 (152)	4 (102)	6 (152)	4-1/4 (108)		1/4 08)	6 (152)	6 (152)
Critical edge distance ² (uncracked concrete only)	Cac	in. (mm)	6-1/2 (165)		8 D3)		0 54)	8 (203)	15-3/4 (400)	10 (254)	12 (305)	12 (305)
Installation torque	Tinst	ftlb. (N-m)	20 (27)		4 (5	0 4)			60 (81)		1 (14	10 19)
Torque wrench socket size	-	in.	9/16		3	/4			15/16		1-1	1/8
Nut height	-	in.	21/64		7/	16			35/64		41,	/64
Washer O.D	-	in.	13/16		1-1	/16			1-5/16		1-1	5/32

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

2. For installations through the soffit of steel deck into concrete see the installation details in Figure A, B, and C. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3her or 1.5 times the flute width.

3. The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

4. The anchors may be installed in the topside of concrete-filled steel deck floor and roof assemblies in accordance with the installation specifications and design information provided the concrete thickness above the upper flute meets the minimum thicknesses specified in the tables; see Setting Information for Installation on the Top of Concrete-Filled Steel Deck Assemblies table and Installation Detail D.

Anchor Setting Information for Installation on the Top of Concrete-Filled Steel Deck Assemblies^{3,4}

Anchor Property/	Natalian	Unite		Nominal Anch	or Size (inch)	
Setting Information	Notation	Units	3/	8"	1/2"	
Nominal drill bit diameter (ANSI)	d _{bit}	in.	3/8		3/8 1/2	
Minimum nominal embedment depth1	h _{nom}	in. (mm)		2-3/8 2-1/2 (60) (64)		
Effective embedment	h _{ef}	in. (mm)		2.00 2.00 (51) (51)		
Minimum concrete member thickness ²	h _{min,deck}	in. (mm)	2-1/2 (64)		2-1/2 (64)	
Critical edge distance for topside of concrete- filled steel deck assemblies with minimum topping thickness (uncracked concrete only)	Cac,deck,top	in. (mm)	8 (203)		9 (229)	
Minimum edge distance	Cmin,deck,top	in. (mm)	4 (102)	2-3/4 (70)	4 (102)	8 (203)
Minimum spacing distance	Smin,deck,top	in. (mm)	3-1/2 (89)	6 (152)	8 (203)	4 (102)
Minimum hole depth	h₀	in. (mm)	2- ⁻ (6	1/2 4)	2-1 (6-	
Installation torque	T _{inst}	ftlb. (N-m)	20 (27)		4 (5-	
Torque wrench socket size	-	in.	9/16		3/	4
Nut height	-	in.	21/64		21/64 7/16	
Washer O.D.	-	in.	13/	1-1,	/16	

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1-800-4 DEWALT

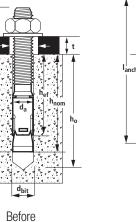
1. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

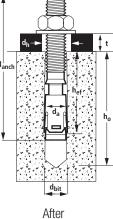
2. The anchors may be installed in the topside of concrete-filled steel deck floor and roof assemblies provided the concrete thickness above the upper flute meets the minimum thicknesses

specified in this table. Minimum concrete member thickness refers to the concrete thickness above the upper flute (topping thickness). See Installation Detail D.

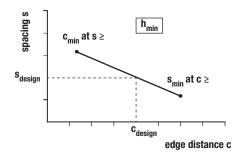
3. For all other anchor diameters and embedment depths, refer to the installation table for applicable values of hmin, cmin and smin

4. Design capacities shall be based on calculations according to values in Tension Design Information and Shear Design Information tables.


TECHNICAL GUIDE – MECHANICAL ANCHORS ©2022 DEWALT – REV. D



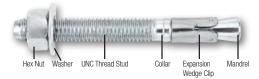
7 ICAL ANCHOR


POWER-STUD®+ SD2 High Performance Wedge Expansion Anchor

Power-Stud+ SD2 Anchor Detail

Interpolation of Minimum Edge Distance and Anchor Spacing

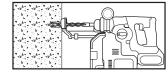
This interpolation applies to the cases when two sets of minimum edge distances, cmin, and minimum spacing distances, smin, are given for a selected anchor diameter effective embedment depth, hef, and corresponding minimum member thickness, hmin.


Power-Stud+ SD2 Anchor Assembly

Head Marking

Legend

- Letter Code = Length Identification Mark
- = Strength Design Compliant Anchor +' Symbol
- Number Code 2 = Carbon Steel Body and Stainless Steel Expansion Clip



Length Identification

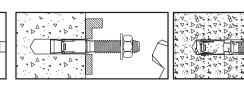
Mark	A	В	C	D	E	F	G	H	I	J	K	L	м	N	0	Р
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"
Length identification r	snoth identification mark indicates overall length of anchor															

INSTALLATION INSTRUCTIONS

Installation Instructions for Power-Stud+ SD2

Step 1

Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.


Step 2

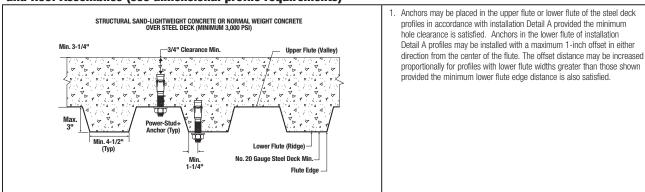
Remove dust and debris from the hole during drilling, (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

• • •

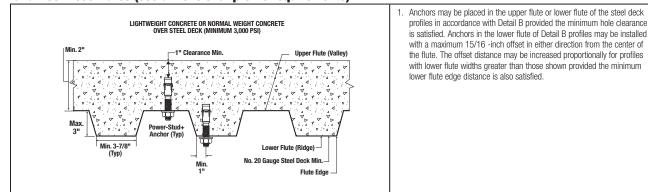
14(1) • •

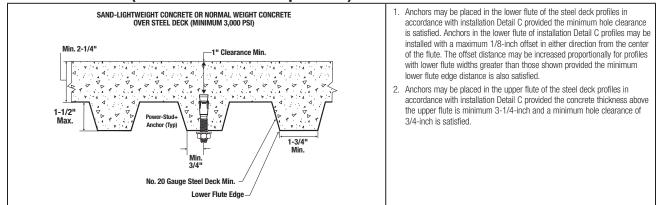
1

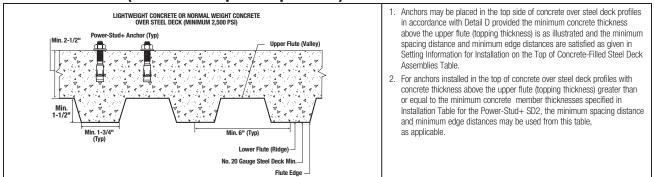
Step 3


Position the washer on the anchor and thread on the nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, hnom.

Step 4


Tighten the anchor with a torque wrench by applying the required installation torque, Tinst.


Installation Detail A: Power-Stud+ SD2 Installed in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies (see dimensional profile requirements)¹


Installation Detail B: Power-Stud+ SD2 Installed in the Soffit of Concrete Over Steel Deck Floor and Roof Assemblies (see dimensional profile requirements)¹

Installation Detail C: Power-Stud+ SD2 Installed in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)¹²

Installation Detail D: Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies (see dimensional profile requirements)¹²

POWER-STUD®+ SD2 High Performance Wedge Expansion Anchor

ECHANICAL ANCHORS

1-800-4 DeWALT

STRENGTH DESIGN INFORMATION

De la Ole						Nominal A	Anchor Diamo	eter (inch)			
Design Chara	acteristic	Notation	Units	3/8	1/	/2	5/	/8	3.	/4	
Anchor category		1,2 or 3	-	1	1	1	-	1		1	
Minimum nominal embedment depth ¹		hnom	in. (mm)	2-3/8 (60)	2-1/2 (64)	3-3/4 (95)	3-7/8 (98)	4-7/8 (124)	4-1/2 (114)	5-3/4 (146	
Effective embedment		hef	in. (mm)	2.00 (51)	2.00 (51)	3.25 (83)	3.25 (83)	4.25 (108)	3.75 (95)	5.00 (127	
	STEEL STRENGTH IN	TENSION (A	CI 318-19 17	.6.1, ACI 318	B-14 17.4.1 c	or ACI 318-1	1 D.5.1) ⁴				
Minimum specified yield streng	gth (neck)	fy	ksi (N/mm²)	96.0 (662)	85 (58		85 (58	5.0 36)).0 33)	
Minimum specified ultimate te	nsile strength (neck)	f _{uta}	ksi (N/mm²)	120.0 (827)	10 (73		10 (73).0 20)	
Effective tensile stress area (ne	eck)	Ase, N	in² (mm²)	0.0552 (35.6)	0.1) (65		0.1 (10-			359 3.2)	
Steel strength in tension ^₅	Nsa	lb (kN)	6,625 (29.4)	10,4 (46		13, (58			230 1.4)		
Reduction factor for steel stren	ngth³	φ	-	0.75							
	CONCRETE BREAKOUT STRE	NGTH IN TEN	SION (ACI 31	8-19 17.6.2,	ACI 318-14	17.4.2 or A0	318-11 D.5	5.2)°			
Effectiveness factor for uncrac	ked concrete	Kucr	-	24	24 24			4	24		
Effectiveness factor for cracker	d concrete	Kcr	-	17	1	7	1	7	1	7	
Modification factor for cracked	and uncracked concrete6	$\psi_{ ext{c,N}}$	-	1.0 See note 6	1. See n		1. See r			.0 note 6	
Critical edge distance (uncrack	ked concrete only)	Cac	in. (mm)			See	Installation T	able			
Critical edge distance for topsi steel deck assemblies with min (uncracked concrete only)		Cac,deck,top	in. (mm)	See Ancho	r Setting Info		le for top of c num topping		d steel deck	assemb	
Reduction factor for concrete b	preakout strength ³	φ	-			0.6	65 (Condition	B)			
	PULLOUT STRENGTH	IN TENSION (ACI 318-19 1	7.6.3, ACI 31	8-14 17.4.3	or ACI 318-	11 D.5.3) [°]				
Characteristic pullout strength, uncracked concrete (2,500 psi) ⁷		N _{p,uncr}	lb (kN)	2,775 (12.3)	See note 8	6,615 (29.4)	See note 8	See note 8	See note 8	See note	
Characteristic pullout strength, cracked concrete (2,500 psi) ⁷		N _{p,cr}	lb (kN)	2,165 (9.6)	See note 8	4,375 (19.5)	See note 8	See note 8	See note 8	7,79 (35.1	
Reduction factor for pullout str	ength ³	ϕ	-			0.6	65 (Condition	B)			
PULLOUT	STRENGTH IN TENSION FOR S	EISMIC APPL	ICATIONS (A	CI 318-19 17	.10.3, ACI 31	8-14 17.2.3	.3 or ACI 318	3-11 D.5.3.3	.3)°		
Characteristic pullout strength,	, seismic (2,500 psi) ^{7,10}	N _{p,eq}	lb (kN)	2,165 (9.6)	See note 8	4,375 (19.5)	See note 8	See note 8	See note 8	7,79 (35.	
Reduction factor for pullout strength ³		φ	-			0.6	65 (Condition	B)			
Aean axial stiffness values		β	lbf/in (kN/mm)	865,000 (151)			569,000 (100)			,000 4)	
service load range11	Cracked concrete	β	lbf/in (kN/mm)	49,500 (9)	57,000					72,000 (13)	

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318 D.3.3, as applicable, shall apply.

2. Installation must comply with published instructions and details.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14)-Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318 (-19 or -14) Chapter 17 or ACI 318 Appendix D, as applicable, requirements for Condition A, see ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used.

4. The Power-Stud+ SD2 is considered a ductile steel element in tension as defined by ACI 318 (-19 or -14) 2.3 or ACI 318 D.1, as applicable.

5. Tabulated values for steel strength in tension are based on test results per ACI 355.2 and must be used for design in lieu of calculation.

6. For all design cases use $\Psi_{c,N} = 1.0$. Select appropriate effectiveness factor for cracked concrete (kor) or uncracked concrete (kura).

7. For all design cases use \u03c8_c_P = 1.0. For concrete compressive strength greater than 2,500 psi, N_{Pn} = (pullout strength value from table)*(specified concrete compressive strength/2500)ⁿ. For concrete over steel deck the value of 2500 must be replaced with the value of 3000 in the denominator. For all anchors n = 1/2 with the exception of the 3/8" anchor size for cracked concrete where n = 1/3.

8. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8λ is applied to all values of √f⁺c affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

10. Tabulated values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.

11. Mean values shown; actual stiffness varies considerable depending on concrete strength, loading and geometry of application.

12. Anchors are permitted for use in concrete-filled steel deck floor and roof assemblies; see Installation Details A, B, C and D.

. tion for Dowor Study CD2 in C Sh

-					Nominal And	hor Diamet	er (inch)				
Design Characteristic	Notation	Units	3/8	1/			/8	3/	/4		
Anchor category	1,2 or 3	-	1	1		1		1			
Minimum nominal embedment depth ¹	h _{nom}	in. (mm)	2-3/8 (60)	2-1/2 (64)	3-3/4 (95)	3-7/8 (98)	4-7/8 (124)	4-1/2 (114)	5-3/4 (146)		
Effective Embedment	h _{ef}	in. (mm)	2.00 (51)	2.00 (51)	3.25 (83)	3.25 (83)	4.25 (108)	3.75 (95)	5.00 (127)		
STEEL STRENGTH IN SHEAR (ACI 318-19 17.7.1, ACI 318-14 17.5.1 or ACI 318-11 D.6.1)											
Minimum specified yield strength (threads)	fy	psi (N/mm²)	76,800 (530)	68,0 (46			000 59)		000 86)		
Minimum specified ultimate tensile strength (threads)	futa	psi (N/mm²)	100,000 (690)	88,0 (60			000 07)		000 51)		
Effective tensile stress area (threads)	Ase, v	in² (mm²)	0.0775 (50.0)	0.14 (91		0.2260 (145.8)		0.3345 (215.8)			
Steel strength in shear⁵	Vsa	lb (kN)	3,115 (13.9)	4,8 (21		10,170 (45.2)		12,610 (56.1)			
Reduction factor for steel strength ³	φ	-				0.65		•			
STEEL STRENGTH IN SHEAR FOR	SEISMIC APPL	ICATIONS (AC	318-19 17.10.	1, ACI 318-1	4 17.2.3.3 (or ACI 318-1	1 D.3.3.3)				
Steel strength in shear, seismic ^{7}	V _{sa, eq}	lb (kN)	2,460 (11.0)	4,8 (21		6,7 (30	770).1))60 5.9)		
Reduction factor for steel strength, seismic ³	ϕ	-			0.65	(Condition E	3)				
CONCRETE BREAKOUT S	RENGTH IN S	HEAR (ACI 31	8-19 17.7.2, AC	318-14 17.	5.2 or ACI 3	18-11 D.6.2) ⁶				
Load bearing length of anchor	le	in. (mm)	2.00 (51)	2.00 (51)	3.25 (83)	3.25 (83)	4.25 (108)	3.75 (95)	5.00 (127)		
Reduction factor for concrete breakout strength ³	ϕ	-			0.70	(Condition E	3)				
PRYOUT STRENGT	H IN SHEAR (ACI 318-19 1	7.7.3, ACI 318-1	4 17.5.3 or /	ACI 318-11	D.6.3) ⁶	-				
Coefficient for pryout strength	Kcp	-	1.0	1.0	2.0	2.0	2.0	2.0	2.0		
Reduction factor for pryout strength ³	ϕ	-			0.70	(Condition E	3)				
 The data in this table is intended to be used with the design p combinations the additional requirements of ACI 318-19 17.1 Installation must comply with published instructions and detail All values of A ware datagregated from the load explanations 	0, ACI 318-14 s.	17.2.3 or ACI 3	18 D.3.3 shall app	ly, as applicat	ole.			-			

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318 Section 9.2 are used.

4. The Power-Stud+ SD2 is considered a ductile steel element as defined by ACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable.

5. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and shall be used for design.

6. Anchors are permitted to be used in sand-lightweight concrete provided the modification factor λ_{e} equal to 0.8 λ is applied to all values of $\sqrt{f^{e_{c}}}$ affecting N_e and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

7. Reported values for steel strength in shear for seismic applications are based on test results per ACI 355.2, Section 9.6.

8. Anchors are permitted for use in concrete-filled steel deck floor and roof assemblies; see Installation Details A, B, C and D.

DEWALT

Tension and Shear Design Data for Power-Stud+ SD2 Anchors in the Soffit of Concrete-Filled Steel Deck Assemblies^{12,7}

	acium Obere deviction	Notation	Units			Nominal Anch	nor Size (inch)			
U	esign Characteristics	Notation	Units	0.375	0	.5	0.6	625	0.75	
Anchor Category		1, 2 or 3	-	1		1		1	1	
Minimum Nominal	Embedment Depth	hnom	in. (mm)	2-3/8 (60)	2-1/2 (64)	3-3/4 (83)	3-7/8 (98)	4-7/8 (124)	4-1/2 (114)	
Effective Embedme	ent	hef	in. (mm)	2.00 (51)	2.00 (51)	3.25 (83)	3.25 (83)	4.25 (108)	3.75 (95)	
Minimum Hole Dep	oth	h₀	in. (mm)	2-5/8 (67)	2-3/4 (70)	4 (102)	4-1/4 (108)	5-1/4 (133)	5 (27)	
Pl	JLLOUT STRENGTH IN TENSION FOR ANCH	ORS IN SOFFI	r of sand li	GHTWEIGHT AN	ID NORMAL-W	EIGHT CONCR	ETE OVER STE	EL DECK	•	
According to	Characteristic pullout strength,	N _{p,deck,uncr}	lbf	1,855	2,065	3,930	4,665	7,365	4,900	
Detail A	uncracked concrete over steel deck ²		(kN)	(8.3)	(9.2)	(17.5)	(20.8)	(32.8)	(21.8)	
4-1/2-inch-wide	Characteristic pullout strength,	N _{p,deck,cr}	lbf	1,445	1,465	2,600	3,305	5,215	3,470	
deck flute	cracked concrete over steel deck ^{2,3}	(N _{p,deck,eq})	(kN)	(6.4)	(6.5)	(11.6)	(14.7)	(23.2)	(15.4)	
According to	Characteristic pullout strength,	Np,deck,uncr	lbf	2,235	2,785	5,600	4,480	7,265	Not	
Detail B	uncracked concrete over steel deck ²		(kN)	(9.9)	(12.4)	(24.9)	(19.9)	(32.3)	Applicab	
3-7/8-inch-wide	Characteristic pullout strength,	N _{p,deck,cr}	lbf	1,745	1,975	3,695	3,175	5,145	Not	
deck flute	cracked concrete over steel deck ^{2,3}	(N _{p,deck,eq})	(kN)	(7.8)	(8.8)	(16.4)	(14.1)	(22.9)	Applicat	
According to	Characteristic pullout strength,	Np,deck,uncr	lbf	1,600	2,025	Not	Not	Not	Not	
Detail C	uncracked concrete over steel deck ²		(kN)	(7.1)	(9.0)	Applicable	Applicable	Applicable	Applicab	
1-3/4-inch-wide	Characteristic pullout strength,	N _{p,deck,cr}	lbf	1,250	1,435	Not	Not	Not	Not	
deck flute	cracked concrete over steel deck ^{2,3}	(N _{p,deck,eq})	(kN)	(5.6)	(6.4)	Applicable	Applicable	Applicable	Applicab	
Reduction factor for	or pullout strength ⁶	ϕ	-	0.65						
	STEEL STRENGTH IN SHEAR FOR ANCHOR	S IN SOFFIT O	F SAND-LIGH	TWEIGHT AND	NORMAL WEI	GHT CONCRETE	OVER STEEL	DECK ^{4,5}		
According to	Steel strength in shear,	Vsa,deck	lbf	2,170	3,815	5,040	4,015	6,670	4,325	
Detail A	concrete over steel deck		(kN)	(9.7)	(17.0)	(22.4)	(17.9)	(29.7)	(19.2)	
4-1/2-inch-wide	Steel strength in shear, seismic,	Vsa,deck,eq	lbf	1,715	3,815	5,040	2,675	4,445	2,820	
deck flute	concrete over steel deck		(kN)	(7.6)	(17.0)	(22.4)	(11.9)	(19.8)	(12.5)	
According to	Steel strength in shear,	Vsa,deck	lbf	3,040	2,675	4,930	Not	Not	Not	
Detail B	concrete over steel deck		(kN)	(13.5)	(11.9)	(21.9)	Applicable	Applicable	Applicab	
3-7/8-inch-wide	Steel strength in shear, seismic,	Vsa,deck,eq	lbf	2,400	2,675	4,930	Not	Not	Not	
deck flute	concrete over steel deck		(kN)	(10.6)	(11.9)	(21.9)	Applicable	Applicable	Applicab	
According to	Steel strength in shear,	Vsa,deck	lbf	2,170	2,880	Not	Not	Not	Not	
Detail C	concrete over steel deck		(kN)	(9.7)	(12.8)	Applicable	Applicable	Applicable	Applicab	
1-3/4-inch-wide deck flute	Steel strength in shear, seismic, concrete over steel deck	Vsa,deck,eq	lbf (kN)	1,715 (7.6)	2,880 (12.8)	Not Applicable	Not Applicable	Not Applicable	Not Applicab	
	Reduction factor for steel strength in shear, concrete over steel deck ^e					0.	65		-	

1. For all design cases $\Psi_{cP} = 1.0$. For concrete compressive strength greater than 3,000 psi, N_{Pn}=(pullout strength value from table) * (specified concrete compressive strength/2500)ⁿ. For all anchors n=1/2 with exception of the 3/8-inch-diameter anchor size, where n=1/3.

Values for N_{p.dexk} are for sand-lightweight concrete (¹c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318 D.5.2, as applicable, is not required for anchors installed in the deck soffit (flute).

3. Values for N_{p,deck,cr} are applicable for seismic loading.

4. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

5. Values for Vsa.deek.en are for sand-lightweight concrete (f⁺c. min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318 D.6.2, as applicable and the pryout capacity in accordance with ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, is not required for anchors installed in the deck soffit (flute).

6. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

7. Anchors shall have an axial spacing along the flute soffit equal to the greater of 3her or 1.5 times the flute width.

DESIGN STRENGTH TABLES (SD)

I A '.'

ANCHORS & FASTENERS

Tension and Shear Design Strengths for Power-Stud+ SD2 in Cracked Concrete^{1,2,3,4,5,6,7,8}

					Minim	um Concrete C	ompressive St	rength			
Nominal Anchor	Nominal Embed.	f'c = 2,	,500 psi	f'c = 3,0	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Diameter (in.)	hnom (in.)	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (lbs.)	$\begin{array}{c} \phi_{\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (lbs.)	$\begin{array}{c} \phi_{\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (lbs.)	ØNn Tension (Ibs.)	ØVn Shear (lbs.)	$\begin{array}{c} \phi_{\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	∲Vn Shear (lbs.)
3/8	2-3/8	1,405	1,685	1,495	1,845	1,645	2,025	1,885	2,025	2,075	2,025
1/0	2-1/2	1,565	1,685	1,710	1,845	1,975	2,130	2,420	2,605	2,795	3,010
1/2	3-3/4	2,845	3,130	3,115	3,130	3,595	3,130	4,405	3,130	5,085	3,130
E /0	3-7/8	3,235	4,220	3,545	4,620	4,095	5,335	5,015	6,535	5,790	6,610
5/8	4-7/8	4,840	6,610	5,305	6,610	6,125	6,610	7,500	6,610	8,660	6,610
2/4	4-1/2	4,010	7,590	4,395	8,195	5,075	8,195	6,215	8,195	7,175	8,195
3/4	5-3/4	5,065	8,195	5,550	8,195	6,410	8,195	7,850	8,195	9,065	8,195
Anchor Pi	- Anchor Pullout/Provid Strendth Controls - Concrete Breakout Strendth Controls - Steel Strendth Controls										

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Power-Stud+ SD2 in Uncracked Concrete^{1,2,3,4,5,6,7}

					Minim	um Concrete C	ompressive St	rength			
Nominal Anchor	Nominal Embed.	f'c = 2,500 psi		f'c = 3,000 psi		f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,000 psi	
Diameter hnorm (in.) (in.)	hnom	ϕ Nn Tension (Ibs.)	ØVn Shear (lbs.)	ϕ Nn Tension (Ibs.)	ϕ Vn Shear (Ibs.)	ϕ Nn Tension (lbs.)	ϕ Vn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ϕ Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (lbs.)
3/8	2-3/8	1,805	2,025	1,975	2,025	2,280	2,025	2,795	2,025	3,225	2,025
1/2	2-1/2	2,205	2,375	2,415	2,605	2,790	3,005	3,420	3,130	3,945	3,130
1/2	3-3/4	4,300	3,130	4,710	3,130	5,440	3,130	6,660	3,130	7,690	3,130
5/8	3-7/8	4,570	5,905	5,005	6,470	5,780	6,610	7,080	6,610	8,175	6,610
5/6	4-7/8	6,835	6,610	7,485	6,610	8,645	6,610	9,810	6,610	9,810	6,610
3/4	4-1/2	5,665	8,195	6,205	8,195	7,165	8,195	8,775	8,195	10,130	8,195
3/4	5-3/4	8,720	8,195	9,555	8,195	11,030	8,195	13,510	8,195	15,600	8,195

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

- c_{a2} is greater than or equal to 1.5 times c_{a1} .

- 2- Calculations were performed according to ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, h_{ef}, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 or -14) Chapter 17. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.
- 7- The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.
- 8- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and pullout strength must be multiplied by a factor of 0.75.

FECHNICAL GUIDE – MECHANICAL ANCHORS ©2022 DEWALT – REV. D

PERFORMANCE DATA (ASD)

Minimum Concrete Compressive Strength Nominal Nominal f'c = 2,500 psi f'c = 3,000 psi f'c = 4,000 psi f'c = 6,000 psi f'c = 8,000 psi Anchor Embed. Size h Vallowable,ASD Tallowable,ASD Vallowable, ASD Vallowable,ASD Tallowable,ASD Vallowable,ASD (in.) Tallowable ASD Tallowable ASD Vallowable,ASD (in.) ble ASD Tension She Tension Shear (lbs.) Tension Shea Tension Shear (lbs.) Tension Shear (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) 3/8 2-3/8 1,005 1,205 1,070 1,320 1,175 1,445 1,345 1.445 1.480 1.445 2 - 1/21.120 1.205 1.220 1.320 1.410 1.520 1.730 1.860 1.995 2.150 1/2 3-3/4 2.030 2.235 2.225 2.235 2.570 2.235 3.145 2.235 3.630 2.235 3-7/8 2,310 3.015 2.530 3.300 2.925 3,810 3.580 4.670 4,135 4,720 5/8 4-7/8 4,720 4,720 3,455 4,720 3,790 4,375 5,355 4,720 6,185 4,720 4-1/2 2,865 5,420 3,140 5,855 3,625 5,855 4,440 5,855 5,125 5,855 3/4 5-3/4 5,855 5,855 4,580 5,855 5,605 5,855 6,475 5,855 3.620 3,965

Converted Allowable Loads for Power-Stud+ SD2 in Cracked Concrete^{1,2}

1. Allowable load values are calculated using a conversion factor, *A*, from Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor,

∝ : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Power-Stud+ SD2 in Uncracked Concrete^{1,2}

		Minimum Concrete Compressive Strength											
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,000 psi			
Size (in.)	h _{nom} (in.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)		
3/8	2-3/8	1,290	1,445	1,410	1,445	1,630	1,445	1,995	1,445	2,305	1,445		
1/2	2-1/2	1,575	1,695	1,725	1,860	1,995	2,145	2,445	2,235	2,820	2,235		
1/2	3-3/4	3,070	2,235	3,365	2,235	3,885	2,235	4,755	2,235	5,495	2,235		
5/8	3-7/8	3,265	4,220	3,575	4,620	4,130	4,720	5,055	4,720	5,840	4,720		
0/0	4-7/8	4,880	4,720	5,345	4,720	6,175	4,720	7,005	4,720	7,005	4,720		
3/4	4-1/2	4,045	5,855	4,430	5,855	5,120	5,855	6,270	5,855	7,235	5,855		
3/4	5-3/4	6,230	5,855	6,825	5,855	7,880	5,855	9,650	5,855	11,145	5,855		

1. Allowable load values are calculated using a conversion factor, α , from Factored Design Strength Tables and conditions shown previously.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor,

 $\propto : 1.2(0.5) + 1.6(0.5) = 1.4.$

Ultimate and Allowable Load Capacities for Power-Stud+ SD2 in Grouted Filled Concrete Masonry^{1,2,3}

Minimum Masonry Compressive Strength, f'm = 1,500 psi (10.4 MPa) Installation Nominal Minimum Torque Embedment Ulimate Allowable Ulimate Allowable Anchor Installation Ti Size Depth Location Load Load Load Shear Load Shear ft.-lb. Tension Tension in. (mm) (N-m) lbs. (kN) lbs. (kN) lbs lbs (kN) (kN) Wall Face or End 20 1,670 335 2.075 2 - 1/2415 3/8 Min. 2-1/2" Edge and (1.5)(27)(51)(7.4) (9.2)(1.8)End Distances Wall Face or End 2-1/2 2,295 1,310 Wall Face 460 260 Min. 3" Edge and Permissible Anchor Locations (51) (10.2)(2.0)(5.8)(1.2)End Distances 40 (Un-hatched Area 1/2 (54)Top of Wall 3-3/4 3,320 665 1.140 230 Min. 1-3/4" Edge and (95)(14.8)(3.0)(5.1)(1.0)4" End Distances

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. Anchor installations into grouted masonry walls are limited to one per masonry cell. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity.

160

ORDERING INFORMATION

Power-Stud+ SD2 (Carbon Steel Body with Stainless Steel Expansion Clip)

		Approx.	Pack	Carton		Suggested Al	ISI Carbide Dr	ill Bit Cat. No.	
Cat. No.	Anchor Size	Thread Length	Qty.	Qty.	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max
7413SD2-PWR	3/8" x 3"	1-3/4"	50	300	DW5527	DW5427	-	-	-
7414SD2-PWR	3/8" x 3-1/2"	2-1/4"	50	300	DW5527	DW5427	-	-	-
7415SD2-PWR	3/8" x 3-3/4"	2-1/2"	50	300	DW5527	DW5427	-	-	-
7416SD2-PWR	3/8" x 5"	3-3/4"	50	300	DW55300	DW5429	-	-	-
7422SD2-PWR	1/2" x 3-3/4"	2-1/8"	50	200	DW5537	DW5437	DW5803	DWA54012	-
7423SD2-PWR	1/2" x 4-1/2"	2-7/8"	50	200	DW5539	DW5438	DW5803	DWA54012	-
7424SD2-PWR	1/2" x 5-1/2"	3-7/8"	50	150	DW5539	DW5438	DW5803	DWA54012	-
7426SD2-PWR	1/2" x 7"	5-3/8"	25	100	DW5539	DW5438	DW5803	DWA54012	-
7427SD2-PWR	1/2" x 8-1/2"	6-7/8"	25	100	DW5539	DW5439	DW5804	DWA54012	-
7435SD2-PWR	5/8" x 4-3/4"	2-7/8"	25	100	-	DW5446	DW5806	DWA54058	DWA58058
7433SD2-PWR	5/8" x 5"	3-1/8"	25	50	-	DW5446	DW5806	DWA54058	DWA58001
7434SD2-PWR	5/8" x 6"	4-1/8"	25	75	-	DW5446	DW5806	DWA54058	DWA58001
7436SD2-PWR	5/8" x 7"	5-1/8"	25	75	-	DW5447	DW5806	DWA54058	DWA58001
7438SD2-PWR	5/8" x 8-1/2"	6-5/8"	25	75	-	DW5447	DW5809	DWA54058	DWA58001
7442SD2-PWR	3/4" x 5-1/2"	3-1/4"	20	60	-	DW5453	DW5810	DWA54074	DWA58034
7444SD2-PWR	3/4" x 6-1/4"	4"	20	60	-	DW5455	DW5810	DWA54074	DWA58034
7446SD2-PWR	3/4" x 7"	4-3/4"	20	60	-	DW5455	DW5810	DWA54074	DWA58034
7448SD2-PWR	3/4" x 8-1/2"	6-1/4"	10	40	-	DW5455	DW5812	DWA54074	DWA58034

The published size includes the diameter and the overall length of the anchor.

Allow for fixture thickness (as applicable) plus one anchor diameter for the nut and washer thickness when selecting a length.

All anchors are packaged with nuts and washers.

Hollow drill bits must be used with a dust extraction vacuum (e.g. Cat. No. DW012).

•

POW

ER-STUD®+ SD4/SD6

ge Expansion Anchors

GENERAL INFORMATION

POWER-STUD®+ SD4/SD6

Stainless Steel Wedge Expansion Anchors

PRODUCT DESCRIPTION

The Power-Stud+ SD4 and Power-Stud+ SD6 anchors are fully threaded, torque-controlled, stainless steel wedge expansion anchors which are designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight, lightweight concrete, and grouted concrete masonry (CMU). The anchor is manufactured with a stainless steel body and expansion clip. Nut and washer are included.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Tension zone applications, i.e., safety-related attachments
- Seismic and wind loading (SDC A F)
- Utility supports and bracing attachments
- Equipment anchorage, angles, brackets and ledgers
- Barriers, guards and fencing
- Mezzanines, racking and railing

FEATURES AND BENEFITS

- + Knurled mandrel provides consistent performance in cracked and uncracked concrete
- + Mandrel design helps prevent galling during service life
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard clearance fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading
- + Domestically manufactured by request (see ordering information)

APPROVALS AND LISTINGS

- International Code Council Evaluation Service (ICC-ES), ESR-2502 for cracked and uncracked concrete
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-Appendix D
- Evaluated and gualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)
- City of Los Angeles, LABC and LARC Supplement (within ESR-2502)
- Florida Building Code, FBC Supplement including HVHZ (within ESR-2502)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00-Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 Post-Installed Concrete Anchors. Expansion anchors shall be Power-Stud+ SD4 and Power-Stud+ SD6 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification						
Anchor component	SD4	SD6					
Anchor body	304 Stainless Steel	316 Stainless Steel					
Washer	300 Series Stainless Steel	316 Stainless Steel					
Hex Nut	316 Stain	less Steel					
Expansion wedge (clip)	316 Stainless Steel						
See Tension Design Information table for yield	and ultimate strengths of the anchor body).						

1. Domestically manufactured anchors can be made available upon request (see ordering information)

162
162
163
163
164
169
172
173

POWER-STUD+ S4/SD6 STAINLESS STEEL ASSEMBLY

THREAD VERSION

UNC threaded stud

ANCHOR MATERIALS

 Stainless steel body and expansion clip, nut and washer

ANCHOR SIZE RANGE (TYP.)

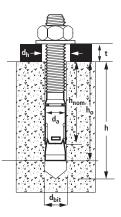
• 1/4" through 3/4" diameters

SUITABLE BASE MATERIALS

- Normal-weight concrete
- · Lightweight concrete
- Grouted Concrete Masonry (CMU)

INSTALLATION SPECIFICATIONS

Installation Specifications Table for Power-Stud+ SD4 and Power-Stud+ SD6 in Concrete

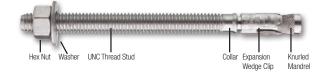

Anchor Dronorth/Cotting Information	Notation	Units		Nomir	nal Anchor Diameter	(inch)	
Anchor Property/Setting Information	Notation	Units	1/4	3/8	1/2	5/8	3/4
Anchor outside diameter	d _a (d)	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Thread Size (UNC)	-	in.	1/4-20	3/8-16	1/2-13	5/8-11	3/4-10
Nominal drill bit diameter (ANSI)	d _{bit}	in.	1/4	3/8	1/2	5/8	3/4
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (7.9)	7/16 (11.1)	9/16 (14.3)	11/16 (17.5)	13/16 (20.6)
Minimum embedment depth	h _{nom}	in. (mm)	1-1/8 (29)	1-3/8 (41)	1-7/8 (48)	2-1/2 (64)	3-3/8 (86)
Minimum hole depth	h₀	in.		h _{nom} + 1/8	•	h _{nom} -	+ 1/4
Installation torque	Tinst	ftlbf. (N-m)	6 (8)	25 (34)	40 (54)	60 (81)	110 (149)
Torque wrench/socket size	-	in.	7/16	9/16	3/4	15/16	1-1/8
Nut height	-	in.	7/32	21/64	7/16	35/64	41/64
Washer O.D.	-	in.	5/8	13/16	1-1/16	1-5/16	1-15/32

See Strength Design Information for installation specifications in strict accordance with ICC-ES ESR-2502.

1. The minimum base material thickness should be 1.5hnom or 3", whichever is greater.

2. See Performance Data tables for additional embedment depths.

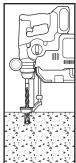
Anchor Detail



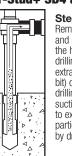
Head Marking

- = Length Identification Mark
- Strength Design Compliant Anchor (see ordering information, symbol not on 1/4" diameter anchors)
- Number Code = Stainless Steel Body Type (4 or 6)

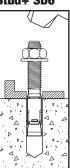
Anchor Assembly

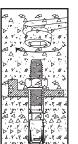


Length Identification


Mark	A	В	C	D	E	F	G	H	I	J	К	L	М	N	0	Р	Q	R
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"
Length iden	tification m	nark indica	tes overall	length of a	inchor.													

INSTALLATION INSTRUCTIONS


Installation Instructions for Power-Stud+ SD4 and Power-Stud+ SD6



Step 2 Remove dust and debris from the hole during drilling, (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Step 3 Position the supplied washer on the anchor and thread on the supplied nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required.

Step 4 Tighten the anchor with a torque wrench by applying the required installation torque, T_{inst}. TECHNICAL GUIDE - MECHANICAL ANCHORS © 2022 DEWALT - REV. F

PERFORMANCE DATA (ASD)

Ultimate Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 in Normal-Weight Concrete^{1,2}

					Minim	um Concrete C	compressive St	trength			
Nominal Anchor	Minimum Embedment Depth		500 psi MPa)		000 psi MPa)		000 psi MPa)	f'c = 6, (41.4		f'c = 8, (55.2	000 psi MPa)
Diameter in.	h in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)								
1/4	1-1/8	1,095	2,135	1,200	2,135	1,390	2,135	1,455	2,135	1,680	2,135
	(29)	(4.9)	(9.5)	(5.3)	(9.5)	(6.2)	(9.5)	(6.5)	(9.5)	(7.5)	(9.5)
1/4	1-3/4	1,890	2,135	2,070	2,135	2,390	2,135	2,480	2,135	2,480	2,135
	(44)	(8.4)	(9.5)	(9.2)	(9.5)	(10.6)	(9.5)	(11.0)	(9.5)	(11.0)	(9.5)
	1-3/8	1,530	2,745	1,680	2,745	1,940	2,745	2,520	2,745	2,910	2,745
	(41)	(6.8)	(12.2)	(7.5)	(12.2)	(8.6)	(12.2)	(11.2)	(12.2)	(12.9)	(12.2)
3/8	1-7/8	2,790	2,745	3,060	2,745	3,530	2,745	4,195	2,745	4,840	2,745
	(48)	(12.4)	(12.2)	(13.6)	(12.2)	(15.7)	(12.2)	(18.7)	(12.2)	(21.5)	(12.2)
	3	4,700	2,745	4,895	2,745	4,895	2,745	4,895	2,745	4,895	2,745
	(76)	(20.9)	(12.2)	(21.8)	(12.2)	(21.8)	(12.2)	(21.8)	(12.2)	(21.8)	(12.2)
	1-7/8	2,745	5,090	3,010	5,090	3,475	5,090	4,525	5,090	5,230	5,090
	(48)	(12.2)	(22.6)	(13.4)	(22.6)	(15.5)	(22.6)	(20.1)	(22.6)	(23.3)	(22.6)
1/2	2-3/8	5,370	5,090	5,880	5,090	6,790	5,090	6,790	5,090	7,845	5,090
	(60)	(23.9)	(22.6)	(26.2)	(22.6)	(30.2)	(22.6)	(30.2)	(22.6)	(34.9)	(22.6)
	3-3/4	8,840	5,090	9,300	5,090	9,300	5,090	9,300	5,090	9,300	5,090
	(95)	(39.3)	(22.6)	(41.4)	(22.6)	(41.4)	(22.6)	(41.4)	(22.6)	(41.4)	(22.6)
	2-1/2	5,015	9,230	5,495	9,230	6,345	9,230	7,250	9,230	8,370	9,230
	(64)	(22.3)	(41.1)	(24.4)	(41.1)	(28.2)	(41.1)	(32.2)	(41.1)	(37.2)	(41.1)
5/8	3-1/4	6,760	9,230	7,405	9,230	8,560	9,230	9,615	9,230	11,105	9,230
	(83)	(30.1)	(41.1)	(32.9)	(41.1)	(38.1)	(41.1)	(42.8)	(41.1)	(49.4)	(41.1)
	4-3/4	10,550	9,230	11,555	9,230	13,345	9,230	14,560	9,230	14,560	9,230
	(121)	(46.9)	(41.1)	(51.4)	(41.1)	(59.4)	(41.1)	(64.8)	(41.1)	(64.8)	(41.1)
	3-3/8	6,695	11,255	7,330	12,625	8,465	14,580	9,705	15,440	11,210	15,440
	(86)	(29.8)	(50.1)	(32.6)	(56.2)	(37.7)	(64.9)	(43.2)	(68.7)	(49.9)	(68.7)
3/4	4-1/2	10,800	15,440	11,830	15,440	13,575	15,440	17,110	15,440	19,760	15,440
	(114)	(48.0)	(68.7)	(52.6)	(68.7)	(60.4)	(68.7)	(76.1)	(68.7)	(87.9)	(68.7)
	5-5/8	11,730	15,440	12,850	15,440	13,575	15,440	19,710	15,440	21,705	15,440
	(143)	(52.2)	(68.7)	(57.2)	(68.7)	(60.4)	(68.7)	(87.7)	(68.7)	(96.5)	(68.7)

 Iabulated load values are for anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

AşD)

					Minim	um Concrete C	ompressive St	rength			
Nominal Anchor	Minimum Embedment Depth	f ^ı c = 2, (17.3	500 psi MPa)		000 psi MPa)	f'c = 4, (27.6		f ^ı c = 6, (41.4			000 psi MPa)
Diameter in.	h in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
1/4	1-1/8	275	535	300	535	350	535	365	535	420	535
	(28)	(1.2)	(2.4)	(1.3)	(2.4)	(1.6)	(2.4)	(1.6)	(2.4)	(1.9)	(2.4)
1/4	1-3/4	475	535	520	535	600	535	620	535	620	535
	(44)	(2.1)	(2.4)	(2.3)	(2.4)	(2.7)	(2.4)	(2.8)	(2.4)	(2.8)	(2.4)
	1-3/8	385	685	420	685	485	685	630	685	730	685
	(41)	(1.7)	(3.0)	(1.9)	(3.0)	(2.2)	(3.0)	(2.8)	(3.0)	(3.2)	(3.0)
3/8	1-7/8	700	685	765	685	885	685	1,050	685	1,210	685
	(60)	(3.1)	(3.0)	(3.4)	(3.0)	(3.9)	(3.0)	(4.7)	(3.0)	(5.4)	(3.0)
	3	1,175	685	1,225	685	1,225	685	1,225	685	1,225	685
	(60)	(5.2)	(3.0)	(5.4)	(3.0)	(5.4)	(3.0)	(5.4)	(3.0)	(5.4)	(3.0)
	1-7/8	685	1,275	755	1,275	870	1,275	1,130	1,275	1,310	1,275
	(57)	(3.0)	(5.7)	(3.4)	(5.7)	(3.9)	(5.7)	(5.0)	(5.7)	(5.8)	(5.7)
1/2	2-3/8	1,345	1,275	1,470	1,275	1,700	1,275	1,700	1,275	1,960	1,275
	(64)	(6.0)	(5.7)	(6.5)	(5.7)	(7.6)	(5.7)	(7.6)	(5.7)	(8.7)	(5.7)
	3-3/4	2,210	1,275	2,325	1,275	2,325	1,275	2,325	1,275	2,325	1,275
	(95)	(9.8)	(5.7)	(10.3)	(5.7)	(10.3)	(5.7)	(10.3)	(5.7)	(10.3)	(5.7)
	2-1/2	1,255	2,310	1,375	2,310	1,585	2,310	1,815	2,310	2,095	2,310
	(70)	(5.6)	(10.3)	(6.1)	(10.3)	(7.1)	(10.3)	(8.1)	(10.3)	(9.3)	(10.3)
5/8	3-1/4	1,690	2,310	1,850	2,310	2,140	2,310	2,405	2,310	2,775	2,310
	(86)	(7.5)	(10.3)	(8.2)	(10.3)	(9.5)	(10.3)	(10.7)	(10.3)	(12.3)	(10.3)
	4-3/4	2,640	2,310	2,890	2,310	3,335	2,310	3,640	2,310	3,640	2,310
	(117)	(11.7)	(10.3)	(12.9)	(10.3)	(14.8)	(10.3)	(16.2)	(10.3)	(16.2)	(10.3)
	3-3/8	1,675	2,815	1,835	3,155	2,115	3,645	2,425	3,860	2,805	3,860
	(86)	(7.5)	(12.5)	(8.2)	(14.0)	(9.4)	(16.2)	(10.8)	(17.2)	(12.5)	(17.2)
3/4	4-1/2	2,700	3,860	2,960	3,860	3,395	3,860	4,280	3,860	4,940	3,860
	(114)	(12.0)	(17.2)	(13.2)	(17.2)	(15.1)	(17.2)	(19.0)	(17.2)	(22.0)	(17.2)
	5-5/8	2,935	3,860	3,215	3,860	3,395	3,860	4,930	3,860	5,425	3,860
	(143)	(13.1)	(17.2)	(14.3)	(17.2)	(15.1)	(17.2)	(21.9)	(17.2)	(24.1)	(17.2)

Allowable Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 in Normal-Weight Concrete^{1,2,3,4,5}

Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.
 Allowable load capacities listed are calculated using and applied safety factor of 4.0.

Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. For lightweight concrete multiply tabulated allowable load values by a reduction factor of 0.60.

Spacing Distance and Edge Distance Adjustment Factors for Normal Weight Concrete

Spacing Reduction Factors - Tension (F_{NS})

<u> </u>	Reduction F				/										
Diame	eter (in)	1/4	1/4	3/8	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	3/4
Nominal Em	bed. hnom (in)	1-1/8	1-3/4	1-3/8	1-7/8	3	1-7/8	2-3/8	3-3/4	2-1/2	3-1/4	4-3/4	3-3/8	4-1/2	5-5/8
Minimum Sp	acing, smin (in)	1-1/2	2	2-1/4	3	3	3	3	3	3-3/4	5	5	4-1/2	5	5
	1-1/2	0.85	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.92	0.79	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	0.95	0.81	0.91	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.98	0.83	0.94	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	1.00	0.85	0.97	-	-	-	-	-	-	-	-	-	-	-
	3	1.00	0.87	1.00	0.87	0.78	0.88	0.82	0.75	-	-	-	-	-	-
	3-1/2	1.00	0.91	1.00	0.91	0.80	0.92	0.85	0.77	-	-	-	-	-	-
	4	1.00	0.96	1.00	0.96	0.83	0.96	0.88	0.79	0.88	-	-	-	-	-
	4-1/2	1.00	1.00	1.00	1.00	0.85	1.00	0.91	0.80	0.91	-	-	0.85	-	-
(sa	5	1.00	1.00	1.00	1.00	0.87	1.00	0.94	0.82	0.94	0.85	0.79	0.87	0.76	0.77
nch	5-1/2	1.00	1.00	1.00	1.00	0.89	1.00	0.97	0.84	0.97	0.87	0.80	0.89	0.78	0.78
e (ji	6	1.00	1.00	1.00	1.00	0.92	1.00	1.00	0.86	1.00	0.90	0.81	0.92	0.80	0.79
anc	6-1/2	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.87	1.00	0.92	0.83	0.94	0.82	0.80
Spacing Distance (inches)	7	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.89	1.00	0.94	0.84	0.96	0.84	0.82
 62	7-1/2	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.91	1.00	0.97	0.85	0.98	0.86	0.83
aci	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93	1.00	0.99	0.87	1.00	0.87	0.84
S	8-1/4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93	1.00	1.00	0.88	1.00	0.88	0.85
	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.88	1.00	0.89	0.85
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.90	1.00	0.91	0.86
	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.91	1.00	0.93	0.88
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	0.95	0.89
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.99	0.91
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.94
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors - Shear (F_{VS})

	ter (in)	1/4	1/4	3/8	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	3/4
Nominal Em	bed. hnom (in)	1-1/8	1-3/4	1-3/8	1-7/8	3	1-7/8	2-3/8	3-3/4	2-1/2	3-1/4	4-3/4	3-3/8	4-1/2	5-5/8
Minimum Sp	acing, Smin (in)	1-1/2	2	2-1/4	3	3	3	3	3	3-3/4	5	5	4-1/2	5	5
	1 1/2	0.91	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.95	0.87	-	-	-	-	-	-	-	-	-	-	-	-
	2 1/4	0.97	0.88	0.95	-	-	-	-	-	-	-	-	-	-	-
	2 1/2	0.99	0.90	0.97	-	-	-	-	-	-	-	-	-	-	-
	2 3/4	1.00	0.91	0.98	-	-	-	-	-	-	-	-	-	-	-
	3	1.00	0.92	1.00	0.92	0.88	0.93	0.89	0.86	-	-	-	-	-	-
	3 1/2	1.00	0.95	1.00	0.95	0.89	0.96	0.91	0.87	-	-	-	-	-	-
	4	1.00	0.97	1.00	0.97	0.90	0.98	0.93	0.88	0.93	-	-	-	-	-
	4 1/2	1.00	1.00	1.00	1.00	0.91	1.00	0.95	0.89	0.95	-	-	0.91	-	-
	5	1.00	1.00	1.00	1.00	0.93	1.00	0.96	0.90	0.97	0.91	0.88	0.93	0.84	0.87
Spacing Distance (inches)	5 1/2	1.00	1.00	1.00	1.00	0.94	1.00	0.98	0.91	0.98	0.93	0.89	0.94	0.85	0.88
(inc	6	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.92	1.00	0.94	0.89	0.95	0.86	0.88
ee	6 1/2	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.93	1.00	0.95	0.90	0.97	0.88	0.89
itan	7	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.94	1.00	0.97	0.91	0.98	0.89	0.90
Di	7 1/2	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.95	1.00	0.98	0.92	0.99	0.90	0.90
giu	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.99	0.93	1.00	0.92	0.91
Spa	8 1/4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.93	1.00	0.92	0.91
	8 1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.93	1.00	0.93	0.92
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.94	1.00	0.94	0.92
	9 1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.95	1.00	0.95	0.93
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.97	0.94
	10 1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.98	0.94
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.99	0.95
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.96
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors - Tension (F_{NC})

Diam	eter (in)	1/4	1/4	3/8	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	3/4
Nominal En	nbed. hnom (in)	1-1/8	1-3/4	1-3/8	1-7/8	3	1-7/8	2-3/8	3-3/4	2-1/2	3-1/4	4-3/4	3-3/8	4-1/2	5-5/8
Min. Edge Di	stance, cmin (in)	2	1-3/4	3-	3	3	4	3	4	5	4-1/2	5	6	5	6
	1-3/4	-	0.35	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.57	0.40	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	0.64	0.45	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.71	0.50	-	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	0.79	0.55	-	-	-	-	-	-	-	-	-	-	-	-
	3	0.86	0.60	0.75	0.60	0.29	-	0.40	-	-	-	-	-	-	-
	3-1/2	1.00	0.70	0.88	0.70	0.33	-	0.47	-	-	-	-	-	-	-
	4	1.00	0.80	1.00	0.80	0.38	0.67	0.53	0.30	-	-	-	-	-	-
	4-1/2	1.00	0.90	1.00	0.90	0.43	0.75	0.60	0.33	-	0.47	-	-	-	-
	5	1.00	1.00	1.00	1.00	0.48	0.83	0.67	0.37	0.63	0.53	0.29	-	0.56	-
	5-1/2	1.00	1.00	1.00	1.00	0.52	0.92	0.73	0.41	0.69	0.58	0.32	-	0.61	-
	6	1.00	1.00	1.00	1.00	0.57	1.00	0.80	0.44	0.75	0.63	0.35	0.57	0.67	0.31
es)	6-1/2	1.00	1.00	1.00	1.00	0.62	1.00	0.87	0.48	0.81	0.68	0.38	0.62	0.72	0.33
Edge Distance (inches)	7	1.00	1.00	1.00	1.00	0.67	1.00	0.93	0.52	0.88	0.74	0.41	0.67	0.78	0.36
e (ii	7-1/2	1.00	1.00	1.00	1.00	0.71	1.00	1.00	0.56	0.94	0.79	0.44	0.71	0.83	0.38
anc	8	1.00	1.00	1.00	1.00	0.76	1.00	1.00	0.59	1.00	0.84	0.47	0.76	0.89	0.41
Dist	8-1/2	1.00	1.00	1.00	1.00	0.81	1.00	1.00	0.63	1.00	0.89	0.50	0.81	0.94	0.44
ge	9	1.00	1.00	1.00	1.00	0.86	1.00	1.00	0.67	1.00	0.95	0.53	0.86	1.00	0.46
B	9-1/2	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.70	1.00	1.00	0.56	0.90	1.00	0.49
	10	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.74	1.00	1.00	0.59	0.95	1.00	0.51
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.78	1.00	1.00	0.62	1.00	1.00	0.54
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.81	1.00	1.00	0.65	1.00	1.00	0.56
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.89	1.00	1.00	0.71	1.00	1.00	0.62
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.76	1.00	1.00	0.67
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.82	1.00	1.00	0.72
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.77
	16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.82
	17	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.87
	18	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92
	19	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97
	19-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors - Shear (Fvc)

	Jistance Kedu				<u> </u>	0./0	4/0	4/0	4/0	F/0	E /0	E /0	0/4	0/4	0/4
	iameter (in) al Embed. hnom (in)	1/4 1-1/8	1/4	3/8 1-3/8	3/8 1-7/8	3/8 3	1/2 1-7/8	1/2 2-3/8	1/2 3-3/4	5/8 2-1/2	5/8 3-1/4	5/8 4-3/4	3/4 3-3/8	3/4 4-1/2	3/4 5-5/8
	e Distance, cmin (in)	2	1-3/4	3-	3	3	4	2-3/8	3-3/4	<u>2-1/2</u> 5	<u>3-1/4</u> 4-1/2	4-3/4	<u>3-3/8</u> 6	<u>4-1/2</u> 5	0-0/8 6
MIII. Cuy	1-3/4	-	0.39	J-	3	J	4	3	4	5	4-1/2	5	0	5	0
	2	- 0.76	0.39	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	0.76	0.44		-	-		-	-	-			-	-	-
	2-1/4	0.86	0.50	-	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	1.00	0.50	-	-	-	-	-	-	-	-	-	-	-	-
	3	1.00	0.67	1.00	0.67	0.38	-	0.50	-	-	-	-		-	-
	3-1/2	1.00	0.07	1.00	0.07	0.30	-	0.58	-	-	-	-		-	
	4	1.00	0.89	1.00	0.70	0.44	0.89	0.67	0.40	-	-	-	-	-	-
	4-1/2	1.00	1.00	1.00	1.00	0.57	1.00	0.75	0.40	-	0.55	-	-	-	-
	5	1.00	1.00	1.00	1.00	0.63	1.00	0.83	0.49	0.83	0.60	0.39	-	0.44	-
	5-1/2	1.00	1.00	1.00	1.00	0.70	1.00	0.92	0.54	0.92	0.67	0.43	-	0.49	-
les)	6	1.00	1.00	1.00	1.00	0.76	1.00	1.00	0.59	1.00	0.73	0.47	0.76	0.53	0.41
Edge Distance (inches)	6-1/2	1.00	1.00	1.00	1.00	0.83	1.00	1.00	0.64	1.00	0.79	0.51	0.83	0.58	0.44
) eg	7	1.00	1.00	1.00	1.00	0.89	1.00	1.00	0.69	1.00	0.85	0.55	0.89	0.62	0.48
tan	7-1/2	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.74	1.00	0.91	0.59	0.95	0.67	0.51
Dis	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.79	1.00	0.97	0.63	1.00	0.71	0.55
dge	8-1/4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.81	1.00	1.00	0.65	1.00	0.73	0.56
ш	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	1.00	0.67	1.00	0.76	0.58
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.89	1.00	1.00	0.71	1.00	0.80	0.62
	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.75	1.00	0.84	0.65
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.78	1.00	0.89	0.68
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.82	1.00	0.93	0.72
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.86	1.00	0.98	0.75
	11-1/4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.77
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.82
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.89
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Ultimate Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 installed into the Face of Grout Filled Concrete Masonry^{1,2}

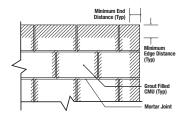
Nominal Anchor Diameter in.	Installation Torque, Tinst ft-Ibf (N-m)	Minimum Embedment hoom in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Ultimate Tension Load Ib (kN)	Direction of Shear Loading	Ultimate Shear Load Ib (KN)
		2-3/8	3 (76)	3 (76)	1,695 (7.5)	Any	2,080 (9.3)
1/2	25 (34)	(60)	12 (305)	12 (305)	2,425 (10.8)	Any	4,905 (21.8)
		3-5/8 (92)	12 (305)	12 (305)	7,305 (32.5)	Any	9,315 (41.4)
5/8	40 (54)	3-1/4 (83)	12 (305)	12 (305)	5,565 (24.8)	Any	7,944 (35.3)

1. Tabulated load values are for anchors installed in minimum 8 inch wide, minimum Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working loads.

Allowable Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 installed into the Face of Grout Filled Concrete Masonry^{1,2,3,4,5}

Nominal Anchor Diameter in.	Installation Torque, Tinst ft-lbf (N-m)	Minimum Embedment hoom in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Allowable Tension Load Ib (kN)	Direction of Shear Loading	Allowable Shear Load Ib (kN)
		2-3/8	3 (76)	3 (76)	340 (1.5)	Any	415 (1.8)
1/2	25 (34)	(60)	12 (305)	12 (305)	485 (2.2)	Any	980 (4.4)
		3-5/8 (92)	12 (305)	12 (305)	1,460 (6.5)	Any	1,865 (8.3)
5/8	40 (54)	3-1/4 (83)	12 (305)	12 (305)	1,115 (5.0)	Any	1,590 (7.1)


1. Tabulated load values are for anchors installed in minimum 8 inch wide, minimum Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. The tabulated values are applicable for anchors installed in grouted masonry wall faces at a critical spacing distance, s_{or}, between anchors of 16 times the anchor diameter. The spacing distance between two anchors may be reduced to a minimum distance, s_{min}, of 8 times the anchor diameter provided the allowable tension loads are multiplied a reduction factor of 0.80 and allowable shear loads are multiplied by a reduction factor of 0.90. Linear interpolation for calculation of allowable loads may be used for intermediate anchor spacing distances.

4. Anchors may be installed in the grouted cells and in cell webs and bed joints not closer than 1-3/8" from head joints. The minimum edge and end distances must also be maintained.

5. Allowable tension values for anchors installed into bed joints of grouted masonry wall faces with a minimum of 12" edge and end distance may be increased by 20 percent for the 1/2-inch diameter and 10 percent for the 5/8-inch diameter.

Wall Face Permissible Anchor Locations (Un-hatched Area)

FECHNICAL GUIDE - MECHANICAL ANCHORS ©2022 DEWALT

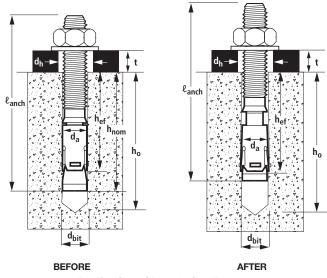
- REV. F

STRENGTH DESIGN INFORMATION

Installation Table for Power-Stud+ SD4 and Power-Stud+ SD6^{1,4}

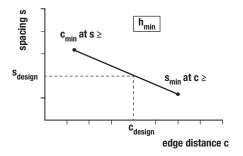
Anakan Branaka/Oakina Information	Notation	Units				Nomina	al Anchor D	iameter			
Anchor Property/Setting Information	Notation	Units	1/4	3/	/8	1/	/2	5/	/8	3	/4
Anchor outside diameter	da	in. (mm)	0.250 (6.4)	0.3 (9			500 2.7)	0.6 (15			750 9.1)
Thread Size (UNC)	-	in.	1/4-20	3/8	-16	1/2	-13	5/8	-11	3/4	-10
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (7.9)	7/ (11		9/ (14		11/ (17			/16).6)
Nominal drill bit diameter (ANSI)	d _{bit}	in.	1/4	3/	/8	1,	/2	5/	′8	3	/4
Minimum nominal embedment depth ²	h _{nom}	in. (mm)	1-3/4 (44)	1-7 (4	7/8 8)		1/2 i4)	3- ⁻ (8			1/2 14)
Effective embedment	h _{ef}	in. (mm)	1.50 (38)	1.: (3		2. (5	00 1)	2. ⁻ (7		3-: (9	3/4 15)
Minimum hole depth	h₀	in. (mm)	1-7/8 (48)	(5	<u>2</u> 1)	2-5 (6	5/8 57)	3- ⁻ (8			3/4 21)
Minimum member thickness	h _{min}	in. (mm)	3-1/4 (83)	3-1/4 (83)	4 (102)		4 02)	(12			5 52)
Minimum overall anchor length ³	lanch	in.	2-1/4	2-3	3/4	3-3	3/4	4	/2	5-	1/2
Minimum edge distance	Cmin	in. (mm)	1-3/4 (44)	3 (76)	3-1/2 (89)	6 (152)	3 (76)	4-1/2 (114)	8-1/2 (216)	5 (127)	9 (229)
Minimum spacing distance	Smin	in. (mm)	2 (51)	5-1/2 (140)	3 (76)	3 (76)	6 (152)	8-1/2 (216)	5 (127)	9 (229)	5 (127)
Installation torque	T _{inst}	ftlbf. (N-m)	6 (8)	2 (3		4 (5		6 (8			10 49)
Torque wrench/socket size	-	in.	7/16	9/	16	3,	/4	15/	′16	1-	1/8
Nut height	-	in.	7/32	21/	/64	7/	16	35/	64	41	/64
Washer O.D.	-	in.	5/8	13/	/16	1-1	/16	1-5	/16	1-1	5/16

For SI: 1 inch = 25.4 mm; 1 ft-lbf = 1.356 N-m.


1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. The embedment depth, h_{nom}, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

3. The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.


4. The anchors may be installed in the topside of concrete-filled steel deck floor and roof assemblies in accordance with the following: the 1/4-inch diameter anchors must be installed in uncracked normal-weight or sand-lightweight concrete; 3/8-inch to 3/4-inch diameter anchors must be installed in cracked and uncracked normal-weight or sand-lightweight concrete over steel deck having a minimum specified compressive strength, f'c, of 3,000 psi (20.7 MPa) provided the concrete thickness above the upper flute meets the minimum thickness specified in this table.

Power-Stud+ SD4 and Power-Stud+ SD6 Anchor Detail

Application of Installation Torque

Interpolation of Minimum Edge Distance and Anchor Spacing

This interpolation applies to the cases when two sets of minimum edge distances, c_{min} , and minimum spacing distances, s_{min} , are given for a selected anchor diameter effective embedment depth, h_{ef} , and corresponding minimum member thickness, h_{min} .

De star O					Nor	ninal Anchor Diam	eter	
Design Cr	aracteristic	Notation	Units	1/4	3/8	1/2	5/8	3/4
Anchor category		1,2 or 3	-	1	1	1	1	1
Nominal embedment de	pth	h _{nom}	in.	1-3/4	1-7/8	2-3/8	3-1/4	4-1/2
Effective embedment		h _{ef}	in. (mm)	1.50 (38)	1.50 (38)	2.00 (51)	2.75 (70)	3.75 (95)
	STEEL STREN	GTH IN TENSIO	DN (ACI 318	-19 17.6.1, ACI 318	3-14 17.4.1 or ACI	318-11 D.5.1)		
Minimum specified yield	strength (neck	fy	psi (N/mm²)	60,000 (414)	60,000 (414)	60,000 (414)	60,000 (414)	60,000 (414)
Minimum specified ultim	nate tensile strength (neck)	f _{uta}	psi (N/mm²)	90,000 (621)	90,000 (621)	90,000 (621)	90,000 (621)	90,00 (621)
Effective tensile stress a	rea (neck)	A _{se,N}	in² (mm²)	0.0249 (16.1)	0.0530 (34.2)	0.1020 (65.8)	0.1630 (105.2)	0.238 (151)
Steel strength in tension		N _{sa}	lb (kN)	2,240 (10.0)	4,780 (21.3)	9,160 (40.8)	14,635 (65.1)	21,38 (95.1)
Reduction factor for stee	el strength ^{2,3}	ϕ	-			0.75		
	CONCRETE BREAKOUT	STRENGTH I	TENSION (ACI 318-19 17.6.2,	ACI 318-14 17.4.2	or ACI 318-11 D.5	5.2) [®]	
Effectiveness factor for u	uncracked concrete	Kuncr	-	24	24	24	24	24
Effectiveness factor for o	cracked concrete	kcr	-	Not Applicable	17	21	21	21
Modification factor for cracked and uncracked	concrete	$\psi_{ ext{c,N}}$	-	1.0 See Note 5	1.0 See Note 5	1.0 See Note 5	1.0 See Note 5	1.0 See Note
Critical edge distance (u	ncracked concrete only)	Cac	in. (mm)	5 (127)	5 (127)	7-1/2 (191)	9-1/2 (241)	9 (229)
Reduction factor for con		ϕ	-			0.65 (Condition B)		
	PULLOUT STREE	IGTH IN TENS	ION (ACI 31	8-19 17.6.3, ACI 31	8-14 17.4.3 or AC	l 318-11 D.5.3) ⁸		
Characteristic pullout str uncracked concrete (2,5	00 psi)⁵	Np,uncr	lb (kN)	1,510 (6.7)	See Note 7	See Note 7	See Note 7	8,520 (37.8)
Characteristic pullout str cracked concrete (2,500		Np,cr	lb (kN)	Not Applicable	See Note 7	See Note 7	See Note 7	See Note
Reduction factor for pull		ϕ	-			0.65 (Condition B)		
PUL	LOUT STRENGTH IN TENSION	FOR SEISMIC	r	ONS (ACI 318-19 17		17.2.3.3 or ACI 31	8-11 D.3.3.3) ⁸	
1	ength, seismic (2,500 psi) ^{6,9}	N _{p,eq}	lb (kN)	Not Applicable	1,645 (7.3)	See Note 7	See Note 7	See Note
Reduction factor for pull	out strength⁴	ϕ	-			0.65 (Condition B)		
Mean axial stiffnes	Uncracked concrete	β	lbf/in (kN/mm)	171,400 (30,060)	490,000 (86,000)	459,000 (80,500)	234,000 (41,000)	395,00 (69,30
values for service load range ¹⁰	Cracked concrete	β	lbf/in (kN/mm)	Not Applicable	228,000 (40,000)	392,000 (68,800)	193,000 (33,800)	76,60 (13,40

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.4.

3. The anchors are ductile steel elements as defined in ACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable.

4. The tabulated value of ϕ for concrete breakout strength and pullout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for Condition A are satisfied, the appropriate value of ϕ for concrete breakout strength and pullout strength must be determined in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for concrete breakout strength and pullout strength must be determined in accordance with ACI 318-11 D.4.4.

5. For all design cases $\mathcal{W}_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{or}) or uncracked concrete (k_{unc}) must be used.

6. For all design cases $\mathcal{W}_{e,P} = 1.0$. For concrete compressive strength greater than 2,500 psi, Non = (pullout strength value from table)*(specified concrete compressive strength/2,500)¹⁶.

7. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

8. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of $\sqrt{t^{+}c}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

9. Tabulated values for characteristic pullout strength in tension are for seismic applications and are based on test results per ACI 355.2, Section 9.5.

10. Actual stiffness of the mean value varies depending on concrete strength, loading and geometry of application.

Shear Design Information for Power-Stud+ SD4 and Power-Stud+ SD6 Anchors in Concrete^{1,7}

Desiry Oberestatistic	Natalian	Unite		Nor	ninal Anchor Diam	eter					
Design Characteristic	Notation	Units	1/4	3/8	1/2	5/8	3/4				
Anchor category	1, 2 or 3	-	1	1	1	1	1				
Nominal embedment depth	hnom	in.	1-3/4	1-7/8	2-3/8	3-1/4	4-1/2				
Effective embedment	h _{ef}	in. (mm)	1.50 (38.1)	1.50 (38.1)	2.00 (50.8)	2.75 (69.9)	3.75 (95)				
STEEL ST	RENGTH IN SHE	EAR (ACI 318-19	17.7.1, ACI 318-14	17.5.1 or ACI 31	8-11 D.6.1)'						
Minimum specified yield strength (threads)	fy	ksi (N/mm²)	60 (414)	60 (414)	60 (414)	60 (414)	60 (414)				
Minimum specified ultimate strength (threads)	f _{uta}	ksi (N/mm²)	90 (621)	90 (621)	90 (621)	90 (621)	90 (621)				
Effective tensile stress area (threads)	A _{se, V} [A _{se}] ⁸	in² (mm²)	0.0318 (20.5)	0.078 (50.3)	0.142 (91.6)	0.226 (145.8)	0.334 (212)				
Steel strength in shear ⁶	Vsa	lb (kN)	1,115 (5.0)	1,470 (6.6)	3,170 (14.3)	7,455 (33.6)	11,958 (53.2)				
Reduction factor for steel strength ^{2,3}	ϕ	-			0.65	•·					
STEEL STRENGTH IN SHE	AR FOR SEISMIC	APPLICATIONS (ACI 318-19 17.10.1	, ACI 318-14 17.	2.3.3 or ACI 318-1	1 D.3.3.3)					
Steel strength in shear, seismic ⁸	$V_{sa,eq}$	lb (kN)	Not Applicable	1,305 (5.9)	2,765 (12.3)	5,240 (23.3)	7,745 (34.5)				
Reduction factor for steel strength in shear for seismic ²	φ	-			0.65						
CONCRETE BREA	KOUT STRENGT	h in Shear (aci	318-19 17.7.2, ACI	318-14 17.5.2 o	r ACI 318-11 D.6.2	2)					
Load bearing length of anchor	le	in. (mm)	1.50 (38.1)	1.50 (38.1)	2.00 (50.8)	2.75 (69.9)	3.75 (95)				
Nominal anchor diameter	da	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)				
Reduction factor for concrete breakout ⁴	ϕ	-			0.70 (Condition B)						
CONCRETE PRY	OUT STRENGTH	IN SHEAR (ACI 31	8-19 17.7.3, ACI 31	18-14 17.2.3.3 oi	r ACI 318-11 D.6.3)					
Coefficient for pryout strength	Kcp	-	1.0	1.0	1.0	2.0	2.0				
Reduction factor for pryout strength⁵	φ	-	- 0.70 (Condition B)								

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 or -14) Chapter or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.4.

3. The anchors are ductile steel elements as defined in ACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable.

4. The tabulated value of \$\phi\$ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-19 17.5.3, ACI 318-14 14.3.3 or ACI 318-11 D.4.3, for Condition A are satisfied, the appropriate value of \$\phi\$ for concrete breakout strength must be determined in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 D.4.3, the appropriate value of \$\phi\$ for concrete breakout strength must be determined in accordance with ACI 318-11 10.4.3.

5. The tabulated value of for pryout strength applies if the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for pryout strength must be determined in accordance with ACI 318-11 D.4.4, Condition B.

6. Tabulated values for steel strength in shear must be used for design.

7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8 λ is applied to all values of $\sqrt{f'c'}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

8. Tabulated values for steel strength in shear are for seismic applications are based on test results per ACI 355.2, Section 9.6.

E

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strengths Installed in Cracked Concrete^{1,2,3,4,5,6,7,8}

					Minim	um Concrete C	ompressive St	trength							
Nominal	Nominal	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'C = 6,	000 psi	f'c = 8,000 psi					
Anchor Diameter (in.)	Embed. h∞m (in.)	$\phi_{N_{sa}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{sa}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\begin{array}{c} \phi_{V_{sa}}, \phi_{V_{cb}} \\ \text{or } \phi_{V_{cp}} \\ \text{Shear} \\ \text{(lbs.)} \end{array}$	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{sa}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{sa}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	φV _{sa} , φV _{cb} or φV _{cp} Shear (lbs.)				
3/8	1-7/8	1,015	955	1,110	955	1,285	955	1,570	955	1,815	955				
1/2	2-1/2	1,930	2,060	2,115	2,060	2,440	2,060	2,990	2,060	3,455	2,060				
5/8	3-1/4	3,110	4,520	3,410	4,845	3,935	4,845	4,820	4,845	5,570	4,845				
3/4	4-1/2	4,955	5,270	5,430	5,770	6,270	6,665	7,680	7,770	8,865	7,770				
- Anchor Pu	llout/Pryout Strei	ngth Controls 🔲	- Concrete Brea	kout Strength Co	ntrols 🔲 - Steel	Strength Control	S								

Tension and Shear Design Strengths Installed in Uncracked Concrete^{1,2,3,4,5,6,7}

					Minim	um Concrete C	ompressive St	rength					
Nominal	Nominal	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'C = 6,	000 psi	f'c = 8,	000 psi		
Anchor Diameter (in.)	Embed. hnom (in.)	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	φNsa, φNcb or φNcp Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{sa}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	φV _{sa} , φV _{cb} or φV _{cp} Shear (lbs.)		
1/4	1-3/4	980	725	1,075	725	1,240	725	1,520	725	1,680	725		
3/8	1-7/8	1,435	955	1,570	955	1,815	955	2,220	955	2,565	955		
1/2	2-1/2	2,205	2,060	2,415	2,060	2,790	2,060	3,420	2,060	3,945	2,060		
5/8	3-1/4	3,555	4,845	3,895	4,845	4,500	4,845	5,510	4,845	6,365	4,845		
3/4	4-1/2	5,540	7,375	6,065	7,770	7,005	7,770	8,580	7,770	9,905	7,770		
🔲 - Anchor Pu	illout/Pryout Strei	ngth Controls 🔲	- Concrete Brea	kout Strength Co	ntrols 🔲 - Steel	Strength Control	s						

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

- c_{a2} is greater than or equal to 1.5 times c_{a1} .

2- Calculations were performed according to ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode is listed (e.g. for tension: steel, concrete breakout and pullout; for shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, h_{ef}, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

- 3- Strength reduction factors (ø) were based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 or -14) Chapter 17. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.

7- The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and pullout strength must be multiplied by a factor of 0.75.

ORDERING INFORMATION

Power-Stud+ SD4 (Type 304 Stainless Steel Body) and Power-Stud+ SD6 (Type 316 Stainless Steel Body)

	Cat.		A			S	uggested A	NSI Carbide	e Drill Bit Cat.	No.		
Туре	e 304 SS	Туре	316 SS	Anchor Size	Approx. Thread Length	Pack Qty.	Ctn. Qty.	Full Head	SDS-	SDS-	Hollow Bit	Hollow Bit
Standard	Domestic	Standard	Domestic		Lengu			SDS-Plus	Plus	Max	SDS-Plus	SDS-Max
7300SD4-PWR	-	7600SD6-PWR	-	1/4" x 1-3/4"	3/4"	100	600	DW5517	DW5416	-	-	-
7302SD4-PWR	-	7602SD6-PWR	-	1/4" x 2-1/4"	1-1/4"	100	600	DW5517	DW5417	-	-	-
7304SD4-PWR	7304SD4USA-PWR	7604SD6-PWR	7604SD6USA-PWR	1/4" x 3-1/4"	2-1/4"	100	600	DW5517	DW5417	-	-	-
-	7310SD4USA-PWR	7610SD6-PWR	7610SD6USA-PWR	3/8" x 2-1/4"	7/8"	50	300	DW5527	DW5427	-	-	-
-	7312SD4USA-PWR	7612SD6-PWR	7612SD6USA-PWR	3/8" x 2-3/4"	1-3/8"	50	300	DW5527	DW5427	-	-	-
7313SD4-PWR	7313SD4USA-PWR	7613SD6-PWR	7613SD6USA-PWR	3/8" x 3"	1-5/8"	50	300	DW5527	DW5427	-		
-	7314SD4USA-PWR	7614SD6-PWR	7614SD6USA-PWR	3/8" x 3-1/2"	2-1/8"	50	300	DW5527	DW5427	-	-	-
7315SD4-PWR	7315SD4USA-PWR	7615SD6-PWR	7615SD6USA-PWR	3/8" x 3-3/4"	2-3/8"	50	300	DW5527	DW5427	-	-	-
7316SD4-PWR	7316SD4USA-PWR	7616SD6-PWR	7616SD6USA-PWR	3/8" x 5"	3-5/8"	50	300	DW55300	DW5429	-	-	-
-	7317SD4USA-PWR	7617SD6-PWR	7617SD6USA-PWR	3/8" x 7"	5-5/8"	50	200	DW55300	DW5429	-	-	-
-	7320SD4USA-PWR	7620SD6-PWR	7620SD6USA-PWR	1/2" x 2-3/4"	1"	50	200	DW5537	DW5437	DW5803	DWA54012	-
'322SD4-PWR	7322SD4USA-PWR	7622SD6-PWR	7622SD6USA-PWR	1/2" x 3-3/4"	2"	50	200	DW5537	DW5437	DW5803	DWA54012	-
7323SD4-PWR	7323SD4USA-PWR	7623SD6-PWR	7623SD6USA-PWR	1/2" x 4-1/2"	2-3/4"	50	200	DW5539	DW5438	DW5803	DWA54012	-
7324SD4-PWR	7324SD4USA-PWR	7624SD6-PWR	7624SD6USA-PWR	1/2" x 5-1/2"	3-3/4"	50	150	DW5539	DW5438	DW5803	DWA54012	-
7326SD4-PWR	7326SD4USA-PWR	7626SD6-PWR	7626SD6USA-PWR	1/2" x 7"	5-1/4"	25	100	DW5539	DW5438	DW5803	DWA54012	-
-	7330SD4USA-PWR	7630SD6-PWR	7630SD6USA-PWR	5/8" x 3-1/2"	1-1/2"	25	100	-	DW5446	DW5806	DWA54058	DWA58058
-	7332SD4USA-PWR	7632SD6-PWR	7632SD6USA-PWR	5/8" x 4-1/2"	2-1/2"	25	100	-	DW5446	DW5806	DWA54058	DWA58058
7333SD4-PWR	7333SD4USA-PWR	7633SD6-PWR	7633SD6USA-PWR	5/8" x 5"	3"	25	100	-	DW5446	DW5806	DWA54058	DWA58058
334SD4-PWR	7334SD4USA-PWR	7634SD6-PWR	7634SD6USA-PWR	5/8" x 6"	4"	25	75	-	DW5446	DW5806	DWA54058	DWA58058
-	7336SD4USA-PWR	7636SD6-PWR	7636SD6USA-PWR	5/8" x 7"	5"	25	75	-	DW5447	DW5806	DWA54058	DWA58058
7338SD4-PWR	7338SD4USA-PWR	7638SD6-PWR	7638SD6USA-PWR	5/8" x 8-1/2"	6-1/2"	25	50	-	DW5447	DW5809	DWA54058	DWA58058
-	7340SD4USA-PWR	7640SD6-PWR	7640SD6USA-PWR	3/4" X 4-1/4"	1-7/8"	20	60	-	DW5453	DW5810	DWA54034	DWA58034
-	7341SD4USA-PWR	7641SD6-PWR	7641SD6USA-PWR	3/4" X 4-3/4"	2-3/8"	20	60	-	DW5453	DW5810	DWA54034	DWA58034
342SD4-PWR	7342SD4USA-PWR	7642SD6-PWR	7642SD6USA-PWR	3/4" X 5-1/2"	3-1/8"	20	60	-	DW5453	DW5810	DWA54034	DWA58034
-	7344SD4USA-PWR	7644SD6-PWR	7644SD6USA-PWR	3/4" X 6-1/4"	3-7/8"	20	60	-	DW5455	DW5810	DWA54034	DWA58034
-	7346SD4USA-PWR	7646SD6-PWR	7646SD6USA-PWR	3/4" X 7"	4-5/8"	20	60	-	DW5455	DW5810	DWA54034	DWA58034
348SD4-PWR	7348SD4USA-PWR	7648SD6-PWR	7648SD6USA-PWR	3/4" X 8-1/2"	6-1/8"	10	40	-	DW5455	DW5812	DWA54034	DWA58034
-	7349SD4USA-PWR	7649SD6-PWR	-	3/4" x 10"	7-5/8"	10	40	-	DW5455	DW5812	DWA54034	DWA58034

Domestically manufactured Power-Stud+ SD4 and Power-Stud+ SD6 anchors are made to order. Contact DEWALT for additional details.

The published size includes the diameter and the overall length of the anchor. Allow for fixture thickness (as applicable) plus one anchor diameter for the nut and washer when selecting a length. All anchors are packaged with nuts and washers.

Shaded catalog numbers denote sizes which are less than the minimum standard anchor length for strength design. Anchors not long enough to meet the minimum nominal embedments published for strength design are outside the scope of ICC-ES ESR-2502.

Hollow drill bits must be used with a dust extraction vacuum (e.g. Cat. No. DW012).

C ? 0

Hot-Dip Galvanized Wedge Expansion Anchor **POWER-STUD® HD5**

Hot-Dip Galvanized Wedge Expansion Anchor

PRODUCT DESCRIPTION

GENERAL INFORMATION

POWER-STUD® HD5

The Power-Stud HD5 anchor is a fully threaded, torque-controlled, wedge expansion anchor. Suitable base materials include normal-weight concrete, lightweight concrete and grouted concrete masonry. The anchor is manufactured with a hot-dip galvanized carbon steel body and stainless steel expansion clip. Nut and washer are included.

GENERAL APPLICATIONS AND USES

- Barriers and Guards
- Posts and Railing

Fencing

- Support Ledgers
- Storage Facilities

- Repairs
- Maintenance
- Retrofits

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Hot-dip galvanized fasteners generally meet requirements for common exterior applications
- + HDG coating is compliant for contact with pressure-treated wood

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Expansion Anchors shall be Power-Stud HD5 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor body	Medium carbon steel
Hex Nut	Carbon steel, ASTM A563, Grade A
Washer	Carbon steel ASTM F844; meets dimensional requirements of ANSI B18.22.2, Type A plain
Expansion wedge (clip)	304 Stainless Steel
Plating (anchor, body, nut, washer)	Zinc Galvanized According to ASTM A153 Class C or D

SECTION CONTENTS

General Information	174
Material Specifications	174
Installation Specifications	175
Installation Instructions	175
Performance Data (ASD)	176
Ordering Information	179

POWER-STUD HD5 ASSEMBLY

THREAD VERSION

Threaded Stud (UNC)

ANCHOR MATERIALS

 Hot-dip galvanized carbon steel body, with stainless steel expansion clip, hot-dip galvanized nut and washer

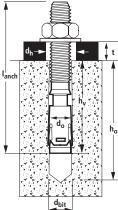
ROD/ANCHOR SIZE RANGE (TYP.)

• 3/8" through 3/4" diameters

SUITABLE BASE MATERIALS

- Normal-weight concrete
- · Lightweight concrete
- Grouted concrete masonry (CMU)

INSTALLATION SPECIFICATIONS

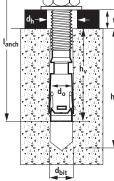

Installation Specifications for Power-Stud HD5 in Concrete

Anchor Property/	Notellan	Units				Nomi	inal Anchor	Diameter ((inch)				
Setting Information	Notation	Units	3/8			1/2			5/8	•	3.	/4	
Anchor outside diameter	d	in.	0.3	375		0.500			0.625		0.7	0.750	
Minimum diameter of hole clearance in fixture	dh	in.	7/16		9/16				11/16		13/16		
Nominal drill bit diameter (ANSI)	d _{bit}	in.	3	/8		1/2		5/8		3/4			
Minimum nominal embedment depth	hv	in.			2-3/8	3-3/8	4-5/8	3-3/8	5				
Minimum hole depth	h₀	in.	2	2-5/8	2-1/4	2-3/4	4	2-3/4	3-3/4	5	3-3/4	5-3/8	
Minimum member thickness	hmin	in.	3-1/4	4	4	5	6	5	6	7	6	8	
Minimum overall anchor length ¹	lanch	in.	3	3	2-3/4	3-3/4	4-1/2	3-1/2	5	6	4-3/4	5-1/2	
Minimum edge distance	Cmin	in.	3	2-1/4	4	5-1/4	4	4-1/4	5-1/2	4-1/4	5	4-1/2	
Minimum spacing distance	Smin	in.	5-1/4	3-3/4	6	7-1/4	5	7-1/8	10-1/8	4-1/4	9	6	
Installation torque (Normal-weight concrete)	T _{inst}	ftlbf.	2	20		40		60			110		
Installation torque (Grout-filled CMU)	T _{inst}	ftlbf.	2	20		40			50		8	80	
Torque wrench/socket size	-	in.	9/	'16		3/4			15/16		1-1	1/8	
Nut height	-	in.	21	/64		7/16			35/64		41.	/64	
Effective tensile stress area	Ase	in.²	0.078			0.142			0.226		0.3	334	
Minimum specified ultimate strength	f _{uta}	psi	88,000		80,000			80,000			72,000		
Minimum specified yield strength	fya	psi	70,	400	64,000			64,000			57,600		

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

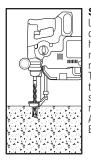
1. The listed minimum overall anchor length is based on anchor sizes available at the time of publication compared with the requirements for the minimum nominal embedment depth and fixture attachment.

Anchor Detail

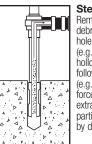


nath Idontification L

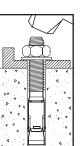
Length	identi	ficati	оп												
Mark	A	В	C	D	E	F	G	H	I	J	К	L	м	N	0
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"
Length ider	Length identification mark indicates overall length of anchor.														


ECHANICAL ANCHORS 5 - -

Hot-Dip Galvanized Wedge Expansion Anchor e Ś **OWER**



INSTALLATION INSTRUCTIONS


Installation Instructions for Power-Stud HD5



Step 2 Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Step 3 Position the washer on the anchor and thread on the nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, h_v.

Step 4 Tighten the anchor with a torque wrench by applying the required installation torque, Tinst.

PERFORMANCE DATA (ASD)

Ultimate Load Capacities for Power-Stud HD5 in Normal-Weight Concrete^{1,2}

Nominal	Minimum				Minimum C	oncrete Comp	ressive Streng	th - f'c (psi)			
Anchor	Embedment	2,50	0 psi	3,00	0 psi	4,00	0 psi	6,00	0 psi	8,000 psi	
Diameter in.	Depth in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.
0./0	1-3/4	2,470	0.005	2,710	0.005	3,130	0.005	3,220	0.005	3,715	0.005
3/8 2-3/8	3,620	3,925	3,965	3,925	4,580	3,925	5,470	3,925	6,320	3,925	
	2	2,690		2,950		3,405		4,170		4,815	
1/2		4,140	4,195	4,540	4,195	5,240	4,195	6,415	4,195	7,410	4,195 6,815
	3-3/4	8,580	1	9,400		10,300	1	10,300]	10,300	
	2-1/2	4,115		4,505		5,200		6,370		7,355	
5/8	3-3/8	7,305	6,815	8,000	6,815	9,240	6,815	11,315	6,815	13,065	
3/4 3-3/8 3/4 5	11,715	1	12,830	1	14,815	1	16,400		16,400		
	3-3/8	7,080	11 570	7,750	11 570	8,955	11.570	12,125	44 570	14,000	11,570
	5	16,965	11,570	18,580		21,330		21,330	11,570	21,330	

1. Tabulated load values are applicable to single anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for Power-Stud HD5 in Normal-Weight Concrete^{1,2,3,4,5}

Nominal	Minimum				Minimum Co	oncrete Comp	ressive Streng	th - f'c (psi)			
Anchor Diameter	Embedment Depth	2,50	0 psi	3,00	0 psi	4,00	0 psi	6,00	0 psi	8,00	0 psi
in.	in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.
3/8	1-3/4	620	980	680	980	785	000	805	980	930	000
3/8	2-3/8	905	980	990	980	1,145	980	1,370	980	1,580	980
	2	675		740		850		1,045		1,205	
1/2	2-1/2	1,035	1,050	1,135	1,050	1,310	1,050	1,605	1,050	1,855	1,050
	3-3/4	2,145		2,350		2,575		2,575		2,575	
	2-1/2	1,030		1,125		1,300		1,595		1,840	
5/8	3-3/8	1,825	1,705	2,000	1,705	2,310	1,705	2,830	1,705	3,265	1,705
	4-5/8	2,930	2,930	3,210		3,705		4,100		4,100	
2/4	3-3/8	1,770		1,940	0.005	2,240	0.005	3,030	0.00F	3,500	0.005
3/4	5	4,240	2,695	4,645	2,895	5,335	2,895	5,335	2,895	5,335	2,895

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. For lightweight concrete multiply tabulated allowable load values by a reduction factor of 0.60.

Spacing Distance Tension (F_{NS}) Adjustment Factors for Normal-Weight Concrete

				Spaci	ng Distance -	Tension (F _{NS})					
Di	ameter, d (in)	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4
Minimun	n Embedment, h _v (in)	1-3/4	2-3/8	2	2-1/2	3-3/4	2-3/8	3-3/8	4-5/8	3-3/8	5
Minimu	m Spacing, Smin (in)	5-1/4	3-3/4	6	7-1/4	5	7-1/8	10-1/8	4-1/4	9	6
	3-3/4	-	0.80	-	-	-	-	-	-	-	-
	4	-	0.82	-	-	-	-	-	-	-	-
	4-1/4	-	0.83	-	-	-	-	-	0.69	-	-
	4-1/2	-	0.85	-	-	-	-	-	0.70	-	-
	5	-	0.88	-	-	0.75	-	-	0.71	-	-
	5-1/2	1.00	0.91	-	-	0.77	-	-	0.73	-	-
	6	1.00	0.93	1.00	-	0.79	-	-	0.74	-	0.74
	6-1/2	1.00	0.96	1.00	-	0.81	-	-	0.76	-	0.75
	7	1.00	0.99	1.00	-	0.83	-	-	0.78	-	0.77
(Si	7-1/4	1.00	1.00	1.00	0.99	0.84	-	-	0.78	-	0.78
Iche	7-1/2	1.00	1.00	1.00	1.00	0.85	1.00	-	0.79	-	0.78
Spacing Distance (inches)	8	1.00	1.00	1.00	1.00	0.87	1.00	-	0.81	-	0.80
ance	8-1/2	1.00	1.00	1.00	1.00	0.89	1.00	-	0.83	-	0.81
lista	9	1.00	1.00	1.00	1.00	0.91	1.00	-	0.84	0.94	0.83
191	9-1/2	1.00	1.00	1.00	1.00	0.93	1.00	-	0.86	0.97	0.84
acii	10	1.00	1.00	1.00	1.00	0.95	1.00	-	0.87	0.99	0.86
Sp	10-1/2	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.89	1.00	0.87
	11	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.91	1.00	0.88
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	0.90
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	0.91
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.93
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.94
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.96
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Edge Distance Tension (F_{NC}) Adjustment Factors for Normal-Weight Concrete

	•			Edge D)istance - Ter	ision (FNC)					
C	Diameter, d (in)	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4
Minimu	m Embedment, h, (in)	1-3/4	2-3/8	2	2-1/2	3-3/4	2-3/8	3-3/8	4-5/8	3-3/8	5
Minimum	Edge Distance, cmin (in)	3	2-1/4	4	5-1/4	4	4-1/4	5-1/2	4-1/4	5	4-1/2
	2-1/4	-	0.35	-	-	-	-	-	-	-	-
	2-1/2	-	0.38	-	-	-	-	-	-	-	-
	3	0.60	0.46	-	-	-	-	-	-	-	-
	3-1/2	0.70	0.54	-	-	-	-	-	-	-	-
	4	0.80	0.62	0.50	-	0.50	-	-	-	-	-
	4-1/4	0.85	0.65	0.53	-	0.53	0.53	-	0.43	-	-
	4-1/2	0.90	0.69	0.56	-	0.56	0.56	-	0.45	-	0.38
	5	1.00	0.77	0.63	-	0.63	0.63	-	0.50	1.00	0.42
(se	5-1/4	1.00	0.81	0.66	0.62	0.66	0.66	-	0.53	1.00	0.44
Edge Distance (inches)	5-1/2	1.00	0.85	0.69	0.65	0.69	0.69	0.92	0.55	1.00	0.46
e (ji	6	1.00	0.92	0.75	0.71	0.75	0.75	1.00	0.60	1.00	0.50
anc	6-1/2	1.00	1.00	0.81	0.76	0.81	0.81	1.00	0.65	1.00	0.54
Dista	7	1.00	1.00	0.88	0.82	0.88	0.88	1.00	0.70	1.00	0.58
gel	7-1/2	1.00	1.00	0.94	0.88	0.94	0.94	1.00	0.75	1.00	0.63
E	8	1.00	1.00	1.00	0.94	1.00	1.00	1.00	0.80	1.00	0.67
	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.85	1.00	0.71
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	0.75
	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.79
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

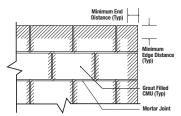
				Spac	ing Distance	- Shear (Fvs)					
Dia	ameter, d (in)	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4
Minimum	Embedment, h, (in)	1-3/4	2-3/8	2	2-1/2	3-3/4	2-3/8	3-3/8	4-5/8	3-3/8	5
Minimu	m Spacing, Smin (in)	5-1/4	3-3/4	6	7-1/4	5	7-1/8	11	4-1/4	9	6
	3-3/4	-	0.87	-	-	-	-	-	-	-	-
	4	-	0.88	-	-	-	-	-	-	-	-
	4-1/4	-	0.89	-	-	-	-	-	0.78	-	-
	4-1/2	-	0.90	-	-	-	-	-	0.79	-	-
	5	-	0.92	-	-	0.82	-	-	0.80	-	-
	5-1/2	1.00	0.94	-	-	0.84	-	-	0.81	-	-
	6	1.00	0.96	1.00	-	0.85	-	-	0.82	-	0.82
	6-1/2	1.00	0.98	1.00	-	0.87	-	-	0.83	-	0.83
	7	1.00	1.00	1.00	-	0.88	-	-	0.84	-	0.84
(sa	7-1/2	1.00	1.00	1.00	1.00	0.89	1.00	-	0.85	-	0.85
inch	8	1.00	1.00	1.00	1.00	0.91	1.00	-	0.87	-	0.86
Spacing Distance (inches)	8-1/2	1.00	1.00	1.00	1.00	0.92	1.00	-	0.88	-	0.87
stan	9	1.00	1.00	1.00	1.00	0.94	1.00	-	0.89	0.96	0.88
jDi	9-1/2	1.00	1.00	1.00	1.00	0.95	1.00	-	0.90	0.98	0.89
acini	10	1.00	1.00	1.00	1.00	0.96	1.00	-	0.91	1.00	0.90
Spa	10-1/2	1.00	1.00	1.00	1.00	0.98	1.00	-	0.92	1.00	0.91
	11	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.93	1.00	0.92
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.93
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.94
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.95
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	0.96
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.97
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Spacing Distance Shear (Fvs) Adjustment Factors for Normal-Weight Concrete

Edge Distance Shear (F_{VC}) Adjustment Factors for Normal-Weight Concrete

Edge Distance - Shear (Fvc)																							
Diameter, d (in) Minimum Embedment, h√ (in) Minimum Edge Distance, cmin (in)		3/8 1-3/4 5	3/8 2-3/8 6-1/2	1/2 2 6	1/2 2-1/2 8-1/2	1/2 3-3/4 8	5/8 2-3/8 7-1/8	5/8 3-3/8 6	5/8 4-5/8 10	3/4 3-3/8 5	3/4 5 12												
												Edge Distance (inches)	5	0.95	-	-	-	-	-	-	-	0.49	-
													5-1/2	1.00	-	-	-	-	-	-	-	0.54	-
6	1.00	-	1.00	-	-	-	0.59	-	0.59	-													
6-1/2	1.00	0.91	1.00	-	-	-	0.64	-	0.64	-													
7	1.00	0.98	1.00	-	-	-	0.69	-	0.69	-													
7-1/2	1.00	1.00	1.00	-	-	1.00	0.74	-	0.74	-													
8	1.00	1.00	1.00	-	0.71	1.00	0.79	-	0.79	-													
8-1/2	1.00	1.00	1.00	1.00	0.76	1.00	0.84	-	0.84	-													
9	1.00	1.00	1.00	1.00	0.80	1.00	0.89	-	0.89	-													
9-1/2	1.00	1.00	1.00	1.00	0.84	1.00	0.94	-	0.94	-													
10	1.00	1.00	1.00	1.00	0.89	1.00	0.99	0.72	0.99	-													
10-1/2	1.00	1.00	1.00	1.00	0.93	1.00	1.00	0.76	1.00	-													
11	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.79	1.00	-													
11-1/4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.81	1.00	-													
11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83	1.00	-													
12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.86	1.00	0.80													
12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	0.83													
13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	0.87													
13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.90													
14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93													
14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97													
15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00													

(A_SD)


Ultimate and Allowable Load Capacities for Power-Stud HD5 in Grout-filled Concrete Masonry^{1,2,3}

0				Ultimat	e Loads	Allowab	le Loads
Anchor Diameter d in.	Minimum Embed. h√ in.	Minimum Edge Distance in.	Minimum End Distance in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.
3/8	1-1/2	4	4	1,185	1,340	235	270
1/0	0	4	4	1,670	2,110	335	420
1/2	2	12	12	1,860	2,560	370	510
F /0	0.0/0	4	4	2,155	2,110	430	420
5/8	2-3/8	12	12	2,850	5,225	570	1,045
0/4	0.0/0	12	12	5,660	8,115	1,130	1,625
3/4	3-3/8	20	20	5,660	9,360	1,130	1,870

1. Tabulated load values are for anchors installed in minimum 6" wide, Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C90. Mortar must be minimum Type N. Masonry compressive strength must be at specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0.

3. The tabulated values are for anchors installed at a minimum spacing of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing. Anchors with 3/4-inch diameter are limited to one anchor per cell.

Wall Face Permissible Anchor Locations (Un-hatched Area)

ORDERING INFORMATION

Power-Stud HD5 (Carbon Steel Body and Stainless Steel Expansion Clip)

		Thread	Dook	Conton		Suggeste	ed ANSI Carbid	le Drill Bit	
Cat. No.	Anchor Size	Thread Length	Pack Qty.	Carton Qty.	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max
7713HD5-PWR	3/8" x 3"	1-1/2"	50	300	DW5527	DW5427	-	-	-
7715HD5-PWR	3/8" x 3-3/4"	2-3/8"	50	300	DW5527	DW5427	-	-	-
7716HD5-PWR	3/8" x 5"	3-1/2"	50	300	DW55300	DW5429	-	-	-
7717HD5-PWR	3/8" x 7"	5-1/2"	50	200	DW55300	DW5429	-	-	-
7720HD5-PWR	1/2" x 2-3/4"	1"	50	200	DW5537	DW5437	DW5803	DWA54012	-
7722HD5-PWR	1/2" x 3-3/4"	2"	50	200	DW5537	DW5437	DW5803	DWA54012	-
7723HD5-PWR	1/2" x 4-1/2"	2-3/4"	50	200	DW5539	DW5438	DW5803	DWA54012	-
7724HD5-PWR	1/2" x 5-1/2"	3-3/4"	50	150	DW5539	DW5438	DW5803	DWA54012	-
7726HD5-PWR	1/2" x 7"	5-1/4"	25	100	DW5539	DW5438	DW5803	DWA54012	-
7730HD5-PWR	5/8" x 3-1/2"	1-1/2"	25	100	-	DW5446	DW5806	DWA54058	DWA58058
7733HD5-PWR	5/8" x 5"	3"	25	100	-	DW5446	DW5806	DWA54058	DWA58058
7734HD5-PWR	5/8" x 6"	4"	25	75	-	DW5446	DW5806	DWA54058	DWA58058
7738HD5-PWR	5/8" x 8-1/2"	6-1/2"	25	50	-	DW5447	DW5809	DWA54058	DWA58058
7741HD5-PWR	3/4" x 4-3/4"	2-1/4"	20	60	-	DW5453	DW5810	DWA54034	DWA58034
7742HD5-PWR	3/4" x 5-1/2"	3"	20	60	-	DW5453	DW5810	DWA54034	DWA58034
7746HD5-PWR	3/4" x 7"	4-1/2"	20	60	-	DW5455	DW5810	DWA54034	DWA58034
7748HD5-PWR	3/4" x 8-1/2"	6"	10	40	-	DW5455	DW5812	DWA54034	DWA58034

Allow for fixture thickness plus one anchor diameter for the nut and washer thickness when selecting a length.

All anchors are packaged with nuts and washers.

Hollow drill bits must be used with a dust extraction vacuum (e.g. DW012).

TECHNICAL GUIDE – MECHANICAL ANCHORS ©2022 DEWALT – REV. D

Hot-Dip Galvanized Wedge Expansion Anchor

5

Ø

ţ

Ë

GENERAL INFORMATION

SCREW-BOLT+[™]

High Performance Screw Anchor

PRODUCT DESCRIPTION

The Screw-Bolt+ anchor is a one piece, heavy duty screw anchor with a finished hex head or flat head (countersunk). Suitable base materials include normal-weight concrete, sand-lightweight concrete, concrete over steel deck, concrete masonry and solid clay brick. It is simple to install, easy to identify and fully removable. The patented thread design, designed for use with standard ANSI drill bits, reduces installation torque and enhances productivity. The steel threads along the anchor body tap into the hole during installation to provide keyed engagement and allow for reduced edge and spacing distances. The Screw-Bolt+ is available as bright zinc-plated or mechanically galvanized plating.

GENERAL APPLICATIONS AND US

- Racking, shelving and material handling
- Support ledgers and sill plate attachments
- Barriers, guards and temporary supports
- Glazing and window attachments
- Retrofits, repairs and maintenance
- Fencing, railing and stair stringers
- · Cracked and uncracked concrete
- Seismic and wind loading (SDC A F)

FEATURES AND BENEFITS

- + Designed for standard ANSI tolerance drill bits
- + Patented thread design offers toughened threads for tapping high strength concrete
- + Low installation torque in concrete and masonry
- + Universal product for concrete and grouted/solid masonry
- + Ratchet teeth on underside of hex washer head lock against the fixture
- + Can be installed closer to a free edge than traditional expansion anchors
- + Fully removable and reinstallable in same hole (see www.DEWALT.com)
- + Fast installation with powered impact wrench, but can also be installed manually
- + Diameter, length and identifying marking stamped on head of each anchor
- + One-piece, finished head design

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3889 for concrete
- International Code Council, Evaluation Service (ICC-ES), ESR-4042 for masonry
- Code Compliant with the International Building Code/International Residential Code: 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ACI 355.2. ASTM E488 and ICC-ES AC193 for use in structural applications in concrete under the design provisions of ACI 318 (Strength Design Method)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor Category 1)
- Evaluated and gualified by an accredited independent testing laboratory for sensitivity and reliability against brittle failure, e.g. hydrogen embrittlement

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors, Screw anchors shall be Screw-Bolt+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

	Anchor component	Specification
Anc	hor Body and hex washer head	Case hardened carbon steel
Plating	Standard zinc plated version	Zinc plating according to ASTM B633, SC1 Type III (Fe/Zn 5). Minimum plating requirements for Mild Service Condition
Ы	Mechanically galvanized version	Mechanically Galvanized Zinc plating according to ASTM B695, Class 55

SECTION CONTENTS

General Information	.180
Installation Specifications	.181
Installation Instructions	.181
Performance Data (ASD)	.182
Strength Design Information	.189
Design Strength Tables (SD)	.195
Ordering Information	.197

HEAD STYLES

Hex Washer Head or Flat Head

ANCHOR MATERIALS

· Zinc plated carbon steel or mechanically galvanized plating

ANCHOR SIZE RANGE (TYP.)

• 1/4" through 3/4" diameters

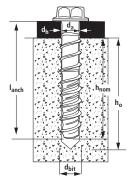
SUITABLE BASE MATERIALS

- Normal-weight concrete
- · Lightweight concrete
- Concrete over steel deck
- Grouted Concrete Masonry (CMU)
- Brick Masonry

•

?

ligh Performance Screw Anchor EW-BOI


6 5

INSTALLATION SPECIFICATIONS

h

h₀

Screw-Bolt+ Anchor Detail

No	ome	encla	ture		
da	=	Diam	eter o	f Ancho	10

- Diameter of Anchor
- dbit = Diameter of Drill Bit = Diameter of Clearance Hole dh
 - Base Material Thickness.
- hnom = Minimum Nominal Embedment = Minimum Hole Depth

Legend

Legend

Diameter and Length

Identification Mark

Head Marking

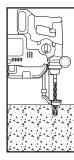
Flat Head Diameter and Length (countersunk) Identification Mark

Hex Head

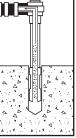
Washer

. Serrated

Underside


Installation Specifications for Screw-Bolt+ in Concrete and Supplemental Information

	Anchor Property/				Nom	inal Anchor Diameter	(inch)	
	Setting Information	Notation	Units	1/4	3/8	1/2	5/8	3/4
Anc	hor outside diameter	d _a (d)	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Nor	ninal drill bit diameter (ANSI)	d _{bit}	in.	1/4	3/8	1/2	5/8	3/4
	imum diameter of hole arance in fixture	Сh	in. (mm)	11/32 (8.7)	1/2 (12.7)	5/8 (15.9)	3/4 (19.1)	7/8 (22.2)
Min	imum embedment depth ¹	hnom	in. (mm)	1 (25)	1-1/2 (38)	1-3/4 (44)	2-1/2 (64)	2-1/2 (64)
Min	imum hole depth	h₀	in. (mm)			h _{nom} + 3/8 (9.5)		
Min	imum member thickness	h _{min}	in. (mm)			h _{nom} + 2 (51)		
Min	imum edge distance	Cmin	in. (mm)	1-1/2 (38)	1-1/2 (38)	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)
Min	imum spacing	Smin	in. (mm)	1-1/2 (38)	2 (51)	2-3/4 (70)	2-3/4 (70)	3 (76)
Max	manual installation torque	T _{inst,max}	ftlbf. (N-m)	19 (26)	25 (34)	45 (61)	60 (81)	70 (95)
	(impact wrench power que)	Timpact,max	ftlbf. (N-m)	150 (203)	300 (407)	300 (407)	700 (950)	700 (950)
ad	Impact wrench socket size	-	in.	7/16	9/16	3/4	15/16	1-1/8
Hex Head	Maximum head height	-	in.	21/64	3/8	31/64	37/64	43/64
He	Maximum washer diameter	-	in.	37/64	3/4	1-1/16	1-1/8	1-13/32
-	Driver Size	-	in.	T-30	T-50	T-55	-	-
leac	Max head height	-	in.	13/64	21/64	11/32	-	-
Flat Head	Max head diameter	-	in.	17/32	57/64	1	-	-
	Countersunk angle	-	in.	82	82	82	-	-
	ctive tensile stress area ew anchor body)	Ase	in²	0.045	0.094	0.176	0.274	0.399
Min	imum ultimate strength	futa	psi	100,000	105,000	115,000	95,000	95,000
Min	imum yield strength	fv	psi	80,000	84,000	92,000	76,000	76,000


4. See load capacities for Screw-Bolt+ in normal weight concrete for additional nominal embedment depths.

INSTALLATION INSTRUCTIONS

Installation Instructions for Screw-Bolt+ (Hex Head Version Illustrated, Flat Head Version Not Shown)

Remove dust and debris from hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created during drilling.

Step 2

Select a torque wrench or powered impact wrench and do not exceed the maximum torque, Tinst,max or Timpact,max respectively for the selected anchor diameter and embedment. Attach an appropriate sized hex socket/driver to the impact wrench. Mount the screw anchor head into the socket.

Step 3

Step 4 Drive the anchor into the hole until the head of the anchor comes into contact with the fixture. The anchor must be snug after installation. Do not spin the hex socket off the anchor to disengage.

1-800-4 DEWALT

PERFORMANCE DATA (ASD)

Ultimate Load Capacities for Screw-Bolt+ in Normal-Weight Concrete^{1,2}

	Minimum				Minim	um Concrete C	ompressive S	trength			
Nominal Anchor Diameter	Nominal Embedment		,500 psi MPa)	f ⁱ c = 3, (20.7	000 psi MPa)		000 psi MPa)	f'c = 6, (41.4	000 psi MPa)	f'c = 8, (55.2	000 psi MPa)
in.	Depth	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shea
	in.	Ibs	Ibs	Ibs	Ibs	Ibs	Ibs	Ibs	Ibs	Ibs	Ibs
	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	1	1,325	1,660	1,400	1,755	1,530	1,910	1,725	2,080	1,725	2,08
	(25)	(5.9)	(7.4)	(6.2)	(7.8)	(6.8)	(8.5)	(7.7)	(9.3)	(7.7)	(9.3)
1/4	1-5/8	2,835	1,660	2,995	1,755	3,265	1,910	3,265	2,080	3,265	2,08
	(41)	(12.6)	(7.4)	(13.3)	(7.8)	(14.5)	(8.5)	(14.5)	(9.3)	(14.5)	(9.3
	2-1/2	3,650	2,025	3,855	2,140	4,200	2,335	4,270	2,545	4,270	2,54
	(64)	(16.2)	(9.0)	(17.1)	(9.5)	(18.7)	(10.4)	(19.0)	(11.3)	(19.0)	(11.3
	1-1/2	2,630	3,550	2,880	3,890	3,330	4,490	4,075	5,500	4,075	6,35
	(38)	(11.7)	(15.8)	(12.8)	(17.3)	(14.8)	(20.0)	(18.1)	(24.5)	(18.1)	(28.3
	2	3,670	4,320	4,020	4,735	4,645	5,465	4,725	6,345	5,455	6,34
	(51)	(16.3)	(19.2)	(17.9)	(21.1)	(20.7)	(24.3)	(21.0)	(28.2)	(24.3)	(28.2
3/8	2-1/2	5,175	4,320	5,670	4,740	6,410	5,460	6,456	6,340	7,420	6,34
	(64)	(23.0)	(19.2)	(25.2)	(21.1)	(28.5)	(24.3)	(28.7)	(28.2)	(33.0)	(28.2
	3-1/4 (83)	7,420 (33.0)	6,325 (28.1)	8,130 (36.2)	6,930 (30.8)	9,065 (40.3)	8,000 (35.6)	9,065 (40.3)	8,565 (38.1)	10,350 (46.0)	8,56 (38. ⁻
	4-1/2	10,905	6,325	11,945	6,930	13,795	8,000	15,075	8,565	15,075	8,56
	(114)	(48.5)	(28.1)	(53.1)	(30.8)	(61.4)	(35.6)	(67.1)	(38.1)	(67.1)	(38.1
	1-3/4 (44)	2,840 (12.6)	5,985 (26.6)	3,115 (13.9)	6,555 (29.2)	3,595 (16.0)	7,570 (33.7)	4,400 (19.6)	9,270 (41.2)	4,400 (19.6)	10,70
	2-1/2	6,680	8,035	7,320	8,800	8,450	10,160	8,450	11,545	8,450	11,54
	(64)	(29.7)	(35.7)	(32.6)	(39.1)	(37.6)	(45.2)	(37.6)	(51.4)	(37.6)	(51.4
1/2	3 (76)	8,560 (38.0)	8,040 (35.8)	9,375 (41.7)	8,800 (39.1)	10,750 (47.8)	10,160 (45.2)	10,750 (47.8)	11,540 (51.3)	10,750 (47.8)	11,54
	4-1/4 (108)	13,260 (59.0)	9,395 (41.8)	14,525 (64.6)	10,290 (45.8)	16,480 (73.3)	11,885 (52.9)	16,480 (73.3)	13,520 (60.1)	16,480 (73.3)	13,52
	5-1/2	15,730	9,395	17,235	10,290	19,900	11,885	21,310	13,520	21,310	13,52
	(140)	(70.0)	(41.8)	(76.7)	(45.8)	(88.5)	(52.9)	(94.8)	(60.1)	(94.8)	(60.1
	2-1/2	5,735	10,615	6,285	11,630	7,255	13,425	8,885	16,445	8,885	17,17
	(64)	(25.5)	(47.2)	(28.0)	(51.7)	(32.3)	(59.7)	(39.5)	(73.2)	(39.5)	(76.4
	3-1/4	9,755	12,065	10,685	13,220	12,340	15,265	12,340	17,170	12,340	17,17
	(83)	(43.4)	(53.7)	(47.5)	(58.8)	(54.9)	(67.9)	(54.9)	(76.4)	(54.9)	(76.4
5/8	4	11,770	12,060	12,890	13,220	14,880	15,260	15,325	17,180	16,600	17,18
	(102)	(52.4)	(53.6)	(57.3)	(58.8)	(66.2)	(67.9)	(68.2)	(76.4)	(73.8)	(76.4
	5	14,455	13,675	15,830	14,980	18,280	17,295	19,295	19,485	22,280	19,48
	(127)	(64.3)	(60.8)	(70.4)	(66.6)	(81.3)	(76.9)	(85.8)	(86.7)	(99.1)	(86.7
	6-1/4	20,520	13,675	22,475	14,980	25,955	17,295	31,785	19,485	31,785	19,48
	(159)	(91.3)	(60.8)	(100.0)	(66.6)	(115.5)	(76.9)	(141.4)	(86.7)	(141.4)	(86.7
	2-1/2	6,035	11,615	6,610	12,725	7,635	14,690	9,350	17,995	9,350	20,77
	(64)	(26.8)	(51.7)	(29.4)	(56.6)	(34.0)	(65.3)	(41.6)	(80.0)	(41.6)	(92.4
3/4	4-1/4	11,900	17,055	13,035	18,685	15,050	21,575	17,745	24,270	20,490	24,27
	(108)	(52.9)	(75.9)	(58.0)	(83.1)	(66.9)	(96.0)	(78.9)	(108.0)	(91.1)	(108.
J/4	5	19,020	17,055	20,835	18,685	24,055	21,575	29,460	24,270	29,460	24,27
	(127)	(84.6)	(75.9)	(92.7)	(83.1)	(107.0)	(96.0)	(131.0)	(108.0)	(131.0)	(108.
	6-1/4	20,495	17,055	22,450	18,685	25,920	21,575	31,750	24,270	31,750	24,27
	(159)	(91.2)	(75.9)	(99.9)	(83.1)	(115.3)	(96.0)	(141.2)	(108.0)	(141.2)	(108.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for Screw-Bolt+ in Normal-Weight Concrete^{1,2,3,4,5}

					Minim	um Concrete C	ompressive S	trength			
Nominal Anchor	Minimum Nominal Embedment	f'c = 2, (17.3	500 psi MPa)		,000 psi MPa)	f'c = 4, (27.6	000 psi MPa)	f'c = 6, (41.4	000 psi MPa)		,000 psi MPa)
Diameter in.	Depth in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)								
	1	330	415	350	440	385	480	430	520	430	520
	(25)	(1.5)	(1.8)	(1.6)	(2.0)	(1.7)	(2.1)	(1.9)	(2.3)	(1.9)	(2.3)
1/4	1-5/8	710	415	750	440	815	480	815	520	815	520
	(41)	(3.2)	(1.8)	(3.3)	(2.0)	(3.6)	(2.1)	(3.6)	(2.3)	(3.6)	(2.3)
	2-1/2	915	505	965	535	1,050	585	1,070	635	1,070	635
	(64)	(4.1)	(2.2)	(4.3)	(2.4)	(4.7)	(2.6)	(4.8)	(2.8)	(4.8)	(2.8)
	1-1/2	660	890	720	975	835	1,125	1,020	1,375	1,020	1,590
	(38)	(2.9)	(4.0)	(3.2)	(4.3)	(3.7)	(5.0)	(4.5)	(6.1)	(4.5)	(7.1)
	2	920	1,080	1,005	1,185	1,160	1,365	1,180	1,585	1,365	1,585
	(51)	(4.1)	(4.8)	(4.5)	(5.3)	(5.2)	(6.1)	(5.2)	(7.1)	(6.1)	(7.1)
3/8	2-1/2	1,295	1,080	1,415	1,185	1,600	1,365	1,615	1,585	1,855	1,585
	(64)	(5.8)	(4.8)	(6.3)	(5.3)	(7.1)	(6.1)	(7.2)	(7.1)	(8.3)	(7.1)
	3-1/4	1,855	1,580	2,035	1,735	2,265	2,000	2,265	2,140	2,590	2,140
	(83)	(8.3)	(7.0)	(9.1)	(7.7)	(10.1)	(8.9)	(10.1)	(9.5)	(11.5)	(9.5)
	4-1/2	2,725	1,580	2,985	1,735	3,450	2,000	3,770	2,140	3,770	2,140
	(114)	(12.1)	(7.0)	(13.3)	(7.7)	(15.3)	(8.9)	(16.8)	(9.5)	(16.8)	(9.5)
	1-3/4	710	1,495	780	1,640	900	1,895	1,100	2,320	1,100	2,675
	(44)	(3.2)	(6.7)	(3.5)	(7.3)	(4.0)	(8.4)	(4.9)	(10.3)	(4.9)	(11.9)
	2-1/2	1,670	2,010	1,830	2,200	2,115	2,540	2,115	2,885	2,115	2,885
	(64)	(7.4)	(8.9)	(8.1)	(9.8)	(9.4)	(11.3)	(9.4)	(12.8)	(9.4)	(12.8)
1/2	3	2,140	2,010	2,345	2,200	2,690	2,540	2,690	2,885	2,690	2,885
	(76)	(9.5)	(8.9)	(10.4)	(9.8)	(11.9)	(11.3)	(11.9)	(12.8)	(11.9)	(12.8)
	4-1/4	3,315	2,350	3,630	2,575	4,120	2,970	4,120	3,380	4,120	3,380
	(108)	(14.7)	(10.5)	(16.1)	(11.5)	(18.3)	(13.2)	(18.3)	(15.0)	(18.3)	(15.0)
	5-1/2	3,935	2,350	4,310	2,575	4,975	2,970	5,330	3,380	5,330	3,380
	(140)	(17.5)	(10.5)	(19.2)	(11.5)	(22.1)	(13.2)	(23.7)	(15.0)	(23.7)	(15.0)
	2-1/2	1,435	2,655	1,570	2,910	1,815	3,355	2,220	4,110	2,220	4,295
	(64)	(6.4)	(11.8)	(7.0)	(12.9)	(8.1)	(14.9)	(9.9)	(18.3)	(9.9)	(19.1)
	3-1/4	2,440	3,015	2,670	3,305	3,085	3,815	3,085	4,295	3,085	4,295
	(83)	(10.9)	(13.4)	(11.9)	(14.7)	(13.7)	(17.0)	(13.7)	(19.1)	(13.7)	(19.1)
5/8	4	2,940	3,015	3,225	3,305	3,720	3,815	3,830	4,295	4,150	4,295
	(102)	(13.1)	(13.4)	(14.3)	(14.7)	(16.5)	(16.9)	(17.0)	(19.1)	(18.5)	(19.1)
	5	3,615	3,420	3,960	3,745	4,570	4,325	4,825	4,870	5,570	4,870
	(127)	(16.1)	(15.2)	(17.6)	(16.7)	(20.3)	(19.2)	(21.5)	(21.7)	(24.8)	(21.7)
	6-1/4	5,130	3,420	5,620	3,745	6,490	4,325	7,945	4,870	7,945	4,870
	(159)	(22.8)	(15.2)	(25.0)	(16.7)	(28.9)	(19.2)	(35.3)	(21.7)	(35.3)	(21.7)
	2-1/2	1,510	2,905	1,655	3,180	1,910	3,675	2,340	4,500	2,340	5,195
	(64)	(6.7)	(12.9)	(7.4)	(14.1)	(8.5)	(16.3)	(10.4)	(20.0)	(10.4)	(23.1)
3/4 -	4-1/4 (108)	2,975 (13.2)	4,265 (19.0)	3,260 (14.5)	4,670 (20.8)	3,765 (16.7)	5,395 (24.0)	4,435 (19.7)	6,070 (27.0)	5,125 (22.8)	6,070 (27.0)
	5 (127)	4,755 (21.2)	4,265 (19.0)	5,210 (23.2)	4,670 (20.8)	6,015 (26.8)	5,395 (24.0)	7,365 (32.8)	6,070 (27.0)	7,365 (32.8)	6,070 (27.0)
	6-1/4	5,125	4,265	5,615	4,670	6,480	5,395	7,940	6,070	7,940	6,070
	(159)	(22.8)	(19.0)	(25.0)	(20.8)	(28.8)	(24.0)	(35.3)	(27.0)	(35.3)	(27.0)

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0 to average ultimate load capacities.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. For lightweight concrete multiply tabulated allowable load values by a reduction factor of 0.60.

REW-BOLT+	

¢

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Dia	meter (in)		1/4				3/8					1/2					5/8				3/	/4	
Em	lominal nbedment hnom (in)	1	1-5/8	2-1/2	1-1/2	2	2-1/2	3-1/4	4-1/2	1-3/4	2-1/2	3	4-1/4	5-1/2	2-1/2	3-1/4	4	5	6-1/4	2-1/2	4-1/4	5	6-1/4
	lin. Edge stance cmin (in)	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4
	1-1/2	1.00	0.77	0.64	0.85	0.74	0.67	0.59	0.55	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	1.00	0.83	0.67	0.93	0.79	0.71	0.62	0.57	0.87	0.71	0.65	0.58	0.54	0.73	0.65	0.60	0.56	0.53	0.73	0.59	0.56	0.53
	2	1.00	0.88	0.71	1.00	0.84	0.76	0.65	0.59	0.94	0.76	0.68	0.60	0.56	0.78	0.68	0.63	0.58	0.54	0.78	0.61	0.58	0.54
	2-1/4	1.00	0.94	0.75	1.00	0.89	0.80	0.68	0.61	1.00	0.80	0.71	0.63	0.57	0.82	0.71	0.65	0.60	0.56	0.82	0.63	0.60	0.56
	2-1/2	1.00	1.00	0.78	1.00	0.95	0.84	0.71	0.63	1.00	0.84	0.74	0.65	0.59	0.87	0.75	0.68	0.62	0.57	0.87	0.66	0.62	0.57
	2-3/4	1.00	1.00	0.82	1.00	1.00	0.88	0.74	0.65	1.00	0.88	0.77	0.67	0.61	0.91	0.78	0.70	0.64	0.59	0.91	0.68	0.64	0.59
	3	1.00	1.00	0.86	1.00	1.00	0.92	0.77	0.67	1.00	0.92	0.81	0.69	0.62	0.96	0.81	0.73	0.66	0.60	0.96	0.70	0.66	0.60
(SS	3-1/2	1.00	1.00	0.93	1.00	1.00	1.00	0.83	0.71	1.00	1.00	0.87	0.74	0.65	1.00	0.87	0.78	0.69	0.63	1.00	0.75	0.69	0.63
(inches)	4	1.00	1.00	1.00	1.00	1.00	1.00	0.88	0.75	1.00	1.00	0.94	0.78	0.69	1.00	0.94	0.83	0.73	0.66	1.00	0.79	0.73	0.66
	4-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.79	1.00	1.00	1.00	0.82	0.72	1.00	1.00	0.88	0.77	0.69	1.00	0.84	0.77	0.69
Distance	5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.87	0.75	1.00	1.00	0.93	0.81	0.72	1.00	0.89	0.81	0.72
Dist	5-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	1.00	0.91	0.79	1.00	1.00	0.98	0.85	0.75	1.00	0.93	0.85	0.75
Edge	6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	1.00	0.96	0.82	1.00	1.00	1.00	0.89	0.78	1.00	0.98	0.89	0.78
Ed	6-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	1.00	0.85	1.00	1.00	1.00	0.92	0.81	1.00	1.00	0.92	0.81
	7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	1.00	0.96	0.84	1.00	1.00	0.96	0.84
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	1.00	1.00	0.87	1.00	1.00	1.00	0.87
	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.90	1.00	1.00	1.00	0.90
	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.93	1.00	1.00	1.00	0.93
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.96
	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.99
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors - Tension (F_{NS})

_	meter (in)		1/4				3/8					1/2					5/8				3	/4	
N En	lominal Ibedment Nom (in)	1	1-5/8	2-1/2	1-1/2	2	2-1/2	3-1/4	4-1/2	1-3/4	2-1/2	3	4-1/4	5-1/2	2-1/2	3-1/4	4	5	6-1/4	2-1/2	4-1/4	5	6-1/4
	linimum acing smin (in)	1-1/2	1-1/2		2	2	2	2	2	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	3	3	3	3
	1-1/2	0.89	0.73	0.66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.94	0.77	0.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	1.00	0.80	0.70	0.88	0.77	0.71	0.67	0.63	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	1.00	0.83	0.72	0.93	0.80	0.74	0.69	0.64	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	1.00	0.86	0.74	0.97	0.83	0.76	0.70	0.65	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	1.00	0.89	0.76	1.00	0.86	0.78	0.72	0.66	0.92	0.78	0.74	0.67	0.64	0.80	0.73	0.69	0.65	0.63	-	-	-	-
	3	1.00	0.92	0.78	1.00	0.89	0.80	0.74	0.67	0.95	0.80	0.75	0.68	0.65	0.83	0.74	0.70	0.66	0.64	0.83	0.69	0.66	0.64
	3-1/2	1.00	0.99	0.82	1.00	0.94	0.85	0.77	0.70	1.00	0.85	0.79	0.71	0.67	0.88	0.78	0.73	0.68	0.65	0.88	0.71	0.68	0.65
	4	1.00	1.00	0.86	1.00	1.00	0.89	0.80	0.72	1.00	0.89	0.82	0.73	0.68	0.92	0.81	0.75	0.70	0.67	0.93	0.74	0.71	0.67
	4-1/2	1.00	1.00	0.90	1.00	1.00	0.93	0.83	0.74	1.00	0.93	0.86	0.75	0.70	0.97	0.85	0.78	0.72	0.68	0.97	0.76	0.73	0.69
(se	5	1.00	1.00	0.94	1.00	1.00	0.98	0.86	0.76	1.00	0.98	0.89	0.78	0.72	1.00	0.88	0.81	0.75	0.70	1.00	0.79	0.75	0.70
(inches)	5-1/2	1.00	1.00	0.97	1.00	1.00	1.00	0.89	0.78	1.00	1.00	0.93	0.80	0.74	1.00	0.92	0.83	0.77	0.72	1.00	0.81	0.77	0.72
	6	1.00	1.00	1.00	1.00	1.00	1.00	0.93	0.81	1.00	1.00	0.96	0.82	0.75	1.00	0.95	0.86	0.79	0.73	1.00	0.84	0.79	0.73
Distance	6-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.96	0.83	1.00	1.00	1.00	0.85	0.77	1.00	0.98	0.89	0.81	0.75	1.00	0.86	0.81	0.75
lista	7	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.85	1.00	1.00	1.00	0.87	0.79	1.00	1.00	0.91	0.83	0.76	1.00	0.89	0.83	0.77
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.87	1.00	1.00	1.00	0.90	0.81	1.00	1.00	0.94	0.85	0.78	1.00	0.91	0.85	0.78
Spacing	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	1.00	0.92	0.83	1.00	1.00	0.97	0.87	0.80	1.00	0.94	0.87	0.80
Sp	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	1.00	0.94	0.84	1.00	1.00	0.99	0.89	0.81	1.00	0.96	0.89	0.81
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	1.00	0.97	0.86	1.00	1.00	1.00	0.91	0.83	1.00	0.99	0.91	0.83
	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.99	0.88	1.00	1.00	1.00	0.93	0.84	1.00	1.00	0.93	0.85
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.90	1.00	1.00	1.00	0.95	0.86	1.00	1.00	0.95	0.86
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	1.00	0.97	0.88	1.00	1.00	0.97	0.88
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93	1.00	1.00	1.00	0.99	0.89	1.00	1.00	0.99	0.89
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	1.00	1.00	1.00	0.91
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	0.92	1.00	1.00	1.00	0.93
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.96
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.99
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors - Shear (F_{VC})

_	ye Dista				1401												- 10						
_	meter (in)		1/4				3/8					1/2	-				5/8				3/	4	
En	Nominal nbedment hoom (in)	1	1-5/8	2-1/2	1-1/2	2	2-1/2	3-1/4	4-1/2	1-3/4	2-1/2	3	4-1/4	5-1/2	2-1/2	3-1/4	4	5	6-1/4	2-1/2	4-1/4	5	6-1/4
	lin. Edge Distance Cmin(in)	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4
	1-1/2	0.58	0.63	0.59	0.40	0.37	0.39	0.31	0.32	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.68	0.73	0.69	0.46	0.43	0.45	0.36	0.38	0.35	0.31	0.36	0.30	0.31	0.27	0.26	0.32	0.25	0.26	0.26	0.22	0.22	0.23
	2	0.78	0.84	0.78	0.53	0.49	0.52	0.41	0.43	0.41	0.35	0.41	0.35	0.36	0.30	0.29	0.37	0.29	0.30	0.30	0.25	0.26	0.27
	2-1/4	0.87	0.94	0.88	0.59	0.55	0.58	0.46	0.48	0.46	0.40	0.46	0.39	0.40	0.34	0.33	0.41	0.32	0.33	0.33	0.28	0.29	0.30
	2-1/2	0.97	1.00	0.98	0.66	0.61	0.64	0.51	0.54	0.51	0.44	0.51	0.43	0.45	0.38	0.36	0.46	0.36	0.37	0.37	0.31	0.32	0.33
(SE	2-3/4	1.00	1.00	1.00	0.73	0.67	0.71	0.56	0.59	0.56	0.49	0.56	0.48	0.49	0.42	0.40	0.51	0.40	0.41	0.41	0.34	0.35	0.37
(inches)	3	1.00	1.00	1.00	0.79	0.73	0.77	0.61	0.64	0.61	0.53	0.61	0.52	0.54	0.46	0.44	0.55	0.43	0.45	0.44	0.38	0.39	0.40
	3-1/2	1.00	1.00	1.00	0.92	0.85	0.90	0.72	0.75	0.71	0.62	0.72	0.61	0.63	0.53	0.51	0.64	0.50	0.52	0.52	0.44	0.45	0.47
Distance	4	1.00	1.00	1.00	1.00	0.97	1.00	0.82	0.86	0.81	0.71	0.82	0.69	0.72	0.61	0.58	0.74	0.57	0.59	0.59	0.50	0.51	0.53
list	4-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.92	0.97	0.91	0.80	0.92	0.78	0.81	0.68	0.66	0.83	0.65	0.67	0.67	0.56	0.58	0.60
	5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.89	1.00	0.87	0.90	0.76	0.73	0.92	0.72	0.74	0.74	0.63	0.64	0.66
Edge	5-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.95	0.99	0.84	0.80	1.00	0.79	0.82	0.82	0.69	0.71	0.73
	6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.88	1.00	0.86	0.89	0.89	0.75	0.77	0.80
	6-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.95	1.00	0.93	0.97	0.96	0.81	0.84	0.86
	7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	0.90	0.93
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.96	1.00
	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors - Shear (Fvs)

											1/2	_				5/8				3/	4		
l En	Nominal Nedment hnom (in)	1	1-5/8	2-1/2	1-1/2	2	2-1/2	3-1/4	4-1/2	1-3/4	2-1/2	3	4-1/4	5-1/2	2-1/2	3-1/4	4	5	6-1/4	2-1/2		5	6-1/4
	linimum acing smin (in)	1-1/2	1-1/2	1-1/2	2	2	2	2	2	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	3	3	3	3
	1-1/2	0.60	0.60	0.60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.61	0.62	0.61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.63	0.64	0.63	0.59	0.58	0.59	0.57	0.57	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	0.65	0.66	0.65	0.60	0.59	0.60	0.58	0.58	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.66	0.67	0.66	0.61	0.60	0.61	0.59	0.59	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	0.68	0.69	0.68	0.62	0.61	0.62	0.59	0.60	0.59	0.58	0.59	0.58	0.58	0.57	0.57	0.58	0.57	0.57	-	-	-	-
	3	0.69	0.71	0.70	0.63	0.62	0.63	0.60	0.61	0.60	0.59	0.60	0.59	0.59	0.58	0.57	0.59	0.57	0.57	0.57	0.56	0.56	0.57
	3-1/2	0.73	0.74	0.73	0.65	0.64	0.65	0.62	0.63	0.62	0.60	0.62	0.60	0.60	0.59	0.59	0.61	0.58	0.59	0.59	0.57	0.57	0.58
	4	0.76	0.78	0.76	0.68	0.66	0.67	0.64	0.64	0.64	0.62	0.64	0.62	0.62	0.60	0.60	0.62	0.60	0.60	0.60	0.58	0.59	0.59
	4-1/2	0.79	0.81	0.79	0.70	0.68	0.69	0.65	0.66	0.65	0.63	0.65	0.63	0.63	0.61	0.61	0.64	0.61	0.61	0.61	0.59	0.60	0.60
	5	0.82	0.85	0.83	0.72	0.70	0.71	0.67	0.68	0.67	0.65	0.67	0.64	0.65	0.63	0.62	0.65	0.62	0.62	0.62	0.60	0.61	0.61
	5-1/2	0.86	0.88	0.86	0.74	0.72	0.74	0.69	0.70	0.69	0.66	0.69	0.66	0.66	0.64	0.63	0.67	0.63	0.64	0.64	0.61	0.62	0.62
_	6	0.89	0.92	0.89	0.76	0.74	0.76	0.70	0.71	0.70	0.68	0.70	0.67	0.68	0.65	0.65	0.68	0.64	0.65	0.65	0.63	0.63	0.63
hes	6-1/2	0.92	0.95	0.92	0.79	0.76	0.78	0.72	0.73	0.72	0.69	0.72	0.69	0.69	0.66	0.66	0.70	0.66	0.66	0.66	0.64	0.64	0.64
(inches)	7	0.95	0.99	0.96	0.81	0.78	0.80	0.74	0.75	0.74	0.71	0.74	0.70	0.71	0.68	0.67	0.71	0.67	0.67	0.67	0.65	0.65	0.66
Ce	7-1/2	0.99	1.00	0.99	0.83	0.80	0.82	0.76	0.77	0.75	0.72	0.76	0.72	0.72	0.69	0.68	0.73	0.68	0.69	0.69	0.66	0.66	0.67
Distance	8	1.00	1.00	1.00	0.85	0.82	0.84	0.77	0.79	0.77	0.74	0.77	0.73	0.74	0.70	0.69	0.75	0.69	0.70	0.70	0.67	0.67	0.68
Ď	9	1.00	1.00	1.00	0.90	0.87	0.89	0.81	0.82	0.80	0.77	0.81	0.76	0.77	0.73	0.72	0.78	0.72	0.72	0.72	0.69	0.69	0.70
Spacing	10	1.00	1.00	1.00	0.94	0.91	0.93	0.84	0.86	0.84	0.80	0.84	0.79	0.80	0.75	0.74	0.81	0.74	0.75	0.75	0.71	0.71	0.72
Spa	11	1.00	1.00	1.00	0.98	0.95	0.97	0.87	0.89	0.87	0.82	0.87	0.82	0.83	0.78	0.77	0.84	0.76	0.77	0.77	0.73	0.74	0.74
••	12	1.00	1.00	1.00	1.00	0.99	1.00	0.91	0.93	0.91	0.85	0.91	0.85	0.86	0.80	0.79	0.87	0.79	0.80	0.80	0.75	0.76	0.77
	13	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.96	0.94	0.88	0.94	0.88	0.89	0.83	0.82	0.90	0.81	0.82	0.82	0.77	0.78	0.79
	14	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	0.97	0.91	0.98	0.90	0.92	0.85	0.84	0.93	0.84	0.85	0.85	0.79	0.80	0.81
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	0.93	0.95	0.88	0.86	0.96	0.86	0.87	0.87	0.81	0.82	0.83
	16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.96	0.98	0.91	0.89	0.99	0.88	0.90	0.90	0.83	0.84	0.85
	17	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.93	0.91	1.00	0.91	0.92	0.92	0.86	0.86	0.88
	18	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	0.94	1.00	0.93	0.95	0.94	0.88	0.89	0.90
	19	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.96	1.00	0.95	0.97	0.97	0.90	0.91	0.92
	20	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.98	1.00	0.99	0.92	0.93	0.94
	21	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.95	0.97
	22	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	0.97	0.99
	23	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.99	1.00
	24	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Allowable Screw-Bolt+ Tension and Shear Load Capacities Installed into the face of Grout-Filled Concrete Masonry Units^{1,2,3,4,5,6,7,8,9}

DEWALT

ANCHORS & FASTENERS

				Tension Load				
Anchor Diameter, d 1/4 3/8 1/2	Minimum Embedment	Allowable Load		Spacing Distance,	S		stance, c2 or c1 (se alled into Grouted (Wall detail)	
d	hnom in. (mm)	ibs (kN)	Critical Distance, sଙ in. (mm)	Minimum Distance, Smin in. (mm)	Allowable Load Factor at smin	Critical Distance, c in. (mm)	Minimum Distance, cmin in. (mm)	Allowable Load Factor at cmin
1/4	1-5/8 (41) 2-1/2 (64)	315 (1.4) 605 (2.7)	4 (102)	2 (51)	1.00 (no reduction)	3-3/4 (95)	1-1/4 (32)	0.60
3/8	2 (51) 3-1/4 (83)	450 (2.0) 1,085 (4.8)	6 (152)	3 (76)	1.00 (no reduction)	6 (152)	1-1/2 (38)	0.70
1/2	2-1/2 (64) 4-1/4 (108)	610 (2.7) 1,190 (5.3)	8 (203)	4 (102)	1.00 (no reduction)	8 (203)	2-5/8 (67)	0.75
5/8	3-1/4 (83) 5 (127)	880 (3.9) 1,270 (5.6)	10 (254)	4 (102)	1.00 (no reduction)	10 (254)	3-3/8 (88)	0.90
3/4	4 (102) 6-1/4 (159)	1,150 (5.1) 1,355 (6.0)	12 (305)	4 (102)	1.00 (no reduction)	12 (305)	4 (102)	1.00 (no reduction)

				Sp	acing Distance), S			c: (see Illustration of Screw-Bolt+ d Concrete Masonry Wall)		
Anchor	Minimum Embedment	Allowable Load at Cor and Sor	Allowable Load at Cor and Sor		Minimum			Minimum	Allowable Loa	d Factor at cmin	
Diameter, d in.	h _{oom} in. (mm)	Direction 1 & 2 Ibs [®] (kN)	Direction 3 & 4 Ibs [®] (KN)	Critical Distance, ser in. (mm)	Distance, Smin in. (mm)	Allowable Load Factor at smin	Critical Distance, ca in. (mm)	Distance, ^{Cmin} in. (mm)	Load Perpendicular to Edge or End (Direction 1 & 2) ⁹	Load Perpendicular to Edge or End (Direction 3 & 4) ⁹	
1/4	1-5/8 (41) 2-1/2 (64)	400 (1.8) 505 (2.2)	400 (1.8) 505 (2.2)	4 (102)	2 (51)	1.00 (no reduction)	3-3/4 (95)	1-1/4 (32)	0.35	1.00 (no reduction)	
3/8	2 (51) 3-1/4 (83)	815 (3.6) 935 (4.2)	815 (3.6) 935 (4.2)	6 (152)	3 (76)	1.00 (no reduction)	6 (152)	1-1/2 (38)	0.27	1.00 (no reduction)	
1/2	2-1/2 (64) 4-1/4 (108)	1,380 (6.1) 2,180 (9.7)	1,380 (6.1) 2,180 (9.7)	8 (203)	4 (102)	1.00 (no reduction)	8 (203)	2-5/8 (67)	0.20	1.00 (no reduction)	
5/8	3-1/4 (83) 5 (127)	2,090 (9.3) 2,640 (11.7)	2,225 (9.9) 2,640 (11.7)	10 (254)	4 (102)	1.00 (no reduction)	10 (254)	3-3/8 (86)	0.23	1.00 (no reduction)	
3/4	4 (102) 6-1/4 (159)	2,800 (12.5) 3,100 (13.8)	3,330 (14.8) 3,685 (16.4)	12 (305)	4 (102)	1.00 (no reduction)	12 (305)	4 (102)	0.25	1.00 (no reduction)	

Shear Load

For SI: 1 inch = 25.4 mm; 1 lbs = 0.0044 kN, 1 psi = 0.006894 MPa.

1. All values are for anchors installed in fully grouted concrete masonry wall construction with materials meeting minimum compressive strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C90. Allowable loads are based on a safety factor of 5.0.

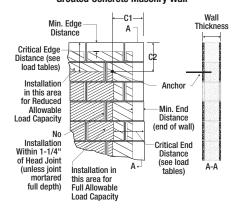
2. Anchors may be installed in any location in the face of the masonry wall (cell, web, bed joint) except within 1-1/4-inch from the of the vertical mortar joint (head joint), center-to-center, provided the minimum edge and end distances are maintained. Anchors may not be placed in the head joint unless the vertical joint is mortared full-depth.

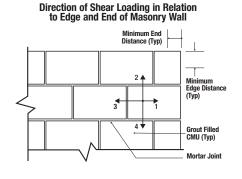
3. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor. See the figure for Illustration of Screw-Bolt+ Anchors Installed into Grouted Concrete Masonry Wall.

4. The critical spacing distance, s_{ar}, is the anchor spacing where full load values in the table may be used. The minimum spacing distance, s_{min}, is the minimum anchor spacing for which values are available and installation is permitted. Spacing distance is measured from the centerline to centerline between two anchors.

5. The critical edge or end distance, c_m, is the distance where full load values in the table may be used. The minimum edge or end distance, c_{min}, is the minimum distance for which values are available and installation is permitted. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

6. The tabulated values are applicable for anchors installed into the ends of grout-filled concrete masonry units (e.g. wall opening) where minimum edge distances are maintained.


7. Load values for anchors installed less than s_{rr} and c_{rr} must be multiplied by the appropriate load reduction factor based on actual spacing (s) or edge distance (c). Load factors are multiplicative; both spacing and edge reduction factors must be considered.


8. Linear interpolation of load values between minimum spacing (smin) and critical spacing (sc) and between minimum edge or end distance (cmin) and critical edge or end distance (cc) is permitted.

9. See the figure for Direction of Shear Loading in Relation to Edge and End of Masonry Wall figure for illustration of shear load directions.

Illustration of Screw-Bolt+ Anchors Installed into Grouted Concrete Masonry Wall

1. Shear load perpendicular to End and parallel to Edge

2. Shear load perpendicular to Edge and parallel to End

3. Shear load parallel to Edge and perpendicular away from End

4. Shear load parallel to End and perpendicular to bottom of wall

Allowable Screw-Bolt+ Tension and Shear Load Capacities Installed into the Tops of Grout-Filled Concrete Masonry Units^{1,2,3,4,5,6,7,8,9,10}

Shear Load, lb (kN) Minimum Anchor Minimum Minimum Edge **Minimum End Tension Load** Embedment Load Perpendicular to Edge Load Parallel to Edge of Masonry Wall Diameter Spacing Distance Distance Distance hnor d in. in. in. (kN) in. of Masonry Wal (mm) in. (mm) (mm) (mm) (II to end) (to end) 1 - 1/21 - 1/24 410 185 185 . (38) (102) (38) (1.8) (0.8)(0.8)2 - 1/21/4(64) 215 1 - 1/23-1/2 485 215 4 (102) (38) (89) (2.2)(1.0)(1.0)2 1 - 1/24 625 225 505 (102) (51) (2.8)(1.0)(38)(2.2)3-1/4 3/8 (83)2 3-1/2 560 6 625 560 (51) (89) (153) (2.8)(2.5)(2.5)8 1-3/4 810 255 580 (203) [see Note 4 for (45) (3.6)(1.1)(2.6)4-1/4 8 1/2 (108)3-3/4 (203)1.210 645 1 030 reduced minimum spacing distances (95) (5.4)(2.9)(4.6)1-3/4 900 260 950 5 10 10 5/8 (127)(254)(45) (254) (4.0)(1.2)(4.2)6-1/4 1-3/4 1.215 990 12 12 260 3/4 (45) (159)(301)(305)(5.4)(1.2)(4.4)

For SI: 1 inch = 25.4 mm; 1 lbs = 0.0044 kN, 1 psi = 0.006894 MPa.

1. All values are for anchors installed in fully grouted concrete masonry wall construction with materials meeting minimum compressive strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C90. Allowable loads are based on a safety factor of 5.0.

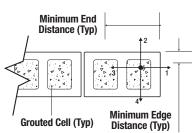
2. Anchors may be installed in any location in the top of the masonry wall except within 1-1/4-inch from the of the mortar joint (head joint), provided the minimum edge and end distances are maintained.

3. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor. See figure for Screw-Bolt+ Anchors Installed into the Top of Grouted Concrete Masonry Wall.

4. Minimum spacing distance for 1/2-inch-diameter anchors shall be 8 inches and may be reduced to 2 inches provided the allowable load reduction factor of 0.40 is applied. Linear interpolation may be used to determine the reduction factor for intermediate anchor spacing distances between 8 inches and 2 inches.

5. Spacing distance is measured from the centerline to centerline between two anchors.

6. Linear interpolation may be used to for 1/4-inch and 3/8-inch-diameter anchors to determine allowable loads for edge distances between 3-1/2-inches and 1-1/2-inches.


7. Linear interpolation may be used to for 1/2-inch-diameter anchors to determine allowable loads for edge distances between 3-3/4-inches and 1-3/4-inches.

8. The edge and end distance is measured from the anchor centerline to the closest unrestrained edge and end of the CMU block, respectively. See figure for Screw-Bolt+ Anchors Installed into the Top of Grouted Concrete Masonry Wall.

9. Spacing distance is measured from the centerline to centerline between two anchors.

10. Allowable shear loads parallel and perpendicular to the edge of a masonry wall may be applied in or out of plane, respectively. See figure for Screw-Bolt+ Anchors Installed into the Top of Grouted Concrete Masonry Wall.

Screw-Bolt+ Anchors Installed into the Top of Grouted Concrete Masonry Wall

1. Shear load perpendicular to End and parallel to Edge

2. Shear load perpendicular to Edge and parallel to End

3. Shear load parallel to Edge and perpendicular away from End

4. Shear load parallel to End and perpendicular to bottom of wall

ASD

CODE LISTED

ICC-ES ESR-4042

Allowable Screw-Bolt+ Tension and Shear Load Capacities Installed into the Face of Brick Masonry Walls^{1,2,3,4,5,6,7,8}

ANCHORS & FASTENERS

				Tension Load				
Anchor	Minimum	Allowable Load		Spacing Distance,	S	E	dge or End Distanc	e
Diameter, d in.	Embedment, hnom in. (mm)	at Car and Sar Ibs (kN)	Critical Distance, ser in. (mm)	Minimum Distance, smin in. (mm)	Allowable Load Factor at smin in. (mm)	Critical Distance, ca in. (mm)	Minimum Distance, cmin in. (mm)	Allowable Load Factor at Cmin
1/4	1-5/8 (41) 2-1/2	550 (2.4) 830	4 (102)	2 (51)	0.60	3-3/4 (95)	1-1/4 (32)	0.25
0.10	(64) 2 (51)	(3.7) 905 (4.0)	6	3		6	1-1/2	0.50
3/8	3-1/4 (82)	1,115 (5.0)	(152)	(76)	0.60	(152)	(38)	0.50
1/2	2-1/2 (64)	1,015 (4.5)	8	4	0.60	8	2-5/8	0.50
	4-1/4 (108)	1,495 (6.7)	(203)	(102)		(203)	(68)	
5/8	3-1/4 (83)	1025 (4.6)	10	5	0.50	10	3-3/8	0.50
	5 (127)	2,015 (9.0)	(254)	(127)		(254)	(86)	
3/4	4 (102)	1,815 (8.1)	12	6	0.50	12	4	0.50
	6-1/4 (159)	2,400 (10.7)	(305)	(152)		(305)	(102)	
				Shear Load				

				Silear Load				
Anchor Diameter, d in. 1/4 - 3/8 - 1/2 - 5/8 -				Spacing Distance,	5	E	Edge or End Distanc	e
Diameter,	Minimum Embedment, hnom	Allowable Load at cor and sor lbs	Critical Distance, sa	Minimum Distance, smin	Allowable Load Factor at Smin	Critical Distance, ca	Minimum Distance, cmin	Allowable Load Factor at Cmin
	in. (mm)	(kN)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Load Perpendicular to Edge or End
1/4	1-5/8 (41)	405 (1.8)	4	2	0.70	3-3/4	1-1/4	0.20
17-1	2-1/2 (62)	520 (2.3)	(102)	(51)	0.70	(95)	(32)	0.20
2/0	2 (51)	930 (4.1)	6	3	0.70	6	1-1/2	0.20
3/0	3-1/4 (83)	1,030 (4.6)	(152)	(76)	0.70	(152)	(39)	0.20
1/0	2-1/2 (64)	1,055 (4.7)	8	4	0.65	8	2-5/8	0.25
1/2	4-1/4 (108)	1,075 (4.8)	(203)	(102)	0.00	(203)	(67)	0.25
۲/۵	3-1/4 (83)	1,700 (7.6)	10	5	0.50	10	3-3/8	0.40
3/8	5 (127)	1,980 (8.8)	(254)	(127)	0.50	(254)	(86)	0.40
2/4	4 (102)	1,700 (7.6)	12	6		12	4	0.55
3/4	6-1/4 (159)	2,030 (9.0)	(305)	(152)	0.50	(305)	(102)	0.55

For SI: 1 inch = 25.4 mm; 1 lbs = 0.0044 kN, 1 psi = 0.006894 MPa.

1. All values are for anchors installed in minimum two-wythe, solid clay brick masonry walls conforming to ASTM C62, grade SW minimum. Mortar must be type N, S or M. The base material must have a minimum compressive strength, f'm, of 2,000 psi (13.8 MPa). Allowable loads are based on a safety factor of 5.0.

2. Anchors may be installed in any location in the face of the masonry wall, provided the minimum edge and end distances are maintained.

3. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

4. The critical spacing distance, ser, is the anchor spacing where full load values in the table may be used. The minimum spacing distance, smin, is the minimum anchor spacing for which values are available and installation is permitted. Spacing distance is measured from the centerline to centerline between two anchors.

5. The critical edge or end distance, c_{ar}, is the distance where full load values in the table may be used. The minimum edge or end distance, c_{min}, is the minimum distance for which values are available and installation is permitted. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

6. The tabulated values are applicable for anchors installed into wall openings where minimum edge distances are maintained.

7. Load values for anchors installed less than ser and cer must be multiplied by the appropriate load reduction factor based on actual spacing (s) or edge distance (c). Load factors are

multiplicative; both spacing and edge reduction factors must be considered.

8. Linear interpolation of load values between minimum spacing (Smin) and critical spacing (Sar) and between minimum edge or end distance (Cmin) and critical edge or end distance (Car) is permitted.

STRENGTH DESIGN INFORMATION

Screw-Bolt+ Installation Specifications in Concrete and Supplemental Information^{1,2,3,4}

A	nchor Property/	Netetice	Unite					Nomina	al Anchor	Diameter	(inch)				
	tting Information	Notation	Units	1/	/4		3/8			1/2			5/8		3/4
Head Styl	е	-	-	Hex or F	lat Head	He>	k or Flat H	ead	He>	or Flat H	ead		Hex Head		Hex Head
Nominal a	anchor diameter	da	in. (mm)	0.2 (6.			0.375 (9.5)			0.500 (12.7)			0.625 (15.9)		0.750 (19.1)
	diameter of hole in fixture [®]	dh	in. (mm)	11/ (8.			1/2 (12.7)			5/8 (15.9)			3/4 (19.1)		7/8 (22.2)
Drill bit di	ameter (ANSI)	Clbit	in.	1/	/4		3/8			1/2			5/8		3/4
Minimum embedme		h _{nom}	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)	3-1/4 (83)	2-1/2 (64)	3 (76)	4-1/4 (108)	3-1/4 (64)	4 (64)	5 (127)	4-1/4 (108)
Effective B	Embedment	h _{ef}	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)
Minimum	hole depth	h _{hole}	in. (mm)	2 (51)	2-7/8 (73)	2-3/8 (60)	2-7/8 (73)	3-5/8 (92)	2-7/8 (73)	3-3/8 (86)	4-5/8 (117)	3-5/8 (92)	4-3/8 (111)	5-3/8 (137)	4-5/8 (117)
Minimum member t		h _{min}	in. (mm)	3-1/4 4 (83) (102)		3-1/2 4 5 (89) (102) (127)		4 5-1/4 6-3/4 (102) (133) (171)				7 (178)	6 (152)		
Minimum	linimum edge distance		in. (mm)	1-1 (3		Cmin for	= 1 - 1/2 Smin ≥ 3 ((38) 76)	1-3/4 (44)			1-3/4 (44)			1-3/4 (44)
Minimum	1inimum spacing distance ^s 1inimum overall		in. (mm)	1-1 (3	1/2 8)		min = 2 (5 [°] Cmin ≥ 2 (5			2-3/4 (70)			2-3/4 (70)		3 (76)
	linimum overall nchor length ^{7,9}		in.	1-3/4	2-5/8	2-1/2	3	4	3	4	5	4	5	6	5
Maximum installation		Tinst,max	ftlbf. (N-m)	19 (26)	25 (34)	25 (34)	25 (34)	40 (54)	45 (61)	45 (61)	60 (81)		60 (81)		70 (95)
Maximum wrench p	n impact ower (torque)	Timpact,max	ftlbf (N-m).	15 (20			300 (407)			300 (407)			700 (950)		700 (950)
	Wrench socket size	-	in.	7/	-		9/16			3/4			15/16		1-1/8
Hex Head	Maximum head height	-	in.	21/			3/8			31/64			37/64		43/64
	Max washer diameter	-	in.	37/			3/4			1-1/16			1-1/8		1-13/3
p	Driver size	-	in.	T-:			T-50			T-55			-		-
Flat Head	Max head height	-	in.	13/	-		21/64			11/32			-		-
Flat	Max head diameter	-	in.	17/			57/64			1			-		-
	Countersunk angle	-	in.	8	2		82			82			-		-
Eff	han a the second second	ı	1-2	0.0	45		0.004			0.170			0.074		
(screw an	tensile stress area ichor body)	Ase	in ² (mm ²)	0.0	0.0)		0.094 (60.6)			0.176 (113.5)			0.274 (176.8)		0.399
Minimum strength	Ainimum specified ultimate		ksi (N/mm²)	10 (69	90)		105 (724)			115 (794)			95 (656)		95 (656)
Minimum	rength inimum specified yield strength		ksi (N/mm²)	8 (55	52)		84 (579)			92 (635)			76 (524)		76 (524)
Mean	Uncracked concrete	eta_{uncr}	lbf/in	1,252	2,000	· · ·	1,157,000)	· · · ·	1,014,000)		919,000		1,028,00
axial stiffness ^{9,10}	Cracked concrete	$eta_{ m cr}$	lbf/in	355,	,000		330,000			349,000		378,000			419,00

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm^2 ; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318(-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. For installations in the topside of concrete-filled steel deck assemblies with minimum concrete member thickness, hmin.deck, of 2.5 inches above the upper flute (topping thickness). See the table for anchor setting information for installation on the top of concrete-filled steel deck assemblies and the top of concrete over steel deck installation detail.

3. For installations in the topside of concrete-filled steel deck assemblies with sand-lightweight concrete fill, the maximum installation torque, Tinstmax, is 18 ft.-lb.

4. For installations through the soffit of steel deck assemblies into concrete, see the design information table for installation in the soffit of concrete-filled steel deck assemblies and the installation details in the soffit of concrete over steel deck for the applicable steel deck profile. Tabulated minimum spacing values are based on anchors installed along the flute with axial spacing equal to the greater of 3her or 1.5 times the flute width.

5. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor.

Additional combinations for minimum edge distance, cmin, and minimum spacing distance, smin, may be derived by linear interpolation between the given boundary values for the 3/8-inch diameter anchors.

7. The listed minimum overall anchor length is based on the anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth. The minimum nominal length for hex head anchors is measured from under the head to the tip of the anchor, the minimum nominal length for flat head anchors is measured from the top of the head to the tip of the head to the tip of the anchor.

8. The minimum diameter of fixture hole clearance is for the body of the anchor to pass through structural steel members; clearance holes may be 1/8-inch less than tabulated values (same as nominal drill bit diameter) provided the screw anchors are installed through light gauge cold-formed steel members or wood members.

9. Hex head anchors with the following minimum lengths are also suitable for use with cold-formed steel members provided the nominal thickness of the fixture attachments does not exceed 20 gauges (0.036-inch base metal thickness):

For 3/8-inch-diameters anchors with 2-1/2-inch nominal embedment, 2-1/2-inch long anchors.

For 1/2-inch-diameters anchors with 2-1/2-inch nominal embedment, 2-1/2-inch long anchors.

For 1/2-inch-diameters anchors with 3-inch nominal embedment, 3-inch long anchors.

For 5/8-inch-diameters anchors with 4-inch nominal embedment, 4-inch long anchors.

For 5/8-inch-diameters anchors with 5-inch nominal embedment, 5-inch long anchors.

10. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

Performance Screw Anchor

EW-BOI

FECHNICAL GUIDE – MECHANICAL ANCHORS © 2022 DEWALT – REV. F

MECHANICAL ANCHO

SCREW-BOLT+TM High Performance Screw Anchor

Anchor Setting Information for Installation on the Top of Concrete-Filled
Steel Deck Assemblies with Minimum Topping Thickness ^{1,2,3,4}

Ancher	Duanaska / California Information	Netelien	Unite																		
Anchor	Property / Setting Information	Notation	Units	1.	/4	3/8	1/2														
Head st	yle	-	-	Hex Head o	or Flat Head	Hex Head or Flat Head	Hex Head or Flat Head														
Nomina	l anchor diameter	da	in. (mm)		250 .4)	0.375 (9.5)	0.500 (12.7)														
	m diameter of hole ce in fixture [®]	Сh	in. (mm)		/32 .7)	1/2 (12.7)	5/8 (15.9)														
Nomina	l drill bit diameter (ANSI)	dbit	in.	1.	/4	3/8	1/2														
Minimu	m nominal embedment depth⁵	h _{nom}	in. (mm)	1 <i>-</i> 5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)														
Effective	e embedment	h _{ef}	in. (mm)	1.20 (30)	1.94 (49)	1.33 (33)	1.75 (44)														
Minimu	m hole depth	h₀	in. (mm)	2 (51)	2-1/2 (64)	2-3/8 (60)	2-1/2 (64)														
	m concrete member thickness thickness)	hmin,deck	in. (mm)	2-1/2 (64)	2-1/2 (64)	2-1/2 (64)	2-1/2 (64)														
Minimu	m edge distance	Cmin,deck,top	in. (mm)		1/2 8)	2 (51)	2-1/2 (64)														
Minimu	m spacing distance	Smin,deck,top	in. (mm)		1/2 8)	2 (51)	2-1/2 (64)														
Minimu	m nominal anchor length ^{6,9}	lanch	in.	1-3/4	2-5/8	2-1/2	3														
Maximu (torque)	m impact wrench power	Timpact,max	ftlb. (N-m)		50 03)	300 (407)	300 (407)														
Max. m	anual installation torque	T _{inst,max}	ftlb. (N-m)	18 ^{17]} (26)	25 (34)	25 (34)	45 (61)														
ad	Wrench socket size	-	in.	7/	7/16		3/4														
Hex Head	Max. head height	-	in.	21	/64	3/8	31/64														
He	Max. washer diameter	-	in.	37	37/64		1-1/16														
	Driver Size	-	in.	T-30		T-30		T-30		T-30		T-30		T-30		T-30		T-30		T-50	T-55
Head	Max head height	-	in.	13/64		13/64		13/64		13/64		13/64		13/64		13/64		21/64	11/32		
Flat Head	Max head diameter	-	in.	17.	/32	57/64	1														
	Countersunk angle	-	in.	8	2	82	82														

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

 The anchors may be installed in the topside of concrete-filled steel deck floor and roof assemblies in accordance with this table, the anchor installation specifications in concrete table and the top of concrete over steel deck installation detail provided the concrete thickness above the upper flute meets the minimum thicknesses specified in this table. Minimum concrete member thickness, hmin.deck, refers to the concrete thickness above the upper flute (topping thickness). See the top of concrete over steel deck installation detail.

2. Applicable to the following conditions:

For 1/4-inch-diameter anchors with 1-5/8-inch nominal embedment, 2-1/2-inch \leq hmin,deck < 3-1/4-inch.

For 1/4-inch-diameter anchors with 2-1/2-inch nominal embedment, 2-1/2-inch $\leq h_{min,deck} < 4$ -inch.

For 3/8-inch-diameter anchors with 2-inch nominal embedment, 2-1/2-inch $\leq h_{min,deck} < 3-1/2$ -inch.

For 1/2-inch-diameter anchors with 2-1/2-inch nominal embedment, 2-1/2-inch $\leq h_{min,deck} < 4-1/2$ -inch.

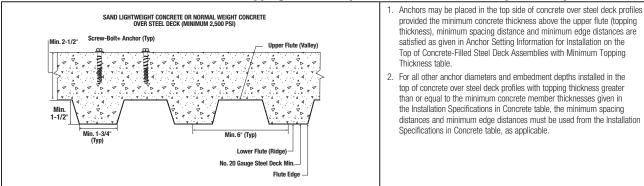
3. For all other anchor diameters and embedment depths, refer to the anchor installation specifications in concrete table for applicable values of hmin, cmin and smin, which can be substituted for hmin,deek, top, respectively.

4. Design capacities shall be based on calculations according to values in Tension Design Information and the Shear Design Information tables.

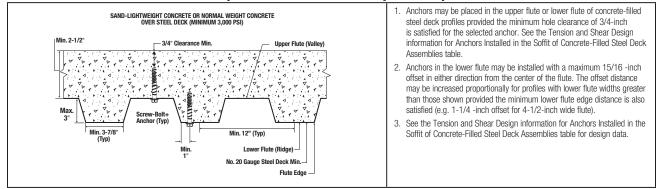
5. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor.

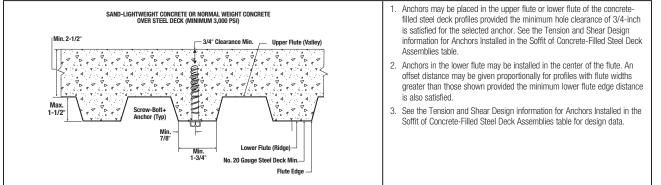
6. The listed minimum overall anchor length is based on the anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth, including consideration of a fixture attachment. The minimum nominal length for hex head anchors is measured from under the head to the tip of the anchor, the minimum nominal length for flat head anchors is measured from the top of the head to the tip of the anchor.

7. For installations in the topside of concrete-filled steel deck assemblies with normal-weight concrete fill, a maximum installation torque, Tinstmax, of 19 ft.-lb is allowed.


8. The minimum diameter of fixture hole clearance is for the body of the anchor to pass through structural steel members; clearance holes may be 1/8-inch less than tabulated values (same as nominal drill bit diameter) provided the screw anchors are installed through light gauge cold-formed steel members or wood members.

9. Hex head anchors with the following minimum lengths are also suitable for use with cold-formed steel members provided the nominal thickness of the fixture attachments does not exceed 20 gauges (0.036-inch base metal thickness):


For 1/2-inch-diameters anchors with 2-1/2-inch nominal embedment, 2-1/2-inch long anchors.


Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies with Minimum Topping Thickness (See Dimensional Profile Requirements)^{1,2}

Screw-Bolt+ Installation Detail for Anchors in the Soffit of Concrete Over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)^{1,2,3}

Screw-Bolt+ Installation Detail for Anchors in the Soffit of Concrete Over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)^{1,2,3}

igh Performance Screw Anchor

EW-BOL

6

5

Tension Design Information For Screw-Bolt+ Anchor In Concrete^{1,2}

١.	SGTH OF
L	FR-2
L	
L	

ANCHORS & FASTENERS

Design Characteristic	Notation	Units					Nor	ninal An	chor Dia	meter				
บธราฐาา เป็นสาสนายาเริ่มนั	Notation	Units	1.	/4		3/8			1/2			5/8		3/4
Anchor category	1, 2 or 3	-		1		1			1			1		1
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)	3-1/4 (83)	2-1/2 (64)	3 (76)	4-1/4 (108)	3-1/4 (64)	4 (64)	5 (127)	4-1/4 (108)
Effective embedment	h _{ef}	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)
S	teel Strengt	h in Tensior	n (ACI 31	8-19 17.	6.1, ACI	318-14 1	7.4.1 or	ACI 318	-11 D.5.1	1)				
Steel strength in tension	N _{sa} ¹⁰	lb (kN)		535).2)		8,730 (38.8)			20,475 (91.1)			26,260 (116.8)		38,165 (169.8)
Reduction factor for steel strength ^{3,4}	ϕ	-						0	.65					
Concret	e Breakout S	Strength in 1	Tension (ACI 318-	·19 17.6	2, ACI 3	8-14 17	.4.2 or A	CI 318- 1	1 D.5.2)				
Critical edge distance (uncracked concrete only)	Cac	in. (mm)	4.30 (109)	6.10 (155)	5.00 (127)	6.30 (160)	7.80 (198)	3.30 (84)	5.90 (150)	8.10 (206)	6.30 (160)	7.90 (201)	10.10 (257)	10.90 (277)
Critical edge distance, topside of concrete-filled steel decks with minimum topping thickness ⁹ (uncracked concrete only)	Cac,deck,top	in. (mm)	3.00 (76)	4.00 (102)	3.50 (89)	_11	_11	6.00 (152)	_11	_11	_11	_11	_11	_11
Effectiveness factor for uncracked concrete	Kuncr	-	27	24	30	24	24	30	24	24	30	24	24	27
Effectiveness factor for cracked concrete	k _{cr}	-	1	7		17			17			21		17
Modification factor for cracked and uncracked concrete ^₅	$\Psi_{\rm C,N}$	-	1	.0		1.0			1.0			1.0		1.0
Reduction factor for concrete breakout strength ³	φ	-						0.65 (C	ondition	B)				
Pi	ullout Streng	th in Tensio	on (ACI 3 [.]	18-19 17	.6.3, AC	318-14	17.4.3 o	r ACI 318	B-11 D.5	.3)				
Characteristic pullout strength, uncracked concrete (2,500 psi) ^{6,10}	Np,uncr	lb (kN)	See N	lote 7	S	See Note	7	S	ee Note	7	S	ee Note	7	See Note 7
Characteristic pullout strength, cracked concrete (2,500 psi) ^{6,10}	Np,cr	lb (kN)	765 (3.4)	1,415 (6.3)	S	See Note	7	1,645 (7.3)	2,515 (11.2)	4,700 (20.9)	3,080 (13.7)	4,720 (21.0)	6,900 (30.7)	See Note 7
Reduction factor for pullout strength ³	ϕ	-						0.65 (C	ondition	B)				
Pullout Strength in Tension for Seismic Applications (ACI 318-19 17.10.3, ACI 318-14 17.2.3.3 or ACI 318-11 D.3.3.3)														
Characteristic pullout strength, seismic (2,500 psi)6.8.10	Neq	lb	360 (1.6)	1,170 (5.2)	900 (4.0)	1,645 (7.3)	2,765 (12.3)	1,645 (7.3)	2,515 (11.2)	4,700 (20.9)	1,910 (8.5)	2,445 (10.9)		4,085 (18.2)
0000mio (2,000 pol)			0.65 (Condition B)								-			

2. Installation must comply with published instructions and details.

3. All values of \$\phi\$ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3, or ACI 318-11 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of \$\phi\$ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that complies with ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 Section D.4.3(c), as applicable for the appropriate \$\phi\$ factor when the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2 are used.

4. The anchors are considered a brittle steel elements as defined by ACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable.

5. Select the appropriate effectiveness factor for cracked concrete (k_{ar}) or uncracked concrete (k_{uncr}) and use $\Psi_{c,N} = 1.0$.

6. For all design cases \(\mathcal{Y}_{c.P} = 1.0.\) The characteristic pullout strength, \(\mathbf{N}_{p.n}\), for concrete compressive strengths greater than 2,500 psi for 1/4-inch-diameter anchors may be increased by multiplying the value in the table by (f'c / 2,500)^{0.3} for psi or (f'c / 17.2)^{0.3} for MPa. The characteristic pullout strength, \(\mathbf{N}_{p.n}\), for concrete compressive strengths greater than 2,500 psi for 3/8-inch- to 3/4-inch-diameter anchors may be increased by multiplying the value in the table by (f'c / 2,500)^{0.5} for psi or (f'c / 17.2)^{0.3} for MPa.

7. Pullout strength does not control design of indicated anchors and does not need to be calculated for indicated anchor size and embedment.

8. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.Y

9. Anchors are permitted in the topside of concrete-filled steel deck assemblies in accordance with the Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies with Minimum Topping Thickness.

10. Anchors are permitted to be used in lightweight concrete provided the modification factor λ a equal to 0.8 λ is applied to all values of f'c affecting Nn.

11. Tabulated critical edge distance values, Cac.desk.top, are for anchors installed in the top of concrete over steel deck profiles with a minimum concrete thickness, hmin.desk, of 2.5 inches above the upper flute (topping thickness). For minimum topping thickness greater than or equal to the minimum concrete member thicknesses, hmin, given in the Installation Specifications table, the associated critical edge distance, Cac, for indicated anchor diameters and embedment depths may be used in the calculation of $\Psi_{cp,N}$ as applicable.

CODE LISTED

ICC-ES ESR-3889

MECHANICAL ANCHORS

SCREV-BOLT+TM High Performance Screw Anchor

Shear Design Information for Screw-Bolt+ Anchor in Concrete^{1,2,7,8}

DEWALT

ANCHORS & FASTENERS

	Notation Units Nominal Anchor Diameter Design Characteristic 1 1/4 3/8 1/2 5/8 3/4 Anchor category 1.2 or 3 1 1 1 1 1 1																						
Design Characteristic			1,	14		3/8			1/2			5/8		3/4									
Anchor category	1, 2 or 3	-		1		1			1			1		1									
Minimum nominal embedment depth	hnom	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)	3-1/4 (83)	2-1/2 (64)	3 (76)	4-1/4 (108)	3-1/4 (64)	4 (64)	5 (127)	4-1/4 (108)									
Effective embedment	hef	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)									
	Steel	Strength	in Shear ((ACI 318-1	19 17.7.1,	, ACI 318-	14 17.5.1	1 or ACI 31	18-11 D.6	i.1)													
Steel strength in shear ⁵	Vsa	lb (kN)	1,635 (7.3)	2,040 (9.1)	3,465 (15.4)	3,465 (15.4)	4,345 (19.3)	8,860 (39.4)	8,860 (39.4)	11,175 (49.7)	12,310 (54.8)	12,310 (54.8)	15,585 (69.3)	19,26 (85.7)									
Reduction factor for steel strength ^{3,4}	ϕ		I					0.6	60					_									
Steel Stren	ngth in Shea	ar for Sei	smic App	lications	(ACI 318-	19 17.10	.1, ACI 31	8-14 17.2	2.3.3 or A	CI 318-11	D.3.3.3)												
Steel strength in shear, seismic6	Veq	lb (kN)	1,360 (6.1)	1,700 (7.7)	2,415 (10.9)	2,415 (10.9)	3,030 (13.6)	7,090 (31.9)	7,090 (31.9)	8,940 (40.2)	9,845 (44.3)	9,845 (44.3)	12,465 (56.1)	15,40 (69.3)									
Reduction factor for steel strength in shear for seismic ^{3,4}	φ	-						0.6	60														
Cu	oncrete Bre	akout Str	ength in	Shear (AC	318-19	17.7.2, A	CI 318-14	17.5.2 0	r ACI 318	-11 D.6.2)	1												
Nominal anchor diameter	da	in. (mm)		250 5.4)		0.375 (9.5)			0.500 (12.7)			0.625 (15.9)		0.750 (19.1)									
Load bearing length of anchor	le	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)									
Reduction factor for concrete breakout ³	φ	-		<u> </u>		<u> </u>		0.70 (Cor	ndition B)					·									
	Pryout	Strength	in Shear	(ACI 318-	19 17.7.3	I, ACI 318	-14 17.5.	.3 or ACI 3	18-11 D.	6.3)													
Coefficient for pryout strength	Kcp		1	1	1	1	1	1	1	2	1	2	2	2									
Reduction factor for pryout strength ³	φ	-						0.70 (Cor	ndition B)														
For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/	Vmm²; 1 ft-lb	= 1.356 N	1-m; 1 lb =	0.0044 kM	V.																		
1. The data in this table is intended to be combinations the additional requirement										applicable;	for anchors	s resisting s	seismic load	ł									
2. Installation must comply with published	l instructions a	and details.																					
3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3, or ACI 318-11 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4. For reinforcement that complies with ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-19 17.5.3, ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3, or ACI 318-11 Section 9.2 are used.																							
			-																				
5. Reported values for steel strength in she	ear are based	d on test re	sults per A	CI 355.2. S	Section 9.4	and must i	be used for	r desian in i	lieu of the u	calculated r	results usin	a equation	 The anchors are considered a brittle steel elements as defined by ACI 318-14 2.3 or ACI 318-11 D.1. Reported values for steel strength in shear are based on test results per ACI 355.2. Section 9.4 and must be used for design in lieu of the calculated results using equation 17.7.1.2b of ACI 										

5. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design in lieu of the calculated results using equation 17.7.1.2b of ACI 318-19 or equation 17.5.1.2(b) of ACI 318-14 or equation D-29 in ACI 318-11 D.6.1.2.

6. Reported values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6 and must be used for design.

7. Anchors are permitted in the topside of concrete-filled steel deck assemblies in accordance with the Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies with Minimum Topping Thickness.

8. Anchors are permitted to be used in lightweight concrete in provided the modification factor λa equal to 0.8 λ is applied to all values of f'c affecting Nn.

Tension and Shear Design Information for Screw-Bolt+ Anchor in the Soffit (Through the Underside) of Concrete-Filled Steel Deck Assemblies^{1,2,3,4,5,6}

▶ E '.'/+

ANCHORS & FASTENERS

											_			_
Anchor Property/Setting Information														
Anchor Property/Setting Information	NULALIUII	Units	1	/4		3/8			1/2			5/8		3/4
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)	3-1/4 (83)	2-1/2 (64)	3 (76)	4-1/4 (108)	3-1/4 (64)	4 (64)	5 (127)	4-1/4 (108)
Effective Embedment	h _{ef}	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)
Minimum hole depth	h₀	in. (mm)	1-3/4 (44)	2-5/8 (67)	2-1/8 (54)	2-5/8 (67)	3-3/8 (86)	2-5/8 (67)	3-1/8 (79)	4-3/8 (111)	3-3/8 (86)	4-1/8 (10.5)	5-1/8 (130)	4-3/8 (111)
Anchors Inst	alled Throug	h the So	ffit of Ste	el Deck A	ssemblie	s into Co	ncrete (M	linimum 3	3-7/8-inc l	h-wide de	eck flute)			
Minimum concrete member thickness ⁷	h _{min,deck,total}	in. (mm)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	6-1/4 (159)	6-1/4 (159)
Characteristic pullout strength, uncracked concrete over steel deck, (3,000 psi)	Np,deck,uncr	lb (kN)	1,430 (6.4)	2,555 (11.4)	2,275 (10.1)	2,655 (11.8)	3,235 (14.4)	2,600 (11.6)	3,555 (15.8)	5,975 (26.6)	2,610 (11.6)	4,150 (18.5)	6,195 (27.6)	6,085 (27.1)
Characteristic pullout strength, cracked concrete over steel deck, (3,000 psi)	N _{p,deck,cr}	lb (kN)	615 (2.7)	1,115 (5.0)	1,290 (5.7)	1,880 (8.4)	2,290 (10.2)	1,230 (5.5)	2,330 (10.4)	4,030 (17.9)	1,600 (7.1)	3,340 (14.9)	4,945 (22.0)	3,835 (17.1)
Characteristic pullout strength, cracked concrete over steel deck,seismic, (3,000 psi)	N _{p,deck,eq}	lb (kN)	290 (1.3)	920 (4.1)	890 (4.0)	1,570 (7.0)	2,015 (9.0)	1,230 (5.5)	2,330 (10.4)	4,030 (17.9)	990 (4.4)	1,730 (7.7)	2,415 (10.7)	3,410 (15.2)
Reduction factor for pullout strength ⁸	ϕ	-						0.	65					
Steel strength in shear, concrete over steel deck	Vsa,deck	lb (kN)	1,155 (5.1)	2,595 (11.5)	2,470 (11.0)	2,470 (11.0)	3,225 (14.3)	2,435 (10.8)	2,435 (10.8)	5,845 (26.0)	2,650 (11.8)	2,650 (11.8)	6,325 (28.1)	5,175 (23.0)
Steel strength in shear, concrete over steel deck, seismic	Vsa,deck,eq	lb (kN)	960 (4.3)	2,165 (9.6)	1,725 (7.7)	1,900 (8.5)	2,250 (10.0)	1,950 (8.7)	2,095 (9.3)	4,675 (20.8)	2,120 (9.4)	2,325 (10.3)	5,060 (22.5)	4,140 (18.4)
Reduction factor for steel strength in shear for concrete over steel deck ⁸	φ	-						0.	60					
Anchors Inst	alled Throug	h the So	ffit of Ste	el Deck A	ssemblie	s into Co	ncrete (M	linimum 1	-3/4-incl	h-wide de	eck flute)			
Minimum concrete member thickness ⁷	h _{min,deck,total}	in. (mm)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	N	/A		N/A		N/A
Characteristic nullout strength														

Minimum concrete member thickness ⁷	h _{min,deck,total}	in. (mm)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	N/A	N/A	N/A
Characteristic pullout strength, uncracked concrete over steel deck, (3,000 psi)	Np,deck,uncr	lb (kN)	1,760 (7.8)	2,075 (9.2)	1,440 (6.4)	2,135 (9.5)	3,190 (14.2)	1,720 (7.7)	N/A	N/A	N/A
Characteristic pullout strength, cracked concrete over steel deck, (3,000 psi)	N _{p,deck,cr}	lb (kN)	760 (3.4)	910 (4.0)	815 (3.6)	1,510 (6.7)	2,260 (10.1)	1,280 (5.7)	N/A	N/A	N/A
Characteristic pullout strength, cracked concrete over steel deck,seismic, (3,000 psi)	N _{p,deck,eq}	lb (kN)	355 (1.6)	750 (3.3)	565 (2.5)	1,260 (5.6)	1,985 (8.8)	1,280 (5.7)	N/A	N/A	N/A
Reduction factor for pullout strength ⁸	ϕ	-			0.	65			N/A	N/A	N/A
Steel strength in shear, concrete over steel deck	Vsa,deck	lb (kN)	1,880 (8.4)	2,315 (10.3)	2,115 (9.4)	2,115 (9.4)	2,820 (12.5)	2,095 (9.3)	N/A	N/A	N/A
Steel strength in shear, concrete over steel deck, seismic	Vsa,deck,eq	lb (kN)	1,565 (7.0)	1,930 (8.6)	1,475 (6.6)	1,625 (7.2)	1,965 (8.7)	1,675 (7.5)	N/A	N/A	N/A
Reduction factor for steel strength in shear for concrete over steel deck ⁸	φ	-	0.	60		0.60		0.60	N/A	N/A	N/A

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. Installation must comply with published instructions and details.

 Values for N_{p.deck.and} And N_{p.deck.cr} are for sand-lightweight concrete (f^oc, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318 D.5.2, as applicable, is not required for anchors installed in the deck soffit (through underside).

3. Values for N_{p,deck,eq} are applicable for seismic loading and must be used in lieu of N_{p,deck,cr}.

4. For all design cases \(\mathcal{Y_{CP}} = 1.0\). The characteristic pullout strength, \(\N_{nn}\), for concrete compressive strengths greater than 3,000 psi for 1/4-inch-diameter anchors may be increased by multiplying the value in the table by (f'c / 3,000)ⁿ³ for psi or (f'c / 17.2)ⁿ³ for MPa. The characteristic pullout strength, \(\nabla_{nn}\), for concrete compressive strengths greater than 3,000 psi for 3/8-inch- to 3/4-inch-diameter anchors may be increased by multiplying the value in the table by (f'c / 3,000)ⁿ⁵ for psi or (f'c / 17.2)ⁿ³ for MPa.

5. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

6. Values of V_{sa,deck} and V_{sa,deck} are for sand-lightweight concrete and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, are not required for anchors installed in the soffit (through underside).

7. The minimum concrete member thickness, hmin,deck,total, is the minimum overall thickness of the concrete-filled steel deck (depth and topping thickness).

8. All values of \u03c6 were determined from the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of \u03c6 must be determined in accordance with ACI 318-11 D.4.4.

DESIGN STRENGTH TABLES (SD)

					Minim	um Concrete C	ompressive St	rength			
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,	000 psi	f'c = 8,000 psi	
Diameter (in.)	Depth hnom (in.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	∲V∩ Shear (lbs.)	ØN∩ Tension (Ibs.)	φV∩ Shear (lbs.)
1/4	1-5/8	1,155	980	1,265	980	1,460	980	1,785	980	2,065	980
1/4	2-1/2	2,110	1,225	2,310	1,225	2,665	1,225	2,950	1,225	2,950	1,225
	2	1,495	1,610	1,640	1,765	1,890	2,035	2,315	2,080	2,675	2,080
3/8	2-1/2	1,805	1,945	1,980	2,080	2,285	2,080	2,795	2,080	3,230	2,080
	3-1/4	2,880	2,605	3,155	2,605	3,645	2,605	4,465	2,605	5,155	2,605
	2-1/2	2,255	2,180	2,475	2,390	2,855	2,760	3,495	3,380	4,040	3,900
1/2	3	2,495	2,685	2,730	2,940	3,155	3,395	3,865	4,160	4,460	4,805
	4-1/4	4,530	6,705	4,960	6,705	5,725	6,705	7,015	6,705	8,100	6,705
	3-1/4	3,270	3,520	3,580	3,855	4,135	4,455	5,065	5,455	5,845	6,295
5/8	4	3,810	7,125	4,175	7,385	4,820	7,385	5,905	7,385	6,820	7,385
	5	5,620	9,350	6,155	9,350	7,110	9,350	8,705	9,350	10,050	9,350
3/4	4-1/4	4,745	10,215	5,195	11,190	6,000	11,555	7,350	11,555	8,485	11,555

Tension and Shear Design Strength Installed in Cracked Concrete^{1,2,3,4,5,6,7}

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strength Installed in Uncracked Concrete^{1,2,3,4,5,6}

					Minim	um Concrete C	ompressive St	rength			
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,	f'c = 3,000 psi		f'c = 4,000 psi		000 psi	f'c = 8,000 psi	
Diameter (in.)	Depth h.om (in.)	ØN∩ Tension (Ibs.)	¢V∩ Shear (lbs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN⊓ Tension (Ibs.)	∲V₁ Shear (Ibs.)	ØN∩ Tension (lbs.)	∲V₁ Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)
1/4	1-5/8	495	780	525	855	575	980	645	980	705	980
1/4	2-1/2	920	1,225	970	1,225	1,060	1,225	1,195	1,225	1,305	1,225
	2	845	915	930	1,000	1,070	1,155	1,315	1,415	1,515	1,635
3/8	2-1/2	1,280	1,375	1,400	1,510	1,620	1,740	1,980	2,080	2,290	2,080
	3-1/4	2,040	2,200	2,235	2,410	2,580	2,605	3,165	2,605	3,650	2,605
	2-1/2	1,070	1,375	1,170	1,510	1,355	1,740	1,655	2,135	1,915	2,465
1/2	3	1,635	1,900	1,790	2,085	2,070	2,405	2,535	2,945	2,925	3,400
	4-1/4	3,055	5,295	3,345	5,800	3,865	6,695	4,735	6,705	5,465	6,705
	3-1/4	1,850	1,995	2,030	2,185	2,345	2,525	2,870	3,090	3,315	3,570
5/8	4	2,700	5,090	2,960	5,575	3,415	6,435	4,185	7,385	4,830	7,385
	5	3,980	7,400	4,360	8,105	5,035	9,350	6,165	9,350	7,120	9,350
3/4	4-1/4	2,985	6,430	3,270	7,045	3,780	8,135	4,625	9,965	5,340	11,505

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = 1.5 h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

- c_{a2} is greater than or equal to 1.5 times c_{a1} .

- 2- Calculations were performed according to ACI 318-19, Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, h_{ef}, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- Strength reduction factors (Ø) were based on ACI 318-19 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19, Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-19, Chapter 17. For other design conditions including seismic considerations please see ACI 318-19, Chapter 17.
- 7- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete/or concrete breakout and pullout must be multiplied by a factor of 0.75.

Tension and Shear Design Strength at Minimum Edge Distance, cmin for Screw-Bolt+ in Cracked Concrete^{1,2,3,4,5,6,7}

			Minimum Concrete Compressive Strength										
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,	000 psi	f'c = 8,000 psi			
Diameter (in.)	hnom (in.)	ØN∩ Tension (Ibs.)	∲V₅∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	∲V₅n Shear (lbs.)	ØN∩ Tension (Ibs.)	∳V₅∩ Shear (lbs.)	ØN∩ Tension (Ibs.)	∲V₅n Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV₅n Shear (Ibs.)		
1/4	1-5/8	495	370	525	405	575	470	645	575	705	660		
1/4	2-1/2	920	450	970	495	1,060	570	1,195	700	1,305	810		
	2	785	445	860	485	990	560	1,215	685	1,405	790		
3/8	2-1/2	1,115	500	1,220	550	1,410	635	1,725	775	1,995	895		
	3-1/4	1,685	595	1,845	650	2,130	755	2,610	920	3,015	1,065		
	2-1/2	1,070	675	1,170	740	1,355	855	1,655	1,045	1,915	1,205		
1/2	3	1,520	760	1,665	835	1,925	960	2,355	1,180	2,720	1,360		
	4-1/4	2,595	935	2,840	1,025	3,280	1,180	4,015	1,445	4,640	1,670		
	3-1/4	1,585	800	1,735	875	2,005	1,010	2,455	1,240	2,835	1,430		
5/8	4	2,220	920	2,430	1,010	2,805	1,165	3,435	1,425	3,970	1,645		
	5	3,160	1,045	3,460	1,145	3,995	1,325	4,895	1,620	5,650	1,870		
3/4	4-1/4	2,430	985	2,660	1,080	3,075	1,245	3,765	1,525	4,345	1,760		
🔲 - Anchor Pu	- Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls												

Tension and Shear Design Strength at Minimum Edge Distance, cmin for Screw-Bolt+ in Uncracked Concrete^{1,2,3,4,5,6}

		Minimum Concrete Compressive Strength										
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,	000 psi	f'c = 8,000 psi		
Diameter (in.)	hnom (in.)	ØN⊓ Tension (Ibs.)	∲V₅n Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV₅n Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV₅n Shear (Ibs.)	ØN⊓ Tension (Ibs.)	ØV₅n Shear (Ibs.)	ØN∩ Tension (Ibs.)	<i>∲</i> V₅n Shear (Ibs.)	
1/4	1-5/8	460	495	505	540	580	625	710	765	820	885	
1/4	2-1/2	860	635	940	695	1,085	800	1,330	980	1,535	1,130	
	2	550	595	605	650	700	750	855	920	990	1,065	
3/8	2-1/2	655	700	720	765	830	885	1,015	1,085	1,175	1,250	
	3-1/4	1,095	835	1,200	915	1,385	1,055	1,695	1,290	1,955	1,490	
	2-1/2	1,615	945	1,770	1,035	2,045	1,195	2,505	1,465	2,890	1,690	
1/2	3	1,185	1,065	1,300	1,165	1,500	1,345	1,835	1,650	2,120	1,905	
	4-1/4	2,190	1,310	2,400	1,430	2,770	1,655	3,390	2,025	3,915	2,340	
	3-1/4	1,495	1,120	1,635	1,225	1,890	1,415	2,310	1,735	2,670	2,000	
5/8	4	1,715	1,290	1,875	1,410	2,165	1,630	2,655	1,995	3,065	2,305	
	5	2,470	1,465	2,705	1,605	3,125	1,855	3,830	2,270	4,420	2,620	
3/4	4-1/4	1,635	1,380	1,790	1,510	2,070	1,745	2,535	2,135	2,925	2,465	
🔲 - Anchor Pu	llout/Pryout Strer	ngth Controls 🔲	- Concrete Brea	kout Strength Co	ntrols 🔳 - Steel	Strength Control	S					

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the minimum edge distance, c_{min} (table values based on $c_{a1} = c_{min}$).
- Ca2 is greater than or equal to 1.5 times Ca1.
- 2- Calculations were performed according to ACI 318-19, Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (Ø) were based on ACI 318-19 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19, Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-19, Chapter 17. For other design conditions including seismic considerations please see ACI 318-19, Chapter 17.
- 7- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and pullout must be multiplied by a factor of 0.75.

ORDERING INFORMATION

							20V Max* s	SDS Plus Rotary	Hammers	Flexvolt SDS Max
	Cat. No.		Anchor Size	Approximate Thread Length	Box Qty.	Ctn. Qty.	DCH273P2DH 1" L-Shape	DCH133M2 1" D-Handle	DCH293R2 1-1/8" L-Shape w/ E-Clutch	DCH481X2 1-9/16" w/ E-Clutch
Hex	Head	Flat Head						le Bits		
Zinc Plated	Galvanized	Zinc Plated						oarbit		
PFM1411000	-	-	1/4" x 1-1/4"	1-1/4"	100	600	DW5517	DW5417	DW5417	-
PFM1411020	-	-	1/4" x 1-3/4"	1-5/8"	100	600	DW5517	DW5417	DW5417	-
PFM1411060	-	-	1/4" x 2-1/4"	1-5/8"	100	600	DW5517	DW5417	DW5417	-
PFM1411080	-	-	1/4" x 2-5/8"	2-1/2"	100	500	DW5517	DW5417	DW5417	-
PFM1411100	-	PFM1411105	1/4" x 3"	2-1/2"	100	500	DW5517	DW5417	DW5417	-
PFM1411160	-	-	3/8" x 1-3/4"	1-3/4"	50	300	DW5527	DW5427	DW5427	-
PFM1411220	-	PFM1411225	3/8" x 2-1/2"	2"	50	300	DW5527	DW5427	DW5427	-
PFM1411240	PFM1461240	PFM1411245	3/8" x 3"	2"	50	250	DW5527	DW5427	DW5427	-
PFM1411280	PFM1461280	PFM1411285	3/8" x 4"	3-1/4"	50	250	DW5527	DW5427	DW5427	-
PFM1411300	PFM1461300	-	3/8" x 5"	3-1/4"	50	250	DW5529	DW5429	DW5429	-
PFM1411320	PFM1461320	-	3/8" x 6"	3-1/4"	50	150	DW5529	DW5429	DW5429	-
PFM1411340	-	-	1/2" x 2"	1-3/4"	50	200	DW5537	DW5437	DW5437	-
PFM1411360*	-	-	1/2" x 2-1/2"	2-1/2"	50	200	DW5537	DW5437	DW5437	-
PFM1411380	-	PFM1411385	1/2" x 3"	2-1/2"	50	150	DW5537	DW5437	DW5437	-
PFM1411420	PFM1461420	PFM1411425	1/2" x 4"	2-1/2"	50	150	DW5537	DW5437	DW5437	-
PFM1411460	PFM1461460	PFM1411465	1/2" x 5"	4-1/4"	25	100	DW5538	DW5438	DW5438	-
PFM1411480	PFM1461480	-	1/2" x 6"	4-1/4"	25	75	DW5538	DW5438	DW5438	-
PFM1411520	PFM1461520	-	1/2" x 8"	4-1/4"	25	100	DW5538	DW5438	DW5438	-
PFM1411540	-	-	5/8" x 3"	2-3/4"	25	100	DW5471	DW5446	DW5471	DW5806
PFM1411580	-	-	5/8" x 4"	3-1/4"	25	100	DW5471	DW5446	DW5471	DW5806
PFM1411600	PFM1461600	-	5/8" x 5"	5"	25	75	DW5471	DW5446	DW5471	DW5806
PFM1411640	PFM1461640	-	5/8" x 6"	5"	25	75	DW5471	DW5446	DW5471	DW5806
PFM1411680	PFM1461680	-	5/8" x 8"	5"	25	50	DW5471	DW5447	DW5471	DW5806
PFM1411700	-	-	3/4" x 3"	3"	20	60	DW5474	DW5453	DW5474	DW5810
PFM1411720	-	-	3/4" x 4"	3"	20	60	DW5474	DW5453	DW5474	DW5810
PFM1411760	-	-	3/4" x 5"	4-1/4"	20	60	DW5474	DW5453	DW5474	DW5810
PFM1411800	PFM1461800	-	3/4" x 6"	4-1/4"	20	60	DW5474	DW5453	DW5474	DW5810
PFM1411840	PFM1461850	-	3/4" x 8"	4-1/4"	10	40	DW5474	DW5455	DW5474	DW5810
PFM1411880	-	-	3/4" x 10"	4-1/4"	10	20	DW5475	DW5455	DW5475	DW5812
Shaded catalog nu	mbers denote sizes	which are less than t	he minimum stand	ard anchor length	for Strength De	esign.	🗖 - Optim	um Tool Match		

Anchors not long enough to meet the minimum nominal embedments published for strength design are outside the scope of ICC-ES ESR-3889.

Catalog numbers with an asterisk (*) denote sizes that meet the minimum anchor length requirement for strength design provided the fixture attachment does not exceed 0.036-inch (0.91mm) in thickness.

The selected anchor length should be long enough to accommodate the attachment thickness and achieve the minimum nominal embedment into the base material required for the application.

The published size includes the nominal diameter and length of the anchor. The length is measured from under the head for hex head parts and from the top of the head for flat head (countersunk) parts.

- Maximum Tool Match

- Not Recommended

Σ

Impact Wrench Selection Guide

Anchor Setting Information	Nominal Anchor Diameter (Inch)											
Anchor Setting Information	1/	4"	3/8"		1/2"		5/8"		3/	4"		
Max Impact Wrench Power	150 ft-lbs		300 ft-lbs		300 ft-lbs		700 ft-lbs		700 ft-lbs			
	FULL	SPEED 1	SPEED 1	SPEED 2	SPEED 1	SPEED 2	SPEED 2	SPEED 3	SPEED 2	SPEED 3		
Suggested 20V Max Impact Wrench, Tool Setting / Speed and Cat. No.	DCF902	DCF921, DCF922, DCF923, DCF891, DCF892, DCF900	DCF911, DCF913, DCF900	DCF921, DCF922, DCF923, DCF891, DCF892	DCF911, DCF913, DCF900	DCF921, DCF922, DCF923, DCF891, DCF892	DCF900	DCF891, DCF892	DCF900	DCF891, DCF892		

DEWALT Impact Wrenches

	1	1	T		1	1	Ì		
Cat. No.	DCF901	DCF903	DCF911	DCF913	DCF921	DCF922	DCF923	DCF891	DCF892
Anvil Size	3/8"	1/2"	3/8"	1/2"	1/2"	3/8"	1/2"	1/2"	1/2"
Anvil Type	Hog Ring	Detent	Hog Ring	Hog Ring	Detent				
MAX Fastening Torque	Speed 1: 250 ft-lbs	Speed 1: 250 ft-lbs	Speed 1: 250 ft-lbs	Speed 1: 250 ft-Ibs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs. Speed 2: 300 ft-lbs. Speed 3: 600 ft-lbs	Speed 1: 100 ft-lbs. Speed 2: 300 ft-lbs. Speed 3: 600 ft-lbs

GENERAL INFORMATION

316 STAINLESS STEEL WEDGE-BOLT[™]

Screw Anchor

PRODUCT DESCRIPTION

The 316 Stainless Steel Wedge-Bolt anchor is a one piece, heavy duty screw anchor with a finished hex head. It is simple to install, easy to identify, a fully removable.

The 316 Stainless Steel Wedge-Bolt has many unique features and benefits that make it well suited for many applications, both indoors and out. The steel threads along the anchor body self tap into the hole during installation and provide positive keyed engagement. The benefit to the designer is higher load capacities, while the benefit to the user is ease of installation. The 316 Stainless Steel Wedge-Bolt can be installed with either a powered impact wrench or conventional hand socket.

316 Stainless Steel Wedge-Bolt screw anchors are designed to be used with a matched tolerance Wedge-Bit for optimum performance. The Wedge-Bolt works in fixture clearance holes that are 1/16" over nominal, which is typical of standard fixture holes used in steel fabrication.

316 Stainless Steel Wedge-Bolt screw anchors are not recommended for immersion in or long term exposure to chloride/chlorine environments.

GENERAL APPLICATIONS AND USES

- Interior and Exterior Applications
- Support Ledgers and Windows
- Railing and Fencing

- Storage Facilities
- Repairs & Retrofits
- Maintenance
- FEATURES AND BENEFITS
- + High corrosion resistance of Type 316 stainless steel
- + Consistent performance in high and low strength concrete
- + Anchor can be installed through standard size fixture holes in steel
- + Diameter, length and identifying marking stamped on head of each anchor
- + Can be installed with an impact wrench or conventional hand socket
- + Fast installation and immediate loading minimizes downtime
- + Finished hex head provides attractive appearance and minimizes tripping hazard
- + Can be installed closer to the edge than traditional expansion anchors
- + Ratchet teeth on underside of hex washer head contact against the fixture
- + Removable

APPROVALS AND LISTINGS

Tested in accordance with ASTM E488

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Screw anchors shall be 316 Stainless Steel Wedge-Bolt as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	199
Material Specifications	200
Installation Instructions	200
Installation Specifications	200
Performance Data (ASD)	201
Ordering Information	205

HEAD STYLES

Hex washer head

ANCHOR MATERIALS

- Type 316 Stainless Steel
- ANCHOR SIZE RANGE (TYP.)
- 1/4" to 1/2" diameters

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete
- Grouted Concrete Masonry (CMU)
- Brick Masonry

1-800-4 DEWALT

Step 4

Drive the anchor

and into the hole

until the head of

the anchor comes

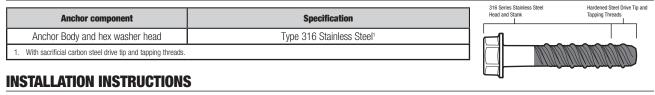
into contact with

the fixture. The

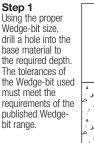
anchor should

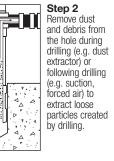
be snug after

installation. Do not

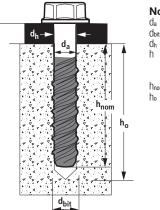

spin the hex socket

off the anchor to


disengage.


through the fixture

MATERIAL SPECIFICATIONS



Installation Instructions for 316 Stainless Steel Wedge-Bolt

316 Stainless Steel Wedge-Bolt Anchor Detail

Nomenclature

- Diameter of Anchor =
- Diameter of Drill Bit =
- Diameter of Clearance Hole = = Base Material Thickness.
- The value of h should be 1.5hnom
- or 3", whichever is greater $h_{\text{nom}} =$ Minimum Nominal Embedment
 - = Minimum Hole Depth

Hex Head Marking

Diameter, material, and length identification mark

Δ

Å

, D ,

Matched Tolerance System

Step 3

Select a powered

maximum torque,

impact wrench that

does not exceed the

Tinst,max Or Timpact,max, for

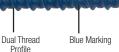
the selected anchor

diameter. Attach an

hex socket/driver to

the impact wrench.

anchor head into the


Mount the screw

Legend

socket.

appropriate sized

Drive Tip

BLUE WEDGE-BIT

Designed and tested as a system for consistency and reliability

INSTALLATION SPECIFICATIONS

Installation Specifications for 316 Stainless Steel Wedge-Bolt in Concrete

Analyse Descents / Catting Information	Natalian	Unite	Nominal Anchor Diameter						
Anchor Property / Setting Information	Notation	Units	1/4	3/8	1/2				
Anchor diameter	da	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)				
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (7.9)	7/16 (11.1)	9/16 (14.3)				
Nominal drill bit diameter	Сbit	in.	1/4 Wedge-Bit	3/8 Wedge-Bit	1/2 Wedge-Bit				
Minimum nominal embedment depth	hnom	in. (mm)	1-3/4 (44)	2 (51)	2-3/4 (70)				
Minimum hole depth	h₀	in. (mm)	2 (51)	2-1/4 (57)	3 (77)				
Minimum overall anchor length	lanch	in. (mm)	2 (51)	2-1/2 (64)	3 (76)				
Max installation torque	Tinst,max	ftlbf. (N-m)	15 (20)	35 (47)	60 (81)				
Max impact wrench power (torque)	Timpact,max	ftlbf. (N-m)	115 (156)	245 (332)	300 (407)				
Torque wrench/socket size	-	in.	7/16	9/16	3/4				
Head height	-	in.	7/32	21/64	7/16				
Nominal washer diameter	-	in.	37/64	3/4	1-1/16				
Ultimate tensile strength	(UTS)	ksi	80	100	100				
Approximate yield strength	(YS)	ksi	64	80	80				

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

200

PERFORMANCE DATA (ASD)

DEWALI

ANCHORS & FASTENERS

Ultimate Load Capacities for 316 Stainless Steel Wedge-Bolt in Normal-Weight Concrete¹²

	Minimum	Minimum Concrete Compressive Strength											
Nominal Anchor	Embedment Depth,		500 psi MPa)		f'c = 3,000 psi (20.7 MPa)		f'c = 4,000 psi (27.6 MPa)		000 psi MPa)	f'c = 8,000 psi (55.2 MPa)			
Diameter in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
1/4	1-3/4	890	1,385	975	1,520	1,130	1,755	1,440	2,560	1,440	2,850		
	(44)	(4.0)	(6.2)	(4.3)	(6.8)	(5.0)	(7.8)	(6.4)	(11.4)	(6.4)	(12.7)		
1/4	2-1/2	2,485	1,385	2,720	1,520	3,145	1,755	3,150	2,560	3,150	2,850		
	(64)	(11.1)	(6.2)	(12.1)	(6.8)	(14.0)	(7.8)	(14.0)	(11.4)	(14.0)	(12.7)		
	2	735	1,675	805	1,833	930	2,115	1,180	2,710	1,210	3,295		
	(51)	(3.3)	(7.5)	(3.6)	(8.2)	(4.1)	(9.4)	(5.2)	(12.1)	(5.4)	(14.7)		
3/8	2-1/2	1,515	1,675	1,655	1,833	1,915	2,115	2,130	2,710	2,180	3,295		
	(64)	(6.7)	(7.5)	(7.4)	(8.2)	(8.5)	(9.4)	(9.5)	(12.1)	(9.7)	(14.7)		
	3-1/2	3,525	1,675	3,860	1,833	4,455	2,115	4,570	2,710	4,680	3,295		
	(89)	(15.7)	(7.5)	(17.2)	(8.2)	(19.8)	(9.4)	(20.3)	(12.1)	(20.8)	(14.7)		
	2-3/4	3,000	4,675	3,285	5,120	3,790	5,915	5,975	7,560	6,900	9,205		
	(70)	(13.3)	(20.8)	(14.6)	(22.8)	(16.9)	(26.3)	(26.6)	(33.6)	(30.7)	(40.9)		
1/2	3-1/2	3,830	5,205	4,195	5,700	4,845	6,590	6,800	7,390	7,855	8,995		
	(89)	(17.0)	(23.2)	(18.7)	(25.4)	(21.6)	(29.3)	(30.2)	(32.9)	(34.9)	(40.0)		
	4-1/2	5,680	5,205	6,220	5,700	7,180	6,590	9,760	7,390	11,265	8,995		
	(114)	(25.3)	(23.2)	(27.7)	(25.4)	(31.9)	(29.3)	(43.4)	(32.9)	(50.1)	(40.0)		

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt in Normal-Weight Concrete^{1,2,3,4,5}

	Minimum		Minimum Concrete Compressive Strength													
Nominal	Embedment		500 psi	f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi						
Anchor	Depth,		MPa)	(20.7 MPa)		(27.6 MPa)		(41.4 MPa)		(55.2 MPa)						
Diameter in.	hnom in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)					
1/4	1-3/4	225	345	245	380	285	440	360	640	360	715					
	(44)	(1.0)	(1.5)	(1.1)	(1.7)	(1.3)	(2.0)	(1.6)	(2.8)	(1.6)	(3.2)					
1/4	2-1/2	620	345	680	380	785	440	790	640	790	715					
	(64)	(2.8)	(1.5)	(3.0)	(1.7)	(3.5)	(2.0)	(3.5)	(2.8)	(3.5)	(3.2)					
	2	185	420	200	460	235	530	295	680	305	825					
	(51)	(0.8)	(1.9)	(0.9)	(2.0)	(1.0)	(2.4)	(1.3)	(3.0)	(1.4)	(3.7)					
3/8	2-1/2	380	420	415	460	480	530	535	680	545	825					
	(64)	(1.7)	(1.9)	(1.8)	(2.0)	(2.1)	(2.4)	(2.4)	(3.0)	(2.4)	(3.7)					
	3-1/2	880	420	965	460	1,115	530	1,145	680	1,170	825					
	(89)	(3.9)	(1.9)	(4.3)	(2.0)	(5.0)	(2.4)	(5.1)	(3.0)	(5.2)	(3.7)					
	2-3/4	750	1,170	820	1,280	950	1,480	1,495	1,890	1,725	2,300					
	(70)	(3.3)	(5.2)	(3.6)	(5.7)	(4.2)	(6.6)	(6.7)	(8.4)	(7.7)	(10.2)					
1/2	3-1/2	960	1,300	1,050	1,425	1,210	1,650	1,700	1,850	1,965	2,250					
	(89)	(4.3)	(5.8)	(4.7)	(6.3)	(5.4)	(7.3)	(7.6)	(8.2)	(8.7)	(10.0)					
	4-1/2	1,420	1,300	1,555	1,425	1,795	1,650	2,440	1,850	2,815	2,250					
	(114)	(6.3)	(5.8)	(6.9)	(6.3)	(8.0)	(7.3)	(10.9)	(8.2)	(12.5)	(10.0)					

1. Tabulated load values are for anchors installed in uncracked normal weight concrete. Concrete compressive strength must be at a minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

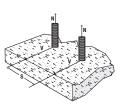
3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. Allowable loads for lightweight concrete may be determined by multiplying the tabulated allowable load capacities for normal weight concrete by 0.60.

R

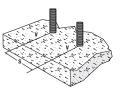
LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES


Anchor Installed in Normal-Weight Concrete

Anchor Dimension			Load Type Critical Distance (Full Anchor Capacity)		Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Creasing (a)	Tension	s _{cr} = 12d	Fns = 1.0	$s_{min} = 4d$	F _{NS} = 0.50		
Spacing (s)	Shear	s _{cr} = 12d	$F_{VS} = 1.0$	$s_{min} = 4d$	$F_{vs} = 0.75$		
Edge Distance (c)	Tension	$C_{cr} = 8d$	Fnc = 1.0	$C_{min} = 3d$	Fnc = 0.70		
Euge Distance (c)	Shear	$c_{cr} = 12d$	$F_{VC} = 1.0$	$c_{min} = 3d$	$F_{VC} = 0.15$		

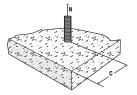
1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

LOAD ADJUSTMENT FACTORS FOR NOR 312112


	Spacing, Tension (F _{NS})							
Dia	a. (in.)	1/4	3/8	1/2				
Sc	r (in.)	3	4-1/2	6				
Sm	in (in.)	1	1-1/2	2				
	1	0.50	-	-				
s)	1-1/2	0.63	0.50	-				
Spacing, s (inches)	2	0.75	0.58	0.50				
g, s (i	2-1/2	0.88	0.67	0.56				
acin	3	1.00	0.75	0.63				
SF	4-1/2	1.00	1.00	0.81				
	6	1.00	1.00	1.00				

Notes: For anchors loaded in tension, the critical spacing (scr) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load. Minimum spacing (smin) is equal to 4

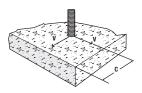
anchor diameters (4d) at which the anchor achieves 50% of load.


		Spacing, S	hear (Fvs)	
Dia	a. (in.)	1/4	3/8	1/2
S	r (in.)	3	4-1/2	6
Sm	in (in.)	1	1-1/2	2
	1	0.75	-	-
s)	1-1/2	0.81	0.75	-
inche	2	0.88	0.79	0.75
g, s (i	2-1/2	0.91	0.83	0.78
Spacing, s (inches)	3	1.00	0.88	0.81
S	4-1/2	1.00	1.00	0.91
	6	1.00	1.00	1.00

Notes: For anchors loaded in shear, the critical spacing (scr) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum spacing (smin) is equal to 4 anchor diameters (4d) at which the anchor achieves 75% of load.

	Edge Distance, Tension (F _{NC})							
Dia	a. (in.)	1/4	3/8	1/2				
C	r (in.)	2	3	4				
Cm	in (in.)	3/4	1-1/8	1-1/2				
	3/4	0.70	-	-				
	1-1/8	0.79	0.70	-				
c (in.	1-1/2	0.88	0.76	0.70				
nce, c	1-7/8	0.97	0.82	0.75				
Dista	2	1.00	0.84	0.76				
Edge Distance, c (in.)	2-1/4	1.00	0.88	0.79				
	3	1.00	1.00	0.88				
	4	1.00	1.00	1.00				


Notes: For anchors loaded in tension, the critical edge distance (Ccr) is equal to 8 anchor diameters (8d) at which the anchor achieves 100% of load.

Minimum edge distance (cmin) is equal to 3 anchor diameters (3d) at which the anchor achieves 70% of load.

Dia. (in.)	1/4	3/8	1/2
C cr (in.)	3	4-1/2	6
Cmin (in.)	3/4	1-1/8	1-1/2

Edge Distance, Shear (Fvc)

	• •			-
	3/4	0.15	-	-
_	1-1/8	0.29	0.15	-
Ü.	1-1/2	0.43	0.24	0.15
nce, (1-7/8	0.58	0.34	0.22
Dista	2-1/4	0.72	0.43	0.29
Edge Distance, c (in.)	3	1.00	0.62	0.43
	4-1/2	1.00	1.00	0.72
	6	1.00	1.00	1.00

Notes: For anchors loaded in shear, the critical edge distance (Ccr) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load. Minimum edge distance (cmin) is equal to 3 anchor diameters (3d) at which the anchor achieves 15% of load

C

ANCHOR

MASONRY PERFORMANCE DATA

Ultimate Load Capacities for 316 Stainless Steel Wedge-Bolt installed into the Face or End of Grout Filled Concrete Masonry^{1,2,3}

Nominal Anchor Diameter	Minimum Embed. hoom	Minimum Edge Distance	Minimum End Distance		sion (kN)	si Loading Direction f'm = 1,500 psi f'm =		
d in.	in. (mm)	in. (mm)	in. (mm)	f'm = 1,500 psi	f'm = 2,000 psi			f'm = 2,000 psi
1/4	1-3/4 (44)	3-3/4 (95)	1-1/2 (38)	570 (2.5)	660 (2.9)	Perpendicular or parallel	645 (2.9)	745 (3.3)
1/4 -	2-1/4 (57)	3-3/4 (95)	1-1/2 (38)	1,145 (5.1)	1,325 (5.9)	to wall edge or end	910 (4.0)	1,050 (4.7)
	2 (51)	3-3/4 (95)	1-1/2 (38)	1,535 (6.8)	1,775 (7.9)	Perpendicular or parallel to wall edge or end	775 (3.4)	895 (4.0)
3/8	3 (76)	3-3/4 (95)	3-3/4 (95)	2,300	2,655	Perpendicular or parallel to wall edge or end	3,110 (13.8)	3,585 (15.9)
	3 (76)	3-3/4 (95)	11-1/4 (286)	(10.2)	(11.8)	Parallel to wall edge	3,325 (14.8)	3,835 (17.1)
	2-3/4 (70)	3-3/4 (95)	1-3/4 (44)	1,330	1,535		2,050 (9.1)	2,365 (10.5)
1/0	2-3/4 (70)	3-3/4 (95)	3-3/4 (95)	(5.9)	.9) (6.8) Perpendicular		2,630 (11.7)	3,040 (13.5)
1/2 -	4-1/2 (114)	3-3/4 (95)	11-1/4 (286)	4,680	5,400	or parallel to wall edge or end	2,630 (11.7)	3,040 (13.5)
	4-1/2 (114)	11-1/4 (286)	11-1/4 (286)	(20.8)	(24.0)		7,290 (32.4)	8,415 (37.4)

1. Tabulated load values are for anchors installed in minimum 8-inch wide, Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate strength at the time of installation (f⁺m ≥ 1,500 psi).

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load.

3. The tabulated load values are applicable for screw anchors installed at a critical spacing between screw anchors of 16 times the screws anchor diameter. Reduce the tabulated load capacities by 50 percent when anchors are installed at a minimum spacing between screw anchors of 8 times the screw anchor diameter. Linear interpolation may be used for intermediate spacing distances.

Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt installed into the Face or End of Grout Filled Concrete Masonry^{1,2,3,4,5}

Nominal Anchor Diameter	Minimum Embed.	Minimum Edge Distance	Minimum End Distance		sion (kN)		Shear Ibs. (kN)		
d in.	in. (mm)	in. (mm)	in. (mm)	f'm = 1,500 psi	f'm = 2,000 psi	Loading Direction	f'm = 1,500 psi	f'm = 2,000 psi	
1/4	1-3/4 (44)	3-3/4 (95)	1-1/2 (38)	115 (0.5)	130 (0.6)	Perpendicular or parallel	130 (0.6)	150 (0.7)	Minimum End Distance (Typ)
1/4	2-1/4 (57)	3-3/4 (95)	1-1/2 (38)	230 (1.0)	265 (1.2)	to wall edge or end	180 (0.8)	210 (0.9)	Minimum Ar Ar State
	2 (51)	3-3/4 (95)	1-1/2 (38)	305 (1.4)	355 (1.6)	Perpendicular or parallel to wall edge or end	155 (0.7)	180 (0.8)	
3/8	3 (76)	3-3/4 (95)	3-3/4 (95)	460	530	Perpendicular or parallel to wall edge or end	620 (2.8)	715 (3.2)	Grout Filled CMU (Typ) Mortar Joint
	3 (76)	3-3/4 (95)	11-1/4 (286)	(2.0)	(2.4)	Parallel to wall edge	665 (3.0)	765 (3.4)	Wall Face
	2-3/4 (70)	3-3/4 (95)	1-3/4 (44)	265	305		410 (1.8)	475 (2.1)	Permissible Anchor Locations
1/2	2-3/4 (70)	3-3/4 (95)	3-3/4 (95)	(1.2)	(1.4)	Perpendicular or parallel	525 (2.3)	610 (2.7)	(Un-hatched Area)
1/2	4-1/2 (114)	3-3/4 (95)	11-1/4 (286)	935	1,080	to wall edge or end	525 (2.3)	610 (2.7)	
	4-1/2 (114)	11-1/4 (286)	11-1/4 (286)	(4.2)	(4.8)		1,460 (6.5)	1,685 (7.5)	

1. Tabulated load values are for anchors installed in minimum 8-inch wide, Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate strength at the time of installation (f^rm ≥ 1,500 psi).

2. Allowable load capacities are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

3. Linear interpolation for allowable loads for anchors at intermediate embedment depths may be used.

4. For installation in 3,000 psi grout filled concrete masonry (f'm = 3,000 psi) the load capacity in 1,500 psi grout filled concrete masonry (f'm = 1,500) may be increased by 40% and the load capacity in 2,000 psi grout concrete masonry (f'm = 2,000 psi) may be increased by 22%.

5. The tabulated load values are applicable for screw anchors installed at a critical spacing between screw anchors of 16 times the screws anchor diameter. Reduce the tabulated load capacities by 50 percent when anchors are installed at a minimum spacing between screw anchors of 8 times the screw anchor diameter. Linear interpolation may be used for intermediate spacing distances.

ASD

Ultimate and Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt Installed in Grout Filled Concrete Masonry Wall Tops^{1,2,3,4,5,6}

Newinel	Minimum	Minimum	Minimum		Ultimat	te Load	Allowable Load		
Nominal Anchor Diameter d in.	Nominal Embed. Depth hm in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Minimum Spacing Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Minimum End Distance (Typ)
1/4	2-1/2 (64)	1-1/2 (38)	3 (76)	4 (102)	1,025 (4.6)	625 (2.8)	205 (0.9)	125 (0.6)	
3/8	3 (76)	1-1/2 (38)	4 (102)	6 (152)	1,675 (7.5)	1,075 (4.8)	335 (1.5)	215 (1.0)	Distance (Typ)
1/2	4-1/2 (114)	1-3/4 (44)	6 (152)	8 (203)	2,475 (11.0)	1,075 (4.8)	495 (2.2)	215 (1.0)	Top of Wall

1. All values are for anchors installed in fully grouted concrete masonry wall construction with materials meeting minimum compressive strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C90. Allowable loads are based on a safety factor of 5.0.

2. Anchors may be installed in any location in the top of the masonry wall except within 1-1/4-inch from the of the mortar joint (head joint), provided the minimum edge and end distances are maintained.

3. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

4. Spacing distance is measured from the centerline to centerline between two anchors.

5. The edge and end distance is measured from the anchor centerline to the closest unrestrained edge and end of the CMU block, respectively.

6. Allowable shear loads may be applied in any direction.

Ultimate and Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt Installed into Multiple Wythe Solid Clay Brick Masonry^{1,2,3}

Number	Minimum				Ultimat	te Load	Allowat	ole Load	
Nominal Anchor Diameter d in.	Nominal Embed. Depth hm in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Minimum Spacing Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Minimum End Distance (Typ)
1/4	2-1/2 (64)	3-1/2 (89)	2-1/2 (64)	4 (102)	1,170 (5.2)	1,380 (6.1)	235 (1.0)	275 (1.2)	
3/8	2-3/4 (70)	6 (152)	6 (152)	6 (152)	1,435 (6.4)	2,875 (12.8)	285 (1.3)	575 (2.6)	
1/2	3-1/4 (83)	9-1/2 (241)	9-1/2 (241)	8 (203)	1,840 (8.2)	7,655 (34.1)	370 (1.6)	1,530 (6.8)	

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be as the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load.

3. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be used depending on the application, such as life safety.

ORDERING INFORMATION

316 Stainless Steel Wedge-Bolt

Cat. No.	Anchor Size (in.)	Thread Length (in.)	Pack Qty.	Carton Qty.
07870-PWR	1/4 x 2	1-3/4	100	600
07872-PWR	1/4 x 3	2-3/4	100	500
07876-PWR	1/4 x 4	2-3/4	100	500
07878-PWR	1/4 x 5	2-3/4	100	500
07880-PWR	3/8 x 2-1/2	2-1/4	50	300
07882-PWR	3/8 x 3	2-1/4	50	250
07884-PWR	3/8 x 4	3-1/2	50	250
07886-PWR	3/8 x 5	3-1/2	50	250
07888-PWR	1/2 x 3	2-3/4	50	150
07890-PWR	1/2 x 4	2-3/4	50	150
07892-PWR	1/2 x 5	3-3/4	25	100
07894-PWR	1/2 x 6	3-3/4	25	75
· ·	includes the diameter and length of the anchor meas el Wedge-Bolt has a blue marking and must be instal			

Wedge-Bit

Cat. No.	Wedge-Bit Description	Usable Length	Pack Qty.	Carton Qty.
01312-PWR	SDS 1/4" x 4"	2"	1	250
01314-PWR	SDS 1/4" x 6"	4"	1	100
01315-PWR	SDS 1/4" x 8"	6"	1	-
01316-PWR	SDS 3/8" x 6"	4"	1	200
01318-PWR	SDS 3/8" x 8"	6"	1	100
01332-PWR	SDS 3/8" x 12"	10"	1	50
01319-PWR	SDS 3/8" x 18"	16"	1	50
01320-PWR	SDS 1/2" x 6"	4"	1	150
01322-PWR	SDS 1/2" x 10"	8"	1	50
01334-PWR	SDS 1/2" x 12"	10"	1	50
01335-PWR	SDS 1/2" x 18"	16"	1	50
01340-PWR	Spline 1/2" x 13"	8"	1	20
01342-PWR	Spline 1/2" x 16"	11"	1	-
01354-PWR	SDS-Max 1/2" x 13"	8"	1	20
01370-PWR	HD Straight Shank 1/4" x 4"	2-3/4"	1	100
01372-PWR	HD Straight Shank 1/4" x 6"	4"	1	-
01380-PWR	HD Straight Shank 3/8" x 6"	4"	1	-
01384-PWR	HD Straight Shank 3/8" x 13"	11"	1	-
01390-PWR	HD Straight Shank 1/2" x 6"	4"	1	-
01394-PWR	HD Straight Shank 1/2" x 13"	11"	1	50

Suggested Impact Wrench and Socket

Nominal Anchor Size	Socket Size	Impact Ra	ted Socket	20V Max* Impact Wrenches			
1/4"	7/16"	DW2285		DCF923GP2 3/8" ATOMIC Compact Impact Wrench with Hog Ring Anvil	2		
3/8"	9/16"	DW22872		DCF921GP2 1/2" ATOMIC Compact Impact Wrench with Hog Ring Anvil	1		
1/2"	3/4"	DW22902		DCF891P2 1/2" Mid-Range Impact Wrench with Hog Ring Anvil	1		

GENERAL INFORMATION

ULTRACON+®

Concrete Screw Anchor

PRODUCT DESCRIPTION

The UltraCon+ fastening system is a complete family of screw anchors for light to medium duty applications in concrete, masonry block, brick, and wood base materials. The UltraCon+ is fast and easy to install and provides a neat, finished appearance. The UltraCon+ screw anchor is engineered with matched tolerance drill bits and installation tools designed to meet the needs of the user and also provide optimum performance. The UltraCon+ features a gimlet point for selfdrilling into wood base materials without pre-drilling.

The UltraCon+ screw anchor is available in carbon steel with a Stalgard coating in several colors. Head styles include a slotted hex washer head, Phillips flat head, Phillips Trimfit flat head and Hex flange head.

GENERAL APPLICATIONS AND USES

- Window and door frames
- · Shutters and guards
- Lighting fixtures

 Thresholds Joint flashing

Screened enclosures

+ Does not exert expansion forces

+ Good corrosion protection with Stalgard coating

+ No hole spotting required

+ High-low thread design for

greater stability and grip

FEATURES AND BENEFITS

- + Available in several head styles
- + Several colors and finishes to match application
- + Removable (reusable in wood)
- + Gimlet point for self drilling into wood

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3068 for uncracked concrete, ESR-3196 for masonry. ESR-3042 for wood, and ESR-3213 for chemically treated lumber
- Code compliant with the International Building Code/International Residential Code: 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ACI ACI 355.2/ASTM E488 and ICC-ES AC193 for use in concrete, ICC-ES AC106 for use in masonry, ICC-ES AC233 for use in wood, and ICC-ES AC257 for use in pressure treated lumber
- Evaluated and gualified by an accredited independent testing laboratory for reliability against brittle failure, e.g. hydrogen embrittlement
- City of Los Angeles, LABC and LARC Supplement (within ICC-ES evaluation reports)
- Miami-Dade County Notice of Acceptance (NOA) No. 21-0113.01
- Florida Statewide Approval FL29080

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors. 04 05 19.16 - Masonry Anchors. 05 05 19 -Post-Installed Concrete Anchors and 06 05 23 - Wood, Plastic, and Composite Fastenings. Concrete Screw Anchors shall be UltraCon+ anchors as supplied by DEWALT, Towson, MD.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor Body	Case hardened carbon steel
Coating/Plating/Finish	Stalgard® (various colors) 1000 hour rating for ASTM B117 salt spray test

SECTION CONTENTS

General Information	206
Material Specifications	206
Installation Specifications	207
Installation Instructions	208
Performance Data (ASD)	209
Strength Design Information	213
Design Strength Tables (SD)	215
Ordering Information	216

ULTRACON+

HEAD STYLES

- Slotted Hex Washer Head
- · Hex Flange Head
- · Phillips Flat Head
- TrimFit[®] Flat Head

ANCHOR MATERIALS

Carbon Steel with Stalgard Coating

ANCHOR SIZE RANGE (TYP.)

 3/16" and 1/4" diameters in various lengths

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete
- Grouted Concrete Masonry
- Hollow Concrete Masonry (CMU)
- Solid Brick Masonry
- Wood

INSTALLATION SPECIFICATIONS

UltraCon+ Carbon Steel Hex Head

Dimension

UltraCon+ Carbon Steel TrimFit Flat Head

Dimension

UltraCon+ Drill Bit Size, dbit (in.)

Hex Head Wrench/Socket Size

UltraCon+ Drill Bit Size, dbit (in.)

Phillips TrimFit Head O.D. (in.)

Phillips TrimFit Head Height (in.)

Typ. Fixture Clearance Hole, dh (in.)

Head Height (in.)

Washer O.D., dw (in.)

Washer Thickness, (in.)

Typ. Fixture Clearance Hole, dh (in.)

Nominal Anchor Diameter, d

5/16"

15/64"

5/16"

20/6/1

Concrete Screw Anchor **TRACON+®**

13/32" 1/32" Nominal Anchor Diameter, d 1/4" UltraCon+ Drill Bit Size, dbit (in.)

3/16" 3/8" Typ. Fixture Clearance Hole, dh (in.) 13/32 Head Height Including Flange, (in.) 3/16" Hex Head Wrench/Socket Size, (in.) Machar O.D. (in) #3

1. For minimum nominal embedment depths, hnom, see the performance data tables. The minimum

2. In light gauge steel material (0.036 / 20 gauge and thinner), the clearance hole can be the same

3. Pre-drilling is not required for UltraCon+ screw anchors into wood base materials (but can be con

Head Marking

Phillips Bit Size, (No.)

Hex Washer Head

C n

Nominal Anchor Diameter, d

1/4"

3/16"

5/16"

9/64"

5/16"

3/16"

5/32"

1/4"

7/64"

1/4"

11/32"

1/32"

TrimFit Flat Head

Legend

= UltraCon+

'D' Marking '+' Symbol 'C' Mark = Strength Design Compliant Anchor

= Length Identification Mark

• Mark = TrimFit Flat Head Identification

UltraCon+ Length Code Identification System

Length ID marking on head Overall anchor length From			A	В	C	D	E	F	G	H	I	J
Overall anchor length	From	1"	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"
l _{anch} (inches)	Up to but not including	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"

UltraCon+ Bits

1-800-4 DEWALT

UltraCon+ Carbon Steel Flat Head

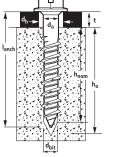
Dimension		,
	3/16"	1/4"
UltraCon+ Drill Bit Size, d _{bit} (in.)	5/32"	3/16"
Typ. Fixture Clearance Hole, dh (in.)	1/4"	5/16"
Phillips Head O.D., (in.)	3/8"	1/2"
Phillips Head Height, (in.)	9/64"	3/16"
Phillips Bit Size (No.)	2	3
UltraCon+ Carbon Steel Hex Fl	ange Head	
Dimension	Nominal Diame	l Anchor eter, d
	1/	4"
UltraCon+ Drill Bit Size, dbit (in.)		

wasner U.D., (In.)	39/64
h hole depth, h_{0} , is 1/4-inch more than the selected nominal e diameter as the drill bit. onsidered).	embedment depth.
Matched Tolerance System	
Screw Coating Hi-Lov Thread	

D+ C

Hex Flange Head

Installation Table for UltraCon+ in Concrete and Masonry^{1,2}


Anchor Dronorky/Colting Information	Notation	Units	Nominal And	hor Size (in.)
Anchor Property/Setting Information	Notation	UIIILS	3/16	1/4
Nominal anchor shank diameter	da	in.	0.145	0.185
Nominal drill bit diameter	d _{bit}	in.	5/32 UltraCon+ Bit	3/16 UltraCon+ Bit
UltraCon+ bit tolerance range	-	in.	0.170 to 0.176	0.202 to 0.206
Hex head socket size	-	in.	1/4	5/16
Phillips bit size (No.)	-	-	2	3
Maximum manual installation torque	Tinst,max	ft-lbs	3	5
Maximum powered installation torque	T _{screw}	ft-lbs	Not applicable using UltraC	Con+ installation socket tool
1. For minimum nominal embedment depths, hn	m, see the perform	ance data tables.	The minimum hole depth, h₀, is 1/4-inch more than the	selected nominal embedment depth.

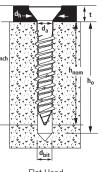
2. See Strength Design Information for installation specifications in strict accordance with ICC-ES ESR-3068.

Installation Table for UltraCon+ in Wood

Anchor Property/Setting Information	Notation	Units	Nominal Anc	hor Size (in.)
Anchor Property/Setting Information	NULALIUN	UIIIts	3/16	1/4
Nominal anchor shank diameter	da	in.	0.145	0.185
Nominal drill bit diameter	dыt	in.		raCon+ into wood base materials considered)
Hex head socket size	-	in.	1/4	5/16
Phillips bit size (No.)	-	-	2	3

UltraCon+ Anchor Detail

INSTALLATION INSTRUCTIONS Installation Instruction for UltraCon+


8

Using the proper drill bit size, drill

the required depth, h_0 , which is a 1/4-inch deeper than the minimum

a hole into the base material to

embedment depth, hnom.

Nomenclature

da

dbit

dht

hnom h

h₀

= Diameter of anchor shank

- = Diameter of drill bit
- = Diameter of fixture clearance hole
- = Minimum embedment depth
- = Base material thickness
- the minimum value of h should be 1.5hnom or 3" whichever is greater
- = Minimum hole depth

Hex Head

Step 1

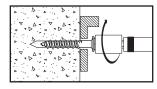
Flat Head

۰b ۵.

Remove dust and debris from

extract loose particles created

the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to


Step 2

by drilling.

ADDHINDDI.	

Step 3

Attach a UltraCon+ installation socket tool for the selected anchor size to a percussion drill and set the drill to rotary only mode. Mount the screw anchor head into the socket. For flat head versions a bit tip must be used with the socket tool.

Step 4

Place the point of the UltraCon+ through the fixture into the pre-drilled hole and drive the anchor in one steady continuous motion until it is fully seated at the proper embedment. The driver will automatically disengage from the head of the screw anchor.

CHANICAL

MECHANICAL ANCHORS

JLTRACON+® Concrete Screw Anchor

PERFORMANCE DATA (ASD)

Ultimate and Allowable Load Capacities for UltraCon+ in Normal-Weight Concrete^{1,2,3,4}

							I	Minimum C	Concrete (Compressiv	e Strengt	th			
Nominal Anchor	Minimum Embed.	Minimum Edge	Minimum		f'c = 2 (17.3	,500 psi Mpa)				,000 psi ' Mpa)				,000 psi Mpa)	
Diameter d	Depth hnom	Distance in.	Spacing in.	Ultin	nate	Allow	<i>vable</i>	Ultir	nate	Allow	<i>vable</i>	Ultin	nate	Allov	vable
in.	in. (mm)	(mm)	(mm)	Tension Ibs. (kN)	Shear Ibs. (kN)										
	1-3/4 (44)		1 (25)	1,080 (4.8)	305 (1.3)	270 (1.2)	75 (0.3)	1,145 (5.0)	325 (1.4)	285 (1.3)	80 (0.4)	1,245 (5.5)	325 (1.4)	310 (1.4)	80 (0.4)
	1-3/4 (44)		1-1/8 (29)	1,190 (5.2)	305 (1.3)	295 (1.3)	75 (0.3)	1,255 (5.5)	325 (1.4)	315 (1.4)	80 (0.4)	1,370 (6.0)	325 (1.4)	340 (1.5)	80 (0.4)
	1-3/4 (44)	1	2-1/4 (57)	1,365 (6.0)	600 (2.6)	340 (1.5)	150 (0.7)	1,440 (6.3)	635 (2.8)	360 (1.6)	160 (0.7)	1,570 (6.9)	635 (2.8)	395 (1.7)	160 (0.7)
	1 (25)	(25)	3	580 (2.6)	435 (1.9)	145 (0.7)	110 (0.5)	615 (2.7)	460 (2.0)	155 (0.7)	115 (0.5)	670 (2.9)	460 (2.0)	170 (0.7)	115 (0.5)
	1-3/8 (35)		(76)	815 (3.6)	455 (2.0)	205 (0.9)	115 (0.5)	860 (3.8)	485 (2.1)	215 (1.0)	120 (0.5)	940 (4.1)	485 (2.1)	235 (1.0)	120 (0.5)
3/16 1-3/4 (44) 1-3/4 (44) 1-3/4 (44) 1-3/4 (44)			3-3/8 (86)	1,365 (6.0)	600 (2.6)	340 (1.5)	150 (0.7)	1,440 (6.3)	635 (2.8)	360 (1.6)	160 (0.7)	1,570 (6.9)	635 (2.8)	395 (1.7)	160 (0.7)
			1-1/8 (29)	1,465 (6.4)	1,200 (5.3)	365 (1.6)	300 (1.3)	1,550 (6.8)	1,265 (5.6)	390 (1.7)	315 (1.4)	1,690 (7.4)	1,265 (5.6)	425 (1.9)	315 (1.4)
				2-1/4 (57)	1,465 (6.4)	1,200 (5.3)	365 (1.6)	300 (1.3)	1,550 (6.8)	1,265 (5.6)	390 (1.7)	315 (1.4)	1,690 (7.4)	1,265 (5.6)	425 (1.9)
	1 (25)	2-1/2 (64)	3	580 (2.6)	640 (2.8)	145 (0.7)	160 (0.7)	615 (2.7)	680 (3.0)	155 (0.7)	170 (0.8)	670 (2.9)	680 (3.0)	170 (0.7)	170 (0.8)
	1-3/8 (35)		(76)	1,220 (5.4)	735 (3.2)	305 (1.4)	185 (0.8)	1,290 (5.7)	775 (3.4)	325 (1.4)	195 (0.9)	1,405 (6.2)	775 (3.4)	350 (1.6)	195 (0.9)
	1-3/4 (44)		3-3/8 (86)	1,465 (6.4)	1,200 (5.3)	365 (1.6)	300 (1.3)	1,550 (6.8)	1,265 (5.6)	390 (1.7)	315 (1.4)	1,690 (7.4)	1,265 (5.6)	425 (1.9)	315 (1.4)
	1-3/4 (44)		1 (25)	1,265 (5.6)	340 (1.5)	315 (1.4)	85 (0.4)	1,360 (6.0)	370 (1.6)	340 (1.5)	95 (0.4)	1,525 (6.7)	370 (1.6)	380 (1.7)	95 (0.4)
	1-3/4 (44)		1-1/2 (38)	1,265 (5.6)	385 (1.7)	315 (1.4)	95 (0.4)	1,325 (5.8)	415 (1.8)	340 (1.5)	105 (0.5)	1,525 (6.7)	415 (1.8)	380 (1.7)	105 (0.5)
	1-3/4 (44)	1	3 (76)	1,720 (7.6)	420 (1.8)	430 (1.9)	105 (0.5)	1,850 (8.1)	450 (2.0)	465 (2.0)	115 (0.5)	2,075 (9.1)	450 (2.0)	520 (2.3)	115 (0.5)
	1 (25)	(25)		770 (3.4)	495 (2.2)	195 (0.9)	125 (0.6)	830 (3.7)	530 (2.3)	210 (0.9)	135 (0.6)	930 (4.1)	530 (2.3)	235 (1.0)	135 (0.6)
	1-3/8 (35)		4 (102)	1,105 (4.9)	640 (2.8)	275 (1.2)	160 (0.7)	1,190 (5.2)	690 (3.0)	300 (1.3)	175 (0.8)	1,335 (5.9)	690 (3.0)	335 (1.5)	175 (0.8)
1/4	1-3/4 (44)			1,975 (8.7)	645 (2.8)	495 (2.2)	160 (0.7)	2,120 (9.3)	690 (3.0)	530 (2.3)	175 (0.8)	2,380 (10.5)	690 (3.0)	595 (2.6)	175 (0.8)
	1-3/4 (44)		1-1/2 (38)	2,200 (9.7)	1,590 (7.0)	550 (2.4)	400 (1.8)	2,365 (10.4)	1,710 (7.5)	590 (2.6)	430 (1.9)	2,650 (11.7)	1,710 (7.5)	665 (2.9)	430 (1.9)
	1-3/4 (44)		3 (76)	2,200 (9.7)	1,635 (7.2)	550 (2.4)	410 (1.8)	2,365 (10.4)	1,755 (7.7)	590 (2.6)	440 (1.9)	2,650 (11.7)	1,755 (7.7)	665 (2.9)	440 (1.9)
	1 (25)	2-1/2 (64)		805 (3.5)	1,260 (5.6)	200 (0.9)	315 (1.4)	865 (3.8)	1,355 (6.0)	215 (1.0)	340 (1.5)	970 (4.3)	1,355 (6.0)	245 (1.1)	340 (1.5)
	1-3/8 (35)		4 (102)	1,755 (7.7)	1,635 (7.2)	440 (1.9)	410 (1.8)	1,885 (8.3)	1,755 (7.7)	470 (2.1)	440 (1.9)	2,115 (9.3)	1,755 (7.7)	530 (2.3)	440 (1.9)
	1-3/4 (45)			2,290 (10.1)	1,635 (7.2)	570 (2.5)	410 (1.8)	2,460 (10.8)	1,755 (7.7)	615 (2.7)	440 (1.9)	2,650 (11.7)	1755 (7.7)	665 (2.9)	440 (1.9)

1. Tabulated Ultimate load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

4. For lightweight concrete multiply tabulated allowable load values by a reduction factor of 0.60.

Nominal

Allowable Load

Ultimate Load

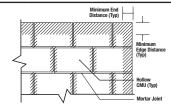
ECHANICAL ANCHORS

ULTRACON+® Concrete Screw Anchor

Nominal	Minimum	Minimum	Minimum	Minimum		Ultimat	te Load	Allowab	le Load
Nominal Anchor Diameter d in. 3/16	Embed. Depth hnom in. (mm)	Edge Distance in. (mm)	End Distance in. (mm)	Spacing in. (mm)	Minimum ASTM C90 Block Type	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	1-1/4 (32)			1-1/2 (38)	Normal Weight	740 (3.3)	405 (1.8)	150 (0.7)	80 (0.4)
	1-1/4 (32)	1 (25)	2 (51)	3 (76)	Normal Weight	815 (3.6)	585 (2.6)	165 (0.7)	115 (0.5)
	1-1/4 (32)		-	6 (152)	Normal Weight	815 (3.6)	585 (2.6)	165 (0.7)	115 (0.5)
	1 (25)			1-1/2 (38)	Lightweight	300 (1.3)	460 (2.1)	55 (0.3)	90 (0.4)
	1 (25)	2 (51)	2 (51)	3 (76)	Lightweight	340 (1.5)	460 (2.1)	65 (0.3)	90 (0.4)
3/16	1-1/4 (32)			1-1/2 (38)	Normal Weight	740 (3.3)	700 (3.1)	150 (0.7)	140 (0.6)
	1-1/4 (32)			1-1/8 (29)	Normal Weight	790 (3.5)	935 (4.1)	160 (0.7)	185 (0.8)
	1-1/4 (32)	2-1/2 (64)	2-1/2 (64)	2-1/4 (57)	Normal Weight	790 (3.5)	935 (4.1)	160 (0.7)	185 (0.8)
-	1-1/4 (32)		-	6 (152)	Normal Weight	790 (3.5)	935 (4.1)	160 (0.7)	185 (0.8)
	1 (25)	3	3	1-1/2 (38)	Lightweight	385 (1.8)	670 (3.0)	80 (0.4)	135 (0.6)
	1 (25)	(76)	(76)	3 (76)	Lightweight	440 (2.0)	670 (3.0)	90 (0.4)	135 (0.6)
	1-1/4 (32)			1-1/2 (38)	Normal Weight	725 (3.2)	475 (2.1)	145 (0.6)	95 (0.4)
	1-1/4 (32)	1 (25)	2 (51)	3 (76)	Normal Weight	940 (4.1)	800 (3.5)	190 (0.8)	160 (0.7)
	1-1/4 (32)		-	6 (152)	Normal Weight	725 (3.2)	690 (3.0)	145 (0.6)	140 (0.6)
	1 (25)			2 (51)	Lightweight	435 (1.9)	530 (2.4)	90 (0.4)	90 (0.4)
	1 (25)	2	2	4 (102)	Lightweight	495 (2.2)	530 (2.4)	100 (0.4)	90 (0.4)
	1-1/4 (32)	(51)	(51)	2 (51)	Normal Weight	760 (3.4)	740 (3.3)	150 (0.6)	150 (0.7)
1/4	1-1/4 (32)			4 (102)	Normal Weight	950 (4.2)	740 (3.3)	190 (0.8)	150 (0.7)
	1-1/4 (32)			1-1/2 (38)	Normal Weight	800 (3.5)	1,220 (5.4)	160 (0.7)	245 (1.1)
	1-1/4 (32)	2-1/2 (64)	2-1/2 (64)	3 (76)	Normal Weight	880 (3.9)	1,450 (6.4)	175 (0.8)	290 (1.3)
	1-1/4 (32)			6 (152)	Normal Weight	880 (3.9)	1,450 (6.4)	175 (0.8)	290 (1.3)
	1 (25)	3	3	2 (51)	Lightweight	510 (2.3)	820 (3.6)	100 (0.4)	165 (0.7)
	1 (25)	(76)	(76)	4 (102)	Lightweight	580 (2.6)	820 (3.6)	115 (0.5)	165 (0.7)

minimum designated ultimate compressive strength at the time of installation (f'm > 2,000 psi). Mortar must be Grade N,S or M..

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.


3. Allowable shear loads into the face shell of a masonry wall may be applied in any direction.

Ultimate and Allowable Load Capacities for UltraCon+ Anchors

Installed in the Face of Hollow Concrete Masonry^{1,2,3,4}

Minimum Embed. Depth

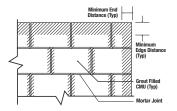
4. The tabulated values are applicable for anchors installed into the ends of concrete masonry units (e.g. wall opening) where minimum edge distances are maintained

Wall Face **Permissible Anchor Locations** (Un-hatched Area)

1.

(AsD)

Ultimate and Allowable Load Capacities for UltraCon+ Anchors Installed in the Face of Grout-Filled Concrete Masonrv^{1,2,3,4}


Newinel	Minimum	Minimum	Minimum	B.C			Ultimat	te Load	Allowab	le Load
Nominal Anchor Diameter d	Embed. Depth h.om in. (mm)	Edge Distance in. (mm)	End Distance in. (mm)	Minimum Spacing in. (mm)	Installation Location	Minimum ASTM C90 Block Type	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	1-3/4 (44)			1-1/2 (38)	Face	Normal Weight	510 (2.2)	435 (1.9)	100 (0.4)	85 (0.4)
	1-3/4 (44)	1 (25)	2 (51)	3-3/8 (86)	Face	Normal Weight	1,415 (6.2)	435 (1.9)	285 (1.2)	85 (0.4)
	2-1/4 (57)			4-1/2 (114)	Face	Normal Weight	2,080 (9.1)	755 (3.3)	415 (1.8)	150 (0.7)
3/16 -	1-3/4 (44)			3-3/8 (86)	Face	Normal Weight	1,415 (6.2)	1,105 (4.9)	285 (1.2)	220 (1.0)
	1-3/4 (44)	2-1/2 (64)	2-1/2 (64)	3-9/16 (91)	Face	Normal Weight	1,485 (6.5)	1,260 (5.5)	295 (1.3)	250 (1.1)
	2-1/4 (57)			4-1/2 (114)	Face	Normal Weight	2,080 (9.1)	1,260 (5.5)	415 (1.8)	250 (1.1)
	1-1/2 (38)	8 (203)	3 (76)	3 (76)	Mortar Joint	Lightweight	625 (2.8)	660 (2.9)	125 (0.6)	130 (0.6)
	1-1/2 (38)	3 (76)	3 (76)	3 (76)	Face	Lightweight	410 (1.8)	600 (2.7)	80 (0.4)	120 (0.5)
	1-3/4 (44)	1	2	1-1/2 (38)	Face	Normal Weight	980 (4.3)	460 (2.0)	195 (0.9)	90 (0.4)
	1-3/4 (44)	(25)	(51)	4 (102)	Face	Normal Weight	1,855 (8.2)	1,045 (4.6)	370 (1.6)	210 (0.9)
1 / 4	1-3/4 (44)	2-1/2	2-1/2	4 (102)	Face	Normal Weight	1,980 (8.7)	1,450 (6.4)	395 (1.7)	290 (1.3)
1/4	2-1/4 (57)	(64)	(64)	4 (102)	Face	Normal Weight	3,135 (13.8)	1,440 (6.3)	625 (2.8)	290 (1.3)
	1-1/2 (38)	8 (203)	3 (76)	4 (102)	Mortar Joint	Lightweight	730 (3.3)	1,010 (4.5)	145 (0.7)	200 (0.9)
	1-1/2 (38)	3 (76)	3 (76)	4 (102)	Face	Lightweight	650 (2.9)	1,010 (4.5)	130 (0.6)	200 (0.9)

1. Tabulated load values for anchors installed in lightweight concrete masonry units are based on minimum 6-inch-wide, Type II block conforming to ASTM C90 that have reached the minimum designated ultimate compressive strength at the time of installation (f'm ≥ 1,500 psi). Mortar must be Grade N, S or M.

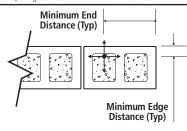
2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Allowable shear loads into the face shell of a masonry wall may be applied in any direction

4. The tabulated values are applicable for anchors installed into the ends of concrete masonry units (e.g. wall opening) where minimum edge distances are maintained.

Wall Face Permissible Anchor Locations (Un-hatched Area)

Ultimate and Allowable Load Capacities for UltraCon+ Anchors Installed
into the Tops of Grout Filled Concrete Masonry Walls ^{1,2,3}



mus are rop	o vi ulut i		to mason y	muna				
Nominal	Minimum	Minimum	Minimum		Ultimate	Loads	Allowa	ble Loads
Anchor Diameter d in.	Embed. h _{nom} in. (mm)	Edge Distance in. (mm)	End Distance in. (mm)	Minimum ASTM C90 Block Type	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
3/16	1-1/2 (38)	1-1/2 (38)	3 (76)	Lightweight	450 (2.0)	510 (2.3)	90 (0.4)	100 (0.5)
1/4	1-1/2 (38)	1-1/2 (38)	3 (76)	Lightweight	825 (3.7)	780 (3.5)	165 (0.7)	155 (0.7)

1. Tabulated load values are for 3/16-inch and 1/4-inch anchors installed in minimum 6-inch-wide, Type II, light weight concrete masonry units conforming to ASTM C90 that have reached the minimum designated ultimate compressive strength at the time of installation (f'm ≥ 1,500 ps). Mortar must be Grade N, S or M.

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. The tabulated values are applicable to anchors installed at a critical spacing between anchors of 16 times the anchor diameter.

Allowable Load Capacities for UltraCon+ Anchors Installed in Clay Brick Masonry^{1,2,3,4,5}

Nominal Anchor Diameter d in.	Minimum Embed. h _√ in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Installation Location	Tension Ibs. (kN)	Shear Ibs. (kN)	
3/16				Face	380 (1.7)	165 (0.7)	
5/10	1-1/2	1-3/4	1-3/4	Mortar Joint	300 (1.3)	190 (0.8)	_
1/4	(38)	(45)	(45)	Face	605 (2.7)	270 (1.2)	- (d/L) -
1/4				Mortar Joint	200 (0.9)	155 (0.7)	je Distance

 Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C62. Mortar must be Type N, S or M. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

 Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as lifesafety or overhead.

3. Allowable shear loads into the face or mortar joint of the brick masonry wall may be applied in any direction.

4. The tabulated values are applicable for anchors installed at a critical spacing between anchors of 12 times the anchor diameter.

5. The tabulated values are applicable for anchors installed into the ends of masonry walls (e.g. wall opening) where minimum edge

distances are maintained.

Average Withdrawal Capacity and Average Bending Yield Moment of UltraCon+ in Wood^{1,2}

Minimum	Minimum	Withdrawal		
Embed.	Edge	Capacity		
h√	Distance	Ibs.		
in.	in.	(kN)		
	(mm)	DFL	SYP	
1	1-3/4	540	-	
(25)	(45)	(2.4)		
1-1/2	1-3/4	820	-	
(38)	(45)	(3.7)		
1	1-3/4	680	260	
(25)	(45)	(3.0)	(1.6)	
1-1/2	1-3/4	1,050	735	
(38)	(45)	(4.7)	(3.3)	
	Embed. hv. in. (mm) 1 (25) 1-1/2 (38) 1 (25) 1-1/2	Embed. h, in, (mm) Edge Distance in, (mm) Edge Distance in, (mm) 1 1.1/2 1.3/4 1 1-1/2 1-3/4 45) 1 1 1-3/4 45) 1 1 1-3/4 45) 1 1 1-3/4 45) 1 1 1-3/4 45) 1 1-1/2 1-3/4 1 1	Embed. h. in. (mm) Edge Distance in. (mm) Edge Distance in. (mm) Capa Ib (k 1 Edge Distance in. (mm) Edge Distance in. (mm) Edge Distance in. (mm) Edge Distance in. (k Edge Distance in. (k Edge Dista	

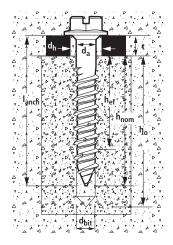
Contract load capacities are based of laboratory tests and must be reduced by a minimum sarety labor of 0.50 of greater to determine anomable working load.
 Tests in Douglas-Fir Larch (DFL) with minimum Specific Gravity of 0.42 and tests in Southern Yellow Pine (SYP) with minimum Specific Gravity of 0.55; screws oriented tangential to wood grain.

Minimum End Distance (Typ)

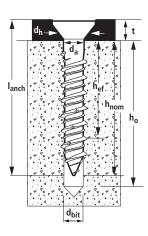
Minimum Edo

STRENGTH DESIGN INFORMATION

Installation Table for UltraCon+ in Concrete¹


Anchor Property/Setting Information	Notation	Units	3/16	1/4
Nominal anchor shank diameter	da	in. (mm)	0.145 (3.7)	0.185 (4.7)
Nominal drill bit diameter	Cluit	in. (mm)	5/32 UltraCon+ Bit	3/16 UltraCon+ Bit
UltraCon+ bit tolerance range	-	in.	0.170 to 0.176	0.202 to 0.206
Minimum nominal embedment depth	hnom	in. (mm)	1-3/4 (44)	1-3/4 (44)
Effective embedment	h _{ef}	in. (mm)	1.23 (31)	1.23 (31)
Minimum hole depth	h _{hole}	in. (mm)	h _{nom} + 1/4 (6)	h _{nom} + 1/4 (6)
Minimum concrete member thickness	h _{min}	in. (mm)	3-1/4 (83)	3-1/4 (83)
Minimum overall anchor length ²	lanch	in. (mm)	2-1/4 (57)	2-1/4 (57)
Minimum edge distance	Cmin	in. (mm)	1-3/4 (44)	1-3/4 (44)
Minimum spacing distance	Smin	in. (mm)	1 (25)	2 (51)
Maximum manual installation torque	T _{inst,max}	ft-lbs	3	5
Maximum powered installation torque	Tscrew	ft-lbs	Not applicable using UltraCon+ installation socket too	
Phillips bit size (No.)	-	-	2	3

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.


1. The Information presented in this table is to be used in conjunction with the design criteria of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. The minimum overall anchor length for the hex head versions can be 1.75-inch (44 mm) provided the fixture does not exceed 0.036-inch (0.91mm) in thickness.

UltraCon+ Anchor Detail

Hex Head

Flat Head

Ш
<u> </u>
2
0
Ď
2
0
0
J
S

ULTRACON+® Concrete Screw Anchor

Design Characteristic	Notation	Units	Nominal Anchor Size (Inch)			
Design Characteristic			3/16	1/4		
Anchor category	1,2 or 3	-	1	1		
Nominal embedment depth	h _{nom}	in. (mm)	1-3/4 (44)	1-3/4 (44)		
Effective embedment	h _{ef}	in. (mm)	1.23 (31.2)	1.23 (31.2)		
STEEL STRENG	TH IN TENSION (A	CI 318-19 17.6.1, ACI 3	18-14 17.4.1 or ACI 318-11 D.5.1)4			
Minimum specified ultimate tensile strength (neck)	f _{uta}	psi (N/mm²)	100,000 (689)	100,000 (689)		
Effective tensile stress area (neck)	A _{se,N}	in² (mm²)	0.0162 (10.4)	0.0268 (17.3)		
Steel strength in tension [®]	Nsa	lb (kN)	1,620 (7.2)	2,680 (12.0)		
Reduction factor for steel strength ³	ϕ	-	0.65			
CONCRETE BREAKOUT	STRENGTH IN TEN	SION (ACI 318-19 17.6.	2, ACI 318-14 17.4.2 or ACI 318-11	D.5.2) ⁷		
Effectiveness factor for concrete breakout	Kuncr	-	24	24		
Modification factor for cracked and uncracked concrete⁵	$\Psi_{c,N}$	-	1.0 See note 5	1.0 See note 5		
Critical edge distance (uncracked concrete only)	Cac	in. (mm)	3 (76)	3 (76)		
Reduction factor for concrete breakout strength ³	ϕ	-	0.65 (Condition B)			
PULLOUT STRENG	GTH IN TENSION (A	ACI 318-19 17.6.3, ACI	318-14 17.4.3 or ACI 318-11 D.5.3) ⁷		
Characteristic pullout strength, uncracked concrete (2,500 psi) ⁶	N _{p,uncr}	lb (kN)	635 (2.8)	940 (4.2)		
Reduction factor for pullout strength ³	ϕ	-	0.65 (Condition B)			

2. Installation must comply with published instructions and details.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 and -14) Section 5.2 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318 (-19 and -14) 17.3.3 or ACI 318-11 D. 4.3, as applicable, for the appropriate ϕ factor.

4. The UltraCon+ anchor is considered a brittle steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

5. For all design cases use $\Psi_{c,N} = 1.0$. The appropriate effectiveness factor for uncracked concrete (kuncr) must be used.

6. For all design cases use $\Psi_{c,P} = 1.0$. For the calculation of $N_{p,uner}$, the nominal pullout strength can be adjusted by calculation according to: $N_{pn,rc} = N_{p,uner} \left(\frac{f'c}{2,500}\right)^n$ (lbs, psi), $N_{pn,rc} = N_{p,uner} \left(\frac{f'c}{17.2}\right)^n$ (N,MPa)

Where fc is the specified concrete compressive strength and whereby the exponent n = 0.3 for the 3/16-inch-diameter anchors, n = 0.4 for 1/4-inch-diameter anchors.

7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of \sqrt{t} c affecting N_a and V_a. λ shall be determined in accordance with the corresponding version of ACI 318.

8. Tabulated values for steel strength in tension must be used for design.

I U

ANICAL A

Concrete Screw Anchor

Shear Design Information for UltraCon+ Anchor in Concrete^{1,2}

CODE LISTED ICC-ES ESR-3068	(\mathfrak{O})

				Var(5)	
Design Characteristic	Notation	Units	Nominal Anc	hor Diameter	
Design Characteristic	Notation	Units	3/16"	1/4"	
Anchor category	1, 2 or 3	-	1	1	
Nominal embedment depth	h _{nom}	in. (mm)	1-3/4 (44)	1-3/4 (44)	
Effective embedment	h _{ef}	in. (mm)	1.23 (31.2)	1.23 (31.2)	
STEEL STRENGTH IN SHEAR (ACI 318-19 17.7.1, ACI 318-14 17.5.1 or ACI 318-11 D.6.1)					
Steel strength in shear⁵	Vsa	lb (kN)	810 (3.6)	1,180 (5.3)	
Reduction factor for steel strength ³	ϕ	-	0.60		
CONCRETE BREAKOU	STRENGTH IN SHE	AR (ACI 318-19 1	7.7.2, ACI 318-14 17.5.2 or ACI 318-11	D.6.2) ⁶	
Load bearing length of anchor	le	in. (mm)	1.23 (32)	1.23 (32)	
Nominal anchor diameter	da	in. (mm)	0.145 (3.7)	0.185 (4.7)	
Reduction factor for concrete breakout ³ ϕ - 0.70 (Condition B)				ndition B)	
PRYOUT STRENGTH IN SHEAR (ACI 318-19 17.7.3, ACI 318-14 17.2.3.3 or ACI 318-11 D.6.3)					
Coefficient for pryout strength	kcp	-	1.0	1.0	
Reduction factor for pryout strength ³	ϕ	-	0.70 (Co	ndition B)	

For SI: 1 inch = 25.4 mm, 1 lbf = 0. 0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. Installation must comply with published instructions and details.

3. All values of φ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 and -14) Section 5.2 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D. 4.3, as applicable, for the appropriate φ factor.

4. The UltraCon+ anchor is considered a brittle steel element as defined by ACI 318 (-19 and -14) 2.3 or ACI 318-11 D.1, as applicable.

5. Tabulated values for steel strength in shear must be used for design.

6. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8λ is applied to all values of √f'c affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strengths for UltraCon+ in Uncracked Concrete

		Minimum Concrete Compressive Strength								
minal nbed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,0	000 psi
h _{nom} in.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ϕ Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ϕ Vn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (lbs.)
-3/4	415	485	435	485	475	485	535	485	585	485
-3/4	610	710	655	710	735	710	865	710	975	710
l l	i bed. Inom i n.) ·3/4	here, ψ Nn throw ψ Nn Tension (lbs.) 3/4 415	φNn Tension φVn Shear (lbs.) 3/4 415 485	wheel $Pe = 2,500 \text{ ps}$ $Pe = 3,600 \text{ ps}$ ϕ Nn Tension (lbs.) ϕ Nn Shear (lbs.) ϕ Nn Tension (lbs.) $3/4$ 415485435	ninal bbd.f'c = 2,500 psif'c = 3,000 psi ϕ Nn Tension (lbs.) ϕ Nn Shear (lbs.) ϕ Nn Tension (lbs.) ϕ Nn Shear (lbs.)3/4415485435485	ninal bbd.f'c = 2,500 psif'c = 3,000 psif'c = 4, ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Shear (lbs.) ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Tension (lbs.)3/4415485435485475	ninal bbd.f'c = 2,500 psif'c = 3,000 psif'c = 4,000 psi ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Shear (lbs.) ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Shear (lbs.) ϕ_{Nn} Shear (lbs.)3/4415485435485475485	ninal bbd.f'c = 2,500 psif'c = 3,000 psif'c = 4,000 psif'c = 6, ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Shear (lbs.) ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Shear (lbs.) ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Shear (lbs.) ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Tension (lbs.)3/4415485435485475485535	ninal bbed.f'c = 2,500 psif'c = 3,000 psif'c = 4,000 psif'c = 6,000 psi ϕ_{Nn} Tension (lbs.) ϕ_{Nn} (lbs.) ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Tension (lbs.)<	ninal bbd.f'c = 2,500 psif'c = 3,000 psif'c = 4,000 psif'c = 6,000 psif'c = 8,000 psi ϕ_{Nn} Tension (lbs.) ϕ_{Nn} (lbs.) ϕ_{Nn} Tension (lbs.) ϕ_{Nn} Tension (lbs.)3/4415485435485475485535485585

🔳 - Steel Strength Controls 🔲 - Concrete Breakout Strength Controls 🔲 - Anchor Pullout/Pryout Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

 C_{a1} is greater than or equal to the critical edge distance, C_{ac} (table values based on $C_{a1} = C_{ac}$).

- Ca2 is greater than or equal to 1.5 times Ca1.

2- Calculations were performed according to ACI 318 (-19 and -14), Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

3- Strength reduction factors (ø) were based on ACI 318 (-19 and -14), Section 5.3 for load combinations. Condition B is assumed.

4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14), Chapter 17.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 and -14), Chapter 17. For other design conditions including seismic considerations please see ACI 318 (-19 and -14), Chapter 17.

FECHNICAL GUIDE – MECHANICAL ANCHORS © 2022 DEWALT – REV. E

ORDERING INFORMATION

Blue UltraCon+ Standard Pack

Cat	. No.	Commun Cime	Approximate	Pack	Carton
HWH	PFH	Screw Size	Thread Length	Qty.	Qty.
DFM12700	DFM12740	3/16" x 1-1/4"	1"	100	500
DFM12702 *	DFM12742	3/16" x 1-3/4"	1-1/2"	100	500
DFM12704	DFM12744	3/16" x 2-1/4"	1-7/8"	100	500
DFM12706	DFM12746	3/16" x 2-3/4"	1-7/8"	100	500
DFM12708	DFM12748	3/16" x 3-1/4"	1-7/8"	100	500
DFM12710	DFM12750	3/16" x 3-3/4"	1-7/8"	100	500
DFM12712	DFM12752	3/16" x 4"	1-7/8"	100	500
DFM12715	-	1/4" x 1"	1"	100	500
DFM12720	DFM12760	1/4" x 1-1/4"	1-1/2"	100	500
DFM12722 *	DFM12762	1/4" x 1-3/4"	1-7/8"	100	500
DFM12724	DFM12764	1/4" x 2-1/4"	1-7/8"	100	500
DFM12726	DFM12766	1/4" x 2-3/4"	1-7/8"	100	500
DFM12728	DFM12768	1/4" x 3-1/4"	1-7/8"	100	500
DFM12730	DFM12770	1/4" x 3-3/4"	1-7/8"	100	500
DFM12732	DFM12772	1/4" x 4"	1-7/8"	100	500
DFM12734	DFM12774	1/4" x 5"	1-7/8"	100	500
DFM12735	DFM12776	1/4" x 6"	1-7/8"	100	500

HWH = Hex Washer Head (slotted); PFH = Phillips Flat Head

- Shaded grey catalog numbers denote sizes which are less than the standard anchor length for strength design.

* Catalog numbers with an asterisk denote sizes that meet the minimum anchor length requirement for strength design provided the fixture attachment does not exceed 0.036-inch (0.91mm) in thickness.

- Hex Washer Head and Hex Flange Head UltraCon+ anchors are measured from below the washer. Phillips Flat Head and TrimFit Flat Head UltraCon+ anchors are measured end to end.

- To select the proper minimum anchor length, determine the nominal embedment depth (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

Blue UltraCon+ Master Pack

Ca	t. No.	Screw Size	Approximate	Dock Ohr
НЖН	PFH	Screw Size	Thread Length	Pack Qty.
DFM12700B	DFM12740B	3/16" x 1-1/4"	1"	5000
DFM12702B *	DFM12742B	3/16" x 1-3/4"	1-1/2"	3000
-	DFM12744B	3/16" x 2-1/4"	1-7/8"	2500
DFM12704B	-	3/10 X Z-1/4	1-7/0	2000
DFM12706B	DFM12746B	3/16" x 2-3/4"	1-7/8"	1500
DFM12708B	DFM12748B	3/16" x 3-1/4"	1-7/8"	1000
DFM12710B	DFM12750B	3/16" x 3-3/4"	1-7/8"	1000
DFM12712B	DFM12752B	3/16" x 4"	1-7/8"	1000
DFM12720B		1/4" x 1-1/4"	1"	2000
-	DFM12760B	1/4 X I-1/4	I	2500
DFM12722B *	-	1/4" x 1-3/4"	1.1/0"	2000
-	DFM12762B	1/4 X 1-3/4	1-1/2"	2500
DFM12724B	DFM12764B	1/4" x 2-1/4"	1-7/8"	1500
DFM12726B	DFM12766B	1/4" x 2-3/4"	1-7/8"	1000
DFM12728B	DFM12768B	1/4" x 3-1/4"	1-7/8"	1000
DFM12730B	DFM12770B	1/4" x 3-3/4"	1-7/8"	500
DFM12732B	DFM12772B	1/4" x 4"	1-7/8"	500
DFM12734B	-	1/4" x 5"	1-7/8"	500
DFM12735B	-	1/4" x 6"	1-7/8"	500

HWH = Hex Washer Head (slotted); PFH = Phillips Flat Head

- Shaded grey catalog numbers denote sizes which are less than the standard anchor length for strength design.

* Catalog numbers with an asterisk denote sizes that meet the minimum anchor length requirement for strength design provided the fixture attachment does not exceed 0.036-inch (0.91mm) in thickness.

- Hex Washer Head and Hex Flange Head UltraCon+ anchors are measured from below the washer. Phillips Flat Head and TrimFit Flat Head UltraCon+ anchors are measured end to end.

- To select the proper minimum anchor length, determine the nominal embedment depth required (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

ECHANICAL

ANCHORS

ECHANICAL ANCH

Concrete Screw Anchor **IRACON+®**

Silver UltraCon+ Master Pack

	Cat.	No.			Approximate	
HWH	HFH	PFH	TFH	Screw Size	Thread Length	Pack Qty.
-	-	DFM2ELG521	-	3/16" x 1-1/4"	1"	5000
-	-	DFM2ELG551	-	3/16" x 1-3/4"	1-1/2"	3000
-	-	DFM2ELG581	-	3/16" x 2-1/4"	1-7/8"	2500
-	-	DFM2ELG611	-	3/16" x 2-3/4"	1-7/8"	1500
-	-	DFM2ELG641	-	3/16" x 3-1/4"	1-7/8"	1000
-	-	DFM2ELG671	-	3/16" x 3-3/4"	1-7/8"	1000
DFM2ELG340	-	-	DFM2ELG770	1/4" x 1-1/4"	1"	2500
DFM2ELG341 *	-	-	DFM2ELG771	1/4" x 1-3/4"	1-1/2"	2000
-	DFM2ELC145	-	-	1/4 X 1-3/4	1-1/2	1500
DFM2ELG371	-	-	DFM2ELG801	1/4" x 2-1/4"	1-7/8"	1500
-	DFM2ELC151	-	-	1/4 X Z-1/4	1-770	1000
DFM2ELG401	DFM2ELC160	-	DFM2ELG831	1/4" x 2-3/4"	1-7/8"	1000
DFM2ELG431	DFM2ELC170	-	DFM2ELG861	1/4" x 3-1/4"	1-7/8"	1000
-	-	-	DFM2ELG891	1/4" x 3-3/4"	1-7/8"	500
-	-	-	DFM2ELG921	1/4" x 4"	1-7/8"	500

HWH = Hex Washer Head (slotted); HFH = Hex Flange Head; PFH = Phillips Flat Head; TFH = TrimFit Flat Head

Shaded grey catalog numbers denote sizes which are less than the standard anchor length for strength design.

* catalog numbers with an asterisk denote sizes that meet the minimum anchor length requirement for strength design provided the fixture attachment does not exceed 0.036-inch (0.91mm) in thickness.

Hex Flange Head Anchors are not covered by ICC-ES ESR-3068, ESR-3196, or ESR-3042. TrimFit Flat Head Anchors are not covered by ICC-ES ESR-3042.

- Hex Washer Head and Hex Flange Head UltraCon+ anchors are measured from below the washer. Phillips Flat Head and TrimFit Flat Head UltraCon+ anchors are measured end to end.

To select the proper minimum anchor length, determine the nominal embedment depth (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

White UltraCon+ Master Pack

	Cat.	No.		Courses Cine	Approximate	Deals Obs
HWH	HFH	PFH	TFH	Screw Size	Approximate Thread Length	Pack Qty.
DFM2ELD200	-	DFM2ELD320	-	3/16" x 1-1/4"	1"	5000
DFM2ELD210 *	-	DFM2ELD330	-	3/16" x 1-3/4"	1-1/2"	3000
DFM2ELD220	-	DFM2ELD340	-	3/16" x 2-1/4"	1-7/8"	2500
DFM2ELD230	-	DFM2ELD350	-	3/16" x 2-3/4"	1-7/8"	1500
DFM2ELD240	-	DFM2ELD360	-	3/16" x 3-1/4"	1-7/8"	1000
-	-	DFM2ELD370	-	3/16" x 3-3/4"	1-7/8"	1000
DFM2ELD250	-	DFM2ELD385	-	1/411 - 1 1/411	1"	2500
-	DFM2ELD270	-	-	1/4" x 1-1/4"	1	2000
DFM2ELD195 *		DFM2ELD386	DFM2ELD400	1/4" x 1-3/4"	1-1/2"	2000
-	DFM2ELD275	-	-	1/4 X 1-3/4	1-1/2	1500
DFM2ELD205	-	DFM2ELD387	DFM2ELD410	1/4" x 2-1/4"	1-7/8"	1500
-	DFM2ELD285	-	-	1/4 X Z-1/4	1-770	1000
DFM2ELD215	DFM2ELD295	DFM2ELD388	DFM2ELD420	1/4" x 2-3/4"	1-7/8"	1000
DFM2ELD225	-	DFM2ELD389	DFM2ELD430	1/4" x 3-1/4"	1-7/8"	1000
-	DFM2ELD305	-	-	1/4 X 3-1/4	1-770	500
DFM2ELD235	-	-	DFM2ELD440	1/4" x 3-3/4"	1-7/8"	500
DFM2ELD245	-	-	DFM2ELD450	1/4" x 4"	1-7/8"	500
DFM2ELD255	-	-	-	1/4" x 5"	1-7/8"	500
DFM2ELD265	-	-	-	1/4" x 6"	1-7/8"	500

HWH = Hex Washer Head (slotted); HFH = Hex Flange Head; PFH = Phillips Flat Head; TFH = TrimFit Flat Head

- Shaded grey catalog numbers denote sizes which are less than the standard anchor length for strength design.

* catalog numbers with an asterisk denote sizes that meet the minimum anchor length requirement for strength design provided the fixture attachment does not exceed 0.036-inch (0.91mm) in thickness.

- Hex Flange Head Anchors are not covered by ICC-ES ESR-3068, ESR-3196, or ESR-3042. TrimFit Flat Head Anchors are not covered by ICC-ES ESR-3042.

Hex Washer Head and Hex Flange Head UltraCon+ anchors are measured from below the washer. Phillips Flat Head and TrimFit Flat Head UltraCon+ anchors are measured end to end.

To select the proper minimum anchor length, determine the nominal embedment depth (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

Bronze UltraCon+ Master Pack

Cat. No.			Screw Size	Approximate	Pack Qty.
HWH	PFH	TFH	3016W 3126	Thread Length	Fack Qiy.
-	DFM2ELG612	-	3/16" x 2-3/4"	1-7/8"	1500
-	-	DFM2ELG832	1/4" x 2-3/4"	1-7/8"	1000
-	-	DFM2ELG862	1/4" x 3-1/4"	1-7/8"	1000
-	-	DFM2ELG892	1/4" x 3-3/4"	1-7/8"	500
DFM2ELE465	-	-	1/4" x 4"	1-7/8"	500

HWH = Hex Washer Head (slotted); PFH = Phillips Flat Head; TFH = TrimFit Flat Head

- TrimFit Flat Head Anchors are not covered by ICC-ES ESR-3042.

- Hex Washer Head and Hex Flange Head UltraCon+ anchors are measured from below the washer. Phillips Flat Head and TrimFit Flat Head UltraCon+ anchors are measured end to end.

- To select the proper minimum anchor length, determine the nominal embedment depth (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

UltraCon+ Drill Bits

Cat. No.	Description
DW5381	5/32" x 7" UltraCon+ SDS bit
DW5382	3/16 x 7" UltraCon+ SDS bit
DFX153255	5/32" x 5-1/2" UltraCon+ straight shank bit
DFX131645	3/16" x 4-1/2" UltraCon+ straight shank bit
DFX131675	3/16" x 7-1/2" UltraCon+ straight shank bit

Installation Kit

Cat. No.	Description
DW5366	UltraCon®+ Installation Kit includes: 5/32" and 3/16" UltraCon+ bit, 1/4" and 5/16" nutsetters, #2 and #3 Phillips bits, Phillips flat head adapter, percussion adapter, drive sleeve and 1/8" allen wrench

Rotary Hammers

Cat. No.	Description			
DCH273	20V Max* XR Brushless 1" L-Shape SDS Plus Rotary Hammer			
DCH133	20V Max* XR Brushless 1" D-Handle SDS Plus Rotary Hammer			

Accessories

Cat. No.	Description
DWH303DH	Onboard Dust Extractor for 1" SDS Plus Hammers
DWH050	Large Hammer Dust Extraction - Hole Cleaning
DWH200	Dust Extraction Tube Kit with Hose

Dust Extractors

Cat. No.	Description
DCV585	Flexvolt [®] 60V Max* Dust Extractor
DVW010	8 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWV012	10 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWH161D1	20V Max* XR Brushless Universal Dust Extractor Kit

An and a second second

VCHORS

ECHANICA

CON®

Concrete and Masonry Fasteners

GENERAL INFORMATION

ULTRACON®

Concrete and Masonry Fasteners

PRODUCT DESCRIPTION

The UltraCon fastening system is a complete family of screw anchors for light to medium duty applications in concrete and masonry block base materials. UltraCon is available in 5/16" diameter which provides increased shear and tensile strength to meet the needs of more demanding applications. The UltraCon is fast and easy to install and provides a neat, finished appearance. The UltraCon screw anchor is available in carbon steel with a Stalgard coating in silver color that provides additional corrosion resistance.

GENERAL APPLICATIONS AND USES

- Window Frames
- Metal Door Frames
- Shelving and Racking

- Shutters and Guards
- Pipe Support
- Cable Trays

FEATURES AND BENEFITS

- + 5/16" diameter provides increased shear and tensile strength
- + Stalgard[®] coating provides 1000 hours of salt spray protection when tested in accordance with ASTM B117
- + Available in various head styles to fit the intended application
- + Installed with a standard ANSI bit

APPROVALS AND LISTINGS

- Tested in accordance with ASTM E488
- Miami-Dade County Notice of Acceptance (NOA) No. 21-0113.01
- Florida Statewide Product Approval FL29068.2

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Concrete Screw Anchors shall be UltraCon as supplied by DEWALT, Towson, MD. Concrete screw anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specifications
Anchor Body	Case Hardened Carbon Steel
Coating/Plating/Finish	Stalgard® 1000 hour rating for ASTM B117 salt spray test

SECTION CONTENTS

General Information	219
Material Specifications	219
Installation Specifications	220
Installation Instructions	220
Performance Data	221
Ordering Information	223

Anterna and a state of the stat

LITRACON

annannanna a

HEAD STYLES

- Hex Washer Head
- TrimFit® Hex Head
- Phillips Flat Head
- TrimFit® Flat Head
- Oversized Flat Head

ANCHOR MATERIALS

Carbon Steel with Stalgard Coating

ANCHOR SIZE RANGE (TYP.)

• 5/16" diameter x 1-3/4" to 6" lengths

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Hollow Concrete Masonry (CMU)
- Grouted-Filled Concrete Masonry (CMU)
- Wood

INSTALLATION SPECIFICATIONS

UltraCon Identification

The head markings consist of a "D" for the DEWALT brand, the number "5" for the 5/16" diameter, and the length code. TrimFit flat head variations also include two dots.

TrimFit Hex Head

(THH)

Hex Washer Head (HWH)

Phillips Flat Head (PFH)

TrimFit Flat Head (TFH)

Oversized Flat Head (OFH)

UltraCon Carbon Steel Hex Head^{1,2}

Corour Droporty (Nominal Anchor Size						
Screw Property / Setting Information	Notation	5/16" HWH	5/16" THH	5/16" PFH	5/16" TFH	5/16" OFH		
Anchor Shank Diameter (in)	da	0.246	0.246	0.246	0.246	0.246		
ANSI Drill Bit Size (in)	d _{bit}	1/4	1/4	1/4	1/4	1/4		
Typ. Fixture Clearance hole (in)	dh	3/8	3/8	3/8	3/8	3/8		
Head Height (in.)	-	11/64	5/32	13/64	1/8	5/16		
Head Width (in)	-	5/16	5/16	35/64	13/32	11/16		
Washer O.D. (in)	-	35/64	7/16	N/A	N/A	N/A		
Washer Thickness (in)	-	1/16	1/16	N/A	N/A	N/A		
Hex Driver (in) / Phillips Driver	-	5/16	5/16	#3	#3	#3		

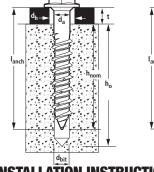
HWH = Hex Washer Head; THH = TrmFit Hex Head; PFH = Phillips Flat Head, TFH = TrimFit Flat Head, OFH = Oversized Flat Head

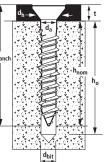
7. For minimum nominal embedment depths, h_{nom}, see the performance data tables. The minimum hole depth, h_o, is 1/4-inch more than the selected nominal embedment depth.

8. Pre-drilling is not required for UltraCon into wood (but can be considered).

UltraCon Length Code Identification System

enaueen Iongu	la con longa con actual con contra con contra con contra c								
Length ID ma	arking on head	A	В	C	D	E	F	G	Н
Overall anchor length	From	1-1/2"	2"	2-1/2"	3-1/4"	3-1/2"	4"	4-1/2"	5-1/2"
lanch (inches)	Up to but not including	2"	2-1/2"	3-1/4"	3-1/2"	4"	4-1/2"	5-1/2"	6-1/2"

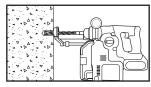

Length identification mark indicates length of anchor measure from under the head for hex head UltraCon anchors and overall length for flat head UltraCon anchors.


h

 $h_0 =$

-1

Anchor Detail

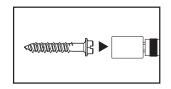


Nomenclature

- $d_a = Diameter of anchor$
- $d_{\text{bit}} = Diameter of drill bit$ $d_{\text{h}} = Diameter of fixture clearance hole$
- $h_{nom} = Minimum embedment depth$
 - Base material thickness
 - The minimum value of h should be
 - 1.5hnom or 3" whichever is greater
 - Minimum hole depth

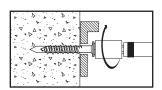
INSTALLATION INSTRUCTIONS

Installation Instruction for UltraCon


Step 1

Using the proper drill bit size, drill a hole into the base material to the required depth, h_0 , which is a 1/4-inch deeper than the minimum embedment depth, h_{nom} .

Step 2


۰b

Remove dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Step 3

Attach a UltraCon+ installation socket tool for the selected anchor size to a percussion drill and set the drill to rotary only mode. Mount the screw anchor head into the socket. For flat head versions a bit tip must be used with the socket tool.

Step 4

Place the point of the UltraCon through the fixture into the pre-drilled hole and drive the anchor in one steady continuous motion until it is fully seated at the proper embedment. The driver will automatically disengage from the head of the screw.

7

ICAL

CHO

PERFORMANCE DATA

Ultimate Load Capacities for UltraCon in Normal-weight Concrete^{1,2}

							Minimum Concrete Compressive Stength			
Nominal Anchor Diameter	Min. Embed.	Min. Edge Dist.	Min. Spacing	300	0 psi	4000 psi				
(in.)	(in.)	(in.)	(in.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)			
	2		1-7/8	755	440	870	480			
	2	/ A	3-3/4	1,070	440	1,235	480			
	1	1-1/4	5	665	790	765	860			
	1-3/4		5	1,940	1,215	2,240	1,320			
	1	2.2/16	2-3/16 5	755	1,385	870	1,500			
5/16	1-3/4	2-3/10		2,215	2,900	2,560	3,140			
	2		1-7/8	1,105	1,550	1,280	1,680			
	2		3-3/4	1,680	2,620	1,940	2,840			
	1	3-1/8		775	1,660	895	1,800			
	1-3/4	1	5	2,435	3,140	2,815	3,400			
	2]		3,085	3,140	3,560	3,400			

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 and higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for UltraCon in Normal-weight Concrete¹

				Minimum Concrete Compressive Stength				
Nominal Anchor Diameter	Min. Embed.	Min. Edge Dist.	Min. Spacing			400	0 psi	
(in.)	(in.)	(in.)	(in.)	Tension (lbs.)	Shear (lbs.)	Tension (Ibs.)	Shear (lbs.)	
	2		1-7/8	185	110	215	120	
	2	1 1/4	3-3/4	265	110	305	120	
	1	1-1/4		165	195	190	215	
	1-3/4		5	485	300	560	330	
	1	0.0/10	5	185	345	215	375	
5/16	1-3/4	2-3/16	5	550	725	640	785	
	2		1-7/8	275	385	320	420	
	2		3-3/4	420	655	485	710	
	1	3-1/8		190	415	220	450	
	1-3/4		5	605	785	700	850	
	2			770	785	890	850	

AŞD

Concrete and Masonry Fasteners

MECHANICAL ANCHORS

1-800-4 DEWALT

IECHANICAL ANCHORS

ULTRACON® Concrete and Masonry Fasteners

Ultimate Load Capacities for UltraCon in Hollow and Grout-Filled Concrete Masonry^{1,2}

Nominal Anchor	Min. Embed.	Min Educ Dist	Min Crosing	Hollow	Block	Grouted-F	illed Block
Diameter (in.)	(in.)	Min. Edge Dist. (in.)	Min. Spacing (in.)	Tension (lbs.)	Shear (Ibs.)	Tension (lbs.)	Shear (Ibs.)
	1-1/4	1-9/16	6	650	700	-	-
	1-3/4	2-1/2 3-1/8	2 5	-	-	1,150	1,850
5/16	2-1/4			-	-	1,450	1,875
5/10	1-1/4		1-7/8	650	875	-	-
	1-1/4		3-3/4	700	875	-	-
	1-1/4		6	1,125	1,450	-	-

1. Tabulated load values are for anchors installed in grout-filled concrete block conforming to ASTM C90.

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load. Consideration of safety factors of 10 and higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for UltraCon in Hollow and Grout-Filled Concrete Masonry

Nominal Anchor Diameter (in.) Min. Embed. Min. Edge Dist. (in.) (in.)	Min Educ Dist	Min. Spacing (in.)	Hollow Block		Grouted-Filled Block			
			Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)		
	1-1/4	1-1/16	6	130	140	-	-	
	1-3/4	2-1/2	2-1/2	г	-	-	230	370
5/16	2-1/4			5	-	-	290	375
5/16	1-1/4		1-7/8	130	175	-	-	
	1-1/4	3-1/8	3-3/4	140	175	-	-	
	1-1/4		6	225	290	-	-	

Ultimate Load Capacities for UltraCon in Southern Yellow Pine^{1,2}

Nominal Anchor Diameter (in.)	Min. Embed. (in.)	Min. Edge Dist. (in.)	Tension (lbs.)	Shear (lbs.)
	1		545	840
5/16	1-1/2	1-9/16 (5d)	1,450	1,150
	2		1,835	1,340

1. Ultimate load capacities are based on laboratory tests and must be reduced by a minimum safety factor of 3.0 or greater to determine allowable working load. Consideration of safety factors of 10 and higher may be necessary depending upon the application such as life safety or overhead.

2. Tests in Southern Yellow Pine with minimum Specific Gravity of 0.55; screw oriented tangential to wood grain.

LAUGULAR COLORIS COLORIS COLORIS

Annun annun annun annun ann

ALLEN BERTHER BULLEN BULLE

addited the first of the

MECHANICAL ANCHORS

ULTRACON® Concrete and Masonry Fasteners

ORDERING INFORMATION

UltraCon

		Screw Size	Pack	Carton			
HWH	THH	PFH	TFH	OFH	Screw Size	Qty.	Qty.
DFM5ELG481	DFM5ELG482	-	-	-	5/16" X 1-3/4"	1000	-
DFM5ELG486	DFM5ELG487	DFM5ELG941	DFM5ELG945	-	5/16" X 2-1/4"	1000	-
DFM5ELG491	DFM5ELG492	DFM5ELG948	DFM5ELG955	-	5/16" X 2-3/4"	500	-
-	-	-	-	DFM5ELG203	5/16" X 3"	50	250
DFM5ELG496	DFM5ELG497	DFM5ELG960	DFM5ELG965	-	5/16" X 3-1/4"	500	-
DFM5ELG501	DFM5ELG502	-	DFM5ELG972	-	5/16" X 3-3/4"	500	-
DFM5ELG506	-	DFM5ELG979	DFM5ELG976	-	5/16" X 4"	500	-
-	-	-	-	DFM5ELG204	J/10 A 4	50	250
DFM5ELG511	-	DFM5ELG992	DFM5ELG991	-	5/16" X 5"	250	-
-	-	-	-	DFM5ELG205	C X 01/C	50	250
DFM5ELG516	-	DFM5ELG998	-	-	5/16" X 6"	250	-
-	-	-	-	DFM5ELG206	5/10 / 0	50	250

HWH = Hex Washer Head; THH = TrmFit Hex Head; PFH = Phillips Flat Head, TFH = TrimFit Flat Head, OFH = Oversized Flat Head Hex Head UltraCon anchors are measured from below the washer while flat head UltraCon anchors are measured end to end.

To select the proper minimum anchor length, determine the embedment depth required to obtain the desired load capacity. Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

Approximate thread length for hex head parts (HWH & THH) is 2" except for 1-3/4" long hex head parts which have 1-1/2" of thread length. Approximate thread length for flat head parts (PFH, TFH & OFH) is 1-3/4".

Drill Bits

Cat. No.	Description
DW5417	1/4" x 6" SDS Plus Drill Bit
DW5418	1/4" x 8-1/2" SDS Plus Drill Bit
DW5420	1/4" x 12" SDS Plus Drill Bit
DW5421	1/4" x 14" SDS Plus Drill Bit

Rotary Hammers

Cat. No.	Description
DCH273	20V Max* XR Brushless 1" L-Shape SDS Plus Rotary Hammer
DCH133	20V Max* XR Brushless 1" D-Handle SDS Plus Rotary Hammer

Accessories

Cat. No.	Description
DWH303DH	Onboard Dust Extractor for 1" SDS Plus Hammers
DWH050	Large Hammer Dust Extraction - Hole Cleaning
DWH200	Dust Extraction Tube Kit with Hose

Dust Extractors

Cat. No.	Description
DCV585	Flexvolt [®] 60V Max* Dust Extractor
DVW010	8 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWV012	10 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWH161D1	20V Max* XR Brushless Universal Dust Extractor Kit

CA

?

0

10 Stainless Steel Concrete and Masonry Fasteners

ULTRACON® SS4

GENERAL INFORMATION

ULTRACON® SS4

410 Stainless Steel Concrete and Masonry Fasteners

PRODUCT DESCRIPTION

The UltraCon SS4 anchor is a 410 stainless steel screw anchor for light to medium duty applications in concrete and masonry block base materials. The screw anchor is fast and easy to install and provides a neat, finished appearance. UltraCon SS4 anchors feature a Stalgard coating and provide enhanced corrosion resistance over carbon steel fasteners.

GENERAL APPLICATIONS AND USES

- Screen Enclosures
- Storm Shutters
- Light Duty Fixtures
- Light Duty Industrial Mounts

FEATURES AND BENEFITS

- + Special heat treatment to protect inherent corrosion resistance of the 410 stainless steel material
- + Stalgard coating provides 1000 hours of salt spray protection when tested in accordance with ASTM B117

APPROVALS AND LISTINGS

- Tested in accordance with ASTM E488
- Miami-Dade County Notice of Acceptance (NOA) No. 21-0201.08
- Florida Statewide Product Approval FL29068.1

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Screw anchors shall be UltraCon SS4 as supplied by DEWALT, Towson, MD. Concrete screw anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor Body	410 Stainless Steel
Coating/Plating/Finish	Stalgard® 1000 hour rating per ASTM B117 salt spray test
Note: 410 Stainless Steel fasteners in contact with aluminum and alur AISI SS 502 / SSINA guidelines.	ninum alloys is not recommended in accordance with

SECTION CONTENTS

General Information	.224
Material Specifications	.224
Installation Specifications	.225
Installation Instructions	.225
Performance Data	.226
Ordering Information	.227

ULTRACON SS4

HEAD STYLES

- Hex Washer Head
- TrimFit® Flat Head

ANCHOR MATERIALS

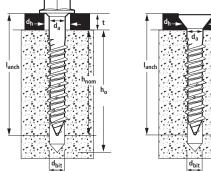
• Type 410 Stainless Steel with Stalgard[®] Coating

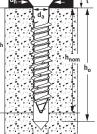
ANCHOR SIZE RANGE

• 1/4" diameter x 1-1/4" to 6" lengths

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Hollow Concrete Masonry (CMU)
- Grout-Filled Concrete Masonry (CMU)


INSTALLATION SPECIFICATIONS


Anchor Property /	Notation	Anchor Diameter, da		
Setting Information	Notation	1/4" HEX	1/4" TFH	
Anchor Shank Diameter (in)	da	0.193	0.193	
Ultracon+ Drill Bit Size (in)	dbit	3/16	3/16	
Typ. Fixture Clearance hole (in)	dh	5/16	5/16	
Head Height (in)	-	9/64	3/16	
Head Width (in)	-	5/16	13/32	
Washer O.D. (in)	-	13/32	N/A	
Washer Thickness (in)	-	1/32	N/A	
Hex Driver (in) / Phillips Driver	-	5/16	#3	
 For minimum nominal embedment de minimum hole depth, h₀, is 1/4-inch 				

IlltraCon SSA Length Code Identification System

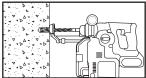
oradoon 354 Length oode mentineation System											
Length ID marking on head			A	В	C	D	E	F	G	н	
Overall anchor length L _{anch} (inches)	From	1"	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5-1/2"	
	Up to but not including	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5-1/2"	6-1/2"	

Anchor Detail

Nomenclature

h

- da = Diameter of anchor
- d_{bit} = Diameter of drill bit $d_h =$
- Diameter of fixture clearance hole Minimum embedment depth h_{nom} =

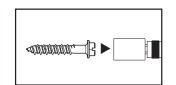

The head markings consist of a "D" for the DEWALT brand, the number "4" for the 410 series stainless

steel classification, and the length code

- Base material thickness =
 - The minimum value of h should be 1.5hnom or 3" whichever is greater
- Minimum hole depth $h_0 =$

INSTALLATION INSTRUCTIONS

Installation Instruction for UltraCon SS4


Step 1

Using the proper drill bit size, drill a hole into the base material to the required depth, ho, which is a 1/4-inch deeper than the minimum embedment depth, hnom.

)	

Step 2 Remove dust and debris from

the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Step 3

Attach a UltraCon+ installation socket tool for the selected anchor size to a percussion drill and set the drill to rotary only mode. Mount the screw anchor head into the socket. For flat head versions a bit tip must be used with the socket tool.

Hex Washer Head

4 C

TrimFit Head

annymu

Place the point of the UltraCon SS4

through the fixture into the pre-drilled

hole and drive the anchor in one steady

continuous motion until it is fully seated

at the proper embedment. The driver

will automatically disengage from the

Step 4

head of the screw.

410 Stainless Steel Concrete and Masonry Fasteners 755 e Ŭ **TR**

ANICAL ANCHORS

6 Π

Ø

PERFORMANCE DATA

Ultimate Load Capacities for UltraCon SS4 in Normal-Weight Concrete

				Minimum Concrete Compressive Strength								
Nominal Anchor Diameter (in.)	Min. Spacing	Min. Embed.	2500) psi	300	D psi						
		(in.)	(in.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)					
	1	1-1/2	1-1/2"	340	265	365	280					
		1-1/2	1-3/4"	540	385	580	410					
		· · [' [1	I	3	1-1/2"	610	275	660	295	
1/4		3	3	3	3		3	3	3	1-3/4"	1235	510
1/4		1-1/2	1-1/2"	720	730	770	775					
	0.1/0	1-1/2	1-3/4"	1275	1900	1375	2020					
	2-1/2	3	1-1/2"	885	990	955	1050					
		3	1-3/4"	1515	2200	1630	2335					

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 and higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for UltraCon SS4 in Normal-Weight Concrete

		. Spacing		Minimum Concrete Compressive Strength					
Nominal Anchor Diameter	Min. Edge Dist.			Min. Embed.	2500) psi	3000 psi		
	(in.)		(in.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)		
	1-1/2	-	1-1/2"	85	65	90	70		
			1	1-1/2	1-3/4"	135	95	145	100
		3	1-1/2"	150	65	165	70		
1/4			1-3/4"	305	125	330	135		
1/4	2-1/2	1 1/0	1-1/2"	180	180	190	190		
		0.1/0	0.1/0	1-1/2	1-3/4"	315	475	340	505
			1-1/2"	220	245	235	260		
		3	1-3/4"	375	550	405	580		

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

Ultimate Load Capacities for UltraCon SS4 in Hollow and Grout-Filled Concrete Masonry^{1,2}

Nominal Anchor	Min. Edge Dist.	Min. Spacing (in.)	Min. Embed. (in.)	Hollow Bock		Grout-Filled Block				
Diameter (in.)	(in.)			Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)			
1/4 2-1/2	1-1/2	1-1/4	530	220	685	280				
	1	1-1/2	2	-	-	1090	280			
		3	1-1/4	620	360	950	415			
			2	-	-	1460	415			
	0.1/0	1-1/2	1-1/4	530	445	1025	455			
			2	-	-	1090	900			
	2-1/2	3	1-1/4	620	615	1060	1000			
			2	-	-	1930	1510			

1. Tabulated load values are for anchors installed in grout-filled concrete block conforming to ASTM C90 with a minimum block compressive strength of 2000 psi and minimum grout compressive strength of 1625 psi.

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load. Consideration of safety factors of 10 and higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for UltraCon SS4 in Hollow and Grout-Filled Concrete Masonry'

Nominal Anchor	Min. Edge Dist.	Min. Spacing (in.)	Min. Embed.	Hollow	/ Bock	Grout-Filled Block	
Diameter (in.)	(in.)		(in.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)
	1	1 1/0	1-1/4	105	40	135	55
		1-1/2	2	-	-	215	55
		3	1-1/4	120	70	190	80
1/4			2	-	-	290	80
1/4	2-1/2	1-1/2	1-1/4	105	85	205	90
			2	-	-	215	180
		3	1-1/4	120	120	210	200
			2	-	-	385	300

1. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

JLTRACON® SS4

ORDERING INFORMATION

Silver Stalgard® UltraCon SS4

Cat	t. No.	Screw Size	Approximate	Pack Qty.	Carton Qty.	
HWH	TFH		Thread Length	Tuok Qtyl	our ton gry.	
DFM4EUH310	DFM4EUF310	1/4" X 1-1/4"	1-1/8"	100	500	
DFM4EUH315	DFM4EUF315	1/4" X 1-3/4"	1-5/8"	100	500	
DFM4EUH325	DFM4EUF325	1/4" X 2-1/4"	1-7/8"	100	500	
DFM4EUH335	DFM4EUF335	1/4" X 2-3/4"	1-7/8"	100	500	
DFM4EUH345	DFM4EUF345	1/4" X 3-1/4"	1-7/8"	100	500	
DFM4EUH355	DFM4EUF355	1/4" X 3-3/4"	1-7/8"	100	500	
DFM4EUH365	DFM4EUF365	1/4" X 4"	1-7/8"	100	500	
DFM4EUH375	-	1/4" X 5"	1-7/8"	100	500	
DFM4EUH385	-	1/4" X 6"	1-7/8"	100	500	

HWH = Hex Washer Head, TFH = TrimFit® Flat Head

Hex Head UltraCon SS4 Anchors are measured from below the washer while flat head UltraCon SS4 anchors are measured end to end. To select the proper minimum anchor length, determine the embedment depth required (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

UltraCon+ Drill Bits

Cat. No.	Description
DW5382	3/16 x 7" UltraCon+ SDS bit

Installation Kit

Cat. No.	Description				
DW5366	UltraCon [®] + Installation Kit includes: 5/32" and 3/16" UltraCon+ bit, 1/4" and 5/16" nutsetters, #2 and #3 Phillips bits, Phillips flat head adapter, percussion adapter, drive sleeve and 1/8" allen wrench				

Rotary Hammers

Cat. No.	Description
DCH273	20V Max* XR Brushless 1" L-Shape SDS Plus Rotary Hammer
DCH133	20V Max* XR Brushless 1" D-Handle SDS Plus Rotary Hammer
DCH172	ATOMIC 20V MAX 5/8 in. Brushless Cordless SDS Plus Rotary Hammer

Accessories

Cat. No.	Description
DWH303DH	Onboard Dust Extractor for 1" SDS Plus Hammers
DWH050	Large Hammer Dust Extraction - Hole Cleaning
DWH200	Dust Extraction Tube Kit with Hose

Dust Extractors

Cat. No.	Description
DCV585	Flexvolt [®] 60V Max* Dust Extractor
DVW010	8 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWV012	10 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWH161D1	20V Max* XR Brushless Universal Dust Extractor Kit

met-

mannan

C

0

C

410 Stainless Steel Concrete and Masonry Fasteners

GENERAL INFORMATION

CRETE-FLEX®

410 Stainless Steel Concrete and Masonry Fasteners

PRODUCT DESCRIPTION

The Crete-Flex anchor is a 410 stainless steel screw anchor for light to medium duty applications in concrete and masonry block base materials. Crete-Flex anchors utilize more robust threads for enhanced thread engagement and "V" notches for efficient tapping. These features provide reduced installation torque and increased performance. Crete-Flex anchors feature a Stalgard coating and provide enhanced corrosion resistance over carbon steel fasteners.

GENERAL APPLICATIONS AND

- Window Frames
- Screens and Utilities

- Metal Door Frames
- · Shutters and Guards
- Light Duty Industrial Applications
- Light Duty Fixtures

FEATURES AND BENEFITS

- + Special heat treament provides increased ductility and corrosison resistance
- + Larger-than-normal root diameters offers improved performance, including higher shear strengths
- + Stalgard[®] coating provides 1000 hours of salt spray resistance when tested in accordance with ASTM B117
- + Available in various head styles to fit the intended application

APPROVALS AND LISTINGS

- Tested in accordance with ASTM E488
- Miami-Dade County Notice of Acceptance (NOA) No. 21-0201.08
- Florida Statewide Product Approval FL29068.1

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Screw anchors shall be Crete-Flex as supplied by DEWALT, Towson, MD. Concrete screw anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor Body	410 Stainless Steel
Coating/Plating/Finish	Stalgard [®] (silver color) 1000 hour rating for ASTM B117 salt spray test

SECTION CONTENTS

General Information	228
Material Specifications	228
Installation Specifications	229
Installation Instructions	229
Performance Data (ASD)	230
Ordering Information	231

HEAD STYLES

- Hex Washer Head
- · Hex Flange Head
- · Phillips Flat Head
- Phillips TrimFit® Flat Head

ANCHOR MATERIALS

• Type 410 Stainless Steel with Stalgard[®] Coating

ANCHOR SIZE RANGE

- 3/16" diameter x 1-1/4" to 3-1/4" lengths
- #14 diameter x 1-1/4" to 6" lengths

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Grouted Concrete Masonry
- Hollow Concrete Masonry (CMU)
- Wood

410 Stainless Steel Concrete and Masonry Fasteners

ų

П

CR

INSTALLATION SPECIFICATIONS

Crete-Flex 410 Stainless Steel Carbon Steel Hex Head^{1,4}

	Nominal Anchor Diameter									
Dimension	3/16" HWH	3/16" PFH	#14 HWH	#14 HFH	#14 PFH	#14 TFH				
Anchor Shank Diameter (in.)	0.160	0.160	0.215	0.215	0.215	0.215				
Drill Bit Size ² (in)	5/32 UltraCon+ Bit	5/32 UltraCon+ Bit	7/32 ANSI	7/32 ANSI	7/32 ANSI	7/32 ANSI				
Typ. Fixture Clearance hole (in)	1/4	1/4	5/16	5/16	5/16	5/16				
Head Height ³ (in.)	7/64	5/32	9/64	7/32	5/32	9/64				
Head Width (in)	1/4	13/32	5/16	5/16	1/2	13/32				
Washer O.D. (in)	11/32	N/A	13/32	5/8	N/A	N/A				
Washer Thickness (in)	1/32	N/A	3/64	N/A	N/A	N/A				
Hex Driver (in) / Phillips Driver	1/4	#3	5/16	5/16	#3	#3				

HWH = Hex Washer Head, HFH = Hex Flange Head, PFH = Phillips Flat Head, TFH = TrimFit® Flat Head

1. For minimum nominal embedment depths, hnom, see the performance data tables. The minimum hole depth, ho, is 1/4-inch more than the selected nominal embedment depth.

2. 3/16-inch diameter Crete-Flex anchors require the use of a special tolerance UltraCon+ drill bit which have a tolerance range of 0.170" to 0.176".

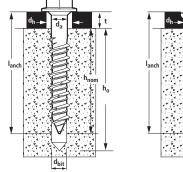
3. Head Height of Hex Flange Head Anchors include the thickness of the flange.

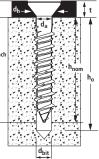
4. Pre-drilling is not required for Crete-Flex into wood (but can be considered).

Crete-Flex Identification

Hex Washer Head (HWH)

Hex Flange Head (HFH)

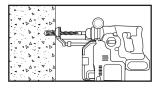

Phillips Flat Head (PFH)

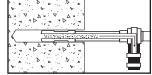

The head markings consist of a "D" for the DEWALT brand, the number "4" for the 410 series stainless steel classification, and the length code. TrimFit flat head variations also include a star

Crete-Flex Length Code Identification System

Length ID ma		A	В	C	D	E	F	G	н	
Overall anchor length <i>l</i> _{anch} (inches)	From	1"	1-1/2"	2"	2-1/2"	3-1/4"	3-1/2"	4"	4-1/2"	5-1/2"
	Up to but not including	1-1/2"	2"	2-1/2"	3-1/4"	3-1/2"	4"	4-1/2"	5-1/2"	6-1/2"

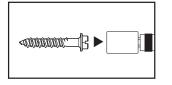
Anchor Detail



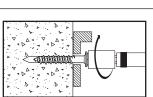

Nomenclature

- Diameter of anchor da =
- d_{bit} = Diameter of drill bit
- Diameter of fixture clearance hole $d_h =$
- Minimum embedment depth $h_{nom} =$ h
 - Base material thickness = The minimum value of h should
 - be 1.5hnom or 3" whichever is
- areater $h_0 =$
 - Minimum hole depth

INSTALLATION INSTRUCTIONS



Step 1 Using the proper drill bit size, drill a hole into the base material to the required depth, h_0 , which is a 1/4-inch deeper than the minimum embedment depth, hnom.


Step 2 Remove dust and debris from

the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Step 3

Attach a UltraCon+ installation socket tool for the selected anchor size to a percussion drill and set the drill to rotary only mode. Mount the screw anchor head into the socket. For flat head versions a bit tip must be used with the socket tool.

Step 4

Place the point of the Crete-Flex through the fixture into the pre-drilled hole and drive the anchor in one steady continuous motion until it is fully seated at the proper embedment. The driver will automatically disengage from the head of the screw anchor.

1-800-4 DEWALT

TrimFit Flat Head (TFH)

PERFORMANCE DATA (ASD)

Ultimate Load Capacities for Crete-Flex in Normal-Weight Concrete^{1,2}

				Minimum Concrete Compressive Strength								
Nominal Anchor	Min. Embed.	Min. Edge Dist.	Min. Spacing	2,00	0 psi	2,50	2,500 psi		3,000 psi		4,000 psi	
Diameter	(in.)	(in.)	(in.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	
	1-1/4			850	1,575	900	1,665	940	1,675	980	1,675	
3/16"	1-1/2	2-1/2	3	1,200	1,800	1,265	1,900	1,325	1,915	1,380	1,915	
	1-3/4			1,360	1,800	1,435	1,900	1,505	1,915	1,565	1,915	
	1	1		535	445	575	480	610	500	645	500	
	1	1-3/4	6	585	765	630	825	670	860	710	860	
	1	2-1/2		675	945	725	1,015	775	1,060	815	1,060	
	1-3/4		1-1/2	1,115	-	1,200	-	1,280	-	1,350	-	
	1-3/4	1	3	1,115	635	1,200	680	1,280	710	1,350	710	
ш н и	1-3/4		6	1,115	1,105	1,200	1,185	1,280	1,240	1,350	1,240	
#14	1-3/4	1-3/4	6	1,165	1,600	1,250	1,720	1,330	1,800	1,405	1,800	
	1-3/4	0.1/0	3	1,115	1,660	1,200	1,785	1,280	1,870	1,350	1,870	
	1-3/4	2-1/2	6	1,165	2,295	1,250	2,470	1,330	2,580	1,405	2,580	
	2	1		1,390	1,105	1,495	1,185	1,590	1,240	1,675	1,240	
	2	1-3/4	6	1,520	1,600	1,635	1,720	1,740	1,800	1,835	1,800	
	2	2-1/2		1,520	2,295	1,635	2,470	1,740	2,580	1,835	2,580	

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 and higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Crete-Flex in Normal-Weight Concrete^{1,2}

				Minimum Concrete Compressive Strength								
Nominal Anchor	Min. Embed. (in.)	Min. Edge Dist.	Min. Spacing (in.)	2,000 psi		2,50	2,500 psi		0 psi	4,000 psi		
Diameter		(in.)		Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	
	1-1/4			215	395	225	415	235	420	245	420	
3/16"	1-1/2	2-1/2	3	300	450	315	475	330	480	345	480	
	1-3/4			340	450	360	475	375	480	390	480	
	1	1	6	135	110	145	120	155	125	160	125	
	1	1-3/4		145	190	160	205	170	215	180	215	
	1	2-1/2		170	235	180	255	195	265	205	265	
	1-3/4		1-1/2	280	-	300	-	320	-	340	-	
	1-3/4	1	3	280	160	300	170	320	180	340	180	
#14	1-3/4	1	6	280	275	300	295	320	310	340	310	
#14	1-3/4	1-3/4	6	290	400	315	430	335	450	350	450	
	1-3/4	0.1/0	3	280	415	300	445	320	470	340	470	
	1-3/4	2-1/2	6	290	575	315	620	335	645	350	645	
	2	1		350	275	375	295	400	310	420	310	
	2	1-3/4	6	380	400	410	430	435	450	460	450	
	2	2-1/2		380	575	410	620	435	645	460	645	

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

(AşD)

Ultimate and Allowable Load Capacities for Crete-Flex in Grouted and Hollow Concrete Masonry^{1,2,3}

Nominal Anchor Diameter	Min. Embed. Min. Edge Dist.		Min Creating	Ultimat	te Load	Allowable Load	
	(in.)	(in.)	Min. Spacing (in.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)
3/16"	1-1/4	2-1/2	3	765	1305	155	260
	1-1/4	1	0	780	420	155	85
	1-1/4	1-3/4	6	1,160	1,320	230	265
	1-1/4		1-1/2	505	1,065	100	215
#14	1-1/4	2-1/2	3	505	1,235	100	245
	1-1/4]	6	1,220	1,320	245	265
	1-5/8 ³	1	6	1,240	540	250	110

1. Tabulated load values are for anchors installed in minimum 8" wide, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C90. Mortar must be minimum Type N.

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Tabulated load values for #14 screws with 1-5/8" embedment are applicable to grouted concrete masonry only.

Average Withdrawal Capacity Crete-Flex in Wood^{1,2}

Nominal Anchor Diameter in.	Minimum Embedment in.	Minimum Edge Distance in.	Withdrawal Capacity Ibs.	
#1 /	1	1-3/4	260	
#14	1-1/2	1-3/4	735	

1. Ultimate load capacities are based on laboratory tests and must be reduced by a minimum safety factor of 3.0 or greater to determine allowable working load.

2. Tests in Southern Yellow Pine (SYP) with minimum Specific Gravity of 0.55; screws oriented tangential to wood grain.

ORDERING INFORMATION

Crete-Flex

Cat. No.			Screw Size	Approximate	Pack Qty.	Carton Qty.	
HWH	HFH	PFH	TFH	Screw Size	Thread Length	Раск ціу.	Garton Qty.
DFM4EMH500	-	DFM4EMF610	-	3/16" X 1-1/4"	1"	100	500
DFM4EMH510	-	DFM4EMF620	-	3/16" X 1-3/4"	1-1/2"	100	500
DFM4EMH530	-	DFM4EMF630	-	3/16" X 2-1/4"	1-3/4"	100	500
DFM4EMH550	-	DFM4EMF640	-	3/16" X 2-3/4"	1-3/4"	100	500
-	-	DFM4EMF650	-	3/16" X 3-1/4"	1-3/4"	100	500
DFM4EMF310	-	DFM4EMF690	-	#14 X 1-1/4"	1"	100	500
DFM4EMF330	DFM4EMF340	DFM4EMF710	DFM4EMF510	#14 X 1-3/4"	1-1/2"	100	500
DFM4EMF350	DFM4EMF360	DFM4EMF730	DFM4EMF530	#14 X 2-1/4"	1-3/4"	100	500
DFM4EMF370	-	DFM4EMF750	DFM4EMF550	#14 X 2-3/4"	1-3/4"	100	500
DFM4EMF390	-	DFM4EMF770	-	#14 X 3-1/4"	1-3/4"	100	500
DFM4EMF410	-	DFM4EMF790	-	#14 X 3-3/4"	1-3/4"	100	500
DFM4EMF430	-	DFM4EMF810	-	#14 X 4"	1-3/4"	100	500
DFM4EMF450	-	DFM4EMF830	-	#14 X 5"	1-3/4"	100	500
DFM4EMF470	-	DFM4EMF850	-	#14 X 6"	1-3/4"	100	500

HWH = Hex Washer Head, HFH = Hex Flange Head, PFH = Phillips Flat Head, TFH = TrimFit® Flat Head

- One straight shank drill bit included in each standard box.

- Hex Washer Head and Hex Flange Head Crete-Flex anchors are measured from below the washer. Phillips Flat Head and TrimFit Flat head CreteFlex anchors are measured end to end. To select the proper minimum anchor length, determine the embedment depth (e.g. required to obtain desired load capacity), then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

Drill Bits

Cat. No.	Description				
DFX153255	5/32" x 5-1/2" UltraCon+ straight shank bit				
DW5381	5/32" x 7" UltraCon+ SDS bit				
DW5410	7/32" x 6" SDS Plus 2 Cutter Drill Bit				
DW5412	7/32" x 10" SDS Plus 2 Cutter Drill Bit				

Installation Kit

Cat. No.	Description
DW5366	UltraCon®+ Installation Kit includes: 5/32" and 3/16" UltraCon+ bit, 1/4" and 5/16" nutsetters, #2 and #3 Phillips bits, Phillipsflat head adapter, percussion adapter, drive sleeve and 1/8" allen wrench

Rotary Hammers

Cat. No.	Description
DCH273	20V Max* XR Brushless 1" L-Shape SDS Plus Rotary Hammer
DCH133	20V Max* XR Brushless 1" D-Handle SDS Plus Rotary Hammer

Accessories

Cat. No.	Description
DWH303DH	Onboard Dust Extractor for 1" SDS Plus Hammers
DWH050	Large Hammer Dust Extraction - Hole Cleaning
DWH200	Dust Extraction Tube Kit with Hose

Dust Extractors

Cat. No.	Description
DCV585	Flexvolt [®] 60V Max* Dust Extractor
DVW010	8 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWV012	10 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWH161D1	20V Max* XR Brushless Universal Dust Extractor Kit

111 DEWALT

www.DEWALT.com

ECHANICAL ANCHORS

ICH

С Н

300 Series Stainless Bi-Metal Concrete and Masonry Fasteners

AGGRE-GATOR®

GENERAL INFORMATION

AGGRE-GATOR®

300 Series Stainless Bi-Metal Concrete and Masonry Fasteners

PRODUCT DESCRIPTION

The Aggre-Gator anchor is a bi-metal screw anchor for light to medium duty applications in concrete and masonry block base materials. The Aggre-Gator is fast and easy to install and provides a neat, finished appearance. Aggre-Gator anchors provide excellent corrosion resistance in demanding applications, such as those in exposed environments.

GENERAL APPLICATIONS AND USES

- Mounts and clips
- · Hurricane shutters
- Windows and screens
- Masonry facades (e.g. brick tie anchors)
- Aluminum enclosures
- · Curtain wall and window wall support anchors
- Pressure-treated wood (e.g. ACQ)

FEATURES AND BENEFITS

- + High in-place value over life of structure
- + Good strength, performance and ductility
- + Stalgard GB coating creates greater galvanic compatibility in dissimilar metal applications involving aluminum
- + Anchor design and thread profile provides guick cutting during installation
- + Gimlet point allows for installation into wood without predrilling

APPROVALS AND LISTINGS

- Tested in accordance with ASTM E488
- Miami-Dade County Notice of Acceptance (NOA) No. 21-0201.08
- Florida Statewide Product Approval FL29068.1

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Concrete Screw Anchors shall be Aggre-Gator as supplied by DEWALT, Towson, MD. Concrete screw anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification	
Anchor Head and Shank	300 series stainless steel	
Tapping Threads and Gimlet Point	Hardened carbon steel	
Coating/Plating/Finish	Stalgard® GB (silver color)	
The tapping threads with gimlet point is approximately 1/2-inch in lenge	gth.	

SECTION CONTENTS

General Information	233
Material Specifications	233
Installation Specifications	234
Installation Instructions	234
Performance Data	235
Ordering Information	237

AGGRE-GATOR

HEAD STYLES

- Hex Washer Head
- TrimFit[®] Flat Head

ANCHOR MATERIALS

- 300 series (18-8) stainless steel head and shank with hardened steel tapping threads and gimlet point
- Stalgard[®] GB coating (Galvanic Barrier)

ANCHOR SIZE RANGE

• 1/4" diameter x 1-1/4" to 4" lengths

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Hollow Concrete Masonry (CMU)
- Grout-Filled Concrete Masonry (CMU)
- Brick Masonry
- Wood •

1-800-4 DEWALT

CHA

CA

CHO

TrimFit® Head

(TFH)

D

300 Series Stainless Steel Aggre-Gator Identification

Hex Washer Head

(HWH)

D

3 C

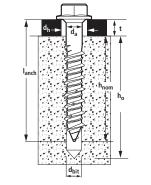
INSTALLATION SPECIFICATIONS

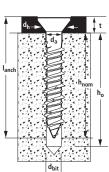
Aggre-Gator Hex Head and Flat Head Screw Anchors^{1,2}

Dimension	Nominal Anchor Diameter			
Dimension	1/4" HWH	1/4" TFH		
Anchor Shank Diameter (in.)	0.189	0.189		
Ultracon+ Drill Bit Size (in.)	3/16	3/16		
UltraCon+ bit tolerance range (in.)	0.202 t	o 0.206		
Typ. Fixture Clearance hole (in.)	5/16	5/16		
Head Height (in.)	9/64	3/16		
Head Width (in.)	5/16	13/32		
Washer O.D. (in.)	13/32	N/A		
Washer Thickness (in.)	3/64	N/A		
Hex Driver (in) / Phillips Driver Size	5/16	#3		
UWU Hay Washer Head TEU TrimEit U	and			

HWH = Hex Washer Head, TFH = TrimFit Head

 For minimum nominal embedment depths, hnom, see the performance data tables. The minimum hole depth, ho, is 1/4-inch more than the selected nominal embedment depth.


In light gauge steel material (.036" / 20 gauge and thinner), the clearance hole can be


the same diameter as the drill bit.

Aggre-Gator Length Code Identification System

Length ID marking on head			A	В	C	D	E	F
Overall anchor length	From	1"	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"
ℓ_{anch} (inches)	Up to but not including	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"

Anchor Detail

Nomenclature

h

 $d_a(d) = Diameter of anchor$

 $d_{bit} = Diameter of drill bit$

 d_h = Diameter of fixture clearance hole

The head markings

consist of a "D" for the DEWALT brand, the

number "3" for the 300 series stainless steel

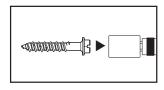
classification, and the

length code.

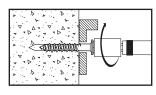
- hnom = Minimum embedment depth
 - = Base material thickness
 - The minimum value of h should be 1.5hnom or 3" whichever is greater
- $h_0 =$ Minimum hole depth

INSTALLATION INSTRUCTIONS

Installation Instructions for Aggre-Gator


Step 1

Using the proper drill bit size, drill a hole into the base material to the required depth, h_0 , which is a 1/4-inch deeper than the minimum embedment depth, h_{nom} .


Step 2

Remove dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Step 3

Attach a Ultracon+ installation socket tool for the selected anchor size to a percussion drill and set the drill to rotary only mode. Mount the screw anchor head into the socket. For flat head versions a bit tip must be used with the socket tool.

Step 4

Place the point of the Aggre-Gator through the fixture into the pre-drilled hole and drive the anchor in one steady continuous motion until it is fully seated at the proper embedment. The driver will automatically disengage from the head of the screw.

PERFORMANCE DATA

DEWALI

ANCHORS & FASTENERS

	Min.						Minimun	n Concrete C	ompressive	Strength						
Nominal Anchor	Edge		Min. Spacing	Min. Snacing		Min. Embed.	200	2000 psi) psi	3000) psi	350) psi	4000 psi	
Diameter	Dist. in.	in.	in.	Tension Ibs.	Shear Ibs.											
			1	450	-	495	-	955	-	1015	-	1070	-			
	1-1/4	3	1-3/8	1105	-	1215	-	1215	-	1215	-	1270	-			
			1-3/4	1125	-	1235	-	1235	-	1235	-	1270	-			
	1-1/2			1	450	780	495	815	955	980	1015	1020	1070	1020		
		3	1-3/8	1105	990	1215	1035	1215	1175	1215	1220	1270	1220			
			1-3/4	1125	1170	1235	1220	1235	1220	1235	1220	1270	1220			
1/4	14		1	740	780	815	815	965	980	1030	1020	1085	1020			
1/4		1-1/2	1-3/8	960	990	1055	1035	1055	1175	1055	1220	1085	1220			
	2-1/2		1-3/4	1220	1170	1340	1220	1340	1220	1340	1220	1380	1220			
		3	1-1/2	-	765 [3]	-	800 [3]	-	-	-	-	-	-			
		3	1-3/4	-	760 [4]	-	795 [4]	-	-	-	-	-	-			
			1	740	865	815	900	965	900	1030	900	1085	900			
	3	1-1/2	1-3/8	960	1580	1055	1650	1055	1965	1055	2040	1085	2040			
			1-3/4	1220	1870	1340	1950	1340	1985	1340	2060	1380	2060			

Ultimate Load Capacities for Aggre-Gator in Normal-Weight Concrete^{1,2}

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 and higher may be necessary depending upon the application such as life safety or overhead.

3. These shear values are for tests conducted with 1" x 4" nominal (3/4" max. thickness) treated southern yellow pine attached to concrete; the listed embedment is into the concrete.

4. These shear values are for tests conducted with 2" x 4" nominal (1-1/2" max. thickness) treated southern yellow pine attached to concrete; the listed embedment is into the concrete.

Allowable Load Capacities for Aggre-Gator in Normal-Weight Concrete^{1,2}

	Min.						Minimur	n Concrete C	ompressive	Strength				
Nominal Anchor	Edge Min. Min.		Min. Min. Spacing Embed.		D psi	2500	D psi	300	D psi	350	D psi	400) psi	
Diameter	Dist. in.	in.	in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	
			1	110	-	120	-	235	-	250	-	265	-	
	1-1/4	3	1-3/8	275	-	300	-	300	-	300	-	315	-	
			1-3/4	280	-	305	-	305	-	305	-	315	-	
	1-1/2			1	110	195	120	200	235	245	250	255	265	255
		3	1-3/8	275	245	300	255	300	290	300	305	315	305	
			1-3/4	280	290	305	305	305	305	305	305	315	305	
1/4		1-1/2	1	185	195	200	200	240	245	255	255	270	255	
1/4			1-3/8	240	245	260	255	260	290	260	305	270	305	
	2-1/2		1-3/4	305	290	335	305	335	305	335	305	345	305	
		3	1-1/2	-	190 [2]	-	200 [2]	-	-	-	-	-	-	
		3	1-3/4	-	190 ^[3]	-	195 🛙	-	-	-	-	-	-	
			1	185	215	200	225	240	225	255	225	270	225	
	3	1-1/2	1-3/8	240	395	260	410	260	490	260	510	270	510	
			1-3/4	305	465	335	485	335	495	335	515	345	515	

1. Allowable load capacities listed are for uncracked concrete and calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. These shear values are for tests conducted with 1" x 4" nominal (3/4" max. thickness) treated southern yellow pine attached to concrete; the listed embedment is into the concrete.

3. These shear values are for tests conducted with 2" x 4" nominal (1-1/2" max. thickness) treated southern yellow pine attached to concrete; the listed embedment is into the concrete.

Ultimate Load Capacities for Aggre-Gator in Hollow and Grout-Filled Concrete Masonry^{1,2}

Nominal Anchor	Min. Edge Dist.	Min. Spacing	Min. Embed.	Hollow	Block	Grout-Fill	ed Block	
Diameter in.	in.	in.	in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	
	2 2	1-1/4	780	935	830	1035		
	2	3	3	2	-	-	1625	2365
1/4	Δ	1-1/2	1-1/4	-	-	745	1410	
	4	1-1/2	2	-	-	2015	2385	
	4	3	1-1/4	880	1055	-	-	

1. Tabulated load values are for anchors installed in grout-filled concrete block conforming to ASTM C90.

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load. Consideration of safety factors of 10 and higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Aggre-Gator in Hollow and Grout-Filled Concrete Masonry^{1,2,3}

Nominal Anchor	Min Edge Dist	in. Edge Dist. Min. Spacing Min. Embed. in. in.	Min Embod	Hollow	Block	Grout-Fil	led Block
Diameter in.			Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	
	0	2	1-1/4	155	185	165	205
	2	3	2	-	-	325	470
1/4	4	1.1/0	1-1/4	-	-	145	280
4	4	1-1/2	2	-	-	400	475
	4	3	1-1/4	175	210	-	-

1. Tabulated load values are for anchors installed in hollow or grout-filled concrete block conforming to ASTM C90. Mortar must be Type N, S or M. Masonry compressive strength must be at the specified minimum at the time of installation (f⁺m ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. The tabulated values are applicable for anchors installed into the ends of concrete masonry units (e.g. wall opening) where minimum edge distances are maintained.

Allowable Load Capacities for Aggre-Gator Anchors Installed in Clay Brick Masonry^{1,2,3,4,5}

Nominal Anchor Diameter d in.	Minimum Embed. in.	Minimum Edge Distance in.	Minimum End Distance in.	Installation Location	Tension Ibs.	Shear Ibs.	
1/4	1-1/2	1-1/8	1-3/4	Face	220	370	
1/4	1-1/2	2-1/2	1-3/4	Mortar Joint	320	360	
1. Tabulated load	Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming						

to ASTM C 62. Mortar must be Type N, S or M. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

 Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

3. Allowable shear loads into the face or mortar joint of the brick masonry wall may be applied in any direction.

4. The tabulated values are applicable for anchors installed at a critical spacing between anchors of 12 times the nominal anchor diameter.

5. The tabulated values are applicable for anchors installed into the ends of masonry walls (e.g. wall opening) where minimum edge distances are maintained.

Ultimate Load Capacity for Aggre-Gator in Wood^{1,2,3}

Nominal Anchor Diameter d in.	Minimum Embed. in.	Tension Ibs.	Shear Ibs.		
1/4	1	205	435		
1/4	2	935	785		
1. Pre-drilling is not required for this anchor into wood. (but can be considered).					
2. Tabulated values are applicable for anchors	2. Tabulated values are applicable for anchors installed at a minimum edge distance of 5 times the nominal anchor diameter.				

3. Tested in stacked 2" x 4" (1-1/2" max. thickness) southern yellow pine; screws orientated tangential to wood grain.

Minimum End Distance (Typ)

1

Minimum Edge Distance (Typ)

ORDERING INFORMATION

Silver Stalgard Aggre-Gator®

Cat.	Cat. No.		Approximate	Pack Qty.	Carton Qty.
HWH	TFH	Screw Size	Thread Length	FAGK QLY:	Garton Qiy.
DFM3EML300	DFM3EMM300	1/4" X 1-1/4"	1-1/8"	50	300
DFM3EML315	DFM3EMM310	1/4" X 1-3/4"	1-5/8"	50	300
DFM3EML325	DFM3EMM320	1/4" X 2-1/4"	1-7/8"	50	300
DFM3EML335	DFM3EMM330	1/4" X 2-3/4"	1-7/8"	50	300
DFM3EML345	DFM3EMM340	1/4" X 3-1/4"	1-7/8"	50	300
DFM3EML365	DFM3EMM360	1/4" X 4"	1-7/8"	50	300

HWH = Hex Washer Head, TFH = TrimFit® Flat Head

Hex Head Aggre-Gator anchors are measured from below the washer while flat head Aggre-Gator anchors are measured end to end. To select the proper minimum anchor length, determine the embedment depth (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

UltraCon+ Drill Bits

Cat. No.	Description]
DW5381	5/32" x 7" UltraCon+ SDS bit	
DW5382	3/16" x 7" UltraCon+ SDS bit	
DFX153255	5/32" x 5-1/2" UltraCon+ straight shank bit	1
DFX131645	3/16" x 4-1/2" UltraCon+ straight shank bit]
DFX131675	3/16" x 7-1/2" UltraCon+ straight shank bit	1

Installation Kit

Cat. No.	Description
DW5366	UltraCon®+ Installation Kit includes: 5/32" and 3/16" UltraCon+ bit, 1/4" and 5/16" nutsetters, #2 and #3 Phillips bits, Phillips flat head adapter, percussion adapter, drive sleeve and 1/8" allen wrench

Rotary Hammers

Cat. No.		Description
	DCH273	20V Max* XR Brushless 1" L-Shape SDS Plus Rotary Hammer
	DCH133	20V Max* XR Brushless 1" D-Handle SDS Plus Rotary Hammer

Accessories

Cat. No.	Description
DWH303DH	Onboard Dust Extractor for 1" SDS Plus Hammers
DWH050	Large Hammer Dust Extraction - Hole Cleaning
DWH200	Dust Extraction Tube Kit with Hose

Dust Extractors

Cat. No.	Description
DCV585	Flexvolt [®] 60V Max* Dust Extractor
DVW010	8 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWV012	10 Gallon Wet Dry Hepa/Rrp Dust Extractor
DWH161D1	20V Max* XR Brushless Universal Dust Extractor Kit

DEWALT

GENERAL INFORMATION

CONCRETE HANGERMATE®+

Rod Hanging Anchor

PRODUCT DESCRIPTION

The Hangermate®+ concrete screw is a one piece, steel anchor designed for rod hanging applications such as fire protection systems, ventilation systems, electrical conduit, pipe hanging and cable trays. Tested and qualified for use in cracked concrete and seismic conditions. The concrete Hangermate®+ requires ANSI masonry bits for installation, accepts 1/4", 3/8" or 1/2" diameter threaded rods. It is also available in a 3/8" male thread version.

- **GENERAL APPLICATIONS AND**
- Fire Sprinkler Pipes
- Ventilation Systems
- Cable Trays
- Lighting Systems

- Suspended Ceilings
- Overhead Utilities
- Tension zone / cracked concrete
- Seismic qualification (SDC A F)

FEATURES AND BENEFITS

- + Installs into holes drilled with a standard ANSI drill bit
- + Fast installation with power tools resulting in labor savings
- + Patented thread design offers low installation torque
- + Tough threads for tapping high strength concrete

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3889 for concrete; code compliant with the International Building Code/International Residential Code: 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC.
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in cracked and uncracked concrete and for use with the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.
- Evaluated and gualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor category 1)
- Evaluated and gualified by an accredited independent testing laboratory for reliability against brittle failure, e.g. hydrogen embrittlement.
- FM Approvals (Factory Mutual) see approval for sizes.
- City of Los Angeles, LABC Supplement (within ESR-3889)
- Florida Building Code, FBC Supplement including HVHZ (within ESR-3889)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 05 05 19 - Post-Installed Concrete Anchors. Anchors shall be Concrete Hangermate+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instruction and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification
Anchor Body	Case hardened low carbon steel
Plating	Zinc plating according to ASTM B633, SC1 Type III (Fe/Zn 5) Minimum plating requirements for Mild Service Condition.

SECTION CONTENTS

General Information	238
Material Specifications	238
Installation Specifications	239
Installation Instructions	240
Performance Data (ASD)	241
Strength Design Information	243
Design Strength Tables (SD)	245
Ordering Information	246

CONCRETE HANGERMATE+ (INTERNALLY THREADED COUPLER HEAD)

CONCRETE HANGERMATE+ (EXTERNAL THREAD - STUD HEAD)

THREAD VERSION

• Unified Coarse Thread (UNC)

ANCHOR MATERIALS

• Zinc Plated Carbon Steel

ANCHOR SIZE RANGE (TYP.)

• 1/4", 3/8", and 1/2" diameter (threaded heads)

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete
- Concrete over steel deck
- Hollow core concrete

Rod Hanging Anch CONCRE

Ш

HANGERMATE®+

INSTALLATION SPECIFICATIONS

Installation Specifications for Hangermate+ in Concrete and Supplementary Information^{1,2}

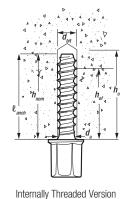
Anohor Draw	outu/Cotting Information	Notation	Units	Nominal Anchor Diameter (inch)							
Anchor Prop	erty/Setting Information	Notation	Units	1/4	3.	/8	3/	/8	3/8	1/2	
Coupler thread s	ize (UNC)	-	in.	1/4-20	3/8	-16	3/8	-16	3/8-16	1/2-13	
Coupler head sty	/le	-	-	Internal Thread	Internal	Thread	Externa	Thread	Internal Thread	Internal Thread	
Nominal anchor (screw anchor b		da	in. (mm)	0.250 (6.4)		0.250 (6.4)		250 .4)	0.375 (9.5)	0.375 (9.5)	
Nominal drill bit diameter (ANSI)		dbit	in.	1/4	1.	/4	1,	/4	3/8	3/8	
Minimum nominal embedment depth4		h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-1/2 (64)	1-5/8 (41)	2-1/2 (64)	2 (51)	2 (51)	
Effective embed	ment	hef	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)	1.20 (30)	1.94 (49)	1.33 (33)	1.33 (33)	
Minimum hole d	epth	h₀	in. (mm)	2 (51)	2 (51)	2-7/8 (73)	2 (51)	2-7/8 (73)	2-3/8 (60)	2-3/8 (60)	
Minimum concre	ete member thickness	hmin	in. (mm)	3-1/4 (83)	3-1/4 (83)	4 (102)	3-1/4 (83)	4 (102)	3-1/2 (89)	3-1/2 (89)	
Minimum edge o	distance ³	Cmin	ⁿⁱⁿ in. 1-1/2 (mm) (38)			1/2 88)		1/2 8)	$\begin{array}{l} {C_{min}=1\text{-}1/2~(38)} \\ {for} ~{S_{min}} \geq ~3~(76); \end{array}$	$\begin{array}{l} \mbox{Cmin} = 1 \mbox{-} 1 \mbox{-} 2 \mbox{ (3)} \\ \mbox{for } s_{\mbox{min}} \geq \ 3 \mbox{ (76)} \end{array}$	
Minimum spacin	g distance ³	Smin	in. (mm)	1-1/2 (38)	1-1/2 (38)		1-1/2 (38)		$\begin{array}{l} s_{min} = 2 \; (51) \\ for \; c_{min} \geq \; 2 \; (51) \end{array}$	$\begin{array}{l} s_{min}=2 \ (51) \\ for \ c_{min} \geq \ 2 \ (57) \end{array}$	
Nominal anchor	length ⁶	lanch	in.	1-5/8	1-5/8	2-1/2	1-5/8	2-1/2	2	2	
Maximum impac	t wrench power (torque)1	Timpact,max	ftlbf. (N-m)	150 (203)	150 (203)		150 (203)		300 (407)	300 (407)	
Maximum manu	al installation torque	T _{inst,max}	ftlbf. (N-m)	19 ^[3] (26)	19 ^[3] (26)	25 (34)	19 ^[3] (26)	25 (34)	25 (34)	25 (34)	
	Wrench socket size	-	in.	3/8	1.	/2	1,	/2	1/2	11/16	
Coupler Head	Max. head height	-	in.	33/64	43	/64	1-3	/16	43/64	53/64	
	Max. washer diameter	-	in.	1/2	21	/32	21,	/32	21/32	31/32	
Effective tensile (screw anchor b		Ase	in.² (mm²)	0.045 (28.8))45 3.8))45 3.8)	0.094 (60.7)	0.094 (60.7)	
Minimum specified ultimate strength		f _{uta}	psi (N/mm²)	115,000 (793)		,000 93)		,000 93)	100,000 (690)	100,000 (690)	
Minimum specifi	ed yield strength	fy	psi (N/mm²)	92,000 (634)		000 34)		000 34)	80,000 (552)	80,000 (552)	
Mean axial	Uncracked concrete	$eta_{ ext{uncr}}$	lbf/in.	1,381,000	1,38	1,000	1,38	1,000	1,157,000	1,157,000	
Stiffness ⁷	Cracked concrete	β_{cr}	lbf/in.	318,000	318	,000,	318	,000	330,000	330,000	

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m, 1 psi = 0.0069 N/mm² (MPa).

1. The information presented in this table is used in conjunction with the design criteria of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

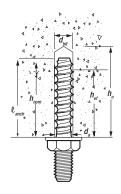
2. For installations through the soffit of steel deck assemblies into concrete, see the design information table for installation in the soffit of concrete-filled steel deck assemblies and the installation details in the soffit of concrete over steel deck for the applicable steel deck profile.

3. For installations into lightweight concrete, the max installation torque, Tinst, is 18 ft.-lb for nominal 1/4-inch-diameter anchors (screw anchor body diameter) with an 1-5/8-inch nominal embedment.


4. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor.

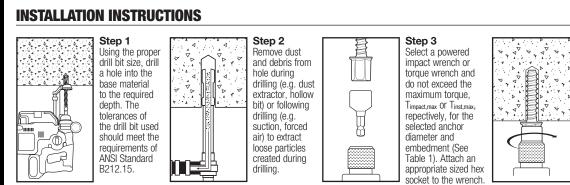
5. Additional combinations for minimum edge distance, cmin, and minimum spacing distance, smin, may be derived by linear interpolation between the given boundary values for the nominal 3/8-inch-diameter anchors (screw anchor body diameter).

6. The listed anchor length is based on coupler head anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth. The nominal anchor length is measured from under the coupler head to the tip of the anchor.

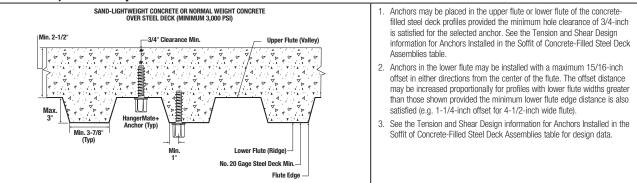

7. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

Hangermate+ Anchor Detail in Concrete

Nomenclature

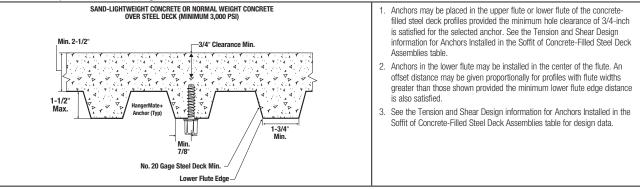

- da = Anchor diameter (screw anchor body)
- d_{bit} = Diameter of Drill Bit
- hnom = Minimum Nominal Embedment
- h_{ef} = Effective Embedment
- $h_0 = Minimum Hole Depth$
- ℓ_{anch} = Nominal Anchor Length

Technical Guide – Mechanical Anchors ©2022 Dewalt – Rev. I



Step 4 Drive the anchor with an impact wrench or torque wrench through the fixture and into the hole until the head of the anchor comes into contact with the member surface. Do not spin the hex socket off the anchor to disengage. Insert threaded rod or threaded bolt element into Hangermate+.

Hangermate+ Installation Detail for Screw Anchors in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies, 3-inch Deep Deck Profile^{1,2,3}



Mount the screw

anchor head into

the socket.

Hangermate+ Installation Detail for Screw Anchors in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies, 1-1/2-inch Deep Deck Profile^{1,2,3}

AşD

AsD

PERFORMANCE DATA (ASD)

	Nominal	Minimum	Minimum Concrete Compressive Strength									
Nominal Anchor	Anchor Diameter	Nominal Embedment	Nominalf'c = 2,50Embedment(17.3 M				f'c = 4,000 psi (27.6 MPa)		f ⁱ c = 6, (41.4	000 psi MPa)	f'c = 8,000 psi (55.2 MPa)	
Size in.		Depth in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
1/4	1/4	1-5/8 (41)	2,410 (10.7)	1,485 (6.6)	2,545 (11.3)	1,525 (6.8)	2,775 (12.3)	1,525 (6.8)	2,775 (12.3)	1,525 (6.8)	2,775 (12.3)	1,525 (6.8)
3/8	1/4	1-5/8 (41)	2,410 (10.7)	1,555 (6.9)	2,545 (11.3)	1,565 (7.0)	2,775 (12.3)	1,565 (7.0)	2,775 (12.3)	1,565 (7.0)	2,775 (12.3)	1,565 (7.0)
3/0	1/4	2-1/2 (64)	3,650 (16.2)	1,555 (6.9)	3,855 (17.1)	1,565 (7.0)	4,200 (18.7)	1,565 (7.0)	4,270 (19.0)	1,565 (7.0)	4,270 (19.0)	1,565 (7.0)
3/8	3/8	2 (51)	3,670 (16.3)	1,985 (8.8)	4,020 (17.9)	2,010 (8.9)	4,645 (20.7)	2,010 (8.9)	4,725 (21.0)	2,010 (8.9)	5,455 (24.3)	2,010 (8.9)
1/2	3/8	2 (51)	3,670 (16.3)	2,970 (13.2)	4,020 (17.9)	2,990 (13.3)	4,645 (20.7)	2,990 (13.3)	4,725 (21.0)	2,990 (13.3)	5,455 (24.3)	2,990 (13.3)

Ultimate Load Capacities for Hangermate+ in Normal-Weight Concrete^{1,2,3}

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at a minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

3. The tabulated capacities are for the Hangermate+ anchors which must be checked against the steel strength of the corresponding threaded rod or bolt size and type, the lowest load level controls.

Allowable Load Capacities for Hangermate+ in Normal-Weight Concrete^{1,2,3,4,5,6}

	Nominal	Minimum	Minimum Concrete Compressive Strength									
Nominal Anchor	Anchor Diameter	Nominal Embedment	f'c = 2,500 psi (17.3 MPa)		f'c = 3,000 psi (20.7 MPa)		f ⁱ c = 4,000 psi (27.6 MPa)		f'c = 6, (41.4	000 psi MPa)	f'c = 8,000 psi (55.2 MPa)	
Size (screw anchor in. body) in.		Depth in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
1/4	1/4	1-5/8 (41)	605 (2.7)	370 (1.6)	635 (2.8)	380 (1.7)	695 (3.1)	380 (1.7)	695 (3.1)	380 (1.7)	695 (3.1)	380 (1.7)
3/8	1/4	1-5/8 (41)	605 (2.7)	390 (1.7)	635 (2.8)	390 (1.7)	695 (3.1)	390 (1.7)	695 (3.1)	390 (1.7)	695 (3.1)	390 (1.7)
3/0	1/4	2-1/2 (64)	915 (4.1)	390 (1.7)	965 (4.3)	390 (1.7)	1,050 (4.7)	390 (1.7)	1,070 (4.8)	390 (1.7)	1,070 (4.8)	390 (1.7)
3/8	3/8	2 (51)	920 (4.1)	495 (2.2)	1,005 (4.5)	505 (2.2)	1,160 (5.2)	505 (2.2)	1,180 (5.2)	505 (2.2)	1,365 (6.1)	505 (2.2)
1/2	3/8	2 (51)	920 (4.1)	745 (3.3)	1,005 (4.5)	750 (3.3)	1,160 (5.2)	750 (3.3)	1,180 (5.2)	750 (3.3)	1,365 (6.1)	750 (3.3)

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. For lightweight concrete, multiply the tabulated allowable load capacities by a reduction factor of 0.60.

6. The tabulated capacities are for the Hangermate+ anchors which must be checked against the steel strength of the corresponding threaded rod or bolt size and type, the lowest load level controls.

Allowable Load Capacities for Hangermate+ in Hollow-Core Concrete^{1,2,3,4,5,6,7}

	Nominal	Minimum			Minimum Concrete C	ompressive Strength			
Nominal Anchor	Anchor Diameter	Nominal Embedment	f'c = 5, (34.5	000 psi MPa)	f ⁱ c = 6, (41.4	000 psi MPa)	f'c = 8,000 psi (55.2 MPa)		
Size in.	body) in.	Depth in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	
1/4	1/4	1-1/2 (41)	695 (3.1)	380 (1.7)	695 (3.1)	380 (1.7)	695 (3.1)	380 (1.7)	
3/8	1/4	1-1/2 (41)	695 (3.1)	390 (1.7)	695 (3.1)	390 (1.7)	695 (3.1)	390 (1.7)	

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. Hollow core concrete must have a minimum cover thickness of 1-1/2" below the core locations. where anchors are installed. Care must be taken to prevent damage to prestressed cables in the hollow core concrete panel during drilling and installation.

6. Tabulated capacties are for PFM2211100, PFM2211200 and PFM1421000 Hangermate+, as applicable.

7. The tabulated capacities are for the Hangermate+ anchors which must be checked against the steel strength of the corresponding threaded rod or bolt size and type, the lowest load level controls.

CONCRETE HANGERMATE®+

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Edge Distance Reduction Factors - Tension (F_{NC})

Nomina	al Anchor Size (in)		1/4		3/8	1/2
	al Anchor Dia. (in) w Anchor Body)	1/4	3/8	3/8	3/8	3/8
Nomi	nal Embedment, hnom (in)	1-5/8	1-5/8	2-1/2	2	2
Minimu	Im Edge Distance, Cmin (in)	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2
	1-1/2	0.77	0.77	0.64	0.74	0.74
(9	1-3/4	0.83	0.83	0.67	0.79	0.79
che	2	0.88	0.88	0.71	0.84	0.84
e (in	2-1/4	0.94	0.94	0.75	0.89	0.89
ance	2-1/2	1.00	1.00	0.78	0.95	0.95
Edge Distance (inches)	2-3/4	1.00	1.00	0.82	1.00	1.00
dge	3	1.00	1.00	0.86	1.00	1.00
Ш	3-1/2	1.00	1.00	0.93	1.00	1.00
	4	1.00	1.00	1.00	1.00	1.00

Edge Distance	Reduction	Factors -	Shear	(F vc)

Nominal A	nchor Size (in)		1/4		3/8	1/2
Nominal A (Screw A	nchor Dia. (in) Anchor Body)	1/4	3/8	3/8	3/8	3/8
Nominal Emb	pedment, hnom (in)	1-5/8	1-5/8	2-1/2	2	2
	Edge Distance, min (in)	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2
	1-1/2	0.68	0.66	0.70	0.61	0.47
(se	1-3/4	0.79	0.77	0.82	0.72	0.55
Distance (inches)	2	0.90	0.88	0.93	0.82	0.63
) eo	2-1/4	1.00	0.99	1.00	0.92	0.70
stan	2-1/2	1.00	1.00	1.00	1.00	0.78
e Di	2-3/4	1.00	1.00	1.00	1.00	0.86
Edge	3	1.00	1.00	1.00	1.00	0.94
	3-1/4	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors - Tension (F_{NS})

Nomin	al Anchor Size (in)		1/4		3/8	1/2
Nominal (Scre	Anchor Diameter (in) ew Anchor Body)	1/4	3/8	3/8	3/8	3/8
Nominal	Embedment, hnom (in)	1-5/8	1-5/8	2-1/2	2	2
Minimu	m Spacing, smin (in)	1-1/2	1-1/2	1-1/2	2	2
	1-1/2	0.73	0.73	0.66	-	-
	1-3/4	0.77	0.77	0.68	-	-
	2	0.80	0.80	0.70	0.77	0.77
les)	2-1/4	0.83	0.83	0.72	0.80	0.80
inch	2-1/2	0.86	0.86	0.74	0.83	0.83
Spacing Distance (inches)	2-3/4	0.89	0.89	0.76	0.86	0.86
tan	3	0.92	0.92	0.78	0.89	0.89
ä	3-1/2	0.99	0.99	0.82	0.94	0.94
cing	4	1.00	1.00	0.86	1.00	1.00
Spa	4-1/2	1.00	1.00	0.90	1.00	1.00
	5	1.00	1.00	0.94	1.00	1.00
	5-1/2	1.00	1.00	0.97	1.00	1.00
	6	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors - Shear (Fvs)

Nomina	al Anchor Size (in)		1/4		3/8	1/2
Nominal / (Scre	Anchor Diameter (in) w Anchor Body)	1/4	3/8	3/8	3/8	3/8
Nominal I	Embedment, hnom (in)	1-5/8	1-5/8	2-1/2	2	2
Minimu	m Spacing, smin (in)	1-1/2	1-1/2	1-1/2	2	2
	1-1/2	0.61	0.61	0.62	-	-
	1-3/4	0.63	0.63	0.64	-	-
	2	0.65	0.65	0.66	0.64	0.60
	2-1/4	0.67	0.66	0.68	0.65	0.62
	2-1/2	0.69	0.68	0.69	0.67	0.63
	2-3/4	0.71	0.70	0.71	0.69	0.64
(sa	3	0.73	0.72	0.73	0.70	0.66
inch	3-1/2	0.76	0.76	0.77	0.74	0.68
) eo	4	0.80	0.79	0.81	0.77	0.71
itan	4-1/2	0.84	0.83	0.85	0.81	0.73
ä	5	0.88	0.87	0.89	0.84	0.76
Spacing Distance (inches)	5-1/2	0.91	0.90	0.93	0.88	0.79
Spa	6	0.95	0.94	0.97	0.91	0.81
	6-1/2	0.99	0.98	1.00	0.94	0.84
	7	1.00	1.00	1.00	0.98	0.86
	7-1/2	1.00	1.00	1.00	1.00	0.89
	8	1.00	1.00	1.00	1.00	0.92
	9	1.00	1.00	1.00	1.00	0.97
	10	1.00	1.00	1.00	1.00	1.00

STRENGTH DESIGN INFORMATION

Tension and Shear Design Information for Hangermate+ Anchor is in Concrete^{1,2,9,11,12}

Design Characteristic	Notation	Units			Non	ninal Anch	or Size (i	nch)	
	Notation	Units	1/4	3	/8	3/	/8	3/8	1/2
Anchor category	1, 2 or 3	-	1		1	1		1	1
Coupler thread size (UNC)	-		1/4- 20	3/8	-16	3/8	-16	3/8-16	1/2-13
Coupler head style	-		Internal Thread	Internal	Thread	External	Thread	Internal Thread	Internal Threa
Nominal anchor diameter	da	in.	0.250		250	0.2		0.375	0.375
(screw anchor body)	Ud	(mm)	(6.4)	`	.4)	(6.	· · · · · ·	(9.5)	(9.5)
Minimum nominal embedment depth4	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-1/2 (64)	1-5/8 (41)	2-1/2 (64)	2 (51)	2 (51)
Effective embedment	h _{ef}	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)	1.20 (30)	1.94 (49)	1.33 (33)	1.33 (33)
Steel St	renath in Te	. ,	1 (30) 318-19 17.6.1, ACI 3				()	(55)	(00)
		lb	4,535	·	535	4,5		8,730	8,730
Steel strength in tension	Nsa	(kN)	(20.2)).2)	(20		(38.8)	(38.8)
Reduction factor for steel strength ^{3,4}	ϕ	-				0.0	65		
Concrete Brea	kout Strengt	h in Tensio	n (ACI 318-19 17.6.)	2, ACI 318	-14 17.4.	2 or ACI 3	18-11 D.5	.2)	
Critical edge distance (uncracked concrete only)	Cac	in. (mm)	4.3 (110)	4.3 (110)	6.1 (156)	4.3 (110)	6.1 (156)	5.0 (127)	5.0 (127)
Effectiveness factor for uncracked concrete	Kuncr	-	27	27	24	27	24	30	30
Effectiveness factor for cracked concrete	Kcr	-	17	1	7	1	7	17	17
Modification factor for cracked and uncracked concrete ⁵	$\varPsi_{\rm c,N}$	-	1.0						
Reduction factor for concrete breakout strength ³	ϕ	-				0.0	65		
Pullout Strength in Ter	sion (Non-S	eismic App	lications) (ACI 318-	19 17.6.3,	ACI 318-	14 17.4.3	or ACI 31	8-11 D.5.3)	
Characteristic pullout strength, uncracked concrete (2,500 psi)69	N _{p,uncr}	lb (kN)	See Note 7						See Note 7
Characteristic pullout strength, cracked concrete (2,500 psi)6.9	N _{p,cr}	lb (kN)	765 (3.4)	765 (3.4)	1,415 (6.3)	765 (3.4)	1,415 (6.3)	See Note 7	See Note 7
Reduction factor for pullout strength ³	ϕ	-				0.0	65		
Pullout Strength in Tens	ion for Seis	mic Applica	tions (ACI 318-19 1	7.10.3, A	CI 318-14	17.2.3.3 0	r ACI 318	-11 D.3.3.3)	
Characteristic pullout strength, seismic (2,500 psi) ^{6,8,9}	N _{p,eq}	lb (kN)	360 (1.6)	360 (1.6)	1,170 (5.2)	360 (1.6)	1,170 (5.2)	900 (4.0)	900 (4.0)
Reduction factor for pullout strength ³	ϕ	-				0.0	65		
Steel S	trength in S	hear (ACI 3	18-19 17.7.1, ACI 3	18-14 17.	5.1 or ACI	318-11 D	.6.1)		-
Steel strength in shear10	V_{sa}	lb (kN)	800 (3.6)		360 .1)	1,3 (6.		1,295 (5.8)	1,295 (5.8)
Reduction factor for steel strength ^{3,4}	ϕ	-				0.0	60		
Steel Strength in Shea	r For Seism	ic Applicati	ons (ACI 318-19 17	10.3, ACI	318-14 1	7.2.3.3 or	ACI 318-1	1 D.3.3.3)	
Steel strength in shear ¹⁰	V _{sa,eq}	lb (A))	600		95	69		800	800
Deduction feature for aleast strongth 34		(kN)	(2.7)	(3	.1)	(3.		(3.6)	(3.6)
Reduction factor for steel strength ^{3,4}	φ keyt Strong	- th in Choor		ACI 210	14 17 5 0	0.0		2)	
	indut atteng	in.	(ACI 318-19 17.7.2	1.20	1.94	1.20	8-11 D.6. 1.94	2) 1.33	1.33
Load bearing length of anchor	le	(mm)	(30)	(30)	(49)	(30)	(49)	(33)	(33)
Reduction factor for concrete breakout strength ^{3,4}	φ	-				0.			-
Pryout	Strength in S	Shear (ACI 3	318-19 17.7.3, ACI 3	18-14 17	.5.3 or AC	318-11).6.3)		
Coefficient for pryout strength	k _{cp}	-	1	1	1	1	1	1	1
Reduction factor for pryout strength ^{3,4}	ϕ	-				0.	70		
 anch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.3 The data in this table is intended to be used with the dest additional requirements of ACI 318-14 17.2.3 or ACI 318 Installation must comply with manufacturer's published in the strength reduction factor applies when the load comm met. If the load combinations of ACI 318-11 Appendix C The anchors are considered a brittle steel elements as d6. Select the appropriate effectiveness factor for cracked cos The compression of the compres	ign provisions o -11 D.3.3, as a istallation instru- pinations from t are used, the a fined by ACI 31 ncrete (ker) or u	f ACI 318 (-19 applicable, sha ctions and def he IBC or ACI ppropriate stre 18 (-19 or -14 ncracked conc	tails. 318 are used and the re ength reduction factor mu) 2.3 or ACI 318-11 D.1. prete (Kunar) and use yew?	quirements o ist be detern = 1.0.	of ACI 318-1 nined in acco	9 17.5.3, A ordance with	CI 318-14 1 ACI 318-1 ⁻	7.3.3 or ACI 318-11 D.4 D.4.4.	4.3, as applicable, ar

6. The characteristic pullout strength for concrete compressive strengths greater than 2,500 pai for 1/4-inch-diameter anchors (screw anchor body diameter) may be increased by multiplying the value in the table by (f; 2,500)⁴⁵ for grain of (f; 2, 17,2)⁴⁵ for MPa. The characteristic pullout strength for concrete compressive strengths greater than 2,500 psi for 3/8-inch-diameter anchors (screw anchor body diameter) may be increased by multiplying the value in the table by (f; 2,500)⁴⁵ for MPa.

7. Pullout strength does not control design of indicated anchors and does not need to be calculated for indicated anchor size and embedment.

8. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.

9. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design in lieu of the calculated results using equation 17.7.1.2b in ACI 318-19, 17.5.1.2b in ACI 318-14 or equation D-29 in ACI 318-11 D.6.1.2.

10. Reported values for steel strength in shear are for seismic applications and based on tests in accordance with ACI 355.2, Section 9.6.

11. Anchors are permitted to be used in lightweight concrete in provided the modification factor λ_a equal to 0.8 λ is applied to all values of \sqrt{f} affecting Nn.

12. Hangermate+ shear values are for threaded rod or steel inserts with and ultimate strength, $F_u \ge 125$ ksi; threaded rod or steel inserts with an F_u less than 125 ksi are allowed provided the steel strength shear values are multiplied by the ratio of F_u (ksi) of the steel insert and 125 ksi.

Tension and Shear Design Information for Hangermate+ Anchor in the Soffit (Through the Underside) of Concrete-Filled Steel Deck Assemblies^{1,2,3,4,5,6,9}

ANCHORS & FASTENERS

Design Characteristic	Notation	Units	Nominal Anchor Size (inch)								
Design Gnaracteristic	Notation	Units	1/4	3	/8	3/	/8	3/8	1/2		
Anchor category	1, 2 or 3	-	1		1	1		1	1		
Coupler thread size (UNC)	-	in.	1/4-20	3/8-16		3/8-16		3/8-16	1/2-13		
Coupler head style	-	-	Internal Thread	Interna	l Thread	External	Thread	Internal Thread	Internal Thread		
Nominal anchor diameter (screw anchor body)	da	in. (mm)	0.250 (6.4)		250 .4)	0.2 (6		0.375 (9.5)	0.375 (9.5)		
Minimum nominal embedment depth4	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-1/2 (64)	1-5/8 (41)	2-1/2 (64)	2 (51)	2 (51)		
Effective embedment	h _{ef}	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)	1.20 (30)	1.94 (49)	1.33 (33)	1.33 (33)		
Hangerma	te+ Anchors	Installed in	nto Minimum 3-7/8-	inch-wide	e Deck Flu	te (See Fig	gure 6A)				
Minimum concrete member thickness ⁷	h _{min,deck,total}	lb (kN)	5-1/2 (140)		1/2 40)	5- ⁻ (14		5-1/2 (140)	5-1/2 (140)		
Pullout strength, uncracked concrete (3,000 psi)	Np,deck,uncr	lb (kN)	1,430 (6.4)	1,430 (6.4)	2,555 (11.4)	1,430 (6.4)	2,555 (11.4)	2,275 (10.1)	2,275 (10.1)		
Pullout strength, cracked concrete (3,000 psi)	N _{p,deck,cr}	lb (kN)	615 (2.7)	615 (2.7)	1,115 (5.0)	615 (2.7)	1,115 (5.0)	1,290 (5.1)	1,290 (5.1)		
Pullout strength, seismic (3,000 psi)	N _{p,deck,eq}	lb (kN)	290 (1.3)	290 (1.3)	920 (4.1)	290 (1.3)	920 (4.1)	890 (4.0)	890 (4.0)		
Reduction factor for pullout strength ^{3,4}	ϕ	-		0.65							
Steel strength in shear	$V_{\text{sa,deck}}$	lb (kN)	1,205 (5.4)		1,205 (5.4)		205 .4)	1,360 (6.0)	1,360 (6.0)		
Steel strength in shear, seismic	Vsa,deck,eq	lb (kN)	615 (2.7)		15 7)	615 (2.7)		965 (4.3)	965 (4.3)		
Reduction factor for steel strength ^{3,4}	ϕ	-				0.0	60				
Hangermat	te+ Anchors	Installed in	nto Minimum 1-3/4-	inch-wide	e Deck Flu	te (See Fig	jure 6B)				
Minimum concrete member thickness ⁷	h _{min,deck,total}	lb (kN)	4 (102)		4 (102)		1)2)	4 (102)	4 (102)		
Pullout strength, uncracked concrete (3,000 psi)	Np,deck,uncr	lb (kN)	1,430 (6.4)	1,430 (6.4)	2,075 (9.2)	1,430 (6.4)	2,075 (9.2)	1,440 (6.4)	1,440 (6.4)		
Pullout strength, cracked concrete (3,000 psi)	N _{p,deck,cr}	lb (kN)	615 (2.7)	615 (2.7)	910 (4.0)	615 (2.7)	910 (4.0)	815 (3.6)	815 (3.6)		
Pullout strength, seismic (3,000 psi)	N _{p,deck,eq}	lb (kN)	290 (1.3)	290 (1.3)	750 (3.3)	290 (1.3)	750 (3.3)	565 (2.5)	565 (2.5)		
Reduction factor for pullout strength [®]	ϕ	-				0.65					
Steel strength in shear	Vsa,deck	lb (kN)	815 (3.6)		15 .6)	81 (3.		1,110 (4.9)	1,110 (4.9)		
Steel strength in shear, seismic	Vsa,deck,eq	lb (kN)	415 (1.8)		15 .8)	41 (1.		790 (3.5)	790 (3.5)		
Reduction factor for steel strength ⁸	φ	-					60				

1. Installation must comply with manufacturer's published installation instructions and details.

 Values for N_{p,deck} and N_{p,deck,or} are for sand-lightweight concrete (f¹c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318 D.5.2, as applicable, is not required for anchors installed in the deck soffit (through underside).

3. Values for $N_{p,deck,eq}$ are applicable for seismic loading.

4. The characteristic pullout strength for concrete compressive strengths greater than 3,000 psi for 1/4-inch-diameter anchors (screw anchor body diameter) may be increased by multiplying the value in the table by (f'c / 3,000)^{0.3} for psi or (f'c / 17.2)^{0.3} for MPa. The characteristic pullout strength for concrete compressive strengths greater than 3,000 psi for 3/8-inch-diameter anchors (screw anchor body diameter) may be increased by multiplying the value in the table by (f'c / 3,000)^{0.5} for psi or (f'c / 17.2)^{0.5} for MPa. For all design cases $\Psi_{c,P} = 1.0$.

5. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

6. Values of Vsa.deck.eq are for sand-lightweight concrete and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, are not required for anchors installed in the soffit (through underside).

7. The minimum concrete member thickness, hmin.dex.total, is the minimum overall thickness of the concrete-filled steel deck (depth and topping thickness).

8. All values of ϕ were determined from the load combinations of IBC Section 1605.2, 318 (-19 or -14) Section 5.3 or ACI 318 Section 9.2. If the load combinations of ACI 318 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

Hangermate+ shear values are for threaded rod or steel inserts with and ultimate strength, F_u ≥ 125 ksi; threaded rod or steel inserts with an F_u less than 125 ksi are allowed provided the steel strength shear values are multiplied by the ratio of F_u (ksi) of the steel insert and 125 ksi.

 \mathbf{O}

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strength Cracked Concrete^{1,2,3,4,5,6,7,8}

Newing	Anghar Di							Minimum	Concrete C	ompressive	e Strength				
Nomina			Nominal Embed.	Effective Embed.	f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi		
Coupler Thread Size (UNC)	Coupler Head Style	Screw Anchor Body	Depth hrom (in.)	hnom	Depth hef (in.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)								
1/4 - 20	Internal Thread	1/4	1-5/8	1.20	495	515	525	515	575	515	645	515	705	515	
3/8 - 16	Internal	nal 1/4	1-5/8	1.20	495	780	525	815	575	815	645	815	705	815	
3/0 - 10	Thread	1/4	2-1/2	1.94	920	815	970	815	1,060	815	1,195	815	1,305	815	
3/8 - 16	External	1/4	1-5/8	1.20	495	780	525	815	575	815	645	815	705	815	
3/0 - 10	Thread	1/4	2-1/2	1.94	920	815	970	815	1,060	815	1,195	815	1,305	815	
3/8 - 16	Internal Thread	3/8	2	1.33	845	775	930	775	1,070	775	1,315	775	1,515	775	
1/2 - 13	Internal Thread	3/8	2	1.33	845	915	930	1,000	1,070	1,140	1,315	1,140	1,515	1,140	

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strength Uncracked Concrete^{1,2,3,4,5,6,7}

Nomine	Ancher Di	omotor						Minimum	Concrete C	ompressive	e Strength				
Nomina	AI ANCHOF DI	Anchor Diameter Nominal Embed.		Effective Embed.	f'c = 2,	500 psi	f'c = 3,	0 00 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi	
Coupler Thread Size (UNC)	Coupler Head Style	Screw Anchor Body	Depth hnom (in.)	Depth hnom	Depth hef (in.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (lbs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)
1/4 - 20	Internal Thread	1/4	1-5/8	1.20	1,155	515	1,265	515	1,460	515	1,785	515	2,065	515	
3/8 - 16	Internal	1/4	1-5/8	1.20	1,155	815	1,265	815	1,460	815	1,785	815	2,065	815	
3/0 - 10	Thread	1/4	2-1/2	1.94	2,110	815	2,310	815	2,665	815	2,950	815	2,950	815	
3/8 - 16	External	1/4	1-5/8	1.20	1,155	815	1,265	815	1,460	815	1,785	815	2,065	815	
3/0 - 10	Thread	1/4	2-1/2	1.94	2,110	815	2,310	815	2,665	815	2,950	815	2,950	815	
3/8 - 16	Internal Thread	3/8	2	1.33	1,495	775	1,640	775	1,890	775	2,315	775	2,675	775	
1/2 - 13	Internal Thread	3/8	2	1.33	1,495	1,140	1,640	1,140	1,890	1,140	2,315	1,140	2,675	1,140	

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

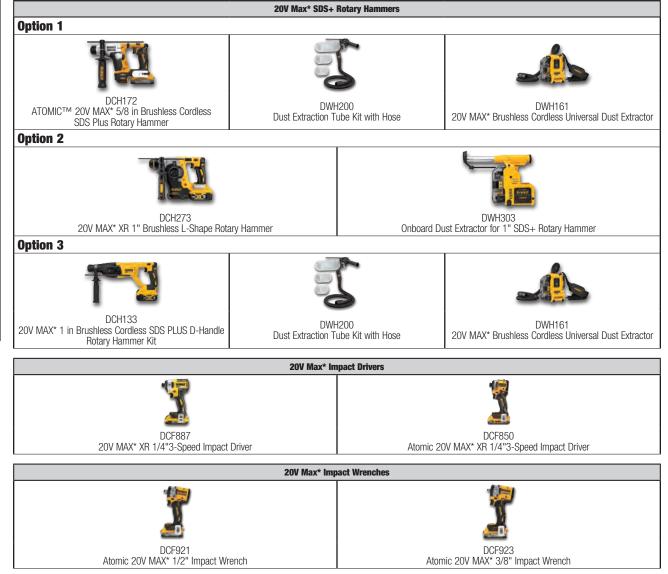
 c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

- Ca2 is greater than or equal to 1.5 times Ca1.

2- Calculations were performed according to ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

3- Strength reduction factors (ø) were based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B is assumed.

- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 or -14) Chapter 17. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.
- 7- Hangermate+ shear values are for threaded rod or steel inserts with and ultimate strength, F_u ≥ 125 ksi; threaded rod or steel inserts with an F_u less than 125 ksi are allowed provided the steel strength shear values are multiplied by the ratio of F_u (ksi) of the steel insert and 125 ksi.
- 8- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and pullout strength must be multiplied by a factor of 0.75.


Technical Guide – Mechanical Anchors ©2022 Dewalt – Rev. I

ORDERING INFORMATION

Catalog	Corrow Cino	Hong	Ded Cine	Socket Size	Pack	Carton	Suggested Accessories			
Number	Screw Size	Hang	Rod Size	SOCKET SIZE	Qty.	Qty.	SDS+ Carbide Drill Bits	Hangermate+ Driver		
Hangermat	e+ Internal	Thread (UI	NC)		فرفرغرفر					
PFM2211100	1/4" x 1-5/8"	Vertical	1/4"	3/8"	25	125	DW5517, DW5417	PFM1491050		
PFM2211200	1/4" x 1-5/8"	Vertical	3/8"	1/2"	25	125	DW5517, DW5417	PFM1491100		
PFM2211250	1/4" x 2-1/2"	Vertical	3/8"	1/2"	25	125	DW5517, DW5417	PFM1491100		
PFM2211260	3/8" x 1-5/8"	Vertical	3/8"	1/2"	25	125	DW5527, DW5427	PFM1491100		
PFM2211270	3/8" x 2"	Vertical	3/8"	1/2"	25	125	DW5527, DW5427	PFM1491100		
PFM2211280	3/8" x 2"	Vertical	1/2"	11/16"	20	100	DW5527, DW5427	-		
Hangermat	e+ External	Thread (U	NC)			(ئولۇرلۇر				
PFM1421000	1/4" x 1-5/8"	Vertical	3/8"	1/2"	25	125	DW5517, DW5417	DWMT19052B		
PFM1421050	1/4" x 2-1/2"	Vertical	3/8"	1/2"	25	125	DW5517, DW5417	DWMT19052B		

Suggested Tools

GENERAL INFORMATION

SNAKE+®

Internally Threaded Screw Anchor

PRODUCT DESCRIPTION

The Snake+ anchor is an internally threaded, self-tapping screw anchor designed for performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, lightweight concrete and concrete over steel deck. The Snake+ screw anchor is installed into a drilled hole with a power tool and a Snake+ setting tool. After installation a steel element is threaded into the anchor body.

GENERAL APPLICATIONS AND USES

- Suspending conduit, cable trays and strut
- Interior low level corrosion environment
- Tension zone / cracked concrete
- Seismic attachments (SDC A F)
- Fire sprinklers and pipe supports
- Suspended lighting

FEATURE AND BENEFITS

- + Cracked concrete approved alternative to a dropin anchor
- + Designed for use in holes drilled with standard ANSI carbide drill bits
- + Anchor design allows for shallow embedment and mechanically interlocks with base material
- + Internally threaded anchor for easy adjustment and removability of threaded rod or bolt
- + Fast anchor installation with a powered impact wrench
- + Hammer not used for installation

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-2272 for concrete; code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC.
- Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in concrete under the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 (Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor Category 1)
- Evaluated and qualified by an accredited independent testing laboratory for reliability against brittle failure, e.g. hydrogen embrittlement
- Evaluated and qualified by an accredited independent testing laboratory for supplemental recognition in redundant fastening applications
- FM Global (Factory Mutual) 3/8" diameter, see FM Approval Guide Pipe hanger components for automatic sprinkler systems

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 09 - Post-Installed Concrete Anchors. Internally threaded anchors shall be Snake+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor Body	Case hardened carbon steel
Plating	Zinc plating according to ASTM B633, SC1, Type III (Fe/Zn 5) Minimum plating requirements for Mild Service Condition

SECTION CONTENTS

General Information	247
Material Specifications	247
Installation Specifications	248
Installation Instructions	249
Strength Design Information	250
Design Strength Tables (SD)	252
Redundant Fastening	253
Performance Data (ASD)	255
Ordering Information	255

INTERNAL THREAD VERSION

Unified coarse thread (UNC)

- **ANCHOR MATERIALS**
- Zinc plated carbon steel body

ANCHOR SIZE RANGE (TYP.)

• 1/4", 3/8" and 1/2" diameters

SUITABLE BASE MATERIALS

- · Normal-weight concrete
- · Lightweight concrete
- Concrete over steel deck

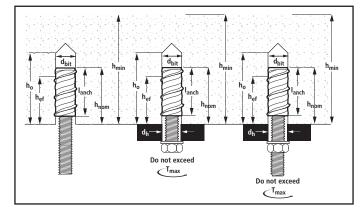
Threaded Screw Anchol

nternally

INSTALLATION SPECIFICATIONS

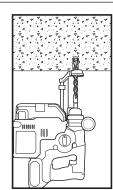
Installation Information for Snake+ Screw Anchor¹

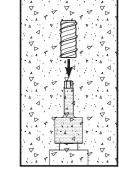
Anchor Property/	Notation	Units	Nominal Anchor Size / Threaded Coupler Diameter (inch)					
Setting Information	Notation	Units	1/4	3/8	1/2			
Nominal outside anchor diameter	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.750 (19.1)			
Internal thread diameter (UNC)	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)			
Minimum diameter of hole clearance in fixture for steel insert element (following anchor installation)	dh	in.	5/16	7/16	9/16			
Nominal drill bit diameter (ANSI)	Ċbit	in.	3/8	1/2	3/4			
Minimum hole depth	h₀	in. (mm)	2 (51)	2 (51)	2-1/2 (64)			
Overall anchor length	lanch	in. (mm)	1-1/4 (32)	1-1/4 (32)	1-11/16 (43)			
Minimum nominal embedment depth ²	hnom	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-3/16 (55)			
Effective embedment	h _{ef}	in. (mm)	Not Applicable3	1.10 (28)	1.54 (39)			
Max impact wrench power (torque)	T _{screw}	ftlb. (N-m)	120 (163)	345 (468)	345 (468)			
Max tightening torque of steel insert element (threaded rod or bolt)	T _{max}	ftlb. (N-m)	4 (6)	8 (11)	36 (49)			
Approximate internal thread depth	-	in.	11/32	23/32	15/16			
	Ancho	rs Installed in Co	oncrete Construction ²					
Minimum member thickness ²	h _{min}	in. (mm)	Not Applicable3	4 (102)	4 (102)			
Minimum edge distance ²	Cmin	in. (mm)	Not Applicable ³	3 (76)	4 (102)			
Minimum spacing distance ²	Smin	in. (mm)	Not Applicable ³	3 (76)	4 (102)			
Ancho	rs Installed in th	ne Topside of Co	ncrete-Filled Steel Deck Asse	emblies ⁴				
Minimum member topping thickness	h _{min,deck}	in. (mm)	Not Applicable ³	3-1/4 (83)	-			
Minimum edge distance	Cmin,deck,top	in. (mm)	Not Applicable ³	3 (76)	-			
Minimum spacing distance	Smin,deck,top	in. (mm)	Not Applicable3	3 (76)	-			


1. The information presented in this table is to be used in conjunction with the design criteria of 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

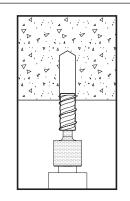
2. For installations through the soffit of steel deck into concrete, see installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3h for 1.5 times the flute width.

3. The 1/4-inch diameter anchor is limited to redundant fastening design only.


4. For 3/8-inch diameters installed in the topside of concrete-filled steel deck assemblies, steel installation detail.

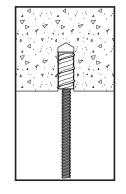

Dimensional Sketch for Snake+ Screw Anchor Installed with Steel Insert Element

INSTALLATION INSTRUCTIONS



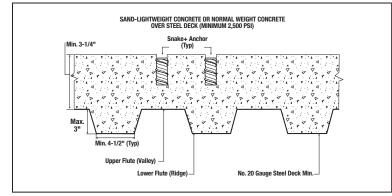
Step 1

Using the proper drill bit size, drill a hole into the base material to the required depth (e.g. dust extractor, hollow bit). The tolerances of the carbide drill bit used should meet the requirements of ANSI Standard B212.15.

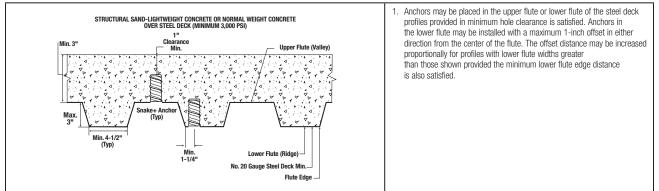

Step 2

Select a powered impact wrench that does not exceed the maximum torque, $\mathsf{T}_{\mathsf{srrew}}$, for the selected anchor diameter. Attach the Snake+ setting tool supplied by DEWALT to the impact wrench. Mount the anchor onto the setting tool.

Step 3


Drive the anchor into the hole until the shoulder of the Snake+ setting tool comes into contact with the surface of the base material. Do not spin the setting tool off the anchor to disengage.

Step 4


Insert threaded rod or a bolt into the Snake+, taking care not to exceed the maximum specified tightening torque of the steel insert element, T_{max} . Minimum thread engagement should be at least one anchor diameter.

Installation Detail for Snake+ in the Topside of Concrete-Filled Steel Deck floor and Roof Assemblies¹

 3/8-inch diameter anchors may be placed in the topside of steel deck profiles provided the minimum topping thickness, minimum spacing distance and minimum edge distance are satisfied as given in the installation information table.

Installation Detail for Snake+ Installed in the Soffit of Concrete over Steel Deck floor and Roof Assemblies¹

ECHANICAL ANCHORS

STRENGTH DESIGN INFORMATION

Notation	1				
		nits	Nominal Anc	hor Diameter	
NULUUUI			3/8 inch	1/2 inch	
1,2 or 3		-	1	1	
hnom				2-3/16 (55)	
STEEL STR	,	I	(++)	(00)	
		<u>г г</u>		5.0	
fy			· · · · · · · · · · · · · · · · · · ·	18)	
	()	Grade B7	(724)	-	
	koi	ASTM A36		3.0	
futa	(N/mm²)	ASTM A193,	125.0		
	ļ	Grade B7	(862)	-	
Ase, N				0.1419 (92)	
			4.495	8,230	
Nsa				(37.0)	
	(111)	Grade B7	(43.1)	-	
ϕ		-	0.	65	
ONCRETE BREAK	1				
hef				1.54 (39)	
Kucr	-		24	30	
Kcr		-	17	24	
Ψc,N		-		-	
Cac				4 (102)	
Cac,deck,top	ì	in.	3 (76)	-	
ϕ		-	Condition	B = 0.65	
PULLOUT ST		· · · · · · · · · · · · · · · · · · ·			
N _{p,uncr}	lb (kN)		See note 7	See note 7	
N _{p,cr}	lb (KN)		See note 7	1,665 (7.4)	
φ	(1	-	0.65 (Co		
1	SION FOR SEISI	MIC APPLICATIONS	3	,	
N _{p.eq}			See note 7	1,665	
	()	<n)< td=""><td></td><td>(7.4) R = 0.65</td></n)<>		(7.4) R = 0.65	
<u> </u>	I Ght weight an	D NORMAL-WEIGHT			
Nedersteiner			1,515	1,625	
	`````		(6.7)	(7.2)	
INp,deck,cr	· · · ·		(4.8)	(5.8)	
N _{p,deck,eq}	^{2q} (kN)		1,075 (4.8)	1,300 (5.8)	
$\phi$		-	Condition	B = 0.65	
18-14 17.2.3 or A ction 1605.2, ACI in accordance with -19 17.5.3, ACI 31 r is a ductile steel e d by AACI 318 (-19	Cl 318-11 D.3.3, a 318 (-19 and -14) ACl 318-11 D.4.4 8-14 17.3.3(c) or lement with minimu and -14) 2.3 or A(	as applicable, must a Section 5.3 or ACI 3 . For reinforcement th ACI 318-11 D.4.3(c), un specified propertie: DI 318-11 D.1, as app	pply. 8-11 Section 9.2. If the load cc lat meets ACI 318 (-19 and -14 as applicable, for the appropria is as listed in the table or an equi licable. Tabulated values for stee	ombinations ACI 318-11 I) Chapter 17 or ACI 318-1 te <i>ф</i> factor. valent steel element. The	
	hnom           STEEL STR           fy           futa           futa           Ase, N           Nsa           Ø           DNCRETE BREAKG           hef           Kucr           Kcr           Ø/Cac.           Cac.           Cac.           Cac.deck,top           Ø           PULLOUT ST           Np.or           Ø           STRENGTH IN TEL           Np,deck,uncr           Np,deck,uncr           Np,deck,uncr           Np,deck,uncr           Np,deck,uncr           Np,deck,uncr           Np,deck,uncr           Np.deck,uncr           Np.deck,uncr      Np.dect,uncr          Np.deck,uncr	hnom       (n         STEEL STRENGTH IN TENSI $f_y$ ksi (N/mm²) $f_{uta}$ ksi (N/mm²) $f_{uta}$ ksi (N/mm²) $A_{se, N}$ (n $N_{sa}$ lb (kN) $\phi$ $\phi$ DNCRETE BREAKOUT STRENGTH I $het$ (n $k_{cr}$ $\phi$ DNCRETE BREAKOUT STRENGTH I $het$ (n $k_{cr}$ $\phi$ DUCLOUT STRENGTH IN TENSION $\phi$ PULLOUT STRENGTH IN TENSION FOR SEISI       Np.uncr $\phi$ $\phi$ STRENGTH IN TENSION FOR SEISI       Np.deck.uncr $Np.deck.uncr$ (n $\phi$ $\phi$ Stof ACI 318 (-19 and -14) Chapter 1 $(18-14 17.2.3 or ACI 318-11 D.3.3, a)         ction 1605.2, ACI 318 (-19 and -14) Chapter 1       (18-14 17.3.3)(c) or         ris a ductile steel element with minimid       d by AACI 318 (-19 and -14) 2.3 or ACI         ctor for cracked concrete (ke) and und       ctor for cracked concrete (ke) and und   $	Inom       in. (mm)         STEEL STRENGTH IN TENSION*         fy       Ksi (N/mm²)       ASTM A36         futa       ksi (N/mm²)       ASTM A36         Naa       in²       ASTM A36         Nsa       ib (kN)       ASTM A36         Nsa       ib (kN)       ASTM A36         futa       in²       ASTM A36         Nsa       ib (kN)       ASTM A36         Mas       ib (kN)       ASTM A36         Nsa       ib (kN)       ASTM A36         Mas       in construction       In construction         Mas       in construction       In construct	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

- concrete over steel deck the value of 2,500 must be replaced with the value of 3,000.
- 7. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

8. Anchors are permitted to be used in lightweight concrete provided the modification factor  $\lambda_a$  equal to 0.8 $\lambda$  is applied to all values of  $\sqrt{fc}$  affecting N_a and V_a.  $\lambda$  shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.

Values for N_{p.dexk} are for sand-lightweight concrete (f'c,min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, is not required for anchors installed in the deck soffit (flute).
 10. Anchors are permitted in the topside of concrete-filled steel deck assemblies in accordance with the Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies with Minimum Topping Thickness..



				Nominal Anc	hor Diameter	
Design Characteristic	Notation	'	Units —	3/8 inch	1/2 inch	
Anchor category	1,2 or 3		-	1	1	
Nominal embedment depth	hnom		in. (mm)	1-5/8 (41)	2-3/16 (55)	
	STEEL ST	Rength in She	AR ⁴	× 7		
Steel strength in shear ^s	Vsa	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
(KIN) ASIM.		ASTM A193, Grade B7	1,655 (7.4)	-		
Reduction factor for steel strength ³	φ		-	0.	60	
STEEL	STRENGTH IN SHI	EAR FOR SEISN	IIC APPLICATIONS			
Steel strength in shear, seismic ⁷	V _{sa.eq}	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
Steel Suengur III Shear, Seisinic	V sa,eq	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Reduction factor for steel strength ³	$\phi$		-	Condition	B = 0.60	
	CONCRETE BREAK	OUT STRENGT	I IN SHEAR ⁶			
Nominal outside anchor diameter	da		in. (mm)	0.500 (12.7)	0.750 (19.1)	
Load bearing length of anchor	le		-	1.10 (28)	1.54 (39)	
Reduction factor for concrete breakout strength ³	$\phi$		-	Condition	B = 0.70	
	PRYOUT ST	RENGTH IN SH	EAR			
Coefficient for pryout strength	Kcp		-	1.0	1.0	
Effective embedment	hef		in. (mm)	1.10 (28)	1.54 (39)	
Reduction factor for pryout strength ³	φ		-	Condition	B = 0.70	
STEEL STRENGTH IN SHEAR FOR SOF	FIT OF SAND-LIGH	T WEIGHT AND	NORMAL-WEIGHT CO	NCRETE OVER STEEL DECH	9	
Steel strength in shear, concrete over steel deck [®]	Vsa.deck	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
סוכסו שוניוון אוסמו, נטווטופול טיסו שנסו עכטא	V sa, deck	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Steel strength in shear, concrete over steel deck, seismic*	V	lb	ASTM A36	770 (3)	1,995 (8.9)	
oreer su engun in snear, concrete over steer deck, selstille	Vsa,deck,eq	(kN)	ASTM A193, Grade B7	1,665 (7.4)	-	
Reduction factor for steel strength, seismic ³	φ		-	Condition	B = 0.60	

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3 shall apply.

2. Installation must comply with published instructions and details.

3. All values of  $\phi$  were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 and -14) Section 5.3, or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-19 17.5.3, ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate  $\phi$  factor.

4. It is assumed that the threaded rod or bolt used with the Snake+ anchor will be a ductile steel element as defined by ACI 318 (-19 and -14) 2.3 or ACI 318-11 D.1, as applicable.

5. Tabulated values for steel strength in shear must be used for design. These tabulated values are lower than calculated results using equation 17.7.1.2b in ACI 318-19 17.5.1.2b in ACI 318-14, D-29 in ACI 318-11, and ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable.

6. Anchors are permitted to be used in lightweight concrete provided the modification factor  $\lambda_n$  equal to 0.8 $\lambda$  is applied to all values of  $\sqrt{f'c}$  affecting N_n and V_n.  $\lambda$  shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.

7. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2 Section 9.6.

8. Tabulated values for Vsa.deek are for sand-lightweight concrete (f'c,min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3 are not required for anchors installed in the deck soffit (flute).

9. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

TECHNICAL GUIDE – MECHANICAL ANCHORS ©2022 DEWALT – REV. D



### **DESIGN STRENGTH TABLES (SD)**

### Tension and Shear Design Strengths for Snake+ Anchors Installed in Cracked Concrete^{1,2,3,4,5,6,7}



	Steel	Minimum Concrete Compressive Strength, f'c (psi)									
Nominal Embed.	Insert Element	2,5	2,500		3,000		4,000		00	8,000	
h _{nom} (in. )	(Threaded Rod or Bolt)	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	$\substack{\phi \text{Nn} \\ \text{Tension} \\ (\text{lbs.})}$	ØVn Shear (Ibs.)	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	ØVn Shear (Ibs.)
1 5/0	ASTM A36	635	500	700	500	805	500	985	500	1,140	500
1-5/8	ASTM A193 Grade B7	635	685	700	750	805	870	985	1,065	1,140	1,075
2-3/16	ASTM A36	1,080	1,295	1,185	1,295	1,370	1,295	1,675	1,295	1,935	1,295
	Embed. hnom (in.) 1-5/8	Nominal Embed. hnom (in.)Insert Element (Threaded Rod or Bolt)1-5/8ASTM A361-5/8ASTM A193 Grade B7	Nominal Embed. hnom (in.)         Insert Element (Threaded Rod or Bolt)         2,5           ψNn Tension (lbs.) φNn tension (lbs.) φNn tension (lbs.)           1-5/8         ASTM A36 ASTM A193 Grade B7         635	Nominal Embed. how (in.)         Insert Element (Threaded Rod or Bott)         2,500           \$\phi Nn\$         \$\phi Nn\$         \$\phi Nn\$           1-5/8         \$ASTM A36         635         \$500           ASTM A193 Grade B7         635         685	Nominal Embed. hom (in.)         Steri Insert Element Rod of Bolty         2,500         3,0           μοσ (n.)         ΔSTM A36         ΦNn Tension (lbs.)         ΦVn Shear (lbs.)         ΦNn Tension (lbs.)           1-5/8         ASTM A36         635         500         700           ASTM A193 Grade B7         635         685         700	Nominal Embed. hom (in.)         Stear Issert Element (Threaded Roti)         2,500         3,000           hom (in.)         Min Roti)         φNn Tension (lbs.)         φNn Tension (lbs.)         φNn Tension (lbs.)         φVn Shear (lbs.)           1-5/8         ASTM A193 ASTM A193 ASTM A193         635         500         700         500	Nominal Embed. hom (in.)         Stert Element Rod or Bolty         2,500         3,000         4,0 $\phi$ Nn (ibs.) $\phi$ Nn Shear (ibs.) $\phi$ Nn Tension (ibs.) <td< td=""><td>Nominal Embed. hom (in.)         Steer Isser (Ibreaded Rod 0'         2,500         3,000         4,000           0         0         0         0         0         0         0           1-5/8         ASTM A193 rade B7         635         500         700         500         805         500           1-5/8         ASTM A193 rade B7         635         685         700         750         805         870</td><td>Nominal Embed. hom (in.)         Steri Insert Element (Threaded Bolt)         2,500         3,000         4,000         6,0           4,000         ØNn (Ibs.)         ØNn Shear (Ibs.)         <td< td=""><td>Nominal Embed. hom (in.)         Steer Insert (Threaded Root)         2,500         3,000         4,000         6,000           0         0Nn Tension (lbs.)           1-5/2         ASTM A193 ASTM A193</td><td>Nominal Embed. hom (in.)         Stert Element (Threaded Botty         2,500         3,000         4,000         6,000         8,0           1-5/8         ASTM A193 rade B7         635         600         700         500         805         500         1,140</td></td<></td></td<>	Nominal Embed. hom (in.)         Steer Isser (Ibreaded Rod 0'         2,500         3,000         4,000           0         0         0         0         0         0         0           1-5/8         ASTM A193 rade B7         635         500         700         500         805         500           1-5/8         ASTM A193 rade B7         635         685         700         750         805         870	Nominal Embed. hom (in.)         Steri Insert Element (Threaded Bolt)         2,500         3,000         4,000         6,0           4,000         ØNn (Ibs.)         ØNn Shear (Ibs.)         ØNN Shear (Ibs.) <td< td=""><td>Nominal Embed. hom (in.)         Steer Insert (Threaded Root)         2,500         3,000         4,000         6,000           0         0Nn Tension (lbs.)           1-5/2         ASTM A193 ASTM A193</td><td>Nominal Embed. hom (in.)         Stert Element (Threaded Botty         2,500         3,000         4,000         6,000         8,0           1-5/8         ASTM A193 rade B7         635         600         700         500         805         500         1,140</td></td<>	Nominal Embed. hom (in.)         Steer Insert (Threaded Root)         2,500         3,000         4,000         6,000           0         0Nn Tension (lbs.)           1-5/2         ASTM A193 ASTM A193	Nominal Embed. hom (in.)         Stert Element (Threaded Botty         2,500         3,000         4,000         6,000         8,0           1-5/8         ASTM A193 rade B7         635         600         700         500         805         500         1,140

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

### Tension and Shear Design Strengths for Snake+ Anchors Installed in Uncracked Concrete^{1,2,3,4,5,6}



		Steel		Minimum Concrete Compressive Strength, f'c (psi)								
Nominal Anchor	Nominal Embed.	Insert Element	2,5	00	3,0	3,000		4,000		00	8,000	
Size (in.)	hnom (in. )	(Threaded Rod or Bolt)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	$\phi {\rm Vn}$ Shear (lbs.)
3/8	1 5/0	ASTM A36	900	500	985	500	1,140	500	1,395	500	1,610	500
3/0	1-5/8	ASTM A193 Grade B7	900	970	985	1,060	1,140	1,075	1,395	1,075	1,610	1,075
1/2	2-3/16	ASTM A36	1,865	1,295	2,040	1,295	2,355	1,295	2,885	1,295	3,335	1,295
🔲 - Anchor Pu	- Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls											

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = hmin, and with the following conditions:

-  $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$  (table values based on  $c_{a1} = c_{ac}$ ).

- Ca2 is greater than or equal to 1.5 times Ca1.

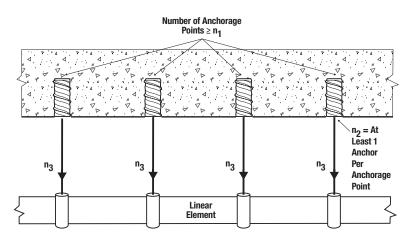
2- Calculations were performed according to ACI 318-19 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, hef, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

 Strength reduction factors (ø) were based on ACI 318-19 Section 5.3 for load combinations. Condition B is assumed.

4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 Chapter 17.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-19 Chapter 17. For other design conditions including seismic considerations please see ACI 318-19 Chapter 17.


7- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

### **Redundant Fastening Applications**

For an anchoring system designed with redundancy, the load maintained by an anchor that experiences failure or excessive deflection can be transmitted to neighboring anchors without significant consequences to the fixture or remaining resistance of the anchoring system. In addition to the requirements for anchors, the fixture being attached shall be able to resist the forces acting on it assuming one of the fixing points is not carrying load. It is assumed that by adhering to the limits placed on  $n_1$ ,  $n_2$  and  $n_3$  below, redundancy will be satisfied.

Anchors qualified for redundant applications may be designed for use in normal weight and sand-lightweight cracked and uncracked concrete. Concrete compressive strength of 2,500 psi shall be used for design. No increase in anchor capacity is permitted for concrete compressive strengths greater than 2,500 psi. The anchor installation is limited to concrete with a compressive strength of 8,500 psi or less.

Redundant applications shall be limited to structures assigned to Seismic Design Categories A or B only. Redundant applications shall be limited to support of nonstructural elements.

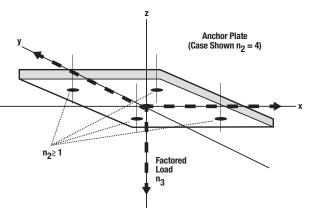


### Strength Design (Redundant Fastening):

For strength design, a redundant system is achieved by specifying and limiting the following variables

- $\label{eq:n1} n_1 = \text{the total number of anchorage points supporting the} \\ \text{linear element}$
- $n_2 =$  number of anchors per anchorage point
- $n_3$  = factored load at each anchorage point, lbs., using load combinations from IBC Section 1605.2.1 or ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2.

### Strength Design (SD)


Design values for use with strength design shall be established taking  $\phi_{ra} \bullet F_{ra.}$  See redundant fastening design information table for Snake+ design resistance.

### Allowable Stress Design (Redundant Fastening):

Design values for use with allowable stress design shall be established taking  $R_{d}$ , ASD =  $\phi_{ra} \bullet F_{ra}$ 

$$ASD = \frac{\phi_{ra} \bullet F_{ra}}{\bowtie}$$

Where  $\alpha$  is the conversion factor calculated as the weighted average of the load factors from the controlling load combination. For example, the conversion factor,  $\alpha$  is equal to 1.4 assuming all dead load.



### MECHANICAL ANCHORS

SNAKE+® nternally Threaded Screw Anchor

Anchor Property/	Notation	Units	Nominal Anchor Size / Threaded Couplier Diameter (inch)					
Setting Information	Notation	Units	1/4	3/8	1/2			
Nominal drill bit diameter (ANSI)	d _{bit}	in.	3/8	1/2	3/4			
Nominal embedment depth	hnom	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-3/16 (55)			
Effective embedment	h _{ef}	in. (mm)	1.10 (28)	1.10 (28)	1.54 (39)			
Minimum hole depth	h₀	in. (mm)	2 (51)	2 (51)	2-1/2 (64)			
Minimum concrete member thickness	h _{min}	in. (mm)	3 (76.2)	3 (76.2)	3 (76.2)			
Overall anchor legnth	lanch	in. (mm)	1-1/4 (32)	1-1/4 (32)	1-11/16 (43)			
Minimum edge distance, redundant fastening ¹	$C_{min} = C_{ac}$	in. (mm)	4 (102)	4 (102)	4 (102)			
Minimum spacing distance, redundant fastening ¹	Smin	in. (mm)	8 (203)	8 (203)	8 (203)			
Max impact wrench power (torque)	T _{screw}	ftlb. (N-m)	120 (163)	345 (468)	345 (468)			
Max tightening torque of steel insert element (threaded rod or bolt)	T _{max}	ftlb. (N-m)	4 (6)	8 (11)	36 (49)			
Approximate internal thread depth	-	in. (mm)	11/32	23/32	15/16			

1. Tabulated minimum spacing and edge distances are applicable only for redundant fastening applications.

### Redundant Fastening Design Information for Snake+ Anchors^{1,2,3}

Anchor Property/	Notation	Units			Nominal A	nchor Size		
Setting Information	Notation	Units	1/	4"	3/	8"	1/	2"
Anchor category	1,2 or 3	-	1		1		1	
Nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)			1-5/8 (41)		8/16 5)
	CHARACTERISTIC	STRENGTH (RES	SISTANCE) INST	ALLED IN CON				
			Number of anchorage points			per of ge points	Number of anchorage points	
Resistance, cracked or uncracked concrete (2,500psi)	Fra	lb (kN)	n1 ≥ 4	n1 ≥ 3	n1 ≥ 4	n1 ≥ 3	n1 ≥ 4	n1 ≥ 3
		(((14))	550 (2.5)	360 (1.6)	675 (3.0)	450 (2.0)	675 (3.0)	450 (2.0)
Strength reduction factor ³	$\phi_{ra}$	-		•	0.65			
CHARACTERISTIC STRENGT	H (RESISTANCE)	FOR SAND-LIGH	TWEIGHT AND I	NORMAL WEIGI	HT CONCRETE O	VER STEEL DE	<b>CK</b> ^{4,6}	
				per of ge points		per of ge points		ber of ge points
Resistance, cracked or uncracked concrete over steel deck (2,500 psi)	Fra,deck	lb (kN)	n1 ≥ 4	n1 ≥ 3	$n_1 \geq 4$	n1 ≥ 3	n1 ≥ 4	n1 ≥ 3
		((14))	550 (2.5)	360 (1.6)	675 (3.0)	450 (2.0)	675 (3.0)	450 (2.0)
Strength reduction factor ³	$\phi_{ra}$	-	- 0.65					

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of Section 4.3 of this report; loads may be applied in tension, shear or any combination thereof.

2. Installation must comply with published instructions and this report.

3. All values of  $\phi$  were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 and -14) Section 5.3 or ACI 318 (-11) Section 9.2, as applicable.

4. It is assumed that the threaded rod or bolt used with the Snake+ anchor has properties as listed in Tension Design Information table.

5. Anchors are permitted to be used in lightweight concrete provided the design strength  $\phi_a$  F_m is multiplied by the modification factor  $\lambda_a$ . The modification factor  $\lambda_a$  is equal to 0.8 $\lambda$ ,  $\lambda$  shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.

6. For installations through the soffit of steel deck into concrete see the installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3her or 1.5 times the flute width.

### **PERFORMANCE DATA (ASD)**

DEWALT

**ANCHORS & FASTENERS** 

### Ultimate and Allowable Load Capacities for Snake+ in Normal-Weight Uncracked Concrete^{1,2,3,4,5}

							Mi	nimum C	oncrete C	compress	ive Streng	<b>jth</b>						
Nominal	Minimum Nominal	f'c	f'c = 2,500 psi (17.2 MPa)			f'c	= 3,000 p	si (20.7 l	VIPa)	f'c	= 4,000 p	si (20.7 l	MPa)	f'c	f'c = 6,000 psi (41.4 MPa)			
Anchor Diameter	Embedment Depth	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear	
in.	in. (mm)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable lbs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	
1/4	1-5/8	2,130	535	1,045	260	2,335	585	1,045	260	2,335	585	1,045	260	-	-	-	-	
1/4	(41)	(9.5)	(2.4)	(4.6)	(1.2)	(10.4)	(2.6)	(4.6)	(1.2)	(10.4)	(2.6)	(4.6)	(1.2)					
3/8	1-5/8	2,165	540	1,860	465	2,370	595	1,860	465	2,735	685	1,860	465	3,190	800	1,860	465	
3/0	(41)	(9.6)	(2.4)	(8.3)	(2.1)	(10.5)	(2.6)	(8.3)	(2.1)	(12.2)	(3.0)	(8.3)	(2.1)	(14.2)	(3.6)	(8.3)	(2.1)	
1/2	2-3/16	5,590	1,400	3,765	940	6,125	1,530	3,765	940	7,075	1,770	3,765	940	7,240	1,810	3,765	940	
1/2	(55)	(24.9)	(6.2)	(16.7)	(4.2)	(27.2)	(6.8)	(16.7)	(4.2)	(31.5)	(7.9)	(16.7)	(4.2)	(32.2)	(8.1)	(16.7)	(4.2)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0.

3. The tabulated load values are applicable to single anchors in uncracked concrete installed at critical spacing distance of three times embedment between anchors and at critical edge distance.

4. For lightweight concrete multiply tabulated allowable load values by a reduction factor of 0.60.

5. Ultimate shear capacity is based on tests conducted with ASTM A36 threaded elements (or equivalent).

### **ORDERING INFORMATION**

### **Carbon Steel Snake+ Screw Anchor**

Cat. No.	Nominal Anchor Size	Internal Thread Size (UNC)	Anchor Outside Diameter	Std. Pack	Std. Ctn.				
6400SD-PWR	1/4"	1/4"-20	3/8"	100	1,000				
6401SD-PWR	3/8"	3/8"-16	1/2"	50	500				
6403SD-PWR	1/2"	1/2"-13	3/4"	50	300				
1. Each box comes with one patting teel									

1. Each box comes with one setting tool.

### Setting Tool for Snake+ Screw Anchor

Cat. No.	Nominal Anchor Size	Std. Pack
6402SD-PWR	1/4"	1
6407SD-PWR	3/8"	1
6404SD-PWR	1/2"	1

### Care C.



### **Impact Wrench Selection Guide**

Anakar Calting Information	Nominal Anchor Diameter (Inch)										
Anchor Setting Information	1/	4"	3/	8"	1/2"						
Max Impact Wrench Power	120	ft-lbs	345	ft-lbs	345	ft-lbs					
	Full Speed Speed 1		Speed 1	Speed 2	Speed 1	Speed 2					
Suggested 20V Max Impact Wrench, Tool Setting / Speed and Cat. No.	DCF902	DCF921, DCF922, DCF923, DCF891, DCF892, DCF900	DCF911, DCF913, DCF900	DCF921, DCF922, DCF923, DCF891, DCF892	DCF911, DCF913, DCF900	DCF921, DCF922, DCF923, DCF891, DCF892					

### **DEWALT Impact Wrenches**

		<b>P</b>	<b>S</b>					T	<b>T</b>
Cat. No.	DCF901	DCF903	DCF911	DCF913	DCF921	DCF922	DCF923	DCF891	DCF892
Anvil Size	3/8"	1/2"	3/8"	1/2"	1/2"	3/8"	1/2"	1/2"	1/2"
Anvil Type	Hog Ring	Detent	Hog Ring	Hog Ring	Detent				
MAX Fastening Torque	Speed 1: 250 ft-lbs	Speed 1: 250 ft-lbs	Speed 1: 250 ft-lbs	Speed 1: 250 ft-lbs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs. Speed 2: 300 ft-lbs. Speed 3: 600 ft-lbs	Speed 1: 100 ft-lbs. Speed 2: 300 ft-lbs. Speed 3: 600 ft-lbs



### **GENERAL INFORMATION**

### MINI-UNDERCUT+[™]

Internally Threaded Undercut Anchor

### PRODUCT DESCRIPTION

The Mini-Undercut+ anchor is an internally threaded, self-undercutting anchor designed for performance in cracked and uncracked concrete. Suitable base materials include post-tension concrete (PT slabs), hollow-core precast concrete, normal-weight concrete and lightweight concrete. The Mini-Undercut+ anchor is installed into a pre-drilled hole with a power tool and a setting tool. After installation a steel element is threaded into the anchor body. The result is an anchor which can provide consistent behavior at shallow embedments as low as 3/4 of an inch.

### **GENERAL APPLICATIONS AND USE**

- Tension zone / cracked concrete
- Suspended Conduit
- Pipe supports

- · Cable Trays and Strut
- Suspended Lighting
- Seismic attachments (SDC A F)

### FEATURE AND BENEFITS

- + Ideal for precast hollow-core plank and post-tensioned concrete slabs
- + Cracked concrete tested alternative to a mini dropin anchor
- + ANSI carbide stop bit with enlarged shoulder for accurate drill depth
- + Anchor design allows for shallow embedment as low as 3/4 of an inch
- + Internally threaded anchor for easy adjustment and removability of threaded rod or bolt
- + Drill and drive the anchor with one tool for fast anchor installation

### **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES), ESR-3912 for Concrete and Hollow-Core precast slabs, code compliant with the International Building Code/International Residential Code: 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ACI 355.2 (including ASTM E488) and ICC-ES AC193 for use in cracked and uncracked concrete under the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D
- Evaluated and gualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor Category 1)

### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 16 00 - Concrete Anchoring and 05 05 19 - Post Installed Concrete Anchors. Anchors shall be Mini-Undercut+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

### SECTION CONTENTS

General Information	256
Installation Instructions	257
Reference Data (ASD)	258
Design Information	259
Performance Data (SD)	261
Ordering Information	262



MINI-UNDERCUT+

### **THREAD VERSION**

• UNC Thread

### ANCHOR MATERIALS

Zinc plated carbon steel

### **ANCHOR SIZE RANGE (TYP.)**

• 3/8" diameter (UNC)

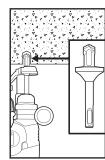
### SUITABLE BASE MATERIALS

- Post-Tension Concrete
- Precast Hollow-Core Plank
- Normal-weight concrete
- · Lightweight concrete

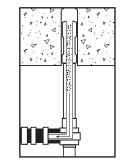




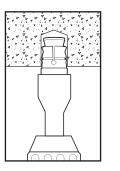



256

?




### **INSTALLATION INSTRUCTIONS**


### Installation Procedure (using SDS plus System)



Using the required stop drill bit, drill a hole into the base material to the required depth using the shoulder of the drill bit as a guide. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15.



Remove dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction forced air) to extract loose particles created by drilling.



Attach the required SDS setting tool to the hammer-drill. Mount the open end of the anchor onto the setting tool. Drive the anchor into the hole until the shoulder of the anchor is flush with the base material.

Thread the rod or bolt by hand until snug tight (minimum of 4 full rotations).

Do not further tighten with adjustable wrench or similar tool.

### Installation Specifications for Mini-Undercut+ Anchor and Supplemental Information^{1,2,3}

Anahar Dranashi/C	Anchor Property/Setting Information		Units	Nominal Anchor Diameter (inch)
Anchor Property/5	etung information	Symbol	Units	3/8
Anchor outside diameter		da	in. (mm)	0.625 (15.9)
Internal thread diameter	(UNC)	d	in. (mm)	3/8 (9.5)
Nominal drill bit diamete	r (ANSI)	d _{bit}	in.	5/8
Minimum nominal embe	dment depth	h _{nom}		0//
Effective embedment de	pth	hef	in. (mm)	3/4 (19)
Hole depth		h₀	(1111)	
Overall anchor length (be	efore setting)	$\ell_{anch}$	in. (mm)	15/16 (24)
Approximate tool impact power (hammer-drill)		-	J	2.1 to 3.0
Minimum diameter of hole clearance in fixture for steel insert element (following anchor installation)		dh	in.	7/16
Minimum member thick	ness in concrete	h _{min}	in. (mm)	2-1/2 (64)
Minimum cover thickness slabs (see Hollow-Core c	s in hollow core concrete concrete figure)	hmin,core	in. (mm)	1-1/2 (38)
Minimum edge distance		Cmin	in. (mm)	2-1/2 (64)
Minimum spacing distan	ice	Smin	in. (mm)	3 (76)
Maximum installation tor	ation torque T _{max}		ftlb. (N-m)	5 (7)
Effective tensile stress area (undercut anchor body)		Ase	in.² (mm²)	0.044 (28.4)
Minimum specified ultimate strength		f _{uta}	psi	95,000
Minimum specified yield strength		fya	psi	76,000
Mean axial stiffness⁴	Uncracked concrete	$eta_{uncr}$	lbf/in.	50,400
iviean axiai stimness*	Cracked concrete	$\beta_{cr}$	lbf/in.	29,120

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. For installation detail for anchors in hollow-core concrete slabs, see Hollow-Core concrete figure.

3. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor.

4. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

Internally Threaded Undercut Anchor

Σ

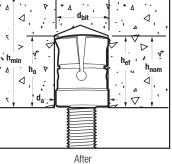
Т

UNDER

2

TECHNICAL GUIDE - MECHANICAL ANCHORS ©2022 DEWALT - REV.G

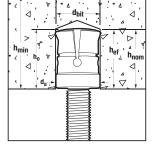


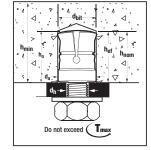

AsD

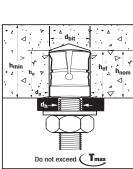
R

## **MECHANICAL ANCHORS**

MINI-UNDERCUT+TM Internally Threaded Undercut Anchor


Mini-Undercut+ Anchor Detail	
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} A \\ \neg \\$
Before	Af




SETTING TOOL









### **REFERENCE DATA (ASD)**

Ultimate and Allowable Tensio	n Load Capacities for Mini-Unde	ercut+ in Normal-Weight Concrete ^{1,2,3,4}
ordinate and Anomabic renote	n loud oupdoidioo ioi mini ond	loati ili lioimai lioigiit oonoloto

Nominal	Minimum Nominal	Minimum Concrete Compressive Strength									
Rod/		f'c = 3,000 psi (20.7 MPa)					f'c = 4,000 psi (27.6 MPa)				
Anchor Diameter	Embed.	Ultir	nate	Allov	vable	Ultir	Ultimate		Allowable		
d in.	Depth in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)		
3/8	3/4 (19)	1,535 (6.8)	1,975 (8.8)	385 (1.7)	495 (2.2)	1,770 (7.9)	2,275 (10.1)	445 (2.0)	570 (2.5)		

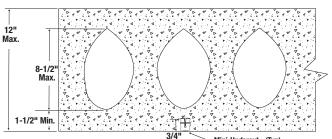
1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

4. For lightweight concrete, tabulated values must be multiplied by 0.60.

Ultimate and Allowable Tension Load Capacities for Mini-Undercut+ in Hollow-Core Plank^{1,2,3}


Nominal	Minimum		Minimum Concrete Compressive Strength										
Rod/	Nominal	f'c = 5,000 psi (34.5 MPa)				f'c = 6,000 psi (41.4 MPa)				f'c = 8,000 psi (55.2 MPa)			
Anchor Diameter	Embed. Depth	Ultin	nate	Allov	rable	Ultin	nate	Allov	rable	Ultin	nate	Allow	rable
d in.	in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
3/8	3/4 (19)	1,855 (8.3)	2,590 (11.5)	465 (2.1)	650 (2.9)	2,035 (9.1)	2,835 (12.6)	510 (2.3)	710 (3.2)	2,345 (10.4)	3,275 (14.6)	585 (2.6)	820 (3.6)
4 <b>T</b> 1 1 1		<i>.</i> .							10 1 1 1				

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

### Installation Detail: Mini-Undercut+ in the Underside of Hollow-Core Concrete Slabs



ECHANICAL ANCHORS

ternally Threaded Undercut Anchor

Σ

T

-UNDER

### **DESIGN INFORMATION**

### Tension Design Information for Mini-Undercut+ Anchors in the Underside of Concrete and the Underside of Hollow-Core Concrete Slabs^{1,2,3,4,5,6,7,8,9}



Design Characteristic	Notation	Units	Nominal Anchor Size / Threaded Rod Diameter (inch)
Design Unaracteristic	Notation	Units	3/8
Anchor category	1, 2 or 3	-	1
Nominal embedment depth	h _{nom}	in. (mm)	3/4 (19)
Steel Stren	gth In Tension (ACI 31	8-19 17.6.1, ACI 318-	14 17.4.1 or ACI 318-11 D.5.1)
Steel strength in tension	N _{sa}	lb (kN)	4,180 (18.6)
Reduction factor for steel strength	$\phi$	-	0.65
Concrete Breakou	t Strength In Tension (	ACI 318-19 17.6.2, A	Cl 318-14 17.4.2 or ACl 318-11 D.5.2)
Effective embedment	hef	in. (mm)	3/4 (19)
Effectiveness factor for uncracked concrete	Kuncr	-	24
Effectiveness factor for cracked concrete	Kcr	-	17
Modification factor for cracked and uncracked concrete	$\Psi_{\text{c},\text{N}}$	-	1.0 (see note 5)
Critical edge distance (uncracked concrete only)	Cac	in. (mm)	2.5 (64)
Reduction factor, concrete breakout strength ³	$\phi$	-	0.40
Pullout Stree	ngth In Tension (ACI 31	18-19 17.6.3, ACI 318	-14 17.4.3 or ACI 318-11 D.5.3)
Pullout strength, uncracked concrete	N _{p,uncr}	lb (kN)	See note 7
Pullout strength, cracked concrete	N _{p,cr}	lb (kN)	455 (2.0)
Reduction factor, pullout strength	$\phi$	-	0.40
Pullout Strength In Tension	For Seismic Application	ons (ACI 318-19 17.10	).3, ACI 318-14 17.2.3.3 or ACI 318-11 D.3.3.3) ⁸
Characteristic pullout strength, seismic	N _{p,eq}	lb (kN)	410 (1.82)
Reduction factor, pullout strength, seismic	φ	-	0.40

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with manufacturer's published installation instructions and details.

3. All values of  $\phi$  are applicable with the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3, or ACI 318-11 Section 9.2. For concrete failure modes, no increase for ACI 318-19 17.5.3 supplementary reinforcement present, ACI 318-14 17.3.3 Condition A or ACI 318-11 D.4.3 Condition A is permitted.

4. The threaded rod or bolt strength must also be checked, and the controlling value of  $\phi$ Nsa between the anchor and rod must be used for design.

5. Select the appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{uncr}) and use  $\psi_{c,N} = 1.0$ .

6. The characteristic pullout strength for concrete compressive strengths greater than 2,500 psi for anchors may be increased by multiplying the value in the table by (f'c / 2,500)⁶⁵ for psi or (f'c / 17.2)⁶⁵ for MPa. For hollow-core concrete slabs the characteristic pullout strength for concrete compressive strengths greater than 6,000 psi for anchors may be increased by multiplying the value in the table by (f'c / 6,000)⁶⁵ for psi or (f'c / 41.4)⁶⁵ for MPa.

7. Pullout strength does not control the design of indicated anchors. Do not calculate pullout strength for the indicated anchor size and embedment.

8. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.

9. Anchors are permitted to be used in sand-lightweight concrete provided the modification factor  $\lambda_n$  equal to 0.8 $\lambda$  is applied to all values of  $\sqrt{f'c}$  affecting N_n and V_n.  $\lambda$  shall be determined in accordance with the corresponding version of ACI 318.

### Shear Design Information for Mini-Undercut+ Anchors in the Underside of Concrete and the Underside of Hollow-Core Concrete Slabs^{1,2,3,4,7}



ANCHORS & FASTENERS

Design Characteristic	Notation	Units	Nominal Anchor Size / Threaded Rod Diameter (inch)						
Design Characteristic	Notation	Units	3/8						
Anchor category	1, 2 or 3	-	1						
Nominal embedment depth	h _{nom}	in. (mm)	3/4 (19)						
Steel Streng	th in Shear (ACI 318-	-19 17.7.1, ACI 318-1	4 17.5.1 or ACI 318-11 D.6.1) ⁵						
Steel strength in shear	V _{sa}	lb (KN)	985 (4.4)						
Reduction factor, steel strength	$\phi$	-	0.60						
Steel Strength in Shear for Seismic (ACI 318-19 17.10.3, ACI 318-14 17.2.3.3 or ACI 318-11 D.3.3.3)®									
Steel strength in shear, seismic	V _{sa, eq}	lb (KN)	895 (4.0)						
Reduction factor, steel strength in shear, seismic	$\phi$	-	0.60						
Concrete Breakout	Strength in Shear (A	CI 318-19 17.7.2, AC	l 318-14 17.5.2 or ACI 318-11 D.6.2)						
Load bearing length of anchor in shear	le	in. (mm)	3/4 (19)						
Nominal outside anchor diameter	da	in. (mm)	0.625 (15.9)						
Reduction factor for concrete breakout strength	$\phi$	-	0.45						
Pryout Stren	Pryout Strength in Shear (ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3)								
Coefficient for pryout strength	k _{cp}	-	1.0						
Effective embedment	h _{ef}	in. (mm)	3/4 (19)						
Reduction factor, pryout strength	$\phi$	-	0.45						

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-17 17.2.3 or ACI 318-11 D.3.3, as applicable shall apply

2. Installation must comply with manufacturer's published installation instructions and details.

All values of *φ* are applicable with the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3, or ACI 318-11 Section 9.2. For concrete failure modes, no increase for ACI 318-19 17.5.3 supplementary reinforcement present, ACI 318-14 17.3.3 Condition A or ACI 318-11 D.4.3 Condition A is permitted.
 The strengths above in the table are far the Mini Laderate and applicable prefering on the respective for a strengths for above in the respective for ACI 318-19 17.5.3

4. The strengths shown in the table are for the Mini-Undercut+ anchors only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable.

5. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design in lieu of the calculated results using equation 17.7.1.2b in ACI 318-19, 17.5.1.2b of ACI 318-14 or equation D-29 in ACI 318-11 D.6.1.2.

6. Reported values for steel strength in shear for the Mini-Undercut+ anchors are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6 and must be used for design.

7. Anchors are permitted to be used in sand-lightweight concrete provided the modification factor  $\lambda_n$  equal to 0.8 $\lambda$  is applied to all values of  $\sqrt{f'c}$  affecting N_n and V_n.  $\lambda$  shall be determined in accordance with the corresponding version of ACI 318.

### Steel Design Information for Threaded Rod Elements Used with Mini-Undercut+ Anchors^{1,2,3,4}

Design Information		Symbol	Units	3/8-inch
Threaded rod nominal outside of	liameter	d _{rod}	in.	0.375
Threaded rod effective cross-sec	ional area	A _{se}	in.²	0.078
Nominal tension strength of threaded rod as governed by steel strength	ASTM A36 or F1554,	Nsa,rod	lb	4,525
Nominal tension strength of threaded rod as governed by steel strength, seismic	Grade 36	Nsa,rod,eq	lb	4,525
Nominal shear strength of threaded rod as governed by steel strength	ASTM A36 or F1554,	Vsa,rod	lb	2,695
Nominal shear strength of threaded rod as governed by steel strength, seismic	Grade 36	Vsa,rod,eq	lb	1,900

For SI: 1 inch = 25.4 mm, 1 pound = 0.00445 kN, 1 in² = 645.2 mm² For pound-inch unit: 1 mm = 0.03937 inches.

1. Values provided for steel element material types, or equivalent, based on minimum specified strengths; Nsarod and Vsarod calculated in accordance with ACI 318-19 Eq. 17.7.1.2a and 17.7.12b ACI 318-14 Eq. 17.5.1.2a and Eq. 17.5.1.2b or ACI 318-11 Eq. D-28 and Eq. D-29, respectively, as applicable. Vsarod en unst be taken as 0.7 Vsarod.

2.  $\phi$ Nsa shall be the lower of  $\phi$ Nsa,rod or  $\phi$ Nsa for static steel strength in tension; for seismic loading  $\phi$ Nsa,eq shall be the lower of  $\phi$ Nsa,rod,eq or  $\phi$ Nsa,eq.

3.  $\phi$ Vsa shall be the lower of  $\phi$ Vsa,rod or  $\phi$ Vsa for static steel strength in tension; for seismic loading  $\phi$ Vsa,eq shall be the lower of  $\phi$ Vsa,rod,eq or  $\phi$ Vsa,eq.

4. Strength reduction factor shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for steel elements. Strength reduction factors for load combinations in accordance with ACI 318-19 and ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of ductile steel elements shall be taken as 0.75 for tension and 0.65 for shear. The values of *φ* applies when the load combinations of 2021 IBC Section1605.1 or 2018, 2015 an d2012 Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable.

260

MECHANICAL



 $(\mathbf{O})$ 

 $\bigcirc$ 

Ĉa1

### **PERFORMANCE DATA (SD)**

### Factored Design Strength (ØNn And ØVn) Calculated In Accordance With ACI 318-19 Chapter 17:

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with slab thickness,  $h_a = h_{min}$ , and with the following conditions::
  - $c_{a1}$  is greater than or equal to the critical edge distance,  $c_{ac}$  (table values based on  $c_{a1} = c_{ac}$ ).
  - $C_{a2}$  is greater than or equal to  $1.5C_{a1}$ .
- 2- Calculations were performed following methodology in ACI 318-19, Chapter 17. The load level corresponding to the controlling failure mode is listed (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout in shear are calculated using the effective embedment values, hef, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- All values of ø are applicable with the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3, or ACI 318-11 Section 9.2. For concrete failure modes, no increase for ACI 318-19 17.5.3 supplementary reinforcement present, ACI 318-14 17.3.3 Condition A or ACI 318-11 D.4.3 Condition A is permitted.
- 4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 Chapter 17, Section 17.8.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-19 Chapter 17 and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318-19 Chapter 17.



	Nominal		Minimum Concrete Compressive Strength										
Nominal Anchor	Embed.	Embed. f'c = 2,500 psi		500 psi	f'c = 3,000 psi		f'c = 4	f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi	
Diameter (in.)	Depth hnom (in. )	$\phi$ Nn Tension (Ibs.)	$\phi$ Vn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	$\phi$ Vn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	$\phi$ Vn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	$\phi$ Vn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	$\phi$ Vn Shear (lbs.)		
3/8	3/4	180	250	200	270	230	315	280	385	325	445		

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

### **Tension and Shear Design Strengths Installed in Uncracked Concrete**

Minimum Concrete Compressive Strength									
	2,500 psi	f'c = 3,	,000 psi	f'c = 4,	,000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
om $\phi$ Nn I.) Tension (lbs.)	ØVn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	$\phi$ Vn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	$\phi$ Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	$\phi$ Vn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	$\phi$ Vn Shear (lbs.)
/4 310	350	340	385	395	445	485	545	560	590
0 0 1	φNn           Tension (lbs.)           4         310	φNn Tension (lbs.)φVn Shear (lbs.)4310350	th φNn φVn φNn Tension Shear (lbs.) (lbs.)	φNn Tension (lbs.)φVn Shear (lbs.)φNn Tension (lbs.)φVn Shear (lbs.)4310350340385	th m m $\phi$ Nn Tension (lbs.) $\phi$ Nn Shear (lbs.) $\phi$ Nn Tension (lbs.) $\phi$ Nn Tension (lbs.) $\phi$ Nn Tension (lbs.)4310350340385395	$\phi_{Nn}$ $\phi_{Vn}$	th m m $\phi$ Nn Tension 	$\phi_{Nn}$ $\phi_{Vn}$ $\phi_{Vn}$ $\phi_{Nn}$ $\phi_{Vn}$ $\phi_{Vn}$ $\phi_{Vn}$ $\phi_{Nn}$	$\phi_{Nn}$ $\phi_{Vn}$ $\phi_{Vn}$ $\phi_{Nn}$ $\phi_{Vn}$ $\phi_{Nn}$

🔄 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔳 - Steel Strength Controls



### **ORDERING INFORMATION**

### Mini-Undercut+

Cat. No.	Anchor Size	Rod/Anchor Dia.	Outside Diameter	Overall Length	Pack Qty.	Ctn. Qty.
PFM2111820	3/8" x 3/4"	3/8"	5/8"	3/4"	100	600

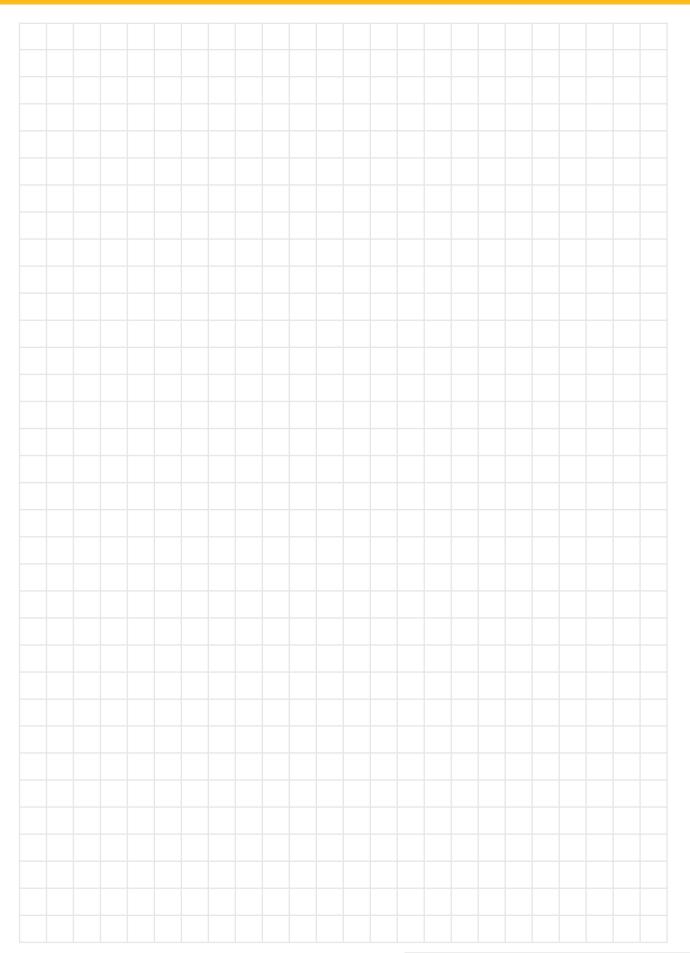
### Accu-Bit[™] for DEWALT Mini-Undercut+

Cat. No.	Accu-Bit Size	Drill Diameter	Drill Depth	Pack Qty.
PPA2431720	5/8" x 3/4" Stop Drill Bit - PT Anchor	5/8"	3/4"	1

### SDS Plus Setting Tool for DEWALT Mini-Undercut+

Cat. No.	SDS Plus Setting Tool Size	Rod/Anchor Dia.	Pack Qty.
PFM2101720	3/8" SDS+ Setting Tool - PT Anchor	3/8"	1

### **SDS PLUS 20v Max Rotary Hammer and Accessories**


Cat. No.	Description	Pack Qty.
DWH003SBH*	Stop Bit Head Nozzle Kit	1
DWH002SBH*	Stop Bit Head Replacement 3-Pack	1
DCH273P2DH0*	20V MAX XR [®] Brushless 1" L-Shape SDS Plus Rotary Hammer Kit With On Board Dust Extractor	1
*ADD "DH" for On-Board Dust Extraction		













П
Z
Z
<u> </u>
F
0
Π
5
2
П
5
Ź
9
4
Ľ
S
6

			Base N	laterial			ŀ	Anchor I	Diamete	r		inser	Style	Coat Mat		Approvals and Listings
		Concrete	Lightweight Concrete	Wood Forms	Steel Forms	1/4"	3/8"	1/2"	5/8"	3/4"	7/8"	External Thread	Internal Thread	Coated/Plated Carbon Steel	Nylon/Plastic	Building Code / Jurisdiction Recognition
BRS	Wood-Knocker II+®	•	•	•		•	•	•	•	•			•	•	•	ICC-ES ESR-3657 IBC, NBC, City of LA, FBC, FM, UL
RT ANCHORS	Pan-Knocker II+®	•	•		•	•	•	•	•	•			•	•	•	ICC-ES ESR-3657 IBC, NBC, City of LA, FBC, FM, UL
CAST-IN INSERT	Bang-It+ [∞]	•	•		•	•	•	•	•	•			•	•	•	ICC-ES ESR-3657 IBC, NBC, City of LA, FBC, FM, UL
CAS	DDI+™	•	•		•		•	•	•	•	•	•		•		ICC-ES ESR-3958 IBC, City of LA, FBC, FM, UL
• Sui	able 🔘 May be Suitable		^				<u>.</u>	<u>.</u>					·			



2

?

Concrete Insert:

WOOD-KNOCKER®II+/PAN-KNOCKER[™]II+

### **GENERAL INFORMATION**

### WOOD-KNOCKER®II+ AND PAN-KNOCKER™II+

### **Concrete Inserts**

### PRODUCT DESCRIPTION

Wood-Knocker II+ and Pan-Knocker II+ concrete inserts are installed onto forms used to support newly poured concrete floor slabs, roof slabs or walls. The concrete inserts are specifically designed to provide hanger attachments for mechanical, electrical, plumbing (MEP) and fire protection.

When the forms are stripped, the color-coded flange is visibly embedded in the concrete surface. The inserts allow the attachment of steel threaded rod or threaded bolts in sizes ranging from 1/4" to 3/4" in diameter. The sturdy base and rib design minimizes the chance of inserts accidentally being hit out of place after attachment to the forms. The impact plate offers resistance to rotation within the concrete as a steel threaded rod or threaded bolt is being turned during installation.

A push-in thread version is also available which does not require turning the threaded rod or threaded bolt during installation which can be ideal for applications such as mounting prefabricated hardware and hanger assemblies.

Distribution Systems / Utility Lines

Cracked and Uncracked Concrete

Seismic Qualification (SDC A - F)

Conduit and Lighting Systems

### **GENERAL APPLICATIONS AND U**

- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays
- Cast-In Pre-installed Anchoring Points

### FEATURES AND BENEFITS

- + Fast and simple to install, low installed cost
- + Sturdy base design resists inserts from being kicked over after placement
- + Color coded by size for simple identification, can be further marked by trade and/or utility
- + Inserts can be installed in form pours only 3.5" thick: low profile (LP) inserts can be installed in form pours only 2.5" thick (see installation details)
- + Suitable for seismic and wind loading (see design information)
- + Multi thread inserts allow for multiple diameters using the same part
- + All sizes of multi thread inserts have performance data for tension and shear loading
- + Push-In thread version does not require turning threaded rod elements during installation

### **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES), ESR-3657 for concrete
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ASTM E488 and ICC-ES AC446 for use in cracked and uncracked concrete and with the design provisions of ACI 318 (Strength Design method)
- Evaluated and gualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Underwriters Laboratories (UL Listed) File No. EX1289 and VFXT7.EX1289. Also UL tested and recognized for use in air handling spaces (i.e. plenum rated locations)
- FM Approvals (Factory Mutual) see FM Approval Guide

### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be Wood-Knocker II+ or Pan-Knocker II+ as supplied by DEWALT, Towson, MD, Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

### SECTION CONTENTS

General Information	266
Material Specifications	267
Installation Instructions	267
Installation Specifications	268
Performance Data (ASD)	270
Strength Design Information	271
Design Strength Tables (SD)	275
Ordering Information	278





WOOD-KNOCKER II+ FORM INSERT

PAN-KNOCKER II-FORM INSERT OF WOOD-KNOCKER II-







WOOD-KNOCKER II+ FORM INSERT PUSH-IN THREAD

PAN-KNOCKER II+ FORM INSERT **PUSH-IN THREAD** 

### **ANCHOR MATERIALS**

• Carbon Steel and Engineered Plastic

### **ROD/ANCHOR SIZE RANGE (TYP.)**

1/4" through 3/4" diameters (UNC)

### **INSERT VERSIONS**

- Thread-In
- Push-In

### SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete







266

### **MATERIAL SPECIFICATIONS**

### Wood-Knocker II+ and Pan-Knocker II+

Anchor Component	Component Material
Insert Body	AISI 1008 Carbon Steel or equivalent
Plastic sleeve	Engineered Plastic (polypropylene)
Zinc Plating (metal components)	ASTM B633 (Fe/Zn5) Min. plating requirements for mild service condition

### **Material Properties for Common Threaded Rods**

Description	Steel Specification (ASTM)	Threaded Rod Diameter (inch)	Minimum Yield Strength, fy (ksi)	Minimum Ultimate Strength, fu (ksi)
Standard Carbon Steel	A36 or ASTMF1554, Grade 36	1/4 to 3/4	36.0	58.0
High Strength Carbon Steel	A193, Grade B7	1/4 to 3/4	105.0	125.0

Inserts may be considered for use in conjunction with all grades of continuously threaded carbon steel (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

### INSTALLATION INSTRUCTIONS

### Installation Instructions for Wood-Knocker II+ Thread-In

DRIVE

POSITION



Step 1 Position insert on formwork plastic down.



Step 2 Drive insert head down until head contacts plastic (e.g. Wood-Knocker installation tool, hammer).

### Installation Instructions for Wood-Knocker II+ Push-In POSITION DRIVE PREPARE



Step 1 Position insert on formwork plastic down.



Step 2 Drive insert head down until head contacts plastic (e.g. Wood-Kn tool, hammer) Wood-Knocker installation



PRFPARE

Step 3

After formwork removal,

flush mounted fixtures).

remove nails as necessary (e.g

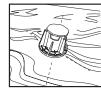
Step 3 After formwork removal, remove nails as necessary (e.g. flush mounted fixtures).



MOUNT

Step 2

Mount/secure insert to


(e.g. with screws, pins).

### POSITION

POSITION

Step 1

plastic down.



Step 1 Position insert on formwork plastic down.



Step 2 Mount/secure insert to formwork through plastic base (e.g. with screws, pins).

### Installation Instructions for Pan-Knocker II+ Push-In



Step 3 formwork through plastic base

After formwork removal. remove pins or screws as necessary (e.g. flush mounted fixtures).

### ATTACH





Step 4 Guide threaded rod/bolt through plastic thread seal cover. Turn until steel element fully threaded. Attach fixtures as applicable.

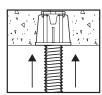


Step 4

Guide threaded rod/bolt through plastic thread seal cover. Push in until steel element is fully seated. Attach fixtures as applicable.

### ATTACH






Step 4

Guide threaded rod/bolt through plastic thread seal cover. Turn until steel element fully threaded. Attach fixtures as applicable.

### ATTACH





Step 4

Guide threaded rod/bolt through plastic thread seal cover. Push in until steel element is fully seated. Attach fixtures as applicable.

### NCHORS **ECHANICAL** Concrete Inserts



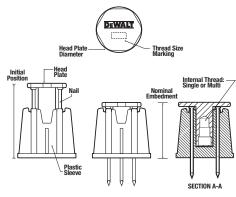
MECHANICAL 267

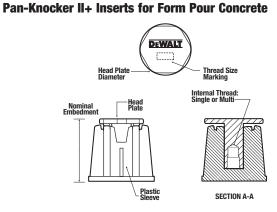
Position insert on formwork





Step 3 After formwork removal, remove


pins or screws as necessary (e.g. flush mounted fixtures)






### **INSTALLATION SPECIFICATIONS**

### Wood-Knocker II+ Inserts for Form Pour Concrete





### Installation Specifications for Wood-Knocker II+ and Pan-Knocker II+ Single Thread Inserts

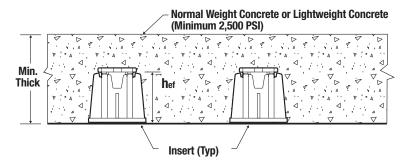
Incost Dimension / Dremarks	Ormshall	Units			Nom	inal Rod/Ancho	r Size			
Insert Dimension / Property	Symbol	Units	1/4" (LP)	3/8" (LP)	1/4"	3/8"	1/2"	5/8"	3/4"	
Outside diameter of steel insert body	da	in. (mm)	0. (1			0.7 (18)			.0 25)	
Insert head plate diameter	Chp	in. (mm)	1.3 (3			1.50 (38)			75  5)	
Plastic sleeve diameter	ds	in. (mm)	(5	<u>2</u> 1)		2-3/8 (60)			3/8 60)	
Nominal embedment depth	h _{nom}	in. (mm)	1-1 (3	8)		2 (51)		(5	2 51)	
Effective embedment depth	h _{ef}	in. (mm)	1.2 (3			1.75 (45)	1.75 (45)			
Minimum member thickness	h _{min}	in. (mm)	2-1 (6			3-1/2 (89)		3-1/2 (89)		
Minimum spacing distance	Smin	in. (mm)	40	da		4da		4da		
Minimum edge distance	Cmin	in. (mm)	0.5dhp	+ 3/4 (19)		0.5dhp + 3/4 (19)		0.5dhp	+ 3/4 (19)	
Insert head plate thickness	t _{hp}	in. (mm)	1/ (3			1/8 (3)			/8 3)	
UNC internal thread size	-	TPI	1/4-20	3/8-16	1/4-20	3/8-16	1/2-13	5/8-11	3/4-10	
Approx. internal thread length	-	in.	5/16	7/16	3/8	1/2	5/8	3/4	7/8	
Approx. gap between plastic sleeve opening and start of internal thread, after setting	-	in.	5/	16			3/8			
1. Inserts have internal thread size designations	or coarse thr	eads matchir	ng the nominal roo	d / anchor size.						

### Installation Specifications for Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts

			Nominal Rod/Anchor Size													
Insert Dimension / Property	Symbol	Units		& 3/8" i (LP)		& 3/8" ulti		4" & 3/3 1/2" Mu		3/8" 8 Mi	k 1/2" ulti	3/8" 8	4 1/2" & Multi	5/8"	5/8" 8 Mu	
Outside diameter of steel insert body	da	in. (mm)		.5 3)				0.7 (18)						1.0 (25)		
Insert head plate diameter	Chp	in. (mm)		30 33)				1.50 (38)						1.75 (45)		
Plastic sleeve diameter	ds	in. (mm)		2 51)				2-3/8 (60)						2-3/8 (60)		
Nominal embedment depth	h _{nom}	in. (mm)		1/2 88)				2 (51)						2-3/8 (60)		
Effective embedment depth	h _{ef}	in. (mm)		25 32)				1.75 (45)						2.25 (57)		
Minimum member thickness	h _{min}	in. (mm)		1/2 64)				3-1/2 (89)						3-1/2 (89)		
Minimum spacing distance	Smin	in. (mm)	4da 4da							4da						
Minimum edge distance	Cmin	in. (mm)	0.5dhp	+ 3/4 (19)			0.	5dhp + 3 (*	8/4 19)				0.5	dhp + 3/ (1		
Insert head plate thickness	t _{hp}	in. (mm)		/8 3)				1/8 (3)						1/8 (3)		
UNC internal thread size	-	TPI	1/4- 20	3/8- 16	1/4- 20	3/8- 16	1/4- 20	3/8- 16	1/2- 13	3/8- 16	1/2- 13	3/8-16	1/2- 13	5/8- 11	5/8- 11	3/4- 10
Approx. internal thread length	-	in.	5/16	7/16	3/8	1/2	5/16	3/8	1/2	7/16	9/16	3/8	1/2	5/8	5/8	3/4
Approx. gap between plastic sleeve opening and start of internal thread, after setting	-	in.	7/8	5/16	1	5/16	1-7/16	15/16	5/16	1	5/16	1-11/16	1-1/16	5/16	1-3/16	5/16

ANCHORS

1


CAL

### **DEWALT** ANCHORS & FASTENERS

### Installation Specifications for Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts

lucat Dimension / Duranta	Ormhal	Units	Nominal Rod	/Anchor Size
Insert Dimension / Property	Symbol	Units	3/8"	1/2"
Outside diameter of steel insert body	da	in. (mm)	1.0 (25)	1.125 (29)
Insert head plate diameter	Chp	in. (mm)	1.9 (48)	2.2 (56)
Plastic sleeve diameter	ds	in. (mm)	2-3/8 (60)	2-3/8 (60)
Nominal embedment depth	h _{nom}	in. (mm)	1-7/8 (48)	2-3/16 (56)
Effective embedment depth	h _{ef}	in. (mm)	1.7 (43)	2.0 (56)
Minimum member thickness	h _{min}	in. (mm)	3-1/2 (89)	3-1/2 (89)
Minimum spacing distance	Smin	in. (mm)	4da	4da
Minimum edge distance	Cmin	in. (mm)	0.5dhp + 3/4 (19)	0.5dhp + 3/4 (19)
Insert head plate thickness	t _{hp}	in. (mm)	3/16 (5)	3/16 (5)
UNC internal thread size	-	TPI	3/8-16	1/2-13
Approx. internal thread length	-	in.	5/8	11/16
Approx. gap between plastic sleeve opening and start of internal thread, after setting	-	in.	3/4	7/8
1. Inserts have internal thread size designations	for coarse th	reads match	ing the nominal rod / anchor size.	

### Wood-Knocker II+ and Pan-Knocker II+ Inserts Installed in Soffit of Form Pour Concrete Floor and Roof Members



### **PERFORMANCE DATA (ASD)**

Allowat	ole Desig	yn Val	ues for In	serts in	Uncrac	ked Con	crete (lb	<b>IS)</b> ^{1,2,3,4,5,6,}	7,8,9,10,11,12							
Load			Wood	-Knocker II+	and Pan-k	(nocker II+	Single Threa	ad Inserts			Wood-	Knocker II+ Push-In T	and Pan-K hread Inser			
Туре	1/4" (L	P)	3/8" (LP) 1/4"		3/8" 1/2		1/2"	5	5/8" 3/4"			3/8"		1/2"		
Tension	1,085	1,085 1,085 1,055		1	1,800 1,800		1	,800	1,800		1,725	2,200				
Shear	400		1,085	720	1	,710	1,800	1	,800	1,800		1,470		1,470 2,2		200
					Wood-I	Knocker II+	and Pan-Kr	nocker II+ N	Multi Thread	l Inserts						
Load Type	1/4 & 3/8	Multi (Ll	r) 1/4 & 3	8/8 Multi	1/4 8	& 3/8 & 1/ <b>2</b>	Multi	3/8 & 1	<b>/2 Multi</b>	3/8 8	k 1/2 & 5/8	Multi	5/8 & 3	/4 Multi		
Type	1/4"	3/8"	1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"		
Tension	1,085	1,085	1,355	1,800	1,555	1,800	1,800	1,800	1,800	2,625	2,625	2,625	2,625	2,625		
Shear	400	1,085	370	1,710	720	1,710	1,800	1,410	1,800	1,510	2,625	2,625	2,625	2,625		
Allowable Str		aluoc in ta	los for incorte	ro providad f	- or illustration	and applicab	lo only whon t	ho following	docian accun	ntione are fel	- owod:					

N100450700101110

Allowable Stress Design Values in tables for inserts are provided for illustration and applicable only when the following design assumptions are followed:

1. Concrete compressive strength, f'c = 3,000 psi given for normal weight concrete.

2. Single anchors with static loads and with installation in accordance with published instructions.

3. Concrete determined to remain uncracked for the life of the anchorage.

4. Load combinations from AACI 318 (-19 and -14)-14 5.3 or ACI 318-11 9.2, as applicable (no seismic loading considered).

5. 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.

6. Calculation of the weighted average for  $\alpha = 1.2^{\circ}0.3 + 1.6^{\circ}0.7 = 1.48$ .

7. Assuming no edge distance influence ( $c_{a1} \ge 1.5h_{ef}$ ) and no side-face blowout in tension.

8. Assuming no edge distance  $(C_{a1} \ge 3h_{ef})$  or corner distance influence  $(C_{a2} \ge 1.5c_{a1})$  in shear.

9. Shear loads may be applied in any direction.

10. h  $\geq$  hmin according to ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable.

11. Values are for Condition B where supplementary reinforcement in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.

12. The allowable loads shown in the table are for the inserts only. The design professional is responsible for checking threaded rod strength in tension, shear and combined tension and shear, as applicable. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

### Allowable Design Values for Inserts in Cracked Concrete (Ibs)^{1,2,3,4,5,6,7,8,9,10,11,12}

Load Type		Wood	-Knocker II+ and	Pan-Knocker II+	Single Thread I	iserts	erts Wood-Knocker II+ and Pan-Knocker Push-In Thread Inserts 5/8" 3/4" 3/8" 1/2"								
Type	1/4" (LP)	3/8" (LP)	1/4"	3/8"	1/2"	5/8"	3/4"	3/8"	1/2"						
Tension	870	870	1,440	1,440	1,440	1,440	1,440	1,380	1,760						
Shear	400	870	720	1,440	1,440	1,440	1,440	1,380	1,760						

		Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts													
Load Type	1/4 & 3/8	Multi (LP)	1/4 & 3	/8 Multi	1/4 & 3/8 & 1/2 Multi			3/8 & 1	/2 Multi	3/8 8	1/2 & 5/8	5/8 & 3/4 Multi			
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/4"	3/8"	1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"	
Tension	870	870	1,355	1,440	1,440	1,440	1,440	1,440	1,440	2,100	2,100	2,100	2,100	2,100	
Shear	400	870	370	1,440	720	1,440	1,440	1,440	1,440	1,510	2,100	2,100	2,100	2,100	

Allowable Stress Design Values in tables for inserts are for illustration and applicable only when the following design assumptions are followed:

1. Concrete compressive strength, f'c = 3,000 psi given for normal weight concrete.

2. Single anchors with static loads and with installation in accordance with published instructions.

3. Concrete determined to remain cracked for the life of the anchorage.

4. Load combinations from ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable (no seismic loading considered).

5. 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.

6. Calculation of the weighted average for  $\alpha = 1.2^{\circ}0.3 + 1.6^{\circ}0.7 = 1.48$ .

7. Assuming no edge distance influence ( $c_{a1} \geq 1.5 h_{\text{ef}}$ ) and no side-face blowout in tension.

8. Assuming no edge distance ( $c_{a1} \ge 3h_{ef}$ ) or corner distance influence ( $c_{a2} \ge 1.5c_{a1}$ ) in shear.

9. Shear loads may be applied in any direction.

10. h  $\geq$  hmin according to ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable.

11. Values are for Condition B where supplementary reinforcement in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.

12. The allowable loads shown in the table are for the inserts only. The design professional is responsible for checking threaded rod strength in tension, shear and combined tension and shear, as applicable. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

### UL Listings and FM Approvals for Supporting Fire Protection Services & Automatic Sprinkler Systems

Listing/Approval	Wood-Knocker II+ and Pan-Knocker II+ Single Thread Inserts											Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts			
•	1/4" LP 3/8" LP		1/4"	" <b>3/8</b> "		1/2"	5/8"		3/4"	3/8"		1/	2"		
UL Max. Pipe Size	N/A		4"	N/A	2	4"	8"	8'	·	8"	4"		4" 8"		
FM Max. Pipe Size	N/A		4"	N/A	4	4"	8"	-		-	4	4" 8"			
Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts															
Listing/Approval	1/4 & 3/8 Multi (LP) 1/4 &			& 3/8 Multi 1/4 & 3/8 & 1/2 Multi 3				3/8 & 1	3/8 & 1/2 Multi 3/8 &			1/2 & 5/8 Multi 5/8 & 3/4 Multi			
	1/4"	3/8"	1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"	
UL Max. Pipe Size	N/A	4"	N/A	4"	N/A	4"	8"	4"	8"	4"	8"	12"	12"	12"	
FM Max. Pipe Size	N/A	4"	N/A	4"	N/A	4"	8"	4"	8"	4"	8"	12"	12"	12"	
Underwriters Laboratorie	s (UL Listed)	– File No. E	X1289 and	VFXT7.EX128	39. Also UL t	tested and r	ecognized for	use in air ha	andling spa	ces (i.e. plenu	m rated loca	tions).			
FM Approvals (Factory N	1utual) – see	FM Approva	I Guide.												

### **STRENGTH DESIGN INFORMATION**

### Design Information For Wood Knocker II+ and Pan-Knocker II+ Single Thread Inserts^{1,2,3,4,5}

<b>Design Information / Insert Property</b>	Symbol	Units	1/4" (LP)	3/8" (LP)	1/4"	3/8"	1/2"	5/8"	3/4"		
Outside diameter of the steel insert body	da	in. (mm)		.5 3)		0.7 (18)			.0 25)		
		in ²	(	00		1.20		`	.40		
Insert head net bearing area	Abrg	(mm²)		45)		(762) (903)					
Effective embedment depth	hef	in. (mm)		25 32)		1.75 (45)			.75 45)		
STEEL	STRENGTH IN	TENSION (	ACI 318-19 17	.6.1, ACI 318-1	4 17.4.1 or ACI	318-11 Sectio	n D.5.1)				
Steel strength in tension of single insert	N _{sa,insert}	lb (kN)	3,545 (15.8)	6,535 (29.1)	3,545 (15.8)		005 0.1)		,685 6.4)		
Steel strength in tension of single insert, seismic	N _{sa,insert,eq}	lb (kN)	3,545 6,535 (15.8) (29.1)		3,545 (15.8)	9,005 (40.1)					,685 6.4)
Reduction factor, steel strength in tension	φ	-	0.	65		0.65		0.	.65		
CONCRETE	BREAKOUT S	TRENGTH I	N TENSION (AC	I 318-19 17.6.2	2, ACI 318-14 1	7.4.2 or ACI 31	8-11 D.5.2)				
Effectiveness factor for cracked concrete	Kc	-		24 (for SI use a value of 10)							
Modification factor for uncracked concrete	$\Psi_{C,N}$	-		1.25							
Reduction factor, concrete strength in tension	$\phi$	-				0.70					
STEEL	L STRENGTH II	N SHEAR (A	CI 318-19 17.	7.1, <mark>aci</mark> 318-14	17.5.1 or ACI	318-11 Section	D.6.1)				
Steel strength in shear of single insert	Vsa,insert,deck	lb (kN)	985 (4.4)	2,835 (12.6)	1,775 (7.9)	4,220 (18.8)	7,180 (31.9)		075 0.4)		
Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	385 (1.7)	625 (2.8)	1,775 (7.9)	4,220 (18.8)	7,180 (31.9)		075 0.4)		
Reduction factor, steel strength in shear	$\phi$	-	0.	60		0.60		0.	.60		
					Cl 318-14 17.5 18-14 17.5.3 or						
Load bearing length of insert	le	in. (mm)	1.	25 32)		1.75 (45)			.75 15)		
Reduction factor, concrete strength in shear	φ	-		70		0.70		`	.70		
Coefficient for pryout strength	Kcp	-		1		1			1		
Reduction factor, pryout strength in shear	φ	-	0.	70		0.70		0.	.70		

Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast
anchors. Concrete breakout strength must also be in accordance with and steel deck figures, as applicable.

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of  $\phi$  applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4.

4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable and the installation tables for the inserts.

5. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.

### Design Information for Wood Knocker II+ and Pan-Knocker II+ Multi Thread Inserts^{2,3,4,5}

Design Information f	or Wood	i Knock	er II+	and F	<b>'an-K</b> i	nockei	r II+ N	lulti T	hread	Inser	<b>tS</b> ^{,2,3,4,5}					
Design Information	Symbol	Units	1/4 a Mult	& 3/8 i (LP)		& 3/8 ulti	1/4	& 3/8 & Multi	1/2		& 1/2 ulti	3/8	& 1/2 & Multi	5/8		& 3/4 ulti
•			1/4"	3/8"	1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"
Outside diameter of the steel insert body	da	in. (mm)		.5 3)				0.7 (18)						1.0 (25)		
Insert head net bearing area	Abrg	in² (mm²)		00 45)				1.20 (762)					1.40 (903)			
Effective embedment depth	hef	in. (mm)		25 2)				1.75 (45)					2.25 (57)			
	STEE	. STRENGT	h in ten	SION (AC	1 318-19	9 17.6.1,	ACI 318-	14 17.4.	1 or ACI	318-11	Section I	D.5.1)				
Steel strength in tension of single insert	Nsa,insert	lb (kN)	3,545 (15.8)	6,535 (29.1)	3,085 (13.7)	(40.1)	3,545 (18.1)	7,515 (33.4)		9,005 (40.1)	9,005 (40.1)	8,630 (38.4)		610 3.9)		100 5.1)
Steel strength in tension of single insert, seismic	Nsa,insert,eq	lb (kN)	3,545 (15.8)	6,535 (29.1)	3,085 (13.7)	9,005 (40.1)	3,545 (18.1)	7,515 (33.4)	9,005 (40.1)	9,005 (40.1)	9,005 (40.1)	8,630 (38.4)		610 3.9)		100 5.1)
Reduction factor, steel strength in tension	φ	-	0.	0.65 0.65 0.65												
	CONCRET	E BREAKO	UT STREM	IGTH IN 1	ENSION	(ACI 318	-19 17.6	.2, ACI 3	18-14 1	7.4.2 or	ACI 318-	11 D.5.2	)			
Effectiveness factor for cracked concrete	k₀	-		24 (for SI use a value of 10)												
Modification factor for uncracked concrete	Ψc,n	-		1.25												
Reduction factor, concrete strength in tension	φ	-							0.	70						
	STEE	L STRENG	rh in Shi	EAR (ACI	318-19	17.7.1, A	ACI 318-1	4 17.5.1	or ACI 3	318-11 S	ection D	.6.1)				
Steel strength in shear of single insert	Vsa,insert,deck	lb (kN)	985 (4.4)	2,835 (12.6)	910 (4.1)	4,220 (18.8)	1,775 (7.9)	4,220 (18.8)	7,180 (31.9)	3,475 (15.5)	7,180 (31.9)	3,720 (16.2)	9,410 (41.9)	10,570 (47.0	(48	965 3.8)
Steel strength in shear of single insert, seismic	Vsa,insert,eq	lb (kN)	385 (1.7)	625 (2.8)	365 (1.6)	4,220 (18.8)	480 (2.1)	715 (3.2)	7,180 (31.9)	695 (3.1)	7,180 (31.9)	1,080 (4.8)	4,705 (20.9)	10,570 (47.0)	4,385 (19.1)	10,96 (48.8)
Reduction factor, steel strength in shear	φ	-	0.	60				0.60						0.60		
	CONCRETE	BREAKOU RYOUT STI	r streng Rength I	ith in Sh N Shear	IEAR (AC (ACI 31	318-19 8-19 17.3	) 17.7.2, 7.3, ACI (	ACI 318- 318-14 1	·14 17.5. 7.5.3 or	2 or ACI ACI 318	318-11 -11 D.6.3	<b>D.6.2) Al</b> B)	ND			
Load bearing length of insert	le	in. (mm)		25 2)				1.75 (45)						2.25 (57)		
Reduction factor, concrete strength in shear	φ	-	0.	0.70 0.70 0.70												
Coefficient for pryout strength	Kcp	-		1				1						1		
Reduction factor, pryout strength in shear	φ	-	0.	70				0.70						0.70		

1. Concrete must have a compressive strength f 'c of 2,500 psi minimum. Installation must comply with published instructions.

2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with and steel deck figures, as applicable.

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of  $\phi$  applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4.

4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable and the installation tables for the inserts.

 The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.

### Design Information for Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts^{1,2,3,4,5}

side diameter of the steel insert body	da	in.	1.0	1.125				
,	Ga							
		(mm)	(25)	(29)				
ert head plate net bearing area	Abrg	in² (mm²)	2.0 (1290)	2.7 (1742)				
		in.	1.7	2.0				
ective embedment depth	hef	(mm)	(43)	(51)				
STEEL STRENGTH I	N TENSION (	ACI 318-19 1	7.6.1, ACI 318-14 17.4.1 or ACI 3	18-11 Section D.5.1)				
el strength in tension of single insert	Nsa,insert	lb	11,265	17,595				
	- Tou, moore	(kN)	(50.1)	(78.3)				
el strength in tension of single insert, seismic	Nsa,insert,eq	lb (kN)	11,265 (50,1)	17,595 (7.3)				
luction factor, steel strength in tension	φ	-	(00.1)	0.65				
, 0	STRENGTH I	N TENSION (A	CI 318-19 17.6.2, ACI 318-14 17.	.4.2 or ACI 318-11 D.5.2)				
ctiveness factor for cracked concrete	k₀	-	24	4 (for SI use a value of 10)				
dification factor for uncracked concrete	Ψc,n	-	1.25					
luction factor, concrete strength in tension	$\phi$	-		0.70				
STEEL STRENGTH	IN SHEAR ( <i>I</i>	ICI 318-19 17	.7.1, ACI 318-14 17.5.1 or ACI 31	8-11 Section D.6.1)				
el strength in shear of single insert	Vsa,insert,deck	lb	3,625	5,955				
or our of our gir in onour of ourgie insert	v sa,insert,ueuk	(kN)	(16.1)	(26.5)				
el strength in shear of single insert, seismic	Vsa,insert,eq	lb	3,625 (16,1)	5,955 (26.5)				
luction factor, steel strength in shear	φ	(kN)	(10.1)	0.60				
, 0	<u> </u>	SHEAR (ACL 3	18-19 17.7.2. ACI 318-14 17.5.2					
PRYOUT STREE	IGTH IN SHE	AR (ACI 318-1	18-19 17.7.2, ACI 318-14 17.5.2 19 17.7.3, ACI 318-14 17.5.3 or A	CI 318-11 D.6.3)				
d bearing length of insert	e	in.	1.7	2.0				
0 0	φ	(mm)	(43)	(51)				
luction factor, concrete strength in shear fficient for pryout strength	'	-		1				
	k _{cp}	-		I				
luction factor, pryout strength in shear Concrete must have a compressive strength f 'c of 2,500 r	$\phi$	<u> </u>		0.70				

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of  $\phi$  applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-19 17.5.4.

4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable and the installation tables for the inserts.

 The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.

### Specifications And Physical Properties of Common Carbon Steel Threaded Rod Elements

Thread	led Rod Specification	Units	Min. Specified Ultimate Strength, Futa	Min. Specified Yield Strength 0.2 Percent Offset, F _{ya}	Futa — Fya	Elongation Minimum Percent ⁴	Reduction Of Area Min. Percent	Related Nut Specification ⁵
Carbon	ASTM A36/A36M or ASTM F1554 Grade 36	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40 (50 for A36)	ASTM A563 Gr. A or A194 Grade 2
Steel	ASTM A193/A193M ³ Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	ASTM A563 Gr. A or A194 Grade 2

For SI: 1 inch = 25.4 mm, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Inserts may be used in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

2. Standard Specification for Carbon Structural Steel.

3. Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications.

4. Based on 2-inch (50 mm) gauge length except for ASTM A36/A36M and ASTM A193, which are based on a gauge length of 4d (dm).

5. Where nuts are applicable, nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable.

### Steel Design Information For Common Threaded Rod Elements Used With Concrete Inserts^{1,2,3,4}

Design Information		Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch
Threaded rod nominal outside diameter		drod	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Threaded rod effective cross-sectional area		Ase	in² (mm²)	0.032 (21)	0.078 (50)	0.142 (92)	0.226 (146)	0.335 (216)
Steel strength in tension of threaded rod	ASTM A36 or	Nsa,rod,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.3)
Steel strength in tension of threaded rod, seismic	F1554, Grade 36	Nsa,rod,eq,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.4)
Steel strength in tension of threaded rod	ASTM A193,	Nsa,rod,B7	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Steel strength in tension of threaded rod, seismic	Gr. B7	Nsa,rod,eq,B7	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Reduction factor, steel strength in tension		$\phi$	-			0.75		
Steel strength in shear of threaded	ASTM A36 or	V _{sa,rod,A36}	lb (kN)	1,115 (4.9)	2,715 (12.1)	4,940 (22.0)	7,865 (35.0)	11,660 (51.9)
Steel strength in shear of threaded rod, seismic	F1554, Grade 36	V _{sa,rod,eq,A36}	lb (kN)	780 (3.5)	1,900 (8.4)	3,460 (15.4)	5,505 (24.5)	8,160 (36.3)
Steel strength in shear of threaded rod	shear of threaded rod ASTM A193.		lb (kN)	2,385 (10.6)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)
Steel strength in shear of threaded rod, seismic	Gr. B7	Vsa,rod,eq,B7	lb (kN)	1,680 (7.5)	4,095 (18.2)	7,455 (34.2)	11,865 (52.8)	17,590 (78.2)
Reduction factor, steel strength in shear		φ	-			0.65		

For SI: 1 inch = 25.4 mm, 1 pound = 0.00445 kN, 1 in² = 645.2 mm². For pound-inch unit: 1 mm = 0.03937 inches.

1. Values provided for steel element material types based on minimum specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29).

2.  $\phi_{N_{sa}}$  shall be the lower of the  $\phi_{N_{sa,red}}$  or  $\phi_{N_{sa,reset}}$  for static steel strength in tension; for seismic loading  $\phi_{N_{sa,eq}}$  shall be the lower of the  $\phi_{N_{sa,rest,eq}}$ 

3.  $\phi_{V_{sa}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  or  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the  $\dot{\phi}_{V_{sa,roset}}$  for static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  shall be the lower of the lower of the lower of the  $\dot{\phi}_{V_{sa,roset}}$  static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  static steel strength in tension; for seismic loading  $\dot{\phi}_{V_{sa,eq}}$  static steel steel

4. Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for steel elements. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the threaded rod are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of ø applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D.4.4.

### **DESIGN STRENGTH TABLES (SD)**

DEWALI

**ANCHORS & FASTENERS** 

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Single Thread Inserts Installed in Form Poured Concrete and Roof Members - Uncracked Concrete^{1,2,3,4,5,6,7}

			Minimum Concrete Compressive Strength										
Nominal Anchor	Embed. Depth her (in.)	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,000 psi							
Diameter (in.)		$\phi$ Nn Tension (Ibs.)	∲Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	ØVn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (lbs.)						
1/4" (LP)	1-1/4	1,605	590	1,855	590	2,275	590						
3/8" (LP)	1-1/4	1,605	1,235	1,855	1,425	2,275	1,700						
1/4"	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425						
3/8"	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425						
1/2"	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425						
5/8"	1-3/4	2,665	2,665	3,075	3,075	3,765	3,765						
3/4"	1-3/4	2,665	2,665	3,075	3,075	3,765	3,765						

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

### Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Single Thread Inserts Installed in Form Poured Concrete and Roof Members - Cracked Concrete^{1,2,3,4,5,6,7,8}

				Minimum Concrete C	ompressive Strength							
Nominal Anchor	Embed. Depth het (in.)	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,000 psi						
Diameter (in.)		ØNn Tension (lbs.)	∲Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (lbs.)					
1/4" (LP)	1-1/4	1,285	590	1,485	590	1,820	590					
3/8" (LP)	1-1/4	1,285	885	1,485	1,020	1,820	1,250					
1/4"	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445					
3/8"	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445					
1/2"	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445					
5/8"	1-3/4	2,130	2,130	2,460	2,460	3,015	3,015					
3/4"	1-3/4	2,130	2,130	2,460	2,460	3,015	3,015					
- Anchor Pullout/Prv	- Anchor Pullout/Prvout Strenath Controls - Concrete Breakout Strenath Controls - Steel Strenath Controls											

Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, h_a = h_{min}, and with the following conditions:
 No edge distance influence (c_{a1} ≥ 1.5h_{el}) and no side-face blowout in tension.
 No edge distance (c_{a1} ≥ 3h_{el}) or corner distance influence (c_{a2} ≥ 1.5c_{a1}) in shear.

2- Calculations were performed following methodology in ACI 318-19 17.5.3, ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Nsa,mert, Vsa,mert), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsa,mot), the lowest load level controls.

3- Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements.

4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

7- For lightweight concrete, where concrete breakout or anchor pullout/pryout strength controls, the tabulated values must be multiplied by 0.85 for sand-lightweight and 0.75 for all-lightweight, as applicable.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

FECHNICAL GUIDE – MECHANICAL ANCHORS © 2022 DEWALT – REV. J



Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts Installed in Form Poured Concrete and Roof Members - Uncracked Concrete^{1,2,3,4,5,6,7}



		Minimum Concrete Compressive Strength										
Nominal Anchor Diameter	Embed. Depth	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6	,000 psi					
(in.)	hef (in.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	ØVn Shear (lbs.)					
1/4" (1/4 - 3/8" Multi LP)	1-1/4	1,605	590	1,855	590	2,275	590					
3/8" (1/4 - 3/8" Multi LP)	1-1/4	1,605	1,235	1,855	1,425	2,275	1,700					
1/4" (1/4 - 3/8" Multi)	1-3/4	2,005	545	2,005	545	2,005	545					
3/8" (1/4 - 3/8" Multi)	1-3/4	2,665	2,420	3,075	2,530	3,765	2,530					
1/4" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,305	1,065	2,305	1,065	2,305	1,065					
3/8" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,665	2,420	3,075	2,530	3,765	2,530					
1/2" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425					
3/8" (3/8 - 1/2" Multi)	1-3/4	2,665	2,085	3,075	2,085	3,765	2,085					
1/2" (3/8 - 1/2" Multi)	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425					
3/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,880	2,230	4,485	2,230	5,490	2,230					
1/2" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,880	3,880	4,485	4,485	5,490	5,490					
5/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,880	3,880	4,485	4,485	5,490	5,490					
5/8" (5/8 - 3/4" Multi)	2-1/4	3,880	3,880	4,485	4,485	5,490	5,490					
3/4" (5/8 - 3/4" Multi)	2-1/4	3,880	3,880	4,485	4,485	5,490	5,490					

🔄 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

### Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts Installed in Form Poured Concrete and Roof Members - Cracked Concrete^{1,2,3,4,5,6,7,8}



			N	linimum Concrete C	ompressive Strengt	h	
Nominal Anchor Diameter	Embed. Depth	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	,000 psi
(in.)	hef (in.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	ØVn Shear (Ibs.)
1/4" (1/4 - 3/8" Multi LP)	1-1/4	1,285	590	1,485	590	1,820	590
3/8" (1/4 - 3/8" Multi LP)	1-1/4	1,285	885	1,485	1,020	1,820	1,250
1/4" (1/4 - 3/8" Multi)	1-3/4	2,005	545	2,005	545	2,005	545
3/8" (1/4 - 3/8" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445
1/4" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,130	1,065	2,305	1,065	2,305	1,065
3/8" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445
1/2" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445
3/8" (3/8 - 1/2" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,085
1/2" (3/8 - 1/2" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445
3/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,105	2,230	3,585	2,230	4,390	2,230
1/2" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,105	2,895	3,585	3,340	4,390	4,090
5/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,105	2,895	3,585	3,340	4,390	4,090
5/8" (5/8 - 3/4" Multi)	2-1/4	3,105	2,895	3,585	3,340	4,390	4,090
3/4" (5/8 - 3/4" Multi)	2-1/4	3,105	2,895	3,585	3,340	4,390	4,090

🗖 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness,  $h_a = h_{min}$ , and with the following conditions: - No edge distance influence ( $c_{a1} \ge 1.5h_{el}$ ) and no side-face blowout in tension. - No edge distance ( $c_{a1} \ge 3h_{el}$ ) or corner distance influence ( $c_{a2} \ge 1.5c_{a1}$ ) in shear.

2- Calculations were performed following methodology in ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Nsa,insert, Vsa,insert), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsa,rod, Vsa,rod), the lowest load level controls.

3- Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements.

4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

7- For lightweight concrete, where concrete breakout or anchor pullout/pryout strength controls, the tabulated values must be multiplied by 0.85 for sand-lightweight and 0.75 for all-lightweight, as applicable.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

### Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts Installed in Form Poured Concrete and Roof Members - Uncracked Concrete^{1,2,3,4,5,6,7}

			Minimum Concrete Compressive Strength										
Nominal Anchor	Embed. Depth	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,000 psi							
Diameter (in.)	h _{ef} (in.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	$\phi$ Nn Tension (Ibs.)	∲Vn Shear (Ibs.)						
3/8" Push-In	1.70	2,550	2,175	2,945	2,175	3,605	2,175						
1/2" Push-In	2.00	3,255	3,255	3,755	3,575	4,600	3,575						
- Anchor Pullout/Pry	- Anchor Pullout/Pryout Strength Controls - Concrete Breakout Strength Controls - Steel Strength Controls												

### Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts Installed in Form Poured Concrete and Roof Members - Cracked Concrete^{1,2,3,4,5,6,7,8}



				Minimum Concrete Compressive Strength										
	Nominal Anchor	Embed. Depth	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,000 psi							
	Diameter (in.)	h _{ef} (in.)	∲Nn Tension (lbs.)	∲Vn Shear (Ibs.)	ØNn Tension (lbs.)	∲Vn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	∲Vn Shear (Ibs.)						
Γ	3/8" Push-In	1.70	2,040	2,040	2,355	2,175	2,885	2,175						
	1/2" Push-In	2.00	2,605	2,605	3,005	3,005	3,680	3,575						
	🗖 - Anchor Pullout/Provit Strength Controls 🔲 - Concrete Breakout Strength Controls 🗖 - Steel Strength Controls													

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = hmm, and with the following conditions: 1-No edge distance influence ( $c_{a1} \ge 1.5h_{ef}$ ) and no side-face blowout in tension. No edge distance (ca1 ≥ 3hef) or corner distance influence (ca2 ≥ 1.5ca1) in shear.

2-Calculations were performed following methodology in ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Naument, Vaument), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Naumol, Vaumol), the lowest load level controls

3-Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear: values correspond to brittle steel elements.

4-Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.

For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 5-Appendix D.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D 6and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

For lightweight concrete, where concrete breakout or anchor pullout/pryout strength controls, the tabulated values must be multiplied by 0.85 for sand-lightweight and 0.75 for all-lightweight, as 7applicable

For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75. 8-

### Tension and Shear Design Strength of Steel Elements (Steel Strength)^{1,2,3,4}

Nominal Rod Diameter (in.)		Steel Elements - Threaded Rod								
Nominal Rod Diameter	AST	/I A36	ASTM A193	M A193 Grade B7						
	∲N _{sa,rod} Tension (lbs.)	ØV _{sa.rod} Shear (Ibs.)	ØN _{sa.rod} Tension (Ibs.)	ØV _{sa,rod} Shear (Ibs.)						
1/4	1,390	720	3,000	1,550						
3/8	3,395	1,750	7,315	3,780						
1/2	6,175	3,210	13,315	6,915						
5/8	9,835	5,115	21,190	11,020						
3/4	14,550	7,565	31,405	16,305						

- Steel Strength Controls

DEWAL

**ANCHORS & FASTENERS** 

1. Steel tensile design strength according to ACI 318 Appendix D and ACI 318 Chapter 17,  $\phi_{Nsa} = \phi \bullet A_{se,N} \bullet f_{uta}$ 

2. The tabulated steel design strength in tension for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pullout design strength to determine the controlling failure mode, the lowest load level controls.

3. Steel shear design strength according to ACI 318 Appendix D and ACI 318 Chapter 17,  $\phi$ V_{sa} =  $\phi \bullet 0.60 \bullet A_{se,N} \bullet f_{uta}$ 

4. The tabulated steel design strength in shear for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pryout design strength to determine the controlling failure mode, the lowest load level controls.

6

CHANICAL

ANCHORS



### **ORDERING INFORMATION**

### Wood-Knocker®II+ Form Insert (UNC internal thread)

Cat. No.	Description	Color Code	Pack Qty.
PFM2500014	1/4" Wood-Knocker II+ LP (Low Profile)	Brown	100
PFM2500038	3/8" Wood-Knocker II+ LP (Low Profile)	Green	100
PFM2521100	1/4" Wood-Knocker II+	Brown	100
PFM2521150	3/8" Wood-Knocker II+	Green	100
PFM2521200	1/2" Wood-Knocker II+	Yellow	100
PFM2521250	5/8" Wood-Knocker II+	Red	100
PFM2521300	3/4" Wood-Knocker II+	Purple	100
PFM2501438	1/4-3/8" Wood-Knocker II+ Multi LP (Low Profile)	White	100
PFM2521438	1/4-3/8" Wood-Knocker II+ Multi	White	100
PFM2521350	3/8-1/2" Wood-Knocker II+ Multi	Gray	100
PFM253143812	1/4-3/8-1/2" Wood-Knocker II+ Multi	Aqua	100
PFM253381258	3/8-1/2-5/8" Wood-Knocker II+ Multi	Orange	50
PFM2525834	5/8-3/4" Wood-Knocker II+ Multi	Black	50
PFM2610038	3/8" Wood-Knocker II+ Push-In Thread	Green	50
PFM2610012	1/2" Wood-Knocker II+ Push-In Thread	Yellow	50
nserts are color coded to easily	ν identify location, type and sizes of the internal diameters.	· · · ·	







### Wood-Knocker II+ Installation Accessories and Tools

Cat. No.	Description	Pack Qty.
PFM3612000	Wood-Knocker II+ Installation Tool	1
DWHT51439	16oz Steel Curve Claw Hammer	1
The Wood-Knocker I	+ installation tool features a magnetic end to help hold the insert and assist in placement.	

### Pan-Knocker II+ Form Insert (UNC internal thread)

Cat. No.	Description	Color Code	Pack Qty.						
PFM2501438NN	1/4-3/8" Pan-Knocker II+ Multi LP (Low Profile)	White	100						
PFM253143812NN	Aqua	100							
PFM253381258NN	Orange	100							
PFM2525834NN	5/8-3/4" Pan-Knocker II+ Multi	Black	100						
	^ *		•						
PFM2610038NN	3/8" Pan-Knocker II+ Push-In Thread	Green	50						
PFM2610012NN 1/2" Pan-Knocker II+ Push-In Thread		Yellow	50						
Pan-Knocker II+ form inserts m	ust be mounted (e.g. screwed, pinned) to the form work. Fastene	rs are not included.							





### Pan-Knocker II+ Cordless Concrete Nailer Installation Tool and Pins

Cat. #			Pack Qty.	Carton Qty.								
DCN891P2		20V Max* Cordless Concrete Nailer Kit 1 -										
Cat. #	Shank Dia. in.	Step Dia. in.	Length in. Knurl (K) Finish		Pack Qty.	Carton Qty.						
DCN8907804	0.102"	0.088"	0.780"	Yes	Zinc	1000	6000					
Fasteners have a	head diameter of .	.250" and are zind	plated in accorda	ance with ASTM B	695, Class 5.							

### Pan-Knocker II+ Gas Fastening Nailer Installation Tool and Pins

Cat. #			Pack Qty.	Carton Qty.					
55142-PWR		Trak-It C5 To		1	-				
Cat. #	Shank Dia. in.	Step Dia. in.	Knuri (K) Finish				Carton Qty.		
55330-PWR	55330-PWR 0.120" 0.102" 0.730" Yes Zinc								
55342-PWR 0.102" 0.088" 0.780" Yes Zinc 800									
Fasteners have a l	Fasteners have a head diameter of .250" and are zinc plated in accordance with ASTM B695, Class 5.								

### **Push-In Thread Couplers**

- and in the sector secto										
Cat. No.	Description	Pack Qty.								
PFM3613038 3/8"-16 Coupler Push-In Thread 20										
PFM3613012	20									
	e one end that does not require turning threaded rod elements during installation which can prefabricated hardware and hanger assemblies.	be ideal for applications								



<u>AHHHHHHHHHHHH</u>



### **GENERAL INFORMATION**

### **BANG-IT®+**

**Concrete Inserts** 

### **PRODUCT DESCRIPTION**

Bang-It+ concrete inserts are designed for installation in and through composite steel deck (i.e. "pan-deck") used to support newly poured concrete floor or roof slabs. The Bang-It+ concrete inserts are specifically designed to provide hangar attachments for mechanical, electrical, plumbing (MEP) and fire protection.

After installation, the protective sleeve of the insert protrudes below the surface of the deck. The sleeves are color coded by size and allow overhead attachment of steel threaded rod in sizes ranging from 1/4" to 3/4" in diameter. The sleeve prevents sprayed fireproofing material and acoustical dampening products from clogging the internal threads of the insert. It also prevents burying, masking or losing the insert location. A hex impact plate offers resistance to rotation within the concrete as a steel threaded rod is being turned during installation.

A push-in thread version is also available which does not require turning the threaded rod or threaded bolt during installation. which can be ideal for applications such as mounting prefabricated hardware and hanger assemblies.

### **GENERAL APPLICATIONS AND USES**

- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays

### FEATURES AND BENEFITS

- + Fast and simple to install, low installed cost
- + Sturdy base design resists inserts from being kicked over after placement
- + Color coded by size for simple identification, can be further marked by trade and/or utility
- + Inserts can be installed in upper and lower steel deck profiles with limited concrete topping thickness (see installation details)
- + Suitable for seismic and wind loading (see design information)
- + Multi thread inserts allow for multiple diameters using the same part
- + All sizes of multi thread inserts rated for tension and shear loading
- + Push-In thread version does not require turning threaded rod elements during installation

### **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES), ESR-3657 for concrete-filled decks
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ASTM E488 and ICC-ES AC446 for use in cracked and uncracked concrete and with the design provisions of ACI 318 (Strength Design method)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete as well as seismic and wind loading
- Underwriters Laboratories (UL Listed) File No. EX1289 and VFXT7.EX1289, see listing for sizes Also UL listed and recognized for use in air handling spaces (i.e. plenum rated locations)
- FM Approvals (Factory Mutual) see approval for sizes

### **GUIDE SPECIFICATIONS**

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be Bang-It+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

- Mechanical Utility Lines
- Conduit and Lighting Systems
- Cracked and Uncracked Concrete

### SECTION CONTENTS

General Information	279
Material Specifications	280
Installation Specifications	281
Performance Data (ASD)	284
Strength Design Information	287
Design Strength Tables (SD)	291
Ordering Information	294



BANG-IT+ STEEL DECK INSERTS



BANG-IT+ PUSH-IN THREAD STEEL DECK INSERT

### **ANCHOR MATERIALS**

• Carbon Steel and Engineered Plastic

### **ROD/ANCHOR SIZE RANGE (TYP.)**

• 1/4" through 3/4" threaded rod (UNC)

### **INSERT VERSIONS**

- Single Thread (thread-in)
- Multi Thread (thread-in)
- Push-In Thread

### **SUITABLE BASE MATERIALS**

- Normal-weight Concrete
- Lightweight Concrete





oncrete Inserts

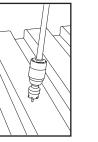
1-800-4 DEWALT

CHANICAL

ANCHORS

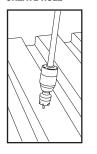
BANG-IT®+ Concrete Inserts

### **MATERIAL SPECIFICATIONS**

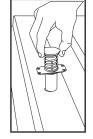

Bang-It+	
Anchor Component	Component Material
Insert Body	AISI 1008 Carbon Steel or equivalent
Base Plate	AISI 1008 Carbon Steel or equivalent or Engineered Plastic (polypropylene)
Spring	Steel Music Wire
Protective Sleeve	Engineered Plastic (polypropylene)
Zinc Plating (metal components)	ASTM B633 (Fe/Zn5) Min. Plating requirements for Mild Service Condition

### **Material Properties for Common Threaded Rods**

Standard Carbon Steel         A36 or F1554, Grade 36         1/4 to 3/4         36.0         58.0           High Strength Carbon Steel         A193, Grade B7         1/4 to 3/4         105.0         125.0	Description	Steel Specification (ASTM)	Threaded Rod Diameter (inch)	Minimum Yield Strength, f _y (ksi)	Minimum Ultimate Strength, fu (ksi)		
		F1554,	1/4 to 3/4	36.0	58.0		
			1/4 to 3/4	105.0	125.0		


Inserts may be considered for use in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

### Installation Instructions for Bang-It+ **CREATE HOLE** POSITION



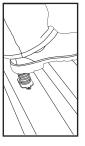

Step 1 Drill or punch a hole in the steel deck to hole size required (e.g. deck driller with hole saw or step bit).

### Installation Instructions for Bang-It+ Push-In **CREATE HOLE**



Step 1 Drill or punch a hole in the steel deck to hole size required (e.g. deck driller with hole saw or step bit).



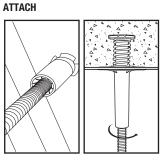

Step 2 Insert plastic sleeve through hole in steel deck.

POSITION



Step 2 Insert plastic sleeve through hole in steel deck.

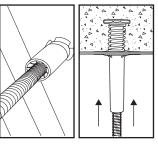





Step 3 Step on or impact insert head to engage through deck. Option: base flange of insert can be attached.

MOUNT




Step 3 Step on or impact insert head to engage through deck. Option: base flange of insert can be attached to steel deck.



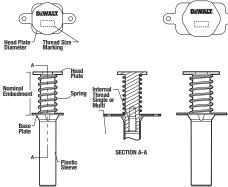
### Step 4

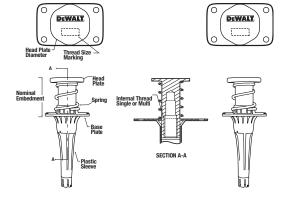
Guide threaded rod or bolt through end of plastic sleeve into the insert. Turn until steel element fully threaded. Attach fixtures as applicable.





Step 4 Push threaded rod or bolt through end of plastic sleeve into the insert until steel element is fully seated. Attach fixtures as applicable.





# **MECHANICAL ANCHORS**

G-IT®+ Concrete Inserts

### INSTALLATION SPECIFICATIONS







### Installation Specifications for Single Thread Bang-It+ Inserts^{1,2}

Incort Dimension / Dremarks	Growhal	Unite		ize				
Insert Dimension / Property	Symbol	Units	1/4"	3/8"	5/8"	3/4"		
Outside diameter of steel insert body	da	in. (mm)		0.7 (18)		1.		
Insert head plate diameter	dhp	in. (mm)		1.50 (38)		1. ⁻ (4		
Plastic sleeve diameter	ds	in. (mm)		27/32 (21)		1-7 (3		
Suggested hole size in deck	d _{hole}	in. (mm)		7/8 (22)		1- ⁻ (3		
Base plate width	Wbp	in. (mm)		1-1/2 (38)		1- ⁻ (3	1/2 8)	
Nominal embedment depth	h _{nom}	in. (mm)	2 (51) (51)					
Effective embedment depth	h _{ef}	in. (mm)		1.75 1.75 (45) (45)				
Minimum member thickness	h _{min}	in. (mm)		See ste	eel deck figures, as ap	pplicable		
Minimum spacing distance	Smin	in. (mm)			a for lower flute location for upper flute location			
Minimum edge distance	Cmin	in. (mm)		See steel deck other	figures for lower flute wise use $0.5d_{hp} + 3/4$	edge distances; 4 (19)		
Insert head plate thickness	thp	in. (mm)	1/8 1/8 (3) (3)					
Length of plastic sleeve	ls	in. (mm)	3-3/8 3-3/8 (86) (86)					
UNC internal thread size	-	in. \ TPI	1/4-20	3/8-16	5/8-11	3/4-10		
Approx. internal thread length	-	in.	3/8	1/2	3/4	7/8		
Approx. space between base plate opening and start of internal thread, after setting*	-	in	-3/4 -3/4					

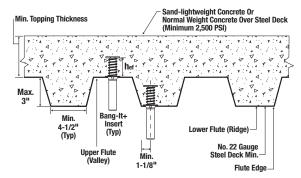
*A negative value indicates the internal threads of the insert start below (project through) the base plate.

5. Inserts have internal thread size designations for coarse threads matching the nominal rod / anchor size.

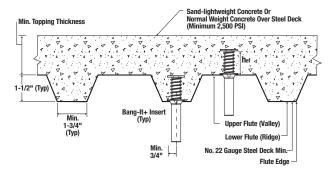
6. For installation specifications of Push-In inserts see the next page.

### Installation Specifications for Multi Thread Bang-It+ Inserts¹

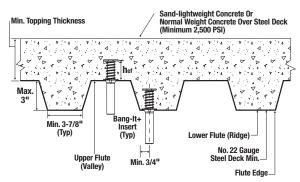
Nominal Rod/Anchor Size														
Insert Dimension / Property	Symbol	Units	1/4" 8 Mu		1/4"	* & 3/8" & 1/2" Multi 3/8" & 1/2" Multi			3/8" & 1/2" & 5/8" 5/8" 8 Multi Mu				& 3/4" ulti	
Outside diameter of the steel insert body	da	in. (mm)				0.7 (18)						1.0 (25)		
Insert head plate diameter	dhp	in. (mm)				1.50 (38)						1.75 (45)		
Plastic sleeve diameter	ds	in. (mm)				27/32 (21)						1-7/32 (32)		
Suggested hole size in deck	Chole	in. (mm)				7/8 (22)						1-1/4 (32)		
Base plate width	Wbp	in. (mm)				1-1/2 (38)						1-1/2 (38)		
Nominal embedment depth	h _{nom}	in. (mm)	2 (51) (60)											
Effective embedment depth	h _{ef}	in. (mm)				1.75 (45)						2.25 (57)		
Minimum member thickness	h _{min}	in. (mm)				S	See steel	deck fig	ures, as a	applicable	Э			
Minimum spacing distance	Smin	in. (mm)	3h _{ef} for lower flute locations; 4d _a for upper flute locations											
Minimum edge distance	Cmin	in. (mm)	See steel deck figures for lower flute edge distances; otherwise use 0.5dhp + 3/4 (19)											
Insert head plate thickness	t _{hp}	in. (mm)	1/8 1/8 (3) (3)											
Length of plastic sleeve	ls	in. (mm)	3-3/8 3-1/2 3-3/8 (86) (89) (86)					3-1/2 (89)			3/8 36)			
UNC internal thread size	-	in. \ TPI	1/4- 20	3/8- 16	1/4- 20	3/8- 16	1/2- 13	3/8- 16	1/2- 13	3/8- 16	1/2- 13	5/8- 11	5/8- 11	3/4 10
Approx. internal thread length	-	in.	3/8	1/2	5/16	3/8	1/2	7/16	9/16	3/8	1/2	5/8	5/8	3/4
Approx. space between base plate opening and start of internal thread, after setting*	-	in	0	-3/4	3/4	0	-3/4	1/8	-3/4	1	1/4	-3/4	1/2	-3/4


*A negative value indicates the internal threads of the insert start below (project through) the base plate.

1. Inserts have internal thread size designations for coarse threads matching the nominal rod / anchor size.


### Installation Specifications for Bang-It+ Push-In Inserts¹

lucest Dimension ( Drevents	Ormshall	Units	Nominal Rod/Anchor Size						
Insert Dimension / Property	Symbol	Units	3/8"	1/2"					
Outside diameter of the steel insert body	da	in. (mm)	1.0 (25)	1.125 (29)					
Insert head plate diameter	Ċhp	in. (mm)	1.9 (48)	2.2 (56)					
Plastic sleeve diameter	ds	in. (mm)	1-3/32 (28)	1-7/32 (31)					
Suggested hole size in deck	Chole	in. (mm)	1-1/4 (32)	1-1/4 (32)					
Base plate width	Wbp	in. (mm)	1-1/2 (38)	1-1/2 (38)					
Nominal embedment depth	hnom	in. (mm)	1-11/16 (42)	1-7/8 (48)					
Effective embedment depth	hef	in. (mm)	1.5 (38)	1.7 (43)					
Minimum member thickness	h _{min}	in. (mm)	See steel deck figures, as applicable						
Minimum spacing distance	Smin	in. (mm)	3h _{ef} for lower 4da for upper	flute locations; flute locations					
Minimum edge distance	Cmin	in. (mm)	See steel deck figures for otherwise use 0	lower flute edge distances; .5dhp + 3/4 (19)					
Insert head plate thickness	thp	in. (mm)	3/16 (5)	3/16 (5)					
Length of plastic sleeve	ls	in. (mm)	3-1/2 (89)	3-1/2 (89)					
UNC internal thread size	-	in. \ TPI	3/8-16	1/2-13					
Approx. internal thread length	-	in.	5/8	11/16					
Approx. space between base plate opening and start of internal thread, after setting	-	in	7/16	5/8					
1. Inserts have internal thread size designations for	or coarse thr	eads matchir	ng the nominal rod / anchor size.						


[A] Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, 4-1/2 -inch W-Deck¹²³⁴



[B] Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, B-Deck¹²³⁵⁸⁷



[C] Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, 3-7/8 -inch W-Deck^{12,38,9}



- 1. [A, B & C] Inserts may be placed in the upper flute or lower flute of the steel deck assembly. Inserts in the lower flute require a minimum 1.5" of concrete topping thickness (min. thick in Figures) from the top of the upper flute, except for the 3/8 & 1/2 & 5/8-inch multi insert and 5/8 & 3/4-inch multi insert which require a minimum of 2" of concrete topping thickness. Upper flute installations require a minimum 3" concrete topping thickness from the top of the upper flute.
- 2. [A, B & C] Axial spacing for inserts along the upper flute length shall be 4da minimum; axial spacing along the lower flute length shall be 3her minimum.
- 3. [A, B & C] Upper flute Bang-It+ inserts are not subject to steel deck dimension limitations, or the minimum steel deck gauge limitations.
- 4. [A] Inserts in the lower flute of 4-1/2-inch W-Deck may be installed with a maximum 1-1/8 -inch offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 1-1/8 -inch is also satisfied.
- 5. [B] Inserts in the lower flute of B-Deck may be installed with a maximum 1/8 -inch offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 3/4 -inch is also satisfied.
- 6. [B] Lower flute installations of B-Deck with flutes widths greater than 1-3/4 -inch are permitted.
- [B] Lower flute installations of B-Deck in flute depths greater than 1-1/2 -inch are permitted provided the minimum edge distance of 3/4 -inch is met and the minimum lower flute width is increased proportionally (e.g. applicable to a lower flute depth of 2-inch with a minimum lower flute width of 2-1/4 -inch).
- 8. [C] Inserts in the lower flute of 3-7/8-inch W-Deck may be installed with a maximum 1-3/16 -inch offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 3/4 -inch is also satisfied.
- 9. [C] Inserts in upper flute may be installed anywhere across upper flute provided minimum edge distances are maintained; see insert design information tables, as applicable.

### **PERFORMANCE DATA (ASD)**

### Allowable Design Values for Inserts in Uncracked Concrete (Ibs)^{1,2,3,4,5,6,7,8,9,10,11,12}

Deck					Bang	-lt+ Single	e Thread Ir	iserts				Bang	-lt+ Push-l	n Thread I	nserts		
Profile Type	Load Type	1/4-inch 3			3/8-inch 1/2-inch			5/8-	·inch	3/4-	3/4-inch		3/8-inch		1/2-inch		
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower		
Fig. A	Tension	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,215	910	1,465	1,055		
Fig. A	Shear	805	805	925	925	925	925	925	925	925	925	1,340	930	2,795	1,235		
Fig. D	Tension	1,530	435	1,530	435	1,530	435	1,530	435	1,530	435	1,215	405	1,465	430		
Fig. B	Shear	730	730	845	845	845	845	1,205	1,205	1,205	1,205	1,340	930	2,795	1,035		
Fig. C	Tension	1,530	985	1,530	985	1,530	985	1,530	985	1,530	985	1,215	810	1,465	945		
Fig. C	Shear	730	730	845	845	845	845	1,205	1,205	1,205	1,205	1,340	930	2,795	1,035		
			Bang-It+ Multi Thread Inserts														
Deck	Load		1/4 & 3	/8 Multi				1/4 & 3/8	& 1/2 Mult	i		3/8 & 1/2 Multi					
Profile Type	Туре	1/4-	inch	3/8-	inch	1/4-	inch	3/8-inch 1/2-inch			inch	3/8-	inch	1/2-inch			
		Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower		
	Tension	865	865	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090		
Fig. A	Shear	675	470	925	925	675	515	1,435	840	1,690	840	965	845	1,690	925		
Fig. D	Tension	865	435	1,530	435	1,530	435	1,530	435	1,530	435	1,530	435	1,530	435		
Fig. B	Shear	675	470	925	845	675	515	1,435	580	1,690	725	965	845	1,690	845		
Fig. C	Tension	865	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090		
Fig. C	Shear	675	470	925	845	675	515	1,435	580	1,690	725	965	845	1,690	845		
							Bang-It+	Multi Threa	d Inserts (	Continued)							
Deck	Load				3/8 & 1/2	2 & 5/8 Mı	ılti					5/8 &	5/8 & 3/4 Multi				
Profile Type	Туре		3/8-inch 1/				2-inch 5/8-inch				5/8-inch			3/4-inch			
		Upper	· L	ower	Upper	Low	ver	Upper	Lower	r U	pper	Lower	Upp	er	Lower		
	Tension	2,230	1	,485	2,230	1,48	85	2,230	1,485	2,230		1,485	2,23	30	1,485		
Fig. A	Shear	1,975	1	,020	3,280	1,020		3,280	1,020	2,280		1,235	1,235 2,62		1,235		
Fig. P	Tension	2,230		195	2,230	49	5	2,230	495	2,230		495	2,23	30	495		
Fig. B	Shear	1,975		380	3,280	88	0	3,280	880	2,	280	770	2,62	25	770		
Fig. C	Tension	2,230	1	,485	2,230	1,48	85	2,230	1,485	2	230	1,485	2,23	30	1,485		
Fig. C	Shear	1 975		380	3 280	3 280 880		3 280 880		2	280	770 2.6		25	25 770		

Allowable Stress Design Values in tables for inserts are provided for illustration and applicable only when the following design assumptions are followed:

3,280

 Concrete compressive strength, f¹_e, 3000 psi for sand-lightweight concrete. For normalweight concrete, tabulated tension design values may be increased by 17 percent for the given conditions, except for 1/4-inch-diameters where no increase is permitted.

3,280

2,280

770

2,625

770

880

2. Single anchors with static loads; installation in upper and lower flute locations in concrete-filled steel deck in accordance with Figures A, B or C, as applicable.

880

3. Concrete determined to remain uncracked for the life of the anchorage.

1,975

4. Load combinations from ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable (no seismic loading considered).

5. 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.

6. Calculation of the weighted average for  $\alpha = 1.2^{\circ}0.3 + 1.6^{\circ}0.7 = 1.48$ .

7.  $h \ge h_{min}$  according to Figures A, B or C, as applicable.

Shear

8. Values are for Condition B where supplementary reinforcement in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.

9. Assuming no edge distance influence with  $\Psi_{ed,N} = 1.0$  in tension for upper flute anchors.

880

10. Assuming no edge distance ( $c_{e1} \ge 3h_{ef}$ ) or corner distance influence ( $c_{e2} \ge 1.5c_{e1}$ ) for upper flute anchors in shear. Shear loads may be applied in any direction.

11. For lower flute anchors in accordance with Figure A, the near edge distance, ca,min, is 1.125-inch. For lower flute anchors in accordance with Figure B, the near edge distance, ca,min, is 0.75-inch. For lower flute anchors in accordance with Figure C, the near edge distance, ca,min, is 0.75-inch.

12. The allowable loads shown in the table are for the inserts only. The design professional is responsible for checking threaded rod strength in tension, shear and combined tension and shear, as applicable. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

### Allowable Design Values for Inserts in Cracked Concrete (Ibs)^{1,2,3,4,5,6,7,8,9,10,11,12}

Deck		Bang-It+ Single Thread Inserts										Bang-It+ Push-In Thread Inserts					
Profile	Load Type	1/4-	inch	3/8-	·inch	1/2-	inch	5/8-	inch	3/4-	inch	3/8-	inch	1/2-	·inch		
Туре		Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower		
Fig. A	Tension	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875	970	730	1,170	845		
	Shear	805	805	925	925	925	925	925	925	925	925	1,340	930	2,795	1,235		
Eia D	Tension	1,225	350	1,225	350	1,225	350	1,225	350	1,225	350	970	325	1,170	345		
Fig. B	Shear	730	730	845	845	845	845	1,205	1,205	1,205	1,205	1,340	930	2,795	1,035		
Fig. C	Tension	1,225	785	1,225	785	1,225	785	1,225	785	1,225	785	970	645	1,170	760		
riy. C	Shear	730	730	845	845	845	845	1,205	1,205	1,205	1,205	1,340	930	2,795	1,035		
		Bang-It+ Multi Thread Inserts															
Deck Profile	Load		1/4 & 3	/8 Multi				1/4 & 3/8	& 1/2 Multi	I			3/8 & 1	/2 Multi			
Туре	Туре	1/4-	inch	3/8-	·inch	1/4-inch 3/8-inch			1/2-	inch	3/8-	B-inch 1/2		2-inch			
		Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lowe		
<b>F</b> : A	Tension	865	865	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875		
Fig. A	Shear	675	470	925	925	675	515	1,435	840	1,690	840	965	845	1,690	925		
Fig. D	Tension	865	350	1,225	350	1,225	350	1,225	350	1,225	350	1,225	350	1,225	350		
Fig. B	Shear	675	470	925	845	675	515	1,435	580	1,690	725	965	845	1,690	845		
Fig. C	Tension	865	865	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875		
Fig. C	Shear	675	470	925	845	675	515	1,435	580	1,690	725	965	845	1,690	845		
							Bang-It+	Multi Threa	d Inserts (	Continued)							
Deck Profile	Load				3/8 & 1/2	2 & 5/8 Multi						5/8 & 3/4 Multi					
Type	Туре		3/8-inch		1/	/2-inch 5/8-inch				5/8-inch			3/4-inch				
		Upper	L	ower	Upper	Low	er	Upper	Lower	· U	pper	Lower	Upp	er	Lower		
Fig. A	Tension	1,785	1	,190	1,785	1,190		1,785	1,190	1	,785	1,190	1,78	35	1,190		
riy. A	Shear	1,975	1	,020	3,280	1,02	20	3,280	1,020	2	,280	1,235	2,6	25	1,235		
Fig. B	Tension	1,785	3	395	1,785	39	5	1,785	395	1	,785	395	1,7	35	395		
i iy. D	Shear	1,975	8	380	3,280	88	0	3,280	880	2	,280	770	2,6	25	770		
Fig. C	Tension	1,785	1	,190	1,785	1,19	90	1,785	1,190	1	,785	1,190	1,7	35	1,190		
Fig. C	Shear	1,975	8	380	3,280	88	0	3,280	880	2	2,280		2,6	25	770		

2. Single anchors with static loads; installation in upper and lower flute locations in concrete-filled steel deck in accordance with Figures A, B or C, as applicable.

3. Concrete determined to be cracked for the life of the anchorage.

4. Load combinations from ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable (no seismic loading considered).

5. 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.

6. Calculation of the weighted average for  $\alpha = 1.2^{*}0.3 + 1.6^{*}0.7 = 1.48$ .

7.  $h \ge h_{min}$  according to Figures A, B or C, as applicable.

8. Values are for Condition B where supplementary reinforcement in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.

9. Assuming no edge distance influence with  $\Psi_{\text{ed,N}} = 1.0$  in tension for upper flute anchors.

10. Assuming no edge distance (ca1 ≥ 3he) or corner distance influence (ca2 ≥ 1.5ca1) for upper flute anchors in shear. Shear loads may be applied in any direction.

11. For lower flute anchors in accordance with Figure A, the near edge distance, ca,min, is 1.125-inch. For lower flute anchors in accordance with Figure B, the near edge distance, ca,min, is 0.75-inch. For lower flute anchors in accordance with Figure C, the near edge distance, ca,min, is 0.75-inch.

12. The allowable loads shown in the table are for the inserts only. The design professional is responsible for checking threaded rod strength in tension, shear and combined tension and shear, as applicable. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

G-IT®+ Concrete Inserts M

**ECHANICAL ANCHORS** 

<b>UL Listings an</b>	d FM Approvals for Supporting	Fire Protection Servic	es & Automatic Spri	nkler Systems ¹
	Bang-It-	- Single Thread Inserts		Bang-It+ Push-In Insert

				В	Bang-It+ Push-In Inserts										
Listing/Approval	1/4"		3/8"		1/2"		5/	5/8"		3/4"		8"	1/2"		
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	
UL Max. Pipe Size	N/A	N/A	4"	4"	8"	8"	8"	8"	8"	8"	4"	4"	8"	8"	
FM Max. Pipe Size	N/A	N/A	4"	4"	8"	8"	12"	-	12"	-	4"	4"	8"	8"	
		Bang-It+ Multi Thread Inserts													
		1/4 & 3/8 Multi 1/4 & 3/8 & 1/2 Multi 3/8 & 1/2 Multi													
Listing/Approval	1/4"		3/8"		1/4"		3/	/8"	1		/2" 3/3		1	1/2"	
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	
UL Max. Pipe Size	N/A	N/A	4"	4"	N/A	N/A	4"	4"	8"	8"	4"	4"	8"	8"	
FM Max. Pipe Size	N/A	N/A	4"	4"	N/A	N/A	4"	4"	8"	8"	4"	4"	8"	8"	
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u>.</u>	Bang-It+	Multi Threa	d Inserts (	Continued)	)		·			
Listing/Approval				3/8 & 1/2	2 & 5/8 Mi	ulti					5/8 &	a 3/4 Multi			
Lisung/Approva		3/8"			1/2"		5/	/8''		5/8	8 ¹¹		3/4"		
	Upper	L	ower	Upper	Low	ver	Upper	Lower	· U	pper	Lower	Upp	er	Lower	
UL Max. Pipe Size	4"		4"	8"	8'		10"	10"		10"	10"	10	"	10"	
FM Max. Pipe Size	4"		4"	8"	8'	'	12"	12"		12"	12"	12	"	12"	
Underwriters Laboratorie	s (UL Listed)	– File No. E	X1289												
FM Approvals (Factory N	lutual)														
1. Anchors with installat	ion in upper	and lower flu	ute locations	in concrete-t	filled steel de	eck in accor	dance with Fi	gures A, B o	r C, as appli	cable.					

S

## **STRENGTH DESIGN INFORMATION**

## Design Information for Bang-It+ Single Thread Inserts^{1,2,3,4,5,6}

Design I	Information / Insert Property	Symbol	Units	1/4"	3/8"	1/2"	5/8"	3/4"
Outside diar	meter of the steel insert body	da	in. (mm)		0.7 (18)		1. (2	
nsert head	net bearing area	Abrg	in² (mm²)		1.20 (762)		1.4 (90	
ffective em	nbedment depth	hef	in. (mm)		1.75 (45)		1.7 (4	
	ST	EEL STRENGT	'H IN TENSI	ON (ACI 318-19 17.6	.1, ACI 318-14 17.4.	1 or ACI 318-11 D.5.1)		
According to Figures	Steel strength in tension of single insert	N _{sa,insert}	lb (kN)	3,955 (17.6)	9,480 (42.2)	9,850 (43.5)	11,9 (53	
, B & C	Steel strength in tension of single insert, seismic	N _{sa,insert,eq}	lb (kN)	3,955 (17.6)	9,480 (42.2)	9,850 (43.5)	11,9 (53	
Reduction fa	actor, steel strength in tension	φ	-			0.65		
	CONCRETE	<b>BREAKOUT S</b>	TRENGTH II	N TENSION (ACI 318-	19 17.6.2, ACI 318-1	14 17.4.2 or ACI 318-11	D.5.2)	
ffectivenes	ss factor for cracked concrete	kc	-		2	4 (for SI use a value of 10	C)	
	n factor for uncracked concrete	$\Psi_{C,N}$	-			1.25		
Reduction fa	actor, concrete strength in tension	φ	-			0.70		
		TEEL STRENG	TH IN SHEA		,	or ACI 318-11 D.6.1)		
According	Steel strength in shear of single insert, in lower or upper flute	Vsa,insert,deck	lb (kN)	1,980 (8.8)		280 0.1)	3,0 (13	
o Figure A	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	1,980 (8.8)		280 0.1)	2,6 (12	
According	Steel strength in shear of single insert, in lower or upper flute	Vsa,insert,deck	lb (kN)	1,805 (8.0)		.080 9.3)	2,9 (13	
to Figures B & C	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	1,805 (8.0)		,080 9.3)	2,6 (12	
Reduction fa	actor, concrete strength in tension	φ	-			0.60		
	te must have a compressive strength t of headed cast-in specialty inserts sha						) as applicable, for cas	st-in headed ancho
3. Strenath	of headed cast-in specialty inserts sha te breakout strength must also be in a h reduction factors for the inserts shal for load combinations in accordance v	I be taken from	ACI 318-19	17.5.3. ACI 318-14 17	7.3.3 or ACI 318-11 D.4	4.3. as applicable, for cast-	in headed anchors. Str	enath redu

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of  $\phi$  applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 D.4.4.

4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with steel deck figures, as applicable and the installation tables for the inserts.

5. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.

6. The tabulated seismic values for steel strength of the inserts are applicable to installations in the lower flute or upper flute of the indicated steel deck figures, as applicable.

ECHANICAL

ANCHORS

BANG-IT Concrete Inserts

## Design Information for Bang-It+ Multi Thread Inserts^{1,2,3,4,5,6}



															ABLES
	Design Information	Symbol	Units		& 3/8 ulti	1/4	& 3/8 & Multi	1/2		& 1/2 ulti	3/8	& 1/2 & Multi	5/8		& 3/4 ulti
				1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"
Outside diam	neter of the steel insert body	da	in. (mm)				0.7 (18)						1.0 (25)		
Insert head r	et bearing area	Abrg	in² (mm²)				1.20 (762)						1.40 (903)		
Effective emb	pedment depth	hef	in. (mm)				1.75 (45)						1.75 (45)		
	ST	'EEL STRENGT	'H IN TENSI	ON (ACI :	318-19 1	7.6.1, AC	I 318-14	17.4.1 (	or ACI 31	8-11 D.5	.1)				
According to Figures	Steel strength in tension of single insert	Nsa,insert	lb (kN)	1,965 (8.7)	9,480 (42.2)	3,545 (15.8)	8,565 (38.1)	9,850 (43.8)	9,480 (42.2)	9,850 (43.8)	11,485 (51.1)		365 7.2)		805 2.5)
A, B & C	Steel strength in tension of single insert, seismic	N _{sa,insert,eq}	lb (kN)	1,965 (8.7)	9,480 (42.2)	3,545 (15.8)	8,565 (38.1)	9,850 (43.8)	9,480 (42.2)	9,850 (43.8)	11,485 (51.1)		365 7.2)		805 2.5)
Reduction fa	ctor, steel strength in tension	φ	-				0.65						0.65		
	CONCRETE	BREAKOUT S	TRENGTH I	N TENSIO	ON (ACI 3	18-19 17	7.6.2, ACI	318-14	17.4.2 0	ACI 318	-11 D.5.2	2)			
	factor for cracked concrete	kc	-					24 (	for SI use		f 10)				
	factor for uncracked concrete	$\Psi_{C,N}$	-							25					
Reduction fac	ctor, concrete strength in tension	φ	-							70					
		TEEL STRENG	TH IN SHEA	<u>``</u>		<u> </u>					<u></u>				
	Steel strength in shear of single insert, in upper flute	Vsa,insert,deck	lb (kN)	1,670 (7.4)	2,280 (10.2)	1,670 (7.4)	3,545 (15.8)	4,165 (18.5)	2,375 (10.6)	4,165 (18.6)	4,875 (21.7)	8,090 (36.0)	8,090 (36.0)	5,620 (25.0)	6,475 (28.8)
According to Figure A	Steel strength in shear of single insert, in lower flute	Vsa,insert,deck	lb (kN)	1,165 (5.2)	2,280 (10.2)	1,275 (5.7)	2,070 (9.2)	2,070 (9.2)	2,080 (9.3)	2,280 (10.2)	2,515 (11.2)		515 1.2)		)45 3.5)
	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	395 (1.8)	2,280 (10.2)	395 (1.8)	1,435 (6.4)	1,790 (8.0)	2,080 (9.3)	2,280 (10.2)	2,175 (9.7)		175 .7)		905 .5)
Annulia	Steel strength in shear of single insert, in upper flute	Vsa,insert,deck	lb (kN)	1,670 (7.4)	2,280 (10.2)	1,670 (7.4)	3,545 (15.8)	4,165 (18.5)	2,375 (10.6)	4,165 (18.5)	4,875 (21.7)	8,090 (36.0)	8,090 (36.0)	5,620 (25.0)	6,475 (28.8)
According to Figures B & C	Steel strength in shear of single insert, in lower flute	Vsa,insert,deck	lb (kN)	1,165 (5.2)	2,080 (9.3)	1,275 (5.7)	1,435 (6.4)	1,790 (8.0)	2,080 (9.3)	2,080 (9.3)	2,175 (9.7)		175 .7)		905 .5)
Duo	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	395 (1.8)	2,080 (9.3)	395 (1.8)	1,435 (6.4)	1,790 (8.0)	2,080 (9.3)	2,080 (9.3)	2,175 (9.7)		175 7)0		905 .5)
Reduction fac	ctor, concrete strength in tension	φ	-				0.60						0.60		
1 Concrete	muet have a compressive strength	f 'c of 2 500 pc	ni minimum	Installation	muet cor	nnly with r	ublichod i	netruction	0						

1. Concrete must have a compressive strength f 'c of 2,500 psi minimum. Installation must comply with published instructions.

Concrete instructions.
 Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with stele deck figures, as applicable.
 Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction values correspond to brittle stele elements. The value of *d* papies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-19 17.5.4.4.
 Wisney manifered and the instellation with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 D.4.4.

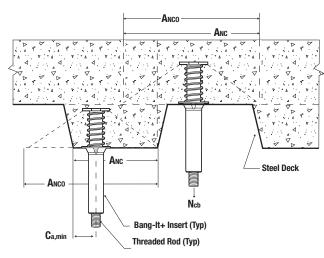
4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with steel deck figures, as applicable and the installation tables for the inserts.

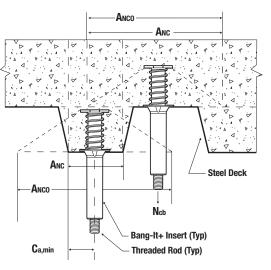
The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements. 5.

6. The tabulated seismic values for steel strength of the inserts are applicable to installations in the lower flute or upper flute of the indicated steel deck figures, as applicable.

## **Design Information for Bang-It+ Push-In Thread Inserts**^{1,2,3,4,5,6}

					ABLES
0	Design Information	Symbol	Units	1/4"	3/8"
Outside diame	eter of the steel insert body	da	in. (mm)	1.0 (25)	1.125 (29)
Insert head ne	et bearing area	A _{brg}	in² (mm²)	2.0 (1290)	2.7 (1742)
Effective emb	edment depth	h _{ef}	in. (mm)	1.5 (38)	1.7 (43)
	STE	EEL STRENGT	h in tensi	ON (ACI 318-19 17.6.1, ACI 318-14 17.4.1 or ACI 318	3-11 D.5.1)
	Steel strength in tension of single insert	Nsa,insert	lb (kN)	11,265 (50.1)	17,595 (78.3)
A B & C	Steel strength in tension of single insert, seismic	Nsa,insert,eq	lb (kN)	11,265 (50.1)	17,595 (78.3)
Reduction fac	tor, steel strength in tension	$\phi$	-	0.	65
		BREAKOUT S	TRENGTH I	N TENSION (ACI 318-19 17.6.2, ACI 318-14 17.4.2 or	
	factor for cracked concrete	k _c	-	24 (for SI use	
Modification f	actor for uncracked concrete	$\Psi_{C,N}$	-	1.	
Reduction fact	tor, concrete strength in tension	$\phi$	-	0.	70
		TEEL STRENG	th in shea	NR (ACI 318-19 17.7.1, ACI 318-14 17.5.1 or ACI 318	-11 D.6.1)
	Steel strength in shear of single insert, in upper flute	Vsa,insert,deck	lb (kN)	3,305 (14.7)	6,900 (30.7)
	Steel strength in shear of single insert, in lower flute	Vsa,insert,deck	lb (kN)	2,295 (10.2)	3,045 (13.5)
	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	2,295 (10.2)	3,045 (13.5)
	Steel strength in shear of single insert, in upper flute	Vsa,insert,deck	lb (kN)	3,305 (14.7)	6,900 (30.7)
	Steel strength in shear of single insert, in lower flute	Vsa,insert,deck	lb (kN)	2,295 (10.2)	2,535 (11.3)
	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	2,295 (10.2)	2,535 (11.3)
Reduction fact	tor, concrete strength in tension	φ	-	0.	60
2. Design of Concrete	headed cast-in specialty inserts sha breakout strength must also be in a	all be in accord	ance with th steel deck f	Installation must comply with published instructions. e provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318- figures, as applicable. ) 17.5.3, ACI 318-11 9.2, as applicable, governed by steel streng 3 or ACI 318-11 9.2, as applicable, governed by steel streng d combinations of 2021 IBC Section 1605.1 or 2018, 2015	FF


tactors for load combinations in accordance with ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of  $\phi$  applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318 (-19 or -14) Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Section 5.3 or ACI 318-11 D.4.4.


4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with steel deck figures, as applicable and the installation tables for the inserts.

5. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.

6. The tabulated seismic values for steel strength of the inserts are applicable to installations in the lower flute or upper flute of the indicated steel deck figures, as applicable.

## Idealization of Concrete Filled Steel Decks for Determination of Concrete Breakout Strength in Accordance with ACI 318





Idealization of 'B' Steel Deck Profiles

Idealization of Standard 'W' Steel Deck Profiles

NOTH ORAN



## Specifications And Physical Properties Of Common Carbon Steel Threaded Rod Elements

Threa	ded Rod Specification	Units	Min. Specified Ultimate Strength, Futa	Min. Specified Yield Strength 0.2 Percent Offset, Fya	Futa — Fya	Elongation Minimum Percent ⁴	Reduction Of Area Min. Percent	Related Nut Specification ⁵
Carbon	ASTM A36/A36M or ASTM F1554 Grade 36	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40 (50 for A36)	ASTM A194 / A563 Grade A
Steel	ASTM A193/A193M ³ Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	ASTM A194 / A563 Grade DH

For SI: 1 inch = 25.4 mm, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

 Inserts may be used in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

2. Standard Specification for Carbon Structural Steel.

3. Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications.

4. Based on 2-inch (50 mm) gauge length except for ASTM A36/A36M and ASTM A193, which are based on a gauge length of 4d (drod).

5. Where nuts are applicable, nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable.



## Steel Design Information For Common Threaded Rod Elements Used With Concrete Inserts^{1,2,3,4}

Design Information		Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch
Threaded rod nominal outside diameter		drod	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Threaded rod effective cross-sectional area		Ase	in² (mm²)	0.032 (21)	0.078 (50)	0.142 (92)	0.226 (146)	0.335 (216)
Steel strength in tension of threaded rod	ASTM A36	Nsa,rod,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.3)
Steel strength in tension of threaded rod, seismic	ASTM F1554, Grade 36	Nsa,rod,eq,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.4)
Steel strength in tension of threaded rod	ASTM A193,	N _{sa,rod,B7}	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Steel strength in tension of threaded rod, seismic	Gr. B7	Nsa,rod,eq,B7	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Reduction factor, steel strength in tension		$\phi$	-			0.75		
Steel strength in shear of threaded	ASTM A36 or	Vsa,rod,A36	lb (kN)	1,115 (4.9)	2,715 (12.1)	4,940 (22.0)	7,865 (35.0)	11,660 (51.9)
Steel strength in shear of threaded rod, seismic	ASTM F1554, Grade 36	Vsa,rod,eq,A36	lb (kN)	780 (3.5)	1,900 (8.4)	3,460 (15.4)	5,505 (24.5)	8,160 (36.3)
Steel strength in shear of threaded rod	ASTM A193,	Vsa,rod,B7	lb (kN)	2,385 (10.6)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)
Steel strength in shear of threaded rod, seismic	Gr. B7	Vsa,rod,eq,B7	lb (kN)	1,680 (7.5)	4,095 (18.2)	7,455 (34.2)	11,865 (52.8)	17,590 (78.2)
Reduction factor, steel strength in tension		$\phi$	-			0.65		

For SI: 1 inch = 25.4 mm, 1 pound = 0.00445 kN, 1 in² = 645.2 mm². For pound-inch unit: 1 mm = 0.03937 inches.

1. Values provided for steel element material types based on minimum specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29).

2.  $\phi$ Nsa shall be the lower of the  $\phi$ Nsarod or  $\phi$ Nsarod or  $\phi$ Nsarod or  $\phi$ Nsarod or  $\phi$ Nsarot or  $\phi$ Nsar

3.  $\phi$ Vsa shall be the lower of the  $\phi$ Vsa,rod or  $\phi$ Vsa,

4. Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for steel elements. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the threaded rod are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of ø applies when the load combinations of IBC Section 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D.4.4.

CAL

## **DESIGN STRENGTH TABLES (SD)**

DE'.'/.'

**ANCHORS & FASTENERS** 

Tension and Shear Design Strengths for Bang-It+ Single Thread Inserts Installed in the Soffit of Uncracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5}

		Minimum Concrete Compressive Strength											
						f'c = 3,	,000 psi						
Embed.	4	1-1/2" W-De	ck (Figure A)	)		B-Deck (	Figure B)			3-7/8" W-De	ck (Figure C	)	
hef	Upper	Flute	Lower	Flute	Upper	Flute	Lower	r Flute	Upper	Flute	Lower	Lower Flute	
(in.)	$\phi {\rm Nn}$ Tension (lbs.)	ØVn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	ØVn Shear (lbs.)	$\phi {\rm Nn}$ Tension (lbs.)	ØVn Shear (Ibs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	
1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250	
1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250	
1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250	
1-3/4	2,665	1,845	1,340	1,845	2,265	1,785	595	1,785	2,265	1,785	1,145	1,785	
1-3/4	2,665         1,845         1,845         2,265         1,785         595         1,785         2,265         1,785         1,145         1,785												
	Depth her (in.) 1-3/4 1-3/4 1-3/4 1-3/4	Depth         Upper           her         ØNn           Tension         (lbs.)           1-3/4         2,665           1-3/4         2,665           1-3/4         2,665           1-3/4         2,665           1-3/4         2,665	Depth         4-1/2* W-be           her         Upper Flute           (in.)         φNn           Tension         gNn           1-3/4         2,665           1-3/4         2,665           1-3/4         2,665           1.370         1.370           1-3/4         2,665           1.370         1.370	Depth her (in.)         Φ / Pite         Lower           ψNn Tension (lbs.)         ΦVn Shear (lbs.)         Φ/Nn Tension (lbs.)         Φ/Nn Tension (lbs.)           1-3/4         2,665         1,370         1,340           1-3/4         2,665         1,370         1,340           1-3/4         2,665         1,370         1,340           1-3/4         2,665         1,370         1,340           1-3/4         2,665         1,370         1,340	Depth her (in.)         Upper Flute         Lower Flute           ψNn Tension (lbs.)         ψNn Shear (lbs.)         ψNn Tension (lbs.)         ψNn Shear (lbs.)         ψNn Tension (lbs.)         ψNn Shear (lbs.)           1-3/4         2,665         1,370         1,340         1,370           1-3/4         2,665         1,370         1,340         1,370           1-3/4         2,665         1,370         1,340         1,370           1-3/4         2,665         1,370         1,340         1,370           1-3/4         2,665         1,845         1,340         1,845	Mercy (In.)         M/In         M/In	f'c = 3,           f'c = 3,           beth           dNn           dNn	f'c = 3,00 psi           f'c = 3,00 psi           beth $h_{er}$ B-Deck (Figure A)           Upper Flute         Low Flute         Upper Flute         Clower B-Deck (Figure B) $h_{er}$ $\mu_{er}$ <	Image: Second s	$b_{er}$ (in.) $d_{Vn}$ $d_{Nn}$ $d_{Vn}$ $d_{Nn}$ $d_{Vn}$ $d_{Nn}$	if c = 3,000 psi           Upper Flute         Lower Flute         Upper Flute           Upper Flute         Lower Flute         Upper Flute         Lower Flute         Upper Flute<	f'c = 3,000 psi           Jupper Flute         Jupper Flute         Start (Figure B)           Jupper Flute         Lower Flute         Upper Flute         Upper Flute         Lower Clower $\phi$ Nn $f$ Cension $\phi$ Nn $f$ Cension $f$ C	

🔄 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

## Tension and Shear Design Strengths for Bang-It+ Single Thread Inserts Installed in the Soffit of Cracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}

			Minimum Concrete Compressive Strength											
							f'c = 3,	,000 psi						
Nominal Anchor	Embed. Depth	4	1-1/2" W-De	ck (Figure A	)		B-Deck (	Figure B)		;	3-7/8" W-De	ck (Figure C	)	
Diameter (in.)	h _{ef} (in.)	Upper	Flute	Lower	Flute	Upper	Flute	Lower	r Flute	Upper	Flute	Lower Flute		
()	()	$\phi {\rm Nn}$ Tension (lbs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	$\phi {\rm Nn}$ Tension (lbs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	
1/4	1-3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250	
3/8	1-3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250	
1/2	1-3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250	
5/8	1-3/4	1,810	1,845	1,070	1,845	1,810	1,785	475	1,785	1,810	1,785	915	1,785	
3/4	1-3/4	1,810	1,810 1,845 1,070 1,845 1,810 1,785 475 1,785 1,810 1,785 91								915	1,785		

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in sand-lightweight concrete with minimum slab thickness,  $h_a = h_{min}$ , and with the following conditions:

- No edge distance influence with  $\Psi_{ed,N} = 1.0$  in tension for upper flute anchors.

- No edge distance ( $c_{a1} \ge 3h_{el}$ ) or corner distance influence ( $c_{a2} \ge 1.5c_{a1}$ ) for upper flute anchors in shear. Shear loads may be applied in any direction.
- 2- Calculations were performed following methodology in ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (N_{sa,insert}, V_{sa,insert}), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (N_{sa,rod}, V_{sa,rod}), the lowest load level controls.
- 3- Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (19 or -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements. Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- 4- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D.
- 5- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (19 or -14) Chapter 17 or ACI 318 (19 or -14) Chapter 18 or -14) Chapter 18 or -14 or -14 or -14 or -14 or -14 or -14 or
- 6- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.



Tension and Shear Design Strengths Installed for Bang-It+ Multi Thread Inserts Installed in the Soffit of Uncracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5}



						Minimum	Concrete C	ompressiv	e Strength	1			
							f'c = 3,	,000 psi					
Nominal	Embed. Depth	4-	1/2" W-De	ck (Figure	A)		B-Deck (	Figure B)		3-	7/8" W-De	ck (Figure	C)
Anchor Diameter (in.)	hef (in.)	Upper	Flute	Lower	Flute	Upper	Flute	Lower	Flute	Upper	Flute	Lower	Flute
	()	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	$\phi$ Vn Shear (lbs.)	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	$\phi$ Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	$\phi$ Vn Shear (lbs.)	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	$\phi$ Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	$\phi$ Vn Shear (lbs.)	$\substack{\phi \text{Nn} \\ \text{Tension} \\ (\text{lbs.})}$	$\phi$ Vn Shear (lbs.)
1/4" (1/4 - 3/8" Multi)	1-3/4	1,275	1,000	1,275	700	1,275	1,000	595	700	1,275	1,000	1,145	700
3/8" (1/4 - 3/8" Multi)	1-3/4	2,265	1,370	1,340	1,370	2,265	1,370	595	1,250	2,265	1,370	1,145	1,250
3/8" (3/8 - 1/2" Multi)	1-3/4	2,265	1,425	1,340	1,250	2,265	1,425	595	1,250	2,265	1,425	1,145	1,250
1/2" (3/8 - 1/2" Multi)	1-3/4	2,265	2,500	1,340	1,370	2,265	2,500	595	1,250	2,265	2,500	1,145	1,250
1/4" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,265	1,000	1,340	765	2,265	1,000	595	765	2,265	1,000	1,145	765
3/8" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,265	2,125	1,340	1,240	2,265	2,125	595	860	2,265	2,125	1,145	860
1/2" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,265	2,500	1,340	1,240	2,265	2,500	595	1,075	2,265	2,500	1,145	1,075
3/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,300	2,925	1,760	1,510	3,300	1,305	655	1,305	3,300	2,925	1,450	1,305
1/2" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,300	4,855	1,760	1,510	3,300	1,305	655	1,305	3,300	4,855	1,450	1,305
5/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,300	4,855	1,760	1,510	3,300	1,305	655	1,305	3,300	4,855	1,450	1,305
5/8" (5/8 - 3/4" Multi)	2-1/4	3,300	3,370	1,760	1,825	3,300	1,145	655	1,145	3,300	3,370	1,450	1,145
3/4" (5/8 - 3/4" Multi)	2-1/4	3,300	3,885	1,760	1,825	3,300	1,145	655	1,145	3,300	3,885	1,450	1,145
- Anchor Pullout/Pryout Strength Con	ntrols 🔲 - C	oncrete Brea	kout Streng	th Controls	- Steel St	trength Contr	ols						

## Tension and Shear Design Strengths Installed for Bang-It+ Multi Thread Inserts Installed in the Soffit of Cracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}



						Minimum	Concrete (	Compressiv	e Strength	1			
							f'c = 3	,000 psi					
Nominal	Embed. Depth	4-	1/2" W-De	ck (Figure	A)		B-Deck (	(Figure B)		3-	7/8" W-De	ck (Figure	C)
Anchor Diameter (in.)	hef	Upper	Flute	Lower	Flute	Upper	[•] Flute	Lowe	r Flute	Upper	Flute	Lower	Flute
	(in.)	$\phi_{\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \\$	$\phi$ Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	$\phi$ Vn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (lbs.)	ØVn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (Ibs.)
1/4" (1/4 - 3/8" Multi)	1-3/4	1,275	1,000	1,070	700	1,275	1,000	475	700	1,275	1,000	915	700
3/8" (1/4 - 3/8" Multi)	1-3/4	1,810	1,370	1,070	1,370	1,810	1,370	475	1,250	1,810	1,370	915	1,250
3/8" (3/8 - 1/2" Multi)	1-3/4	1,810	1,425	1,070	1,250	1,810	1,425	475	1,250	1,810	1,425	915	1,250
1/2" (3/8 - 1/2" Multi)	1-3/4	1,810	2,500	1,070	1,370	1,810	2,500	475	1,250	1,810	2,500	915	1,250
1/4" (1/4 - 3/8 - 1/2" Multi)	1-3/4	1,810	1,000	1,070	765	1,810	1,000	475	765	1,810	1,000	915	765
3/8" (1/4 - 3/8 - 1/2" Multi)	1-3/4	1,810	2,125	1,070	1,240	1,810	2,125	475	860	1,810	2,125	915	860
1/2" (1/4 - 3/8 - 1/2" Multi)	1-3/4	1,810	2,500	1,070	1,240	1,810	2,500	475	1,075	1,810	2,500	915	1,075
3/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	2,640	2,925	1,410	1,510	2,640	1,305	525	1,305	2,640	2,925	1,160	1,305
1/2" (3/8 - 1/2 - 5/8" Multi)	2-1/4	2,640	4,855	1,410	1,510	2,640	1,305	525	1,305	2,640	4,855	1,160	1,305
5/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	2,640	4,855	1,410	1,510	2,640	1,305	525	1,305	2,640	4,855	1,160	1,305
5/8" (5/8 - 3/4" Multi)	2-1/4	2,640	3,370	1,410	1,825	2,640	1,145	525	1,145	2,640	3,370	1,160	1,145
3/4" (5/8 - 3/4" Multi)	2-1/4	2,640	3,885	1,410	1,825	2,640	1,145	525	1,145	2,640	3,885	1,160	1,145
- Anchor Pullout/Pryout Strength Cor	ntrols 🔲 - C	oncrete Brea	kout Streng	th Controls	- Steel St	trength Contr	ols						

1- Tabular values are provided for illustration and are applicable for single anchors installed in sand-lightweight concrete with minimum slab thickness, ha = hmin, and

- with the following conditions:
- No edge distance influence with  $\Psi_{ed,N} = 1.0$  in tension for upper flute anchors.
- No edge distance ( $c_{a1} \ge 3h_{ef}$ ) or corner distance influence ( $c_{a2} \ge 1.5c_{a1}$ ) for upper flute anchors in shear. Shear loads may be applied in any direction.
- 2- Calculations were performed following methodology in ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Nsa,insert), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsa,rod, Vsa,rod), the lowest load level controls.
- 3- Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (19 or -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements. Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- 4- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D.
- 5- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (19 or -14) Chapter 17 or ACI 318 (19 or -14) Chapter 18 or -14) Chapter 18 or -14 (19 or -14) Chapter 18 or -14 (19 or -
- 6- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.



## Tension and Shear Design Strengths Installed for Bang-It+ Push-In Thread Inserts Installed in the Soffit of Uncracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5}

						Minimum	Concrete C	ompressive	Strength				
							f'c = 3,	,000 psi					
Nominal Anchor	Embed. Depth	4	-1/2" W-De	ck (Figure /	A)		B-Deck (	Figure B)		3	-7/8" W-De	ck (Figure C	.)
Diameter (in.)	hef	Upper	Upper Flute Lower Flute Upper Flute Lower Flute Upper Flute Lower									r Flute	
	(in.)	$\phi$ Nn Tension (lbs.)	ØVn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (lbs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	$\substack{\phi \text{Nn} \\ \text{Tension} \\ (\text{lbs.})}$	ØVn Shear (Ibs.)
Push-In 3/8"	1.50	1,795	1,985	1,145	1,375	1,795	1,375	560	1,375	1,795	1,985	960	1,375
Push-In 1/2"	1.70	2,165	2,165 4,140 1,300 1,825 2,165 1,520 585 1,520 2,165 4,140 1,105 1,520										
- Anchor Pullout/Pry	out Strenath (	Controls 🔲 -	trols 🔲 - Concrete Breakout Strenath Controls 📕 - Steel Strenath Controls										

## Tension and Shear Design Strengths Installed for Bang-It+ Push-In Thread Inserts Installed in the Soffit of Cracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}

						Minimum	Concrete C	ompressive	Strength				
							f'c = 3,	000 psi					
Nominal Anchor	Embed. Depth	4	-1/2" W-De	ck (Figure A	A)		B-Deck (	Figure B)		3	-7/8" W-De	ck (Figure C	;)
Diameter	hef	Upper	pper Flute Lower Flute Upper Flute Lower Flute Upper Flute Lower Flute									Flute	
(in.)	(in.)	$\phi$ Nn Tension (lbs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	$\phi$ Nn Tension (lbs.)	ØVn Shear (Ibs.)	$\begin{matrix}\phi {\rm Nn}\\ {\rm Tension}\\ ({\rm lbs.}) \end{matrix}$	ØVn Shear (Ibs.)
Push-In 3/8"	1.50	1,435	1,985	915	1,375	1,435	1,375	445	1,375	1,435	1,985	765	1,375
Push-In 1/2"	1.70	1,735	,735 4,140 1,040 1,825 1,735 1,520 470 1,520 1,735 4,140 885 1,520										

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔳 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in sand-lightweight concrete with minimum slab thickness,  $h_a = h_{min}$ , and with the following conditions:

- No edge distance influence with  $\Psi_{ed,N} = 1.0$  in tension for upper flute anchors.

- No edge distance ( $c_{a1} \ge 3h_{e1}$ ) or corner distance influence ( $c_{a2} \ge 1.5c_{a1}$ ) for upper flute anchors in shear. Shear loads may be applied in any direction.

- 2- Calculations were performed following methodology in ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (N_{sa,insert}, V_{sa,insert}), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (N_{sa,rod}, V_{sa,rod}), the lowest load level controls.
- Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (19 or -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the 3insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements. Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- 4- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D.
- 5- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (19 or -14) Chapter 17 or ACI 318-11 Appendix D.
- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75. 6-

## Tension and Shear Design Strength of Steel Elements (Steel Strength)^{1,2,3,4}

		Steel Elements	- Threaded Rod	
Nominal Rod Diameter	ASTN	I A36	ASTM A193	3 Grade B7
(in.)	ØNsa.rod Tension (Ibs.)	ØV _{sa,rod} Shear (Ibs.)	ØN _{sarod} Tension (Ibs.)	ØV _{sa,rod} Shear (Ibs.)
1/4	1,390	720	3,000	1,550
3/8	3,395	1,750	7,315	3,780
1/2	6,175	3,210	13,315	6,915
5/8	9,835	5,115	21,190	11,020
3/4	14,550	7,565	31,405	16,305

- Steel Strength Controls

1. Steel tensile design strength according to ACI 318-11 Appendix D and ACI 318 (-19 or -14) Chapter 17,  $\phi$ Nsa =  $\phi \bullet$  Ase.N • futa

2. The tabulated steel design strength in tension for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pullout design strength to determine the controlling failure mode, the lowest load level controls.

3. Steel shear design strength according to ACI 318-11 Appendix D and ACI 318 (-19 or -14) Chapter 17,  $\phi$ Vsa =  $\phi \circ 0.60 \circ A_{\text{se,N}} \circ f_{\text{uta}}$ 

4. The tabulated steel design strength in shear for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pryout design strength to determine the controlling failure mode, the lowest load level controls.



ECHANICAL

ANCHORS

BANG-IT®+ Concrete Inserts



## **ORDERING INFORMATION**

## **Bang-It®+ Steel Deck Insert (UNC internal thread)**

Cat. No.	Description	Color Code	Suggested Hole Size in Steel Deck	Pack Qty.
07540-PWR	1/4" Bang-It+	Brown	7/8"	100
07542-PWR	3/8" Bang-It+	Green	7/8"	100
07544-PWR	1/2" Bang-It+	Yellow	7/8"	100
07546-PWR	5/8" Bang-It+	Red	1-1/4"	50
07548-PWR	3/4" Bang-It+	Purple	1-1/4"	50
			· · · · ·	
PFM3521438	1/4-3/8" Bang-It+ Multi	White	7/8"	100
07543-PWR	3/8-1/2" Bang-It+ Multi	Gray	7/8"	100
PFM353143812	1/4-3/8-1/2" Bang-It+ Multi	Aqua	7/8"	50
PFM353381258	3/8-1/2-5/8" Bang-It+ Multi	Orange	1-1/4"	50
PFM3525834	5/8-3/4" Bang-It+ Multi	Black	1-1/4"	50
PFM3610038	3/8" Bang-It+ Push-In	Green	1-1/4"	50
PFM3610012	1/2" Bang-It+ Push-In	Yellow	1-1/4"	50
Inserts are color code	ed to easily identify location, type and s	izes of the internal diam	ieters.	



## Bang-It®+ Installation Accessories and Tools

Cat.No.	Description	Pack Qty.
DCD996P2	20V Max XR Lithium Ion Cordless Drill Driver Kit (5.0Ah)	1
PFM3611000	Bang-It+ Deck Driller Extension 28" (Use with 1/2" Drill Driver)	1
1779804	5L Arbor, 3/8" Solid Hex Shank	1
1779801	2L Arbor, 1/2" Solid Hex Shank	1
2009314CHC	Carbide Hole Cutter Bit 7/8" (use 5L Arbor, not included)	1
2009820CHC	Carbide Hole Cutter Bit 1-1/4" (use 2L Arbor, not included)	1
30912VB12	Vari-Bit Step Drill Bit 7/8", 1-1/8", 1-7/32", 1-1/4", 1-3/8"	1
PFM3613000	Bang-It+ Bridge Bar	20
PFM3613001	Bang-It+ Bridge Bar (packaged with screws)	20
Bang-It+ Bridge Bar	nominal size is 2" wide x 12" long, 14 gauge thickness.	



## **Push-In Thread Couplers**

Cat. No.	Description	Pack Qty.							
PFM3613038	3/8"-16 Coupler Push-In	20							
PFM3613012	1/2"-13 Coupler Push-In	20							
	Push-In thread couplers have one end that does not require turning threaded rod elements during installation which can be ideal for applications such as mounting prefabricated bardware and banger assemblies.								



## **GENERAL INFORMATION**

## DDI[™]+ (DECK INSERT)

Threaded Insert for Metal Deck

## **PRODUCT DESCRIPTION**

The DDI+ (Deck Insert) is a concrete insert designed for installation in concrete-filled metal deck assemblies (i.e. "pan-deck", "Q-deck"). After installation, the threaded male hanger of the insert protrudes below the surface of the deck. The DDI+ comes in sizes ranging from 3/8" to 7/8" in diameter. The threaded bolt offers adjustability for precise height requirements and guarantees the minimum embedment depth. The longer "T" brace insert plate enables a variety of installation locations in across the deck.

## **GENERAL APPLICATIONS AND USES**

- Seismic Loading and Cracked Concrete
- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays
- Mechanical Unit Overhead Utilities
- Conduit and Lighting Systems

## FEATURE AND BENEFITS

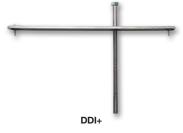
- + Fast and simple to install, low installed cost
- + Pre-mounted self drilling screws for convenient installation
- + Fine-tuned thread length for guaranteed minimum embedment
- + Lengthened "T" brace for more flexible installation positions
- + Provides consistent uniform drop lengths below floor decks in every installation position

## **APPROVALS AND LISTINGS**

- International Code Council, Evaluation Service (ICC-ES), ESR-3958 for concrete-filled metal decks
- Tested and qualified in accordance with ICC-ES AC446 for use in concrete-filled metal decks under the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 (Appendix D)
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes
- FM Approvals (Factory Mutual) see listing for sizes

## **GUIDE SPECIFICATIONS**

1-800-4 DEWALT


CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be DDI+ as supplied by DEWALT, Towson, MD. Anchor inserts shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

## **MATERIAL SPECIFICATIONS**

Anchor Component	Component Material
Metal Plate	ASTM A1011 Carbon Steel or equivalent (plain)
Hex Head Bolt	ASTM A307 Grade A (zinc plated)

## SECTION CONTENTS

General Information	295
Material Specifications	295
Installation Specifications	296
Installation Instructions	297
Performance Data (ASD)	298
Strength Design Information	299
Design Strength Tables (SD)	300
Ordering Information	302



## THREAD VERSION

• UNC Thread

## **ANCHOR MATERIALS**

Plain and zinc plated carbon steel

## **ANCHOR SIZE RANGE**

• 3/8" through 7/8" diameters

## SUITABLE BASE MATERIALS

 Normal-weight concrete or lightweight concrete filled metal deck assemblies







Threaded Insert for Meta

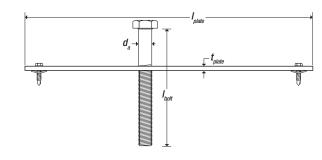
INSEI

DECK

## ECHANICAL ANCHORS

DDITM+ (DECK INSERT) Threaded Insert for Metal Deck

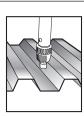
|--|


## **DDI+** Insert Installation Information and Supplemental Information^{1,2}

Design In	formation	Notation	Units	3/8-inch	1/2-inch	5/8-inch	3/4-inch	7/8-inch
Nominal bo	olt diameter	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)
Bolt thread	size (UNC)	-	in.	3/8-16	1/2-13	5/8-11	3/4-10	7/8-9
Length of	insert bolt	l _{bolt}	in (mm)	8 (203)	8 (203)	8 (203)	8 (203)	8 (203)
Typical drill bit d	liameter for deck	Cluit	in.	7/16 or 1/2	9/16 or 5/8	11/16 or 3/4	13/16 or 7/8	15/16 or 1
Nominal overall le	ngth of insert plate	Eplate	in.² (mm²)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)
Nominal width	of insert plate	Wplate	in.² (mm²)	1-1/4 (32)	1-1/4 (32)	1-1/4 (32)	2 (51)	2 (51)
Approximate thick	ness of insert plate	t _{plate}	in. (mm)	3/16 (4.8)	3/16 (4.8)	3/16 (4.8)	3/8 (9.5)	3/8 (9.5)
Minimum nominal	Over upper flute	hnom (upperflute)	in	1-3/4	2	0.0/0	0 5/0	0 5/0
Minimum nominal embedment depth	Over flute incline	hnom (upperincline)	in. (mm)	(45)	(51)	(60)	(67)	2-5/8 (67)
	Over lower flute	hnom (lowerflute)	, '		· · /	(00)	. /	(07)
Minimum offostivo	Over upper flute	hef (upperflute)	in	1.50	1 75	2.00	0.00	0.05
Minimum effective embedment depth	Over flute incline	hef (upperincline)	in. (mm)	1.50 (38)	1.75 (45)	8         8         8           (203)         (203           11/16 or 3/4         13/16 or           12         12           (305)         (305           1-1/4         2           (32)         (51)           3/16         3/8           (4.8)         (9.5)           2-3/8         2-5/4           (60)         2.20           (51)         2.5/4           (60)         2.20           (51)         2.5/4           (60)         2.20           (51)         2.5/4           (60)         2.20           (51)         2.5/4           (60)         2.20           (51)         2.5/8           3         3-1/4           (76)         830           N/A         N/A           See Figure C         See Figure C           6         6-5/4           (152)         (168           Ints for reinforcement in ac           -14         17.7.2 or ACI 318-11           ideline if specified cover re           5-5/8         5-3/4           2-5/8         2-3/4           0.226 </td <td></td> <td rowspan="2">2.05 (52)</td>		2.05 (52)
	Over lower flute	hef (lowerflute)		()	( -7	(- /	0.750 (19.1)           3/4-10           8 (203)           13/16 or 7/8           12 (305)           2 (51)           3/8 (9.5)           2-5/8 (67)           2.20 (56)           3.1/4 (83)           3.1/4 (83)           N/A           2           3.1/4 (83)           C           See Figure C           3 (76)           6-5/8 (168)           ccment in accord ACI 318-11 7.7,           ified cover required	
Minimum concrete	Over upper flute	h _{min (upperflute)}			0.1/0	0	0.1/4	0.1/4
member thickness	Over flute incline	h _{min (upperincline)}	in. (mm)	2 (51)		0.625 $0.750$ $(15.9)$ $(19.1)$ $5/8-11$ $3/4-10$ 8 $(203)$ $11/16$ or $3/4$ $13/16$ or $7/8$ $12$ $12$ $(305)$ $(305)$ $1-1/4$ $2$ $(305)$ $(305)$ $1-1/4$ $2$ $(305)$ $(35)$ $1-1/4$ $2$ $(305)$ $(35)$ $1-1/4$ $2$ $(305)$ $(51)$ $3/16$ $3/8$ $(4.8)$ $(9.5)$ $2-3/8$ $(60)$ $2-3/8$ $(67)$ $2.00$ $(51)$ $2.00$ $(56)$ $3$ $3-1/4$ $(60)$ $6-5/8$ $(76)$ $6$ $6$ $6-5/8$ $(152)$ $76$ $6$ $6-5/8$ $(152)$ $76$ $6$ $6-5/8$ $(152)$ $76$		3-1/4 (83)
(topping thickness)	Over lower flute	hmin (lowerflute)			(04)	(10)	0.750 (19.1) 3/4-10 8 (203) 13/16 or 7/8 12 (305) 2 (51) 3/8 (9.5) 2-5/8 (67) 2.20 (56) 3-1/4 (83) N/A See Figure C 3 (76) 6-5/8 (168) ement in accorda ACI 318-11 7.7, a ied cover requirer lable. 5-3/8 2-3/8 0.335 (212) 0.65	(00)
	Over upper flute	Cmin,deck (upperflute)	in.	N/A	NI/A	(64)         (76)         (83)           N/A         N/A         N/A           Figure C         See Figure C         See Figure C           2         2-1/2         3	N1/A	N/A
Minimum flute edge distance (insert bolt)	Over flute incline	Cmin,deck (upperincline)	(mm)	IWA	IVA	IV/A	IN/A	IW/A
distance (insert bolt)	Over lower flute	Cmin,deck (lowerflute)	in. (mm)	See Figure C	See Figure C	See Figure C	See Figure C	See Figure
Minimum spacing distance	Over upper flute	Smin (upperflute)	in. (mm)	1-1/2 (38)	2 (51)		(19.1)         3/4-10         8         (203)         3/4         13/16 or 7/8         12         (305)         2         (51)         3/8         (9.5)         2-5/8         (67)         2.20         (56)         3-1/4         (83)         N/A         C         See Figure C         3         (76)         6-5/8         (168)         forcement in accorda         or ACI 318-11 7.7, a         ecified cover requirer         available.         5-3/8         2-3/8         0.335         (212)         0.65	3-1/2 (89)
(bolt spacing,	Over flute incline	Smin (upperincline)	in.	4-1/2	5-1/4			6-5/8
center-to-center)	Over lower flute	Smin (lowerflute)	(mm)	(114)	(133)	(152)	(168)	(168)
	Over upper flute	Cmin (upperflute)						
Minimum deck end distance	Over flute incline	Cmin (upperincline)	in.	AC318-191	7.9.2(a), ACI 318	8         8         8           11/16 or 3/4         13/16 or 7/8           11/16 or 3/4         13/16 or 7/8           12         12           (305)         (305)           1-1/4         2           (32)         (51)           3/16         3/8           (4.8)         (9.5)           2-3/8         2-5/8           (60)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         2.20           (51)         3.1/4           (83)         1           X/A         N/A           N/A         N/A           See Figure C         See Figure C           2-1/2         3           (64)         (76)           6 <tb< td=""><td>is applicable.</td></tb<>	is applicable.	
uistance	Over lower flute	Cmin (lowerflute)	- (mm)	4da can be c				nents are not
Approx. Thread Projection	Over Upper Flute	_	in.	6-1/4	6	5-5/8	5-3/8	5-3/8
(through 3-inch- deep deck)	Over Lower Flute			3-1/4	3	2-5/8	(203) 13/16 or 7/8 12 (305) 2 (51) 3/8 (9.5) 2-5/8 (67) 2.20 (56) 31/4 (83) N/A See Figure C 3 (76) 6-5/8 (168) ment in accorda Cl 318-11 7.7, a d cover requirer ble. 5-3/8 2-3/8 	2-3/8
Effective tensile stre	ess area (insert bolt)	A _{se}	in.² (mm²)	0.078 (50)	0.142 (92)			0.462 (293)
Insert head ne	et bearing area	Abrg	in.² (mm²)	0.17 (110)	0.28 (181)			0.89 (574)
Minimum specifie	d ultimate strength	f _{uta}	psi (N/mm²)					
Minimum specified yield strength		f _{ya}	psi (N/mm²)					

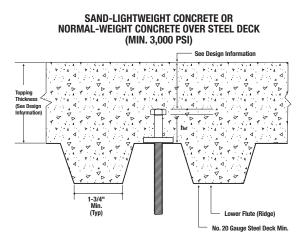
1. For installation detail for inserts in concrete-filled steel deck assemblies, see Figures A, B and C (i.e. over upper flute, over flute incline, over lower flute).

2. The insert plate is premouted with a #8-18 self-drilling screw with a #2 drill point (16 gauge max thickness).


## **DDI+ Insert Detail**

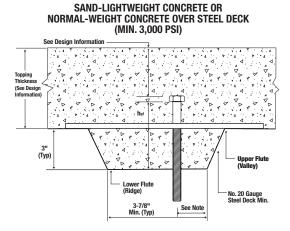




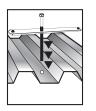

## INSTALLATION INSTRUCTIONS

Cut (e.g. drill/punch) a hole in the steel deck to the hole size required by the threaded bolt of the insert.

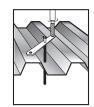



**Figure A** 

DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Upper Flute)  $^{\rm 2.3}$ 



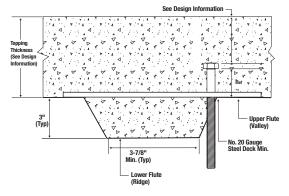

## **Figure C**


DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Lower Flute)^{1,2,5}



Place the threaded bolt of the insert through the hole in the steel deck.




The metal plate of the insert must be on the top of the deck flutes. The metal plate can (optionally) be secured to the deck using the pre-assembled self-drilling screws.



## **Figure B**

DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Flute Incline)  $^{\rm (2.4)}$ 

## SAND-LIGHTWEIGHT CONCRETE OR NORMAL-WEIGHT CONCRETE OVER STEEL DECK (MIN. 3,000 PSI)



- Installations require a minimum concrete member topping thickness from the top of the upper flute as given in the Design Information Table.
- Inserts may be placed on the upper flute of the steel deck assembly; they may be installed anywhere across upper flute as follows:

(Figure A) - Placed over the upper flute with threaded bolt installed through the upper flute or; (Figure B) - Placed over the upper flute spanning the lower flute with threaded bolt installed through the inclined section or;

(Figure C) - Placed over the upper flute spanning the lower flute with threaded bolt installed through the lower flute.

- Inserts over the upper flute with threaded bolt installed through the upper flute may be placed in any location and orientation that meets the minimum deck end distance requirements (see Design Information Table). The minimum deck end distance is measured from deck end to the centerline of the insert bolt.
- 4. Inserts over the upper flute spanning the lower flute with threaded bolt installed through the inclined section may be placed in any location and orientation that meets the minimum deck end distance requirements (see Design Information Table). The minimum deck end distance is measured from deck end to the centerline of the insert bolt.
- 5. Inserts over the upper flute spanning the lower flute with threaded bolt installed through the lower flute may be placed in any location that meets the minimum deck end distance and minimum lower flute edge distance requirements. The minimum deck end distance is measured from deck end to the centerline of the insert bolt. For lower flute widths of 3-7/8-inch, a maximum 1-inch centerline bolt offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 15/16 -inch is also satisfied.

1-800-4 DEWALT



## **PERFORMANCE DATA (ASD)**

Ultimate and Allowable Load Capacities for DDI+ (Deck Insert) Installed in the Soffit of Sand-lightweight or Normal Weight Concrete over Metal Deck Floor and Roof Assemblies^{1,2,3,4,5,6}



ſ						Normal-weight or Sand-lightweight concrete, f'c $\geq$ 3,000 psi											
	Nominal	Nominal	Min.	Min. Min	Min.	Min.	3-7/8" or 4-1/2" Wide Deck										
Anchor Diameter in.		Embed. Depth	Concrete Topping	Insert	End	Inst	alled Ove	r Upper F	lute	Inst	alled Ove	r Flute Inc	line	Installed Over Lower Flute			
		hnom Thickness		Thickness Spacing	Distance in.	Ultimat	e Load	Allowab	le Load	I Ultimate Load Allow		Allowab	Allowable Load U		e Load	Allowable Load	
		in.	in.			Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
Ļ						lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
	3/8	1-3/4	2	4-1/2	6	3,420	1,985	1,140	660	5,230	1,985	1,745	660	5,230	2,610	1,745	870
ſ	1/2	2	2-1/2	5-1/4	7	4,310	4,205	1,435	1,400	6,235	4,205	2,080	1,400	6,235	5,155	2,080	1,720
	5/8	2-3/8	3	6	8	5,265	6,450	1,755	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275
ſ	3/4	2-5/8	3-1/4	6-3/8	8-3/4	5,770	6,450	1,925	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275
ſ	7/8	2-5/8	3-1/4	6-3/8	8-3/4	5,770	6,450	1,925	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275

1. Tabulated ultimate load values are for anchor inserts installed in uncracked concrete.

2. Allowable load capacities listed are calculated using an applied safety factor of 3.0

3. Nominal embedment depth is measured from the bottom of the insert plate to the top of the insert bolt head.

4. Insert spacing and end distances are measured from the centerline of the insert bolt head.

5. Shear loads may be applied in any direction.

6. For inserts installed over the upper flute and where shear loads act parallel to the flute, the tabulated allowable load valuesmay be increased by 20 percent (multiplied by 1.2).

## UL Listings and FM Approvals for Supporting Fire Protection Services & Automatic Sprinkler Systems

Listing / Approval		ts									
Listing / Approval	3/8-inch	1/2-inch	5/8-inch	3/4-inch	7/8-inch						
UL Max. Pipe Size	4"	8"	12"	12"	12"						
FM Max. Pipe Size	4"	8"	12"	12"	-						
Underwriters Laboratories (UL Listed) – File No. EX1289 and VFXT7.EX1289											
FM Approvals (Factory Mutual)											

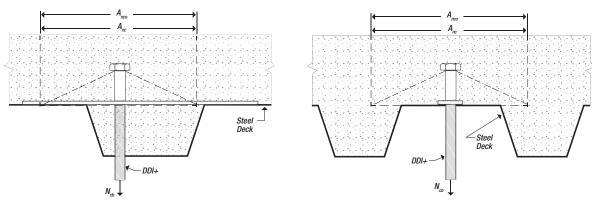
DDITM+ (DECK INSERT) Threaded Insert for Metal Deck

## **STRENGTH DESIGN INFORMATION**

DDI+ Insert Design I	nformation ^{1,2,3,4,5,6}				CODE LIST			
•	Design Information	Symbol	Units	3/8-inch	1/2-inch	5/8-inch		
Insert O.D. (nominal bolt dia	meter)	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)		
Insert head net bearing area		Abrg	in² (mm²)	0.17 (110)	0.28 (181)	0.45 (290)		
Effective tensile stress area		A _{se}	in.² (mm²)	0.078 (50)	0.142 (92)	0.226 (146)		
	Over upper flute	h _{ef} (upperflute)	in.	1.50	1 75	2.00		
Effective embedment depth	Over flute incline	hef (fluteincline)	(mm)	3/8-inch         1/2-inch           0.375         0.500           (9.5)         (12.7)           0.17         0.28           (110)         (181)           0.078         0.142	(51)			
	Over lower flute	hef (lowerflute)	. ,		ICC-ES ESR-i           1/2-inch           0.500           (12.7)           0.28           (181)           0.142           (92)           1.75           (45)           2.50           (64)           ation Information i           igures A, B and C           24           (10)           1.25           8,520           (37.9)           4,260           (18.9)           3,410           (15.2)           2,860           (12.7)           4,260           (18.9)           3,410           (15.2)           2,860           (18.9)           3,410	. ,		
Minimum concrete member	thickness (topping thickness over upper flute)	h _{min}	in. (mm)			3.25 (83)		
Minimum spacing and edge	distance	Smin, Cmin	in. (mm)		(64)(83)ation Information Table and igures A, B and C24 (10)			
Effectiveness factor for crack	ked concrete	kε	(SI)		24 (10)			
Modification factor for tension	n strength in uncracked concrete	$\Psi_{c,N}$	-		1.25	(10)		
According to	Nominal tension strength of single insert as governed by steel strength	N _{sa,insert}	lb (kN)	4,650	8,520	13,560		
Figures A, B or C	Nominal tension strength of single insert as governed by steel strength, seismic	N _{sa,insert,eq}	lb (kN)	(20.7)	(37.9)	(60.3)		
According to Figure A	Nominal steel shear strength of single insert in the soffit of concrete on steel deck	V _{sa,insert,deck} (upperflute)	lb (kN)			7,245		
(over upper flute)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	Vsa,insert,deck,eq (upperflute)	lb (kN)			(32.2)		
According to Figure B	Nominal steel shear strength of single insert		lb (kN)			5,240		
(over flute incline)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	V _{sa,insert,deck,eq} (fluteincline)	lb (kN)			(23.3)		
According to Figure C	Nominal steel shear strength of single insert in the soffit of concrete on steel deck	V _{sa,insert,deck} (lowerflute)	lb (kN)			5,735		
(over lower flute)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	V _{sa,insert,deck,eq} (lowerflute)	lb (kN)			(25.5)		

For SI: 1 inch = 25.4 mm, 1 pound = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch unit: 1 mm = 0.03937 inches.

1. Concrete must have a compressive strength f 'c of 3,000 psi (20.7 MPa) minimum.


 Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with the Idealization of Concrete Filled Steel Decks Figure.

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert shall be taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4.

4. Insert 0.D. is the nominal bolt diameter of the insert.

5. Minimum spacing distance between anchors and minimum edge distances for cast-in headed DDI+ inserts shall be in accordance with the Installation Information Table, Design Information Table, Figures A, B and C and noted provisions.

6. Shear loads for concrete inserts in concrete-filled steel deck assemblies may be applied in any direction (i.e. over upper flute, over flute incline, over lower flute).



Idealization of Steel Deck Profile (over lower flute or over flute incline)

Idealization of Steel Deck Profile (over upper flute)

Idealization of Concrete Filled Steel Decks for Determination of Concrete Breakout Strength in Accordance with ACI 318





## **DESIGN STRENGTH TABLES (SD)**

Tension and Shear Design Strengths for DDI+ Inserts Installed in Uncracked Lightweight Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}



		Minimum Concrete Compressive Strength							
lucest 0.D	Furbad								
Insert O.D. (Nominal Bolt Diameter)	Embed. Depth hef	Upper Flute (Figure A)		Flute Incline (Figure B)		Lower Flute (Figure C)			
(in.)	(in.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ØNn Tension (lbs.)	∲Vn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	∲Vn Shear (lbs.)		
3/8	1-3/4	1,795	1,480	1,795	850	1,795	1,480		
1/2	1-3/4	2,265	2,770	2,265	2,215	2,265	2,770		
5/8	1-3/4	2,765	4,710	2,765	3,405	2,765	3,730		

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

## Tension and Shear Design Strengths for DDI+ Inserts Installed in Cracked Lightweight Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6,7}

				Minimum Concrete C	ompressive Strength				
lucard 0 D	Furbad	f'c = 3,000 psi							
Insert O.D. (Nominal Bolt Diameter)	Embed. Depth her (in.)	Upper Flute (Figure A)		Flute I (Figu		Lower Flute (Figure C)			
(in.)		$\phi$ Nn Tension (lbs.)	ØVn Shear (Ibs.)	$\phi$ Nn Tension (Ibs.)	∲Vn Shear (lbs.)	$\phi$ Nn Tension (lbs.)	∲Vn Shear (lbs.)		
3/8	1-3/4	1,435	1,480	1,435	850	1,435	1,480		
1/2	1-3/4	1,810	2,770	1,810	2,215	1,810	2,770		
5/8	1-3/4	2,210	4,710	2,210	3,405	2,210	3,730		
- Anchor Pullout/Pryc	out Strength Controls 🔲	- Concrete Breakout Stre	ngth Controls 🔳 - Steel	Strength Controls					

Tabular values are provided for illustration and are applicable for single anchors installed in sand-lightweight concrete with minimum member thickness (topping 1thickness),  $h_a = h_{min}$ , and with the following conditions:

- For Upper Flute and Flute Incline: cat is greater than or equal to the critical edge distance, cac

- For Lower Flute: Ca1 is equal to the minimum lower flute edge distance

Calculations were performed following methodology in ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode listed (e.g. 2-For Tension: steel strength, concrete breakout strength, or pullout strength; For Shear: steel strength). Furthermore, the capacities for concrete breakout strength in tension are calculated using the effective embedment values, her, for the selected anchors as noted in the design information table. Please also reference the installation specifications for additional information.

Strength reduction factors (ø) for the inserts are based on ACI 318-19 17.5.3, ACI 318-14 17.3.3 for cast-in headed anchors. Condition B is assumed. Strength 3reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 governed by steel strength of the insert are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements.

4-Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5-For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Chapter 17 6and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.

7- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.



Insert O.D. (Nominal Bolt **Diameter)** 

(in.)

3/8 1/2

5/8

## Tension and Shear Design Strengths for DDI+ Inserts Installed in Uncracked Normal-Weight Concrete **Filled Steel Deck**

k and Roof A	ssemblies ^{1,2,3,4,5,6}					ABLES 2	
	Minimum Concrete Compressive Strength f'c = 3,000 psi						
Freehand							
Embed. Depth hef	Upper Flute (Figure A)		Flute Incline (Figure B)		Lower Flute (Figure C)		
(in.)	∲Nn Tension (lbs.)	∲Vn Shear (lbs.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	
1-1/2	2,115	1,480	2,115	850	2,115	1,480	
1-3/4	2,665	2,770	2,665	2,215	2,665	2,770	

3.255

3.405

3,255

SHOTH DES

NCHORS ECHANICAL

> Threaded Insert for Metal SN

DECK



3,730

## Filled Steel Deck and Roof Assemblies^{1,2,3,4,5,6,7} **Minimum Concrete Compressive Strength**

Tension and Shear Design Strengths for DDI+ Inserts Installed in Cracked Normal-Weight Concrete

4.710

	Embed. Depth her (in.)	f'c = 3,000 psi					
Insert O.D. (Nominal Bolt Diameter)		Upper Flute (Figure A)		Flute Incline (Figure B)		Lower Flute (Figure C)	
(in.)		∲Nn Tension (lbs.)	∲Vn Shear (lbs.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	∲Nn Tension (lbs.)	∲Vn Shear (Ibs.)
3/8	1-1/2	1,690	1,480	1,690	850	1,690	1,480
1/2	1-3/4	2,130	2,770	2,130	2,215	2,130	2,770
5/8	2	2,605	4,710	2,605	3,405	2,605	3,730
🗖 - Anchor Pullout/Prout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls							

3,255

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

2

Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum member thickness (topping 1thickness),  $h_a = h_{min}$ , and with the following conditions:

- For Upper Flute and Flute Incline: ca1 is greater than or equal to the critical edge distance, cac

- For Lower Flute: ca1 is equal to the minimum lower flute edge distance

- Calculations were performed following methodology in ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode listed (e.g. 2-For Tension: steel strength, concrete breakout strength, or pullout strength, For Shear: steel strength). Furthermore, the capacities for concrete breakout strength in tension are calculated using the effective embedment values, her, for the selected anchors as noted in the design information table. Please also reference the installation specifications for additional information.
- Strength reduction factors (ø) for the inserts are based on ACI 318-19 17.5.3, ACI 318-14 17.3.3 for cast-in headed anchors. Condition B is assumed. Strength 3reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 governed by steel strength of the insert are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5-For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17.
- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Chapter 17 6and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.
- 7- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.



## **ORDERING INFORMATION**

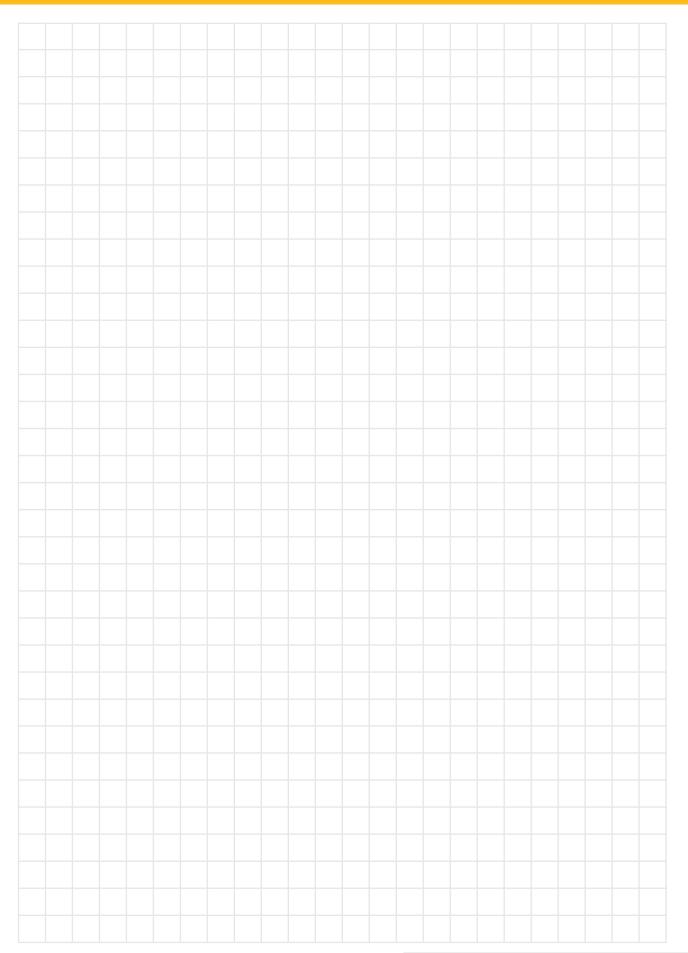
## DDI+ (Deck Insert)

Cat. No.	Anchor Size	Rod/Anchor Dia.	Pack Qty.
PFM2511100	3/8" Metal Deck Insert	3/8"	20
PFM2511110	1/2" Metal Deck Insert	1/2"	20
PFM2511120	5/8" Metal Deck Insert	5/8"	20
PFM2511130	3/4" Metal Deck Insert	3/4"	12
PFM2511140	7/8" Metal Deck Insert	7/8"	12



DELIGIA

## **DDI+ Installation Tools**


Cat.No.	Description	Pack Qty.
DCD996P2	20V Max XR Lithium Ion Cordless Drill Driver Kit (5.0Ah)	1
PFM3611000	Deck Driller Extension 28" (Use with 1/2" Drill Driver)	1

## **Push-In Thread Couplers**

Cat. No.	Description	Internal Thread Diameter	Pack Qty.
PFM3613038	3/8"-16 Coupler Push-In	3/8" to 3/8"	20
PFM3613012	1/2"-13 Coupler Push-In	1/2" to 1/2"	20

Push-In couplers have one end that does not require turning threaded rod elements during installation which can be ideal for applications such as mounting prefabricated hardware and hanger assemblies.









**EXTRACTOR** 

**HOLLOW BIT ROTARY HAMMER** 

ANCHORS

## **OSHA** COMPLIANT

## **DESIGNED TO FAST-TRACK ANCHOR INSTALLATION AND REDUCE DUST EXPOSURE.**

Using the DEWALT Hollow Bit[™] and dust extractor with SDS rotary hammers creates an OSHA-compliant (1926.1153) solution for dust control. The Hollow Bit simultaneously extracts dust to clean holes while drilling. For agility on the jobsite, go cordless with DEWALT's offering of batterypowered hammer drills, dust extractors and portable power stations.

# **DUST EXTRACTORS**

## DWV010 8 Gallon HEPA/ **RRP Dust Extractor**



DCV585 60V MAX* **Dust Extractor** 



DCH416 GOV MAX* Brushless 1-1/4" **SDS PLUS Rotary Hammer** 

DEWALT



DCH614 60V MAX* Brushless 1-3/4" SDS MAX **Combination Rotary Hammer** 

*With respect to 60V MAX*, Maximum initial battery voltage (measured without a workload) is 60 volts. Nominal voltage is





**ANCHORS & FASTENERS** 

## UP TO 70% TIME SAVINGS ON INITIAL HANGER PLACEMENT*

*vs. HangerWorks™ 2.0 Hanger Placement in Revit® Design Software

HangerWorks[®] PRO

## PLACEMENT HANGER Ε AND H E Ε TRAYS. CAB E CON UIT. AND **GT**



PREFABRICATION SPOOLS



AUTOMATED POINT LOADS & SEISMIC BRACING

**CLASH DETECTION** 

LL	OF	MAT	ER	AL

✓__ ✓__



0

DEWALT

ANCHORS & FASTENERS

•

FIELD LAYOUT POINTS

ENGINEERING QUICK STAMPS



**GUARANTEED TOUGH**:

CUSTOMIZABLE

DESIGNS



## **ANCHORS & FASTENERS**



VISIT ANCHORS.DEWALT.COM FOR:

**DOWNLOADS** 

TRAINING

**SUPPORT** 

**SOFTWARE** 

**ENGINEERING & PRODUCT SUPPORT** 

Call: 1-800-524-3244 Email: anchors@DEWALT.com



www.**DEWALT**.com