

SELECTION GUIDE	152
UNDERCUT ANCHORS	
ATOMIC+ UNDERCUT®	153
EXPANSION ANCHORS	
POWER-STUD®+ SD1	164
POWER-STUD®+ SD2	178
POWER-STUD®+ SD4/SD6	188
POWER-STUD® HD5	199
POWER-STUD [®]	206
DOMESTIC WEDGE ANCHOR	216
POWER-BOLT [®] +	221
POWER-BOLT®	230
PB-PR0™	239
LOK-BOLT° AS	244
SET-BOLT [®]	249
SCREW ANCHORS	
SCREW-BOLT+™	251
316 STAINLESS STEEL WEDGE-BOLT [™]	271
SNAKE+®	278
DROP-IN ANCHORS	
STEEL DROPIN™	287
SMART DI [™]	293
MINI DROPIN™	297
HOLLOW-SET [®] DROPIN	301
ROD HANGING SYSTEM AND CONCRETE INSERTS	
HANGERMATE®+	307
MINI-UNDERCUT+ [™]	318
WOOD-KNOCKER [®] II+	324
BANG-IT [®] +	331
DDI+™	339
BOLT/SHIELD ANCHORS	
DOUBLE™	345
SINGLE	349
CALK-IN™	351
LAG SHIELD™	353
NAIL-IN/PIN ANCHORS	
SPIKE®	356
DRIVE®	366
ZAMAC HAMMER-SCREW®	369
ZAMAC NAILIN®	373
NYLON NAILIN®	376
SAFE-T PIN™	379
HELI-PIN™	381

2 ECHANICAL

		Ba	ase	Ма	ater	rial							An	cho	or D	ian	nete	ər				ŀ	lea	ad S	tyle)					Co	ati	ng/	'Ma	iter	ial		
		Concrete	Lightweight Concrete	Hollow Core Plank	Grout-filled Concrete Masonry	Hollow Concrete Masonry	Solid Brick	Hollow Brick	Stone	Structural Clay Tile	Wood	Steel	3/16"	1/4"	5/16"	3/8"	1/2"	5/8"	0/4 7/8"	1" (24mm)	1_1//" (98mm)	T=1/4 (2011111) Einichad Hav Haad		Hex Head Bound/Acorn Head	Flat Head (Countersunk)	Mushroom Head	Removable	Tie-Wire Head	Tamperproof	Internal Thread	Coated/Plated Carbon Steel	Galvanized Carbon Steel	Type 303/304 Stainless Steel	Type 316 Stainless Steel	Type 410 Stainless Steel	Perma-Seal Coated	Nylon/Plastic	Building Code / Jurisdiction Recognition
	Atomic+ Undercut®	•	•															•				T	•	•							•			•				ICC-ES ESR-3067
	Power-Stud®+ SD1	•	•		•				0					•		•	•	•					•	•				•			•							ICC-ES ESR-2818 & 2966 IBC, NBC, City of LA, FBC, FM, UL
	Power-Stud®+ SD2	•	•		•				0							•	•						•	•							•							ICC-ES ESR-2502 IBC, NBC, City of LA, FBC, FM, UL
ş	Power-Stud®+ SD4/SD6	•	•		•				0					•		•	•						•	•									•	•				ICC-ES ESR-2502 IBC, NBC, City of LA, FBC
on Anchoi	Power-Stud® HD5	•	•		•											•	•															•						
Expansi	Power-Bolt [®] +	•	•		0				0					•	_	•	•	•									•				•							ICC-ES ESR-3260 IBC, City of LA
	Power-Bolt®	•	•	0	•	•	•	0	0							•	•	•							•		•				•		•					
	PB-PR0 [™]	•	0																	•											•							
	Lok-Bolt AS®	•	0	0	•	•	•	0	0					•	•	•	•						•	•		•		•		•	•		•					
lors	Screw-Bolt+ [™]	•	•	0	•	0	•							•	_	•	•	•				•					•				•	•						ICC-ES ESR-3889 IBC, City of LA, FBC
Screw Anch	316 Stainless Steel Wedge-Bolt™	•			•		•							•		•	•										•							•				
S	Snake+®	•	•											•	_	•	•										•			•	•							ICC-ES ESR-2272 IBC, City of LA, FM
	Steel Dropin™	•	•						0					•	,	•	•													•	•		•	•				FM, UL
1 Anchors	Smart DI™	•	0						0					•		•	•													•	•							FM, UL
Drop-in An	Mini Dropin [™]	•	•	•	0				0					•	,	•	•													•	•							FM
	Hollow-Set Dropin [™]	•	0	•	•	•	•	0	0					•	•	•	•	•												•	•		•					UL
	Hangermate®+	•	•	0										•	1	•											•			•	•							ICC-ES ESR-3889 IBC, City of LA, FBC, FM
System	Mini-Undercut+™	•		•												•														•	•							ICC-ES ESR-3912 IBC, City of LA
Hanging	Wood-Knocker II+®	•	•											•		•	•					ļ								•	•						•	ICC-ES ESR-3657 IBC, NBC, City of LA, FM, UL
Rod	Bang-it+®	•	•											•		•	•	•												•	•						•	ICC-ES ESR-3657 IBC, NBC, City of LA, FM, UL
	DDI+™	•	•														•														•							ICC-ES ESR-3958 IBC, City of LA, FM
Sui	table O May be Suitable																																					

GENERAL INFORMATION

ATOMIC+ UNDERCUT®

Heavy Duty Undercut Anchor

PRODUCT DESCRIPTION

The Atomic+ Undercut anchor is designed for applications in cracked and uncracked concrete. The anchors are is available in standard ASTM A 36 steel, high strength ASTM A 193 Grade B7 steel and Type 316 stainless steel in Class 1 and Class 2 strength designations.

The Type 316 stainless steel version can be considered for exterior use and industrial applications where a high level of corrosion resistance is required.

The Atomic+ Undercut anchor is installed into a pre-drilled hole which has been enlarged at the bottom in the shape of a reversed cone using the undercut drill bit supplied by DEWALT. The result is an anchor which transfers load mainly through bearing, and unlike a typical expansion anchor is not dependent upon friction between the expansion sleeve and the concrete. Due to the use of a thick walled expansion sleeve, the load is distributed to a large area which can provide ductile behavior of the anchor even at relatively shallow embedments.

GENERAL APPLICATIONS AND USES

- Structural connections, beam and column anchorage
- Safety related attachments
- Tension zone applications

FEATURE AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Anchors available for standard pre-set installations and for through bolt applications
- + Length ID code and identifying marking stamped on head of each anchor
- + Load transfers to concrete through bearing, not friction, behaves like a cast-in-place bolt
- + Bearing load transfer allows for closer spacing and edge distances
- + Can be designed for predictable ductile steel performance
- + Undercut created in seconds with durable undercutting tool

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3067 Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, 2009 IRC, 2006 IBC, and 2006 IRC
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318-14 Chapter 17 or ACI 318-11/08 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 – Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Undercut anchors shall be Atomic+ Undercut as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

- Heavy duty loading
- · Pipe supports, strut & base mounts
- Suspended equipment
- Seismic and wind loading

Performance Data.....157 Ordering Information......162

SECTION CONTENTS

General Information......153

Material Specifications154

Installation Instructions155

Installation Specifications156

ATOMIC+ UNDERCUT ASSEMBLY

THREAD VERSION

• UNC threaded stud

ANCHOR MATERIALS

- Zinc Plated Carbon Steel
- Type 316 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

• 3/8" through 3/4" diameter

SUITABLE BASE MATERIALS

- Normal-weight concrete
- · Sand-lightweight concrete

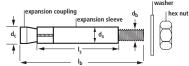
Heavy Duty Undercut Anchor

e

ATOMIC+

DEWALT.

MATERIAL SPECIFICATIONS


		Anchor D	esignation	
Anchor Component	Carbon Steel	High Strength Carbon Steel	Stainless Steel (Type 316)	High Strength Stainless Steel (Type 316)
Threaded Rod	ASTM A 36	ASTM A 193, Grade B7	ASTM A193, Grade B8M, Class 1	ASTM A193, Grade B8M, Class 2
Expansion Coupling (Cone)	ASTM A 1	08 12L14	ASTM A	A 274 S
Expansion/Spacer Sleeve	ASTM A 5	13 Type 5	ASTM A	A 274 S
Hex Nut	ASTM A 56	63, Grade C	ASTM A 194	4, Grade 8M
Washer	of ANSI B18.22	mensional requirements 2.1, Type A plain	Type 316 SS; Meets di of ANSI B18.22	mensional requirements 2.1, Type A plain
Plating	Zinc plating in accordance with equivalent; Minimum plating requ	ASTM B 633, SC1 (Fe/Zn 5) or irement for Mild Service Condition	Not ap	plicable

ANCHOR SPECIFICATIONS

Dimensional Characteristics Table for Atomic+ Undercut

Anchor Designation	Anchor Type	Anchor Rod ASTM Designation	Rod Diameter, d _b (inch)	Anchor Length, Ib (inches)	Sleeve Length, Is (inches)	Sleeve Diameter, ds (inch)	Expansion Coupling Diameter d₀ (inch)	Max. Fixture Thickness, t (inches)
03100SD	Standard	A 36	3/8	5-1/2	2-3/4	5/8	5/8	1-3/4
03102SD	Through bolt (TB)	A 36	3/8	5-1/2	4-1/2	5/8	5/8	1-3/4
03600SD	Standard	A 193, Grade B8M, Class 1	3/8	5-1/2	2-3/4	5/8	5/8	1-3/4
03602SD	Through bolt (TB)	A 193, Grade B8M, Class 1	3/8	5-1/2	4-1/2	5/8	5/8	1-3/4
03603SD	Standard	A193, Grade B8M, Class 2	3/8	6-3/4	4	5/8	5/8	1-3/4
03605SD	Through Bolt (TB)	A193, Grade B8M, Class 2	3/8	6-3/4	5-3/4	5/8	5/8	1-3/4
03104SD	Standard	A 193, Grade B7	3/8	6-3/4	4	5/8	5/8	1-3/4
03106SD	Through bolt (TB)	A 193, Grade B7	3/8	6-3/4	5-3/4	5/8	5/8	1-3/4
03108SD	Standard	A 36	1/2	7	4	3/4	3/4	1-3/4
03110SD	Through bolt (TB)	A 36	1/2	7	5-3/4	3/4	3/4	1-3/4
03608SD	Standard	A 193, Grade B8M, Class 1	1/2	7	4	3/4	3/4	1-3/4
03610SD	Through bolt (TB)	A 193, Grade B8M, Class 1	1/2	7	5-3/4	3/4	3/4	1-3/4
03609SD	Standard	A193, Grade B8M, Class 2	1/2	8	5	3/4	3/4	1-3/4
03613SD	Through Bolt (TB)	A193, Grade B8M, Class 2	1/2	8	6-3/4	3/4	3/4	1-3/4
03112SD	Standard	A 193, Grade B7	1/2	8	5	3/4	3/4	1-3/4
03114SD	Through bolt (TB)	A 193, Grade B7	1/2	8	6-3/4	3/4	3/4	1-3/4
03116SD	Standard	A 193, Grade B7	1/2	9-3/4	6-3/4	3/4	3/4	1-3/4
03118SD	Through bolt (TB)	A 193, Grade B7	1/2	9-3/4	8-1/2	3/4	3/4	1-3/4
03120SD	Standard	A 36	5/8	7-3/4	4-1/2	1	1	1-3/4
03122SD	Through bolt (TB)	A 36	5/8	7-3/4	6-1/4	1	1	1-3/4
03620SD	Standard	A 193. Grade B8M. Class 1	5/8	7-3/4	4-1/2	1	1	1-3/4
03622SD	Through bolt (TB)	A 193, Grade B8M, Class 1	5/8	7-3/4	6-1/4	1	1	1-3/4
03635SD	Standard	A193, Grade B8M, Class 2	5/8	10-3/4	7-1/2	1	1	1-3/4
03639SD	Through Bolt (TB)	A193, Grade B8M, Class 2	5/8	10-3/4	9-1/4	1	1	1-3/4
03124SD	Standard	A 193, Grade B7	5/8	10-3/4	7-1/2	1	1	1-3/4
03126SD	Through bolt (TB)	A 193, Grade B7	5/8	10-3/4	9-1/4	1	1	1-3/4
03128SD	Standard	A 193, Grade B7	5/8	12-1/4	9	1	1	1-3/4
03130SD	Through bolt (TB)	A 193, Grade B7	5/8	12-1/4	10-3/4	1	1	1-3/4
03132SD	Standard	A 36	3/4	8-5/8	5	1-1/8	1-1/8	1-3/4
03134SD	Through bolt (TB)	A 36	3/4	8-5/8	6-3/4	1-1/8	1-1/8	1-3/4
03632SD	Standard	A 193, Grade B8M, Class 1	3/4	8-5/8	5	1-1/8	1-1/8	1-3/4
03634SD	Through bolt (TB)	A 193, Grade B8M, Class 1	3/4	8-5/8	6-3/4	1-1/8	1-1/8	1-3/4
03648SD	Standard	A193, Grade B8M, Class 2	3/4	13-5/8	10	1-1/8	1-1/8	1-3/4
03649SD	Through Bolt (TB)	A193, Grade B8M, Class 2	3/4	13-5/8	11-3/4	1-1/8	1-1/8	1-3/4
03136SD	Standard	A 193, Grade B7	3/4	13-5/8	10	1-1/8	1-1/8	1-3/4
03138SD	Through bolt (TB)	A 193, Grade B7	3/4	13-5/8	11-3/4	1-1/8	1-1/8	1-3/4

Atomic+ Undercut Anchor Detail

Head Marking

(C+)

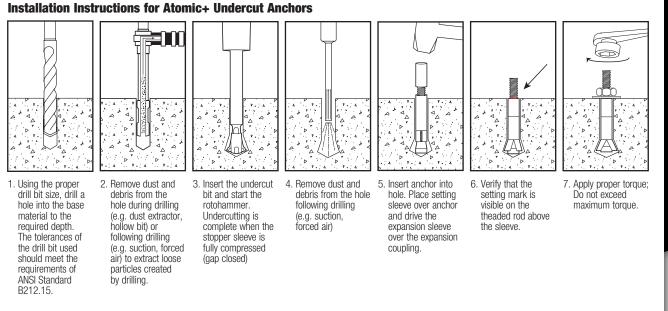
Letter Code = Length Identification Mark '+' Symbol = Strength Design Compliant Anchor (see ordering information)

Length Identification

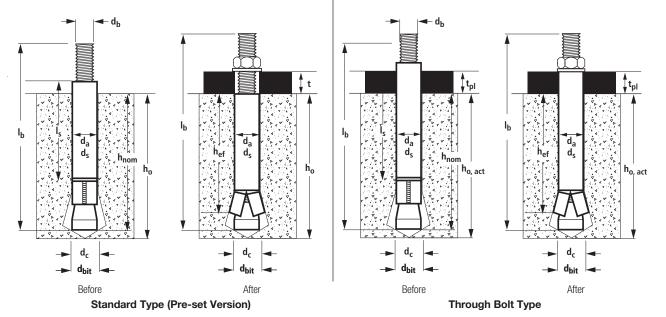
LEIIYUI	IUGIIU	noau																		
Mark	A	B	C	D	E	F	G	H	1	J	K	L	М	N	0	P	Q	R	S	Т
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"	12"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"	12"	13"
Length ident	tification r	nark indio	ates over	all length	of ancho	r.														

DEWALT

ENGINEERED BY POWERS


MECHANICAL ANCHORS

Heavy Duty Undercut Anchor


e

ATOMIC+ UNDERC

INSTALLATION INSTRUCTIONS

Atomic+ Undercut Anchor Detail (before and after application of setting sleeve and attachment)

Axial Stiffness Values, β , for Atomic+ Undercut Anchors in Normal-Weight Concrete¹

Concrete State	Notation	Units		Nominal Anchor Size	/ Rod Diameter (inch)	
Concrete State	NOLALION	UIIIIIS	3/8	1/2	5/8	3/4
	eta_{min}	10 ³ lbf/in		1:	31	
Uncracked concrete	eta_{m}	10 ³ lbf/in		93	30	
	$eta_{ ext{max}}$	10 ³ lbf/in		1,4	44	
	eta_{min}	10 ³ lbf/in		g	1	
Cracked concrete	eta_{m}	10 ³ lbf/in		39	94	
	β_{\max}	10 ³ lbf/in		1,7	24	
1. Valid for anchors with hi	gh strength threaded rod	(A 193 Grade B7). For anchor	rs with low strength threade	d rod (A 36) values must be i	multiplied by 0.7.	

INSTALLATION SPECIFICATIONS

Installation Specifications for Atomic+ Undercut Anchors

Anchor Property/Setting Information Outside anchor diameter	Notation	Units										
Outside anchor diameter			3/8	inch		1/2 inch			5/8 inch		3/4	inch
	da	in. (mm)		525 5.9)		0.750 (19.1)			1.000 (25.4)			25 3.6)
Minimum diameter of hole clearance in fixture ²	Сh	in. (mm)		16 1.1)		9/16 (14.3)			11/16 (17.5)			/16).6)
Anchor rod designation, carbon steel	ASTM	-	A36	A193 Gr. B7	A36		rade B7	A36		irade B7	A36	A193 Gr. B7
Anchor rod designation, stainless steel	ASTM	-	A193 Gr. B8M Class 1	A193 Gr. B8M Class 2	A193 Gr. B8M Class 1	A193 Gr. B8M Class 2	-	A193 Gr. B8M Class 1	A193 Gr. B8M Class 2	-	A193 Gr. B8M Class 1	A193 Gr. B8N Class 2
Minimum nominal embedment depth	hnom	in. (mm)	3-1/8 (79)	4-3/8 (111)	4-1/4 (108)	5-1/4 (133)	7 (178)	5 (127)	8 (203)	9-1/2 (241)	5-7/8 (149)	10-7/8 (276)
Effective embedment	hef	in. (mm)	2-3/4 (68)	4 (102)	4 (102)	5 (127)	6-3/4 (171)	4-1/2 (114)	7-1/2 (190)	9 (229)	5 (127)	10 (254)
Minimum hole depth1	h₀	in. (mm)	3-1/8 (79)	4-3/8 (111)	4-1/4 (108)	5-1/4 (133)	7 (178)	5 (127)	8 (204)	9-1/2 (241)	5-7/8 (149)	10-7/8 (276)
	For h _{min1}	in. (mm)	5-1/2 (140)	8 (204)	8 (204)	10 (254)	13-1/2 (343)	9 (229)	15 (381)	18 (457)	10 (254)	20 (508)
Minimum concrete	$C_{\text{ac},1} \geq$	in. (mm)	4-1/8 (105)	6 (152)	6 (152)	7-1/2 (190)	10-1/8 (257)	6-3/4 (171)	11-1/4 (256)	13-1/2 (343)	7-1/2 (190)	15 (381)
member thickness	For h _{min2}	in. (mm)	4-3/8 (111)	6 (152)	6 (152)	7-1/2 (190)	10-1/8 (257)	6-3/4 (171)	11-1/4 (256)	13-1/2 (343)	7-1/2 (190)	15 (381)
	$C_{ac,2} \geq$	in. (mm)	5-1/2 (140)	10-1/4 (260)	9-1/4 (235)	13 (330)	20-1/4 (514)	9-1/2 (241)	21 (533)	27 (686)	10-1/2 (267)	30 (762)
Minimum edge distance	Cmin	in. (mm)	2-1/4 (57)	3-1/4 (82)	3-1/4 (82)	4 (102)	5-3/8 (86)	3-5/8 (92)	6 (152)	7-1/4 (184)	4 (102)	8 (204)
Minimum spacing distance	Smin	in. (mm)	2-3/4 (70)	4 (102)	4 (102)	5 (127)	6-3/4 (171)	4-1/2 (114)	7-1/2 (190)	9 (229)	5 (127)	10 (254)
Maximum thickness of fixture	t	in. (mm)		3/4 4)		1-3/4 (44)			1-3/4 (44)			3/4 4)
Maximum torque	Tinst	ftlbf.	2	6		44			60		13	33
Torque wrench / socket size	-	in.	11,	/16		7/8			1-1/16		1-1	1/4
Nut Height	-	in.	23,	/64		31/64			39/64		47,	/64
T			Y	5	top Drill Bi	t						
Nominal stop drill bit diameter	d _{bit}	in.		/8 NSI		3/4 ANSI			1 ANSI		1-' AN	1/8 ISI
Stop drill bit for anchor installation	-	-	3220SD	3221SD	3222SD	3223SD	3224SD	3225SD	3226SD	3227SD	3228SD	3229S
Drilled hole depth of stop bit ¹	-	-	3-1/8	4-3/8	4-1/4	5-1/4	7	5	8	9-1/2	5-7/8	10-7/8
Stop drill bit shank type	-	-	SI	DS		SDS			SDS-Max		SDS	-Max
			0	Une	dercut Drill	Bit					о.	
Nominal undercut drill bit diameter	duc	in.	5,	/8		3/4			1		1-1	1/8
Undercut drill bit designation	-	-	320	OSD		3201SD			3202SD		320	3SD
Maximum depth of hole for undercut drill bit	-	in. (mm)		9 29)		10-1/4 (260)			12-1/4 (311)			1/2 43)
Undercut drill bit shank type	-	-	SI	DS		SDS			SDS-Max		SDS	-Max
Required impact drill energy	-	ftlbf.	1	.6		2.5			3.2		4	.0
				S	etting Sleev	e						
Recommended setting sleeve	-	-	321	OSD		3211SD			3212SD		321	3SD

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. For through bolt applications, the actual hole depth is given by the minimum hole depth plus the maximum thickness of fixture less the thickness of the actual part(s) being fastened to the base material (h_{0,act} = h₀ + t - t_a).

2. For through bolt applications the minimum diameter of hole clearance in fixture is 1/16-inch larger than the nominal outside anchor diameter.

Anchor category

Outside anchor diameter

Effective embedment

ŝ.

ASTM A36 (fy ≥ 36 k ASTM A193 Grade E (fy ≥ 105 ksi)

ksi) ksi) ksi)

Grade B S = 30 b Grade B S = 95 b

ASTM A193 (Class 1 (fy > ASTM A193 (ASTM A193 (Class 2 (fy >

PERFORMANCE DATA

Anchor Property / Setting Information

Tensile stress area of anchor rod steel

of anchor rod10

of anchor rod

strength of anchor rod10

Minimum specified yield strength

Minimum specified ultimate tensile

Steel strength in tension, static10

Steel strength in shear, static9,10

Steel strength in shear, seismic9,10

Minimum specified yield strength

(Type 316 stainless steel anchor)

strength of anchor rod

Reduction factor for steel strength in tension²

Reduction factor for steel strength in shear²

Effectiveness factor for uncracked concrete

Effectiveness factor for cracked concrete

Modification factor for cracked and

Reduction factor for concrete breakout

Reduction factor for concrete breakout

Characteristic pullout strength.

uncracked concrete (2,500 psi)5

Characteristic pullout strength,

cracked concrete (2,500 psi)5

Characteristic pullout strength,

Coefficient for pryout strength

Reduction factor for pullout strength²

Reduction factor for pryout strength²

seismic (2,500 psi)5,10

uncracked concrete4

strength in tension²

strength in shear²

Minimum specified ultimate tensile

(Type 316 stainless steel anchor)

(Type 316 stainless steel anchor)11

(Type 316 stainless steel anchor)1

Steel strength in tension, static

Steel strength in shear, static

3/4 inch

1.125

(28.6)

0.3345

(216)

10

20,875

(93.2)

95

(655)

105

(760)

36,795

(163.7)

18,400

(81.8)

30

24

1.0

(See note 4)

See note 6

22,000

(98.2)

22.000

(98.2)

See

note 6

See

note 6

5

(127)

36

(248)

58

(400)

19,400

(86.3)

9.685

(43.2)

9,685

(43.2)

30

(205)

75

(515)

19.065

(84.8)

9,535

(42.4)

ANCHORS GHANICAL

leavy Duty Undercut Anchor e Т UNDEF TOMIC+

0.65 (Condition B) **PRYOUT STRENGTH IN SHEAR** 2.0 2.0 2.0 0.70 (Condition B) 1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 2. All values of \$\phi\$ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of \$\phi\$ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 Line 14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, are used.

3. Anchors are considered a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 4. For all design cases $\Psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (kura) or uncracked concrete (kura) must be used.

5. For all design cases $\Psi_{cP} = 1.0$. For concrete compressive strength greater than 2,500 psi N_{en} = (pullout strength from table)*(specified concrete compressive strength/2,500)^{as}.

6. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

Tension and Shear Design Information For Atomic+ Undercut Anchor in Concrete

Notation

1.2 or 3

 $d_a[d_o]^8$

hef

Ase

fy

futa

Nsa

Vsa

Veq

fy,ss

f_{uta.ss}

Nsass

V_{sa,ss}

φ

ф

Kunci

kcr

 $\Psi_{ ext{c,N}}$

φ

φ

N_{p,uncr}

Np.cr

Nea

φ

Kcp

φ

(For use with load combinations taken from ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2)

3/8 inch

0.625

(15.9)

0.0775

(50)

4

(102)

105

(723)

125

(860)

9,685

(43.2)

4.885

(21.7)

4,885

(21.7)

95

(655)

105

(760)

8,525

(37.9)

4,265

(19.0)

CONCRETE BREAKOUT STRENGTH IN TENSION AND SHEAR

30

24

1.0

(See note 4)

See note 6

2.0

See

note 6

See

note 6

PULLOUT STRENGTH IN TENSION

9,000

(40.2)

9,000

(40.2)

See

note 6

See

note 6

STEEL STRENGTH IN TENSION AND SHEAR³

4

(102)

36

(248)

58

(400)

8,230

(36.7)

4.110

(18.4)

4,110

(18.4)

30

(205)

75

(515)

8,085

(36.0)

4,045

(18.0)

2 - 3/4

(68)

36

(248)

58

(400)

4.495

(20.1)

2.245

(10.0)

2,245

(10.0)

30

(205)

75

(515)

4.415

(19.6)

2,210

(9.8)

Units

in.

(mm)

in.

(mm)

in.3

(mm²

ksi

(N/mm²)

ksi

(N/mm²

lb

(kN)

lb

(kN)

lb

(kN)

ksi

(N/mm²)

ksi

(N/mm²)

lb

(kN)

lb

(kN)

-

_

-

-

lb

(kN)

lb

(kN)

lb

(kN)

-

Nominal Anchor Diameter

1

4-1/2

(114)

36

(248)

58

(400)

13,100

(58.5)

6.560

(29.3)

6,560

(29.3)

30

(205)

75

(515)

12,880

(57.3)

6,440

(28.6)

0.75

0.65

0.65 (Condition B)

0.70 (Condition B)

See

note 6

See

note 6

6-3/4

(171)

105

(723)

125

(860)

17,735

(79.1)

8.855

(39.5)

8,855

(39.5)

5/8 inch

1.000

(25.4)

7 - 1/2

(190)

0.2260

(146)

105

(723)

125

(860)

28,250

(126.1)

14,110

(63.0)

14,110

(63.0)

95

(655)

105

(760)

24.860

(110.6)

12,430

(55.3)

30

24

1.0

(See note 4)

See note 6

15,000

(67.0)

15.000

(67.0)

9

(229)

105

(723)

125

(860)

28,250

(126.1)

14,110

(63.0)

14,110

(63.0)

1/2 inch

0.750

(19.1)

5

(127)

0.1419

(91)

105

(723)

125

(860)

17,735

(79.1)

8,855

(39.5)

8,855

(39.5)

95

(655)

105

(760)

15.610

(69.4)

7,805

(34.7)

30

24

1.0

(See note 4)

See note 6

11,500

(51.3)

11 500

(51.3)

7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of $\sqrt{f^*c}$ affecting N_a and V_a. λ shall be determined in accordance with the corresponding version of ACI 318.

8 The notation in brackets is for the 2006 IBC

9. Shear strength values are based on standard (pre-set) installation, and must be used for both standard (pre-set) and through-bolt installations

10. These values are only applicable to carbon steel anchors; values are not established for stainless steel anchors.

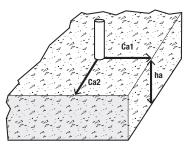
11. Calculated using futa,ss = 57 ksi (1.9fy) in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

For SI: 1 inch = 25.4 mm, 1 ksi = 6.895 MPa (N/mm²), 1 lbf = 0.0044 kN, 1 in² = 645 mm²

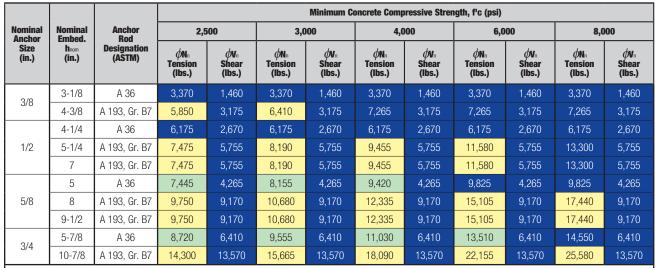
318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

– REV. D

FECHNICAL GUIDE - MECHANICAL ANCHORS © 2018 DEWALT



Heavy Duty Undercut Anc


ATOMIC+ UNDERCUT®

FACTORED DESIGN STRENGTH (ϕ NN AND ϕ VN) CALCULATED IN ACCORDANCE WITH ACI 318-14 CHAPTER 17:

- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, h_a = h_{min2}, and with the following conditions:
 c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on c_{a1} = c_{ac}).
 - Ca2 is greater than or equal to 1.5 times Ca1.
- 2- Calculations were performed according to ACI 318-14 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, hef, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (Ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.

Tension and Shear Design Strength for Carbon Steel Atomic+ Undercut in Cracked Concrete

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔳 - Steel Strength Controls

Tension and Shear Design Strength for Carbon Steel Atomic+ Undercut in Uncracked Concrete

						Minimum Co	oncrete Comp	ressive Stren	gth, f'c (psi)			
Nominal Anchor	Nominal Embed.	Anchor Rod	2,5	00	3,0	00	4,0	00	6,0	00	8,0	00
Size (in.)	hnom (in.)	Designation (ASTM)	ØN∩ Tension (Ibs.)	∲V₁ Shear (lbs.)	ØN∩ Tension (Ibs.)	∳V∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	∲V₁ Shear (lbs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	∲V₁ Shear (Ibs.)
3/8	3-1/8	A 36	3,370	1,460	3,370	1,460	3,370	1,460	3,370	1,460	3,370	1,460
3/0	4-3/8	A 193, Gr. B7	7,265	3,175	7,265	3,175	7,265	3,175	7,265	3,175	7,265	3,175
	4-1/4	A 36	6,175	2,670	6,175	2,670	6,175	2,670	6,175	2,670	6,175	2,670
1/2	5-1/4	A 193, Gr. B7	10,900	5,755	11,940	5,755	13,300	5,755	13,300	5,755	13,300	5,755
	7	A 193, Gr. B7	13,300	5,755	13,300	5,755	13,300	5,755	13,300	5,755	13,300	5,755
	5	A 36	9,305	4,265	9,825	4,265	9,825	4,265	9,825	4,265	9,825	4,265
5/8	8	A 193, Gr. B7	20,025	9,170	21,190	9,170	21,190	9,170	21,190	9,170	21,190	9,170
	9-1/2	A 193, Gr. B7	21,190	9,170	21,190	9,170	21,190	9,170	21,190	9,170	21,190	9,170
0/4	5-7/8	A 36	10,900	6,410	11,940	6,410	13,790	6,410	14,550	6,410	14,550	6,410
3/4	10-7/8	A 193, Gr. B7	30,830	13,570	31,360	13,570	31,360	13,570	31,360	13,570	31,360	13,570
🔲 - Anchor	Pullout/Pryout	t Strength Controls	🗌 - Concrete E	reakout Streng	th Controls 🔲	- Steel Strength	n Controls					

- REV. D

Vallowable,ASD

Shear

(lbs.)

1,045

2,270

1,905

4,110 4.110

3,045

6,550

6.550

4,580

9,695

Minimum Concrete Compressive Strength Nominal Anchor Nominal Embed. Anchor Rod f 'c = 2,500 psi f 'c = 3,000 psi f 'c = 4,000 psi f 'c = 6,000 psi f 'c = 8,000 psi Diameter De ignation h Tallowable,ASE Tension Vallowable,ASE Shear Tallowable,ASD Tension Vallowable,ASD Shear Tallowable,ASE allowable,ASD Shear Tallowable,ASD Tension Val able,ASD able,ASC Vallov (in.) (in.) (ASTM) Shear Tension (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) 2,405 1,045 2,405 2.405 1,045 2,405 1,045 2,405 3-1/8 A 36 1,045 3/8 4-3/8 A 193, Gr. B7 4,180 2,270 4,580 2,270 5,190 2,270 5,190 2,270 5,190 4,410 4-1/4 A 36 4,410 1,905 4,410 1,905 4,410 1,905 1,905 4,410 1/2 5-1/4 A 193, Gr. B7 5,340 4,110 5,850 4,110 6,755 4,110 8,270 4,110 9,500 7 A 193, Gr. B7 5.340 4.110 5.850 4.110 6.755 4.110 8.270 4.110 9.500

5,825

7,630

7.630

6,825

11,190

Converted Allowable Loads for Carbon Steel Atomic+ Undercut in Cracked Concrete^{1,2}

1. Allowable load values are calculated using a conversion factor, α , from Factored Design Strengths and conditions shown on the previous page.

3,045

6,550

6.550

4,580

9,695

5,320

6,965

6,965

6,230

10,215

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor

3,045

6,550

6.550

4,580

9,695

6,730

8,810

8,810

7,880

12,920

3,045

6,550

6.550

4,580

9,695

7,020

10,790

10.790

9,650

15,825

3,045

6,550

6.550

4,580

9,695

7,020

12,455

12,455

10,395

18,270

 α : 1.2(0.5) + 1.6(0.5) = 1.4.

5

8

9-1/2

5-7/8

10-7/8

5/8

3/4

A 36

A 193, Gr. B7

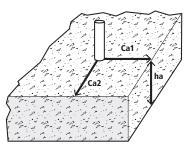
A 193, Gr. B7

A 36

A 193, Gr. B7

Converted Allowable Loads for Carbon Steel Atomic+ Undercut in Uncracked Concrete^{1,2}

						Minimu	m Concrete C	ompressive \$	Strength			
Nominal Anchor	Nominal Embed.	Anchor Rod	f 'c = 2,	500 psi	f 'c = 3	,000 psi	f 'c = 4,	,000 psi	f 'c = 6,	,000 psi	f 'c = 8	,000 psi
Diameter (in.)	hnom (in.)	Designation (ASTM)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)
3/8	3-1/8	A 36	2,405	1,045	2,405	1,045	2,405	1,045	2,405	1,045	2,405	1,045
3/0	4-3/8	A 193, Gr. B7	5,190	2,270	5,190	2,270	5,190	2,270	5,190	2,270	5,190	2,270
	4-1/4	A 36	4,410	1,905	4,410	1,905	4,410	1,905	4,410	1,905	4,410	1,905
1/2	5-1/4	A 193, Gr. B7	7,785	4,110	8,530	4,110	9,500	4,110	9,500	4,110	9,500	4,110
	7	A 193, Gr. B7	9,500	4,110	9,500	4,110	9,500	4,110	9,500	4,110	9,500	4,110
	5	A 36	6,645	3,045	7,020	3,045	7,020	3,045	7,020	3,045	7,020	3,045
5/8	8	A 193, Gr. B7	14,305	6,550	15,135	6,550	15,135	6,550	15,135	6,550	15,135	6,550
	9-1/2	A 193, Gr. B7	15,135	6,550	15,135	6,550	15,135	6,550	15,135	6,550	15,135	6,550
2/4	5-7/8	A 36	7,785	4,580	8,530	4,580	9,850	4,580	10,395	4,580	10,395	4,580
3/4	10-7/8	A 193, Gr. B7	22,020	9,695	22,400	9,695	22,400	9,695	22,400	9,695	22,400	9,695


1. Allowable load values are calculated using a conversion factor, α , from Factored Design Strengths and conditions shown on the previous page.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

FACTORED DESIGN STRENGTH (ϕ N_N and ϕ V_N) calculated in accordance with ACI 318-14 Chapter 17:

- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, h_a = h_{min2}, and with the following conditions:
 c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on c_{a1} = c_{ac}).
 - Ca2 is greater than or equal to 1.5 times Ca1.
- 2- Calculations were performed according to ACI 318-14 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, hef, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.

Tension and Shear Design Strength for Stainless Steel Atomic+ Undercut Anchor in Cracked Concrete

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔳 - Steel Strength Controls

Tension and Shear Design Strength for Stainless Steel Atomic+ Undercut Anchor in Uncracked Concrete

						Minimum Co	ncrete Comp	ressive Stren	igth, f'c (psi)			
Nominal Anchor	Nominal Embed.	Anchor Rod	2,5	00	3,0	00	4,0	00	6,0	00	8,0	00
Size (in.)	hnom (in.)	Designation (ASTM)	ØN∩ Tension (lbs.)	ØV∩ Shear (lbs.)	ØN∩ Tension (lbs.)	ØV∩ Shear (lbs.)	ØN∩ Tension (lbs.)	ØV∩ Shear (lbs.)	ØN∩ Tension (lbs.)	¢V∩ Shear (lbs.)	ØN∩ Tension (lbs.)	ØV∩ Shear (lbs.)
3/8	3-1/8	A 193, Gr. B8M Class 1	3,310	1,435	3,310	1,435	3,310	1,435	3,310	1,435	3,310	1,435
3/0	4-3/8	A 193, Gr. B8M Class 2	6,395	2,770	6,395	2,770	6,395	2,770	6,395	2,770	6,395	2,770
1/2	4-1/4	A 193, Gr. B8M Class 1	6,065	2,625	6,065	2,625	6,065	2,625	6,065	2,625	6,065	2,625
1/2	5-1/4	A 193, Gr. B8M Class 2	10,900	5,075	11,705	5,075	11,705	5,075	11,705	5,075	11,705	5,075
5/8	5	A 193, Gr. B8M Class 1	9,305	4,185	9,660	4,185	9,660	4,185	9,660	4,185	9,660	4,185
0/0	8	A 193, Gr. B8M Class 2	18,645	8,080	18,645	8,080	18,645	8,080	18,645	8,080	18,645	8,080
2/4	5-7/8	A 193, Gr. B8M Class 1	10,900	6,195	11,940	6,195	13,790	6,195	14,300	6,195	14,300	6,195
3/4	10-7/8	A 193, Gr. B8M Class 2	27,595	11,955	27,595	11,955	27,595	11,955	27,595	11,955	27,595	11,955

						Minimu	m Concrete C	compressive (Strength			
Nominal Anchor	Nominal Embed.	Anchor Rod	f 'c = 2	,500 psi	f 'c = 3	,000 psi	f 'c = 4	,000 psi	f 'c = 6	,000 psi	f 'c = 8	,000 psi
Diameter (in.)	hnom (in.)	Designation (ASTM)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)
2/0	3-1/8	A 193, Gr. B8M Class 1	2,365	1,025	2,365	1,025	2,365	1,025	2,365	1,025	2,365	1,025
3/8	4-3/8	A 193, Gr. B8M Class 2	4,180	1,980	4,570	1,980	4,570	1,980	4,570	1,980	4,570	1,980
1/2	4-1/4	A 193, Gr. B8M Class 1	4,330	1,875	4,330	1,875	4,330	1,875	4,330	1,875	4,330	1,875
1/2	5-1/4	A 193, Gr. B8M Class 2	5,340	3,625	5,850	3,625	6,755	3,625	8,270	3,625	8,360	3,625
5/8	5	A 193, Gr. B8M Class 1	5,320	2,990	5,825	2,990	6,730	2,990	6,900	2,990	6,900	2,990
0/0	8	A 193, Gr. B8M Class 2	6,965	5,770	7,630	5,770	8,810	5,770	10,790	5,770	12,455	5,770
3/4	5-7/8	A 193, Gr. B8M Class 1	6,230	4,425	6,825	4,425	7,880	4,425	9,650	4,425	10,215	4,425
3/4	10-7/8	A 193, Gr. B8M Class 2	10,215	8,540	11,190	8,540	12,920	8,540	15,825	8,540	18,270	8,540

Converted Allowable Loads for Stainless Steel Atomic+ Undercut in Cracked Concrete^{1,2}

1. Allowable load values are calculated using a conversion factor, α , from Factored Design Strengths and conditions shown on the previous page.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor α : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Stainless Steel Atomic+ Undercut in Uncracked Concrete^{1,2}

						Minimu	m Concrete C	ompressive \$	Strength			
Nominal Anchor	Nominal Embed.	Anchor Rod	f 'c = 2	,500 psi	f 'c = 3	,000 psi	f 'c = 4	,000 psi	f 'c = 6	,000 psi	f 'c = 8,	,000 psi
Diameter (in.)	hnom (in.)	Designation (ASTM)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)
3/8	3-1/8	A 193, Gr. B8M Class 1	2,365	1,025	2,365	1,025	2,365	1,025	2,365	1,025	2,365	1,025
3/0	4-3/8	A 193, Gr. B8M Class 2	4,570	1,980	4,570	1,980	4,570	1,980	4,570	1,980	4,570	1,980
1/2	4-1/4	A 193, Gr. B8M Class 1	4,330	1,875	4,330	1,875	4,330	1,875	4,330	1,875	4,330	1,875
1/2	5-1/4	A 193, Gr. B8M Class 2	7,785	3,625	8,360	3,625	8,360	3,625	8,360	3,625	8,360	3,625
5/8	5	A 193, Gr. B8M Class 1	6,645	2,990	6,900	2,990	6,900	2,990	6,900	2,990	6,900	2,990
3/6	8	A 193, Gr. B8M Class 2	13,320	5,770	13,320	5,770	13,320	5,770	13,320	5,770	13,320	5,770
3/4	5-7/8	A 193, Gr. B8M Class 1	7,785	4,425	8,530	4,425	9,850	4,425	10,215	4,425	10,215	4,425
3/4	10-7/8	A 193, Gr. B8M Class 2	19,710	8,540	19,710	8,540	19,710	8,540	19,710	8,540	19,710	8,540

1. Allowable load values are calculated using a conversion factor, α , from Factored Design Strengths and conditions shown on the previous page.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor

 α : 1.2(0.5) + 1.6(0.5) = 1.4.

ORDERING INFORMATION

Cat. No.	Anchor Rod ASTM Designation	Nominal Anchor Diameter	Anchor Outside Diameter	Overall Length	Required Undercut Bit (Cat. No.)	Required Stop Bit (Cat. No.)	Anchor Type	Std. Bo
03100SD	ASTM A36	3/8"	5/8"	5-1/2"		03220SD	Standard	20
03102SD	ASTM A36	3/8"	5/8"	5-1/2"	000000	*	Through Bolt	20
03104SD	ASTM A193 Gr. B7	3/8"	5/8"	6-3/4"	03200SD	03221SD	Standard	20
03106SD	ASTM A193 Gr. B7	3/8"	5/8"	6-3/4"		*	Through Bolt	20
03108SD	ASTM A36	1/2"	3/4"	7"		03222SD	Standard	15
03110SD	ASTM A36	1/2"	3/4"	7"		*	Through Bolt	15
03112SD	ASTM A193 Gr. B7	1/2"	3/4"	8"	0000100	03223SD	Standard	15
03114SD	ASTM A193 Gr. B7	1/2"	3/4"	8"	03201SD	*	Through Bolt	15
03116SD	ASTM A193 Gr. B7	1/2"	3/4"	9-3/4"		03224SD	Standard	15
03118SD	ASTM A193 Gr. B7	1/2"	3/4"	9-3/4"		*	Through Bolt	15
03120SD	ASTM A36	5/8"	1"	7-3/4"		03225SD	Standard	10
03122SD	ASTM A36	5/8"	1"	7-3/4"		*	Through Bolt	10
03124SD	ASTM A193 Gr. B7	5/8"	1"	10-3/4"	03202SD	03226SD	Standard	10
03126SD	ASTM A193 Gr. B7	5/8"	1"	10-3/4"	0320230	*	Through Bolt	10
03128SD	ASTM A193 Gr. B7	5/8"	1"	12-1/4"		03227SD	Standard	10
03130SD	ASTM A193 Gr. B7	5/8"	1"	12-1/4"		*	Through Bolt	10
03132SD	ASTM A36	3/4"	1-1/8"	8-5/8"		03228SD	Standard	8
03134SD	ASTM A36	3/4"	1-1/8"	8-5/8"	03203SD	*	Through Bolt	8
03136SD	ASTM A193 Gr. B7	3/4"	1-1/8"	13-5/8"	0320380	03229SD	Standard	8
03138SD	ASTM A193 Gr. B7	3/4"	1-1/8"	13-5/8"	1	*	Through Bolt	8

*Contact DEWALT for appropriate drilling method and hardware

Cat. No.	Anchor Rod ASTM Designation	Nominal Anchor Diameter	Anchor Outside Diameter	Overall Length	Required Undercut Bit (Cat. No.)	Required Stop Bit (Cat. No.)	Anchor Type	Std. Box
03600SD	ASTM A193, Grade B8M, Class 1	3/8"	5/8"	5-1/2"		03220SD	Standard	20
03602SD	ASTM A193, Grade B8M, Class 1	3/8"	5/8"	5-1/2"	03200SD	*	Through Bolt	20
03603SD	ASTM A193, Grade B8M, Class 2	3/8"	5/8"	6-3/4"	0320030	03221SD	Standard	20
03605SD	ASTM A193, Grade B8M, Class 2	3/8"	5/8"	6-3/4"		*	Through Bolt	20
03608SD	ASTM A193, Grade B8M, Class 1	1/2"	3/4"	7"		03222SD	Standard	15
03610SD	ASTM A193, Grade B8M, Class 1	1/2"	3/4"	7"	03201SD	*	Through Bolt	15
03609SD	ASTM A193, Grade B8M, Class 2	1/2"	3/4"	8"	0320130	03223SD	Standard	15
03613SD	ASTM A193, Grade B8M, Class 2	1/2"	3/4"	8"		*	Through Bolt	15
03620SD	ASTM A193, Grade B8M, Class 1	5/8"	1"	7-3/4"		03225SD	Standard	10
03622SD	ASTM A193, Grade B8M, Class 1	5/8"	1"	7-3/4"	03202SD	*	Through Bolt	10
03635SD	ASTM A193, Grade B8M, Class 2	5/8"	1"	10-3/4"	0320230	03226SD	Standard	10
03639SD	ASTM A193, Grade B8M, Class 2	5/8"	1"	10-3/4"		*	Through Bolt	10
03632SD	ASTM A193, Grade B8M, Class 1	3/4"	1-1/8"	8-5/8"		03228SD	Standard	8
03634SD	ASTM A193, Grade B8M, Class 1	3/4"	1-1/8"	8-5/8"	03203SD	*	Through Bolt	8
03648SD	ASTM A193, Grade B8M, Class 2	3/4"	1-1/8"	13-5/8"	0320330	03229SD	Standard	8
03649SD	ASTM A193, Grade B8M, Class 2	3/4"	1-1/8"	13-5/8"		*	Through Bolt	8

DEWALT

ENGINEERED BY POWERS

F

Stop Drill Bits

DEWA

ENGINEERED BY POWERS

Cat. No.	Nominal Stop Drill Bit Diameter	Corresponding Nominal Anchor Diameter	Max. Drill Depth	Shank Type	Std. Tube
03220SD	5/8	3/8	3-1/8"	SDS	1
03221SD	5/8	3/8	4-3/8"	SDS	1
03222SD	3/4	1/2	4-1/4"	SDS	1
03223SD	3/4	1/2	5-1/4"	SDS	1
03224SD	3/4	1/2	7"	SDS	1
03225SD	1	5/8	5"	SDS-Max	1
03226SD	1	5/8	8"	SDS-Max	1
03227SD	1	5/8	9-1/2"	SDS-Max	1
03228SD	1-1/8	3/4	5-13/16"	SDS-Max	1
03229SD	1-1/8	3/4	10-13/16"	SDS-Max	1
The Stop Drill Bit	creates a drill hole t	o the proper depth for s	tandard installations of the Ato	mic+ Undercut anchor.	

(For through bolt applications please contact DEWALT for appropriate drilling method and hardware)

Undercut Drill Bits

Cat. No.	Nominal Undercut Drill Bit Diameter	Corresponding Nominal Anchor Diameter	Maximum Depth of Hole	Shank Type	Std. Tube
03200SD	5/8	3/8	9"	SDS	1
03201SD	3/4	1/2	10-1/4"	SDS	1
03202SD	1	5/8	12-1/4"	SDS-Max	1
03203SD	1-1/8	3/4	13-1/2"	SDS-Max	1
The Undercut Dril Undercut anche		esign that enlarges the	bottom of the drill hole creating	g a reverse cone sized to	receive the Atomic+

Setting Sleeve for Undercut Anchors

Cat No.	Corresponding Nominal Anchor Diameter	Std. Box
03210SD	3/8	1
03211SD	1/2	1
03218SD	5/8	1
03213SD	3/4	1

Replacement Blade Assemblies for Undercut Drill Bit

Cat No.	Description	Std. Tube
03205SD	Atomic+ (3/8") Cutter Blade - 5/8"	1
03206SD	Atomic+ (1/2") Cutter Blade - 3/4"	1
03208SD	Atomic+ (5/8") Cutter Blade - 1"	1
03209SD	Atomic+ (3/4") Cutter Blade - 1-1/8"	1

Replacement Bow Jaws for Undercut Drill Bit

Cat No.	Description	Std. Tube
03212SD	3/8" Bow Jaw for 5/8" Hole	1
03215SD	1/2" Bow Jaw for 3/4" Hole	1
03216SD	5/8" Bow Jaw for 1" Hole	1
03217SD	3/4" Bow Jaw for 1-1/8" Hole	1

GENERAL INFORMATION

POWER-STUD®+ SD1

Wedge Expansion Anchor

PRODUCT DESCRIPTION

The Power-Stud+ SD1 anchor is a fully threaded, torque-controlled, wedge expansion anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, sand-lightweight concrete, concrete over steel deck, and grouted concrete masonry. The anchor is manufactured with a zinc plated carbon steel body and expansion clip for premium performance. Nut and washer are included.

GENERAL APPLICATIONS AND U

- Structural connections, i.e., beam and column anchorage
- Safety-related attachments
- · Protective barriers and racking
- Tension zone applications, i.e., cable travs and strut, pipe supports, fire sprinklers
- · Seismic and wind loading
- Interior applications / low level corrosion environment

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-2818 for cracked and uncracked concrete
- International Code Council, Evaluation Service (ICC-ES), ESR-2966 for masonry
- Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ACI 355.2/ASTM E 488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318-14 Chapter 17 or ACI 318-11/08 Appendix D
- Evaluated and gualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)
- Tested in accordance with ICC-ES AC01 for use in masonry
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Expansion anchors shall be Power-Stud+ SD1 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification
Anchor Body	Medium carbon steel
Hex nut	Carbon steel, ASTM A 563, Grade A
Washer	Carbon Steel, ASTM F 844; meets dimensional requirements of ANSI B18.22.2. Type A Plain
Expansion wedge (clip)	Carbon Steel
Plating	Zinc plating according to ASTM B 633, SC1 Type III (Fe/Zn 5). Minimum plating requirements for Mild Service Condition.

SECTION CONTENTS

General Information	164
Material Specifications	164
Installation Instructions	165
Reference Data (ASD)	166
Strength Design (SD)	172
Strength Design	
Performance Data	176
Ordering Information	177

POWER-STUD+ SD1 ASSEMBLY

THREAD VERSION

· UNC threaded stud

ANCHOR MATERIALS

· Zinc plated carbon steel body with expansion clip, nut and washer

ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter through 1-1/4" diameter

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Sand-lightweight concrete
- Concrete over steel deck
- Grouted concrete masonry (CMU)

CODE LISTED **CODE LISTED** ICC-ES ESR-2818 CONCRETE

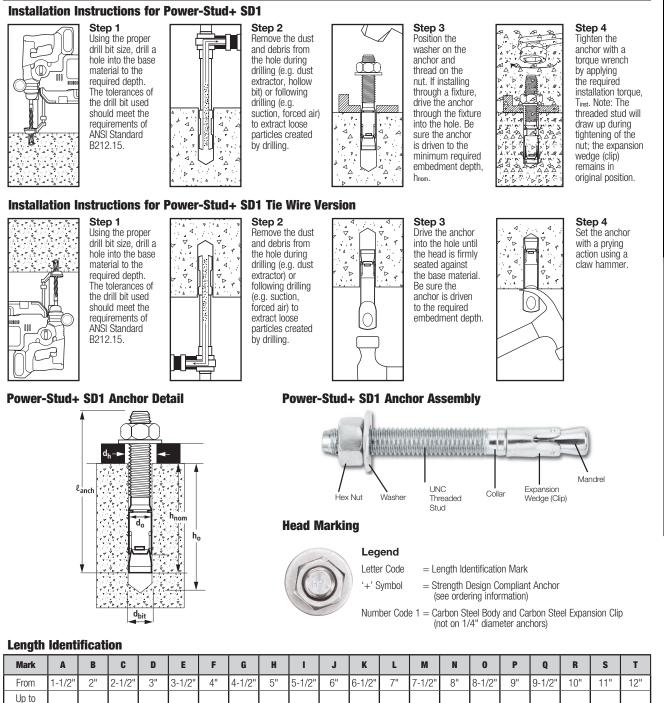
ICC-ES ESR-2966

Vedge Expansion Anct

POWER-STUD®+ SD1

ANCHORS

GHANICAL


Π

S

POWER-STUD®+

Wedge Expansion Anchor

8"

8-1/2

7-1/2

9"

9-1/2

10"

11"

12"

13"

but not

including

2"

2-1/2

Length identification mark indicates overall length of anchor.

3"

3-1/2

4"

4-1/2

5"

5-1/2

6"

6-1/2

7'

REFERENCE DATA (ASD)

Installation Specifications for Power-Stud+ SD1 in Concrete^{1,2}

Anchor Property/	Notation					Nominal Anc	hor Diameter			
Setting Information Anchor diameter Minimum diameter of hole clearance in fixture		Units	1/4	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Anchor diameter	d₀	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)
	dh	in. (mm)	5/16 (7.5)	7/16 (11.1)	9/16 (14.3)	11/16 (17.5)	13/16 (20.6)	1 (25.4)	1-1/8 (28.6)	1-3/8 (34.9)
Nominal drill bit diameter	d _{bit}	in.	1/4" ANSI	3/8" ANSI	1/2" ANSI	5/8" ANSI	3/4" ANSI	7/8" ANSI	1" ANSI	1-1/4" ANSI
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-1/8 (29)	1-5/8 (41)	2-1/4 (57)	2-3/4 (70)	3-3/8 (86)	4-1/2 (114)	4-1/2 (114)	6-1/2 (165)
Minimum hole depth	h₀	in. (mm)	1-1/4 (48)	1-3/4 (44)	2-1/2 (64)	3-1/8 (79)	3-5/8 (92)	4-7/8 (122)	4-7/8 (122)	7-1/4 (184)
Installation torque	Tinst	ftlbf. (N-m)	4 (5)	20 (27)	40 (54)	80 (108)	110 (149)	175 (237)	225 (305)	375 (508)
Torque wrench/ socket size	-	in.	7/16	9/16	3/4	15/16	1-1/8	1-5/16	1-1/2	1-7/8
Nut height	-	In.	7/32	21/64	7/16	35/64	41/64	3/4	55/64	1-1/16

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The minimum base material thickness should be 1.5hnom or 3", whichever is greater.

2. See Performance Data in Concrete for additional embedment depths.

Ultimate Load Capacities for Power-Stud+ SD1 in Normal-Weight Concrete^{1,2}

	Minimum	Minimum Concrete Compressive Strength								
Nominal Anchor	Embedment	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa	
Diameter in.	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
	1-1/8	1,320	1,160	1,435	1,255	1,660	1,255	-	-	
1/4	(28)	(5.9)	(5.2)	(6.4)	(5.6)	(7.4)	(5.6)	0.775	1.055	
., .	1-3/4 (44)	2,775 (12.4)	1,255 (5.6)	2,775 (12.4)	1,255 (5.6)	2,775 (12.4)	1,255 (5.6)	2,775 (12.4)	1,255 (5.6)	
	1-5/8	2,240	2,320	2,685	2,540	3,100	2,540		(0.0)	
0./0	(41)	(10.9)	(10.3)	(12)	(11.3)	(13.8)	(11.3)	-	-	
3/8	2-3/8	3,485	2,540	3,815	2,540	4,410	2,540	5.400	2,540	
	(60)	(15.5)	(11.3)	(17)	(11.3)	(19.6)	(11.3)	(24)	(11.3)	
	2-1/4	3,800	3,840	4,155	4,195	4,800	4,195			
	(57)	(16.9)	(17.1)	(18.5)	(18.7)	(21.4)	(18.7)	-	-	
1/2	2-1/2	3,910	4,195	4,285	4,195	4,950	4,195	6,060	4,195	
1/2	(64)	(17.4)	(18.7)	(19.1)	(18.7)	(22)	(18.7)	(27)	(18.7)	
	3-3/4	7,955	4,195	8,715	4,195	10,065	4,195	12,325	4,195	
	(95)	(35.4)	(18.7)	(38.8)	(18.7)	(44.8)	(18.7)	(54.8)	(18.7)	
	2-3/4	4,960	6,220	5,440	6,815	6,285	6,815			
	(70)	(22.1)	(27.7)	(24.3)	(30.3)	(28)	(30.3)	-	-	
5/8	3-3/8	6,625	6,815	7,260	6,815	8,380	6,815	10,265	6,815	
5/0	(86)	(29.5)	(30.3)	(32.3)	(30.3)	(37.3)	(30.3)	(45.7)	(30.3)	
	4-5/8	11,260	6,815	12,335	6,815	14,245	6,815	14,465	6,815	
	(117)	(50.1)	(30.3)	(54.9)	(30.3)	(63.4)	(30.3)	(65.7)	(30.3)	
	3-3/8	7,180	11,480	7,860	12,580	9,075	12,580	-	-	
	(86)	(31.9)	(51.5)	(32.2)	(56.0)	(40.5)	(56.0)			
3/4	4	9,530	12,580	10,440	12,580	12,060	12,580	14,770	12,580	
-	(102)	(42.4)	(56.0)	(46.5)	(56.0)	(53.6)	(56.0)	(65.7)	(56.0)	
	5-5/8	17,670	12,580	19,355	12,580	22,350	12,580	25,065	12,580	
	(143)	(78.6) 9.120	(56.0)	(86.1)	(56.0) 11.690	(99.4)	(56.0)	(111.5)	(56.0)	
	3-7/8 (98)	9,120 (40.6)	10,680 (47.5)	10,005 (44.5)	(52.0)	11,555 (51.4)	11,690 (52.0)	-	-	
7/8	4-1/2	11,320	11,690	12,405	11,690	15,125	11.690	19,470	11.690	
	(114)	(50.4)	(52.0)	(55.2)	(52.0)	(67.3)	(52.0)	(86.6)	(52.0)	
	4-1/2	12,400	19,320	13.580	21.155	15.680	21.155	(00.0)	(02.0)	
	(114)	(55.2)	(85.9)	(60.4)	(94.1)	(69.7)	(94.1)	-	-	
	5-1/2	16,535	21,155	18,115	21,155	20,915	21,155	25,615	21,155	
1	(140)	(73.6)	(94.1)	(80.6)	(94.1)	(93)	(94.1)	(114)	(94.1)	
	8	19,640	21,155	21,530	21,155	24,865	21,155			
	(203)	(87.4)	(94.1)	(95.8)	(94.1)	(110.6)	(94.1)	-	-	
	5-1/2	18,520	26,560	20,275	29,105	23,410	29,105			
/ /	(140)	(82.5)	(118.1)	(90.9)	(129.4)	(105.0)	(129.4)	-	-	
1-1/4	6-1/2	22,485	29,105	24,630	29,105	28,440	29,105	37,360	29,105	
	(165)	(100.0)	(129.4)	(109.6)	(129.4)	(126.5)	(129.4)	(166.2)	(129.4)	

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

166

Allowable Load Capacities for Power-Stud+ SD1 in Normal-Weight Concrete^{1,2,3,4}

	Minimum			Mir	nimum Concrete C	compressive Stre	igth		
Nominal Anchor	Embedment	f'c = 2,500 p	osi (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)
Diameter (in.)	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	1-1/8 (28)	330 (1.5)	290 (1.3)	360 (1.6)	315 (1.4)	415 (1.8)	315 (1.4)	-	-
1/4	1-3/4 (44)	695 (3.1)	315 (1.4)	695 (3.1)	315 (1.4)	695 (3.1)	315 (1.4)	695 (3.1)	315 (1.4)
3/8	1-5/8 (41)	610 (2.7)	580 (2.6)	670 (3.0)	635 (2.8)	775 (3.4)	635 (2.8)	-	-
3/0	2-3/8 (60)	870 (3.9)	635 (2.8)	955 (4.2)	635 (2.8)	1,105 (4.9)	635 (2.8)	1,350 (6.0)	635 (2.8)
	2-1/4 (57)	950 (4.2)	960 (4.3)	1,040 (4.6)	1,050 (4.7)	1,200 (5.3)	1,050 (4.7)	-	-
1/2	2-1/2 (64)	980 (4.4)	1,050 (4.7)	1,070 (4.8)	1,050 (4.7)	1,240 (5.5)	1,050 (4.7)	1,515 (6.7)	1,050 (4.7)
	3-3/4 (95)	1,990 (8.9)	1,050 (4.7)	2,180 (9.7)	1,050 (4.7)	2,515 (11.2)	1,050 (4.7)	3,080 (13.7)	1,050 (4.7)
	2-3/4 (70)	1,240 (5.5)	1,555 (6.9)	1,360 (6.0)	1,705 (7.6)	1,570 (7.0)	1,705 (7.6)	-	-
5/8	3-3/8 (86)	1,655 (7.4)	1,705 (7.6)	1,815 (8.1)	1,705 (7.6)	2,095 (9.3)	1,705 (7.6)	2,565 (11.4)	1,705 (7.6)
	4-5/8 (117)	2,815 (12.5)	1,705 (7.6)	3,085 (13.7)	1,705 (7.6)	3,560 (15.8)	1,705 (7.6)	3,615 (16.1)	1,705 (7.6)
	3-3/8 (86)	1,795 (8.0)	2,870 (12.8)	1,965 (8.7)	3,145 (14.0)	2,270 (10.1)	3,145 (14.0)	-	-
3/4	4 (102)	2,385 (10.6)	3,145 (14.0)	2,610 (11.6)	3,145 (14.0)	3,015 (13.4)	3,145 (14.0)	3,620 (16.1)	3,145 (14.0)
	5-5/8 (143)	4,420 (19.7)	3,145 (14.0)	4,840 (21.5)	3,145 (14.0)	5,590 (24.9)	3,145 (14.0)	6,265 (27.9)	3,145 (14.0)
7/0	3-7/8 (98)	2,280 (10.1)	2,670 (11.9)	2,500 (11.1)	2,925 (13.0)	2,890 (12.9)	2,925 (13.0)	-	-
7/8	4-1/2 (114)	2,830 (12.6)	2,925 (13.0)	3,100 (13.8)	2,925 (13.0)	3,780 (16.8)	2,925 (13.0)	4,870 (21.7)	2,925 (13.0)
	4-1/2 (114)	3,100 (13.8)	4,830 (21.5)	3,395 (15.1)	5,290 (23.5)	3,920 (17.4)	5,290 (23.5)	-	-
1	5-1/2 (140)	4,135 (18.4)	5,290 (23.5)	4,530 (20.2)	5,290 (23.5)	5,230 (23.3)	5,290 (23.5)	6,405 (28.5)	5,290 (23.5)
	8 (203)	4,910 (21.8)	5,290 (23.5)	5,380 (23.9)	5,290 (23.5)	6,215 (27.6)	5,290 (23.5)	-	-
/ 4	5-1/2 (140)	4,630 (20.6)	6,640 (29.5)	5,070 (22.6)	7,275 (32.4)	5,850 (26.0)	7,275 (32.4)	-	-
1-1/4	6-1/2 (165)	5,620 (25.0)	7,275	6,160 (27.4)	7,275	7,110 (31.6)	7,275 (32.4)	9,340 (41.5)	7,275 (32,4)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

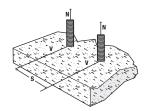
4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

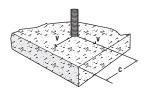
S

Spacing Distance and Edge Distance Tension (F_{NS} , F_{NC}) Adjustment Factors for Normal-Weight Concrete

Dia	a. (in)	1/4	3/8	1/2	1/2	5/8	5/8	3/4	3/4	7/8	1	1-1/4	Di	a. (in)	1/4	3/8	1/2	1/2	5/8	5/8	3/4	3/4	7/8	1	1-1/
hno		1-3/4	2-3/8	2-1/2	3-3/4	3-3/8	4-5/8	4	5-5/8	4-1/2	5-1/2	6-1/2	hno		1-3/4	2-3/8	2-1/2	3-3/4	3-3/8	4-5/8	4	5-5/8	4-1/2	5-1/2	6-1/
Smi	n (in.)	2-1/4	3-1/2	4-1/2	5	6	4-1/4	6	6-1/2	6-1/2	8	8	Ca	c (in.)	3-1/2	6-1/2	8	8	6	10	11	16	11-1/2	12	20
	2	-	-	-	-	-	-	-	-	-	-	-	Cm	in (in.)	1-3/4	2-1/4	3-1/4	2-3/4	5-1/2	4-1/4	5	6	7	8	8
	2-1/4	0.78	-	-	-	-	-	-	-	-	-	-		1-3/4	0.50	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.80	-	-	-	-	-	-	-	-	-	-		2	0.57	-	-	-	-	-	-	-	-	-	-
	2-3/4	0.83	-	-	-	-	-	-	-	-	-	-		2-1/4	0.64	0.35	-	-	-	-	-	-	-	-	-
	3	0.85	-	-	-	-	-	-	-	-	-	-		2-1/2	0.71	0.38	-	-	-	-	-	-	-	-	-
	3-1/2	0.90	0.84	-	-	-	-	-	-	-	-	-		2-3/4	0.79	0.42	-	0.34	-	-	-	-	-	-	-
	4	0.95	0.87	-	-	-	-	-	-	-	-	-		3	0.86	0.46	-	0.38	-	-	-	-	-	-	
	4-1/4	0.98	0.89		-	-	0.72	-	-		-	-		3-1/4	0.93	0.50	0.41	0.41	-	-	-	-	-	-	
	4-1/2	1.00	0.90	0.91	-	-	0.73	-	-	-	-	-		3-1/2	1.00	0.54	0.44	0.44	-	-	-	-	-	-	
	5	1.00	0.94	0.94	0.79	-	0.75	-	-		-	-		4	1.00	0.62	0.50	0.50	-	-	-	-	-	-	.
	5-1/2	1.00	0.97	0.97	0.81	-	0.77	-	-	-	-	-		4-1/4	1.00	0.65	0.53	0.53	-	0.43	-	-	-	-	
	6	1.00	1.00	1.00	0.83	0.88	0.79	0.87	-		-	-		4-1/2	1.00	0.69	0.56	0.56	-	0.45	-	-	-	-	.
	6-1/2	1.00	1.00	1.00	0.86	0.90	0.80	0.89	0.79	0.85	-	-		5	1.00	0.77	0.63	0.63	-	0.50	0.45	-	-	-	
ß	7	1.00	1.00	1.00	0.88	0.93	0.82	0.91	0.81	0.87	-	-		5-1/2	1.00	0.85	0.69	0.69	0.92	0.55	0.50	-	-	-	
	7-1/2	1.00	1.00	1.00	0.90	0.96	0.84	0.93	0.82	0.89	-	-		6	1.00	0.92	0.75	0.75	1.00	0.60	0.55	0.38	-	-	
DISTANCE (INCINES)	8	1.00	1.00	1.00	0.92	0.99	0.86	0.95	0.83	0.91	0.84	0.82		6-1/2	1.00	1.00	0.81	0.81	1.00	0.65	0.59	0.41	-	-	
חופות	8-1/2	1.00	1.00	1.00	0.94	1.00	0.88	0.97	0.85	0.93	0.85	0.83		7	1.00	1.00	0.88	0.88	1.00	0.70	0.64	0.44	0.61	-	
	9	1.00	1.00	1.00	0.97	1.00	0.89	0.99	0.86	0.94	0.87	0.84		7-1/2	1.00	1.00	0.94	0.94	1.00	0.75	0.68	0.47	0.65	-	F
opauliy	9-1/2	1.00	1.00	1.00	0.99	1.00	0.91	1.00	0.87	0.96	0.89	0.85		8	1.00	1.00	1.00	1.00	1.00	0.80	0.73	0.50	0.70	0.67	0.
	10	1.00	1.00	1.00	1.00	1.00	0.93	1.00	0.89	0.98	0.90	0.86		8-1/2	1.00	1.00	1.00	1.00	1.00	0.85	0.77	0.53	0.74	0.71	0.
	10-1/2	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.90	1.00	0.92	0.87	(inches)	9	1.00	1.00	1.00	1.00	1.00	0.90	0.82	0.56	0.78	0.75	0.
	11	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.91	1.00	0.93	0.88	ce (in	9-1/2	1.00	1.00	1.00	1.00	1.00	0.95	0.86	0.59	0.83	0.79	0.
	11-1/2	1.00	1.00	1.00	1.00	1.00	0.98	1.00	0.93	1.00	0.95	0.90	Distance	10	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.63	0.87	0.83	0.
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	0.96	0.91	Edge Di	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.66	0.91	0.88	0.
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.98	0.92	Ed	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.69	0.96	0.92	0.
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.93		11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.72	1.00	0.96	0.
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.94		12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.75	1.00	1.00	0.
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.95		12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.78	1.00	1.00	0.
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96		13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.81	1.00	1.00	0.
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97		13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	1.00	0.
	15-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99		14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.
	16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.
														15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.
														15-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.
														16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
														16-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
														17	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
														17-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
														18	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
														18-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
														19	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
														19-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.
													1	-											· · · · ·

20

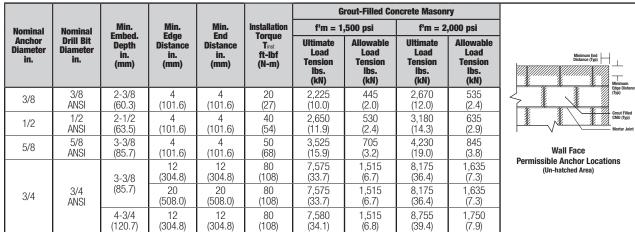

Spacing Distance and Edge Distance Shear (F_{VS} , F_{VC}) Adjustment Factors for Normal-Weight Concrete


Dia	a. (in)	1/4	3/8	1/2	1/2	5/8	5/8	3/4	3/4	7/8	1	1-1/4	Dia	a. (in)	1/4	3/8	1/2	1/2	5/8	5/8	3/4	3/4	7/8	1	1-1/4
hno		1-3/4	2-3/8	2-1/2	3-3/4	3-3/8	4-5/8	4	5-5/8	4-1/2	5-1/2	6-1/2	hno	m (in.)	1-3/4	2-3/8	2-1/2	3-3/4	3-3/8	4-5/8	4	5-5/8	4-1/2	5-1/2	6-1/2
Smi	n (in.)	2-1/4	3-1/2	4-1/2	5	6	4-1/4	6	6-1/2	6-1/2	8	8	Cm	in (in.)	1-3/4	2-1/4	3-1/4	2-3/4	5-1/2	4-1/4	5	6	7	8	8
	2-1/4	0.85	-	-	-	-	-	-	-	-	-	-		1-3/4	0.39	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.87	-	-	-	-	-	-	-	-	-	-		2	0.44	-	-	-	-	-	-	-	-	-	-
	2-3/4	0.88	-	-	-	-	-	-	-	-	-	-		2-1/4	0.50	0.38	-	-	-	-	-	-	-	-	-
	3	0.90	-	-	-	-	-	-	-	-	-	-		2-1/2	0.56	0.42	-	-	-	-	-	-	-	-	-
	3-1/2	0.93	0.90	-	-	-	-	-	-	-	-	-		2-3/4	0.61	0.46	-	0.28	-	-	-	-	-	-	-
	4	0.97	0.92	-	-	-	-	-	-	-	-	-		3	0.67	0.50	-	0.31	-	-	-	-	-	-	-
	4-1/4	0.98	0.93	-	-	-	0.82	-	-	-	-	-		3-1/4	0.72	0.54	0.54	0.33	-	-	-	-	-	-	-
	4-1/2	1.00	0.94	0.95	-	-	0.82	-	-	-	-	-		3-1/2	0.78	0.58	0.58	0.36	-	-	-	-	-	-	-
	5	1.00	0.96	0.97	0.86	-	0.83	-	-	-	-	-		4	0.89	0.67	0.67	0.41	-	-	-	-	-	-	-
	5-1/2	1.00	0.98	0.98	0.87	-	0.85	-	-	-	-	-		4-1/4	0.94	0.71	0.71	0.44	-	0.35	-	-	-	-	-
	6	1.00	1.00	1.00	0.89	0.91	0.86	0.92	-	-	-	-		4-1/2	1.00	0.75	0.75	0.46	-	0.38	-	-	-	-	-
	6-1/2	1.00	1.00	1.00	0.90	0.93	0.87	0.93	0.88	0.91	-	-		5	1.00	0.83	0.83	0.51	-	0.42	0.53	-	-	-	-
_	7	1.00	1.00	1.00	0.92	0.95	0.88	0.94	0.88	0.92	-	-		5-1/2	1.00	0.92	0.92	0.56	0.67	0.46	0.59	-	-	-	-
(inches)	7-1/2	1.00	1.00	1.00	0.93	0.97	0.89	0.96	0.89	0.93	-	-		6	1.00	1.00	1.00	0.62	0.73	0.50	0.64	0.42	-	-	-
se (in	8	1.00	1.00	1.00	0.95	0.99	0.90	0.97	0.90	0.94	0.90	0.89		6-1/2	1.00	1.00	1.00	0.67	0.79	0.54	0.69	0.46	-	-	-
Distance	8-1/2	1.00	1.00	1.00	0.96	1.00	0.92	0.98	0.91	0.96	0.91	0.90	hes)	7	1.00	1.00	1.00	0.72	0.85	0.58	0.75	0.49	0.67	-	-
	9	1.00	1.00	1.00	0.98	1.00	0.93	0.99	0.92	0.97	0.92	0.91	(inches)	7-1/2	1.00	1.00	1.00	0.77	0.91	0.63	0.80	0.53	0.71	-	-
Spacing	9-1/2	1.00	1.00	1.00	0.99	1.00	0.94	1.00	0.92	0.98	0.93	0.91	Distance	8	1.00	1.00	1.00	0.82	0.97	0.67	0.85	0.56	0.76	0.61	0.50
S	10	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.93	0.99	0.94	0.92) Dist	8-1/2	1.00	1.00	1.00	0.87	1.00	0.71	0.91	0.60	0.81	0.65	0.53
	10-1/2	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.94	1.00	0.95	0.93	Edge	9	1.00	1.00	1.00	0.92	1.00	0.75	0.96	0.63	0.86	0.69	0.56
	11	1.00	1.00	1.00	1.00	1.00	0.98	1.00	0.95	1.00	0.96	0.93		9-1/2	1.00	1.00	1.00	0.97	1.00	0.79	1.00	0.67	0.90	0.72	0.59
	11-1/2	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.96	1.00	0.97	0.94		10	1.00	1.00	1.00	1.00	1.00	0.83	1.00	0.70	0.95	0.76	0.62
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.98	0.95		10-1/2	1.00	1.00	1.00	1.00	1.00	0.88	1.00	0.74	1.00	0.80	0.65
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.99	0.95		11	1.00	1.00	1.00	1.00	1.00	0.92	1.00	0.77	1.00	0.84	0.68
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.96		11-1/2	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.81	1.00	0.88	0.71
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.97		12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	0.91	0.74
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97		12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	0.95	0.78
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98		13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	0.99	0.81
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99		13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.84
	15-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99		14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.87
	16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90
														15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93
														15-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96
															1	1	1					1	1	1	

16

1.00 1.00 1.00

1.00 1.00 1.00 1.00


1.00

0.99

1.00

1.00

Tabulated load values for 3/8", 1/2" and 5/8" diameter anchors are installed in minimum 6" wide, Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units 1. conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at specified minimum at the time of installation.

Tabulated load values for 3/4" diameter anchors are installed in minimum 8" wide, Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM 2. C 90. Mortar must be minimum Type N. Masonry compressive strength must be at specified minimum at the time of installation.

3. Allowable load capacities listed are calculated using an applied safety factor of 5.0.

The tabulated values are applicable for anchors installed into grouted masonry wall faces at a critical spacing distance, sa, between anchors of 16 times the anchor diameter. The spacing 4. distance between two anchors may be reduced to minimum distance, smm, of 8 times the anchor diameter provided the allowable tension loads are multiplied by a reduction factor 0.80 and allowable shear loads are multiplied by a reduction factor of 0.90. Linear interpolation for calculation of allowable loads may be used for intermediate anchor spacing distances.

5. Anchors may be installed in the grouted cells and in cell webs and bed joints not closer than 1-3/8" from head joints. The minimum edge and end distances must also be maintained. Allowable tension values for anchors installed into bed joints of grouted masonry wall faces with a minimum of 12" edge distance and end distance may be increased by 20 percent for the

1/2-inch diameter and 10 percent for the 5/8-inch diameter.

Ultimate and Allowable Load Capacities in Shear for Power-Stud+ SD1 in Grout Filled Concrete Masonry Wall Faces^{1,2,3,4,5}

						G	rout-Filled Co	ncrete Masonı	у
Nominal	Min.	Min.	Min.		Installation	f'm = 1	,500 psi	f'm = 2	,000 psi
Drill Bit Diameter in.	Embea. Depth in. (mm)	Edge Distance in. (mm)	Distance in. (mm)	Direction of Loading	Tinst ft-lbf (N-m)	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)
3/8 ANSI	2-3/8 (60.3)	4 (101.6)	4 (101.6)	Perpendicular or parallel to wall edge or end	20 (27)	2,975 (13.4)	595 (2.7)	3,570 (16.1)	715 (3.2)
		4 (101.6)	12 (304.8)	Perpendicular or parallel to wall edge or end		2,800 (12.6)	560 (2.5)	3,360 (15.1)	670 (3.0)
1/2 ANSI	2-1/2 (63.5)	12 (304.8)	4 (101.6)	Parallel to wall end	40 (54)	4,025	805	4,830	965
		4 (101.6)	12 (304.8)	Parallel to wall edge		(18.1)	(3.6)	(21.7)	(4.3)
		4 (101.6)	4 (101.6)	Perpendicular or parallel to wall edge or end		3,425 (15.4)	685 (3.1)	4,110 (18.5)	820 (3.7)
5/8 ANSI	3-3/8 (85.7)	12 (304.8)	4 (101.6)	Parallel to wall end	50 (68)	5,325	1,065	6,390	1,280
		4 (101.6)	12 (304.8)	Parallel to wall edge		(24.0)	(4.8)	(28.8)	(5.8)
	3-3/8	12 (304.8)	12 (304.8)			8,850 (39.4)	1,770 (7.9)	9,375 (41.7)	1,875 (8.3)
3/4 ANSI	(85.7)	20 (508.0)	20 (508.0)	Perpendicular or parallel to wall edge or end	80 (108)	10,200 (45.4)	2,040 (9.1)	10,800 (48.0)	2,160 (9.6)
	Jill Bit Diameter 3/8 ANSI 1/2 ANSI 5/8 ANSI 5/8 ANSI	Nominal Drill Bir Diameter in. Embed. Depth in. 3/8 ANSI 2-3/8 (60.3) 1/2 ANSI 2-1/2 (63.5) 5/8 ANSI 3-3/8 (85.7) 5/8 ANSI 3-3/8 (85.7)	Nominal Drill Bit, in. Embed. Depth in., (mm) Edge Distance in., (mm) 3/8 ANSI 2-3/8 (60.3) 4 (101.6) 1/2 ANSI 2-1/2 (63.5) 4 (101.6) 1/2 ANSI 2-1/2 (63.5) 4 (101.6) 1/2 ANSI 3-3/8 (85.7) 4 (101.6) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 3/4 3-3/8 (85.7) 12 (304.8)	Nominal Drill Bit n. in. Embed. Depth in. (mm) Edge Distance in. (mm) End Distance in. (mm) 3/8 ANSI 2-3/8 (60.3) 4 (101.6) 4 (101.6) 4 (101.6) 1/2 ANSI 2-1/2 (63.5) 4 (101.6) 12 (304.8) 4 (101.6) 1/2 ANSI 2-1/2 (63.5) 12 (304.8) 4 (101.6) 12 (304.8) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 4 (101.6) 12 (101.6) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 12 (304.8) 12 (304.8) 3/4 3-3/8 (85.7) 12 20 20	Nominal Drill Bit in. in.Embed. Depth in. (mm)Edge Edge Distance in. (mm)End Distance in. (mm)Direction of Loading $3/8$ ANSI2-3/8 (60.3)4 (101.6)4 (101.6)Perpendicular or parallel to wall edge or end $3/8$ ANSI2-3/8 (60.3)4 (101.6)12 (304.8)Perpendicular or parallel to wall edge or end $1/2$ ANSI2-1/2 (63.5)12 (304.8)4 (101.6)Perpendicular or parallel to wall edge or end $1/2$ ANSI2-1/2 (63.5)12 (101.6)4 (304.8)Parallel to wall edge $1/2$ ANSI3-3/8 (85.7)4 (101.6)4 (101.6)Perpendicular or parallel to wall edge or end $5/8$ ANSI3-3/8 (85.7)12 (304.8)4 (101.6)Parallel to wall edge $5/8$ ANSI3-3/8 (85.7)12 (304.8)12 (304.8)Parallel to wall edge $3/4$ 3-3/8 (85.7)12 (2012 (20Perpendicular or parallel to wall edge	Nominal Drill Bit in. in.Embed. Depth in. (mm)Edge Distance in. (mm)End Distance in. (mm)Direction of LoadingTorque Test th-bf (N-m) $3/8$ ANSI2-3/8 (60.3)4 (101.6)4 (101.6)Perpendicular or parallel to wall edge or end20 (27) $1/2$ ANSI2-1/2 (63.5)4 (101.6)12 (304.8)Perpendicular or parallel to wall edge or end20 (27) $1/2$ ANSI2-1/2 (63.5)4 (101.6)12 (304.8)Perpendicular or parallel to wall edge or end40 (54) $1/2$ ANSI4 (101.6)12 (304.8)40 (101.6)Parallel to wall edge40 (54) $5/8$ ANSI3-3/8 (85.7)12 4 (101.6)4 (101.6)Parallel to wall edge50 (68) $5/8$ ANSI3-3/8 (85.7)12 4 (101.6)12 (304.8)Parallel to wall edge50 (68) $3/4$ 3-3/8 (85.7)12 2012 2020Perpendicular or parallel to wall edge50 (68)	Nominal Drill Bit Diameter in. Min. Embed. Depth in. (mm) Min. Edge Distance in. (mm) Min. End Distance in. (mm) Direction of Loading Installation Torque the (N-m) $f^{*m} = 1$; Ultimate f_{t-bf} 3/8 2-3/8 (60.3) 4 4 Perpendicular or parallel to wall edge or end 20 (27) 2,975 (27) 3/8 2-3/8 (60.3) 4 12 (101.6) Perpendicular or parallel to wall edge or end 20 (27) 2,975 (13.4) 1/2 4 12 (304.8) Perpendicular or parallel to wall edge or end 40 (54) 40 (12.6) 1/2 2-1/2 (304.8) 12 (304.8) Parallel to wall edge 40 (54) 40 (54) 40 (54) 1/2 4 12 (304.8) Parallel to wall edge 40 (54) 40 (54) 40 (54) 5/8 3-3/8 (85.7) 12 (304.8) 4 Perpendicular or parallel to wall edge or end 50 (68) 5,325 (15.4) 5/8 3-3/8 (85.7) 12 (304.8) 12 (304.8) Parallel to wall edge 50 (68) 5,325 (39.4) 3/4 68.7) 20 20 Perpendicular or parallel to 80 10,200	Nominal Drill Brill Diameter in. Min. Edge Distance in. (mm) Min. End Distance in. (mm) Min. End Distance in. (mm) Direction of Loading Installation forque ft-bf $f^m = 1,50$ psi 3/8 2-3/8 (60.3) 4 4 Perpendicular or parallel to wall edge or end 20 (27) 2.975 (13.4) 595 (27) 3/8 2-3/8 (60.3) 4 12 (101.6) Perpendicular or parallel to wall edge or end 20 (27) 2.975 (13.4) 595 (2.7) 1/2 ANSI 2-1/2 (63.5) 4 12 (101.6) Perpendicular or parallel to wall edge or end 40 (54) 2,800 (12.6) 560 (12.6) 1/2 ANSI 2-1/2 (63.5) 4 12 (101.6) Parallel to wall end (101.6) Parallel to wall end (101.6) 40 (54) 4,025 (18.1) 805 (15.4) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 4 Perpendicular or parallel to wall edge or end 50 (68) 5,325 (15.4) 1,065 (4.8) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 12 (304.8) Parallel to wall edge 50 (68) 5,325 (24.0) 1,065 (39.4) 3/4 857.7 20 20 20 <t< td=""><td>Nominal Drill Bit, in, (mm) Ended. Depth (mm) Ended. Distance (mm) End Distance (mm) Direction of Loading Torque ft Torque ft Torque ft Allowable Load Shear lbs. Allowable Load Shear lbs. Ultimate Load Shear lbs. 3/8 ANSI 2-3/8 (60.3) 4 4 Perpendicular or parallel to wall edge or end 20 (27) 2.975 (13.4) 595 (2.7) 3,570 (16.1) 1/2 ANSI 2-1/2 (63.5) 4 12 (101.6) Perpendicular or parallel to wall edge or end 40 (54) 2,800 (12.6) 560 (2.5) 3,360 (15.1) 1/2 ANSI 2-1/2 (63.5) 12 (101.6) 4 (101.6) Parallel to wall edge 40 (54) 4,025 (18.1) 805 (3.6) 4,830 (21.7) 1/2 ANSI 2-1/2 (101.6) 12 (101.6) Parallel to wall edge 40 (54) 4,025 (18.1) 805 (3.6) 4,830 (21.7) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 4 (101.6) Perpendicular or parallel to wall edge or end 50 (68) 5,325 (24.0) 1,065 (4.8) 6,390 (28.8) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 12 (304.8) 12 (304.8) Parallel to wall edge <</td></t<>	Nominal Drill Bit, in, (mm) Ended. Depth (mm) Ended. Distance (mm) End Distance (mm) Direction of Loading Torque ft Torque ft Torque ft Allowable Load Shear lbs. Allowable Load Shear lbs. Ultimate Load Shear lbs. 3/8 ANSI 2-3/8 (60.3) 4 4 Perpendicular or parallel to wall edge or end 20 (27) 2.975 (13.4) 595 (2.7) 3,570 (16.1) 1/2 ANSI 2-1/2 (63.5) 4 12 (101.6) Perpendicular or parallel to wall edge or end 40 (54) 2,800 (12.6) 560 (2.5) 3,360 (15.1) 1/2 ANSI 2-1/2 (63.5) 12 (101.6) 4 (101.6) Parallel to wall edge 40 (54) 4,025 (18.1) 805 (3.6) 4,830 (21.7) 1/2 ANSI 2-1/2 (101.6) 12 (101.6) Parallel to wall edge 40 (54) 4,025 (18.1) 805 (3.6) 4,830 (21.7) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 4 (101.6) Perpendicular or parallel to wall edge or end 50 (68) 5,325 (24.0) 1,065 (4.8) 6,390 (28.8) 5/8 ANSI 3-3/8 (85.7) 12 (304.8) 12 (304.8) 12 (304.8) Parallel to wall edge <

(56.7) 1. Tabulated load values for 3/8", 1/2" and 5/8" diameter anchors are installed in minimum 6" wide, Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at specified minimum at the time of installation.

12,735

(56.7)

2.545

(11.3)

12,735

2.545

(11.3)

Tabulated load values for 3/4" diameter anchors are installed in minimum 8" wide, Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM 2. C 90. Mortar must be minimum Type N. Masonry compressive strength must be at specified minimum at the time of installation.

3. Allowable load capacities listed are calculated using an applied safety factor of 5.0.

12

(304.8)

12

(304.8)

4-3/4

(120.7)

The tabulated values are applicable for anchors installed into grouted masonry wall faces at a critical spacing distance, sa, between anchors of 16 times the anchor diameter. The spacing 4. distance between two anchors may be reduced to minimum distance, smin, of 8 times the anchor diameter provided the allowable tension loads are multiplied by a reduction factor 0.80 and allowable shear loads are multiplied by a reduction factor of 0.90. Linear interpolation for calculation of allowable loads may be used for intermediate anchor spacing distances.

Anchors may be installed in the grouted cells and in cell webs and bed joints not closer than 1-3/8" from head joints. The minimum edge and end distances must also be maintained.

CODE LISTED

ICC-ES ESR-2966

Ultimate and Allowable Load Capacities in Tension for Power-Stud+ SD1 in Grout Filled Concrete Masonry Wall Tops^{1,2,3,4}

						Gi	out-Filled Co	ncrete Masor	nry	
Nominal	Nominal	Minimum	Min.	Min. End	Installation	f'm = 1	,500 psi	f'm = 2	,000 psi	
Anchor Diameter in.	Drill Bit Diameter in.	Embed. Depth in. (mm)	Edge Distance in. (mm)	Distance in. (mm)	Torque Tinst ft-Ibf (N-m)	Ultimate Load Tension Ibs. (kN)	Allowable Load Tension Ibs. (kN)	Ultimate Load Tension Ibs. (kN)	Allowable Load Tension Ibs. (kN)	Minimum End Distance (Typ)
3/8	3/8 ANSI	2-3/8 (60.3)	1-3/4 (44.5)		20 (27)	1,475 (6.6)	295 (1.3)	1,770 (8.0)	355 (1.6)	Minimum Edge
1/2	1/2	2-1/2 (63.5)		12	40	2,225 (9.9)	445 (2.0)	2,575 (11.5)	515 (2.3)	Distance (Typ) Top of Wall
1/2	ANSI	5 (127)	2-1/4 (57.1)	(304.8)	(54)	3,425 (15.4)	685 (3.1)	4,110 (18.5)	820 (3.7)	
5/8	5/8 ANSI	3-3/8 (85.7)			50 (68)	3,825 (17.2)	765 (3.4)	4,590 (20.7)	920 (4.1)	

1. Tabulated load values are for anchors installed in minimum 8-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. Anchors must be installed in the grouted cells and the minimum edge and end distances must be maintained.

4. The tabulated values are applicable for anchors installed in top of grouted masonry walls at a critical spacing distance, sa, between anchors of 16 times the anchor diameter.

Ultimate and Allowable Load Capacities in Shear for Power-Stud+ SD1 in Grout Filled Concrete Masonry Wall Tops $^{\rm 1,2,3,4}$

Nominal	Nominal	Minimum Embed.	Min. Edge	Min. End		Installation Torque	f'm = 1	,500 psi	f'm = 2	,000 psi
Anchor Diameter in.	Drill Bit Diameter in.	Depth in. (mm)	Distance in. (mm)	Distance in. (mm)	Direction of Loading	Tinst ft-Ibf (N-m)	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (KN)
3/8	3/8	2-3/8	1-3/4	12	Perpendicular to wall toward minimum edge	20	1,150 (5.2)	230 (1.0)	1,380 (6.2)	275 (1.2)
3/0	ANSI	(60.3)	(44.5)	(304.8)	Parallel to wall edge	(27)	2,425 (10.9)	485 (2.2)	2,910 (13.1)	580 (2.6)
		2-1/2 (63.5)			Any		1,150 (5.2)	230 (1.0)	1,380 (6.2)	275 (1.2)
1/2	1/2 ANSI	5	2-1/4 (57.1)	12 (304.8)	Perpendicular to wall toward minimum edge	40 (54)	1,400 (6.3)	280 (1.3)	1,680 (7.6)	325 (1.5)
		(127)			Parallel to wall edge		2,825 12.7	565 (2.5)	3,390 (15.3)	680 (3.1)
		3-3/8 (85.7)			Any		1,150 (5.2)	230 (1.0)	1,380 (6.2)	275 (1.2)
5/8	5/8 ANSI	6-1/4	2-1/4 (57.1)	12 (304.8)	Perpendicular to wall toward minimum edge	50 (68)	1,700 (7.7)	340 (1.5)	2,040 (9.2)	410 (1.8)
		(158.8)			Parallel to wall edge		3,525 (15.9)	705 (3.2)	4,230 (19.0)	845 (3.8)

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. Anchors must be installed in the grouted cells and the minimum edge and end distances must be maintained.

4. The tabulated values are applicable for anchors installed in top of grouted masonry walls at a critical spacing distance, s_α, between anchors of 16 times the anchor diameter.

ĄÇI

CODE LISTED

ICC-ES ESR-2966

Grout-Filled Concrete Masonry

STRENGTH DESIGN (SD)

Power-Stud+ SD1 Anchor Installation Specifications in Concrete¹

									Nominal An	chor Diameter					_	
Anchor Property / Setting Information	Notation	Units	1/4		3/8				/2	5/8			/4	7/8	1	1-1/4
3 • • • •			inch		inch			in	-	inch		in		inch	inch	inch
Anchor diameter	da	in.	0.250		0.375				500	0.625		0.7		0.875	1.000	1.250
Minimum diameter of		<u>(mm)</u> in.	(6.4) 5/16		(9.5) 7/16			(12	2.7) 16	(15.9)		(19).1) /16	(22.2) 1	(25.4) 1-1/8	<u>(31.8)</u> 1-3/8
hole clearance in fixture	Ch	(mm)	(7.5)		(11.1)				1.3)	(17.5)		(20		(25.4)	(28.6)	(34.9)
Nominal drill bit	dbit	in.	1/4		3/8			1.	/2	5/8		3,	/4	7/8	1	1-1/4
diameter	Ubit		ANSI		ANSI			A		ANSI		AN		ANSI	ANSI	ANSI
Nominal embedment depth	h _{nom}	in. (mm)	1-3/4 (44)		2-3/8 (60)		2-1 (6-		3-3/4 (95)	3-3/8 (86)	4-5/8 (117)	4 (102)	5-5/8 (143)	4-1/2 (114)	5-1/2 (140)	6-1/2 (165)
Effective embedment		in.	1.50		2.00		2.0		3.25	2.75	4.00	3.125	4.75	3.50	4.375	5.375
depth	h _{ef}	(mm)	(38)		(51)		(5		(83)	(70)	(102)	(79)	(114)	(89)	(111)	(137)
Minimum hole depth	h _{hole}	in.	1-7/8		2-1/2		2-3		4	3-3/4	5	4-1/4	5-7/8	4-7/8	5-7/8	7-1/4
Minimum overall		(mm) in.	(48)		<u>(64)</u> 3		(7)		(102) 4-1/2	(95) 4-1/2	(127)	(108) 5-1/2	(149)	(124)	(149) 9	(184) 9
anchor length ²	lanch	(mm)	(57)		(76)		(9		(114)	(114)	(152)	(140)	(178)	(203)	(229)	(229)
0	т	ftlbf.	4		20		(0)		0	80	(102)	1 1	10	175	225	375
nstallation torque ⁶	Tinst	(N-m)	(5)		(27)			(5	4)	(108)		(14	19)	(237)	(305)	(508)
Torque wrench/socket	-	in.	7/16		9/16			3	/4	15/16		1-1	1/8	1-5/16	1-1/2	1-7/8
size Nut height		in.	7/32		21/64			-	16	35/64		41		3/4	55/64	1-1/16
nut neight	-		1132			e Inetali	ed in Co		Construction	35/04		41/	04	3/4	55/04	1-1/10
Minimum member		in.	3-1/4	3-3		4	4		6	6	7	6	10	10	10	12
thickness	hmin	(mm)	(83)	(95		(102)	(10		(152)	(152)	(178)	(152)	(254)	(254)	(254)	(305)
	0	in.	1-3/4	6	2-3/4	2-1/4	6	3-1/4	4 2-3/4	6 5-1/2	4-1/4	5	6	7`	8	8
Vinimum edge distance	Cmin	(mm)	(45)	(152)	(70)	(57)	(152)	(95)	(102) (70)	(152) (140)	(108)	(127)	(152)	(178)	(203)	(203)
Minimum spacing	Smin	in.	2-1/4	3-1/2	9	3-3/4	4-1/2	10	5 6	6 11	4-1/4	6	6-1/2	6-1/2	8	8
distance Critical edge distance		(mm) in.	(57) 3-1/2	(89)	(229)	(95)	(114) 8	(254)	(127) (152) 8	(152) (270) 6	(108) 10	(152) 11	(165) 16	(165) 11-1/2	(203)	<u>(203)</u> 20
(uncracked concrete only)	Cac	(mm)	(89)		(165)		(20		(203)	(152)	(254)	(279)	(406)	(292)	(305)	(508)
			Anchors	Installe	d in the	e Topsid	e of Con	crete-f	illed Steel Decl	Assemblies ^{3,4}						
Minimum member	h	in.	3-1/4		3-1/4	-	3-1	/4				<u> </u>				
topping thickness	h _{min,deck}	(mm)	(83)		(83)		(8									
Minimum edge distance	Cmin,deck,top	įin.	1-3/4		2-3/4		4-1		e G	e O		, ,	0 D	e 3	e 3	e 3
0	Omini,ucciv,top	(mm)	(45) 2-1/4		(70)		(11		See note 3	See note 3			101	note	note	note
Minimum spacing distance	Smin,deck,top	in. (mm)	(57)		(102)		6-1 (16		See	See		00	DDD DDD	See	See	See
Critical edge distance	_	in.	3-1/2		6-1/2		6	- /								
(uncracked concrete only)	Cac,deck,top	(mm)	(89)		(165)		(15	52)								
		A	nchors	Installed	Throug	gh the S	offit of S	Steel Do	eck Assemblies	into Concrete ⁵						
Minimum member		in.			3-1/4			3_	1/4	3-1/4		3	1/4			
topping thickness	h _{min,deck}	(mm)			(95)				(5)	(95)		-	5)			0
(see detail in Figure 2A) Minimum edge		. ,			()			1-	- /	()		(-	- /	able	able	able
distance, lower flute	Cmin	in.			1-1/4				1/4	1-1/4		1-1		Vot Applicable	Vot Applicable	Not Applicable
(see detail in Figure 2A)	Onini	(mm)			(32)			(3	2)	(32)		(3	2)	t Ap	t Ap	t Ap
Minimum axial spacing		in.	e		6-3/4		6-3	R/4	9-3/4	8-1/4	12	9-3/8	14-1/4	Я	٩ N	Noi
distance along flute	Smin	(mm)	cab		(171)		(17		(248)	(210	(305)	(238)	(362)			
<u>(see detail in Figure 2A)</u> Minimum member		()	Vot Applicable		. ,		· ·	,	. ,		(,	()	(***)			
topping thickness	h _{min,deck}	in.	ot A		2-1/4				1/4							
(see detail in Figure 2B)	- min,dook	(mm)	Ž		(57)			(5	7)	le		-	Ð	le	ele	ole l
Vinimum edge		in.			3/4			.3	/4	Not Applicable		100	NUL Applicable	Vot Applicable	Not Applicable	Not Applicable
distance, lower flute	Cmin	(mm)			(19)				9)	Appl			d d d	Appi	App	Appi
(see detail in Figure 2B) Minimum axial spacing					. ,				, 	ęt		<u>t</u>		Not ,	Not ,	lot /
distance along flute	Smin	in.			6		6		9-3/4			1	-		~	
(see detail in Figure 2B)		(mm)			(152)		(15	02)	(248)							

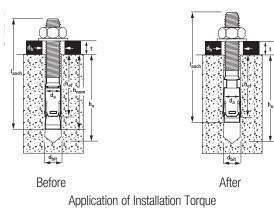
For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

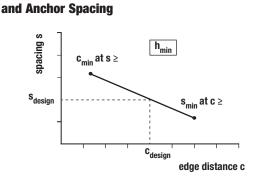
1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth, nut height and washer thickness, and consideration of a possible fixture attachment.

3. The 1/4 -inch-diameter (6.4 mm) anchors may be installed in the topside of uncracked concrete-filled steel deck assemblies where concrete thickness above the upper flute meets the minimum member thicknesses specified in this table. The 3/8 -inch (9.5 mm) through 1-1/4 -inch-diameter (31.8 mm) anchors may be installed in the topside of cracked and uncracked concrete-filled steel deck assemblies where concrete thickness above the upper flute meets the minimum member thicknesses specified in this table under Anchors Installed in Concrete Construction.

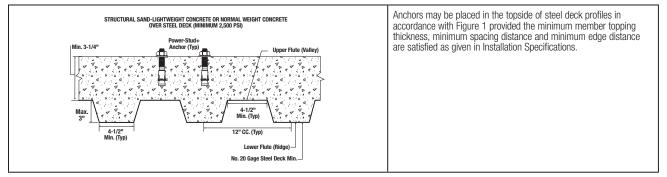
4. For installations in the topside of concrete-filled steel deck assemblies, see the installation detail in Figure 1.

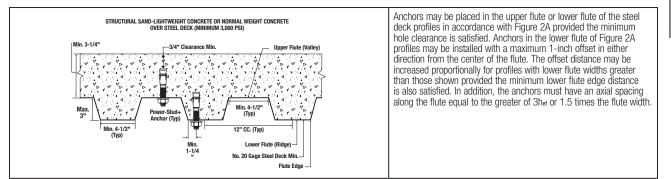

5. For installations through the soffit of steel deck assemblies into concrete, see the installation details in Figures 2A and 2B. In accordance with the figures, anchors shall have an axial spacing along the flute equal to the greater of 3her or 1.5 times the flute width.


6. For installation of 5/8 -inch diameter anchors through the soffit of the steel deck into concrete, the installation torque is 50 ft.-lbf. For installation of 3/4-inch-diameter anchors through the soffit of the steel deck into concrete, installation torque is 80 ft.-lbf.

1

Power-Stud+ SD1 Anchor Detail




Interpolation of Minimum Edge Distance

This interpolation applies to the cases when two sets of minimum edge distances, cmin, and minimum spacing distances, smin, are given in the SD Installation Specifications for Concrete table for a given anchor diameter under the same effective embedment depth, her, and corresponding minimum member thickness, hmin.

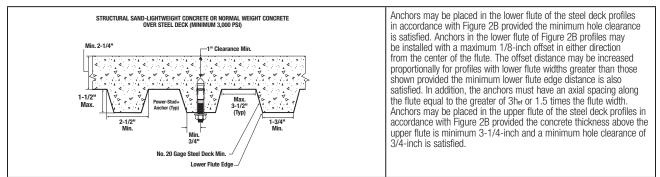


Figure 2A - Power-Stud+ SD1 Installation Detail for Anchors in the Soffit Of Concrete Over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)

Figure 2B - Power-Stud+ SD1 Installation Detail for Anchors in the Soffit Of Concrete Over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)

Tension Design Information for Power-Stud+ SD1 Anchor in Concrete (For use with load combinations taken from ACI 318-14, Section 5.3 or ACI 318-11, Section 9.2) $^{1.2}$

							Nominal	Anchor D	iameter				
Design Characteristic	Notation	Units	1/4 inch	3/8 inch	1/2	inch	5/8 i	nch	3/4	inch	7/8 inch	1 inch	1-1/4 inch
Anchor category	1, 2 or 3	-	1	1	1		1		1	1	1	1	1
			STEEL	STRENG	'H IN TENS	SION ⁴							
Minimum specified yield strength	fya	ksi	88.0	88.0	80		80		64		58.0	58.0	58.0
1 5 6	Tya	(N/mm²)	(606)	(606)	(55		(55		(44		(400)	(400)	(400)
Minimum specified ultimate tensile strength (neck)	futa ¹²	ksi (N/mm²)	110.0 (758)	110.0 (758)	100 (68		100		80 (55		75.0 (517)	75.0 (517)	75.0 (517)
		in ²	0.0220	0.0531	0.10		0.16		0.2		0.327	0.430	0.762
Effective tensile stress area (neck)	Ase,N	(mm²)	(14.2)	(34.3)	(65	.7)	(104	1.9)	(15)	0.9)	(207.5)	(273.1)	(484)
Steel strength in tension⁴	Nsa ¹²	lb	2,255	5,455	9,0		14,4		19,0		24,500	32,250	56,200
Reduction factor for steel strength ³	φ	(kN)	(10.0)	(24.3)	(40	1.4)	(64	. <u>3)</u> 0.75	(84	1.5)	(109.0)	(143.5)	(250)
loadolor labor for ocorrollorigat	Ψ	CON	' Icrete Br	EAKOUT S	TRENGTH	IN TENSI	ON ⁸	0110					
		in.	1.50	2.00	2.00	3.25	2.75	4.00	3.125	4.75	3.50	4.375	5.375
Effective embedment depth	h _{ef}	(mm)	(38)	(51)	(51)	(83)	(70)	(102)	(79)	(114)	(89)	(111)	(137)
Effectiveness factor for uncracked concrete	Kuncr	-	24	24	2	4	24	4	24	24	24	24	27
Effectiveness factor for cracked concrete	Kcr	-	Not Applicable	17	1	7	1	7	21	17	21	24	24
Modification factor for cracked and uncracked concrete ⁵	Ψc,N ¹²	-	1.0	1.0	1.	0	1.	0	1.	.0	1.0	1.0	1.0
Critical edge distance (uncracked concrete only)	Cac	in. (mm)					See Install	ation Spe	cifications				
Reduction factor for concrete breakout strength ³	φ						0.65	(Conditio	n B)				
	. /	LLOUT STR	ENGTH IN	TENSION	(NON SEIS	MIC-APP			10/				
Characteristic pullout strength,		lb	See	2,865	3,220	5,530	See	See	Se	90	See	See	See
uncracked concrete (2,500 psi)6	Np,uncr	(kN)	note 7	(12.8)	(14.3)	(24.6)	note 7	note 7		e 7	note 7	note 7	note 7
Characteristic pullout strength,	N _{p,cr}	lb	Not	2,035	See	2,505	See	4,450	Se		See	See	11,350
cracked concrete (2,500 psi) ⁶ Reduction factor for pullout strength ³	φ	(kN)	Applicable	(9.1)	note 7	(11.2)	note 7	(19.8) (Conditio	not	e 7	note 7	note 7	(50.5)
Reduction factor for pullout strength	• /	ULLOUT ST	 DENCTU II	TENCION					II D)				
Characteristic pullout strength.		b	Not	2,035	See	2.505	See	4.450	Se	20	See	See	11.350
seismic (2,500 psi)6.10	N _{p,eq} ¹²	(kN)	Applicable	(9.1)	note 7	(11.2)	note 7	(19.8)	not		note 7	note 7	(50.5)
Reduction factor for pullout strength, seismic ³	φ	-	rippilotable	(011)	110101	()		(Conditio			110101	11010 1	(00.0)
PULLOUT STRENGTH IN TENSION FO	R ANCHORS	INSTALLED	THROUGH	THE SOFF	IT OF SAND)-LIGHTWI	EIGHT AND	NORMAL-	WEIGHT CO	ONCRETE	OVER STEE	L DECK	
Characteristic pullout strength, uncracked	Np.deck.uncr	lb		1,940	3,2		2,7		3,2				
concrete over steel deck(Figure 2A) ^{6,11}	TNp,deck,uncr	(kN)		(8.6)	(14		(12		(14				
Characteristic pullout strength, cracked concrete over steel deck (Figure 2A) ^{6,11}	Np,deck,cr	lb (kN)		1,375 (6.1)	2,3 (10		1,9 (8.		2,8 (12	325 2.4)			
Characteristic pullout strength, cracked concrete	Np.deck.eg	lb	Vot Applicable	1,375	2,3	90	1,9	80	2,8	325	Vot Applicable	Vot Applicable	Not Applicable
over steel deck, seismic (Figure 2A) ^{6,11} Characteristic pullout strength, uncracked	, bigooniod	(kN) Ib	blid	(6.1) 1,665	(10		(8.	8)	(12	2.4)	pplic	pplic	ildo
concrete over steel deck (Figure 2B) ^{6,11}	Np,deck,uncr	(kN)	lot A	(7.4)	(8.	5)		200	4	anie	lot A	Jot A	ot A
Characteristic pullout strength, cracked concrete over steel deck (Figure 2B) ^{6,11}	Np,deck,cr	lb (kN)] _	1,180 (5.2)	1,4 (6.		Not Annlinahla			NUL Applicable			Z
Characteristic pullout strength, cracked concrete over steel deck, seismic (Figure 2B) ^{6,11}	Np,deck,eq	lb (kN)	1	1,180 (5.2)	1,4	20	Not		Not 1	1001 ¥			
Reduction factor for pullout strength, steel deck ³	φ	(KIN) -		(3.2)	(0.	3)	0.65	(Conditio	n B)		1		
For SI: 1 inch = 25.4 mm ; 1 ksi = 6.894 N/mm^2 ;	. /						0.00						

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 -11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, must apply.

2. Installation must comply with published instructions and details.

3. All values of ϕ apply to the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used.

4. The Power-Stud+ SD1 is considered a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. Tabulated values for steel strength in tension are based on test results per ACI 355.2 and must be used for design.

5. For all design cases use $\Psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{or}) or uncracked concrete (k_{uncr}) must be used.

6. For all design cases use \u03c8_P = 1.0. For concrete compressive strength greater than 2,500 psi N_{pn} = (pullout strength from table)*(specified concrete compressive strength/2,500)⁴⁵. For concrete over steel deck the value of 2,500 must be replaced with the value of 3,000.

7. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

8. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_{n} equal to 0.8 λ is applied to all values of $\sqrt{f'c}$ affecting Nn and Vn. λ shall be determined in accordance with the corresponding version of ACI 318.

9. For anchors in the topside of concrete-filled steel deck assemblies, see Figure 1.

10. Tabulated values for characteristic pullout strength in tension are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.5.

11. Values for N_{pdeck} are for sand-lightweight concrete (t'c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, is not required for anchors installed in the deck soffit (flute).

•

Shear Design Information for Power-Stud+ SD1 Anchor in Concrete (For use with load combinations taken from ACI 318-14, Section 5.3 or ACI 318-11, Section 9.2)^{1,2} **Nominal Anchor Diameter**

Units

-

1/4

inch

1

3/8

inch

1

1/2 inch

1

5/8 inch

1

			ST	EEL STREI	NGTH IN S	HEAR ⁴							
Minimum specified yield strength (threads)	f _{ya}	ksi (N/mm²)	70.0 (482)	80.0 (552)	70 (48).4 85)		4.0 41)	58.0 (400)	58.0 (400)	58.0 (400)
Minimum specified ultimate strength (threads)	f _{uta}	ksi (N/mm²)	88.0 (606)	100.0 (689)	88 (60			3.0 07)).0 52)	75.0 (517)	75.0 (517)	75.0 (517)
Effective tensile stress area (threads)	Ase,v	in² (mm²)	0.0318 (20.5)	0.0775 (50.0)	0.1- (91	419 .5)		260 5.8)		345 2.4)	0.462 (293.4)	0.6060 (384.8)	0.969 (615)
Steel strength in shear⁵	Vsa	lb (kN)	925 (4.1)	2,990 (13.3)	4,6 (20)30).2)	10,640 (47.3)	11,655 (54.8)	8,820 (39.2)	10,935 (48.6)	17,750 (79.0)
Reduction factor for steel strength ³	ϕ	-						0.65					
			ONCRETE	BREAKOU	T STRENG	TH IN SHE	AR ^{6,7}						
Load bearing length of anchor $(h_{ef} \text{ or } 8d_0, \text{ whichever is less})$	le	in. (mm)	1.50 (38)	2.00 (51)	2.00 (51)	3.25 (83)	2.75 (70)	4.00 (102)	3.125 (79)	4.75 (114)	3.50 (88.9)	4.375 (111)	5.375 (137)
Nominal anchor diameter	da	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.5 (12			625 5.9)		750 9.1)	0.875 (22.2)	1.000 (25.4)	1.25 (31.8)
Reduction factor for concrete breakout ³	ϕ	-					0.7) (Conditic	on B)				
			PRY	OUT STRE	NGTH IN S	HEAR ^{6,7}							
$ Coefficient for pryout strength \\ (1.0 for h_{ef} < 2.5 in., 2.0 for h_{ef} \geq 2.5 in.) $	Kcp	-	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Effective embedment	h _{ef}	in. (mm)	1.50 (38)	2.00 (51)	2.00 (51)	3.25 (83)	2.75 (70)	4.00 (102)	3.125 (79)	4.75 (114)	3.50 (88.9)	4.375 (111)	5.375 (137)
Reduction factor for pryout strength ³	ϕ	-					0.7) (Conditio	on B)				
		STEEL	STRENGTI	I IN SHEAI	R FOR SEI	SMIC APP	LICATIONS	6					
Steel strength in shear, seismic [®]	Vsa,eq	lb (kN)	N/A	2,440 (10.9)	3,9 (17			000 3.7)	8,580 (38.2)	9,635 (42.9)	8,820 (39.2)	9,845 (43.8)	17,750 (79.0)
Reduction factor for steel strength in shear for seismic ³	ϕ	-						0.65					
STEEL STRENGTH IN SHEAR FOR	FOR ANCHO	RS INSTALLE	D THROUG	H THE SOF	FIT OF SAN	ID-LIGHTW	EIGHT AND	NORMAL-	WEIGHT CO	DNCRETE O	VER STEEL	DECK ^{9,10}	
Steel strength in shear, concrete over steel deck (Figure 2A) ⁹	V _{sa,deck}	lb (kN)	Ð	2,120 (9.4)	· · ·).2)	(16	710 6.5)	(24	505 1.5)	Ð	Ð	B
Steel strength in shear, concrete over steel deck, seismic (Figure 2A) ⁹	V _{sa,deck,eq}	lb (kN)	Not Applicable	2,120 (9.4)	2,2 (10).2)	(16	710 6.5)	(20	570).3)	Vot Applicable	Not Applicable	Not Applicable
Steel strength in shear, concrete over steel deck (Figure 2B) ⁹	Vsa,deck	lb (kN)	Not Ap	2,120 (9.4)	· · ·	2.4)	Not	Applicable	lot	Applicable	Not Ap	Not Ap	Not Ap
Steel strength in shear, concrete over steel deck, seismic (Figure 2B) ⁹	Vsa,deck,eq	lb (kN)		2,120 (9.4)	2,7 (12			Appl		Appl			
Reduction factor for steel strength in shear, steel deck ³	ϕ	-						0.65					
For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mr	m^2 ; 1 lbf = 0.0	044 kN.											
 The data in this table is intended to be use additional requirements of ACI 318-14 17. 						318-11	Appendix D,	as applical	ole; for ancl	hors resistin	ıg seismic l	oad combin	ations the
2. Installation must comply with published ins													
 All values of φ were determined from the I C are used, then the appropriate value of φ requirements for Condition A, see ACI 318 Section 5.3 or ACI 318-11 Section 9.2, as 	must be determined must be de	ermined in ad or ACI 318-1	ccordance v	vith ACI 318	3-11 D.4.4.	For reinfor	cement tha	t meets AC	318-14 CI	hapter 17 o	r ACI 318-1	1 Appendiz	хD

4. The Power-Stud+ SD1 is considered a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

5. Tabulated values for steel strength in shear must be used for design. These tabulated values are lower than calculated results using equation D-20 in ACI 318-08.

6. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of $\sqrt{f'c}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

7. For anchors in the topside of concrete-filled steel deck assemblies, see Figure 1.

8. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6.

9. Tabulated values for Vsa, deck and Vsa, deck are for sand-lightweight concrete (f'c, min = 3,000 psi); additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, are not required for anchors installed in the deck soffit (flute).

10. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

1-1/4

inch

1

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2018 DEWALT - REV. C

Vedge Expansion Anchor

SDI

POWER-STUD®+

DEWALI ENGINEERED BY POWERS

Anchor category

Design Characteristic

1 inch

1

7/8

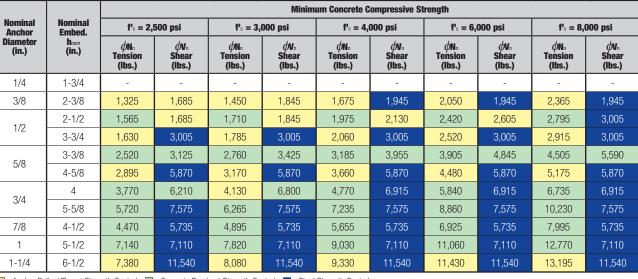
inch

1

3/4 inch

1

Notation

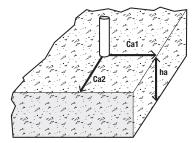

1, 2 or 3

STRENGTH DESIGN PERFORMANCE DATA

Factored design strength ϕ Nn and ϕ Vn Calculated in accordance with ACI 318-14 Chapter 17 Compliant with the International Building Code

Tension and Shear Design Strengths for Power-Stud+ SD1 in Cracked Concrete¹⁻⁶

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls


Tension and Shear Design Strengths for Power-Stud+ SD1 in Uncracked Concrete¹⁻⁶

					Minim	um Concrete C	Compressive S	trength			
Nominal Anchor	Nominal Embed.	f'₀ = 2,	500 psi	f'₀ = 3,	000 psi	f'c = 4,	000 psi	f'₀ = 6,0	DOO psi	f³c = 8,0	DOO psi
Diameter (in.)	hnom (in.)	ØN∩ Tension (Ibs.)	∳V∩ Shear (lbs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (lbs.)	ØV∩ Shear (lbs.)	ØN∩ Tension (Ibs.)	ØV∩ Shear (Ibs.)	ØN∩ Tension (lbs.)	ØV∩ Shear (lbs.)
1/4	1-3/4	1,435	600	1,570	600	1,690	600	1,690	600	1,690	600
3/8	2-3/8	1,860	1,945	2,040	1,945	2,335	1,945	2,885	1,945	3,330	1,945
1/0	2-1/2	2,095	2,375	2,295	2,605	2,645	3,005	3,240	3,005	3,745	3,005
1/2	3-3/4	3,595	3,005	3,940	3,005	4,545	3,005	5,570	3,005	6,430	3,005
E /0	3-3/8	3,555	4,375	3,895	4,795	4,500	5,535	5,510	5,870	6,365	5,870
5/8	4-5/8	6,240	5,870	6,835	5,870	7,895	5,870	9,665	5,870	10,850	5,870
3/4	4	4,310	6,915	4,720	6,915	5,450	6,915	6,675	6,915	7,710	6,915
3/4	5-5/8	8,075	7,575	8,845	7,575	10,215	7,575	12,510	7,575	14,250	7,575
7/8	4-1/2	5,105	5,735	5,595	5,735	6,460	5,735	7,910	5,735	9,135	5,735
1	5-1/2	7,140	7,110	7,820	7,110	9,030	7,110	11,060	7,110	12,770	7,110
1-1/4	6-1/2	10,935	11,540	11,980	11,540	13,830	11,540	16,940	11,540	19,560	11,540

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

- 1-Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

 - Ca2 is greater than or equal to 1.5 times Ca1.
- Calculations were performed according to ACI 318-14 Chapter 17. The load level corresponding to the 2controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information
- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. 3-Condition B is assumed.
- Tabular values are permitted for static loads only, seismic loading is not considered with these tables. 4-
- For designs that include combined tension and shear, the interaction of tension and shear loads must be 5calculated in accordance with ACI 318-14 Chapter 17.
- Interpolation is not permitted to be used with the tabular values. For intermediate base material 6compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.

ORDERING INFORMATION

DEWAT

ENGINEERED BY POWERS

Power-Stud+ SD1 (Carbon Steel Body and Expansion Clip)

		Thread	Dem	Control	Wt./100		Suggested Al	VSI Carbide Dr	ill Bit Cat. No.	
Cat. No.	Anchor Size	Thread Length	Box Qty.	Carton Qty.	Wt./100 (lbs.)	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max
7400SD1	1/4" x 1-3/4"	3/4"	100	600	3	DW5517	DW5416	-	-	-
7402SD1	1/4" x 2-1/4"	1-1/4"	100	600	4	DW5517	DW5417	-	-	-
7404SD1	1/4" x 3-1/4"	2-1/4"	100	600	5	DW5517	DW5417	-	-	-
7410SD1	3/8" x 2-1/4"	7/8"	50	300	8	DW5527	DW5427	-	-	-
7412SD1	3/8" x 2-3/4"	1-3/8"	50	300	9	DW5527	DW5427	-	-	-
7413SD1	3/8" х 3"	1-5/8"	50	300	10	DW5527	DW5427	-	-	-
7414SD1	3/8" x 3-1/2"	2-1/8"	50	300	12	DW5527	DW5427	-	-	-
7415SD1	3/8" x 3-3/4"	2-3/8"	50	300	13	DW5527	DW5427	-	-	-
7416SD1	3/8" x 5"	3-5/8"	50	300	15	DW55300	DW5429	-	-	-
7417SD1	3/8" x 7"	5-5/8"	50	300	21	DW55300	DW5429	-	-	-
7420SD1	1/2" x 2-3/4"	1"	50	200	19	DW5537	DW5437	DW5803	DWA54012	-
7422SD1	1/2" x 3-3/4"	2"	50	200	23	DW5537	DW5437	DW5803	DWA54012	-
7423SD1	1/2" x 4-1/2"	2-3/4"	50	200	27	DW5539	DW5438	DW5803	DWA54012	-
7424SD1	1/2" x 5-1/2"	3-3/4"	50	150	30	DW5539	DW5438	DW5803	DWA54012	-
7426SD1	1/2" x 7"	5-1/4"	25	100	38	DW5539	DW5438	DW5803	DWA54012	-
7427SD1	1/2" x 8-1/2"	6-3/4"	25	100	44	DW5539	DW5439	DW5804	DWA54012	-
7428SD1	1/2" x 10"	8-1/4"	25	100	53	DW5539	DW5439	DW5804	DWA54012	-
7430SD1	5/8" x 3-1/2"	1-1/2"	25	100	37	-	DW5446	DW5806	DWA54058	DWA54058
7432SD1	5/8" x 4-1/2"	2-1/2"	25	100	43	-	DW5446	DW5806	DWA54058	DWA54058
7433SD1	5/8" x 5"	3"	25	100	47	-	DW5446	DW5806	DWA54058	DWA54058
7434SD1	5/8" x 6"	4"	25	75	53	-	DW5446	DW5806	DWA54058	DWA54058
7436SD1	5/8" x 7"	5"	25	75	60	-	DW5447	DW5806	DWA54058	DWA54058
7438SD1	5/8" x 8-1/2"	6-1/2"	25	50	70	-	DW5447	DW5809	DWA54058	DWA54058
7439SD1	5/8" x 10"	8"	25	75	87	-	DW5447	DW5809	DWA54058	DWA54034
7440SD1	3/4" x 4-1/4"	1-3/4"	20	60	63	-	DW5453	DW5810	DWA54034	DWA54034
7441SD1	3/4" x 4-3/4"	2-1/4"	20	60	68	-	DW5453	DW5810	DWA54034	DWA54034
7442SD1	3/4" x 5-1/2"	3"	20	60	76	-	DW5453	DW5810	DWA54034	DWA54034
7444SD1	3/4" x 6-1/4"	3-3/4"	20	60	83	-	DW5455	DW5810	DWA54034	DWA54034
7446SD1	3/4" x 7"	4-1/2"	20	60	91	-	DW5455	DW5810	DWA54034	DWA54034
7448SD1	3/4" x 8-1/2"	6"	10	40	107	-	DW5455	DW5812	DWA54034	DWA54034
7449SD1	3/4" x 10"	7-1/2"	10	30	123	-	DW5455	DW5812	DWA54034	DWA54034
7451SD1	3/4" x 12"	9-1/2"	10	30	144	-	DW5456	DW5812	DWA54034	DWA54034
7450SD1	7/8" x 6"	2-3/4"	10	20	128	-	-	DW5815	-	DWA54078
7452SD1	7/8" x 8"	4-3/4"	10	40	161	-	-	DW5815	-	DWA54078
7454SD1	7/8" x 10"	6-3/4"	10	30	187	-	-	DW5816	-	DWA54078
7461SD1	1" x 6"	2-3/8"	10	30	168	-	-	DW5818	-	DWA58001
7463SD1	1" x 9"	5-3/8"	10	30	234	-	-	DW5819	-	DWA58001
7465SD1	1" x 12"	8-3/8"	5	15	307	-	-	DW5819	-	DWA58001
7473SD1	1-1/4" x 9"	4-3/4"	5	15	374	-	-	DW5820	-	-
7475SD1	1-1/4" x 12"	7-3/4"	5	15	476	-	-	DW5825	-	_

Tie Wire Power-Stud+ SD1 (Carbon Steel Body and Expansion clip)

Cat. No.	Anchor Size	Thread Length	Box Qty.	Carton Qty.	Wt./100 (lbs.)
7409SD1	1/4" x 2"	N/A	100	500	3

Shaded catalog numbers denote sizes which are less than the minimum standard anchor length for strength design.

The published size includes the diameter and the overall length of the anchor.

All anchors are packaged with nuts and washers (not including tie wire version).

See the DEWALT website or Buyers Guide for additional information on carbide drill bits.

A manual hand pump is available (Cat. No. 08280).

Hollow drill bits must be used with a dust extraction vacuum (Cat. No. DW012).

MECHANICAL ANCHORS

POWER-STUD® +SD2

GENERAL INFORMATION

POWER-STUD® +SD2

High Performance Wedge Expansion Anchor

PRODUCT DESCRIPTION

The Power-Stud+ SD2 anchor is a fully threaded, torque-controlled, wedge expansion anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, sand-lightweight concrete and concrete over steel deck. The anchor is manufactured with a zinc plated carbon steel body and stainless steel expansion clip for premium performance.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Utility and safety-related attachments
- Interior applications / low level corrosion environment
- Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers
- Seismic and wind loading
- Medium to heavy duty purposes

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-2502 for cracked and uncracked concrete
- Code Compliant with the 2015, IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318-14 Chapter 17 or ACI 318-11/08 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)
- FM Global (Factory Mutual) File No. 3033795, 3/8" and 1/2" diameters Pipe hanger components for automatic sprinkler systems
- Underwriters Laboratories (UL Listed) File No. EX1289 See listing

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 09 - Post-Installed Concrete Anchors. Expansion anchors shall be Power-Stud+ SD2 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification
Anchor Body	Medium carbon steel
Hex nut	Carbon steel, ASTM A 563, Grade A
Washer	Carbon Steel, ASTM F 844; meets dimensional requirements of ANSI B18.22.2. Type A Plain
Expansion wedge (clip)	Type 316 Stainless Steel
Plating (anchor body, nut and washer)	Zinc plating according to ASTM B 633, SC1 Type III (Fe/Zn 5). Minimum plating requirements for Mild Service Condition.

SECTION CONTENTS

General Information	178
Material Specifications	178
Installation Specifications	179
Installation Instructions	180
Performance Data	182
Ordering Information	187

POWER-STUD+ SD2 ASSEMBLY

THREAD VERSION

UNC threaded stud

ANCHOR MATERIALS

• Zinc plated carbon steel body with stainless steel expansion clip, zinc plated carbon steel nut and washer

ANCHOR SIZE RANGE (TYP.)

• 3/8" diameter through 3/4" diameter

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Sand-lightweight concrete
- Concrete over steel deck
- Grouted-filled concrete masonry (CMU)

- REV. C

TECHNICAL GUIDE – MECHANICAL ANCHORS ©2018 DEWALT

INSTALLATION SPECIFICATIONS

Installation Table for Power-Stud+ SD2⁴

Anchor Property/	Notation	Units	Nominal Anchor Size										
Setting Information	Notation	Units	3/8"	1/2"			5/8"			3/	3/4"		
Anchor diameter	da	in. (mm)	0.375 (9.5)			500 2.7)		0.625 (15.9)		0.750 (19.1)			
Minimum diameter of hole clearance in fixture	d _h	in. (mm)	7/16 (11.1)			16 1.3)		11/16 (17.5)			13/16 (20.6)		
Nominal drill bit diameter	d _{bit}	in.	3/8 ANSI			/2 NSI		5/8 ANSI		3/4 ANSI			
Minimum nominal embedment depth ¹	h _{nom}	in. (mm)	2-3/8 (60)	2-1/2 3-3/4 (64) (95)		3-7/8 (98)	4-7/8 (124)		4-1/2 (114)	5-3/4 (146)			
Effective embedment	h _{ef}	in. (mm)	2 (51)	(5	2 1)	3-1/4 (83)		3-1/4 (83)	4-1/4 (108)		3-3/4 (95)	5 (127)	
Minimum hole depth ²	h₀	in. (mm)	2-5/8 (67)	2-3 (7		4 (102)		4-1/4 (108)	5-1/4 (133)		5 (127)	6-1/4 (159)	
Minimum concrete member thickness	h _{min}	in. (mm)	4 (102)	4-1/2 (114)	6 (152)	5-3/4 (146)	5-3/4 (146)	5-3/4 (146)	6-1/2 (165)	8 (203)	7 (178)	10 (254)	
Minimum overall anchor length ³	lanch	in. (mm)	3 (76.2)	3-3 (9			1/2 14)	4-3/4 (121)		5 52)	5-1/2 (140)	7 (178)	
Minimum edge distance ²	Cmin	in. (mm)	2-1/2 (63.5)	4 (102)	2-3/4 (70)	4 (102)	2-3/4 (70)	4-1/4 (108)		1/4 08)	5 (127)	4-1/2 (114)	
Minimum spacing distance ²	Smin	in. (mm)	3-1/2 (88.9)	6 (152)	6 (152)	4 (102)	6 (152)	4-1/4 (108)	4- ⁻ (10	1/4 08)	6 (152)	6 (152)	
Critical edge distance ²	Cac	in. (mm)	6-1/2 (165.1)	(20	3)3)		0 54)	8 (203)	15-3/4 (400)	10 (254)	12 (305)	12 (305)	
Installation torque	Tinst	ftlb. (N-m)	20 (27)	20 40			60 (81)			110 (149)			
Torque wrench socket size	-	in.	9/16	, , ,			15/16			1-1/8			
Nut height	-	in.	21/64		7/	16		35/64			41/64		

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

2. For installations through the soffit of steel deck into concrete see the installation details in Figure A, B, and C. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3her or 1.5 times the flute width. The hole diameter in the steel deck must not exceed the hole diameter in the concrete by more than 1/8-inch (3.2 mm).

3. The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

4. The archors may be installed in the topside of concrete-filled steel deck floor and roof assemblies in accordance with the installation specifications and design information provided the concrete thickness above the upper flute meets the minimum thicknesses specified in the tables; see Setting Information for Installation on the Top of Concrete-Filled Steel Deck Assemblies table and installation detail D.

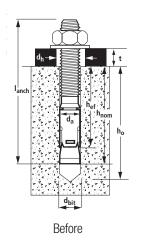
Anchor Setting Information for Installation on the Top of Concrete-Filled Steel Deck Assemblies^{3,4}

Anchor Property/	Netetien	11	Nominal Anchor Size (inch)							
Anchor Property/ Setting Information	Notation	Units	3/	8"	1/2	2"				
Nominal drill bit diameter	d _{bit}	in.	3/8 /	1/2 ANSI						
Minimum nominal embedment depth ¹	h _{nom}	in. (mm)	2-3 (6	3/8 0)	2-1/2 (64)					
Effective embedment	h _{ef}	in. (mm)	2.0 (5		2.00 (51)					
Minimum concrete member thickness ²	h _{min,deck}	in. (mm)	2-1 (6	1/2 4)	2-1/2 (64)					
Critical edge distance	Cac,deck,top	in. (mm)	8 (20		9 (229)					
Minimum edge distance	Cmin,deck,top	in. (mm)	4 2-3/4 (102) (70)		4 (102)	8 (203				
Minimum spacing distance	Smin,deck,top	in. (mm)	3-1/2 6 8 (89) (152) (203)		4 (102)					
Minimum hole depth	h₀	in. (mm)	2-1 (6	1/2 4)	2-1/2 (64)					
Installation torque	Tinst	ftlb. (N-m)	2 (2		40 (54)					
Torque wrench socket size	-	in.	9/*	16	3/4					
Nut height	-	in.	21/	/64	7/16					

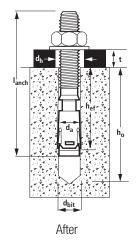
For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

2. The anchors may be installed in the topside of concrete-filled steel deck floor and roof assemblies provided the concrete thickness above the upper flute meets the minimum thicknesses


specified in this table. Minimum concrete member thickness refers to the concrete thickness above the upper flute (topping thickness). See Installation Detail D. 3. For all other anchor diameters and embedment depths, refer to the installation table for applicable values of hmin, Cmin and Smin.

4. Design capacities shall be based on calculations according to values in Tension and Shear Design Information for Anchors in Concrete tables.



MECHANICAL ANCHORS

POWER-STUD® +SD2 High Performance Wedge Expansion Anchor

Power-Stud+ SD2 Anchor Detail

Head Marking

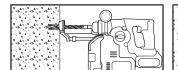
Legend

Letter Code = Length Identification Mark

'+' Symbol = Strength Design Compliant Anchor

Number Code 2 = Carbon Steel Body and Stainless Steel Expansion Clip

Length Identification


Mark	A	B	C	D	E	F	G	H	I	J	K	L	М	N	0	Р
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"
Longth identification r	norly indian	taa ayarall l	longth of or	abar												

Щ

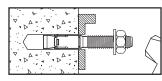
Length identification mark indicates overall length of anchor.

INSTALLATION INSTRUCTIONS

Installation Instructions for Power-Stud+ SD2

Step 1

Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.


Step 2

h

Remove dust and debris from the hole during drilling, (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

h

• • • •

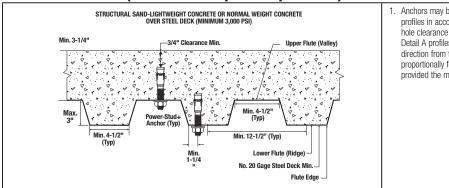
Step 3

Position the washer on the anchor and thread on the nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, h_{nom} .

Step 4

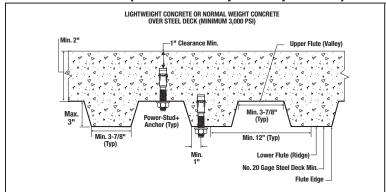
Tighten the anchor with a torque wrench by applying the required installation torque, $T_{\text{inst.}}$

ANCHORS


Performance Wedge Expansion Anchor

e

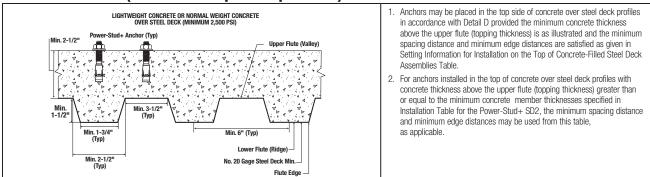
Π



Installation Detail A: Power-Stud+ SD2 Installed in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies (see dimensional profile requirements)¹


1. Anchors may be placed in the upper flute or lower flute of the steel deck profiles in accordance with installation Detail A provided the minimum hole clearance is satisfied. Anchors in the lower flute of installation Detail A profiles may be installed with a maximum 1-inch offset in either direction from the center of the flute. The offset distance may be increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied.

Installation Detail B: Power-Stud+ SD2 Installed in the Soffit of Concrete Over Steel Deck Floor and Roof Assemblies (see dimensional profile requirements)¹



 Anchors may be placed in the upper flute or lower flute of the steel deck profiles in accordance with Detail B provided the minimum hole clearance is satisfied. Anchors in the lower flute of Detail B profiles may be installed with a maximum 15/16 -inch offset in either direction from the center of the flute. The offset distance may be increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied.

Installation Detail C: Power-Stud+ SD2 Installed in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)^{1,2}

Installation Detail D: Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies (see dimensional profile requirements)^{1,2}

1-800-4 **DeWALT**

FECHNICAL GUIDE – MECHANICAL ANCHORS ©2018 DEWALT – REV. C

PERFORMANCE DATA

CODE LISTED **Tension Design Information**^{1,2,12} ICC-FS FSR-2502 **Nominal Anchor Diameter (inch)** Notation **Design Characteristic** Units 5/8 3/4 3/8 1/2 1,2 or 3 1 Anchor category STEEL STRENGTH IN TENSION (ACI 318-14 17.4.1 or ACI 318-11 D.5.1)4 ksi 96.0 85.0 85.0 70.0 Minimum specified yield strength (neck) fv (N/mm²) (662) (586)(586)(483) 120.0 106.0 106.0 90.0 ksi Minimum specified ultimate tensile strength (neck) futa (N/mm²) (827) (620) (731) (731)0.1007 0.0552 0.1619 0.2359 in² Effective tensile stress area (neck) Ase. N (mm²) (35.6) (65.0)(104.5)(153.2)lb 6,625 10,445 13,080 21,230 Steel strength in tension⁵ Nsa (kN) (29.4)(46.5)(94.4)(58.2)Reduction factor for steel strength³ φ 0.75 CONCRETE BREAKOUT STRENGTH IN TENSION (ACI 318-14 17.4.2 or ACI 318-11 D.5.2)* 2.002.00 3.25 4.25 3.75 5.00 in Effective embedment hef (51) (51)(83) (83) (108)(95) (127)(mm) Effectiveness factor for uncracked concrete kucr -24 24 24 24 Effectiveness factor for cracked concrete kcr 17 17 17 17 1.0 1.0 1.0 1.0 Modification factor for cracked and uncracked concrete⁶ See W c.N See note 6 See note 6 See note 6 note 5 in. See Installation Table Critical edge distance Cac (mm) Reduction factor for concrete breakout strength³ 0.65 (Condition B) φ PULLOUT STRENGTH IN TENSION (ACI 318-14 17.4.3 or ACI 318-11 D.5.3) Characteristic pullout strength, 2.775See 6.615 See See See See lb N_{p,uncr} uncracked concrete (2,500 psi) (kN) (12.3)note 8 note 8 note 8 (29.4)note 8 note 8 Characteristic pullout strength, lb 2,165 See 4,375 See See See 7,795 N_{p,cr} cracked concrete (2,500 psi)⁷ (kN) (9.6)note 8 (19.5)note 8 note 8 note 8 (35.1)Reduction factor for pullout strength³ 0.65 (Condition B) φ PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS (ACI 318-14 17.2.3.3 or ACI 318-11 D.5.3.3.3) 2.165 See 7.795 lb See 4.375 See See Characteristic pullout strength, seismic (2,500 psi)7,10 Np.eq (kN) (9.6)note 8 (19.5)note 8 note 8 note 8 (35.1)Reduction factor for pullout strength³ φ 0.65 (Condition B) lbf/in 865,000 717,00 569,000 420,000 β Uncracked concrete (kN/mm) Mean axial stiffness values (151)(126)(100)(74) service load range11 lbf/in 49,500 57,000 64,500 72,000 β Cracked concrete (kN/mm) (9) (10)(11)(13)

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318 D.3.3, as applicable, shall apply.

2. Installation must comply with published instructions and details

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-14 Chapter 17 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used.

4. The Power-Stud+ SD2 is considered a ductile steel element in tension as defined by ACI 318-14 2.3 or ACI 318 D.1, as applicable.

5. Tabulated values for steel strength in tension are based on test results per ACI 355.2 and must be used for design in lieu of calculation.

6. For all design cases use $\psi_{c.N} = 1.0$. Select appropriate effectiveness factor for cracked concrete (kar) or uncracked concrete (kunar).

7. For all design cases use $\psi_{c,P} = 1.0$. For concrete compressive strength greater than 2,500 psi, N_{PP} = (pullout strength value from table)*(specified concrete compressive strength/2500)°. For concrete over steel deck the value of 2500 must be replaced with the value of 3000.

For all anchors n = 1/2 with the exception of the 3/8" anchor size for cracked concrete where n = 1/3. 8. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

9. Anchors are permitted to be used in sand-lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of $\sqrt{f'c}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

10. Tabulated values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.

11. Mean values shown; actual stiffness varies considerable depending on concrete strength, loading and geometry of application.

12. Anchors are permitted for use in concrete-filled steel deck floor and roof assemblies; see installation details A, B, C and D.

- REV. C

Anchor category

Shear Design Information^{1,2,8}

Minimum specified yield strength (threads)

Effective tensile stress area (threads)

Reduction factor for steel strength³

Reduction factor for concrete breakout strength³

Load bearing length of anchor

(hef or 8do, whichever is less)

Coefficient for pryout strength

Effective Embedment

1.0 for $h_{ef} < 2.5$ in., 2.0 for $h_{ef} \ge 2.5$ in.

Reduction factor for pullout strength³

Steel Strength in shear, seismic7

Reduction factor for pullout strength³

Steel strength in shear⁵

Design Characteristic

Minimum specified ultimate tensile strength (threads)

CODE LISTED ICC-ES ESR-2502	

Nominal Anchor Diameter (inch)

5/8

1

68.0

(469)

88.0

(607)

0.2260

(104.9)

10,170

(45.2)

4.25

(108)

2.0

4.25

(108)

6,770

(30.1)

0.65

0.70 (Condition B)

3.25

(83)

2.0

3.25

(83)

0.70 (Condition B)

0.65 (Condition B)

1/2

1

68.0

(469)

88.0

(607)

0.1419

(65.7)

4,815

(21.4)

3.25

(83)

2.0

3 25

(83)

4,815

(21.4)

2.00

(51)

1.0

2.00

(51)

3/4

1

56.0

(386)

80.0

(551)

0.3345

(215.8)

12,610

(56.1)

5.00

(127)

2.0

5.00

(127)

8,060

(35.9)

3.75

(95)

2.0

3.75

(95)

E	DA	1/
		7
		×
		•
		C
		-
		-

Performance Wedge Expansion Anchor +SD2 **R-STUD®** Π

additional requirements of ACI 318-14 17.2.3 or ACI 318 D.3.3 shall apply, as applicable.

2. Installation must comply with published instructions and details.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318 Section 9.2 are used

4. The Power-Stud+ SD2 is considered a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

5. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and shall be used for design.

Notation

1,2 or 3

fv

f_{uta}

Ase v

 V_{sa}

ф

le

φ

k_{cp}

hef

φ

V_{sa, eq}

ф

Units

ksi

(N/mm²)

ksi

(N/mm²)

in

(mm²)

lh

(kN)

in.

(mm)

in.

(mm)

lb

(kN)

3/8

1

76.8

(530)

100.0

(690)

0.0775

(50.0)

3,115

(13.9)

2.00

(51)

1.0

2.00

(51)

2,460

(11.0)

STEEL STRENGTH IN SHEAR (ACI 318-14 17.5.1 or ACI 318-11 D.6.1)

CONCRETE BREAKOUT STRENGTH IN SHEAR (ACI 318-14 17.5.2 or ACI 318-11 D.6.2)

PRYOUT STRENGTH IN SHEAR (ACI 318-14 17.5.3 or ACI 318-11 D.6.3)*

STEEL STRENGTH IN SHEAR FOR SEISMIC APPLICATIONS (ACI 318-14 17.2.3.3 or ACI 318-11 D.3.3.3)

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable; for anchors resisting seismic load combinations the

6. Anchors are permitted to be used in sand-lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of \sqrt{fc} affecting Nn and Vn. λ shall be determined in accordance with the corresponding version of ACI 318.

7. Reported values for steel strength in shear for seismic applications are based on test results per ACI 355.2, Section 9.6.

8. Anchors are permitted for use in concrete-filled steel deck floor and roof assemblies; see installation details A, B, C and D.

Tension and Shear Design Data for Power-Stud+ SD2 Anchors in the Soffit of Concrete-Filled Steel Deck Assemblies^{1,2,7}

		Account	100						ABLES		
n	lesign Characteristics	Notation	Units	Nominal Anchor Size (inch)							
Ľ	esiyii unaracteristics	NULALIUI	Units	0.375	0.5		0.6	25	0.75		
Anchor Category		1, 2 or 3	-	1		1		1	1		
Effective Embedme	ent	h _{ef}	in. (mm)	2.00 (51)	2.00 (51)	3.25 (83)	3.25 (83)	4.25 (108)	3.75 (95)		
Minimum Nominal	Embedment Depth	h _{nom}	in. (mm)	2-3/8 (60)	2-1/2 (64)	3-3/4 (83)	3-7/8 (98)	4-7/8 (124)	4-1/2 (114)		
Minimum Hole Dep	oth	h₀	in. (mm)	2-5/8 (67)	2-3/4 (70)	4 (102)	4-1/4 (108)	5-1/4 (133)	5 (27)		
Pl	ULLOUT STRENGTH IN TENSION FOR ANCHO	ORS IN SOFFI	of sand li	GHTWEIGHT AN	ID NORMAL-W	EIGHT CONCR	ETE OVER STE	EL DECK ¹			
According to Detail A	Characteristic pullout strength, uncracked concrete over steel deck ²	Np,deck,uncr	lbf (kN)	1,855 (8.3)	2,065 (9.2)	3,930 (17.5)	4,665 (20.8)	7,365 (32.8)	4,900 (21.8)		
4-1/2-inch-wide deck flute	Characteristic pullout strength, cracked concrete over steel deck ^{2,3}	N _{p,deck,cr}	lbf (kN)	1,445 (6.4)	1,465 (6.5)	2,600 (11.6)	3,305 (14.7)	5,215 (23.2)	3,470 (15.4)		
According to Detail B 3-7/8-inch-wide deck flute	Characteristic pullout strength, uncracked concrete over steel deck ²	Np,deck,uncr	lbf (kN)	2,235 (9.9)	2,785 (12.4)	5,600 (24.9)	4,480 (19.9)	7,265 (32.3)	Not Applicable		
	Characteristic pullout strength, cracked concrete over steel deck ^{2,3}	N _{p,deck,cr}	lbf (kN)	1,745 (7.8)	1,975 (8.8)	3,695 (16.4)	3,175 (14.1)	5,145 (22.9)	Not Applicable		
According to Detail C	Characteristic pullout strength, uncracked concrete over steel deck ²	N _{p,deck,uncr}	lbf (kN)	1,600 (7.1)	2,025 (9.0)	Not Applicable	Not Applicable	Not Applicable	Not Applicable		
1-3/4-inch-wide deck flute	Characteristic pullout strength, cracked concrete over steel deck ^{2,3}	N _{p,deck,cr}	lbf (kN)	1,250 (5.6)	1,435 (6.4)	Not Applicable	Not Applicable	Not Applicable	Not Applicable		
Reduction factor for	or pullout strength ⁶	ϕ	-			0.	65				
	STEEL STRENGTH IN SHEAR FOR ANCHORS	5 IN SOFFIT O	F SAND-LIGH	TWEIGHT AND	NORMAL WEI	GHT CONCRETE	OVER STEEL	DECK4,5			
According to Detail A	Steel strength in shear, concrete over steel deck	V _{sa,deck}	lbf (kN)	2,170 (9.7)	3,815 (17.0)	5,040 (22.4)	4,015 (17.9)	6,670 (29.7)	4,325 (19.2)		
4-1/2-inch-wide deck flute	Steel strength in shear, seismic, concrete over steel deck	V _{sa,deck,eq}	lbf (kN)	1,715 (7.6)	3,815 (17.0)	5,040 (22.4)	2,675 (11.9)	4,445 (19.8)	2,820 (12.5)		
According to Detail B	Steel strength in shear, concrete over steel deck	V _{sa,deck}	lbf (kN)	3,040 (13.5)	2,675 (11.9)	4,930 (21.9)	Not Applicable	Not Applicable	Not Applicable		
3-7/8-inch-wide deck flute	Steel strength in shear, seismic, concrete over steel deck	V _{sa,deck,eq}	lbf (kN)	2,400 (10.6)	2,675 (11.9)	4,930 (21.9)	Not Applicable	Not Applicable	Not Applicable		
According to Detail C	Steel strength in shear, concrete over steel deck	V _{sa,deck}	lbf (kN)	2,170 (9.7)	2,880 (12.8)	Not Applicable	Not Applicable	Not Applicable	Not Applicable		

Reduction factor for steel strength in shear, concrete over steel deck⁶

1-3/4-inch-wide

deck flute

1. For all design cases $\Psi_{eP} = 1.0$. For concrete compressive strength greater than 3,000 psi, N_{pn}=(pullout strength value from table) * (specified concrete compressive strength/2500)ⁿ. For all anchors n=1/2 with exception of the 3/8-inch-diameter anchor size, where n=1/3.

lbf

(kN)

Vsa,deck,eq

φ

1.715

(7.6)

2.880

(12.8)

Not

Applicable

0.65

Not

Applicable

Not

Applicable

Not

Applicable

Values for N_{0.deck} are for sand-lightweight concrete (f¹c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.4.2 or ACI 318 D.5.2, as applicable, is not required for anchors installed in the deck soffit (flute).

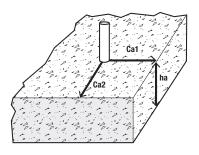
3. Values for $N_{p,deck,cr}$ are applicable for seismic loading.

4. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

Steel strength in shear, seismic,

concrete over steel deck

5. Values for Vsa.deck. and Vsa.deck.eq are for sand-lightweight concrete (f¹c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.5.2 or ACI 318 D.6.2, as applicable and the pryout capacity in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, is not required for anchors installed in the deck soffit (flute).


6. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

7. Anchors shall have an axial spacing along the flute soffit equal to the greater of 3her or 1.5 times the flute width.

Factored Design Strength (ϕ Nn and ϕ Vn) Calculated in Accordance with ACI 318-14 Chapter 17:

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:
 - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$). - c_{a2} is greater than or equal to 1.5 times c_{a1} .
 - Ca2 IS greater than or equal to 1.5 times ca1.
- 2- Calculations were performed according to ACI 318-18 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.

Nominal Anchor	Nominal Nominal f'c = 2		500 psi	f'c = 3,	000 psi	f'c = 4,	,000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi			
Diameter (in.)	hnom (in.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	ϕ Vn Shear (Ibs.)	ϕ Nn Tension (lbs.)	ϕ Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	ϕ Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	ϕ Vn Shear (lbs.)			
3/8	2-3/8	1,405	1,685	1,495	1,845	1,645	2,025	1,885	2,025	2,075	2,025			
1/2	2-1/2	1,565	1,685	1,710	1,845	1,975	2,130	2,420	2,605	2,795	3,010			
1/2	3-3/4	2,845	3,130	3,115	3,130	3,595	3,130	4,405	3,130	5,085	3,130			
5/8	3-7/8	3,235	4,220	3,545	4,620	4,095	5,335	5,015	6,535	5,790	6,610			
0/0	4-7/8	4,840	6,610	5,305	6,610	6,125	6,610	7,500	6,610	8,660	6,610			
0/4	4-1/2	4,010	7,590	4,395	8,195	5,075	8,195	6,215	8,195	7,175	8,195			
3/4	5-3/4	5,065	8,195	5,550	8,195	6,410	8,195	7,850	8,195	9,065	8,195			
🔲 - Anchor Pu	Illout/Pryout Stre	ength Controls 🗌	- Concrete Brea	akout Strength Co	ontrols 🔳 - Stee	l Strength Contro	ls							

Come

Tension and Shear Design Strengths for Power-Stud+ SD2 in Cracked Concrete

Tension and Shear Design Strengths for Power-Stud+ SD2 in Uncracked Concrete

					Minim	um Concrete C	ompressive St	rength			
Nominal Anchor Diameter (in.) Nominal Embed. hom (in.)		f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,000 psi	
	hnom	ϕ Nn Tension (Ibs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ϕ Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	ϕ Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	ϕ Vn Shear (Ibs.)
3/8	2-3/8	1,805	2,025	1,975	2,025	2,280	2,025	2,795	2,025	3,225	2,025
1/2	2-1/2	2,205	2,375	2,415	2,605	2,790	3,005	3,420	3,130	3,945	3,130
1/2	3-3/4	4,300	3,130	4,710	3,130	5,440	3,130	6,660	3,130	7,690	3,130
5/8	3-7/8	4,570	5,905	5,005	6,470	5,780	6,610	7,080	6,610	8,175	6,610
0/C	4-7/8	6,835	6,610	7,485	6,610	8,645	6,610	9,810	6,610	9,810	6,610
3/4	4-1/2	5,665	8,195	6,205	8,195	7,165	8,195	8,775	8,195	10,130	8,195
3/4	5-3/4	8,720	8,195	9,555	8,195	11,030	8,195	13,510	8,195	15,600	8,195
🔲 - Anchor Pu	Illout/Pryout Stre	ngth Controls 🗌	- Concrete Brea	kout Strength Co	ontrols 🔲 - Stee	Strength Control	s				

Factored design strengths may be converted to allowable loads using an appropriate conversion factor, ∞ , for the controlling load combination. See ICC-ES ESR-2502 or contact DEWALT for more information regarding the procedure to convert factored design strengths to allowable loads.

MECHANICAL ANCHORS

Converted Allowable Loads for Power-Stud+ SD2 in Cracked Concrete^{1,2}

		Minimum Concrete Compressive Strength											
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,000 psi			
Size (in.)	hnom (in.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)		
3/8	2-3/8	1,005	1,205	1,070	1,320	1,175	1,445	1,345	1,445	1,480	1,445		
1/2	2-1/2	1,120	1,205	1,220	1,320	1,410	1,520	1,730	1,860	1,995	2,150		
1/2	3-3/4	2,030	2,235	2,225	2,235	2,570	2,235	3,145	2,235	3,630	2,235		
5/8	3-7/8	2,310	3,015	2,530	3,300	2,925	3,810	3,580	4,670	4,135	4,720		
0/6	4-7/8	3,455	4,720	3,790	4,720	4,375	4,720	5,355	4,720	6,185	4,720		
3/4	4-1/2	2,865	5,420	3,140	5,855	3,625	5,855	4,440	5,855	5,125	5,855		
3/4	5-3/4	3,620	5,855	3,965	5,855	4,580	5,855	5,605	5,855	6,475	5,855		

1. Allowable load values are calculated using a conversion factor, \prec , from Factored Design Strengths and conditions shown on the previous page.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor,

∝ : 1.2(0.5) + 1.6(0.5) = 1.4.

Converted Allowable Loads for Power-Stud+ SD2 in Uncracked Concrete^{1,2}

	Nominal Embed. hnom (in.)	Minimum Concrete Compressive Strength											
Nominal Anchor		f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,000 psi			
Size (in.)		Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (Ibs.)	Vallowable,ASD Shear (Ibs.)	Tallowable,ASD Tension (lbs.)	Vallowable,ASD Shear (Ibs.)		
3/8	2-3/8	1,290	1,445	1,410	1,445	1,630	1,445	1,995	1,445	2,305	1,445		
1/2	2-1/2	1,575	1,695	1,725	1,860	1,995	2,145	2,445	2,235	2,820	2,235		
1/2	3-3/4	3,070	2,235	3,365	2,235	3,885	2,235	4,755	2,235	5,495	2,235		
5/8	3-7/8	3,265	4,220	3,575	4,620	4,130	4,720	5,055	4,720	5,840	4,720		
5/6	4-7/8	4,880	4,720	5,345	4,720	6,175	4,720	7,005	4,720	7,005	4,720		
3/4	4-1/2	4,045	5,855	4,430	5,855	5,120	5,855	6,270	5,855	7,235	5,855		
	5-3/4	6,230	5,855	6,825	5,855	7,880	5,855	9,650	5,855	11,145	5,855		

1. Allowable load values are calculated using a conversion factor, α , from Factored Design Strengths and conditions shown on the previous page.

2. Tabulated allowable load values assume 50% dead load and 50% live load, with controlling load combination 1.2D + 1.6L. Calculated weighted average for the conversion factor,

∝ : 1.2(0.5) + 1.6(0.5) = 1.4.

Ultimate and Allowable Load Capacities for Power-Stud+ SD2 in Grouted Filled Concrete Masonry^{1,2,3}

	Nominal			Min	imum Masonry C f'm = 1,500 p		gth,	
Anchor Size in. (mm)		Minimum Embedment Depth (mm)	Installation Location ³	Ulimate Load Tension Ibs. (kN)	Allowable Load Tension Ibs. (kN)	Ulimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)	Michanne Edit Distance (Type)
	3/8 (9.5)	2-1/2 (50.8)	Wall Face/End Min. 2-1/2" Edge and End Distances	1,670 (7.4)	335 (1.5)	2,075 (9.2)	415 (1.8)	Grad Filed Call Vity)
	1/2	2-1/2 (50.8)	Wall Face/End Min. 3" Edge and End Distances	2,295 (10.2)	460 (2.0)	1,310 (5.8)	260 (1.2)	Face Shell Permissible Anchor Locations
	(12.7)	3-3/4 (95.3)	Top of Wall Min. 1-3/4" Edge and 4" Edge Distances	3,320 (14.8)	665 (3.0)	1,140 (5.1)	230 (1.0)	(Un-hatched Area / Through Face Shell)
	1 Tabulator	Lload values are fo	or anchore installed in minimum	6-inch wide minim	um Grade N. Tvne II	lightweight mediur	m-weight or normal-	weight concrete masonry units conforming to ASTM

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. Anchor installations into grouted masonry walls are limited to one per masonry cell.

ANCHORS

NICAL

ORDERING INFORMATION

Power-Stud+ SD2 (Carbon Steel Body with Stainless Steel Expansion Clip)

							r/			
	Thread Box Carton Wt./100 Suggested ANSI Carbide Drill Bit Cat. No.									
Anchor Size	Length	Qty.	Qty.	(lbs.)	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max	
3/8" x 3"	1-3/4"	50	300	10	DW5527	DW5427	-	-	-	
3/8" x 3-1/2"	2-1/4"	50	300	12	DW5527	DW5427	-	-	-	
3/8" x 3-3/4"	2-1/2"	50	300	13	DW5527	DW5427	-	-	-	
3/8" x 5"	3-3/4"	50	300	16	DW55300	DW5429	-	-	-	
1/2" x 3-3/4"	2-1/8"	50	200	23	DW5537	DW5437	DW5803	DWA54012	-	
1/2" x 4-1/2"	2-7/8"	50	200	28	DW5539	DW5438	DW5803	DWA54012	-	
1/2" x 5-1/2"	3-7/8"	50	150	32	DW5539	DW5438	DW5803	DWA54012	-	
1/2" x 7"	5-3/8"	25	100	44	DW5539	DW5438	DW5803	DWA54012	-	
1/2" x 8-1/2"	6-7/8"	25	100	46	DW5539	DW5439	DW5804	DWA54012	-	
5/8" x 4-3/4"	2-7/8"	25	100	52	-	DW5446	DW5806	DWA54058	DWA58058	
5/8" x 5"	3-1/8"	25	50	57	-	DW5446	DW5806	DWA54058	DWA58001	
5/8" x 6"	4-1/8"	25	75	64	-	DW5446	DW5806	DWA54058	DWA58001	
5/8" x 7"	5-1/8"	25	75	72	-	DW5447	DW5806	DWA54058	DWA58001	
5/8" x 8-1/2"	6-5/8"	25	75	84	-	DW5447	DW5809	DWA54058	DWA58001	
3/4" x 5-1/2"	3-1/4"	20	60	88	-	DW5453	DW5810	DWA54074	DWA58034	
3/4" x 6-1/4"	4"	20	60	90	-	DW5455	DW5810	DWA54074	DWA58034	
3/4" x 7"	4-3/4"	20	60	95	-	DW5455	DW5810	DWA54074	DWA58034	
3/4" x 8-1/2"	6-1/4"	10	40	95	-	DW5455	DW5812	DWA54074	DWA58034	
	Anchor Size 3/8" x 3" 3/8" x 3-1/2" 3/8" x 3-3/4" 3/8" x 5" 1/2" x 3-3/4" 1/2" x 4-1/2" 1/2" x 5-1/2" 1/2" x 7" 1/2" x 7" 1/2" x 8-1/2" 5/8" x 4-3/4" 5/8" x 5" 5/8" x 6" 5/8" x 7" 5/8" x 8-1/2" 3/4" x 5-1/2" 3/4" x 6-1/4" 3/4" x 7"	Anchor Size Thread Length 3/8" x 3" 1-3/4" 3/8" x 3-1/2" 2-1/4" 3/8" x 3-3/4" 2-1/2" 3/8" x 3-3/4" 2-1/2" 3/8" x 3-3/4" 2-1/2" 3/8" x 5" 3-3/4" 1/2" x 3-3/4" 2-1/8" 1/2" x 5" 3-3/4" 1/2" x 5.1/2" 2-7/8" 1/2" x 5-1/2" 3-7/8" 1/2" x 8-1/2" 6-7/8" 5/8" x 4-3/4" 2-7/8" 5/8" x 5" 3-1/8" 5/8" x 4-3/4" 2-7/8" 5/8" x 5" 3-1/8" 5/8" x 4-3/4" 2-7/8" 5/8" x 5" 3-1/8" 5/8" x 5" 3-1/8" 5/8" x 5-1/2" 5-1/8" 3/4" x 5-1/2" 6-5/8" 3/4" x 5-1/2" 3-1/4" 3/4" x 6-1/4" 4" 3/4" x 7" 4-3/4"	Anchor Size Thread Length Box Qty. 3/8" x 3" 1-3/4" 50 3/8" x 3-1/2" 2-1/4" 50 3/8" x 3-3/4" 2-1/2" 50 3/8" x 5" 3-3/4" 50 1/2" x 3-3/4" 2-1/8" 50 1/2" x 4-1/2" 2-7/8" 50 1/2" x 5-1/2" 3-7/8" 50 1/2" x 5-1/2" 3-7/8" 50 1/2" x 5-1/2" 3-7/8" 50 1/2" x 8-1/2" 6-7/8" 25 5/8" x 4-3/4" 2-7/8" 25 5/8" x 5" 3-1/8" 25 5/8" x 4" 2-7/8" 25 5/8" x 5" 3-1/8" 25 5/8" x 7" 5-1/8" 25 5/8" x 8-1/2" 6-5/8" 25 3/4" x 5-1/2" 3-1/4" 20 3/4" x 5-1/2" 4-3/4" 20	Anchor Size Thread Length Box Qty. Carton Qty. 3/8" x 3" 1-3/4" 50 300 3/8" x 3-1/2" 2-1/4" 50 300 3/8" x 3-3/4" 2-1/2" 50 300 3/8" x 5" 3-3/4" 50 200 1/2" x 3-3/4" 2-1/8" 50 200 1/2" x 5-1/2" 3-7/8" 50 150 1/2" x 5-1/2" 3-7/8" 50 100 1/2" x 8-1/2" 6-7/8" 25 100 5/8" x 4-3/4" 2-7/8" 25 100 5/8" x 4-3/4" 2-7/8" 25 100 5/8" x 5" 3-1/8" 25 50 5/8" x 6" 4-1/8" 25 75 5/8" x 8-1/2" 6-5/8" 25	Anchor Size Thread Length Box Qty. Carton Qty. WL/100 (lbs.) 3/8" x 3" 1-3/4" 50 300 10 3/8" x 3-1/2" 2-1/4" 50 300 12 3/8" x 3-1/2" 2-1/4" 50 300 12 3/8" x 3-3/4" 2-1/2" 50 300 13 3/8" x 5" 3-3/4" 50 300 16 1/2" x 3-3/4" 2-1/8" 50 200 23 1/2" x 4-1/2" 2-7/8" 50 200 28 1/2" x 5-1/2" 3-7/8" 50 150 32 1/2" x 5-1/2" 3-7/8" 50 150 32 1/2" x 5-1/2" 3-7/8" 25 100 44 1/2" x 8-1/2" 6-7/8" 25 100 46 5/8" x 4-3/4" 2-7/8" 25 50 57 5/8" x 4-3/4" 2-7/8" 25 50 57 5/8" x 4-3/4" 2-7/8" 25 75 64	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Anchor Size Thread Length Box Qty. Carton Qty. WL/100 (lbs.) Suggested At Full Head SDS-Plus SDS-Plus 3/8" x 3" 1-3/4" 50 300 10 DW5527 DW5427 3/8" x 3-1/2" 2-1/4" 50 300 12 DW5527 DW5427 3/8" x 3-3/4" 2-1/2" 50 300 13 DW5527 DW5427 3/8" x 3-3/4" 2-1/2" 50 300 16 DW55300 DW5427 3/8" x 5" 3-3/4" 50 200 23 DW5537 DW5437 1/2" x 3-3/4" 2-1/8" 50 200 28 DW5539 DW5438 1/2" x 4-1/2" 2-7/8" 50 150 32 DW5539 DW5438 1/2" x 5-1/2" 3-7/8" 50 100 44 DW5539 DW5438 1/2" x 8-1/2" 6-7/8" 25 100 46 DW5539 DW5439 5/8" x 4-3/4" 2-7/8" 25 50 57 - DW5446 <td>Anchor Size Thread Length Box Qty. Carton Qty. WL/100 (lbs.) Full Head SDS-Plus SDS-Plus SDS-Max 3/8" x 3" 1-3/4" 50 300 10 DW5527 DW5427 - 3/8" x 3-1/2" 2-1/4" 50 300 12 DW5527 DW5427 - 3/8" x 3-3/4" 2-1/2" 50 300 13 DW5527 DW5427 - 3/8" x 3-3/4" 2-1/2" 50 300 16 DW55300 DW5429 - 3/8" x 5" 3-3/4" 50 200 23 DW5537 DW5437 DW5803 1/2" x 4-1/2" 2-7/8" 50 200 28 DW5539 DW5438 DW5803 1/2" x 5-1/2" 3-7/8" 50 150 32 DW5539 DW5438 DW5803 1/2" x 8-1/2" 6-7/8" 25 100 44 DW5539 DW5438 DW5804 5/8" x 4-3/4" 2-7/8" 25 100 52 - DW5446<</td> <td>Anchor Size Thread Length Box Qty. Carton Qty. Wt/100 (lbs.) Suggested ANSI Carbide Drill Bit Cat. No. 3/8" x 3" 1-3/4" 50 300 10 DW5527 DW5427 - - 3/8" x 3-1/2" 2-1/4" 50 300 12 DW5527 DW5427 - - 3/8" x 3-3/4" 2-1/2" 50 300 13 DW5527 DW5427 - - 3/8" x 5" 3-3/4" 50 300 16 DW55300 DW5429 - - 1/2" x 3-3/4" 2-1/8" 50 200 23 DW5539 DW5437 DW5803 DW54012 1/2" x 4-1/2" 2-7/8" 50 200 28 DW5539 DW5438 DW5803 DW54012 1/2" x 5-1/2" 3-7/8" 50 150 32 DW5539 DW5438 DW5803 DWA54012 1/2" x 7" 5-3/8" 25 100 44 DW5539 DW5438 DW5803 DWA54012</td>	Anchor Size Thread Length Box Qty. Carton Qty. WL/100 (lbs.) Full Head SDS-Plus SDS-Plus SDS-Max 3/8" x 3" 1-3/4" 50 300 10 DW5527 DW5427 - 3/8" x 3-1/2" 2-1/4" 50 300 12 DW5527 DW5427 - 3/8" x 3-3/4" 2-1/2" 50 300 13 DW5527 DW5427 - 3/8" x 3-3/4" 2-1/2" 50 300 16 DW55300 DW5429 - 3/8" x 5" 3-3/4" 50 200 23 DW5537 DW5437 DW5803 1/2" x 4-1/2" 2-7/8" 50 200 28 DW5539 DW5438 DW5803 1/2" x 5-1/2" 3-7/8" 50 150 32 DW5539 DW5438 DW5803 1/2" x 8-1/2" 6-7/8" 25 100 44 DW5539 DW5438 DW5804 5/8" x 4-3/4" 2-7/8" 25 100 52 - DW5446<	Anchor Size Thread Length Box Qty. Carton Qty. Wt/100 (lbs.) Suggested ANSI Carbide Drill Bit Cat. No. 3/8" x 3" 1-3/4" 50 300 10 DW5527 DW5427 - - 3/8" x 3-1/2" 2-1/4" 50 300 12 DW5527 DW5427 - - 3/8" x 3-3/4" 2-1/2" 50 300 13 DW5527 DW5427 - - 3/8" x 5" 3-3/4" 50 300 16 DW55300 DW5429 - - 1/2" x 3-3/4" 2-1/8" 50 200 23 DW5539 DW5437 DW5803 DW54012 1/2" x 4-1/2" 2-7/8" 50 200 28 DW5539 DW5438 DW5803 DW54012 1/2" x 5-1/2" 3-7/8" 50 150 32 DW5539 DW5438 DW5803 DWA54012 1/2" x 7" 5-3/8" 25 100 44 DW5539 DW5438 DW5803 DWA54012	

The published size includes the diameter and the overall length of the anchor.

All anchors are packaged with nuts and washers.

A manual hand pump is available (Cat. No. 08280).

Hollow drill bits must be used with a dust extraction vacuum (Cat. No. DW012).

POWER-STUD®+ SD4/SD6

Stainless Steel Wedge Expansion Anchors

PRODUCT DESCRIPTION

The Power-Stud+ SD4 and Power-Stud+ SD6 anchors are fully threaded, torque-controlled, stainless steel wedge expansion anchors which are designed for consistent performance in cracked and uncracked concrete. Suitable base materials are normal-weight, sand-lightweight concrete, and grouted concrete masonry (CMU). The anchor is manufactured with a stainless steel body and expansion clip. Nut and washer are included.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Safety-related and common attachments
- Interior and exterior applications
- Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers

FEATURES AND BENEFITS

- + Knurled mandrel design provides consistent performance in cracked concrete and helps prevent galling during service life.
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard clearance fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading
- + Corrosion resistant stainless steel anchors
- + Domestically manufactured by request, call for details

APPROVALS AND LISTINGS

- International Code Council Evaluation Service (ICC-ES), ESR-2502 for cracked and uncracked concrete
- Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ACI 355.2/ASTM E 488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318-14 Chapter 17 or ACI 318-11/08 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00-Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 Post-Installed Concrete Anchors. Expansion anchors shall be Power-Stud+ SD4 and Power-Stud+ SD6 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification							
Anchor component	SD4 ^{1,}	SD6 ¹						
Anchor body	Type 304 Stainless Steel	Type 316 Stainless Steel						
Washer	300 Series Stainless Steel	Type 316 Stainless Steel						
Hex Nut	Type 316 Stainless Steel							
Expansion wedge (clip) Type 316 Stainless Steel								
1. Domestically manufactured anchors are available upon request (see ordering information for details).								

SECTION CONTENTS

General Information188	
Material Specifications188	
Installation Instructions189	
Reference Data (ASD)189	
Performance Data193	
Strength Design (SD)194	
Strength Design Performance Data197	
Ordering Information198	

POWER-STUD+ STAINLESS STEEL ASSEMBLY

THREAD VERSION

UNC threaded stud

ANCHOR MATERIALS

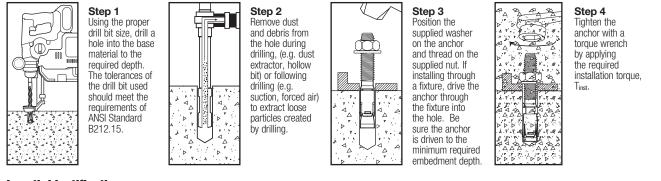
 Stainless steel body and expansion clip, nut and washer

ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter through 3/4" diameter

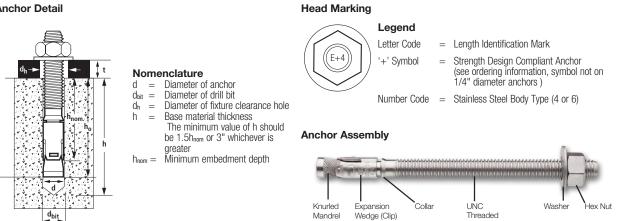
SUITABLE BASE MATERIALS

- Normal-weight concrete
- Sand-lightweight concrete
- Grouted Concrete Masonry (CMU)



•

INSTALLATION INSTRUCTIONS



Length Identification

From 1-1/2" 2" 2-1/2" 3" 3-1/2" 4" 4-1/2" 5" 5-1/2" 6" 6-1/2" 7" 7-1/2" 8" 8-1/2" 9" 9-1/2" 10 Up to <																			
Up to but not 2" 2-1/2" 3" 3-1/2" 4" 4-1/2" 5" 5-1/2" 6" 6-1/2" 7" 7-1/2" 8" 8-1/2" 9" 9-1/2" 10" 11	Mark	A	В	C	D	E	F	G	H	Т	J	К	L	м	N	0	P	Q	R
but not 2" 2-1/2" 3" 3-1/2" 4" 4-1/2" 5" 5-1/2" 6" 6-1/2" 7" 7-1/2" 8" 8-1/2" 9" 9-1/2" 10" 11	From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"
	but not		2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"

Length identification mark indicates overall length of anchor

Anchor Detail

Stud

REFERENCE DATA (ASD)

Installation Specifications Table for Power-Stud+ SD4 and Power-Stud+ SD6 in Concrete

Anchor Property/Setting Information	Notation	Units		Nomir	al Anchor Diameter	(inch)				
			1/4	3/8	1/2	5/8	3/4			
Anchor outside diameter	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)			
Nominal drill bit diameter	d _{bit}	in.	1/4 ANSI	3/8 ANSI	1/2 ANSI	5/8 ANSI	3/4 ANSI			
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (7.9)	7/16 (11.1)	9/16 (14.3)	11/16 (17.5)	13/16 (20.6)			
Minimum embedment depth	h _{nom}	in. (mm)	1-1/8 (29)	1-3/8 (41)	1-7/8 (48)	2-1/2 (64)	3-3/8 (86)			
Minimum hole depth	h₀	in. (mm)	1-1/4 (32)	1-1/2 (38)	2 (51)	2-5/8 (67)	3-1/2 (89)			
Installation torque	Tinst	ftlbf. (N-m)	6 (8)	25 (34)	40 (54)	60 (81)	110 (149)			
Torque wrench/socket size	-	in.	7/16	9/16	3/4	15/16	1-1/8			
Nut height	-	in.	7/32	21/64	7/16	35/64	41/64			
For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.										

NECHANICAL ANCHORS

POWER-STUD®+ SD4/SD6 Stainless Steel Wedge Expansion Anchors

					Minim	um Concrete C	ompressive St	rength			
Nominal Anchor	Minimum Embedment Depth	f ⁱ c = 2, (17.3		f'c = 3,000 psi (20.7 MPa)		f ^ı c = 4, (27.6		f'c = 6, (41.4		f'c = 8, (55.2	
Diameter in.	h ^{nom} in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
1/4	1-1/8	1,095	2,135	1,200	2,135	1,390	2,135	1,455	2,135	1,680	2,135
	(29)	(4.9)	(9.5)	(5.3)	(9.5)	(6.2)	(9.5)	(6.5)	(9.5)	(7.5)	(9.5)
1/4	1-3/4	1,890	2,135	2,070	2,135	2,390	2,135	2,480	2,135	2,480	2,135
	(44)	(8.4)	(9.5)	(9.2)	(9.5)	(10.6)	(9.5)	(11.0)	(9.5)	(11.0)	(9.5)
	1-3/8	1,530	2,745	1,680	2,745	1,940	2,745	2,520	2,745	2,910	2,745
	(41)	(6.8)	(12.2)	(7.5)	(12.2)	(8.6)	(12.2)	(11.2)	(12.2)	(12.9)	(12.2)
3/8	1-7/8	2,790	2,745	3,060	2,745	3,530	2,745	4,195	2,745	4,840	2,745
	(48)	(12.4)	(12.2)	(13.6)	(12.2)	(15.7)	(12.2)	(18.7)	(12.2)	(21.5)	(12.2)
	3	4,700	2,745	4,895	2,745	4,895	2,745	4,895	2,745	4,895	2,745
	(76)	(20.9)	(12.2)	(21.8)	(12.2)	(21.8)	(12.2)	(21.8)	(12.2)	(21.8)	(12.2)
	1-7/8	2,745	5,090	3,010	5,090	3,475	5,090	4,525	5,090	5,230	5,090
	(48)	(12.2)	(22.6)	(13.4)	(22.6)	(15.5)	(22.6)	(20.1)	(22.6)	(23.3)	(22.6)
1/2	2-3/8	5,370	5,090	5,880	5,090	6,790	5,090	6,790	5,090	7,845	5,090
	(60)	(23.9)	(22.6)	(26.2)	(22.6)	(30.2)	(22.6)	(30.2)	(22.6)	(34.9)	(22.6)
	3-3/4	8,840	5,090	9,300	5,090	9,300	5,090	9,300	5,090	9,300	5,090
	(95)	(39.3)	(22.6)	(41.4)	(22.6)	(41.4)	(22.6)	(41.4)	(22.6)	(41.4)	(22.6)
	2-1/2	5,015	9,230	5,495	9,230	6,345	9,230	7,250	9,230	8,370	9,230
	(64)	(22.3)	(41.1)	(24.4)	(41.1)	(28.2)	(41.1)	(32.2)	(41.1)	(37.2)	(41.1)
5/8	3-1/4	6,760	9,230	7,405	9,230	8,560	9,230	9,615	9,230	11,105	9,230
	(83)	(30.1)	(41.1)	(32.9)	(41.1)	(38.1)	(41.1)	(42.8)	(41.1)	(49.4)	(41.1)
	4-3/4	10,550	9,230	11,555	9,230	13,345	9,230	14,560	9,230	14,560	9,230
	(121)	(46.9)	(41.1)	(51.4)	(41.1)	(59.4)	(41.1)	(64.8)	(41.1)	(64.8)	(41.1)
	3-3/8	6,695	11,255	7,330	12,625	8,465	14,580	9,705	15,440	11,210	15,44
	(86)	(29.8)	(50.1)	(32.6)	(56.2)	(37.7)	(64.9)	(43.2)	(68.7)	(49.9)	(68.7)
3/4	4-1/2 (114)	10,800 (48.0)	15,440 (68.7)	11,830 (52.6)	15,440 (68.7)	13,575 (60.4)	15,440 (68.7)	17,110 (76.1)	15,440 (68.7)	19,760 (87.9)	15,44((68.7)
	5-5/8 (143)	11,730 (52.2)	15,440 (68.7)	12,850 (57.2)	15,440 (68.7)	13,575 (60.4)	15,440 (68.7)	19,710 (87.7)	15,440 (68.7)	21,705 (96.5)	15,44((68.7)

1. Tabulated load values are for anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

Allowable Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 in Normal-Weight Concrete 1,2,3,4

					Minim	um Concrete C	ompressive Si	rength			
Nominal Anchor	Minimum Embedment Depth		,500 psi MPa)	f ⁱ c = 3, (20.7		f ^ı c = 4, (27.6	000 psi MPa)	f ^ı c = 6, (41.4			000 psi MPa)
Diameter in.	hnom in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
1/4	1-1/8	275	535	300	535	350	535	365	535	420	535
	(28)	(1.2)	(2.4)	(1.3)	(2.4)	(1.6)	(2.4)	(1.6)	(2.4)	(1.9)	(2.4)
1/4	1-3/4	475	535	520	535	600	535	620	535	620	535
	(44)	(2.1)	(2.4)	(2.3)	(2.4)	(2.7)	(2.4)	(2.8)	(2.4)	(2.8)	(2.4)
	1-3/8	385	685	420	685	485	685	630	685	730	685
	(41)	(1.7)	(3.0)	(1.9)	(3.0)	(2.2)	(3.0)	(2.8)	(3.0)	(3.2)	(3.0)
3/8	1-7/8	700	685	765	685	885	685	1,050	685	1,210	685
	(60)	(3.1)	(3.0)	(3.4)	(3.0)	(3.9)	(3.0)	(4.7)	(3.0)	(5.4)	(3.0)
	3	1,175	685	1,225	685	1,225	685	1,225	685	1,225	685
	(60)	(5.2)	(3.0)	(5.4)	(3.0)	(5.4)	(3.0)	(5.4)	(3.0)	(5.4)	(3.0)
	1-7/8	685	1,275	755	1,275	870	1,275	1,130	1,275	1,310	1,275
	(57)	(3.0)	(5.7)	(3.4)	(5.7)	(3.9)	(5.7)	(5.0)	(5.7)	(5.8)	(5.7)
1/2	2-3/8	1,345	1,275	1,470	1,275	1,700	1,275	1,700	1,275	1,960	1,275
	(64)	(6.0)	(5.7)	(6.5)	(5.7)	(7.6)	(5.7)	(7.6)	(5.7)	(8.7)	(5.7)
	3-3/4	2,210	1,275	2,325	1,275	2,325	1,275	2,325	1,275	2,325	1,275
	(95)	(9.8)	(5.7)	(10.3)	(5.7)	(10.3)	(5.7)	(10.3)	(5.7)	(10.3)	(5.7)
	2-1/2	1,255	2,310	1,375	2,310	1,585	2,310	1,815	2,310	2,095	2,310
	(70)	(5.6)	(10.3)	(6.1)	(10.3)	(7.1)	(10.3)	(8.1)	(10.3)	(9.3)	(10.3)
5/8	3-1/4	1,690	2,310	1,850	2,310	2,140	2,310	2,405	2,310	2,775	2,310
	(86)	(7.5)	(10.3)	(8.2)	(10.3)	(9.5)	(10.3)	(10.7)	(10.3)	(12.3)	(10.3)
	4-3/4	2,640	2,310	2,890	2,310	3,335	2,310	3,640	2,310	3,640	2,310
	(117)	(11.7)	(10.3)	(12.9)	(10.3)	(14.8)	(10.3)	(16.2)	(10.3)	(16.2)	(10.3)
	3-3/8	1,675	2,815	1,835	3,155	2,115	3,645	2,425	3,860	2,805	3,860
	(86)	(7.5)	(12.5)	(8.2)	(14.0)	(9.4)	(16.2)	(10.8)	(17.2)	(12.5)	(17.2)
3/4	4-1/2 (114)	2,700 (12.0)	3,860 (17.2)	2,960 (13.2)	3,860 (17.2)	3,395 (15.1)	3,860 (17.2)	4,280 (19.0)	3,860 (17.2)	4,940 (22.0)	3,860 (17.2)
	5-5/8 (143)	2,935 (13.1)	3,860 (17.2)	3,215 (14.3)	3,860 (17.2)	3,395 (15.1)	3,860 (17.2)	4,930 (21.9)	3,860 (17.2)	5,425 (24.1)	3,860 (17.2)

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

SPACING DISTANCE AND EDGE DISTANCE ADJUSTMENT FACTORS FOR NORMAL WEIGHT CONCRETE - TENSION (
STADING VISTANDE AND EUGE VISTANDE AVJUSTWENT FAUTURS FUR NURWAL WEIGHT GUNDRETE = TENSIUN O	INS INC

Spacing Reduction Factors - Tension (F_{NS})

Eda Dicto Doductio . Easte τ. . . /F \

phau	ng Reduction Fa	GLUI 5 -	I CIISIU			
	Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nom	inal Embed. hnom (in)	1-3/4	1-7/8	2-1/2	3-1/4	4-1/2
Minin	num Spacing, smin (in)	2	3	3	5	5
	1-3/4	-	-	-	-	-
	2	0.79	-	-	-	-
	2-1/4	0.81	-	-	-	-
	2-1/2	0.83	-	-	-	-
	2-3/4	0.85	-	-	-	-
	3	0.87	0.87	0.82	-	-
	3-1/2	0.91	0.91	0.85	-	-
	4	0.96	0.96	0.88	-	-
s)	4-1/2	1.00	1.00	0.91	-	-
Spacing Distance (inches)	5	1.00	1.00	0.94	0.85	0.76
e (in	5-1/2	1.00	1.00	0.97	0.87	0.78
anci	6	1.00	1.00	1.00	0.90	0.80
Dist	6-1/2	1.00	1.00	1.00	0.92	0.82
ing l	7	1.00	1.00	1.00	0.94	0.84
paci	7-1/2	1.00	1.00	1.00	0.97	0.86
S	8	1.00	1.00	1.00	0.99	0.87
	8-1/4	1.00	1.00	1.00	1.00	0.88
	8-1/2	1.00	1.00	1.00	1.00	0.89
	9	1.00	1.00	1.00	1.00	0.91
	9-1/2	1.00	1.00	1.00	1.00	0.93
	10	1.00	1.00	1.00	1.00	0.95
	10-1/2	1.00	1.00	1.00	1.00	0.97
	11	1.00	1.00	1.00	1.00	0.99
	11-1/4	1.00	1.00	1.00	1.00	1.00

Edge	Distance Reduct	ion Fac	tors-	Tensio	1 (F NC)	
	Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nom	inal Embed. hnom (in)	1-3/4	1-7/8	2-1/2	3-1/4	4-1/2
Critical	Edge Distance, Cac (in)	5	5	7-1/2	9-1/2	9
Min. E	dge Distance, cmin (in)	1-3/4	3	3	4-1/2	5
	1-1/2	-	-	-	-	-
	1-3/4	0.35	-	-	-	-
	2	0.40	-	-	-	-
	2-1/4	0.45	-	-	-	-
	2-1/2	0.50	-	-	-	-
	2-3/4	0.55	-	-	-	-
<u> </u>	3	0.60	0.60	0.40	-	-
Edge Distance (inches)	3-1/2	0.70	0.70	0.47	-	-
(inc	4	0.80	0.80	0.53	-	-
nce	4-1/2	0.90	0.90	0.60	0.47	-
istaı	5	1.00	1.00	0.67	0.53	0.56
je Di	5-1/2	1.00	1.00	0.73	0.58	0.61
Edg	6	1.00	1.00	0.80	0.63	0.67
	6-1/2	1.00	1.00	0.87	0.68	0.72
	7	1.00	1.00	0.93	0.74	0.78
	7-1/2	1.00	1.00	1.00	0.79	0.83
	8	1.00	1.00	1.00	0.84	0.89
	8-1/2	1.00	1.00	1.00	0.89	0.94
	9	1.00	1.00	1.00	0.95	1.00
	9-1/2	1.00	1.00	1.00	1.00	1.00

ICING DISTANCE AND EDGE DISTANCE ADJUSTMENT FACTORS FOR NORMAL WEIGHT CONCRETE - SHEAR (Fvs, Fvc)

Spacing Reduction Factors - Shear (Fvs)

-	Diameter (in)	1/4	3/8	1/2	5/8	3/4		Diameter (in)	1/4	3/8
Nom	inal Embed. hoom (in)	1-3/4	1-7/8	2-1/2	3-1/4	4-1/2	Nom	inal Embed. hnom (in)	1-3/4	1-7
	num Spacing, smin (in)	2	3	3	5	5		dge Distance, cmin (in)	1-3/4	3
	1-3/4	-	-	-	-	-		1-1/2	-	-
	2	0.87	-	-	-	-		1-3/4	0.39	-
	2-1/4	0.88	-	-	-	-		2	0.44	-
	2-1/2	0.90	-	-	-	-		2-1/4	0.50	-
	2-3/4	0.91	-	-	-	-		2-1/2	0.56	-
	3	0.92	0.92	0.89	-	-		2-3/4	0.61	-
	3-1/2	0.95	0.95	0.91	-	-		3	0.67	0.6
	4	0.97	0.97	0.93	-	-		3-1/2	0.78	0.7
s)	4-1/2	1.00	1.00	0.95	-	-		4	0.89	0.8
Spacing Distance (inches)	5	1.00	1.00	0.96	0.91	0.84	s)	4-1/2	1.00	1.0
e (in	5-1/2	1.00	1.00	0.98	0.93	0.85	Edge Distance (inches)	5	1.00	1.0
ance	6	1.00	1.00	1.00	0.94	0.86	e (ii	5-1/2	1.00	1.0
Dist	6-1/2	1.00	1.00	1.00	0.95	0.88	anc	6	1.00	1.0
Ing	7	1.00	1.00	1.00	0.97	0.89	Dist	6-1/2	1.00	1.0
paci	7-1/2	1.00	1.00	1.00	0.98	0.90	1ge	7	1.00	1.0
SI	8	1.00	1.00	1.00	0.99	0.92	Ĕ	7-1/2	1.00	1.0
	8-1/4	1.00	1.00	1.00	1.00	0.92		8	1.00	1.0
	8-1/2	1.00	1.00	1.00	1.00	0.93		8-1/4	1.00	1.0
	9	1.00	1.00	1.00	1.00	0.94		8-1/2	1.00	1.0
	9-1/2	1.00	1.00	1.00	1.00	0.95		9	1.00	1.0
	10	1.00	1.00	1.00	1.00	0.97		9-1/2	1.00	1.0
	10-1/2	1.00	1.00	1.00	1.00	0.98		10	1.00	1.0
	11	1.00	1.00	1.00	1.00	0.99		10-1/2	1.00	1.0
	11-1/4	1.00	1.00	1.00	1.00	1.00		11	1.00	1.0
								11-1/4	1.00	1.0

Edge	Distance Reduct	ion Fac	tors -	Shear ((F _{VC})	
	Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nom	inal Embed. hnom (in)	1-3/4	1-7/8	2-1/2	3-1/4	4-1/2
Min. E	dge Distance, cmin (in)	1-3/4	3	3	4-1/2	5
	1-1/2	-	-	-	-	-
	1-3/4	0.39	-	-	-	-
	2	0.44	-	-	-	-
	2-1/4	0.50	-	-	-	-
	2-1/2	0.56	-	-	-	-
	2-3/4	0.61	-	-	-	-
	3	0.67	0.67	0.50	-	-
	3-1/2	0.78	0.78	0.58	-	-
	4	0.89	0.89	0.67	-	-
(s:	4-1/2	1.00	1.00	0.75	0.55	-
Iche	5	1.00	1.00	0.83	0.61	0.44
e (ir	5-1/2	1.00	1.00	0.92	0.67	0.49
anc	6	1.00	1.00	1.00	0.73	0.53
Dist	6-1/2	1.00	1.00	1.00	0.79	0.58
Edge Distance (inches)	7	1.00	1.00	1.00	0.85	0.62
ш	7-1/2	1.00	1.00	1.00	0.91	0.67
	8	1.00	1.00	1.00	0.97	0.71
	8-1/4	1.00	1.00	1.00	1.00	0.73
	8-1/2	1.00	1.00	1.00	1.00	0.76
	9	1.00	1.00	1.00	1.00	0.80
	9-1/2	1.00	1.00	1.00	1.00	0.84
	10	1.00	1.00	1.00	1.00	0.89
	10-1/2	1.00	1.00	1.00	1.00	0.93
	11	1.00	1.00	1.00	1.00	0.98

1.00 1.00 1.00

▶**∃**'.'/.'

PERFORMANCE DATA

Ultimate Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 installed into the Face of Grout Filled Concrete Masonry $^{\!\!\!^{1,2}}$

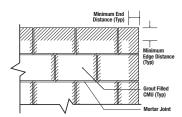
Nominal Anchor Diameter in.	Minimum Embedment hnom in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Ultimate Tension Load Ib (KN)	Direction of Shear Loading	Ultimate Shear Load Ib (KN)
1/2	2-3/8	3 (76.2)	3 (76.2)	1,695 (7.5)	Any	2,080 (9.3)
1/2	(60)	12 (304.8)	12 (304.8)	2,425 (10.8)	Any	4,905 (21.8)
5/8	3-1/4 (83)	12 (304.8)	12 (304.8)	5,565 (24.8)	Any	7,944 (35.3)

1. Tabulated load values are for anchors installed in minimum 8 inch wide, minimum Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working loads.

Allowable Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 installed into the Face of Grout Filled Concrete Masonry 1,2,3,4,5

Nominal Anchor Diameter in.	Minimum Embedment hnom in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Allowable Tension Load Ib (kN)	Direction of Shear Loading	Allowable Shear Load Ib (kN)
1/2	2-3/8	3 (76.2)	3 (76.2)	340 (1.5)	Any	415 (1.8)
1/2	(60)	12 (304.8)	12 (304.8)	485 (2.2)	Any	980 (4.4)
5/8	3-1/4 (83)	12 (304.8)	12 (304.8)	1,115 (5.0)	Any	1,590 (7.1)


1. Tabulated load values are for anchors installed in minimum 8 inch wide, minimum Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. The tabulated values are applicable for anchors installed in grouted masonry wall faces at a critical spacing distance, s_{ar}, between anchors of 16 times the anchor diameter. The spacing distance between two anchors may be reduced to a minimum distance, s_{min}, of 8 times the anchor diameter provided the allowable tension loads are multiplied a reduction factor of 0.80 and allowable shear loads are multiplied by a reduction factor of 0.90. Linear interpolation for calculation of allowable loads may be used for intermediate anchor spacing distances.

4. Anchors may be installed in the grouted cells and in cell webs and bed joints not closer than 1-3/8" from head joints. The minimum edge and end distances must also be maintained.

5. Allowable tension values for anchors installed into bed joints of grouted masonry wall faces with a minimum of 12" edge and end distance may be increased by 20 percent for the 1/2-inch diameter and 10 percent for the 5/8-inch diameter.

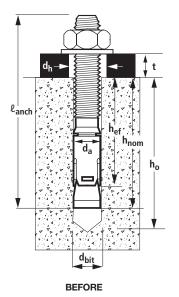
Wall Face Permissible Anchor Locations (Un-hatched Area)

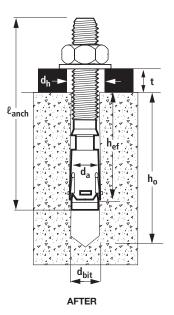
STRENGTH DESIGN (SD)

Strength Design Installation Table for Power-Stud+ SD4 and Power-Stud+ SD6¹⁴

						Nomina	l Anchor D	iameter			
Anchor Property/Setting Information	Notation	Units	1/4	3/	/8	1/	/2	5/	/8	3.	/4
Anchor outside diameter	da	in. (mm)	0.250 (6.4)	0.3 (9.		0.5 (12		0.6 (15			750 9.1)
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (7.9)	7/ (11	16 .1)	9/ (14	16 I.3)	11/ (17			/16).6)
Nominal drill bit diameter	dbit	in.	1/4 ANSI	3/ AN		1, AN		5/ AN			/4 NSI
Minimum nominal embedment depth ²	h _{nom}	in. (mm)	1-3/4 (44)	1-7 (4	7/8 ·8)	2- ⁻ (6		3- ⁻ (8			1/2 14)
Effective embedment	h _{ef}	in. (mm)	1.50 (38)	1.: (3		2.0 (5		2. ⁻ (7			3/4 15)
Minimum hole depth	h₀	in. (mm)	1-7/8 (48)	(5	2 1)	2-5 (6		3- ⁻ (8			3/4 21)
Minimum member thickness	h _{min}	in. (mm)	3-1/4 (83)	3-1/4 (83)	4 (102)	(10	1)2)	(12	5 27)		6 52)
Minimum overall anchor length ³	lanch	in. (mm)	2-1/4 (57)	2-3 (7		3-3 (9		4- ⁻ (11			1/2 40)
Minimum edge distance	Cmin	in. (mm)	1-3/4 (44)	3 (76)	3-1/2 (89)	6 (152)	3 (76)	4-1/2 (114)	8-1/2 (216)	5 (127)	9 (229)
Minimum spacing distance	Smin	in. (mm)	2 (51)	5-1/2 (140)	3 (76)	3 (76)	6 (152)	8-1/2 (216)	5 (127)	9 (229)	5 (127)
Critical edge distance	Cac	in. (mm)	5 (127)		5 27)	7- ⁻ (19		9- ⁻ (24			9 29)
Installation torque	Tinst	ftlbf. (N-m)	6 (8)	2 (3	5 4)	4 (5	-	6 (8			10 49)
Torque wrench/socket size	-	in.	7/16	9/	16	3,	/4	15/	′16	1-1	1/8
Nut height	-	in.	7/32	21/	/64	7/	16	35/	64	41.	/64

For SI: 1 inch = 25.4 mm; 1 ft-lbf = 1.356 N-m.


1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.


2. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

3. The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

4. The anchors may be installed in the topside of concrete-filled steel deck floor and roof assemblies in accordance with the following: the 1/4-inch diameter anchors must be installed in uncracked normal-weight or sand-lightweight concrete; 3/8-inch to 3/4-inch diameter anchors must be installed in cracked and uncracked normal-weight or sand-lightweight concrete over steel deck having a minimum specified compressive strength, f'c, of 3,000 psi (20.7 MPa) provided the concrete thickness above the upper flute meets the minimum thickness specified in this table.

Power-Stud+ SD4 and Power-Stud+ SD6 Anchor Detail

Application of Installation Torque

NCHORS

Tension Design Information for Power-Stud+ SD4 and Power-Stud+ SD6 Anchors in Concrete (For use with load combinations taken from ACI 318-14, Section 5.3 or ACI 318-11, Section 9.2)^{1.8}

Design Cha	racteristic	Notation	Units		Nominal Anchor Diameter					
Design Gild	lacteristic	NULALIUII	Units	1/4	3/8	1/2	5/8	3/4		
Anchor category		1,2 or 3	-	1	1	1	1	1		
Nominal embedment dep	th	h _{nom}	in.	1-3/4	1-7/8	2-3/8	3-1/4	4-1/2		
	STE	EL STRENGTH	IN TENSION	I (ACI 318-14 17.4	1 or ACI 318-11 D	.5.1)				
Minimum specified yield s	strength (neck	fy	ksi (N/mm²)	60 (414)	60 (414)	60 (414)	60 (414)	60 (414)		
Minimum specified ultima	te tensile strength (neck)	f _{uta}	ksi (N/mm²)	90 (621)	90 (621)	90 (621)	90 (621)	90 (621)		
Effective tensile stress are	ea (neck)	A _{se,N}	in² (mm²)	0.0249 (16.1)	0.0530 (34.2)	0.1020 (65.8)	0.1630 (105.2)	0.2380 (151)		
Steel strength in tension		N _{sa}	lb (kN)	2,240 (10.0)	4,780 (21.3)	9,160 (40.8)	14,635 (65.1)	21,380 (95.1)		
Reduction factor for steel	strength ^{2,3}	ϕ	-			0.75				
	CONCRETE E	BREAKOUT ST	RENGTH IN 1	TENSION (ACI 318-	14 17.4.2 or ACI 3	18-11 D.5.2) [®]				
Effective embedment		h _{ef}	in. (mm)	1.50 (38)	1.50 (38)	2.00 (51)	2.75 (70)	3.75 (95)		
Effectiveness factor for ur	ncracked concrete	Kuncr	-	24	24	24	24	24		
Effectiveness factor for cr	acked concrete	k _{cr}	-	Not Applicable	17	21	21	21		
Modification factor for cracked and uncracked c	oncrete	Ψc,N	-	1.0 See Note 5	1.0 See Note 5	1.0 See Note 5	1.0 See Note 5	1.0 See Note s		
Critical edge distance (un	cracked concrete only)	Cac	in. (mm)	5 (127)	5 (127)	7-1/2 (191)	9-1/2 (241)	9 (229)		
Reduction factor for conci	rete breakout strength⁴	ϕ	-			0.65 (Condition B)				
	PULL	DUT STRENGT	h in tensio	N (ACI 318-14 17.4	4.3 or ACI 318-11	D.5.3) ⁸				
Characteristic pullout stre uncracked concrete (2,50	l0 psi)⁵	N _{p,uncr}	lb (kN)	1,510 (6.7)	See Note 7	See Note 7	See Note 7	8,520 (37.8)		
Characteristic pullout stre cracked concrete (2,500	ngth, psi)⁵	N _{p,cr}	lb (kN)	Not Applicable	See Note 7	See Note 7	See Note 7	See Note 7		
Reduction factor for pullo	ut strength ³	ϕ	-			0.65 (Condition B)				
	PULLOUT STRENGTH I	N TENSION FO	R SEISMIC	APPLICATIONS (ACI	318-14 17.2.3.3 (or ACI 318-11 D.3.3	3.3)°	-		
Characteristic pullout strer	ngth, seismic (2,500 psi) ^{6,9}	N _{p,eq}	lb (kN)	Not Applicable	1,645 (7.3)	See Note 7	See Note 7	See Note 7		
Reduction factor for pullo	ut strength⁴	ϕ	-			0.65 (Condition B)				
Mean axial stiffnes	Uncracked concrete	β	lbf/in (kN/mm)	171,400 (30,060)	490,000 (86,000)	459,000 (80,500)	234,000 (41,000)	395,000 (69,300)		
values for service load range	Cracked concrete	β	lbf/in (kN/mm)	Not Applicable	228,000 (40,000)	392,000 (68,800)	193,000 (33,800)	76,600 (13,400)		

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

3. The anchors are ductile steel elements as defined in ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

4. The tabulated value of \$\phi\$ for concrete breakout strength and pullout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC ACI 318-14 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC ACI 318-14 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for Condition A are satisfied, the appropriate value of \$\phi\$ for concrete breakout strength and pullout strength must be determined in accordance with ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \$\phi\$ for concrete breakout strength and pullout str

5. For all design cases $\psi_{c,N}$ =1.0. The appropriate effectiveness factor for cracked concrete (k_{or}) or uncracked concrete (k_{umor}) must be used.

6. For all design cases $\psi_{c,P} = 1.0$. For concrete compressive strength greater than 2,500 psi, N_Pn = (pullout strength value from table)*(specified concrete compressive strength/2,500)^{6.5}.

7. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

8. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8 λ is applied to all values of \sqrt{fc} affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

9. Tabulated values for characteristic pullout strength in tension are for seismic applications and are based on test results per ACI 355.2, Section 9.5.

10. Actual stiffness of the mean value varies depending on concrete strength, loading and geometry of application.

DEWALT

Shear Design Information for Power-Stud+ SD4 and Power-Stud+ SD6 Anchors in Concrete (For use with load combinations taken from ACI 318-14, Section 5.3 or ACI 318-11, Section 9.2)^{1,7}

Design Characteristic	Notation	Units		Nor	ninal Anchor Diam	eter		
Design Gharacteristic	Notation	Units	1/4	3/8	1/2	5/8	3/4	
Anchor category	1, 2 or 3	-	1	1	1	1	1	
Nominal embedment depth	hnom	in.	1-3/4	1-7/8	2-3/8	3-1/4	4-1/2	
	STEEL STRENG	TH IN SHEAR (AC	a 318-14 17.5.1 or	ACI 318-11 D.6.1	I) ⁴			
Minimum specified yield strength (threads)	fy	ksi (N/mm²)	60 (414)	60 (414)	60 (414)	60 (414)	60 (414)	
Minimum specified ultimate strength (threads)	f _{uta}	ksi (N/mm²)	90 (621)	90 (621)	90 (621)	90 (621)	90 (621)	
Effective tensile stress area (threads)	A _{se, v} [Ase] ⁸	in² (mm²)	0.0318 (20.5)	0.078 (50.3)	0.142 (91.6)	0.226 (145.8)	0.334 (212)	
Steel strength in shear ⁶	Vsa	lb (KN)	1,115 (5.0)	1,470 (6.6)	3,170 (14.3)	7,455 (33.6)	11,955 (53.2)	
Reduction factor for steel strength ^{2,3}	ϕ	-			0.65			
CONCF	ETE BREAKOUT	STRENGTH IN SH	EAR (ACI 318-14 1	7.5.2 or ACI 318-	·11 D.6.2)			
Load bearing length of anchor (her or 8da, whichever is less)	le	in. (mm)	1.50 (38.1)	1.50 (38.1)	2.00 (50.8)	2.75 (69.9)	3.75 (95)	
Nominal anchor diameter	da	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	
Reduction factor for concrete breakout ⁴	ϕ	-			0.70 (Condition B)			
CONC	RETE PRYOUT S	TRENGTH IN SHE	R (ACI 318-14 17.2	2.3.3 or ACI 318-	11 D.6.3)			
Coefficient for pryout strength (1.0 for $h_{ef} < 2.5$ in.)	Kcp	-	1.0	1.0	1.0	2.0	2.0	
Effective embedment	hef	in. (mm)	1.50 (38.1)	1.50 (38.1)	2.00 (50.8)	2.75 (69.9)	3.75 (95)	
Reduction factor for pryout strength ⁵	ϕ	-			0.70 (Condition B)	-		
STEEL STRENG	TH IN SHEAR FO	R SEISMIC APPL	CATIONS (ACI 318-	14 17.2.3.3 or A	CI 318-11 D.3.3.3)			
Steel strength in shear, seismic ⁸	V _{sa,eq}	lb (kN)	Not Applicable	1,305 (5.9)	2,765 (12.3)	5,240 (23.3)	7,745 (34.5)	
Reduction factor for steel strength in shear for seismic ²	φ	-	0.65					

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.4.

3. The anchors are ductile steel elements as defined in ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

4. The tabulated value of φ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-11 Section 9.2, as section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-11 D.4.3, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-14 IS. Section 9.2, as applicable, are used and the requirements of ACI 318-14 14.3.3 or ACI 318-11 D.4.3, for Condition A are satisfied, the appropriate value of φ for concrete breakout strength must be determined in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.3.

5. The tabulated value of for pryout strength applies if the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for pryout strength must be determined in accordance with ACI 318-11 D.4.4, Condition B.

6. Tabulated values for steel strength in shear must be used for design.

7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8 λ is applied to all values of $\sqrt{f'c}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

8. Tabulated values for steel strength in shear are for seismic applications are based on test results per ACI 355.2, Section 9.6.

STRENGTH DESIGN PERFORMANCE DATA

Factored design strength ϕ Nn and ϕ Vn Calculated in accordance with ACI 318-14 Chapter 17 Compliant with the International Building Code

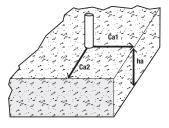
• Fa'.'/•

ENGINEERED BY POWERS

Tension and Shear Design Strengths Installed in Cracked Concrete¹⁻⁶

					Minim	um Concrete C	compressive St	trength			
Nominal	Nominal	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	.000 psi
Anchor Diameter (in.)	Diameter hnom		$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	φ _{Nsa} , φ _{Ncb} or φ _{Ncp} Tension (lbs.)	$\begin{array}{c} \phi_{V_{sa}}, \phi_{V_{cb}} \\ \text{or } \phi_{V_{cp}} \\ \text{Shear} \\ \text{(lbs.)} \end{array}$	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{say}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	φVsa, φVcb or φVcp Shear (Ibs.)
1/4	-	-	-	-	-	-	-	-	-	-	-
3/8	1-7/8	1,015	955	1,110	955	1,285	955	1,570	955	1,815	955
1/2	2-1/2	1,930	2,060	2,115	2,060	2,440	2,060	2,990	2,060	3,455	2,060
5/8	3-1/4	3,110	4,520	3,410	4,845	3,935	4,845	4,820	4,845	5,570	4,845
3/4	4-1/2	4,955	5,270	5,430	5,770	6,270	6,665	7,680	7,770	8,865	7,770
1/2 5/8 3/4	2-1/2 3-1/4 4-1/2	1,930 3,110	2,060 4,520 5,270	2,115 3,410 5,430	2,060 4,845 5,770	2,440 3,935 6,270	2,060 4,845 6,665	2,990 4,820	2,060 4,845	3,455 5,570	2 4

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls


Tension and Shear Design Strengths Installed in Uncracked Concrete¹⁻⁶

					Minim	um Concrete C	ompressive St	rength			
Nominal	Nominal	f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	.000 psi
Anchor Diameter (in.) Embed. hrom (in.)		$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\begin{array}{c} \phi_{V_{sa},} \phi_{V_{cb}} \\ \text{or } \phi_{V_{cp}} \\ \text{Shear} \\ \text{(lbs.)} \end{array}$	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{sa}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{sa}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	$\phi_{V_{sa}}, \phi_{V_{cb}}$ or $\phi_{V_{cp}}$ Shear (lbs.)	$\phi_{N_{say}}, \phi_{N_{cb}}$ or $\phi_{N_{cp}}$ Tension (lbs.)	φV _{sa} , φV _{cb} or φV _{cp} Shear (lbs.)
1/4	1-3/4	980	725	1,075	725	1,240	725	1,520	725	1,680	725
3/8	1-7/8	1,435	955	1,570	955	1,815	955	2,220	955	2,565	955
1/2	2-1/2	2,205	2,060	2,415	2,060	2,790	2,060	3,420	2,060	3,945	2,060
5/8	3-1/4	3,555	4,845	3,895	4,845	4,500	4,845	5,510	4,845	6,365	4,845
3/4	4-1/2	5,540	7,375	6,065	7,770	7,005	7,770	8,580	7,770	9,905	7,770
Anobor Du		acth Controla	,	,		,	1				

🗖 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

- c_{a2} is greater than or equal to 1.5 times c_{a1} .
- 2- Calculations were performed according to ACI 318-14 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.

ORDERING INFORMATION

Power-Stud+ SD4 (Type 304 Stainless Steel Body) and Power-Stud+ SD6 (Type 316 Stainless Steel Body)

Cat	. No.		Thread	Dev	Carton		Suggested A	NSI Carbide Dr	ill Bit Cat. No.	
Type 304 SS	Type 316 SS	Anchor Size	Length	Box Qty.	Qty.	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max
7300SD4	7600SD6	1/4" x 1-3/4"	3/4"	100	600	DW5517	DW5416	-	-	-
7302SD4	7602SD6	1/4" x 2-1/4"	1-1/4"	100	600	DW5517	DW5417	-	-	-
7304SD4	7604SD6	1/4" x 3-1/4"	2-1/4"	100	600	DW5517	DW5417	-	-	-
-	7610SD6	3/8" x 2-1/4"	7/8"	50	300	DW5527	DW5427	-	-	-
-	7612SD6	3/8" x 2-3/4"	1-3/8"	50	300	DW5527	DW5427	-	-	-
7313SD4	7613SD6	3/8" x 3"	1-5/8"	50	300	DW5527	DW5427	-		
-	7614SD6	3/8" x 3-1/2"	2-1/8"	50	300	DW5527	DW5427	-	-	-
7315SD4	7615SD6	3/8" x 3-3/4"	2-3/8"	50	300	DW5527	DW5427	-	-	-
7316SD4	7616SD6	3/8" x 5"	3-5/8"	50	300	DW55300	DW5429	-	-	-
-	7617SD6	3/8" x 7"	5-5/8"	50	200	DW55300	DW5429	-	-	-
-	7620SD6	1/2" x 2-3/4"	1"	50	200	DW5537	DW5437	DW5803	DWA54012	-
7322SD4	7622SD6	1/2" x 3-3/4"	2"	50	200	DW5537	DW5437	DW5803	DWA54012	-
7323SD4	7623SD6	1/2" x 4-1/2"	2-3/4"	50	200	DW5539	DW5438	DW5803	DWA54012	-
7324SD4	7624SD6	1/2" x 5-1/2"	3-3/4"	50	100	DW5539	DW5438	DW5803	DWA54012	-
7326SD4	7626SD6	1/2" x 7"	5-1/4"	25	100	DW5539	DW5438	DW5803	DWA54012	-
-	7630SD6	5/8" x 3-1/2"	1-1/2"	25	100	-	DW5446	DW5806	DWA54058	DWA54058
-	7632SD6	5/8" x 4-1/2"	2-1/2"	25	100	-	DW5446	DW5806	DWA54058	DWA54058
7333SD4	7633SD6	5/8" x 5"	3"	25	100	-	DW5446	DW5806	DWA54058	DWA54058
7334SD4	7634SD6	5/8" x 6"	4"	25	75	-	DW5446	DW5806	DWA54058	DWA54058
-	7636SD6	5/8" x 7"	5"	25	75	-	DW5447	DW5806	DWA54058	DWA54058
7338SD4	7638SD6	5/8" x 8-1/2"	6-1/2"	25	50	-	DW5447	DW5809	DWA54058	DWA54058
-	7640SD6	3/4" X 4-1/4"	1-7/8"	20	60	-	DW5453	DW5810	DWA54034	DWA54034
-	7641SD6	3/4" X 4-3/4"	2-3/8"	20	60	-	DW5453	DW5810	DWA54034	DWA54034
7342SD4	7642SD6	3/4" X 5-1/2"	3-1/8"	20	60	-	DW5453	DW5810	DWA54034	DWA54034
-	7644SD6	3/4" X 6-1/4"	3-7/8"	20	60	-	DW5455	DW5810	DWA54034	DWA54034
-	7646SD6	3/4" X 7"	4-5/8"	20	60	-	DW5455	DW5810	DWA54034	DWA54034
7348SD4	7648SD6	3/4" X 8-1/2"	6-1/8"	10	40	-	DW5455	DW5812	DWA54034	DWA54034
for special Shaded cata The publishe	l order only. Cal log numbers de ed size includes	er-Stud+ SD6 anchors (I for details. note sizes which are les the diameter and the ov th nuts and washers.	s than the m	ninimum st	andard anc			In and domestic	components) and	d are available
	, ,									

A manual hand pump is available (Cat. No. 08280).

Hollow drill bits must be used with a dust extraction vacuum (Cat. No. DW012).

GENERAL INFORMATION

POWER-STUD® HD5

Hot-Dip Galvanized Wedge Expansion Anchor

PRODUCT DESCRIPTION

The Power-Stud HD5 anchor is a fully threaded, torque-controlled, wedge expansion anchor. Suitable base materials include normal-weight concrete, sand-lightweight concrete and grouted concrete masonry. The anchor is manufactured with a hot-dip galvanized carbon steel body and stainless steel expansion clip. Nut and washer are included.

GENERAL APPLICATIONS AND USES

- Racking and Shelving
- Material Handling
- Support Ledgers
- Storage Facilities

- Fencing
- Repairs
- Retrofits

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 Post - Installed Concrete Anchors. Expansion Anchors shall be Power-Stud HD5 as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor body	Medium carbon steel
Hex Nut	Carbon steel, ASTM A 563, Grade A
Washer	Carbon steel ASTM F 844; meets dimensional requirements of ANSI B18.22.2, Type A plain
Expansion wedge (clip)	Type 304 Stainless Steel
Plating (anchor, body, nut, washer)	Zinc Galvanized According to ASTM A 153 Class C or D

- Maintenance

SECTION CONTENTS

General Information	199
Material Specifications	199
Installation Instructions	200
Reference Data (ASD)	200
Masonry Performance Data	204
Ordering Information	205

POWER-STUD HD5 ASSEMBLY

THREAD VERSION

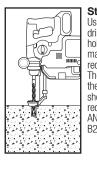
UNC Threaded Stud

ANCHOR MATERIALS

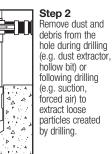
 Hot-dip galvanized carbon steel body, stainless steel expansion clip, hot-dip galvanized nut and washer

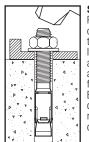
ROD/ANCHOR SIZE RANGE (TYP.)

• 3/8" diameter through 3/4" diameter

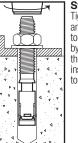

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Sand-lightweight concrete
- Grouted concrete masonry (CMU)




INSTALLATION INSTRUCTIONS

Installation Instructions for Power-Stud HD5



Step 3 Position the washer on the anchor and thread on the nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, hv.

Step 4 Tighten the anchor with a torque wrench by applying the required installation torque, T_{inst}.

Anchor Specifications

Janch

Length	ength Identification														
Mark	A	В	C	D	E	F	G	H	I	J	к	L	м	N	0
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"
Length iden	Length identification mark indicates overall length of anchor.														

REFERENCE DATA (ASD)

Installation Specification for Power-Stud HD5 in Concrete

Anchor Property/	Netelien	Unite				Nom	inal Anchor	Diameter (inch)			
Setting Information	Notation	Units	3/	/8		1/2			5/8		3.	/4
Anchor outside diameter	d	in. (mm)	0.375 (9.525)			0.500 (12.7)			0.625 (15.9)			750 .05)
Minimum diameter of hole clearance in fixture	dh	in. (mm)	7/16 (11.1)			9/16 (14.3)			11/16 (17.5)		13/16 (20.6)	
Nominal drill bit diameter	dыt	in. (mm)		/8 NSI		1/2 ANSI			5/8 ANSI			/4 NSI
Minimum nominal embedment depth	hv	in. (mm)	1-3/4 (44)	2-3/8 (60)	2 (51)	2-1/2 (64)	3-3/4 (95)	2-3/8 (60)	3-3/8 (86)	4-5/8 (117)	3-3/8 (66)	5 (127)
Minimum hole depth	h₀	in. (mm)	2 (51)	2-5/8 (67)	2-1/2 (64)	3 (76)	4-1/4 (108)	2-7/8 (73)	3-7/8 (98)	5-1/8 (130)	3-7/8 (98)	5-1/2 (140)
Minimum member thickness	h _{min}	in. (mm)	3-1/4 (83)	4 (102)	4 (102)	5 (127)	6 (152)	5 (127)	6 (152)	7 (178)	6 (152)	10 (254)
Minimum overall anchor length ¹	lanch	in. (mm)	3 (76)	3 (76)	2-3/4 (70)	3-3/4 (95)	4-1/2 (114)	3-1/2 (89)	5 (127)	6 (152)	4-3/4 (121)	5-1/2 (140)
Minimum edge distance	Cmin	in. (mm)	3 (76)	2-1/4 (57)	4 (102)	5-1/4 (133)	4 (102)	4-1/4 (108)	5-1/2 (140)	4-1/4 (108)	5 (127)	4-1/2 (114)
Minimum spacing distance	S _{min}	in. (mm)	5-1/4 (133)	3-3/4 (95)	6 (152)	7-1/4 (184)	5 (127)	7-1/8 (181)	10-1/8 (257)	4-1/4 (108)	9 (229)	6 (152)
Critical edge distance	Cac	in. (mm)	5 (127)	6-1/2 (165)	8 (203)	8-1/2 (216)	8 (203)	8 (203)	6 (152)	10 (254)	5 (127)	12 (305)
Installation torque (Normal-weight concrete)	Tinst	ftlbf. (N-m)	20 (27)			40 (54)		60 (81)			110 (149)	
Installation torque (Grout Filled CMU)	Tinst	ftlbf. (N-m)	20 (27)			40 (54)		50 (68)			80 (108)	
Torque wrench/socket size	-	in.	9/16 3/4		15/16			1-1/8				
Nut height	-	in.	21,	/64	4 7/16 35/64		41/64					

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The listed minimum overall anchor length is based on anchor sizes available at the time of publication compared with the requirements for the minimum nominal embedment depth and fixture attachment.

ANCH

0

5/8

3/4

Ultimate Load Capacities for Power-Stud HD5 in Normal-Weight Concrete^{1,2} Minimum Concrete Compressive Strength - f'c (psi) Nominal Anchor Minimum Embedment Depth (in.) 2,500 psi 8,000 psi 3,000 psi 4,000 psi 6,000 psi Diameter Shear (lbs) (in.) Tension Shear (lbs) Tension Tension Shear (lbs) Tension Shear (lbs) Tension Shear (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1-3/4 2,470 3,925 2,710 3,925 3,130 3,925 3,220 3,925 3,715 3,925 3/8 2-3/8 6,320 3,620 3,925 3,965 3,925 4,580 3,925 5,470 3,925 3,925 2 2,690 4,195 2,950 4,195 3,405 4,195 4,170 4,195 4,815 4,195 2-1/2 4.140 4.195 4.540 4.195 5.240 4.195 6.415 4.195 7.410 4.195 1/23-3/4 8.580 4,195 9,400 4,195 10,300 4,195 10,300 4,195 10.300 4,195 2-1/2 4,115 6,815 4,505 6,815 5,200 6,815 6,370 6,815 7,355 6,815

 3/7
 5
 16,965
 11,570
 18,580
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330
 11,570
 21,330

6,815

6,815

11,570

9,240

14,815

8,955

6,815

6,815

11,570

11,315

16,400

12,125

6,815

6,815

11,570

minimum at the time of installation.

3-3/8

4-5/8

3-3/8

7,305

11,715

7,080

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

6,815

6,815

11,570

8,000

12,830

7,750

Allowable Load Capacities for Power-Stud HD5 in Normal-Weight Concrete¹

Nominal	Minimum	Minimum Concrete Compressive Strength - f'c (psi)									
Anchor Diameter	Embedment Depth (in.)	2,500 psi		3,000 psi		4,00	0 psi	6,00	0 psi	8,000 psi	
(in.)		Tension (lbs)	Shear (lbs)	Tension (lbs)	Shear (lbs)	Tension (lbs)	Shear (lbs)	Tension (lbs)	Shear (lbs)	Tension (lbs)	Shear (lbs)
0./0	1-3/4	620	980	680	980	785	980	805	980	930	980
3/8	2-3/8	905	980	990	980	1,145	980	1,370	980	1,580	980
	2	675	1,050	740	1,050	850	1,050	1,045	1,050	1,205	1,050
1/2	2-1/2	1,035	1,050	1,135	1,050	1,310	1,050	1,605	1,050	1,855	1,050
	3-3/4	2,145	1,050	2,350	1,050	2,575	1,050	2,575	1,050	2,575	1,050
	2-1/2	1,030	1,705	1,125	1,705	1,300	1,705	1,595	1,705	1,840	1,705
5/8	3-3/8	1,825	1,705	2,000	1,705	2,310	1,705	2,830	1,705	3,265	1,705
	4-5/8	2,930	1,705	3,210	1,705	3,705	1,705	4,100	1,705	4,100	1,705
2/4	3-3/8	1,770	2,895	1,940	2,895	2,240	2,895	3,030	2,895	3,500	2,895
3/4	5	4,240	2,895	4,645	2,895	5,335	2,895	5,335	2,895	5,335	2,895

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0.

2. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

6,815

6,815

11,570

11,570

13,065

16,400

14,000

Spacing Distance and Edge Distance Tension (F_{NS} , F_{NC}) Adjustment Factors for Normal-Weight Concrete

Spacing Distance -Tension (F _{NS})											
Dia	ameter, d (in)	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4
Minimum	Embedment, h, (in)	1-3/4	2-3/8	2	2-1/2	3-3/4	2-3/8	3-3/8	4-5/8	3-3/8	5
Minimur	n Spacing, Smin (in)	5-1/4	3-3/4	6	7-1/4	5	7-1/8	10-1/8	4-1/4	9	6
	3-3/4	-	0.80	-	-	-	-	-	-	-	-
	4	-	0.82	-	-	-	-	-	-	-	-
	4-1/4	-	0.83	-	-	-	-	-	0.69	-	-
	4-1/2	-	0.85	-	-	-	-	-	0.70	-	-
	5	-	0.88	-	-	0.75	-	-	0.71	-	-
	5-1/2	1.00	0.91	-	-	0.77	-	-	0.73	-	-
	6	1.00	0.93	1.00	-	0.79	-	-	0.74	-	0.74
	6-1/2	1.00	0.96	1.00	-	0.81	-	-	0.76	-	0.75
	7	1.00	0.99	1.00	-	0.83	-	-	0.78	-	0.77
(se	7-1/4	1.00	1.00	1.00	0.99	0.84	-	-	0.78	-	0.78
- E	7-1/2	1.00	1.00	1.00	1.00	0.85	1.00	-	0.79	-	0.78
e (ir	8	1.00	1.00	1.00	1.00	0.87	1.00	-	0.81	-	0.80
Spacing Distance (inches)	8-1/2	1.00	1.00	1.00	1.00	0.89	1.00	-	0.83	-	0.81
list	9	1.00	1.00	1.00	1.00	0.91	1.00	-	0.84	0.94	0.83
161	9-1/2	1.00	1.00	1.00	1.00	0.93	1.00	-	0.86	0.97	0.84
aci	10	1.00	1.00	1.00	1.00	0.95	1.00	-	0.87	0.99	0.86
s,	10-1/2	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.89	1.00	0.87
	11	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.91	1.00	0.88
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	0.90
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	0.91
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.93
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.94
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.96
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

	Edge Distance - Tension (Frc)												
E E	Diameter, d (in)	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4		
Minimu	m Embedmend, h _v (in)	1-3/4	2-3/8	2	2-1/2	3-3/4	2-3/8	3-3/8	4-5/8	3-3/8	5		
Minimum	Edge Distance, Cmin (in)	3	2-1/4	4	5-1/4	4	4-1/4	5-1/2	4-1/4	5	4-1/2		
	2-1/4	-	0.35	-	-	-	-	-	-	-	-		
	2-1/2	-	0.38	-	-	-	-	-	-	-	-		
	3	0.60	0.46	-	-	-	-	-	-	-	-		
	3-1/2	0.70	0.54	-	-	-	-	-	-	-	-		
	4	0.80	0.62	0.50	-	0.50	-	-	-	-	-		
	4-1/4	0.85	0.65	0.53	-	0.53	0.53	-	0.43	-	-		
	4-1/2	0.90	0.69	0.56	-	0.56	0.56	-	0.45	-	0.38		
	5	1.00	0.77	0.63	-	0.63	0.63	-	0.50	1.00	0.42		
(sa	5-1/4	1.00	0.81	0.66	0.62	0.66	0.66	-	0.53	1.00	0.44		
Edge Distance (inches)	5-1/2	1.00	0.85	0.69	0.65	0.69	0.69	0.92	0.55	1.00	0.46		
e (j.	6	1.00	0.92	0.75	0.71	0.75	0.75	1.00	0.60	1.00	0.50		
anc	6-1/2	1.00	1.00	0.81	0.76	0.81	0.81	1.00	0.65	1.00	0.54		
Dista	7	1.00	1.00	0.88	0.82	0.88	0.88	1.00	0.70	1.00	0.58		
ge [7-1/2	1.00	1.00	0.94	0.88	0.94	0.94	1.00	0.75	1.00	0.63		
Ed	8	1.00	1.00	1.00	0.94	1.00	1.00	1.00	0.80	1.00	0.67		
	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.85	1.00	0.71		
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	0.75		
	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.79		
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83		
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88		
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92		
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96		
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

MECHANICAL

	Spacing Distance - Shear (Frs)											
Dia	ameter, d (in)	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	
Minimum	Embedment, h, (in)	1-3/4	2-3/8	2	2-1/2	3-3/4	2-3/8	3-3/8	4-5/8	3-3/8	5	
Minimu	m Spacing, smin (in)	5-1/4	3-3/4	6	7-1/4	5	7-1/8	11	4-1/4	9	6	
	3-3/4	-	0.87	-	-	-	-	-	-	-	-	
	4	-	0.88	-	-	-	-	-	-	-	-	
	4-1/4	-	0.89	-	-	-	-	-	0.78	-	-	
	4-1/2	-	0.90	-	-	-	-	-	0.79	-	-	
	5	-	0.92	-	-	0.82	-	-	0.80	-	-	
	5-1/2	1.00	0.94	-	-	0.84	-	-	0.81	-	-	
	6	1.00	0.96	1.00	-	0.85	-	-	0.82	-	0.82	
	6-1/2	1.00	0.98	1.00	-	0.87	-	-	0.83	-	0.83	
	7	1.00	1.00	1.00	-	0.88	-	-	0.84	-	0.84	
es)	7-1/2	1.00	1.00	1.00	1.00	0.89	1.00	-	0.85	-	0.85	
Spacing Distance (inches)	8	1.00	1.00	1.00	1.00	0.91	1.00	-	0.87	-	0.86	
()) 90	8-1/2	1.00	1.00	1.00	1.00	0.92	1.00	-	0.88	-	0.87	
stan	9	1.00	1.00	1.00	1.00	0.94	1.00	-	0.89	0.96	0.88	
j Dis	9-1/2	1.00	1.00	1.00	1.00	0.95	1.00	-	0.90	0.98	0.89	
acini	10	1.00	1.00	1.00	1.00	0.96	1.00	-	0.91	1.00	0.90	
Spie	10-1/2	1.00	1.00	1.00	1.00	0.98	1.00	-	0.92	1.00	0.91	
	11	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.93	1.00	0.92	
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.93	
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	0.94	
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.95	
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	0.96	
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.97	
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

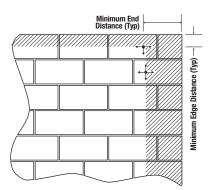
Spacing Distance Shear ($F_{\nu s}$) Adjustment Factors for Normal-Weight Concrete

Edge Distance Shear (F_{VC}) Adjustment Factors for Normal-Weight Concrete

Edge Distance - Shear (Fvc)												
0	Diameter, d (in)	3/8	3/8	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	
Minimu	m Embedment, h, (in)	1-3/4	2-3/8	2	2-1/2	3-3/4	2-3/8	3-3/8	4-5/8	3-3/8	5	
Minimum	Edge Distance, cmin (in)	5	6-1/2	6	8-1/2	8	7-1/8	6	10	5	12	
	5	0.95	-	-	-	-	-	-	-	0.49	-	
	5-1/2	1.00	-	-	-	-	-	-	-	0.54	-	
	6	1.00	-	1.00	-	-	-	0.59	-	0.59	-	
	6-1/2	1.00	0.91	1.00	-	-	-	0.64	-	0.64	-	
	7	1.00	0.98	1.00	-	-	-	0.69	-	0.69	-	
	7-1/2	1.00	1.00	1.00	-	-	1.00	0.74	-	0.74	-	
	8	1.00	1.00	1.00	-	0.71	1.00	0.79	-	0.79	-	
	8-1/2	1.00	1.00	1.00	1.00	0.76	1.00	0.84	-	0.84	-	
les)	9	1.00	1.00	1.00	1.00	0.80	1.00	0.89	-	0.89	-	
Edge Distance (inches)	9-1/2	1.00	1.00	1.00	1.00	0.84	1.00	0.94	-	0.94	-	
) eo	10	1.00	1.00	1.00	1.00	0.89	1.00	0.99	0.72	0.99	-	
stan	10-1/2	1.00	1.00	1.00	1.00	0.93	1.00	1.00	0.76	1.00	-	
je Di	11	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.79	1.00	-	
Edg	11-1/4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.81	1.00	-	
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83	1.00	-	
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.86	1.00	0.80	
	12-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	0.83	
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	0.87	
	13-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.90	
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93	
	14-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

1-800-4 **DEWALT**

MASONRY PERFORMANCE DATA


Ultimate and Allowable Load Capacities for Power-Stud HD5 in Grout-filled Concrete Masonry^{1,2,3}

A	Minimum		Minimum	Minimum	Ultimate	e Loads	Allowab	le Loads
Anchor Diameter d in.	Embed. h _v in. (mm)	Nominal Drill Bit Diameter in.	Edge Distance in. (mm)	End Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
3/8	1-1/2 (38.1)	3/8 ANSI	4 (102)	4 (102)	1,185 (5.3)	1,340 (6.0)	235 (1.0)	270 (1.2)
1/0	1/2 ² (50.8)	1/2	4 (102)	4 (102)	1,670 (7.4)	2,110 (9.4)	335 (1.5)	420 (1.9)
1/2		ANSI	12 (305)	12 (305)	1,860 (8.3)	2,560 (11.4)	370 (1.6)	510 (2.3)
E /0	2-3/8	5/8	4 (102)	4 (102)	2,155 (9.6)	2,110 (9.4)	430 (1.9)	420 (1.9)
5/8	(60.3)	ANSI	12 (305)	12 (305)	2,850 (12.7)	5,225 (23.2)	570 (2.5)	1,045 (4.6)
3/4	3-3/8	3/4	12 (305)	12 (305)	5,660 (25.2)	8,115 (36.1)	1,130 (5.0)	1,625 (7.2)
3/4	(85.7)	ANSI	20 (508)	20 (508)	5,660 (25.2)	9,360 (41.6)	1,130 (5.0)	1,870 (8.3)

1. Tabulated load values are for anchors installed in minimum 6-inch wide, Grade N, Type II, lightweight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate compressive strength at the time of installation (*t*^m ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

3. The tabulated values are for anchors installed at a minimum spacing of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing. Anchors with 3/4-inch diameter are limited to one anchor per cell.

ORDERING INFORMATION

Power-Stud HD5 (Carbon Steel Body and Stainless Steel Expansion Clip)

		Thread	Davi	Ocutor	1111/100		Suggested Al	ISI Carbide Dr	ill Bit Cat. No.	
Cat. No.	Anchor Size	Thread Length	Box Qty.	Carton Qty.	Wt/100 (lbs.)	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max
7713HD5	3/8" х 3"	1-1/2"	50	300	10	DW5527	DW5427	-	-	-
7715HD5	3/8" x 3-3/4"	2-3/8"	50	300	13	DW5527	DW5427	-	-	-
7716HD5	3/8" x 5"	3-1/2"	50	300	15	DW55300	DW5429	-	-	-
7717HD5	3/8" х 7"	5-1/2"	50	200	21	DW55300	DW5429	-	-	-
7720HD5	1/2" x 2-3/4"	1"	50	200	21	DW5537	DW5437	DW5803	DWA54012	-
7722HD5	1/2" x 3-3/4"	2"	50	200	19	DW5537	DW5437	DW5803	DWA54012	-
7723HD5	1/2" x 4-1/2"	2-3/4"	50	200	23	DW5539	DW5438	DW5803	DWA54012	-
7724HD5	1/2" x 5-1/2"	3-3/4"	50	150	27	DW5539	DW5438	DW5803	DWA54012	-
7726HD5	1/2" x 7"	5-1/4"	25	100	30	DW5539	DW5438	DW5803	DWA54012	-
7730HD5	5/8" x 3-1/2"	1-1/2"	25	100	44	-	DW5446	DW5806	DWA54058	DWA58058
7733HD5	5/8" x 5"	3"	25	100	43	-	DW5446	DW5806	DWA54058	DWA58058
7734HD5	5/8" x 6"	4"	25	75	47	-	DW5446	DW5806	DWA54058	DWA58058
7738HD5	5/8" x 8-1/2"	6-1/2"	25	50	60	-	DW5447	DW5809	DWA54058	DWA58058
7741HD5	3/4" x 4-3/4"	2-1/4"	20	60	68	-	DW5453	DW5810	DWA54034	DWA58034
7742HD5	3/4" x 5-1/2"	3"	20	60	76	-	DW5453	DW5810	DWA54034	DWA58034
7746HD5	3/4" x 7"	4-1/2"	20	60	92	-	DW5455	DW5810	DWA54034	DWA58034
7748HD5	3/4" x 8-1/2"	6"	10	40	107	-	DW5455	DW5812	DWA54034	DWA58034

The published size includes the diameter and the overall length of the anchor.

All anchors are packaged with nuts and washers.

A manual hand pump is available (Cat. No. 08280).

Hollow drill bits must be used with a dust extraction vacuum (Cat. No. DW012).

NCHORS

NICAL

 GENERAL INFORMATION

Stainless Steel Wedge Expansion Anchor

POWER-STUD®

PRODUCT DESCRIPTION

GENERAL APPLICATIONS AND US

• Sills and Support Ledgers

· Food and Beverage Facilities

FEATURE AND BENEFITS

• Lighting Standards and Base Plates

· Retrofit Projects and Machinery Anchorage

• Water Treatment Plants and Marine Applications

+ Fully threaded, medium duty all-purpose anchor

+ Clip design prevents spinning during installation

+ Chamfered impact section prevents damage to threads

+ Length ID stamped on each threaded anchor

Stainless Steel Wedge Expansion Anchor **POWER-STUD**®

- + Nominal drill bit diameter same as anchor diameter **APPROVALS AND LISTINGS**
- Tested in accordance with ASTM E488
- Underwriters Laboratory (UL Listed) File No. EX1289 (see listing)

+ Anchors can be installed through the fixture for hole spotting not required

 Federal GSA Specification Meets the descriptive and proof load requirements of CID A-A-1923A, Type 4

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Expansion anchors shall be Power-Stud as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

The Power-Stud anchor, is a fully threaded, torque-controlled, wedge expansion anchor. It is available in a threaded version suitable for applications in solid concrete and grout-filled concrete masonry.

The threaded version is produced in Type 304 and Type 316 stainless steel.

SECTION CONTENTS

General Information	.206
Installation Specifications	.207
Installation Procedure	.207
Material Specifications	.207
Performance Data	.208
Design Criteria	
(Allowable Stress Design)	.211
Ordering Information	.215

THREADED POWER-STUD ASSEMBLY

HEAD STYLES

Threaded Stud

ANCHOR MATERIALS

- Type 304 Stainless Steel
- Type 316 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

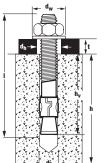
• 1/4" diameter through 1" diameter

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Structural Lightweight Concrete
- Grouted Concrete Masonry (CMU)

INSTALLATION SPECIFICATIONS

Type 304 and Type 316 Stainless Steel Power-Stud

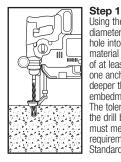

Dimension				Anchor Diameter,	d					
Dimension	1/4"	3/8"	1/2"	5/8"	3/4"	7/8"	1"			
ANSI Drill Bit Size, dbit (in.)	1/4	3/8	1/2	5/8	3/4	7/8	1			
Fixture Clearance Hole, dh (in.)	5/16	7/16	9/16	11/16	13/16	15/16	1-1/8			
Thread Size (UNC)	1/4-20	3/8-16	1/2-13	5/8-11	3/4 -10	7/8-9	1-8			
Nut Height (in.)	7/32	21/64	7/16	35/64	41/64	3/4	55/64			
Washer O.D. (304 SS), dw (in.)	5/8	13/16	1-1/16	1-3/4	2	2-1/4	2-1/2			
Washer O.D. (316 SS), dw (in.)	5/8	7/8	1-1/4	1-1/2	1-3/4	2	2			
Wrench Size (in.)	7/16	9/16	3/4	15/16	1-1/8	1-5/16	1-1/2			
Tightening Torque, Tinst (ft-lbs)	8	28	60	90	175	250	300			
Tightening torque is listed for anchors installed in normal-weight concrete. Consult performance data tables for other base materials.										

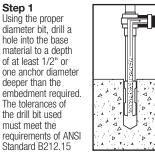
Nomenclature d

dw

h

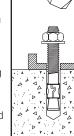
t


- Diameter of anchor = d_{bit} = Diameter of drill bit dh =
 - Diameter of fixture clearance hole


Diameter of washer = =

- Base material thickness The minimum value of h should be
- 1.5hy or 3" whichever is greater Minimum embedment depth
- $h_{v} = \\$ Overall length of anchor =
 - Fixture thickness =

INSTALLATION PROCEDURE


Threaded Stud Version

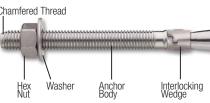
Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction. forced air) to extract loose particles created by drilling.

Step 2

۰ ۵

Step 3 Position the washer on the anchor and thread on the nut. Drive the anchor through the fixture into the anchor hole until the nut and washer are firmly seated against the fixture. Be sure the anchor is driven to the required

embedment depth.


44

, ^A

Step 4 Tighten the anchor by turning the nut 3 to 5 turns past finger tight or by applying the guide installation torque from the finger tight position.

MATERIAL SPECIFICATIONS

Anchor Component	Type 304 Stainless Steel Power-Stud	Type 316 Stainless Steel Power-Stud
Anchor Body	Type 304Cu (1/4"– 3/4", lengths up to 7")	Type 316 Stainless Steel
Anchol Body	Type 304 (7/8"– 1", lengths up to 7")	Type 510 Stainless Steel
Nut	Type 18-8 (300 Series) Stainless Steel	Type 316 Stainless Steel
Washer	Type 18-8 (300 Series) Stainless Steel	Type 316 Stainless Steel
Expansion Wedge	Type 18-8 (300 Series) Stainless Steel	Type 316 Stainless Steel
Stainless steel anchor	components are passivated.	

Length Identification (Threaded Version)

Mark	•		A	В	C	D	E	F	G	H	I
From	1/2"	1"	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"
Up to but not including	1"	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"
Mark	J	K	L	М	N	0	P	Q	R	S	т
Mark From	J 6"	K 6-1/2"	L 7"	M 7-1/2"	N 8"	0 8-1/2"	P 9"	Q 9-1/2	R 10"	S 11"	T 12"

2

1-800-4 DEWALT

PERFORMANCE DATA

Ultimate Load Capacities for Stainless Steel Power-Stud in Normal-Weight Concrete^{1,2}

Anchor	Minimum		М	inimum Concrete Cor	npressive Strength (f´c	;)	
Diameter	Embedment Depth	2,000 psi (13.8 MPa)	4,000 psi	(27.6 MPa)	6,000 psi (41.4 MPa)
d in. (mm)	Depth h√ in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	1-1/8	1,240	1,580	1,440	1,620	1,740	1,620
	(28.6)	(5.6)	(7.1)	(6.5)	(7.3)	(7.8)	(7.3)
1/4	1-1/2	1,635	1,580	2,080	1,620	2,100	1,620
(6.4)	(38.1)	(7.4)	(7.1)	(9.4)	(7.3)	(9.5)	(7.3)
	2	1,900	1,580	2,080	1,620	2,100	1,620
	(50.8)	(8.6)	(7.1)	(9.4)	(7.3)	(9.5)	(7.3)
	1-5/8	1,920	3,560	3,040	3,760	3,040	3,760
0./0	(41.3)	(8.6)	(16.0)	(13.7)	(16.9)	(13.7)	(16.9)
3/8	2 (50.8)	2,800 (12.6)	3,560 (16.0)	3,850 (17.3)	3,760	4,075 (18.3)	3,760 (16.9)
(9.5)					(16.9) 3,760		3,760
	3 (76.2)	4,100 (18.5)	3,560 (16.0)	4,200 (18.7)	(16.9)	4,200 (18.7)	(16.9)
	2-1/4	3,440	6,540	5,560	6,800	6,540	6,800
	(57.2)	(15.5)	(29.4)	(25.0)	(30.6)	(29.4)	(30.6)
1/2	3	5,100	6,540	6,540	6,800	6,540	6,800
(12.7)	(76.2)	(23.0)	(29.4)	(29.4)	(30.6)	(29.4)	(30.6)
(12.1)	4	5,700	6,540	6,540	6,800	6,540	6,800
	(101.6)	(25.7)	(29.4)	(29.4)	(30.6)	(29.4)	(30.6)
	2-3/4	6,240	9,280	8,300	11,900	9.860	11,90
5/8	(69.9)	(27.8)	(41.8)	(37.4)	(53.6)	(44.4)	(53.6)
(15.9)	4	7,125	9,280	9,000	11,900	9,000	11,90
. ,	(101.6)	(31.7)	(41.8)	(40.0)	(53.6)	(40.0)	(53.6)
	3-3/8	7,420	12,380	9,500	15,060	10,250	15,06
3/4	(85.7)	(33.0)	(55.7)	(42.3)	(67.8)	(45.6)	(67.8)
(19.1)	5	10,640	12,380	10,640	15,060	10,640	15,06
	(127.0)	(47.3)	(55.7)	(47.3)	(67.8)	(47.3)	(67.8)
	3-7/8	7,600	17,960	12,300	24,160	12,500	24,16
	(98.4)	(34.2)	(80.8)	(55.4)	(108.7)	(55.6)	(108.7
7/8	4-1/2	9,600	17,960	12,500	24,160	12,500	24,16
(22.2)	(114.3)	(43.2)	(80.8)	(55.6)	(108.7)	(55.6)	(108.7
	5-3/4	10,640	17,960	12,500	24,160	12,500	24,16
	(146.1)	(47.3)	(80.8)	(55.6)	(108.7)	(55.6)	(108.7
	4-1/2	8,740	26,420 (118.9)	13,820	31,100	17,125	31,10
4	(114.3)	(39.3)		(62.2)	(140.0)	(76.2)	(140.0
1 (25.4)	5-1/2 (139.7)	12,770 (57.5)	26,420 (118.9)	17,125 (76.2)	31,100 (140.0)	17,125 (76.2)	31,10 (140.0
(20.4)	6-1/2	16,605	26,420	17,125	31,100	17,125	31,100
	(165.1)	(74.7)	20,420 (118.9)	(76.2)	(140.0)	(76.2)	(140.0

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Anchor	Minimum	Minimum Concrete Compressive Strength (f´c)										
iameter	Embedment Depth	2,000 psi	(13.8 MPa)	4,000 psi (27.6 MPa)	6,000 psi (41.4 MPa)					
d in. (mm)	h√ in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)					
	1-1/8	310	395	360	405	435	405					
	(28.6)	(1.4)	(1.8)	(1.6)	(1.8)	(2.0)	(1.8)					
1/4	1-1/2	410	395	520	405	525	405					
(6.4)	(38.1)	(1.8)	(1.8)	(2.3)	(1.8)	(2.4)	(1.8)					
	2	475	395	520	405	525	405					
	(50.8)	(2.1)	(1.8)	(2.3)	(1.8)	(2.4)	(1.8)					
	1-5/8	480	890	760	940	760	940					
0./0	(41.3)	(2.2)	(4.0)	(3.4)	(4.2)	(3.4)	(4.2)					
3/8	2	700 (3.2)	890 (4.0)	965 (4.3)	940	1,020	940 (4.2)					
(9.5)	(50.8)	(3.2)	(4.0) 890	(4.3)	(4.2) 940	(4.6)	<u>(4.2)</u> 940					
	(76.2)	1,025 (4.6)	(4.0)	1,050 (4.7)		1,050 (4.7)	940 (4.2)					
	2-1/4	860	1,635	1,390	(4.2)	1,635	1,700					
	(57.2)	(3.9)	(7.4)	(6.3)	(7.7)	(7.4)	(7.7)					
1/2	(37.2)	1,275	1,635	1,635	1.700	1,635	1,700					
(12.7)	(76.2)	(5.7)	(7.4)	(7.3)	(7.7)	(7.3)	(7.7)					
(12.7)	4	1,425	1,635	1,635	1,700	1,635	1 700					
	(101.6)	(6.4)	(7.4)	(7.3)	(7.7)	(7.3)	1,700 (7.7)					
	2-3/4	1,560	2,320	2,075	2,975	2,215	2,975					
5/8	(69.9)	(6.9)	(10.4)	(9.3)	(13.4)	(9.9)	(13.4)					
(15.9)	4	1,780	2,320	2,250	2,975	2,250	2,975					
(10.0)	(101.6)	(7.9)	(10.4)	(10.0)	(13.4)	(10.0)	(13.4)					
	3-3/8	1,855	3,095	2,375	3.765	2.560	3,765					
3/4	(85.7)	(8.3)	(13.9)	(10.6)	(16.9)	(11.4)	(16.9)					
(19.1)	5	2,660	3,095	2,660	3,765	2,660	3,765					
	(127.0)	(11.8)	(13.9)	(11.8)	(16.9)	(11.8)	(16.9)					
	3-7/8	1,900	4,490	3,075 (13.8)	6.040	3.125	6.040					
	(98.4)	(8.6)	(20.2)	(13.8)	(27.2)	(13.9)	(27.2)					
7/8	4-1/2	2,400	4,490	3.125	6,040	3,125	6,040 (27.2)					
(22.2)	(114.3)	(10.8)	(20.2)	(13.9)	(27.2)	(13.9)	(27.2)					
	5-3/4	2,660	4,490	3,125	6,040	3,125	6,040					
	(146.1)	(11.8)	(20.2)	(13.9)	(27.2)	(13.9)	(27.2)					
	4-1/2	2,185	6,605	3.455	7,775	4,280	7,775					
	(114.3)	(9.8)	(29.7)	(15.5)	(35.0)	(19.0)	(35.0)					
1	5-1/2	3,195	6,605	4,280	7,775	4,280	7,775					
(25.4)	(139.7)	(14.4)	(29.7)	(19.0)	(35.0)	(19.0)	(35.0)					
	6-1/2	4,150	6,605	4,280	7,775	4,280	7,775					
	(165.1)	(18.7)	(29.7)	(19.0)	(35.0)	(19.0)	(35.0)					

Allowable Load Capacities for Stainless Steel Power-Stud in Normal-Weight Concrete^{1,2,3}

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

2. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

3. Linear interpolation may be used to determine allowable loads for intermediate embedments and concrete compressive strength.

MECHANICAL

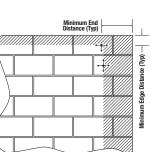
ANCHORS

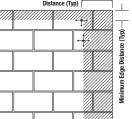
POWER-STUD® Stainless Steel Wedge Expansion Anchor

		Min.		Minimu	m Concrete Cor	npressive Streng	gth (f´c)		Shear	lbs (kN)	
Anchor Diameter	Install	Embed.			Tension	, Ibs (kN)			Snear,	ids (KN)	
d in.	Torque Tinst	Depth hv	3,000 psi	(20.7 MPa)	4,000 psi	(27.6 MPa)	5,000 psi	(34.5 MPa)	f′c ≥ 3,000 p	si (20.7 MPa)	
(mm)	ftIbs.	in. (mm)	Ultimate Load	Allowable Load	Ultimate Load	Allowable Load	Ultimate Load	Allowable Load	Ultimate Load	Allowable Load	
1/4 (6.4)	4	1-1/8 (28.6)	720 (3.2)	180 (0.8)	960 (4.3)	240 (1.1)	1,200 (5.4)	300 (1.4)	720 (3.2)	180 (0.8)	
3/8	20	1-5/8 (41.3)	1,600 (7.2)	400 (1.8)	1,940 (8.7)	485 (2.2)	2,300 (10.4)	575 (2.6)	1,840 (8.3)	460 (2.1)	
(9.5)	20	20	3 (76.2)	-	-	2,860 (12.9)	715 (3.2)	-	-	1,840 (8.3)	460 (2.1)
1/2	30	2-1/4 (57.2)	2,820 (12.7)	705 (3.2)	3,180 (14.3)	795 (3.6)	3,560 (16.0)	890 (4.0)	5,040 (22.7)	1,260 (5.7)	
(12.7)	30	4 (101.6)	-	-	4,200 (18.9)	1,050 (4.7)	-	-	5,040 (22.7)	1,260 (5.7)	
5/8	65	2-3/4 (69.9)	4,380 (19.7)	1,095 (4.9)	4,980 (22.4)	1,245 (5.6)	5,580 (25.1)	1,395 (6.3)	6,940 (31.2)	1,735 (7.8)	
(15.9)	00	5 (127.0)	-	-	6,920 (31.1)	1,730 (7.8)	-	-	6,940 (31.2)	1,735 (7.8)	
3/4	90	3-3/8 (85.7)	5,060 (22.8)	1,265 (5.7)	5,600 (25.2)	1,400 (6.3)	6,140 (27.6)	1,535 (6.9)	9,880 (44.5)	2,470 (11.1)	
(19.1)	90	5 (127.0)	-	-	9,300 (41.9)	2,325 (10.5)	-	-	9,880 (44.5)	2,470 (11.1)	

Ultimate and Allowable Load Capacities for Stainless Steel Power-Stud in Structural Lightweight Concrete^{1,2,3}

1. Tabulated load values are for anchors installed in sand-lightweight concrete. Concrete compressive strength must be at the specified minimum at the time of installation.


2. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.


3. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

Ultimate and Allowable Load Capacities for Stainless Steel Power-Stud in Grout-Filled Concrete Masonry^{1,23}

Anchor	Install	Min. Embed.	Min.	Min.	Grout-Filled Concrete Masonry f'm ≥ 1,500 psi (10.4 MPa)						
Dia. d	Torque Tinst	Depth	Edge Distance	End Distance	Ultima	te Load	Allowab	le Load			
in. (mm)	ftlbs.	h√ in. (mm)	in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)			
1/4	4	1-1/8 (28.6)	3-3/4 (95.3)	3-3/4 (95.3)	1,230 (5.5)	1,230 (5.5)	245 (1.1)	245 (1.1)			
(6.4)	4	2 (50.8)	5-1/4 (133.4)	3-3/4 (95.3)	1,670 (7.5)	1,230 (5.5)	335 (1.5)	245 (1.1)			
3/8	20	1-5/8 (41.3)	5-5/8 (142.9)	5-5/8 (142.9)	1,990 (9.0)	3,240 (14.6)	400 (1.8)	650 (2.9)			
(9.5)	20	3 (76.2)	7-7/8 (200.0)	5-5/8 (142.9)	2,200 (9.9)	3,240 (14.6)	440 (2.0)	650 (2.9)			
1/2	30	2-1/4 (57.2)	7-1/2 (190.5)	7-1/2 (190.5)	2,260 (10.2)	6,230 (28.0)	450 (2.0)	1,245 (5.6)			
(12.7)	30	4 (101.6)	10-1/2 (266.7)	7-1/2 (190.5)	2,620 (11.8)	6,230 (28.0)	525 (2.4)	1,245 (5.6)			
5/8	65	2-3/4 (69.9)	9-3/8 (238.1)	9-3/8 (238.1)	3,170 (14.3)	7,830 (35.2)	635 (2.9)	1,565 (7.0)			
(15.9)	CO	5 (127.0)	13-1/8 (333.4)	9-3/8 (238.1)	3,780 (17.0)	7,830 (35.2)	755 (3.4)	1,565 (7.0)			
3/4	90	3-3/8 (85.7)	11-1/4 (285.8)	11-1/4 (285.8)	4,085 (18.4)	9,760 (43.9)	815 (3.7)	1,950 (8.8)			
(19.1)	90	5 (127.0)	15-3/4 (400.1)	11-1/4 (285.8)	4,420 (19.9)	9,760 (43.9)	885 (4.0)	1,950 (8.8)			

Stainless Steel Wedge Expansion Anchor e

NIGA

•

1. Tabulated load values are for anchors installed in minimum 8-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation (f'm \ge 1,500 psi).

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

3. The tabulated values are for anchors installed at a minimum of 12 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 6 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

 $\left(\frac{Nu}{Nn}\right)^{\frac{5}{3}} + \left(\frac{Vu}{Vn}\right)^{\frac{5}{3}} \le 1 \qquad \text{or} \qquad \left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right)$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCE

Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{\text{cr}}=2.0h_{\text{v}}$	$F_{NS} = F_{VS} = 1.0$	$s_{min} = h_v$	$F_{NS} = F_{VS} = 0.50$
Edge Digtoppe (a)	Tension	$c_{cr} = 12d$	$F_{NC} = 1.0$	c _{min} = 5d	$F_{NC} = 0.75$
Edge Distance (c)	Shear	Ccr = 12d	Fvc = 1.0	Cmin = 5d	Fvc = 0.75

Where:

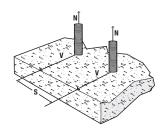
Nu = Applied Service Tension Load

 $N_n =$ Allowable Tension Load V_u = Applied Service Shear Load Vn = Allowable Shear Load

Anchor Installed in Structural Lightweight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 2.0 h_v$	$F_{NS}=F_{VS}\!=\!1.0$	$S_{min} = h_v$	$F_{NS} = F_{VS} = 0.50$
Edgo Distance (a)	Tension	c _{cr} = 12d	$F_{NC} = 1.0$	c _{min} = 5d	$F_{NC} = 0.95$
Edge Distance (c)	Shear	c _{cr} = 12d	Fvc = 1.0	Cmin = 5d	Fvc = 0.30

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.


Spacing Load Adjustment Factors for Normal-Weight and Lightweight Concrete (Continued Below)

	a. (in.)			/4				/8	int and			1/2					5/8		
	v (in.)	1-1/8	1-1/2	2	2-3/4	1-5/8	2	3	4-1/4	2-1/4	3	4	5	6	2-3/4	3-1/2	4	5	7
s	cr (in.)	2-1/4	3	4	5-1/2	3-1/4	4	6	8-1/2	4-1/2	6	8	10	12	5-1/2	7	8	10	14
S	nin (in.)	1-1/8	1-1/2	2	2-3/4	1-5/8	2	3	4-1/4	2-1/4	3	4	5	6	2-3/4	3-1/2	4	5	7
	1-1/8	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-1/2	0.67	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-5/8	0.72	0.54	-	-	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.89	0.67	0.50	-	0.62	0.50	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	1.00	0.75	0.56	-	0.69	0.56	-	-	0.50	-	-	-	-	-	-	-	-	-
	2-3/4	1.00	0.92	0.69	0.50	0.85	0.69	-	-	0.61	-	-	-	-	0.50	-	-	-	-
	3	1.00	1.00	0.75	0.55	0.92	0.75	0.50	-	0.67	0.50	-	-	-	0.55	-	-	-	-
	3-1/4	1.00	1.00	0.81	0.59	1.00	0.81	0.54	-	0.72	0.54	-	-	-	0.59	-	-	-	-
	3-1/2	1.00	1.00	0.88	0.64	1.00	0.88	0.58	-	0.78	0.58	-	-	-	0.64	0.50	-	-	-
(inches)	4	1.00	1.00	1.00	0.73	1.00	1.00	0.67	-	0.89	0.67	0.50	-	-	0.73	0.57	0.50	-	-
lin (4-1/4	1.00	1.00	1.00	0.77	1.00	1.00	0.71	0.50	0.94	0.71	0.53	-	-	0.77	0.61	0.53	-	-
s	4-1/2	1.00	1.00	1.00	0.82	1.00	1.00	0.75	0.53	1.00	0.75	0.56	-	-	0.82	0.64	0.56	-	-
jug	5	1.00	1.00	1.00	0.91	1.00	1.00	0.83	0.59	1.00	0.83	0.63	0.50	-	0.91	0.71	0.63	0.50	-
Spacing,	5-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.92	0.65	1.00	0.92	0.69	0.55	-	1.00	0.79	0.69	0.55	-
S	6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.71	1.00	1.00	0.75	0.60	0.50	1.00	0.86	0.75	0.60	-
	7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.82	1.00	1.00	0.88	0.70	0.58	1.00	1.00	0.88	0.70	0.50
	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	1.00	0.80	0.67	1.00	1.00	1.00	0.80	0.57
	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.85	0.71	1.00	1.00	1.00	0.85	0.61
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83	1.00	1.00	1.00	1.00	0.71
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	1.00	1.00	0.79
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.86
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Spacing Load Adjustment Factors for Normal-Weight and Lightweight Concrete (Continued from Above)

Di	ia. (in.)			3/4					7/8					1			1-1/4		
h	∿ (in.)	3-3/8	4	5	6	8	3-7/8	4-1/2	5-3/4	7	8	4-1/2	5-1/2	6-1/2	8	9	5-1/2	7	10
S	icr (in.)	6-3/4	8	10	12	16	7-3/4	9	11-1/2	14	16	9	11	13	16	18	11	14	20
S	nin (in.)	3-3/8	4	5	6	8	3-7/8	4-1/2	5-3/4	7	8	4-1/2	5-1/2	6-1/2	8	9	5-1/2	7	10
	3-3/8	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3-7/8	0.57	-	-	-	-	0.50	-	-	-	-	-	-	-	-	-	-	-	-
	4	0.59	0.50	-	-	-	0.52	-	-	-	-	-	-	-	-	-	-	-	-
	4-1/2	0.67	0.56	-	-	-	0.58	0.50	-	-	-	0.50	-	-	-	-	-	-	-
	5	0.74	0.63	0.50	-	-	0.65	0.56	-	-	-	0.56	-	-	-	-	-	-	-
	5-1/2	0.81	0.69	0.55	-	-	0.71	0.61	-	-	-	0.61	0.50	-	-	-	0.50	-	-
	5-3/4	0.85	0.72	0.58	-	-	0.74	0.64	0.50	-	-	0.64	0.52	-	-	-	0.52	-	-
	6	0.89	0.75	0.60	0.50	-	0.77	0.67	0.52	-	-	0.67	0.55	-	-	-	0.55	-	-
-	6-1/2	0.96	0.81	0.65	0.54	-	0.84	0.72	0.57	-	-	0.72	0.59	0.50	-	-	0.59	-	-
(inches)	6-3/4	1.00	0.84	0.68	0.56	-	0.87	0.75	0.59	-	-	0.75	0.61	0.52	-	-	0.61	-	-
inc	7	1.00	0.88	0.70	0.58	-	0.90	0.78	0.61	0.50	-	0.78	0.64	0.54	-	-	0.64	0.50	-
s	7-3/4	1.00	0.97	0.78	0.65	-	1.00	0.86	0.67	0.55	-	0.86	0.70	0.60	-	-	0.70	0.55	-
Spacing,	8	1.00	1.00	0.80	0.67	0.50	1.00	0.89	0.70	0.57	0.50	0.89	0.73	0.62	0.50	-	0.73	0.57	-
pac	9	1.00	1.00	0.90	0.75	0.56	1.00	1.00	0.78	0.64	0.56	1.00	0.82	0.69	0.56	0.50	0.82	0.64	-
s	10	1.00	1.00	1.00	0.83	0.63	1.00	1.00	0.87	0.71	0.63	1.00	0.91	0.77	0.63	0.56	0.91	0.71	0.50
	11	1.00	1.00	1.00	0.92	0.69	1.00	1.00	0.96	0.79	0.69	1.00	1.00	0.85	0.69	0.61	1.00	0.79	0.55
	11-1/2	1.00	1.00	1.00	0.96	0.72	1.00	1.00	1.00	0.82	0.72	1.00	1.00	0.88	0.72	0.64	1.00	0.82	0.58
	12	1.00	1.00	1.00	1.00	0.75	1.00	1.00	1.00	0.86	0.75	1.00	1.00	0.92	0.75	0.67	1.00	0.86	0.60
	13	1.00	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.93	0.81	1.00	1.00	1.00	0.81	0.72	1.00	0.93	0.65
	14	1.00	1.00	1.00	1.00	0.88	1.00	1.00	1.00	1.00	0.88	1.00	1.00	1.00	0.88	0.78	1.00	1.00	0.70
	16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.89	1.00	1.00	0.80
	18	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90
	20	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Notes: Critical spacing (s_{e7}) is equal to 2 embedment depths (2h₂) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 1 embedment depth (h₂) at which the anchor achieves 50% of load.

ANCHORS

ECHANICAL

e

Π

DOW

Stainless Steel Wedge Expansion Anchor

Edge Distance Load Adjustment Factors for Normal-Weight Concrete

DEWAI

ENGINEERED BY POWERS

Diameter (in.)

Cor (in.) Cmin (in.)

1-1/4

1-5/8

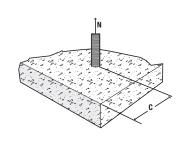
1-7/8

2

2-1/2

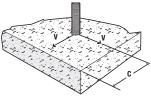
3 3-1/8 3-3/4

4 4-3/8 4-1/2 5 6


Edge Distance, c (inches)

			Edge	e Distance, To	ension (F _{NC})			
Di	ameter (in.)	1/4	3/8	1/2	5/8	3/4	7/8	1
	C ar (in.)	3	4-1/2	6	7-1/2	9	10-1/2	12
	Cmin (in.)	1-1/4	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5
	1-1/4	0.75	-	-	-	-	-	-
	1-5/8	0.80	-	-	-	-	-	-
	1-7/8	0.84	0.75	-	-	-	-	-
	2	0.86	0.76	-	-	-	-	-
	2-1/2	0.93	0.81	0.75	-	-	-	-
	3	1.00	0.86	0.79	-	-	-	-
	3-1/8	1.00	0.87	0.79	0.75	-	-	-
(se	3-3/4	1.00	0.93	0.84	0.79	0.75	-	-
(inches)	4	1.00	0.95	0.86	0.80	0.76	-	-
C	4-3/8	1.00	0.99	0.88	0.82	0.78	0.75	-
Edge Distance,	4-1/2	1.00	1.00	0.89	0.83	0.79	0.76	-
ista	5	1.00	1.00	0.93	0.86	0.81	0.78	0.75
ge D	6	1.00	1.00	1.00	0.91	0.86	0.82	0.79
E	6-1/4	1.00	1.00	1.00	0.93	0.87	0.83	0.79
	7	1.00	1.00	1.00	0.97	0.90	0.86	0.82
	7-1/2	1.00	1.00	1.00	1.00	0.93	0.88	0.84
	8	1.00	1.00	1.00	1.00	0.95	0.90	0.86
	9	1.00	1.00	1.00	1.00	1.00	0.94	0.89
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.95
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Edge Distance, Shear (Fvc)

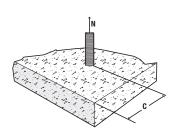

Notes: For anchors loaded in tension, the critical edge distance $\left(c_{cr}\right)$ is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance (c_min) is equal to 5 anchor diameters (5d) at which the anchor achieves 75% of load.

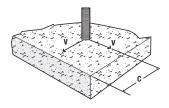
Notes: For anchors loaded in shear, the critical edge distance
(ccr) is equal to 12 anchor diameters (12d) at which the anchor
achieves 100% of load.

dge distance (c_{min}) is equal to 5 anchor diameters (5d) the anchor achieves 35% of load.

achieves 1	1	7/8	3/4	5/8	1/2	3/8	1/4
Minimum edg at which th	12	10-1/2	9	7-1/2	6	4-1/2	3
1	5	4-3/8	3-3/4	3-1/8	2-1/2	1-7/8	1-1/4
1	-	-	-	-	-	-	0.35
1	-	-	-	-	-	-	0.49
] ∡	-	-	-	-	-	0.35	0.58
	-	-	-	-	-	0.38	0.63
1	-	-	-	-	0.35	0.50	0.81
1	-	-	-	-	0.44	0.63	1.00
1	-	-	-	0.35	0.47	0.66	1.00
1	-	-	0.35	0.44	0.58	0.81	1.00
1	-	-	0.38	0.48	0.63	0.88	1.00
1	-	0.35	0.43	0.54	0.70	0.97	1.00
1	-	0.36	0.44	0.55	0.72	1.00	1.00
1	0.35	0.42	0.50	0.63	0.81	1.00	1.00
1	0.44	0.52	0.63	0.78	1.00	1.00	1.00
]	0.47	0.55	0.66	0.81	1.00	1.00	1.00
1	0.54	0.63	0.75	0.93	1.00	1.00	1.00
]	0.58	0.68	0.81	1.00	1.00	1.00	1.00
1	0.63	0.73	0.88	1.00	1.00	1.00	1.00
1	0.72	0.84	1.00	1.00	1.00	1.00	1.00
1	0.86	1.00	1.00	1.00	1.00	1.00	1.00
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00


1-800-4 DEWALT

Edge Distance Load Adjustment Factors for Lightweight Concrete


			Edge	e Distance, T	ension (Fnc)				
Dia	ameter (in.)	1/4	3/8	1/2	5/8	3/4	7/8	1	
	Cer (in.)	3	4-1/2	6	7-1/2	9	10-1/2	12	
	Cmin (in.)	1-1/4	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	
	1-1/4	0.95	-	-	-	-	-	-	
	1-5/8	0.96	-	-	-	-	-	-	
	1-7/8	0.97	0.95	-	-	-	-	-	
	2	0.97	0.95	-	-	-	-	-	
	2-1/2	0.99	0.96	0.95	-	-	-	-	
	3	1.00	0.97	0.96	-	-	-	-	
	3-1/8	1.00	0.97	0.96	0.95	-	-	-	
(<u>s</u>	3-3/4	1.00	0.99	0.97	0.96	0.95	-	-	
(inches)	4	1.00	0.99	0.97	0.96	0.95	-	-	
	4-3/8	1.00	1.00	0.98	0.96	0.96	0.95	-	
Edge Distance, c	4-1/2	1.00	1.00	0.98	0.97	0.96	0.95	-	
istal	5	1.00	1.00	0.99	0.97	0.96	0.96	0.95	
ae	6	1.00	1.00	1.00	0.98	0.97	0.96	0.96	
	6-1/4	1.00	1.00	1.00	0.99	0.97	0.97	0.96	
	7	1.00	1.00	1.00	0.99	0.98	0.97	0.96	
	7-1/2	1.00	1.00	1.00	1.00	0.99	0.98	0.97	
	8	1.00	1.00	1.00	1.00	0.99	0.98	0.97	
	9	1.00	1.00	1.00	1.00	1.00	0.99	0.98	
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.99	
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

- Notes: For anchors loaded in tension, the critical edge distance (ccr) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.
- Minimum edge distance (cmin) is equal to 5 anchor diameters (5d) at which the anchor achieves 95% of load.

Notes: For anchors loaded in shear, the critical edge distance (ccr) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance (cmin) is equal to 5 anchor diameters (5d) at which the anchor achieves 30% of load.

Stainless Steel Wedge Expansion Anchor	POWER-STUD ®	

IVOINVHOE

ANCH

ORS

	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			Edç	je Distance, S	Shear (Fvc)			
Dia	ameter (in.)	1/4	3/8	1/2	5/8	3/4	7/8	1
	Cer (in.)	3	4-1/2	6	7-1/2	9	10-1/2	12
	Cmin (in.)	1-1/4	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5
	1-1/4	0.30	-	-	-	-	-	-
	1-5/8	0.45	-	-	-	-	-	-
	1-7/8	0.55	0.30	-	-	-	-	-
	2	0.60	0.33	-	-	-	-	-
	2-1/2	0.80	0.47	0.30	-	-	-	-
	3	1.00	0.60	0.40	-	-	-	-
	3-1/8	1.00	0.63	0.43	0.30	-	-	-
(Se	3-3/4	1.00	0.80	0.55	0.40	0.30	-	-
nche	4	1.00	0.87	0.60	0.44	0.33	-	-
c (i	4-3/8	1.00	0.97	0.68	0.50	0.38	0.30	-
Edge Distance, c (inches)	4-1/2	1.00	1.00	0.70	0.52	0.40	0.31	-
istal	5	1.00	1.00	0.80	0.60	0.47	0.37	0.30
ge D	6	1.00	1.00	1.00	0.76	0.60	0.49	0.40
Ed	6-1/4	1.00	1.00	1.00	0.80	0.63	0.51	0.43
	7	1.00	1.00	1.00	0.92	0.73	0.60	0.50
	7-1/2	1.00	1.00	1.00	1.00	0.80	0.66	0.55
	8	1.00	1.00	1.00	1.00	0.87	0.71	0.60
	9	1.00	1.00	1.00	1.00	1.00	0.83	0.70
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.85
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00

ORDERING INFORMATION

DEWALT

ENGINEERED BY POWERS

Stainless Steel Power-Stud

Cat.	No.	Anchor Size	MinEmbed.	Thread-	Std. Box	Std. Carton	Wt./100
Type 304 SS	Type 316 SS	Anchor Size	MinEmbea.	Length	510. BOX	Stu. Carton	WL./ TOU
7300	7600	1/4" x 1-3/4"	1-1/8"	3/4"	100	500	3
7302	7602	1/4" x 2-1/4"	1-1/8"	1-1/4"	100	500	3-1/2
7304	7604	1/4" x 3-1/4"	1-1/8"	2-1/4"	100	500	4-3/4
7310	7610	3/8" x 2-1/4"	1-5/8"	1-1/4"	50	250	8-3/4
7312	7612	3/8" x 2-3/4"	1-5/8"	1-5/8"	50	250	9-1/2
7313	7613	3/8" x 3"	1-5/8"	1-7/8"	50	250	10-3/4
7314	7614	3/8" x 3-1/2"	1-5/8"	2-3/8"	50	250	12
7315	7615	3/8" x 3-3/4"	1-5/8"	2-5/8"	50	250	12-3/4
7316	7616	3/8" x 5"	1-5/8"	3-1/8"	50	250	15-1/2
7320	7620	1/2" x 2-3/4"	2-1/4"	1-3/8"	50	200	18
7322	7622	1/2" x 3-3/4"	2-1/4"	2-3/8"	50	200	23
7323	7623	1/2" x 4-1/2"	2-1/4"	3-1/8"	50	200	30
7324	7624	1/2" x 5-1/2"	2-1/4"	4-1/8"	50	150	34
7326	7626	1/2" x 7"	2-1/4"	5-5/8"	25	100	44
7330	7630	5/8" x 3-1/2"	2-3/4"	2"	25	100	40
7332	7632	5/8" x 4-1/2"	2-3/4"	3"	25	100	54
7333	7633	5/8" x 5"	2-3/4"	3-1/2"	25	100	57
7334	7634	5/8" x 6"	2-3/4"	4-1/2"	25	75	64
7336	7636	5/8" x 7"	2-3/4"	5-1/2"	25	75	72
7338	7638	5/8" x 8 1/2"	2-3/4"	7"	25	75	84
7340	7640	3/4" x 4 1/4"	3-3/8"	2-3/8"	20	60	70
7341	7641	3/4" x 4 3/4"	3-3/8"	2-7/8"	20	60	76
7342	7642	3/4" x 5 1/2"	3-3/8"	3-5/8"	20	60	85
7344	7644	3/4" x 6-1/4"	3-3/8"	4-3/8"	20	60	95
7346	7646	3/4" x 7"	3-3/8"	5-1/8"	20	60	105
7348	7648	3/4" x 8-1/2"	3-3/8"	6-5/8"	10	40	120
7349	-	3/4" x 10"	3-3/8"	8-1/8"	10	30	135
7352	-	7/8" x 8"	3-7/8"	4-3/4"	10	40	160
7361	-	1" x 6"	4-1/2"	2-3/8"	10	30	170
7363	-	1" x 9"	4-1/2"	5-3/8"	10	30	240
7365	-	1" x 12"	4-1/2"	8-3/8"	5	15	300

DOMESTIC WEDGE ANCHOR

Carbon Steel and Stainless Steel Wedge Expansion Anchors Anchor produced in the U.S.A., nut and washer made in Taiwan or China*

PRODUCT DESCRIPTION

The Domestic Wedge Anchor is a threaded, torque-controlled, carbon steel or stainless steel wedge expansion anchor which is designed for consistent performance in concrete. Suitable base materials are normal-weight and sand-lightweight concrete. The anchor is manufactured with carbon steel body and expansion clip or a stainless steel body and expansion clip. Nut and washer are included.

GENERAL APPLICATIONS AND USES

- Steel fixtures
- Support connections
- Equipment and railing

FEATURES AND BENEFITS

- + Anchors made in the U.S.A., nut and washer made in Taiwan or China, domestic nut and washer available upon request.
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard size fixture clearance holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Corrosion resistant stainless steel anchors available

APPROVALS AND LISTINGS

• Tested in accordance with ASTM E 488

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Expansion anchors shall be Domestic Wedge Anchor as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification										
Anchor component	Carbon Steel	Туре 303	Type 316								
Anchor body	AISI C12L14	Type 303 Stainless Steel	Type 316 Stainless Steel								
Washer	AISI C1010-1018	300 Series Stainless Steel	Type 316 Stainless Steel								
Hex Nut	Low Carbon Steel, ASTM A563, Grade A	Type 18-8	Type 316 Stainless Steel								
Expansion wedge (clip)	AISI C1010-1018 1037	Type 18-8	Type 316 Stainless Steel								
1. Plated with Zinc in accordance with ASTM B 633, SC1 Type III.											
* Domestic nut and washe	r available upon request.										

SECTION CONTENTS

General Information	.216
Installation Instructions	.217
Reference Performance Data	.218
Ordering Information	.220

DOMESTIC WEDGE ANCHOR ASSEMBLY

THREAD VERSION

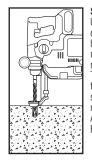
• UNC threaded stud

ANCHOR MATERIALS

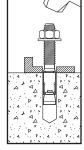
• Carbon Steel Type 303 Stainless Steel, or Type 316 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter through 1-1/4" diameter


SUITABLE BASE MATERIALS

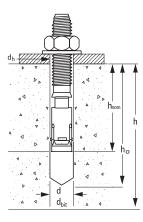
- Normal-weight Concrete
- Lightweight Concrete


INSTALLATION INSTRUCTIONS

Installation Instructions for Domestic Wedge Anchor

Step 3 Position the washer on the anchor and thread on the nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth.

Step 4 Tighten the anchor with a torque wrench by applying the required installation torque, T_{inst}.


Installation Table for Domestic Wedge Anchor

Anchor Property/	Notation	Units	Nominal Anchor Diameter (inch)										
Setting Information	Notation	Units	1/4	3/8	1/2	5/8	3/4	7/8	1	1-1/4			
Anchor outside diameter	d	in.	0.25	0.375	0.500	0.625	0.750	0.875	1.000	1.250			
Nominal drill bit diameter	Cluit	in.	1/4 ANSI	3/8 ANSI	1/2 ANSI	5/8 ANSI	3/4 ANSI	7/8 ANSI	1 ANSI	1-1/4 ANSI			
Minimum diameter of hole clearance in fixture	Сh	in.	5/16	7/16	9/16	11/16	13/16	15/16	1-1/8	1-3/8			
Minimum nominal embedment depth	hnom	in.	1-1/8	1-1/2	2-1/4	2-3/4	3-1/4	3-7/8	4-1/2	5-1/2			
Minimum hole depth	h₀	in.	1-3/8	1-7/8	2-3/4	3-1/4	3-3/4	4-3/8	5	6			
Minimum member thickness	hmin	in.	3	3	3-3/8	4-1/8	4-7/8	5-13/16	6-3/4	8-1/4			
Installation torque	Tinst	ftlbf.	5-10	25-30	50-60	75-90	150-175	200-250	250-300	400-450			
Torque wrench/socket size	-	in.	7/16	9/16	3/4	15/16	1-1/8	1-5/16	1-1/2	1-7/8			
Nut height -		in.	7/32	21/64	7/16	35/64	41/64	3/4	55/64	1-1/16			
For SI: 1 inch = 25.4 mm, 1 ft-lb	f = 1.356 N-	m.		•		-				-			

Length Identification

Mark	A	В	C	D	E	F	G	H	I	J	K	L	М	N	0	Р	Q	R	S
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2	10"	11"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2	10"	11"	12"
Length iden	ength identification mark indicates overall length of anchor.																		

Installation Detail

Nomenclature

- d = Diameter of anchor
- d_{bit} = Diameter of drill bit
- $d_h \ = \ Diameter \ of \ fixture \ clearance \ hole$
- $\begin{array}{rcl} h & = & Base \mbox{ material thickness} \\ & The \mbox{ minimum value of } h \mbox{ should} \\ be \ 1.5h_{nom} \mbox{ or } 3" \mbox{ whichever is} \end{array}$
- $\begin{array}{l} greater \\ h_{nom} = & Minimum \ embedment \ depth \end{array}$

ANCHORS

NICAL

REFERENCE PERFORMANCE DATA

Ultimate Load Capacities for Domestic Wedge Anchor in Normal-Weight Concrete^{1,2}

		Concrete Compressive Strength, f'c										
Nominal Anchor	Minimum Embedment	2,000) psi	4,00	0 psi	6,000 psi						
Diameter (in.)	Depth (in.)	Ultimate Tension Load Capacity (lbs.)	Ultimate Shear Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Ultimate Shear Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Ultimate Shear Load Capacity (lbs.)					
	1-1/8	1,170		1,770		2,775						
1/4	1-3/4	1,840	1,445	2,410	1,815	2,775	2,635					
	2-3/4	1,975		2,750		2,830						
	1-1/2	1,630		3,640		4,450						
3/8	3	3,230	4,320	5,655	5,120	5,975	6,235					
	5	4,075		6,330		6,360						
	2-1/4	4,000		6,715		9,615						
1/2	4	6,335	7,420	8,945	9,380	10,190	9,890					
	6	6,900		10,175		12,065						
	2-3/4	5,000		8,750		9,760						
5/8	5	8,855	8,265	15,590	12,930	16,800	16,375					
	7	9,380		16,710		17,735						
	3-1/4	6,640		11,315		16,230						
3/4	6	10,085	12,505	18,410	17,050	21,095	22,965					
	8	11,170		19,805		22,525						
7/8	3-7/8	8,395	18,250	16,355	20,235	16,800	23,980					
1/0	5-3/4	12,065	10,200	18,250	20,235	23,405	23,900					
	4-1/2	9,775		18,250		27,460						
1	7-1/2	11,890	23,620	26,725	27,605	34,960	28,910					
	10	15,590		30,490		37,840						
	5-1/2	17,550		22,970		32,370						
1-1/4	7	21,050	32,275	27,845	42,690	48,365	55,565					
	10	27,895		34,790		61,270						

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

DEWALT.

Allowable Load Capacities for Carbon Steel and Stainless Steel Domestic Wedge Anchor in Normal-Weight Concrete^{1,2,3}

		Concrete Compressive Strength, f'c											
Nominal Anchor	Minimum Embedment	2,000) psi	4,00	0 psi	6,000 psi							
Diameter (in.)	Depth (in.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)						
	1-1/8	295		445		695							
1/4	1-3/4	460	360	600	455	695	660						
	2-3/4	495		690		710							
	1-1/2	410		910		1,115							
3/8	3	810	1,080	1,415	1,280	1,495	1,560						
	5	1,020		1,580		1,590							
	2-1/4	1,000		1,680		2,405							
1/2	4	1,585	1,855	2,235	2,345	2,550	2,475						
	6	1,725		2,545		3,015							
	2-3/4	1,250		2,190		2,440							
5/8	5	2,215	2,065	3,900	3,235	4,200	4,095						
	7	2,345		4,180		4,435							
	3-1/4	1,660		2,830		4,060							
3/4	6	2,520	3,125	4,600	4,265	5,275	5,740						
	8	2,795		4,950		5,630							
7/0	3-7/8	2,100		4,090	F 000	4,200	F 00F						
7/8	5-3/4	3,015	4,565	4,565	5,060	5,850	5,995						
	4-1/2	2,445		4,565		6,865							
1	7-1/2	2,975	5,905	6,685	6,900	8,740	7,230						
	10 3,900 7,625		9,460										
	5-1/2	4,390		5,745		8,095							
1-1/4	7	5,265	8,070	6,960	10,675	12,095	13,890						
	10	6,975		8,700		15,320							

Allowable load capacities listed are calculated using and applied safety factor of 4.0.

3. Allowable loads for lightweight concrete may be determined by multiplying the tabulated allowable load capacities for normal weight concrete by 0.60.

ORDERING INFORMATION

*Domestic Wedge Anchor (Carbon Steel)

Cat. No.	Size	Min. Embed.	Thread Length	Std. Box	Std. Ctn.
7400USA	1/4" x 1-3/4"	1-1/8"	3/4"	100	500
7402USA	1/4" x 2-1/4"	1-1/8"	3/4"	100	500
7404USA	1/4" x 3-1/4"	1-1/8"	3/4"	100	500
7410USA	3/8" x 2-1/4"	1-1/2"	7/8"	50	250
7412USA	3/8" x 2-3/4"	1-1/2"	1-1/8"	50	250
7413USA	3/8" x 3"	1-1/2"	1-1/8"	50	250
7415USA	3/8" x 3-3/4"	1-1/2"	1-1/8"	50	250
7416USA	3/8" x 5"	1-1/2"	1-1/8"	50	250
7417USA	3/8" x 6-1/2"	1-1/2"	1-1/8"	50	200
7420USA	1/2" x 2-3/4"	2-1/4"	1-1/4"	50	200
7422USA	1/2" x 3-3/4"	2-1/4"	1-1/4"	50	200
7423USA	1/2" x 4-1/2"	2-1/4"	1-1/4"	50	200
7424USA	1/2" x 5-1/2"	2-1/4"	1-1/4"	50	150
7428USA	1/2" x 10"	2-1/4"	1-1/4"	25	100
7430USA	5/8" x 3-1/2"	2-3/4"	2"	25	100
7432USA	5/8" x 4-1/2"	2-3/4"	2"	25	100
7433USA	5/8" x 5"	2-3/4"	2"	25	100
7434USA	5/8" x 6"	2-3/4"	2"	25	75
7436USA	5/8" x 7"	2-3/4"	2"	25	75
7440USA	3/4" x 4-1/4"	3-1/4"	2"	20	60
7441USA	3/4" x 4-3/4"	3-1/4"	2"	20	60
7442USA	3/4" x 5-1/2"	3-1/4"	2"	20	60
7444USA	3/4" x 6-1/4"	3-1/4"	2"	20	60
7446USA	3/4" x 7"	3-1/4"	2"	20	60
7449USA	3/4" x 10"	3-1/4"	2"	10	30
7461USA	1" x 6"	4-1/2"	2-1/4"	10	40
7475USA	1-1/4" x 12"	5-1/2"	3-1/4"	5	15

Cat. No.	Size	Min. Embed.	Thread Length	Std. Box	Std. Ctn.
7300USA	1/4" x 1-3/4"	1-1/8"	3/4"	100	500
7304USA	1/4" x 3-1/4"	1-1/8"	3/4"	100	500
7312USA	3/8" x 2-3/4"	1-1/2"	1-1/8"	50	250
7313USA	3/8" x 3"	1-1/2"	1-1/8"	50	250
7314USA	3/8" x 3-1/2"	1-1/2"	1-1/8"	50	250
7315USA	3/8" x 3-3/4"	1-1/2"	1-1/8"	50	250
7316USA	3/8" x 5"	1-1/2"	1-1/8"	50	250
7320USA	1/2" x 2-3/4"	2-1/4"	1-1/4"	50	200
7323USA	1/2" x 4-1/2"	2-1/4"	1-1/4"	50	200
7324USA	1/2" x 5-1/2"	2-1/4"	1-1/4"	50	150
7326USA	1/2" x 7"	2-1/4"	1-1/4"	25	100
7332USA	5/8" x 4-1/2"	2-3/4"	2"	25	100
7341USA	3/4" x 4-3/4"	3-1/4"	2"	20	60
7348USA	3/4" x 8-1/2"	3-1/4"	2"	10	40
7349USA	3/4" x 10"	3-1/4"	2"	10	30

*Domestic Wedge Anchor (Type 303 Stainless Steel)

*Domestic Wedge Anchor (Type 316 Stainless Steel)

Cat. No.	Size	Min. Embed.	Thread Length	Std. Box	Std. Ctn.
7600USA	1/4" x 1-3/4"	1-1/8"	3/4"	100	500
7602USA	1/4" x 2-1/4"	1-1/8"	3/4"	100	500
7610USA	3/8" x 2-1/4"	1-1/2"	7/8"	50	250
7612USA	3/8" x 2-3/4"	1-1/2"	1-1/8"	50	250
7613USA	3/8" x 3"	1-1/2"	1-1/8"	50	250
7614USA	3/8" x 3-1/2"	1-1/2"	1-1/8"	50	250
7615USA	3/8" x 3-3/4"	1-1/2"	1-1/8"	50	250
7616USA	3/8" x 5"	1-1/2"	1-1/8"	50	250
7626USA	1/2" x 7"	2-1/4"	1-1/4"	25	100
7632USA	5/8" x 4-1/2"	2-3/4"	2"	25	100
7633USA	5/8" x 5"	2-3/4"	2"	25	100
7634USA	5/8" x 6"	2-3/4"	2"	25	75
7636USA	5/8" x 7"	2-3/4"	2"	25	75
7638USA	5/8" x 8-1/2"	2-3/4"	2"	25	75
7642USA	3/4" x 5-1/2"	3-1/4"	2"	20	60
7646USA	3/4" x 7"	3-1/4"	2"	20	60

Installation Accessories

Cat. No.	Description	Box Qty
08466	Adjustable torque wrench with 1/2" square drive (25 to 250 ftlbs.)	1
08280	Hand pump / dust blower	1

*Made to Order

The published size includes the diameter and the overall length of the carbon and stainless steel anchors.

All anchors are packaged with nuts and washers.

GENERAL INFORMATION

POWER-BOLT®+

Heavy Duty Sleeve Anchor

PRODUCT DESCRIPTION

The Power-Bolt+ anchor is a torque controlled, heavy duty sleeve style anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete and sand-lightweight concrete. The anchor is manufactured with a zinc plated carbon steel bolt, sleeve, cone and expansion clip. The Power-Bolt+ has a low profile finished hex head.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- · Safety-related attachments and tension zone applications
- Interior applications / low level corrosion environment
- Heavy duty applications

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading
- + High shear load capacity

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3260 for cracked and uncracked concrete - 1/2", 5/8" and 3/4" diameters
- Code compliant with 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ACI 355.2 and ICC-ES AC193 (including ASTM E 488) for use in structural concrete under the design provisions of ACI 318-14 Chapter 17 or ACI 318-11/08 (Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors): 1/2", 5/8" and 3/4" diameters

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchoring and 05 05 19 - Post-Installed Concrete Anchors Expansion anchors shall be Power-Bolt+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	.221
Installation Instructions	.222
Installation Specifications	.222
Reference Performance Data	.223
Allowable Stress Design (ASD)	
Design Criteria	.224
Strength Design Information	.225
Strength Design	
Performance Data	.228
Ordering Information	.229

POWER-BOLT+ ASSEMBLY

HEAD STYLES

• Finished Hex Head

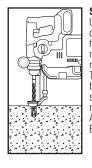
ANCHOR MATERIALS

 Zinc plated carbon steel bolt, washer, cone, sleeve, and expansion clip; assembled with a plastic compression ring and retainer nut

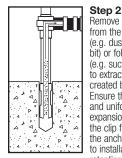
ANCHOR SIZE RANGE (TYP.)

- 1/4" diameter through 3/4" diameter
- SUITABLE BASE MATERIALS
- Normal-weight concrete
- Sand-lightweight concrete

leavy Duty Sleeve Anchor


POWER-BO

DEWALI ENGINEERED BY 20WOR



INSTALLATION INSTRUCTIONS

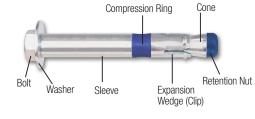

Installation Instructions for Power-Bolt+ Anchor

Step 1 Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.

Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.. Ensure the cone is snug and uniformly under the expansion wedge (clip) with the clip fingers overlapping the anchor cone, prior to installation using the retention nut (see photo below).

Step 3 Drive anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, hnom.

Step 4 Tighten the anchor with a torque wrench by applying the required installation torque, T_{inst}.


Power-Bolt+ Anchor Assembly

(Providence)

Head Marking

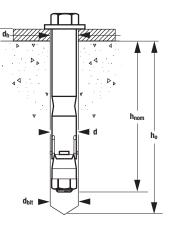
'PB+' Symbol = Power-Bolt+ Strength Design Compliant (see ordering information)

Letter Code = Length Identification Mark

Length Identification

Mark	A	В	C	D	E	F	G	H	I	J	к	L	М	N	0	Р	Q	R
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"
l enath ident	ification m	ark indicat	es overall	length of a	nchor													

Length identification mark indicates overall length of anchor


Legend

INSTALLATION SPECIFICATIONS

Power-Bolt+ Anchor Installation Specifications

Anchor Property/Setting	Notation	Units	Nominal Anchor Diameter (in.)						
Information	Notation	Units	1/4	3/8	1/2	5/8	3/4		
Anchor outside diameter	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)		
Internal Bolt Diameter (UNC)	-	in. (mm)	#8 (4)	1/4 (6.4)	3/8 (9.5)	7/16 (11.1)	9/16 (14.3)		
Nominal drill bit diameter	d _{bit}	in. (mm)	1/4 ANSI	3/8 ANSI	1/2 ANSI	5/8 ANSI	3/4 ANSI		
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (8)	7/16 (11)	9/16 (14)	11/16 (17)	13/16 (21)		
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-1/4 (32)	1-5/8 (41)	2-1/2 (64)	2-3/4 (70)	3 (76.2)		
Minimum hole depth	h₀	in. (mm)	1-1/2 (38)	1-7/8 (48)	3 (76)	3-1/4 (83)	3-5/8 (92)		
Minimum member thickness	hmin	in. (mm)	3-1/2 (89)	4-1/2 (114)	5 (127)	6-1/2 (165)	7 (178)		
Minimum edge distance	Cmin	in. (mm)	1-3/4 (44)	2-3/4 (70)	3-1/4 (83)	4-1/2 (114)	6 (152)		
Minimum spacing distance	Smin	in. (mm)	2 (51)	3-1/2 (89)	4-1/2 (114)	6 (152)	6 (152)		
Installation torque	Tinst	ftlbf. (N-m)	4 (5)	20 (27)	40 (54)	60 (81)	110 (149)		
Torque wrench/socket size	-	in.	3/8	1/2	5/8	3/4	15/16		
Bolt Head Height	-	in. (mm)	1/8 (3)	13/64 (5)	9/32 (7)	5/16 (8)	3/8 (10)		

REFERENCE PERFORMANCE DATA

Ultimate Load Capacities for Power-Bolt+ in Normal-Weight Concrete^{1,2}

Nominal	Minimum				Minim	um Concrete C	ompressive St	rength			
Anchor Diameter	Embed. Depth	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f ⁱ c = 4,000 p	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)	f ⁱ c = 8,000 p	si (55.2 MPa)
d	in. (mm)	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
in.	h nom	Ibs. (kN)	Ibs. (kN)	Ibs. (kN)	Ibs. (kN)	Ibs. (kN)	Ibs. (kN)	Ibs. (kN)	Ibs. (kN)	Ibs. (kN)	Ibs. (kN)
1/4	1-1/4	1,245	1,670	1,260	1,670	1,290	1,670	1,345	1,670	1,397	1,670
	(32)	(5.5)	(7.4)	(5.6)	(7.4)	(5.7)	(7.4)	(6.0)	(7.4)	(6.2)	(7.4)
1/4	1-3/4	1,740	1,670	1,905	1,670	1,945	1,670	1,945	1,670	1,945	1,670
	(44)	(7.7)	(7.4)	(8.5)	(7.4)	(8.7)	(7.4)	(8.7)	(7.4)	(8.7)	(7.4)
	1-5/8	1,420	2,420	1,555	2,460	1,795	2,460	2,105	2,470	2,430	2,810
	(41)	(6.3)	(10.8)	(6.9)	(10.9)	(8.0)	(10.9)	(9.4)	(11.0)	(10.8)	(12.5)
3/8	2	2,740	3,990	3,000	3,990	3,465	3,990	4,140	3,990	4,425	3,990
	(51)	(12.2)	(17.7)	(13.3)	(17.7)	(15.4)	(17.7)	(18.4)	(17.7)	(19.7)	(17.7)
	2-3/4	4,130	3,990	4,425	3,990	4,425	3,990	4,425	3,990	4,425	3,990
	(70)	(18.4)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)
	2-1/2	3,880	7,420	4,250	8,030	4,905	8,030	5,150	8,030	5,518	8,030
	(64)	(17.3)	(33.0)	(18.9)	(35.7)	(21.8)	(35.7)	(22.9)	(35.7)	(24.5)	(35.7)
1/2	3	5,190	8,030	5,685	8,030	6,560	8,030	7,985	8,030	9,065	8,030
	(76)	(23.1)	(35.7)	(25.3)	(35.7)	(29.2)	(35.7)	(35.5)	(35.7)	(40.3)	(35.7)
	3-1/4	7,120	8,030	7,660	8,030	8,645	8,030	9,400	8,030	10,835	8,030
	(83)	(31.7)	(35.7)	(34.1)	(35.7)	(38.5)	(35.7)	(41.8)	(35.7)	(48.2)	(35.7)
	2-3/4	4,745	9,975	5,195	10,930	6,000	12,620	6,845	13,155	7,200	13,155
	(70)	(21.1)	(44.4)	(23.1)	(48.6)	(26.7)	(56.1)	(30.4)	(58.5)	(32.0)	(58.5)
5/8	3-1/2	6,995	9,975	7,660	10,930	8,845	12,620	11,325	13,155	12,900	13,155
	(89)	(31.1)	(44.4)	(34.1)	(48.6)	(39.3)	(56.1)	(50.4)	(58.5)	(57.4)	(58.5)
	3-3/4	8,710	12,015	9,545	14,320	11,020	16,535	12,820	18,250	14,800	18,250
	(95)	(38.7)	(53.4)	(42.5)	(63.7)	(49.0)	(73.6)	(57.0)	(81.2)	(65.8)	(81.2)
	3	5,655	10,950	6,195	11,995	7,155	13,850	8,385	18,510	9,685	21,370
	(76)	(25.2)	(48.7)	(27.6)	(53.4)	(31.8)	(61.6)	(37.3)	(82.3)	(43.1)	(95.1)
3/4	4-3/8	10,870	18,635	11,910	20,415	13,750	23,575	14,705	23,575	16,975	23,575
	(111)	(48.4)	(82.9)	(53.0)	(90.8)	(61.2)	(104.9)	(65.4)	(104.9)	(75.5)	(104.9)
	7 (178)	18,145 (80.7)	24,290 (108.0)	19,880 (88.4)	24,290 (108.0)	22,955 (102.1)	24,290 (108.0)	28,445 (126.5)	24,290 (108.0)	29,863 (132.8)	24,290 (108.0)

1. The tabulated load values are applicable to single anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive strength must be at the specified

minimum at the time of installation.

1-800-4 DEWALT

2. Ultimate load capacities must reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

Allowable Load Capacities for Power-Bolt+ in Normal-Weight Concrete^{1,2,3}

Nominal	Minimum				Minim	um Concrete C	ompressive St	rength			
Anchor Diameter	Embed. Depth	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (27.6 MPa)	f ⁱ c = 6,000 p	si (41.4 MPa)	f'c = 8,000 p	si (55.2 MPa)
d in.	in. (mm) hnom	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	1-1/4	310	420	315	420	325	420	335	420	350	420
1/4	(32)	(1.4)	(1.9)	(1.4)	(1.9)	(1.4)	(1.9)	(1.5)	(1.9)	(1.6)	(1.9)
1/4	1-3/4	435	420	475	420	485	420	485	420	485	420
	(44)	(1.9)	(1.9)	(2.1)	(1.9)	(2.2)	(1.9)	(2.2)	(1.9)	(2.2)	(1.9)
	1-5/8	355	605	390	615	450	615	525	620	610	705
	(41)	(1.6)	(2.7)	(1.7)	(2.7)	(2.0)	(2.7)	(2.3)	(2.8)	(2.7)	(3.1)
3/8	2	685	1,000	750	1,000	865	1,000	1,035	1,000	1,105	1,000
3/0	(51)	(3.0)	(4.4)	(3.3)	(4.4)	(3.8)	(4.4)	(4.6)	(4.4)	(4.9)	(4.4)
	2-3/4	1,035	1,000	1,105	1,000	1,105	1,000	1,105	1,000	1,105	1,000
	(70)	(4.6)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)	(4.9)	(4.4)
1/2	2-1/2	970	1,855	1,065	2,010	1,225	2,010	1,290	2,010	1,380	2,010
	(64)	(4.3)	(8.3)	(4.7)	(8.9)	(5.4)	(8.9)	(5.7)	(8.9)	(6.1)	(8.9)
	3	1,300	2,010	1,420	2,010	1,640	2,010	1,995	2,010	2,265	2,010
1/2	(76)	(5.8)	(8.9)	(6.3)	(8.9)	(7.3)	(8.9)	(8.9)	(8.9)	(10.1)	(8.9)
	3-1/4	1,780	2,010	1,915	2,010	2,160	2,010	2,350	2,010	2,710	2,010
	(83)	(7.9)	(8.9)	(8.5)	(8.9)	(9.6)	(8.9)	(10.5)	(8.9)	(12.1)	(8.9)
	2-3/4	1,185	2,495	1,300	2,735	1,500	3,155	1,710	3,290	1,800	3,290
	(70)	(5.3)	(11.1)	(5.8)	(12.2)	(6.7)	(14.0)	(7.6)	(14.6)	(8.0)	(14.6)
5/8	3-1/2	1,750	2,495	1,915	2,735	2,210	3,155	2,830	3,290	3,225	3,290
J/0	(89)	(7.8)	(11.1)	(8.5)	(12.2)	(9.8)	(14.0)	(12.6)	(14.6)	(14.3)	(14.6)
	3-3/4	2,180	3,005	2,385	3,580	2,755	4,135	3,205	4,565	3,700	4,565
	(95)	(9.7)	(13.4)	(10.6)	(15.9)	(12.3)	(18.4)	(14.3)	(20.3)	(16.5)	(20.3)
	3	1,415	2,740	1,550	3,000	1,790	3,465	2,095	4,630	2,420	5,345
	(76)	(6.3)	(12.2)	(6.9)	(13.3)	(8.0)	(15.4)	(9.3)	(20.6)	(10.8)	(23.8)
3/4	4-3/8	2,720	4,660	2,980	5,105	3,440	5,895	3,675	5,895	4,245	5,895
3/4	(111)	(12.1)	(20.7)	(13.3)	(22.7)	(15.3)	(26.2)	(16.3)	(26.2)	(18.9)	(26.2)
	7	4,535	6,075	4,970	6,075	5,740	6,075	7,110	6,075	7,465	6,075
	(178)	(20.2)	(27.0)	(22.1)	(27.0)	(25.5)	(27.0)	(31.6)	(27.0)	(33.2)	(27.0)

deration of safety factors of 10 or higher may be nec safety or overhead.

2. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

3. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

 \leq

ECHANICAL

ALLOWABLE STRESS	DESIGN	(ASD)	DESIGN	CRITERIA

Spacing Redu Diameter (in)		1/4	3/8	1/2	5/8	3/4
Nominal Embedme	nt hnorn (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Spacing	inimum Spacing smin (in)		3-1/2	4-1/2	6	5
	2	0.78	-	-	-	-
	2-1/2	0.82	-	-	-	-
	3	0.87	-	-	-	-
	3-1/2	0.91	0.80	-	-	-
	4	0.96	0.83	-	-	-
	4-1/2	1.00	0.86	0.83	-	-
ches	5	1.00	0.89	0.85	-	0.77
Spacing Distance (inches)	5-1/2	1.00	0.92	0.88	-	0.79
Buce	6	1.00	0.95	0.91	0.85	0.81
Dist	6-1/2	1.00	0.98	0.93	0.87	0.83
- Bui	7	1.00	1.00	0.96	0.90	0.85
pac	7-1/2	1.00	1.00	0.98	0.92	0.87
0	8	1.00	1.00	1.00	0.95	0.89
	8-1/2	1.00	1.00	1.00	0.97	0.92
	9	1.00	1.00	1.00	1.00	0.94
	9-1/2	1.00	1.00	1.00	1.00	0.96
	10	1.00	1.00	1.00	1.00	0.98
	10-1/2	1.00	1.00	1.00	1.00	1.00

	1/4	3/8	1/2	5/8	3/4
nt h _{nom} (in)	1-1/4	2	2-1/2	2-3/4	3
1Ce Cmin (in)	1-3/4	2-3/4	3-1/4	4-1/2	6
1-3/4	0.39	-	-	-	-
2	0.44	-	-	-	-
2-1/2	0.56	-	-	-	-
	2	It hnom (in) 1-1/4 nce cnin (in) 1-3/4 1-3/4 0.39 2 0.44	It hrom (in) 1-1/4 2 Ince cmn (in) 1-3/4 2-3/4 1-3/4 0.39 - 2 0.44 -	It hoom (in) 1-1/4 2 2-1/2 Ince cmin (in) 1-3/4 2-3/4 3-1/4 1-3/4 0.39 - - 2 0.44 - -	It hoom (in) 1-1/4 2 2-1/2 2-3/4 Ince cmin (in) 1-3/4 2-3/4 3-1/4 4-1/2 1-3/4 0.39 - - - 2 0.44 - - -

0.67

0.72

0.78

0.89

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.46

0.50

0.54

0.62

0.69

0.77

0.85

0.92

1.00

1.00

1.00

1.00

0.41

0.44

0.50

0.56

0.63

0.69

0.75

0.81

0.88

0.94

1.00

-

-

-

0.75

0.83

0.92

1.00

1.00

1.00

1.00

1.00

Spacing Reduction Factors - Shear (Fvs)

spacing neur			onoan	- 10		
Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nominal Embedme	ent hnom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Spacin	g Smin (in)	2	3-1/2	4-1/2	6	5
	2	0.86	-	-	-	-
	2-1/2	0.89	-	-	-	-
	3	0.92	-	-	-	-
	3-1/2	0.94	0.88	-	-	-
	4	0.97	0.90	-	-	-
	4-1/2	1.00	0.91	0.89	-	-
hes	5	1.00	0.93	0.91	-	0.84
Spacing Distance (inches)	5-1/2	1.00	0.95	0.93	-	0.86
ance	6	1.00	0.97	0.94	0.89	0.87
Dist	6-1/2	1.00	0.99	0.96	0.91	0.88
- Bui	7	1.00	1.00	0.97	0.93	0.90
pac	7-1/2	1.00	1.00	0.99	0.94	0.91
0,	8	1.00	1.00	1.00	0.96	0.93
	8-1/2	1.00	1.00	1.00	0.98	0.94
	9	1.00	1.00	1.00	1.00	0.96
	9-1/2	1.00	1.00	1.00	1.00	0.97
	10	1.00	1.00	1.00	1.00	0.99
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors - Shear (Fvc)

Euge Distalice				<u>,</u>		
Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nominal Embedme	ent hnom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Edge Dista	nce cmin (in)	1-3/4	2-3/4	3-1/4	4-1/2	6
	1-3/4	0.39	-	-	-	-
	2	0.44	-	-	-	-
	2-1/2	0.56	-	-	-	-
	3	0.67	0.44	-	-	-
	3-1/4	0.72	0.48	0.41	-	-
	3-1/2	0.78	0.52	0.44	-	-
	4	0.89	0.59	0.51	-	-
(se)	4-1/2	1.00	0.67	0.57	0.50	-
Edge Distance (inches)	5	1.00	0.74	0.63	0.56	-
) ออ	5-1/2	1.00	0.81	0.70	0.61	-
stan	6	1.00	0.89	0.76	0.67	0.57
je Di	6-1/2	1.00	0.96	0.83	0.72	0.62
Edg	7	1.00	1.00	0.89	0.78	0.67
	7-1/2	1.00	1.00	0.95	0.83	0.71
	8	1.00	1.00	1.00	0.89	0.76
	8-1/2	1.00	1.00	1.00	0.94	0.81
	9	1.00	1.00	1.00	1.00	0.86
	9-1/2	1.00	1.00	1.00	1.00	0.90
	10	1.00	1.00	1.00	1.00	0.95
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors - Tension (FNC)Diameter (in)1/43/81/25/8

3

3-1/4

3-1/2

4

4-1/2

5

5-1/2

6

6-1/2

7 7-1/2

8

Edge Distance (inches)

DEWALT
ENGINEERED BY POWERS

(RJ)

-

-

-

-

-

-

_

0.75

0.81 0.88

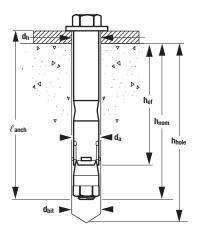
0.94

1.00

STRENGTH DESIGN INFORMATION

C

Anchor Property/Setting Information	Notation	Units	Norminal Anchor Diameter (in.)							
Anchor Property/Setting information	Notation	Units	1/2	5/8	3	/4				
Anchor outside diameter	da	in. (mm)	0.500 (12.7)	0.625 (15.9)		750 9.1)				
Internal bolt diameter (UNC)	-	in. (mm)	3/8 (9.5)	7/16 (11.1)		'16 4.3)				
Minimum diameter of hole clearance in fixture	dh	in. (mm)	9/16 (14.3)	11/16 (17.5)		/16 1.6)				
Nominal drill bit diameter	Ċbit	in.	1/2 ANSI	5/8 ANSI		/4 NSI				
Minimum nominal embedment depth	hnom	in. (mm)	3-1/4 (83)	3-3/4 (95)		3/8 11)				
Effective embedment	h _{ef}	in. (mm)	2-5/8 (67)	3 (76)	3-1/2 (89)					
Minimum hole depth	h _{hole}	in. (mm)	3-3/4 (95)	4-1/4 (108)	5 (127)					
Minimum member thickness	h _{min}	in. (mm)	5 (127)	6-1/2 (165)		7 78)				
Minimum overall anchor length ²	lanch	in. (mm)	3-1/2 (89)	4 (102)		1/4 33)				
Minimum edge distance	Cmin	in. (mm)	3-1/4 (83)	4-1/2 (114)	6 (152)	8 (203)				
Minimum spacing distance	Smin	in. (mm)	4-1/2 (114)	6 (152)	6 (152)	5 (127)				
Critical edge distance	Cac	in. (mm)	8 (203)	6 (152)		8 03)				
Installation torque	T _{inst}	ftlbf. (N-m)	40 (54)	60 (81)	110 (149)					
Bolt Head Height	-	in. (mm)	9/32 (7.1)	5/16 (7.9)		/8 .6)				
Torque wrench/socket size	-	in.	5/8	3/4	15	/16				


For SI:1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The listed minimum overall anchor length is based on anchor sizes available at the time of publication compared with the requirements for the minimum nominal embedment depth and

fixture attachment.

Power-Bolt+ Anchor Detail

Tension Design information for Power-Bolt+ Anchor in Concrete

MECHANICAL ANCHORS

POWER-BOLT®+ Heavy Duty Sleeve Anchor

Design Characteristic	Notation	Units		Nominal Anchor Diameter		
Design Characteristic	Notation	Units	1/2	5/8	3/4	
Anchor category	1,2 or 3	-	1	1	1	
Nominal embedment depth	hnom	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)	
	STEEL ST	RENGTH IN T	ENSION ⁴			
Minimum specified yield strength	fy	ksi (N/mm²)	130 (896)	130 (896)	130 (896)	
Minimum specified ultimate tensile strength®	futa	ksi (N/mm²)	150 (1,034)	150 (1,034)	150 (1,034)	
Effective tensile stress area (threads)	Ase, N	in² (mm²)	0.0775 (50)	0.1063 (68.6)	0.1820 (117.4)	
Steel strength in tension	N _{sa}	lb (kN)	9,685 (43.1)	13,285 (59.1)	27,300 (121.4)	
Reduction factor for steel strength ³	ϕ	-	0.	.75	0.65	
CO	NCRETE BREA	KOUT STREN	GTH IN TENSION ⁷			
Effective embedment	h _{ef}	in. (mm)	2.625 (67)	3.000 (76)	3.500 (89)	
Effectiveness factor for uncracked concrete	Kucr	-	27 (11.3)	27 (11.3)	24 (10.0)	
Effectiveness factor for cracked concrete	Kcr	-	17 (7.1)	17 (7.1)	17 (7.1)	
Modification factor for cracked and uncracked concrete ⁵	$\psi_{ ext{c,N}}$	-	1.0	1.0	1.0	
Critical edge distance (uncracked concrete)	Cac	in. (mm)	8 (203)	6 (152)	8 (203)	
Reduction factor for concrete breakout strength ⁴	ϕ	-		0.65 (Condition B)		
PULLOUT ST	RENGTH IN TE	NSION (NON-	SEISMIC APPLICATIONS) ⁷			
Characteristic pullout strength, uncracked concrete (2,500 psi)	N _{p,uncr}	lb (kN)	Not Applicable6	Not Applicable6	Not Applica	
Characteristic nulleut atraneth, analysis concrete (0,500, noi)	N	lb	Net Appliechief	Not Applicable	Net Applied	

	i vp,uncr	(kN)	Νοι Αμμισαρίο	Νοι Αμμισαρίο	Νοι Αμμισαρίο	
Characteristic pullout strength, cracked concrete (2,500 psi)	N _{p,cr}	lb (kN)	Not Applicable6	Not Applicable6	Not Applicable6	
Reduction factor for pullout strength	ϕ	-		0.65 (Condition B)		
PULLOUT S	TRENGTH IN 1	ENSION FOR	SEISMIC APPLICATIONS ⁷			
Characteristic pullout strength, seismic (2,500 psi)	N _{p,eq}	Ip,eq Ib Not Applicable ⁶ Not Applicable ⁶ Not Applicable		Not Applicable6		
Reduction factor for pullout strength	φ	-	0.65 (Condition B)			

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with the manufacturer's published installation instructions.

3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3. The anchors are ductile steel elements as defined in ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, except for the 3/4-inch-diameter, which is considered a brittle steel element for the purposes of design.

4. The tabulated value of ϕ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition A are satisfied, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.3. Appendix C are used, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.3.

5. For all design cases use $\Psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (ker) or uncracked concrete (kuner) must be used.

6. Pullout strength does not control design.

7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of $\sqrt{f'c'}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

8. In accordance with ACI 318-14 17.4.1.2 and Eq. 17.4.1.2 or ACI 318-11 D.5.1.2 and Eq. D-2, as applicable, the nominal steel strength in tension is calculated using a limited value of fun of 125 ksi.

Mean Axial Stiffness Values, β , for Power-Bolt+ Anchors in Normal-Weight Concrete

Concrete State	Units		Nominal Anchor Diameter	
Goncrete State	Units	1/2 inch	5/8 inch	3/4 inch
Uncracked concrete	10 ³ lbf/in. (kN/mm)	366 (63)	871 (150)	256 (44)
Cracked concrete	10 ³ lbf/in. (kN/mm)	64 (11)	94 (16)	27 (5)

1. Mean values shown; actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

Shear Design information for Power-Bolt+ Anchor in Concrete (For use with load combinations taken from ACI 318-14, Section 5.3 or ACI 318-11. Section 9.2)¹²

			Nominal Anchor Diameter					
Design Characteristic	Notation	Units	1/2	5/8	3/4			
Anchor category	1, 2 or 3	-	1	1	1			
Nominal embedment depth	hnom	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)			
	STEE	L STRENGTH	IN SHEAR					
Minimum specified yield strength	fy	ksi (N/mm²)	130 (896)	130 (896)	130 (896)			
Minimum specified ultimate strength	f _{uta}	ksi (N/mm²)	150 (1,034)	150 (1,034)	150 (1,034)			
Effective shear stress area	A _{se,v}	in² (mm²)	0.1069 (69.0)	0.1452 (93.7)	0.2410 (153)			
Steel strength in shear ⁶	V _{sa}	lb (kN)	6,005 (26.7)	13,415 (59.7)	14,820 (65.9)			
Reduction factor for steel strength ³	ϕ	-	().65	0.60			
	CONCRETE B	REAKOUT STR	ENGTH IN SHEAR ⁷					
Load bearing length of anchor	le	in (mm)	1.00 (25)	1.25 (32)	1.50 (51)			
Nominal anchor diameter	da	in (mm)	0.500 (12.7)	0.625 (15.9)	0.750 (19.05)			
Reduction factor for concrete breakout ⁴	φ	-		0.70 (Condition B)				
	PRYO	UT STRENGTH	IN SHEAR ⁷					
Coefficient for pryout strength (1.0 for $h_{ef} < 2.5$ in., 2.0 for $h_{ef} \ge 2.5$ in.)	k _{cp}	-	2.0	2.0	2.0			
Effective embedment	h _{ef}	in (mm)	2.625 (675)	3.000 (76)	3.500 (89)			
Reduction factor for pryout strength ⁵	φ	-		0.70 (Condition B)				
STE	EL STRENGTH II	N SHEAR FOR	SEISMIC APPLICATIONS					
Steel strength in shear, seismic ⁸	Vsa, eq	lb (kN)	4,565 (20.3)	7,425 (33.0)	14,820 (65.9)			
Reduction factor for steel strength in shear for seismic ³	φ	-	().65	0.60			

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with the manufacturer's published installation instructions.

3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3. The anchors are ductile steel elements as defined in ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, except for the 3/4-inch-diameter which is considered a brittle steel element for the purposes of design.

4. The tabulated value of ϕ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 9.2, as applicable, are used and the requirements of ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition A are satisfied, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.4.

5. The tabulated value of for pryout strength applies if the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for pryout strength must be determined in accordance with ACI 318-11 D.4.4, for condition B.

6. Tabulated values for steel strength in shear must be used for design. The tabulated values for the shear stress area are listed conservatively and the results for the steel strength will be more conservative when using ACI 318-14 Eq. 17.5.1.2b or ACI 318-11 Eq. D-29, as applicable.

7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of $\sqrt{f'c'}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318.

8. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6.

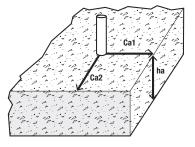
STRENGTH DESIGN PERFORMANCE DATA

Factored design strength Φ Nn and Φ Vn Calculated in accordance with ACI 318-14 Chapter 17 Tested to the International Building Code

Tension and Shear Design Strengths for Power-Bolt+ in Cracked Concrete^{1,2,3,4,5,6}

			Minimum Concrete Compressive Strength											
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,000 psi		f'c = 6,	000 psi	f'c = 8,000 psi				
Diameter (in.)	hnom (in.)	Φ Nn Tension (lbs.)	ØVn Shear (lbs.)	Φ Nn Tension (lbs.)	ØVn Shear (lbs.)	Φ Nn Tension (lbs.)	∕∕DVn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	Φ Vn Shear (lbs.)			
1/2	3-1/4	2,350	2,905	2,575	3,185	2,970	3,675	3,640	3,905	4,205	3,905			
5/8	3-3/4	2,870	2,780	3,145	3,045	3,630	3,515	4,450	4,305	5,135	4,970			
3/4	4-3/8	3,620	4,210	3,965	4,615	4,575	5,330	5,605	6,525	6,470	7,535			
- Concrete	Breakout Streng	th Controls 🔲 -	Steel Strenath C	ontrols										

Tension and Shear Design Strengths for Power-Bolt+ in Uncracked Concrete^{1,2,3,4,5,6}


			Minimum Concrete Compressive Strength, f'c (psi)											
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi				
Diameter (in.)	hnom (in.)	Φ Nn Tension (lbs.)	Φ Vn Shear (lbs.)	Φ Nn Tension (lbs.)	ØVn Shear (lbs.)	Φ Nn Tension (lbs.)	ØVn Shear (lbs.)	\mathcal{D} Nn Tension (Ibs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (Ibs.)			
1/2	3-1/4	3,730	3,905	4,090	3,905	4,720	3,905	5,780	3,905	6,675	3,905			
5/8	3-3/4	4,560	3,890	4,995	4,260	5,770	4,920	7,065	6,025	8,155	6,960			
3/4	4-3/8	5,105	5,895	5,595	6,460	6,460	7,460	7,910	8,690	9,135	8,690			
🔲 - Concrete E	Breakout Stren	gth Controls 📕	- Steel Strength	Controls										

Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight 1concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

_ Ca2 is greater than or equal to 1.5 times Ca1.

2- Calculations were performed according to ACI 318-14- Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information

- 3-Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.
- Tabular values are permitted for static loads only, seismic loading is not considered with these tables. 4-
- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14- Chapter 17. 5-
- Interpolation is not permitted to be used with the tabular values. For intermediate base material 6compressive strengths please see ACI 318-14- Chapter 17. For other design conditions including seismic considerations please see ACI 318-14- Chapter 17.

ORDERING INFORMATION

Power-Bolt+ (Carbon Steel Finished Hex Head)

		Maximum	Box	Carton	Suggested ANSI Carbide Drill Bit Cat. No.								
Cat. No.	Anchor Size	Fixture Thickness	Qty.	Qty.	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max				
6902SD	1/4" X 1-3/4"	1/2"	100	600	-	-	-	-	-				
6906SD	1/4" X 3"	1-3/4"	100	600	-	-	-	-	-				
6911SD	3/8" x 1-7/8"	1/4"	50	300	DW5527	DW5427	-	-	-				
6910SD	3/8" X 2-1/4"	1/4"	50	300	DW5527	DW5427	-	-	-				
6913SD	3/8" X 3"	1"	50	300	DW5527	DW5427	-	-	-				
6914SD	3/8" X 3-1/2"	1-1/2"	50	300	DW5527	DW5427	-	-	-				
6916SD	3/8" X 4"	2"	50	300	DW5527	DW5427	-	-	-				
6930SD	1/2" x 2-3/4"	1/4"	50	200	DW5537	DW5429	DW5803	DWA54012	-				
6932SD	1/2" x 3-1/2"	1/4"	50	200	DW5537	DW5429	DW5803	DWA54012	-				
6934SD	1/2" x 4-3/4"	1-1/2"	25	150	DW5537	DW5429	DW5803	DWA54012	-				
6936SD	1/2" x 5-3/4"	2-1/2"	25	150	DW5537	DW5429	DW5803	DWA54012	-				
6940SD	5/8" x 3"	1/4"	20	120	-	DW5446	DW5806	DWA54058	DWA5405				
6942SD	5/8" x 4"	1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA54058				
6944SD	5/8" x 5"	1-1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA58058				
6945SD	5/8" x 6"	2-1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA5805				
6947SD	5/8" x 8-1/2"	4-3/4"	10	40	-	DW5447	DW5809	DWA54058	DWA5805				
6950SD	3/4" x 3-1/4"	1/4"	15	90	-	DW5453	DW5809	DWA54034	DWA54034				
6952SD	3/4" x 4-1/2"	1-1/2"	10	60	-	DW5453	DW5809	DWA54034	DWA54034				
6954SD	3/4" x 5-1/4"	7/8"	10	60	-	DW5453	DW5809	DWA54034	DWA54034				
6956SD	3/4" x 7-1/4"	2-7/8"	10	40	-	DW5453	DW5809	DWA54034	DWA5403				
6957SD	3/4" x 8-1/4"	3-7/8"	10	40	-	DW5455	DW5809	DWA54034	DWA54034				

ANCHORS

NICAL

Shaded catalog numbers denote sizes which are less than the minimum standard anchor length for strength design.

The published size includes the diameter and the length which is measured from below the washer to the end of the anchor.

A manual hand pump is available (Cat. No. 08280)

Hollow drill bits must be used with a dust extraction vacuum (Cat. No. DW012)

GENERAL INFORMATION

POWER-BOLT®

Heavy-Duty Sleeve Anchor

PRODUCT DESCRIPTION

The Power-Bolt anchor, is a heavy duty sleeve style, self-locking anchor which is vibration resistant and removable. It is available with a finished hex head or flat head with a hex key insert and can be used in concrete, block, brick, or stone.

Expansion occurs at two locations within the drilled hole. First, the cone is pulled into the large triple-tined expansion sleeve, developing a mid-level, compression force. Further turning causes the threaded bolt to advance into the threads of the expander cone, forcing its four sections outward. This action engages the base material deep in the anchor hole. The bolt and cone remain locked together which resists loosening under vibratory conditions.

The Power-Bolt is also designed to draw the fixture into full bearing against the base material through the action of its flexible compression ring. As the anchor is being tightened, the compression ring will crush if necessary to tightly secure the fixture against the face of the base material.

The internal bolt of the Power-Bolt is removable and reusable in the same anchor sleeve making it suitable for applications such as mounting machinery which may need to be removed for service and for temporary applications such as heavy duty form work.

GENERAL APPLICATIONS AND USE

 Column Base Plates and Mechanical Equipment

FEATURE AND BENEFITS

- + High load capacity
- + Two-level expansion mechanism
- + Internal high strength bolt is removable and reusable

APPROVALS AND LISTINGS

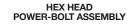
• Tested in accordance with ASTM E488

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors, and 05 05 19 - Post-Installed Concrete Anchors. Expansion anchors shall be Power-Bolt as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

+ Compression zone in sleeve clamps fixture to the base material

Dock Bumpers and Support Ledgers


Racking and Railing Attachments

+ Low profile finished head design

SECTION CONTENTS

General Information	230
Material Specifications	231
Installation Specifications	231
Performance Data	232
Design Criteria	
(Allowable Stress Design)	235
Ordering Information	238

POWER-BOLT ASSEMBLY

HEAD STYLES

- Finished Hex Head
- Flat Head

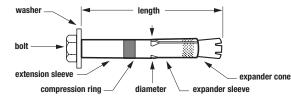
ANCHOR MATERIALS

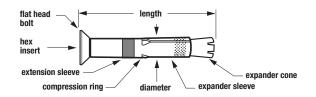
- Type 304 Stainless Steel (Hex Head)
- Zinc Plated Carbon Steel (Flat Head)

ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter through 5/8" diameter

SUITABLE BASE MATERIALS


- Normal-weight concrete
- Lightweight concrete
- Grouted Concrete Masonry (CMU)
- Hollow CMU
- Brick Masonry
- Stone


•

MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel Flat Head	Stainless Steel Hex Head
Internal Bolt	SAE Grade 5	**Type 304 SS
Washer	Carbon Steel	Type 18-8 SS
Expander Sleeve	AISI 1010	Type 304 SS
Extension Sleeve	AISI 1010	Type 304 SS
Expander Cone	AISI 12L14	Type 303 SS
Compression Ring	Nylon	Nylon
Dust Cap	Nylon	Nylon
Zinc Plating	ASTM B 633, SC1, Type III (Fe/Zn 5) – Mild Service Condition	N/A

** Manufactured with a minimum yield strength of 65,000 psi. Stainless steel anchor components are passivated. The stainless steel expander cone is zinc plated.

Stainless Steel Hex Head Power-Bolt

INSTALLATION SPECIFICATIONS

Carbon Steel Flat Head Power-Bolt (80°- 82° head)

Dimension	A	nchor Diameter,	d	Dimension	Anchor Diameter, d			
Dimension	3/8"	1/2"	5/8"	Dimension	1/4"	3/8"	1/2"	
ANSI Drill Bit Size, d _{bit} (in.)	3/8	1/2	5/8	ANSI Drill Bit Size, dbit (in.)	1/4	3/8	1/2	
Fixture Clearance Hole, dh (in.)	7/16	9/16	11/16	Fixture Clearance Hole, dh (in.)	5/16	7/16	9/16	
Internal Bolt Size (UNC)	5/16-18	3/8-16	1/2-13	Internal Bolt Size (UNC)	10-24	5/16-18	3/8-16	
Head Height (in.)	15/64	1/4	21/64	Head Height (in.)	7/64	13/64	15/64	
Head Diameter, d _{hd} (in.)	3/4	7/8	1-1/8	Washer O.D., dw (in.)	1/2	13/16	1	
Allen Wrench Size (in.)	7/32	5/16	3/8	Wrench Size (in.)	5/16	1/2	9/16	
Max Bolt Torque, T _{max} (ft-lbs)	25	45	100	Max Bolt Torque, T _{max} (ft-lbs)	3	12	25	

Installation Procedure

Length Identification

Eoligii luoliilii	oution										
Mark	•		A	В	C	D	E	F	G	н	I
From	1/2"	1"	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"
Up to but not including	1"	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"

d_{bit}

1-800-4 **DEWALT**

TVOINVHOE

ANCHORS

POWER-BOLT® Heavy-Duty Sleeve Anchor

PERFORMANCE DATA

Ultimate Load Capacities for Carbon and Stainless Steel Power-Bolt in Normal-Weight Concrete^{1,2}

	Minimum		Minimum Concrete Compressive Strength (f´c)										
Anchor Diameter	Embedment Depth	2,000 psi	(13.8 MPa)	3,000 psi	(20.7 MPa)	4,000 psi	(27.6 MPa)	6,000 psi (4	1.4 MPa)				
d in.	h _v in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)				
	1-1/4	945	1655	1105	1680	1265	1705	1330	1705				
	(31.8)	(4.2)	(7.4)	(4.9)	(7.5)	(5.6)	(7.6)	(5.9)	(7.6)				
1/4	1-3/4	1120	1655	1240	1845	1360	2030	1490	2030				
	(44.5)	(5.0)	(7.4)	(5.5)	(8.2)	(6.0)	(9.0)	(6.6)	(9.0)				
	2-1/2	1505	1655	1550	2185	1600	2710	1680	2710				
	(63.5)	(6.7)	(7.4)	(6.9)	(9.7)	(7.1)	(12.1)	(7.5)	(12.1				
	2	3,500	3,985	4,045	5,205	4,585	6,425	5,915	7,44				
	(50.8)	(15.8)	(17.9)	(18.2)	(23.4)	(20.6)	(28.9)	(26.6)	(33.5				
3/8	2-1/2	3,800	4,380	4,330	5,770	4,855	7,160	6,665	7,96				
	(63.5)	(17.1)	(19.7)	(19.5)	(26.0)	(21.8)	(32.2)	(30.0)	(35.8				
	3-1/2	4,395	4,980	5,195	6,815	5,995	8,650	7,150	8,65				
	(88.9)	(19.8)	(22.4)	(23.4)	(30.7)	(27.0)	(38.9)	(32.2)	(38.9				
	2-1/2	4,900	6,840	5,710	7,535	6,520	8,225	7,320	8,22				
	(63.5)	(22.1)	(30.8)	(25.7)	(33.9)	(29.3)	(37.0)	(32.9)	(37.0				
1/2	3-1/2	6,140	8,540	7,590	9,200	9,040	9,860	9,890	10,78				
	(88.9)	(27.6)	(38.4)	(34.2)	(41.4)	(40.7)	(44.4)	(44.5)	(48.5				
	5	7,260	10,140	8,480	11,230	9,700	12,320	10,935	12,31				
	(127.0)	(32.7)	(45.6)	(38.2)	(50.5)	(43.7)	(55.4)	(49.2)	(55.4				
5/8	2-3/4	5,360	7,970	6,535	9,970	7,705	11,970	8,490	11,97				
	(69.9)	(24.1)	(35.9)	(29.4)	(44.9)	(34.7)	(53.9)	(38.2)	(53.9				
5/0	4	6,460	10,860	8,210	12,710	9,960	14,560	13,110	15,90				
	(101.6)	(29.1)	(48.9)	(36.9)	(57.2)	(44.8)	(65.5)	(59.0)	(71.6				

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Carbon and Stainless Steel Power-Bolt in Normal-Weight Concrete^{1,2,3}

	Minimum			Minimu	m Concrete Comp	pressive Strength	ı (f´c)		
Anchor Diameter	Embedment Depth	2,000 psi	(13.8 MPa)	3,000 psi	(20.7 MPa)	4,000 psi	(27.6 MPa)	6,000 psi (41.4 MPa)
d in.	h, in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	1-1/4	235	415	275	420	315	425	335	425
	(31.8)	(1.0)	(1.8)	(1.2)	(1.9)	(1.4)	(1.9)	(1.5)	(1.9)
1/4	1-3/4	280	415	310	460	340	510	375	510
	(44.5)	(1.2)	(1.8)	(1.4)	(2.0)	(1.5)	(2.3)	(1.7)	(2.3)
	2-1/2	375	415	390	545	400	680	420	680
	(63.5)	(1.7)	(1.8)	(1.7)	(2.4)	(1.8)	(3.0)	(1.9)	(3.0)
3/8	2 (50.8)	875 (3.9)	995 (4.5)	1,010 (4.5)	1,300 (5.9)	1,145 (5.2)	1,605 (7.2)	1,480 (6.7)	1,860 (8.4)
	2-1/2 (63.5)	950 (4.3)	1,095 (4.9)	1,080 (4.9)	1,445 (6.5)	1,215 (5.5)	1,790 (8.1)	1,665 (7.5)	1,990 (9.0)
	3-1/2 (88.9)	1,100 (5.0)	1,245 (5.6)	1,300 (5.9)	1,705 (7.7)	1,500 (6.8)	2,165 (9.7)	1,790 (8.1)	2,165 (9.7)
	2-1/2	1,225	1,710	1,430	1,885	1,630	2,055	1,830	2,055
	(63.5)	(5.5)	(7.7)	(6.4)	(8.5)	(7.3)	(9.2)	(8.2)	(9.2)
1/2	3-1/2	1,535	2,135	1,900	2,300	2,260	2,465	2,470	2,695
	(88.9)	(6.9)	(9.6)	(8.6)	(10.4)	(10.2)	(11.1)	(11.1)	(12.1)
	5	1,815	2,535	2,120	2,810	2,425	3,080	2,735	3,080
	(127.0)	(8.2)	(11.4)	(9.5)	(12.6)	(10.9)	(13.9)	(12.3)	(13.9)
E /0	2-3/4	1,340	1,995	1,635	2,495	1,925	2,995	2,125	2,995
	(69.9)	(6.0)	(9.0)	(7.4)	(11.2)	(8.7)	(13.5)	(9.6)	(13.5)
5/8	4	1,615	2,715	2,055	3,180	2,490	3,640	3,275	3,975
	(101.6)	(7.3)	(12.2)	(9.2)	(14.3)	(11.2)	(16.4)	(14.7)	(17.9)

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

2. Allowable load capacities are multiplied by reduction when anchor spacing or edge distances are less than critical distances.

3. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

				Minimu	m Concrete Comp	ressive Strength ((f´c)		
Anchor	Minimum Embedment		3,000 psi ((20.7 MPa)			5,000 psi (34	4.5 MPa)	
Diameter d	Depth	Ultima	te Load	Allowable Load		Ultimat	te Load	Allowable Load	
in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	1-1/4 (31.8)	1,000 (4.5)	1,520 (6.8)	250 (1.1)	380 (1.7)	1,320 (5.9)	1,520 (6.8)	330 (1.5)	380 (1.7)
1/4	2 (50.8)	1,510 (6.8)	1,540 (6.9)	380 (1.7)	385 (1.7)	-	-	-	-
3/8	2 (50.8)	2,160 (9.7)	2,780 (12.5)	540 (2.4)	695 (3.1)	3,240 (14.6)	2,780 (12.5)	810 (3.6)	695 (3.1)
5/0	3-1/2 (88.9)	4,200 (18.9)	4,980 (22.4)	1,050 (4.7)	1,245 (5.6)	-	-	-	-
	2-1/2 (63.5)	3,680 (16.6)	4,615 (20.8)	920 (4.1)	1,155 (5.2)	4,920 (22.1)	4,615 (20.8)	1,230 (5.5)	1,155 (5.2)
1/2	5 (127.0)	5,540 (24.9)	8,730 (39.3)	1,385 (6.2)	2,185 (9.8)	-	-	-	-
5/8	2-3/4 (69.9)	3,120 (14.0)	6,840 (30.8)	780 (3.5)	1,710 (7.7)	5,240 (23.6)	6,840 (30.8)	1,310 (5.9)	1,710 (7.7)

Ultimate and Allowable Load Capacities for Carbon and Stainless Steel Power-Bolt in Lightweight Concrete^{1,2,3}

1. Tabulated load values are for anchors installed in sand-lightweight concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

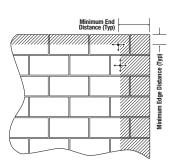
3. Linear interpolation may be used to determine ultimate and allowable loads for intermediate embedments and compressive strengths.

Ultimate and Allowable Load Capacities for Carbon and Stainless Steel Power-Bolt Installed Through Steel Deck into Lightweight Concrete^{1,2,3,4}

			Lightwe	eight Concrete ove	er minimum 20 Ga	age Metal Deck, f	c ≥ 3,000 (20.7 M	Pa)			
Anchor	Minimum Embedment		Minimum 1-1/	2" Wide Deck			Minimum 4-1/2" Wide Deck				
Diameter d	Depth hv	Ultimate Load		Allowable Load		Ultimat	te Load	Allowable	Load		
in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
1/4	1-1/4 (31.8)	720 (3.2)	2,360 (10.6)	180 (0.8)	590 (2.7)	920 (4.1)	2,360 (10.6)	230 (1.0)	590 (2.7)		
3/8	2 (50.8)	720 (3.2)	2,740 (12.3)	180 (0.8)	685 (3.1)	1,840 (8.3)	2,740 (12.3)	460 (2.1)	685 (3.1)		
1/2	2-1/2 (63.5)	1,640 (7.4)	2,740 (12.3)	410 (1.8)	685 (3.1)	2,000 (9.0)	4,400 (19.8)	500 (2.3)	1,100 (5.0)		
5/8	2-3/4 (88.9)	-	-	-	-	2,000 (9.0)	4,440 (20.0)	500 (2.3)	1,110 (5.0)		

1. Tabulated load values are for anchors installed in sand-lightweight concrete over steel deck. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

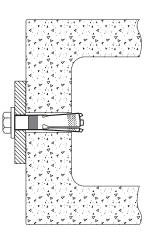

3. Tabulated load values are for anchors installed in the center of the flute. Spacing distances shall be in accordance with the spacing table for lightweight concrete.

4. Anchors are permitted to be installed in the lower or upper flute of the steel deck provided the proper installation procedures are maintained.

Ultimate and Allowable Load Capacities for Power-Bolt in Grout-Filled Concrete Masonry^{1,2,3,4}

	Minimum	Minimum	Minimum		f′m ≥ 1,500 p	si (10.4 MPa)	
Anchor Diameter	Embed. Depth	Edge	End	Ultima	te Load	Allowat	ole Load
d in.	h _v in. (mm)	Distance in. (mm)	Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	1-1/8	3-3/4	3-3/4	1,215	1,185	245	235
	(28.6)	(95.3)	(95.3)	(5.5)	(5.3)	(1.1)	(1.1)
1/4	2-1/2	5-1/4	3-3/4	1,760	1,185	350	235
	(63.5)	(133.4)	(95.3)	(7.9)	(5.3)	(1.6)	(1.1)
3/8	2	5-5/8	5-5/8	1,985	3,065	395	615
	(50.8)	(142.9)	(142.9)	(8.9)	(13.8)	(1.8)	(2.8)
3/0	3-1/2	7-7/8	5-5/8	2,120	3,065	425	615
	(88.9)	(200.0)	(142.9)	(9.5)	(13.8)	(1.9)	(2.8)
1/2	2-1/2	7-1/2	7-1/2	2,435	5,650	485	1,130
	(63.5)	(190.5)	(190.5)	(11.0)	(25.4)	(2.2)	(5.1)
1/2	4	10-1/2	7-1/2	2,690	5,650	540	1,130
	(101.6)	(266.7)	(190.5)	(12.1)	(25.4)	(2.4)	(5.1)
5/8	2-3/4	9-3/8	9-3/8	2,560	9,000	510	1,800
	(69.9)	(238.1)	(238.1)	(11.5)	(40.5)	(2.3)	(8.1)
0/0	5	13-1/8	9-3/8	2,975	9,000	595	1,800
	(127.0)	(333.4)	(238.1)	(13.4)	(40.5)	(2.7)	(8.1)

Tabulated load values are for carbon steel and stainless steel anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. 1 Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation (f'm \geq 1,500 psi).


2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

3. Linear interpolation may be used to determine ultimate and allowable loads for intermediate embedment depths.

4. The tabulated values are for anchors installed at a minimum of 12 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 6 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

Ultimate and Allowable Load Capacities for Power-Bolt in Hollow Concrete Masonry^{1,2,3,4,5}

f'm ≥ 1,500 psi (10.4 MPa) Minimum Minimum Minimum Embed. Anchor Edge End Ultimate Load Allowable Load Diameter Depth Distance Distance d h, in. in. Tension Shear Tension Shear in. in. (mm) lbs. (mm) lbs. lbs. lbs. (mm) (kN) (kN) (kN) (kN) 7/8 3-3/4 3-3/4 600 765 120 155 (22.2)(95.3) (95.3) (3.4)(0.7)(2.7)(0.5)1-1/4 3-3/4 1,055 210 8 825 165 1/4 (31.8) (95.3)(203.2)(3.7)(4.8) (0.7)(0.9)3-3/4 1.230 1 - 1/212 1.130 225 245 (38.1) (95.3) (304.8) (1.0)(5.5)(1.1)(5.1)1,360 2,150 270 430 1 - 1/412 8 (304.8) (203.2)(31.8) (6.1) (9.7) (1.2) (1.9) 3/8 1,470 2,600 1-1/2 12 12 295 520 (38.1) (304.8) (304.8) (6.6) (11.7)(1.3)(2.3)1-1/4 2,560 2,150 590 12 8 430 (31.8)(304.8)(203.2)(11.5)(9.7) (2.4)(1.9)1/2 1-1/2 12 12 2,560 3,385 510 675 (304.8) (304.8) (38.1)(11.5)(15.2)(2.3)(3.0)

Tabulated load values are for carbon steel and stainless steel anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. 1. Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation (f'm > 1,500 psi).

Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

3. Linear interpolation may be used to determine ultimate and allowable loads for intermediate embedment depths.

4. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

5. A suitable anchor length must be selected which included consideration of fixture to engage the base material at the minimum embedment depth when anchoring into hollow concrete masonry. (e.g. attachment thickness + embedment + one half inch = suitable anchor length)

Ultimate and Allowable Load Capacities for Power-Bolt in Clay Brick Masonry^{1,2,3}

Anchor	Min. Embed.					Structural Bric ´m ≥ 1,500 psi			
Dia.	Depth	Min. Edge	Min. End	Min. Spacing	Ultimate	Load	Allowable Load		
d in.	h⊭ in. (mm)	Distance	Distance	Distance	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
1/4	7/8 (22.2)	8	4	6	1,090 (4.9)	1,160 (5.2)	220 (1.0)	230 (1.0)	
1/4	1-1/2 (38.1)	(203.2)	(101.6)	(152.4)	1,455 (6.6)	1,265 (5.7)	290 (1.3)	255 (1.1)	
3/8	2 (50.8)	12	6 (152.4)	8 (203.2)	2,015 (9.1)	3,655 (16.5)	405 (1.8)	730 (3.3)	
1/2	2-1/2 (63.5)	(304.8)	8 (203.2)	10 (254.0)	3,110 (14.0)	4,585 (20.6)	620 (2.8)	915 (4.1)	
5/8	2-3/4 (69.9)	16 (406.4)	10 (254.0)	12 (304.8)	4,535 (20.4)	5,470 (24.6)	905 (4.1)	1,095 (4.9)	

Minimum End Distance (Typ)

 Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

 Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

 Spacing between anchors may be reduced to half the listed distances provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

1

$$\left(\frac{Nu}{Nn} \right) + \left(\frac{Vu}{Vn} \right) \le$$

Where: $N_u =$ Applied Service Tension Load

 N_n = Allowable Tension Load V_u = Applied Service Shear Load

 $V_n =$ Allowable Shear Load

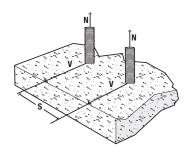
LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

Anchor Installed in Normal-Weight Concrete

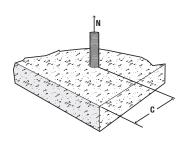
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 2.0h_v$	$FN_s = FV_s = 1.0$	$s_{min} = h_v$	$FN_s = FV_s = 0.50$
Edge Digtoppe (a)	Tension	c _{cr} = 12d	FNc = 1.0	$C_{min} = 5d$	FNc = 0.70
Edge Distance (c)	Shear	$c_{cr} = 12d$	$FV_{C} = 1.0$	$c_{min} = 5d$	$FV_{c} = 0.35$

Anchor Installed in Structural Lightweight Concrete

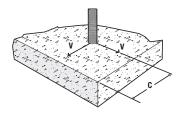
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 2.0h_v$	$FN_s = FV_s = 1.0$	$S_{min} = h_v$	$FN_s = FV_s = 0.50$
Edge Distance (a)	Tension	$c_{cr} = 12d$	$FN_c = 1.0$	$c_{min} = 5d$	$FN_c = 0.80$
Edge Distance (c)	Shear	$c_{cr} = 12d$	$FV_c = 1.0$	$c_{min} = 5d$	$FV_{c} = 0.40$


1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

	Spacing, Tension (File) & Shear (File)												
Di	a. (in.)		1/4			3/8			1/2			5/8	
h	v (in.)	1-1/4	1-3/4	2-1/2	2	2-1/2	3-1/2	2-1/2	3-1/2	5	2-3/4	4	6
S	cr (in.)	2-1/2	3-1/2	5	4	5	7	5	7	10	5-1/2	8	12
S	nin (in.)	1-1/4	1-3/4	2-1/2	2	2-1/2	3-1/2	2-1/2	3-1/2	5	2-3/4	4	6
	1-1/4	0.50	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.70	0.50	-	-	-	-	-	-	-	-		-
	2	0.80	0.57	-	0.50	-	-	-	-	-	-	-	-
	2-1/2	1.00	0.71	0.50	0.63	0.50	-	0.50	-	-	-	-	-
	2-3/4	1.00	0.79	0.55	0.69	0.55	-	0.55	-	-	0.50	-	-
	3	1.00	0.86	0.60	0.75	0.60	-	0.60	-	-	0.55	-	-
es)	3-1/2	1.00	1.00	0.70	0.88	0.70	0.50	0.70	0.50	-	0.64	-	-
(inches)	4	1.00	1.00	0.80	1.00	0.80	0.57	0.80	0.57	-	0.73	0.50	-
s (ii	4-1/2	1.00	1.00	0.90	1.00	0.90	0.64	0.90	0.64	-	0.82	0.56	-
	5	1.00	1.00	1.00	1.00	1.00	0.71	1.00	0.71	0.50	0.91	0.63	-
Spacing,	5-1/2	1.00	1.00	1.00	1.00	1.00	0.79	1.00	0.79	0.55	1.00	0.69	-
Spé	6	1.00	1.00	1.00	1.00	1.00	0.86	1.00	0.86	0.60	1.00	0.75	0.50
	7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.70	1.00	0.88	0.58
	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.80	1.00	1.00	0.67
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.75
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00



- Notes: For anchors loaded in tension and shear, the critical spacing (scr) is equal to 2 embedment depths (2hv) at which the anchor achieves 100% of load.
- Minimum spacing (s_{min}) is equal to 1 embedment depth (h_{ν}) at which the anchor achieves 50% of load.


Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance (cmin) is equal to 5 anchor diameters (5d) at which the anchor achieves 70% of load.

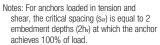
Notes: For anchors loaded in shear, the critical edge distance (ccr) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance (cmin) is equal to 5 anchor diameters (5d) at which the anchor achieves 35% of load.

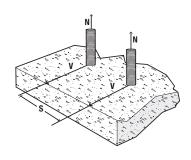
	Edge Distance, Tension (F∞) Dia. (in.) 1/4 3/8 1/2 5/8											
	Dia. (in.) 1/4 3/8 1/2 0. (in.) 2 4-1/2 5											
	Cer (in.)	3	4-1/2	6	7-1/2							
	Cmin (in.)	1-1/4	1-7/8	2-1/2	3-1/8							
	1-1/4	0.70	-	-	-							
	1-5/8	0.76	-	-	-							
	1-7/8	0.81	0.70	-	-							
	2	0.83	0.71	-	-							
	2-1/2	0.91	0.77	0.70	-							
hes	3	1.00	0.83	0.74	-							
(inches)	3-1/8	1.00	0.84	0.75	0.70							
C	3-3/4	1.00	0.91	0.81	0.74							
Distance,	4	1.00	0.94	0.83	0.76							
star	4-1/2	1.00	1.00	0.87	0.79							
Ö	5	1.00	1.00	0.91	0.83							
Edge	6	1.00	1.00	1.00	0.90							
<u> </u>	6-1/4	1.00	1.00	1.00	0.91							
	7	1.00	1.00	1.00	0.97							
	7-1/2	1.00	1.00	1.00	1.00							
	8	1.00	1.00	1.00	1.00							
	9	1.00	1.00	1.00	1.00							

			Edge Distance, Shear (F	vc)	
	Dia. (in.)	1/4	3/8	1/2	5/8
	Ccr (in.)	3	4-1/2	6	7-1/2
	Cmin (in.)	1-1/4	1-7/8	2-1/2	3-1/8
	1-1/4	0.35	-	-	-
	1-5/8	0.49	-	-	-
	1-7/8	0.58	0.35	-	-
	2	0.63	0.38	-	-
-	2-1/2	0.81	0.50	0.35	-
hes	3	1.00	0.63	0.44	-
(inches)	3-1/8	1.00	0.66	0.47	0.35
C	3-3/4	1.00	0.81	0.58	0.44
Distance,	4	1.00	0.88	0.63	0.48
stai	4-1/2	1.00	1.00	0.72	0.55
	5	1.00	1.00	0.81	0.63
Edge	6	1.00	1.00	1.00	0.78
	6-1/4	1.00	1.00	1.00	0.81
	7	1.00	1.00	1.00	0.93
	7-1/2	1.00	1.00	1.00	1.00
	8	1.00	1.00	1.00	1.00
	9	1.00	1.00	1.00	1.00

CHANICAL

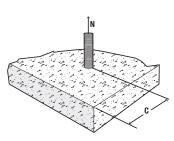

ANCHORS

Load Adjustment Factors for Lightweight Concrete

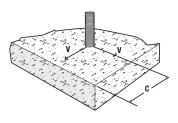

DEWALI

ENGINEERED BY POWERS

	Spacing, Tension (File) & Shear (File)												
Dia	a. (in.)		1/4			3/8			1/2			5/8	
h	v (in.)	1-1/4	1-3/4	2-1/2	2	2-1/2	3-1/2	2-1/2	3-1/2	5	2-3/4	4	6
	r (in.)	2-1/2	3-1/2	5	4	5	7	5	7	10	5-1/2	8	12
Sa	in (in.)	1-1/4	1-3/4	2-1/2	2	2-1/2	3-1/2	2-1/2	3-1/2	5	2-3/4	4	6
	1-1/4	0.50	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.70	0.50	-	-	-	-	-	-	-	-	-	-
	2	0.80	0.57	-	0.50	-	-	-	-	-	-	-	-
	2-1/2	1.00	0.71	0.50	0.63	0.50	-	0.50	-	-	-	-	-
	2-3/4	1.00	0.79	0.55	0.69	0.55	-	0.55	-	-	0.50	-	-
	3	1.00	0.86	0.60	0.75	0.60	-	0.60	-	-	0.55	-	-
es)	3-1/2	1.00	1.00	0.70	0.88	0.70	0.50	0.70	0.50	-	0.64	-	-
(inches)	4	1.00	1.00	0.80	1.00	0.80	0.57	0.80	0.57	-	0.73	0.50	-
s (ii	4-1/2	1.00	1.00	0.90	1.00	0.90	0.64	0.90	0.64	-	0.82	0.56	-
	5	1.00	1.00	1.00	1.00	1.00	0.71	1.00	0.71	0.50	0.91	0.63	-
Spacing,	5-1/2	1.00	1.00	1.00	1.00	1.00	0.79	1.00	0.79	0.55	1.00	0.69	-
Spé	6	1.00	1.00	1.00	1.00	1.00	0.86	1.00	0.86	0.60	1.00	0.75	0.50
	7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.70	1.00	0.88	0.58
	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.80	1.00	1.00	0.67
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.75
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.83
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00



Minimum spacing (smin) is equal to 1 embedment depth (h_v) at which the anchor achieves 50% of load.


Notes: For anchors loaded in tension, the critical edge distance (ccr) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance (cmin) is equal to 5 anchor diameters (5d) at which the anchor achieves 80% of load.

Notes: For anchors loaded in shear, the critical edge distance (cer) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance (cmin) is equal to 5 anchor diameters (5d) at which the anchor achieves 40% of load.

POWER-BOLT® Heavy-Duty Sleeve Anchor

			Edge Distance, Tension	(FNC)	
	Dia. (in.)	1/4	3/8	1/2	5/8
	Cer (in.)	3	4-1/2	6	7-1/2
	Cmin (in.)	1-1/4	1-7/8	2-1/2	3-1/8
	1-1/4	0.80	-	-	-
	1-5/8	0.84	-	-	-
	1-7/8	0.87	0.80	-	-
	2	0.89	0.81	-	-
	2-1/2	0.94	0.85	0.80	-
(inches)	3	1.00	0.89	0.83	-
jin c	3-1/8	1.00	0.90	0.84	0.80
C	3-3/4	1.00	0.94	0.87	0.83
Distance,	4	1.00	0.96	0.89	0.84
stai	4-1/2	1.00	1.00	0.91	0.86
	5	1.00	1.00	0.94	0.89
Edge	6	1.00	1.00	1.00	0.93
-	6-1/4	1.00	1.00	1.00	0.94
	7	1.00	1.00	1.00	0.98
	7-1/2	1.00	1.00	1.00	1.00
	8	1.00	1.00	1.00	1.00
	9	1.00	1.00	1.00	1.00

	Edge Distance, Shear (Fvc)								
	Dia. (in.)	1/4	3/8	1/2	5/8				
	Cer (in.)	3	4-1/2	6	7-1/2				
	Cmin (in.)	1-1/4	1-7/8	2-1/2	3-1/8				
	1-1/4	0.40	-	-	-				
	1-5/8	0.53	-	-	-				
	1-7/8	0.61	0.40	-	-				
	2	0.66	0.43	-	-				
-	2-1/2	0.83	0.54	0.40	-				
hes	3	1.00	0.66	0.49	-				
(inches)	3-1/8	1.00	0.69	0.51	0.40				
C	3-3/4	1.00	0.83	0.61	0.49				
Distance,	4	1.00	0.89	0.66	0.52				
stai	4-1/2	1.00	1.00	0.74	0.59				
	5	1.00	1.00	0.83	0.66				
Edge	6	1.00	1.00	1.00	0.79				
	6-1/4	1.00	1.00	1.00	0.83				
	7	1.00	1.00	1.00	0.93				
	7-1/2	1.00	1.00	1.00	1.00				
	8	1.00	1.00	1.00	1.00				
	9	1.00	1.00	1.00	1.00				

1-800-4 DEWALT

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2018 DEWALT - REV. B

ORDERING INFORMATION

Stainless Steel Hex Head Power-Bolt

Cat.No.	Anchor Size	Drill Dia.	Min. Embed.	Std. Box	Std. Carton	Wt./100
5902	1/4" x 1-3/4"	1/4"	1-1/4"	100	600	3
5906	1/4" x 3"	1/4"	1-1/4"	100	600	5
5910	3/8" x 2-1/4"	3/8"	2"	50	300	10
5914	3/8" x 3-1/2"	3/8"	2"	50	300	12
5916	3/8" x 4"	3/8"	2"	50	300	14
5930	1/2" x 2-3/4"	1/2"	2-1/2"	50	200	16
5934	1/2" x 4-3/4"	1/2"	2-1/2"	25	150	26

The published length is measured from below the washer to the end of the anchor.

Carbon Steel Flat Head Power-Bolt

Cat.No.	Anchor Size	Drill Dia.	Min. Embed.	Std. Box	Std. Carton	Wt./100
6981	3/8" x 3-3/4"	3/8"	2"	50	300	14
6982	3/8" x 5"	3/8"	2"	50	300	17
6983	3/8" x 6"	3/8"	2"	50	300	20
6984	1/2" x 5"	1/2"	2-1/2"	25	150	26
6987	5/8" x 5-1/2"	5/8"	2-3/4"	15	90	57

The published length is the overall length of the anchor.

The flat head Power-Bolt anchor has a hex key insert formed in the head of the bolt.

Each box contains an Allen wrench which matches the insert size.

MT O

Heavy Duty Sleeve Anchor

GENERAL INFORMATION

PB-PRO[™]

Heavy Duty Sleeve Anchor

PRODUCT DESCRIPTION

The PB-PRO is a large diameter torque controlled, heavy duty sleeve anchor designed for concrete applications. Suitable base materials included normal-weight concrete. The anchor is manufactured with a zinc plated carbon steel bolt, sleeve, cone and expansion clip and plastic compression ring. The PB-PRO has a low profile finished hex head.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Safety-related attachments and tension zone applications
- Interior applications / low level corrosion environment
- Heavy duty applications

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + High shear load capacity
- + Patented plastic retainer nut prevents loosening components during transport as well as spinning in the drill hole
- + Compression zone in sleeve clamps fixture to the base material

APPROVALS AND LISTINGS

Tested in accordance with ASTM E488

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchoring and 05 05 19 - Post Installed Concrete Anchors Expansion anchors shall be PB-PRO as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	239
Material Specification	240
Installation Instructions	240
Installation Information	241
Performance Data	242
Ordering Information	243

PB-PRO ASSEMBLY

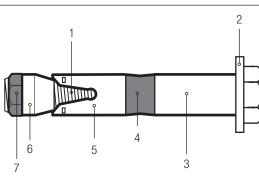
HEAD STYLES

· Finished Hex Head

ANCHOR MATERIALS

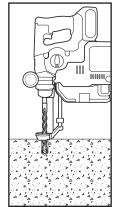
· Zinc plated carbon steel bolt, washer, cone, sleeve, and expansion clip; assembled with a plastic compression ring and retainer nut

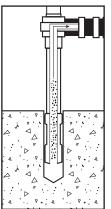
ANCHOR SIZE RANGE (TYP.)


• 16mm through 20mm

SUITABLE BASE MATERIALS

Normal-weight concrete

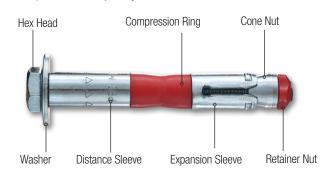

MATERIAL SPECIFICATION



Part No.	Designation	Material	Protection
1	Threaded bolt	Medium Carbon Steel (Grade 8.8)	Zinc plated (5 µm)
2	Washer	Steel Property class 8.8 acc. to EN ISO 7093	Zinc plated (5 µm)
3	Distance sleeve	Medium Carbon Steel	Zinc plated (5 µm)
4	Compression ring	Plastic (HDPE)	-
5	Expansion sleeve	Medium Carbon Steel	Zinc plated (5 µm)
6	Cone nut	Medium Carbon Steel	Zinc plated (5 µm)
7	Retainer nut	Plastic (HDPE)	-

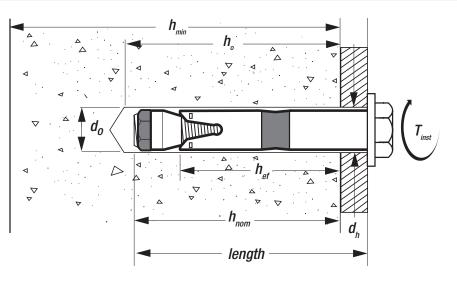

INSTALLATION INSTRUCTIONS

1. Using the proper drill bit size, drill a hole into the base material to the required depth.


2. Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

3. Drive the anchor into the hole through the fixture at least to the minimum required embedment depth.

 Tighten the anchor with a torque wrench by applying the required installation torque Tinst.


TECHNICAL GUIDE - MECHANICAL ANCHORS ©2018 DEWALT - REV. B

CHANICAL

INSTALLATION INFORMATION

Description	Notation	Unit	PB-PRO		
Description	Notation	Unit	M16	M20	
Anchor diameter	d	mm (in)	24 (0.94)	28 (1.10)	
Head height	-	mm (in)	10.0 (0.39)	12.5 (0.49)	
Washer outside diameter	-	mm (in)	50 (1.97)	60 (236)	
Internal bolt diameter	-	mm (in)	16 (0.63)	20 (0.79)	
Minimum specified yield strength	fy	MPa (ksi)	640 (92.8)	640 (92.8)	
Minimum specified ultimate steel strength	f _{uta}	MPa (ksi)	800 (116)	800 (116)	
Nominal drill bit diameter	d _{bit}	mm (in)	24 (0.94)	28 (1.10)	
Diameter of hole clearance in fixture	dh	mm (in)	26 (1.02)	31 (1.22)	
Minimum nominal embedment depth	h _{nom}	mm (in)	128 (5.04)	160 (6.30)	
Effective embedment depth	h _{ef}	mm (in)	100 (3.94)	125 (4.92)	
Minimum hole depth	h₀	mm (in)	155 (6.10)	180 (7.09)	
Minimum member thickness	h _{min}	mm (in)	200 (7.87)	250 (9.84)	
Minimum spacing	Smin	mm (in)	130 (5.12)	140 (5.51)	
Corresponding edge distance at smin	for c \geq	mm (in)	240 (9.45)	300 (11.81)	
Minimum edge distance	Cmin	mm (in)	140 (5.51)	140 (5.51)	
Corresponding spacing at cmin	for s \geq	mm (in)	230 (9.06)	300 (11.81)	
Installation torque	Tinst	Nm (ft-lb)	130 (96)	200 (148)	
Torque wrench socket size	-	mm	24	28	

PERFORMANCE DATA

Ultimate Load Capacities for PB-PRO in Normal-Weight Concrete^{1,2}

Nominal	Minimum	Minimum Concrete Compressive Strength									
Anchor Embod		2,500 psi		3,000 psi		4,000 psi		6,000 psi		8,000 psi	
Diameter	Depth	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
d	mm	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
mm	(in)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
M16	128	9,135	16,505	10,005	18,080	11,555	20,880	14,145	24,600	16,337	24,600
	(5.04)	(40.9)	(74.0)	(44.8)	(81.0)	(51.8)	(93.6)	(63.4)	(110.3)	(73.2)	(110.3)
M20	160	11,515	21,780	12,615	23,860	14,565	27,555	17,840	31,280	20,600	31,280
	(6.30)	(51.6)	(97.6)	(56.5)	(106.9)	(65.3)	(123.5)	(80.0)	(140.2)	(92.3)	(140.2)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for PB-PRO in Normal-Weight Concrete^{1,2,3}

Nominal	Minimum	Minimum Concrete Compressive Strength									
Anchor	Nominal Embed.	2,50	0 psi	3,00	0 psi	4,00	0 psi	6,00	D psi	8,00) psi
Diameter d mm (in)	Depth mm	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
M16	128 (5.04)	2,285 (10.2)	4,125 (18.5)	2,500 (11.2)	4,520 (20.3)	2,890 (13.0)	5,220 (23.4)	3,535 (15.8)	6,150 (27.6)	4,085 (18.3)	6,150 (27.6)
M20	160 (6.30)	2,880 (12.9)	5,445 (24.4)	3,155 (14.1)	5,965 (26.7)	3,640 (16.3)	6,890 (30.9)	4,460 (20.0)	7,820 (35.1)	5,150 (23.1)	7,820 (35.1)

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

2. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

3. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

Spacin	Spacing Reduction Factors - Tension (F _{NS})								
	Nominal Anchor Size	M16	M20						
Mir	nimum Spacing smin (mm)	130	140						
Nom	inal Embedment hnom (mm)	128	160						
	130	0.84	-						
Ê	140	0.85	0.80						
um)	150	0.87	0.81						
nce	175	0.91	0.84						
lista	200	0.95	0.87						
ng D	225	0.99	0.90						
Spacing Distance (mm)	250	1.00	0.94						
	275	1.00	0.97						
	300	1.00	1.00						

Edge Distance Reduction Factors - Tension (F_{NC})

Eugo E								
	Nominal Anchor Size	M16	M20					
Minim	um Edge Distance cmin (mm)	140	140					
Nom	inal Embedment hnom (mm)	128	160					
	140	0.58	-					
	150	0.63	0.50					
(uu	160	0.67	0.53					
ce (I	175	0.73	0.58					
stan	200	0.83	0.67					
e Dis	225	0.94	0.75					
Edge Distance (mm)	250	1.00	0.83					
	275	1.00	0.92					
	300	1.00	1.00					

Spacing Reduction Factors - Shear (F_{VS})

	ig noudotion raotoro				
	Nominal Anchor Size	M16	M20		
Mii	nimum Spacing smin (mm)	130	140		
Nom	inal Embedment hnom (mm)	128	160		
	130	0.86	-		
	140	0.87	0.84		
	150	0.88	0.85		
l (175	0.90	0.87		
 	200	0.92	0.88		
tano	225	0.94	0.90		
Dis	250	0.96	0.92		
Spacing Distance (mm)	275	0.98	0.93		
Spa	300	1.00	0.95		
	325	1.00	0.97		
	350	1.00	0.98		
	375	1.00	1.00		

Edge Distance Reduction Factors - Shear (Fvc)

	Nominal Anchor Size	M16	M20
Minim	um Edge Distance cmin (mm)	140	140
Nom	inal Embedment hnom (mm)	128	160
	140	0.47	0.37
	150	0.50	0.40
	160	0.53	0.43
Ê	175	0.58	0.47
Edge Distance (mm)	200	0.67	0.53
ance	225	0.75	0.60
Dista	250	0.83	0.67
lge	275	0.92	0.73
Ĕ	300	1.00	0.80
	325	1.00	0.87
	350	1.00	0.93
	375	1.00	1.00

Γ

ORDERING INFORMATION

DEWALT

ENGINEERED BY POWERS

Carbon Steel Hex Head PB-PRO

Carbon Steel Hex Head PB-PRO										
Cat No.	Size (Diameter x Length)	Drill Dia	Length*	Std Box	Std Ctn					
PFM1220650	PB-PRO 24-M16 x 148mm	24mm	148mm	5	20					
PFM1220700	PB-PRO 24-M16 x 178mm	24mm	178mm	5	20					
PFM1220750	PB-PR0 28-M20 x 170mm	28mm	170mm	5	15					
PFM1220800	PB-PRO 28-M20 x 190mm	28mm	190mm	5	10					
PFM1220850	PB-PR0 28-M20 x 220mm	28mm	220mm	5	10					
*Length measured fr	om underneath the washer to the end of	the anchor.								

PB-PRO ACCESSORIES

Metric Drill Bits SDS-MAX Carbide Drill Bits - 4 Cutter

Cat No.	Size	Drill Dia	Length	Useable Length	Std. Tube	
PPA1330220	M24x340x200	24mm	340mm	200mm	1	
PPA1330290	M28x380x250	28mm	380mm	250mm	1	

Installation Accessories

Cat. No.	Description	Box Qty			
08280	Hand pump / dust blower	1			

GENERAL INFORMATION

LOK-BOLT AS®

Sleeve Anchor

PRODUCT DESCRIPTION

The Lok-Bolt AS is an all-steel pre-assembled single unit sleeve anchor which is designed for use in concrete or masonry base materials. The anchors are available in multiple head styles for multiple applications and a finished appearance. Anchor extender sleeves can be added to create longer lengths.

GENERAL APPLICATIONS AND USES

- Door and window frame installations
- Masonry applications
- Electrical / Mechanical applications
- · Mounting fixtures on walls
- General purpose anchoring

FEATURES AND BENEFITS

- + Variety of head styles, lengths and sizes
- + All steel component design
- + Preassembled anchor for immediate installation
- + Sleeve design keeps anchor centered in hole
- + Sleeve has 360° contact area for even stress distribution
- + Versatile can be used for solid and hollow concrete or masonry applications
- + Designed to allow fixture to draw snug against the base material during tightening

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors, and 05 05 19 -Post-Installed Concrete Anchors Expansion anchors shall be Lok-Bolt AS as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	244
Material Specifications	.245
Installation Specifications	.245
Installation Instructions	.246
Performance Data	.247
Ordering Information	248

HEAD STYLES

- Hex Head
- Acorn Nut
- Round Head
- Combo Flat Head
- Threshold Flat Head
- Rod Hanger
- Tie-Wire

ANCHOR MATERIALS

- Zinc Plated Carbon Steel
- Type 304 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter through 3/4" diameter

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Grouted Concrete Masonry (CMU)
- Hollow Concrete Masonry (CMU)
- Brick Masonry

LOK-BOLT AS®

MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel Version	Stainless Steel Version
Plow-Bolt	AISI 1010/1018	Type 304 Stainless Steel
Expansion Sleeve	AISI 1010	Type 304 Stainless Steel
Extender	AISI 1010	N/A
Zinc Plating	ASTM B 633, SC1, Type III (Fe/Zn5)	N/A

INSTALLATION SPECIFICATIONS

Acorn Nut and Hex Head Lok-Bolt AS

Dimension	Nominal Anchor Diameter, d							
Dimension	1/4"	5/16"	3/8"	1/2"	5/8"	3/4"		
ANSI Drill Bit Size, dbit (in.)	1/4	5/16	3/8	1/2	5/8	3/4		
Fixture Clearance Hole, dh (in.)	5/16	3/8	7/16	9/16	11/16	15/16		
Plow Bolt Size (UNC)	10-24	1/4-20	5/16-18	3/8-16	1/2-13	5/8-11		
Nut Height (in.)	3/16	7/32	17/64	21/64	7/16	35/64		
Washer O.D., dw (in.)	1/2	5/8	13/16	1	1-3/8	1-3/4		
Wrench Size (in.)	3/8	7/16	1/2	9/16	3/4	15/16		

Round Head Lok-Bolt AS

Dimension	Ne	ominal Anchor Diameter	, d
Dimension	1/4"	5/16"	3/8"
ANSI Drill Bit Size, d _{bit} (in.)	1/4	5/16	3/8
Fixture Clearance Hole, dh (in.)	5/16	3/8	7/16
Plow Bolt Size (UNC)	10-24	1/4-20	5/16-18
Head Height (in.)	11/64	13/64	15/64
Head Width, dhd (in.)	29/64	9/16	43/64
Phillips Driver Size	#3	#3	#4

Combo Flat Head Lok-Bolt AS

Dimension	Ne	ominal Anchor Diameter	, d
Dimension	1/4"	5/16"	3/8"
ANSI Drill Bit Size, dbit (in.)	1/4	5/16	3/8
Fixture Clearance Hole, dh (in.)	5/16	3/8	7/16
Plow Bolt Size (UNC)	10-24	1/4-20	5/16-18
Head Height (in.)	5/32	3/16	15/64
Head Width, dhd (in.)	1/2	5/8	3/4
Phillips Driver Size	#2	#3	#4

Rod Hanger Lok-Bolt AS

Dimension	N	Nominal Anchor Diameter, d						
Dimension	1/4"	5/16"	3/8"					
ANSI Drill Bit Size, dbit (in.)	5/16	3/8	1/2					
Plow Bolt Size (UNC)	1/4-20	5/16-18	3/8-16					
Coupling Height (in.)	7/8	1	1-1/4					
Washer O.D., dw (in.)	5/8	13/16	1					
Coupling Wrench Size (in.)	3/8	1/2	11/16					

Threshold Lok-Bolt AS

Dimension	Anchor Size, d
Dimension	1/4"
ANSI Drill Bit Size, d _{bit} (in.)	1/4
Fixture Clearance Hole, dh (in.)	5/16
Plow Bolt Size (UNC)	10-24
Head Height (in.)	5/64
Head Width, dnd (in.)	23/64

Tie-Wire Lok-Bolt AS

1	Dimension	Anchor Size, d
	Dillicision	5/16"
1	ANSI Drill Bit Size, d _{bit} (in.)	5/16
	Fixture Clearance Hole, dh (in.)	3/8
	Plow Bolt Size (UNC)	1/4-20
	Head Height (in.)	1-9/16
	Head Width, dnd (in.)	31/64

MECHANICAL ANCHORS

INSTALLATION INSTRUCTIONS Hex/Acorn/Flat Head Round Versions Rod Hanger Version Tie-Wire Version Using the proper diameter Using the proper diameter Using the proper diameter bit, drill a hole into the bit, drill a hole into the bit, drill a hole into the base material to a depth of base material to a depth of base material to a depth of 001 at least 1/2" or one anchor at least 1/2" or one anchor at least 1/2" or one anchor diameter deeper than the diameter deeper than the diameter deeper than the embedment required. embedment required. embedment required. The tolerances of the The tolerances of the The tolerances of the drill bit used must meet drill bit used must meet drill bit used must meet the requirements of ANSI the requirements of ANSI the requirements of ANSI Standard B212.15 Standard B212.15 Standard B212.15 Remove dust and debris Remove dust and debris Remove dust and debris from the hole during from the hole during from the hole during drilling (e.g. dust extractor, drilling (e.g. dust extractor, drilling (e.g. dust extractor, hollow bit) or following hollow bit) or following hollow bit) or following ₹_₽ drilling (e.g. suction, forced air) to extract drilling (e.g. suction, forced air) to extract drilling (e.g. suction, forced air) to extract loose particles created loose particles created loose particles created by drilling. by drilling. by drilling. ٩_Δ Drive the anchor into the Drive the anchor into the Hex Head/Acorn Nut Position the washer on hole until the anchor is at hole until the head is the anchor and thread on the required embedment firmly seated against the base material. Be sure the nut. depth. m the anchor is driven to Drive the anchor through the required embedment depth. the fixture into the anchor hole until the nut and washer are firmly seated Δ 4 against the fixture. Be sure the anchor is driven to the required embedment depth. Flat Head/Round Head Tighten the coupler nut Tighten the tie wire nut Drive the anchor through and washer up to the by turning the head 3 to the fixture until the anchor concrete surface and 5 turns past finger tight is firmly seated. Be sure tighten the anchor by or by applying the guide the anchor is driven to turning the nut 3 to 5 installation torque from the the required embedment turns past finger tight ¢⊳ finger tight position. or by applying the guide depth. installation torque from the 0 finger tight position. ۔ م w 4 Δ Hex Head/Acorn Nut Tighten the anchor by turning the nut or head 3 to 5 turns past finger tight or by applying the guide installation torque from the finger tight position. Flat Head/Round Head Tighten the anchor by turning the head 3 to 5 turns past finger tight.

- REV. C

TECHNICAL GUIDE - MECHANICAL ANCHORS ©2018 DEWALT

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Carbon and Stainless Steel Lok-Bolt AS Anchors in Normal Weight Concrete^{1,2,3,4}

			stallation	Minimum Concrete Compressive Strength, f							fc				
Nominal Anchor	Min. Embed.		que lbs.		3,000 psi 3,500 psi						4,00				
Diameter	Depth hv			Ultin	nate	Allow	rable	Ultin	nate	Allowable		Ultin	nate	able	
in.	in.	Carbon	Stainless	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.
1/4	1/2	2	-	225	1,000	55	250	240	1,000	60	250	260	1,000	65	250
1/4	1	6	4	910	1,120	230	280	980	1,120	245	280	1,050	1,120	265	280
5/16	1	12	-	1,205	2,360	300	590	1,300	2,360	325	590	1,390	2,360	350	590
3/8	1-1/4	18	18	1,875	4,110	470	1,030	2,040	4,110	510	1,030	2,165	4,110	540	1,030
1/2	1-1/2	26	26	2,235	4,860	560	1,215	2,420	4,860	605	1,215	2,580	4,860	645	1,215
5/8	2	50	40	4,870	4,860	1,220	1,215	5,260	4,860	1,315	1,215	5,625	4,860	1,405	1,215
3/4	2-1/4	90	60	5,045	11,040	1,260	2,760	5,450	11,040	1,365	2,760	5,825	11,040	1,455	2,760

1. The ultimate load values listed above must be reduced by a minimum safety factor of 4.0 or greater to determine the allowable working load. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Tabulated load values are for anchors installed at a minimum spacing distance between anchors and an edge distance of 12 times the anchor diameters.

4. The embedment depth is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening

Ultimate and Allowable Load Capacities for Carbon and Stainless Steel Lok-Bolt AS Anchors in Hollow or Solid Concrete Masonry^{1,2,3,4,5,6}

Nominal Anchor	Minimum Embed.	Guide	Minimum		Ultimate Loads		Allowable Loads	
Diameter d in.	Depth hv in.	Installation Torque ftIbs.	Edge Dist. in.	Minimum End Dist. in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.
1/4	1	4			800	1,140	160	225
5/16	1	8			905	1,570	180	310
3/8	1-1/4	15	3-3/4	4	1,100	1,570	220	310
1/2	1-1/2	18			1,525	1,570	305	310
5/8	1-1/2	30			2,250	1,770	450	355

1. Tabulated load values are for anchors installed in minimum 6 inch wide, Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N, S, or M. Masonry prism compressive strength must be 1,500 psi minimum at time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. A suitable anchor length must be selected which includes consideration of a fixture to engage the base material at the minimum embedment depth when anchoring into hollow concrete masonry. (e.g. attachment thickness + face shell thickness embedment + one half inch = suitable anchor length)

4. The consistence of hollow concrete block masonry base material can vary greatly. Consideration of job site testing should be given to verify conformance of base materials and anchor performance in actual conditions.

5. Tabulated load values are for anchors installed at a minimum spacing distance between anchors and an edge distance of 16 times the anchor diameters.

6. The embeddent depth is measured from the outside surface of the masonry member to the embedded end of the anchor prior to tightening.

Ultimate and Allowable Load Capacties for Carbon or Stainless Steel Lok-Bolt AS Anchors in Solid Clay Brick Masonry^{1,2,3,4}

Nominal	Minimum	Guide				f'm ≥ 1,500 p	si (10.4 MPa)	
Anchor Diameter	Embed. Depth	Installation	Minimum Edge Dist.	Minimum End Dist.	Ultir	nate	Allov	vable
d in.	ĥ√ in.	Torque ftIbs.	in.	in.	Tension lbs.	Shear Ibs.	Tension Ibs.	Shear Ibs.
1/4	1	4	4	1-1/2	800	950	160	190
3/8	1-1/4	15	8	8	1,100	3,000	220	600
1/2	1-1/2	26	8	8	1,560	3,150	310	630
5/8	2	40	8	8	2,470	5,250	495	1,050

1. Tabulated load values are for anchors installed in Grade SW, multiple wythe solid clay brick masonry conforming to ASTM C 62.

2. Allowable load capacities listed are calculated using a safety factor of 5.0 or greater. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Tabulated load values are for anchors installed at a minimum spacing distance between anchors and an edge distance of 16 times the anchor diameters.

4. The embedment depth is measured from the outside surface of the brick masonry member to the embedded end of the anchor prior to tightening.

sleeve Anchor

OK-BOLT AS®

ORDERING INFORMATION

Hex Nut Lok-Bolt AS

Catalog Number			Drill	Std.	Std.
Carbon Steel	Stainless Steel	Size	Dia.	Box	Ctn.
5005S	-	5/16" x 1-1/2"	5/16"	100	1000
5010S	-	5/16" x 2-3/8"	5/16"	100	500
5015S	6152S	3/8" x 1-7/8"	3/8"	50	500
5020S	6153S	3/8" x 3"	3/8"	50	500
5022S	-	3/8" x 4"	3/8"	50	250
5025S	6156S	1/2" x 2-1/2"	1/2"	25	250
5030S	6157S	1/2" x 3"	1/2"	25	250
5034S	6160S	1/2" x 3-3/4"	1/2"	25	125
5033S	-	1/2" x 5-1/4"	1/2"	25	125
5032S	-	1/2" x 6"	1/2"	10	100
5035S	-	5/8" x 2-1/2"	5/8"	25	125
5038S	-	5/8" x 3"	5/8"	25	125
5040S	6164S	5/8" x 4-1/4"	5/8"	10	100
5045S	-	5/8" x 5-3/4"	5/8"	10	100
5050S	-	3/4" x 2-3/4"	3/4"	10	100
5055S	-	3/4" x 4-1/4"	3/4"	10	40
5060S	-	3/4" x 6-1/4"	3/4"	10	30
5065S	-	3/4" x 8-1/4"	3/4"	10	30
The published length is measured from below the washer to the end of the anchor					

Combo Flat Head Lok-Bolt AS

Catalog Number			Drill	Std.	Std.
Carbon Steel	Stainless Steel	Size	Dia.	Box	Ctn.
5305S	-	1/4" x 1-1/2"	1/4"	100	1000
5310S	6170S	1/4" x 2-1/4"	1/4"	100	1000
5315S	6172S	1/4" x 3"	1/4"	100	1000
5320S	-	1/4" x 4"	1/4"	100	500
5325S	-	1/4" x 5-1/4"	1/4"	100	500
5330S	-	5/16" x 2-1/2"	5/16"	100	1000
5340S	-	3/8" x 2-3/4"	3/8"	50	500
5345S	6174S	3/8" x 4"	3/8"	50	250
5350S	6175S	3/8" x 5"	3/8"	50	250
5360S	6176S	3/8" x 6"	3/8"	50	250
The published length is the overall length of the anchor					

DEWALT

ENGINEERED BY POWERS

Threshold Flat Head Lok-Bolt AS

Cat #	Size	Drill Dia.	Std. Box	Std. Ctn.	
5500S	1/4" x 2"	1/4"	100	1000	
The published length is the overall length of the anchor					

Acorn Nut Lok-Bolt AS

Catalog Number			Drill	Std.	Std.
Carbon Steel	Stainless Steel	Size	Dia.	Box	Ctn.
5125S	-	1/4" x 5/8"	1/4"	100	1000
5150S	6150S	1/4" x 1-3/8"	1/4"	100	1000
5175S	-	1/4" x 2-1/4"	1/4"	100	1000
The published length is measured from below the washer to the end of the anchor					

Round Head Lok-Bolt AS, Slotted

Catalog Number			Drill	Std.	Std.
Carbon Steel	Stainless Steel	Size	Dia.	Box	Ctn.
5205S	-	1/4" x 1-3/8"	1/4"	100	1000
5210S	6180S	1/4" x 2-1/4"	1/4"	100	1000
5215S	-	1/4" x 3"	1/4"	100	1000
5220S	-	1/4" x 3-3/4"	1/4"	100	1000
5225S	-	5/16" x 2-3/8"	5/16"	100	1000
5230S	-	5/16" x 3-3/8"	5/16"	100	500
5235S	-	3/8" x 2-3/4"	3/8"	50	500
5240S	-	3/8" x 3-3/4"	3/8"	50	250
The published	The published length is measured from below the head to the end of the anchor				

Rod Hanger Lok-Bolt AS

Cat #	Size	Drill Dia.	Std. Box	Std. Ctn.	
5810S	1/4" x 1-1/2"	5/16"	50	250	
5815S	3/8" x 1-7/8"	3/8"	50	250	
5825S	1/2" x 2-1/4"	1/2"	25	125	
The published length is measured from below the washer to the and of the anchor					

The published length is measured from below the washer to the end of the anchor

Tie-Wire Lok-Bolt AS

Cat #	Size	Drill Dia.	Std. Box	Std. Ctn.	
5700S	5/16" x 2-3/8"	5/16"	100	1000	
The published length is measured from below the head to the end of the anchor					

Lok-Bolt AS Extenders

Cat #	Size	Drill Dia.	Std. Box	Std. Ctn.
5684S	3/8" x 1-1/4"	3/8"	50	500

ECHANICAL

GENERAL INFORMATION

SET-BOLT[™]

Displacement-Controlled Expansion Anchor

PRODUCT DESCRIPTION

The Set-Bolt is a one piece, stud style anchor with an external bottom-bearing expansion plug. It is available in carbon steel for use in concrete, stone and solid masonry units. The design of the Set-Bolt provides an anchor which is ideal for applications in which it is desirable to minimize the clamping force on a fixture. The nut may be placed on finger tight if required to prevent damage to light duty fixtures such as aluminum extrusions or stone facades. Jacking or leveling equipment can easily be accomplished with the Set-Bolt.

GENERAL APPLICATIONS AND US

- Structural Anchorage
- Mechanical Equipment
- Column Base Plates

- Fire Sprinkler
- · Cable Trays and Strut
- Suspended Lighting

FEATURES AND BENEFITS

- + Fast installation with force-controlled setting mechanism
- + No torque wrench required

APPROVALS AND LISTINGS

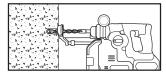
- Federal GSA Specification Meets the proof load requirements of FF-S-325C, Group VIII, Type 2. (superseded) and CID A-A-55614, Type 2.
- Various North American Departments of Transportation (DOT) See www.DEWALT.com, including CalTrans listing for "Stud Mechanical Expansion Anchors"

GUIDE SPECIFICATIONS

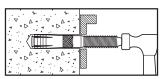
CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Expansion Anchors shall be Set-Bolt as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

INSTALLATION AND MATERIAL SPECIFICATIONS

Installation Specification


Dimension	Anchor Size, d			
Dimension	1/4"	3/8"	1/2"	
ANSI Drill Bit Size, (in.)	1/4	3/8	1/2	
Max. Tightening Torque, Tmax (ftlbs)	5-7	15-20	22-30	
Fixture Clearance Hole, (in.)	5/16	7/16	9/16	
Thread Size (UNC)	1/4-20	3/8-16	1/2-13	

Motorial	Cussifiestion
waterat	Specification
	opoonioanon


	Anchor Component	Component Material
	Anchor Body	AISI 12L14
	Cone	AISI 12L14
	Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn 5)
-		

Installation Guidelines

Drill a hole into the base material to a depth that equals the embedment required. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Do not over drill the hole. Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Insert the anchor through the fixture into the hole. Set the anchor by driving the anchor body over the plug. Be sure the anchor is driven to the required embedment depth. A nut and washer (supplied separately) is applied to secure the fixture.

General Information......249 Material Specifications249 Performance Data.....250 (Allowable Stress Design)......250 Ordering Information......250 1

Displacement-Controlled Expansion Anchor

ET-B(

G

ANCHOR MATERIALS

SECTION CONTENTS

Installation and

Design Criteria

Carbon Steel

ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter x 1-3/4" length to 1/2" diameter x 5-1/4" length

SUITABLE BASE MATERIALS

Normal-weight concrete

PERFORMANCE DATA

Ultimate Load Capacities for Set-Bolt Installed in Normal-Weight Concrete^{1,2}

Anchor		Minimum Concrete Compressive Strength (f´c)													
Diameter	Minimum Embedment	2,00)0 psi	4,00	D psi	6,000 psi									
d in.	in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.								
1/4	1-3/8	1,150	1,780	1,935	2,070	2,320	2,070								
3/8	1-5/8	2,605	3,705	3,600	4,185	3,850	4,185								
1/2	1-7/8	3,595	5,140	5,000	6,000	5,265	6,000								
1. The values listed	above are ultimate load ca	pacities which should be	reduced by a minimum s	afety factor of 4.0 or grea	ater to determine the allo	wable working load.									

2. Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.

Allowable Load Capacities for Set-Bolt Installed in Normal-Weight Concrete^{1,2,3}

Anchor			М	inimum Concrete Con	pressive Strength (f	c)			
Diameter	Minimum Embedment	2,00	0 psi	4,00	0 psi	6,000 psi			
a in.	d Empedment	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.		
1/4	1-3/8	290	445	485	520	580	520		
3/8	1-5/8	650	925	900	1,045	965	1,045		
1/2	1-7/8	900	1,285	1,250	1,500	1,315	1,500		

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right) \leq \frac{1}{2}$$

$$\left(\frac{\mathbf{lu}}{\mathbf{ln}}\right) + \left(\frac{\mathbf{Vu}}{\mathbf{Vn}}\right) \le 1$$

Applied Service Tension Load V_u = Applied Service Shear Load V_n = Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	s _{cr} = 10d	$F_N = F_V = 1.0$	$S_{min} = 5d$	$F_N = F_V = 0.50$
Edgo Distance (a)	Tension	c _{cr} = 12d	$F_N = 1.0$	$c_{min} = 5d$	$F_{N} = 0.80$
Edge Distance (c)	Shear	Ccr = 12d	Fv = 1.0	Cmin = 5d	Fv = 0.50

ORDERING INFORMATION

Set-Bolt						
Cat. No.	Size	Min. Embed.	Thread Length	Std. Box	Std. Carton	Wt./100
7101	1/4" x 1-3/4"	1-3/8"	5/8"	100	1,000	2-1/4
7103	1/4" x 2-1/4"	1-3/8"	7/8"	100	500	2-3/4
7123	3/8" x 2-1/4"	1-5/8"	5/8"	50	250	6-1/2
7126	3/8" x 3"	1-5/8"	1-3/8"	50	250	8-1/2
7151	1/2" x 4-1/4"	1-7/8"	1-7/8"	25	125	24

GENERAL INFORMATION

• E'.'/•

ENGINEERED BY POWER

SCREW-BOLT+

High Performance Screw Anchor

PRODUCT DESCRIPTION

The Screw-Bolt+ anchor is a one piece, heavy duty screw anchor with a finished hex head. It is simple to install, easy to identify and fully removable. The patented thread design, designed for use with standard ANSI drill bits, reduces installation torque and enhances productivity. The steel threads along the anchor body tap into the hole during installation to provide keyed engagement and allow for reduced edge and spacing distances. The Screw-Bolt+ finish is available in bright zinc-plated and mechanically galvanized. Suitable base materials include normal-weight concrete, sand-lightweight concrete, concrete over steel deck, concrete masonry and solid clay brick.

GENERAL APPLICATIONS AND USES

- Racking, shelving and material handling
- Support ledgers and sill plate attachments
- Temporary attachments
- Glazing and window attachments

FEATURES AND BENEFITS

- + Designed for standard ANSI tolerance drill bits
- + Patented thread design offers toughened threads for tapping high strength concrete
- + Low installation torque in concrete and masonry
- + Universal product for concrete and grouted/solid masonry
- + Ratchet teeth on underside of hex washer head lock against the fixture
- + Can be installed closer to the edge than traditional expansion anchors
- + Fully removable and reinstallable in same hole
- + Fast installation with powered impact wrench, can also be installed manually
- + Diameter, length and identifying marking stamped on head of each anchor
- + One-piece, finished head design

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3889 for concrete. Code compliant with 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC.
- International Code Council, Evaluation Service (ICC-ES), ESR-4042 for masonry. Code compliant with 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC.
- Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in structural applications in concrete under the design provisions of ACI 318 (Strength Design Method)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)
- Evaluated and qualified by an accredited independent testing laboratory for reliability against brittle failure, e.g. hydrogen embrittlement

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Screw anchors shall be Screw-Bolt+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

	Anchor component	Specification						
And	chor Body and hex washer head	Case hardened low carbon steel (see minimum strength properties on the next page)						
Plating	Standard zinc plated version	Zinc plating according to ASTM B 633, SC1 Type III (Fe/Zn 5). Minimum plating requirements for Mild Service Condition.						
Ē	Mechanically galvanized version	Mechanically Galvanized Zinc plating according to ASTM B 695, Class 5						

• Retrofits, repairs and maintenance

- Fencing and railing
- Cracked and uncracked concrete
- Seismic and wind loading

SECTION CONTENTS

General Information	251
Installation Specifications (ASD)	252
Reference Data (ASD)	252
Installation Specifications (SD)	262
Strength Design (SD)	265
Ordering Information	270

SCREW-BOLT+

HEAD STYLES

• Hex Washer Head

ANCHOR MATERIALS

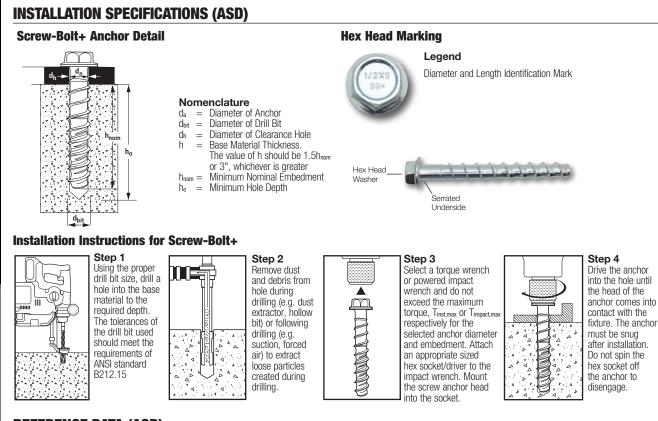
• Zinc plated carbon steel or mechanically galvanized

ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter through 3/4" diameter (see ordering information)

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete
- Concrete over steel deck
- Grouted Concrete Masonry (CMU)
- Brick Masonry


1-800-4 **DeWALT**

Performance Screw Anchor

EW-BOI

SCR

REFERENCE DATA (ASD)

Installation Specifications for Screw-Bolt+ in Concrete and Supplemental Information

Anchor Property/Setting	Notation	Units		Nomi	nal Anchor Diameter ((inch)	
Information	Notation	Units	1/4	3/8	1/2	5/8	3/4
Anchor outside diameter	d	in. (mm)	0.250 (6.35)	0.375 (9.53)	0.500 (12.70)	0.625 (15.88)	0.750 (19.05)
Nominal drill bit diameter	dbit	in.	1/4 ANSI	3/8 ANSI	1/2 ANSI	5/8 ANSI	3/4 ANSI
Minimum diameter of hole clearance in fixture	Сh	in. (mm)	3/8 (9.5)	1/2 (12.7)	5/8 (15.9)	3/4 (19.1)	7/8 (22.2)
Minimum embedment depth ²	hnom	in. (mm)	1 (25)	1-1/2 (38)	1-3/4 (44)	2-1/2 (64)	2-1/2 (64)
Minimum hole depth	h₀	in. (mm)	1-3/8 (35)	1-7/8 (48)	2-1/8 (54)	2-7/8 (73)	2-7/8 (73)
Minimum member thickness ¹	h _{min}	in. (mm)	3 (76)	3 (76)	3 (76)	3-3/4 (95)	3-3/4 (95)
Minimum edge distance	Cmin	in. (mm)	1-1/2 (38)	1-1/2 (38)	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)
Minimum spacing	Smin	in. (mm)	1-1/2 (38)	2 (51)	2-3/4 (70)	2-3/4 (70)	3 (76)
Max Installation torque	T _{inst,max}	ftlbf. (N-m)	19 (26)	25 (34)	45 (61)	60 (81)	70 (95)
Max impact wrench power (torque)	Timpact,max	ftlbf. (N-m)	150 (203)	300 (407)	300 (407)	700 (950)	700 (950)
Impact wrench socket size	-	in.	7/16	9/16	3/4	15/16	1-1/8
Maximum head height	-	in.	21/64	3/8	31/64	37/64	43/64
Maximum washer diameter	-	in.	37/64	3/4	1-1/16	1-1/8	1-13/32
Effective tensile stress area (screw anchor body)	Ase	in² (mm²)	0.045 (29.0)	0.094 (60.6)	0.176 (113.5)	0.274 (176.8)	0.399 (257.4)
Minimum specified ultimate strength	f _{uta}	ksi (N/mm²)	100 (690)	92.5 (638)	115 (794)	95 (656)	95 (656)
Minimum specified yield strength	fy	ksi (N/mm²)	80 (552)	74 (511)	92 (635)	76 (524)	76 (524)

1. The minimum base material thickness shall be the greater of 1.5•hnom or 3 inches.

2. See load capacities in normal weight concrete for additional embedment depths.

DNCH

0

Minimum Concrete Compressive Strength Minimum fⁱc = 2,500 psi (17.3 MPa) f'c = 3,000 psi (20.7 MPa) fⁱc = 4,000 psi (27.6 MPa) fⁱc = 6,000 psi (41.4 MPa) f'c = 8,000 psi (55.2 MPa) Nominal Nominal Embedment Anchor Diameter Depth Tension Tension Tension Tension Shear Shear Shear Shear Tension Shear in. in. lbs (kN) (mm) lbs lbs lbs lbs lbs lbs lbs lbs lbs (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 1,325 1,660 1,400 1,755 1,530 1,910 1,725 2,080 1,725 2,080 (25)(5.9)(7.4)(6.2)(7.8)(6.8)(8.5)(7.7)(9.3)(7.7)(9.3)1-5/8 2.835 1.660 2.995 1.755 3.265 1.910 3.265 2.080 3.265 2.080 1/4 (7.8) (14.5)(14.5)(41)(12.6)(7.4)(13.3)(14.5)(8.5)(9.3)(9.3)2-1/2 3,650 2,025 3,855 2,140 4,200 2,335 4,270 2,545 4,270 2,545 (64) (16.2)(9.0)(17.1)(9.5)(18.7) (10.4)(19.0)(11.3)(19.0)(11.3)1 - 1/22.630 3.550 2.880 3.890 3.330 4.490 4.075 5.500 4.075 6.355 (38) (15.8) (12.8) (14.8) (20.0) (18.1) (24.5) (18.1) (17.3)(28.3)(11.7)2 3,670 4.320 4.020 4,735 4,645 5,465 4,725 6,345 5,455 6,345 (51) (16.3)(19.2)(17.9)(21.1)(20.7)(24.3)(21.0)(28.2)(24.3)(28.2)3/8 3-1/4 7.420 6.325 6.930 9.065 8.000 9.065 8.565 10.350 8.565 8.130 (83) (28.1) (36.2) (30.8)(40.3)(35.6)(40.3)(38.1) (46.0)(38.1) (33.0) 10.905 13,795 8,565 4-1/2 6,325 11.945 6,930 8,000 15,075 15,075 8,565 (114)(48.5) (28.1) (53.1) (30.8) (61.4)(35.6) (67.1) (38.1) (67.1) (38.1) 1-3/4 2,840 5,985 3,115 6,555 3,595 7,570 4,400 9,270 4,400 10,705 (44)(12.6) (26.6) (13.9) (29.2)(16.0)(33.7) (19.6)(41.2) (19.6)(47.6) 2-1/2 6,680 8,035 7,320 8,800 8,450 10,160 8,450 11,545 8,450 11,545 (64) (29.7)(35.7)(32.6)(39.1)(37.6) (45.2) (37.6) (51.4) (37.6) (51.4)1/2 4-1/4 13,260 9,395 14,525 10,290 16,480 11,885 16,480 13,520 16,480 13,520 (52.9) (108)(59.0)(41.8)(64.6)(45.8)(73.3)(73.3)(60.1)(73.3)(60.1)5-1/2 15.730 9.395 17,235 10.290 19.900 11.885 21,310 13,520 21,310 13.520 (140)(70.0)(41.8)(76.7)(45.8)(88.5)(52.9)(94.8)(60.1) (94.8)(60.1)2-1/2 5,735 10,615 6,285 11,630 7,255 13,425 8,885 16,445 8,885 17,170 (64) (25.5)(47.2)(28.0)(51.7)(32.3) (59.7)(39.5)(73.2)(39.5)(76.4)3-1/4 9.755 12.065 10.685 13.220 12.340 15.265 12.340 17.170 12.340 17.170 (83) (43.4)(53.7)(47.5)(58.8)(54.9)(67.9)(54.9)(76.4)(54.9)(76.4)5/8 18,280 19,295 5 14,455 13,675 15,830 14,980 17,295 19,485 22,280 19,485 (127)(64.3) (60.8) (70.4) (66.6) (81.3) (76.9) (85.8) (86.7) (99.1) (86.7) 6-1/4 20,520 13,675 22,475 14,980 25,955 17,295 31,785 19,485 31,785 19,485 (159) (100.0) (141.4)(66.6)(115.5)(76.9)(141.4)(86.7) (91.3)(60.8)(86.7)9,350 9,350 2-1/2 6,035 11,615 6,610 12,725 7,635 14,690 17,995 20,775 (64) (26.8)(51.7)(29.4)(56.6)(34.0) (65.3)(41.6) (80.0)(41.6) (92.4) 4-1/4 11,900 17,055 13,035 18,685 15,050 21,575 17,745 24,270 20,490 24,270 (91.1) (108)(52.9)(75.9)(58.0)(83.1)(66.9)(96.0)(78.9)(108.0)(108.0)3/4 5 19,020 17,055 20,835 18,685 24,055 21,575 29,460 24,270 29,460 24,270 (127)(84.6)(75.9)(92.7)(83.1)(107.0)(96.0)(131.0)(108.0)(131.0)(108.0)6-1/4 20,495 17,055 22,450 18,685 25,920 21,575 31,750 24,270 31,750 24,270 (75.9) (159)(91.2)(99.9)(83.1) (115.3)(96.0)(141.2)(108.0)(141.2)(108.0)

Ultimate Load Capacities for Screw-Bolt+ in Normal-Weight Concrete^{1,2}

1. Tabulated load values are for anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

ANCHORS

ECHANICAL

ANCHORS

SCREW-BOLT+TM High Performance Screw Anchor

Allowable Load Capacities for Screw-Bolt+ in Normal-Weight Concrete^{1,2,3,45}

	Minimum				Minim	um Concrete C	ompressive Si	trength			
Nominal Anchor	Nominal Embedment	f'c = 2, (17.3	500 psi MPa)		,000 psi MPa)	f ⁱ c = 4, (27.6		f'c = 6, (41.4	000 psi MPa)	f'c = 8, (55.2	
1/4 3/8	Depth in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
	1	330	415	350	440	385	480	430	520	430	520
	(25)	(1.5)	(1.8)	(1.6)	(2.0)	(1.7)	(2.1)	(1.9)	(2.3)	(1.9)	(2.3)
1/4	1-5/8	710	415	750	440	815	480	815	520	815	520
	(41)	(3.2)	(1.8)	(3.3)	(2.0)	(3.6)	(2.1)	(3.6)	(2.3)	(3.6)	(2.3)
	2-1/2	915	505	965	535	1,050	585	1,070	635	1,070	635
	(64)	(4.1)	(2.2)	(4.3)	(2.4)	(4.7)	(2.6)	(4.8)	(2.8)	(4.8)	(2.8)
	1-1/2	660	890	720	975	835	1,125	1,020	1,375	1,020	1,590
	(38)	(2.9)	(4.0)	(3.2)	(4.3)	(3.7)	(5.0)	(4.5)	(6.1)	(4.5)	(7.1)
0.40	2	920	1,080	1,005	1,185	1,160	1,365	1,180	1,585	1,365	1,585
	(51)	(4.1)	(4.8)	(4.5)	(5.3)	(5.2)	(6.1)	(5.2)	(7.1)	(6.1)	(7.1)
3/8	3-1/4	1,855	1,580	2,035	1,735	2,265	2,000	2,265	2,140	2,590	2,14(
	(83)	(8.3)	(7.0)	(9.1)	(7.7)	(10.1)	(8.9)	(10.1)	(9.5)	(11.5)	(9.5)
	4-1/2 (114)	2,725 (12.1)	1,580 (7.0)	2,985 (13.3)	1,735 (7.7)	3,450 (15.3)	2,000 (8.9)	3,770 (16.8)	2,140 (9.5)	3,770 (16.8)	2,14(
	1-3/4	710	1,495	780	1,640	900	1,895	1,100	2,320	1,100	2,675
	(44)	(3.2)	(6.7)	(3.5)	(7.3)	(4.0)	(8.4)	(4.9)	(10.3)	(4.9)	(11.9
1/0	2-1/2	1,670	2,010	1,830	2,200	2,115	2,540	2,115	2,885	2,115	2,885
	(64)	(7.4)	(8.9)	(8.1)	(9.8)	(9.4)	(11.3)	(9.4)	(12.8)	(9.4)	(12.8
1/2	4-1/4	3,315	2,350	3,630	2,575	4,120	2,970	4,120	3,380	4,120	3,380
	(108)	(14.7)	(10.5)	(16.1)	(11.5)	(18.3)	(13.2)	(18.3)	(15.0)	(18.3)	(15.0
	5-1/2	3,935	2,350	4,310	2,575	4,975	2,970	5,330	3,380	5,330	3,380
	(140)	(17.5)	(10.5)	(19.2)	(11.5)	(22.1)	(13.2)	(23.7)	(15.0)	(23.7)	(15.0
	2-1/2	1,435	2,655	1,570	2,910	1,815	3,355	2,220	4,110	2,220	4,295
	(64)	(6.4)	(11.8)	(7.0)	(12.9)	(8.1)	(14.9)	(9.9)	(18.3)	(9.9)	(19.1
5/8	3-1/4	2,440	3,015	2,670	3,305	3,085	3,815	3,085	4,295	3,085	4,295
	(83)	(10.9)	(13.4)	(11.9)	(14.7)	(13.7)	(17.0)	(13.7)	(19.1)	(13.7)	(19.1
0/6	5	3,615	3,420	3,960	3,745	4,570	4,325	4,825	4,870	5,570	4,870
	(127)	(16.1)	(15.2)	(17.6)	(16.7)	(20.3)	(19.2)	(21.5)	(21.7)	(24.8)	(21.7
	6-1/4	5,130	3,420	5,620	3,745	6,490	4,325	7,945	4,870	7,945	4,870
	(159)	(22.8)	(15.2)	(25.0)	(16.7)	(28.9)	(19.2)	(35.3)	(21.7)	(35.3)	(21.7
	2-1/2	1,510	2,905	1,655	3,180	1,910	3,675	2,340	4,500	2,340	5,198
	(64)	(6.7)	(12.9)	(7.4)	(14.1)	(8.5)	(16.3)	(10.4)	(20.0)	(10.4)	(23.1
3/4	4-1/4	2,975	4,265	3,260	4,670	3,765	5,395	4,435	6,070	5,125	6,070
	(108)	(13.2)	(19.0)	(14.5)	(20.8)	(16.7)	(24.0)	(19.7)	(27.0)	(22.8)	(27.0)
3/4	5	4,755	4,265	5,210	4,670	6,015	5,395	7,365	6,070	7,365	6,070
	(127)	(21.2)	(19.0)	(23.2)	(20.8)	(26.8)	(24.0)	(32.8)	(27.0)	(32.8)	(27.0
	6-1/4	5,125	4,265	5,615	4,670	6,480	5,395	7,940	6,070	7,940	6,070
	(159)	(22.8)	(19.0)	(25.0)	(20.8)	(28.8)	(24.0)	(35.3)	(27.0)	(35.3)	(27.0)

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. Anchors may be used in lightweight concrete provided the allowable load capacities are multiplied by a reduction factor of 0.60.

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Edge Distance Reduction Factors - Tension (F_{NC})

Idgo	Distance Reduc		1/4			<u> </u>	/8			1	/2		1	5/	0			3	14	
			<u> </u>	0.4/0	4.4/2				1.010				0.10		-	0.44				0.445
	I Embedment hnom (in)	1		2-1/2		2	3-1/4			-	-		2-1/2		5	<u> </u>	2-1/2		5	6-1/4
Min. E	dge Distance cmin (in)	1-1/2	1-1/2		1-1/2		1-1/2		1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4
	1-1/2	1.00	0.77	0.64	0.85	0.74	0.59	0.55	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	1.00	0.83	0.67	0.93	0.79	0.62	0.57	0.87	0.71	0.58	0.54	0.73	0.65	0.56	0.53	0.73	0.59	0.56	0.53
	2	1.00	0.88	0.71	1.00	0.84	0.65	0.59	0.94	0.76	0.60	0.56	0.78	0.68	0.58	0.54	0.78	0.61	0.58	0.54
	2-1/4	1.00	0.94	0.75	1.00	0.89	0.68	0.61	1.00	0.80	0.63	0.57	0.82	0.71	0.60	0.56	0.82	0.63	0.60	0.56
	2-1/2	1.00	1.00	0.78	1.00	0.95	0.71	0.63	1.00	0.84	0.65	0.59	0.87	0.75	0.62	0.57	0.87	0.66	0.62	0.57
	2-3/4	1.00	1.00	0.82	1.00	1.00	0.74	0.65	1.00	0.88	0.67	0.61	0.91	0.78	0.64	0.59	0.91	0.68	0.64	0.59
	3	1.00	1.00	0.86	1.00	1.00	0.77	0.67	1.00	0.92	0.69	0.62	0.96	0.81	0.66	0.60	0.96	0.70	0.66	0.60
(3-1/2	1.00	1.00	0.93	1.00	1.00	0.83	0.71	1.00	1.00	0.74	0.65	1.00	0.87	0.69	0.63	1.00	0.75	0.69	0.63
ches	4	1.00	1.00	1.00	1.00	1.00	0.88	0.75	1.00	1.00	0.78	0.69	1.00	0.94	0.73	0.66	1.00	0.79	0.73	0.66
Edge Distance (inches)	4-1/2	1.00	1.00	1.00	1.00	1.00	0.94	0.79	1.00	1.00	0.82	0.72	1.00	1.00	0.77	0.69	1.00	0.84	0.77	0.69
ance	5	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	1.00	0.87	0.75	1.00	1.00	0.81	0.72	1.00	0.89	0.81	0.72
Dist	5-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.91	0.79	1.00	1.00	0.85	0.75	1.00	0.93	0.85	0.75
dge	6	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	0.96	0.82	1.00	1.00	0.89	0.78	1.00	0.98	0.89	0.78
Ē	6-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.85	1.00	1.00	0.92	0.81	1.00	1.00	0.92	0.81
	7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.96	0.84	1.00	1.00	0.96	0.84
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	1.00	0.87	1.00	1.00	1.00	0.87
	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	0.90	1.00	1.00	1.00	0.90
	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	0.93	1.00	1.00	1.00	0.93
	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.96
	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.99
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors - Tension (F_{NS})

-	Diameter (in)		1/4			3	/8			1/	/2			5/	/8		3/4			
Nomina	I Embedment hnom (in)	1	1-5/8	2-1/2	1-1/2	2	3-1/4	4-1/2	1-3/4	2-1/2	4-1/4	5-1/2	2-1/2	3-1/4	5	6-1/4	2-1/2	4-1/4	5	6-1/4
Minim	um Spacing smin (in)	1-1/2	1-1/2	1-1/2	2	2	2	2	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	3	3	3	3
	1-1/2	0.89	0.73	0.66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.94	0.77	0.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	1.00	0.80	0.70	0.88	0.77	0.67	0.63	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	1.00	0.83	0.72	0.93	0.80	0.69	0.64	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	1.00	0.86	0.74	0.97	0.83	0.70	0.65	-	-	-	-	-	-	-	-	-	-	-	-]
	2-3/4	1.00	0.89	0.76	1.00	0.86	0.72	0.66	0.92	0.78	0.67	0.64	0.80	0.73	0.65	0.63	-	-	-	-
	3	1.00	0.92	0.78	1.00	0.89	0.74	0.67	0.95	0.80	0.68	0.65	0.83	0.74	0.66	0.64	0.83	0.69	0.66	0.64
	3-1/2	1.00	0.99	0.82	1.00	0.94	0.77	0.70	1.00	0.85	0.71	0.67	0.88	0.78	0.68	0.65	0.88	0.71	0.68	0.65
	4	1.00	1.00	0.86	1.00	1.00	0.80	0.72	1.00	0.89	0.73	0.68	0.92	0.81	0.70	0.67	0.93	0.74	0.71	0.67
	4-1/2	1.00	1.00	0.90	1.00	1.00	0.83	0.74	1.00	0.93	0.75	0.70	0.97	0.85	0.72	0.68	0.97	0.76	0.73	0.69
	5	1.00	1.00	0.94	1.00	1.00	0.86	0.76	1.00	0.98	0.78	0.72	1.00	0.88	0.75	0.70	1.00	0.79	0.75	0.70
hes	5-1/2	1.00	1.00	0.97	1.00	1.00	0.89	0.78	1.00	1.00	0.80	0.74	1.00	0.92	0.77	0.72	1.00	0.81	0.77	0.72
Spacing Distance (inches)	6	1.00	1.00	1.00	1.00	1.00	0.93	0.81	1.00	1.00	0.82	0.75	1.00	0.95	0.79	0.73	1.00	0.84	0.79	0.73
nce	6-1/2	1.00	1.00	1.00	1.00	1.00	0.96	0.83	1.00	1.00	0.85	0.77	1.00	0.98	0.81	0.75	1.00	0.86	0.81	0.75
lista	7	1.00	1.00	1.00	1.00	1.00	0.99	0.85	1.00	1.00	0.87	0.79	1.00	1.00	0.83	0.76	1.00	0.89	0.83	0.77
ing [7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.87	1.00	1.00	0.90	0.81	1.00	1.00	0.85	0.78	1.00	0.91	0.85	0.78
paci	8	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.92	0.83	1.00	1.00	0.87	0.80	1.00	0.94	0.87	0.80
s	8-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.92	1.00	1.00	0.94	0.84	1.00	1.00	0.89	0.81	1.00	0.96	0.89	0.81
	9	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	1.00	0.97	0.86	1.00	1.00	0.91	0.83	1.00	0.99	0.91	0.83
	9-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.99	0.88	1.00	1.00	0.93	0.84	1.00	1.00	0.93	0.85
	10	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	0.90	1.00	1.00	0.95	0.86	1.00	1.00	0.95	0.86
	10-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.97	0.88	1.00	1.00	0.97	0.88
	11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93	1.00	1.00	0.99	0.89	1.00	1.00	0.99	0.89
	11-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	0.91	1.00	1.00	1.00	0.91
	12	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.92	1.00	1.00	1.00	0.93
	13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.96
	14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.99
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

MECHANICAL ANCHORS

	Diameter (in)		1/4			3	/8			1/	/2			5/	/8			3	/4	
Nomin	al Embedment hnom (in)	1	1-5/8	2-1/2	1-1/2	2	3-1/4	4-1/2	1-3/4	2-1/2	4-1/4	5-1/2	2-1/2	3-1/4	5	6-1/4	2-1/2	4-1/4	5	6-1/4
Min.	Edge Distance cmin(in)	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4
	1-1/2	0.58	0.63	0.59	0.40	0.37	0.31	0.32	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.68	0.73	0.69	0.46	0.43	0.36	0.38	0.35	0.31	0.30	0.31	0.27	0.26	0.25	0.26	0.26	0.22	0.22	0.23
	2	0.78	0.84	0.78	0.53	0.49	0.41	0.43	0.41	0.35	0.35	0.36	0.30	0.29	0.29	0.30	0.30	0.25	0.26	0.27
	2-1/4	0.87	0.94	0.88	0.59	0.55	0.46	0.48	0.46	0.40	0.39	0.40	0.34	0.33	0.32	0.33	0.33	0.28	0.29	0.30
	2-1/2	0.97	1.00	0.98	0.66	0.61	0.51	0.54	0.51	0.44	0.43	0.45	0.38	0.36	0.36	0.37	0.37	0.31	0.32	0.33
(2-3/4	1.00	1.00	1.00	0.73	0.67	0.56	0.59	0.56	0.49	0.48	0.49	0.42	0.40	0.40	0.41	0.41	0.34	0.35	0.37
(inches)	3	1.00	1.00	1.00	0.79	0.73	0.61	0.64	0.61	0.53	0.52	0.54	0.46	0.44	0.43	0.45	0.44	0.38	0.39	0.40
	3-1/2	1.00	1.00	1.00	0.92	0.85	0.72	0.75	0.71	0.62	0.61	0.63	0.53	0.51	0.50	0.52	0.52	0.44	0.45	0.47
ance	4	1.00	1.00	1.00	1.00	0.97	0.82	0.86	0.81	0.71	0.69	0.72	0.61	0.58	0.57	0.59	0.59	0.50	0.51	0.53
Distance	4-1/2	1.00	1.00	1.00	1.00	1.00	0.92	0.97	0.91	0.80	0.78	0.81	0.68	0.66	0.65	0.67	0.67	0.56	0.58	0.60
Edge	5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.89	0.87	0.90	0.76	0.73	0.72	0.74	0.74	0.63	0.64	0.66
ŭ	5-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.95	0.99	0.84	0.80	0.79	0.82	0.82	0.69	0.71	0.73
	6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.88	0.86	0.89	0.89	0.75	0.77	0.80
	6-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.95	0.93	0.97	0.96	0.81	0.84	0.86
	7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	0.90	0.93
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.96	1.00
	8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Spacing Reduction Factors - Shear (F_{VS})

	Diameter (in)	1/4			3/8				1/2			5/8			3/4					
Nominal Embedment hom (in)		1	1-5/8	2-1/2	1-1/2	2	3-1/4	4-1/2	1-3/4	2-1/2	4-1/4	5-1/2	2-1/2	3-1/4	5	6-1/4	2-1/2	4-1/4	5	6-1/4
Minin	num Spacing smin (in)	1-1/2	1-1/2	1-1/2	2	2	2	2	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	2-3/4	3	3	3	3
	1-1/2	0.60	0.60	0.60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-3/4	0.61	0.62	0.61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	0.63	0.64	0.63	0.59	0.58	0.57	0.57	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/4	0.65	0.66	0.65	0.60	0.59	0.58	0.58	-	-	-	-	-	-	-	-	-	-	-	-
	2-1/2	0.66	0.67	0.66	0.61	0.60	0.59	0.59	-	-	-	-	-	-	-	-	-	-	-	-
	2-3/4	0.68	0.69	0.68	0.62	0.61	0.59	0.60	0.59	0.58	0.58	0.58	0.57	0.57	0.57	0.57	-	-	-	-
	3	0.69	0.71	0.70	0.63	0.62	0.60	0.61	0.60	0.59	0.59	0.59	0.58	0.57	0.57	0.57	0.57	0.56	0.56	0.57
	3-1/2	0.73	0.74	0.73	0.65	0.64	0.62	0.63	0.62	0.60	0.60	0.60	0.59	0.59	0.58	0.59	0.59	0.57	0.57	0.58
	4	0.76	0.78	0.76	0.68	0.66	0.64	0.64	0.64	0.62	0.62	0.62	0.60	0.60	0.60	0.60	0.60	0.58	0.59	0.59
	4-1/2	0.79	0.81	0.79	0.70	0.68	0.65	0.66	0.65	0.63	0.63	0.63	0.61	0.61	0.61	0.61	0.61	0.59	0.60	0.60
	5	0.82	0.85	0.83	0.72	0.70	0.67	0.68	0.67	0.65	0.64	0.65	0.63	0.62	0.62	0.62	0.62	0.60	0.61	0.61
	5-1/2	0.86	0.88	0.86	0.74	0.72	0.69	0.70	0.69	0.66	0.66	0.66	0.64	0.63	0.63	0.64	0.64	0.61	0.62	0.62
	6	0.89	0.92	0.89	0.76	0.74	0.70	0.71	0.70	0.68	0.67	0.68	0.65	0.65	0.64	0.65	0.65	0.63	0.63	0.63
es)	6-1/2	0.92	0.95	0.92	0.79	0.76	0.72	0.73	0.72	0.69	0.69	0.69	0.66	0.66	0.66	0.66	0.66	0.64	0.64	0.64
Spacing Distance (inches)	7	0.95	0.99	0.96	0.81	0.78	0.74	0.75	0.74	0.71	0.70	0.71	0.68	0.67	0.67	0.67	0.67	0.65	0.65	0.66
	7-1/2	0.99	1.00	0.99	0.83	0.80	0.76	0.77	0.75	0.72	0.72	0.72	0.69	0.68	0.68	0.69	0.69	0.66	0.66	0.67
	8	1.00	1.00	1.00	0.85	0.82	0.77	0.79	0.77	0.74	0.73	0.74	0.70	0.69	0.69	0.70	0.70	0.67	0.67	0.68
	9	1.00	1.00	1.00	0.90	0.87	0.81	0.82	0.80	0.77	0.76	0.77	0.73	0.72	0.72	0.72	0.72	0.69	0.69	0.70
	10	1.00	1.00	1.00	0.94	0.91	0.84	0.86	0.84	0.80	0.79	0.80	0.75	0.74	0.74	0.75	0.75	0.71	0.71	0.72
	11	1.00	1.00	1.00	0.98	0.95	0.87	0.89	0.87	0.82	0.82	0.83	0.78	0.77	0.76	0.77	0.77	0.73	0.74	0.74
	12	1.00	1.00	1.00	1.00	0.99	0.91	0.93	0.91	0.85	0.85	0.86	0.80	0.79	0.79	0.80	0.80	0.75	0.76	0.77
	13	1.00	1.00	1.00	1.00	1.00	0.94	0.96	0.94	0.88	0.88	0.89	0.83	0.82	0.81	0.82	0.82	0.77	0.78	0.79
	14	1.00	1.00	1.00	1.00	1.00	0.98	1.00	0.97	0.91	0.90	0.92	0.85	0.84	0.84	0.85	0.85	0.79	0.80	0.81
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.93	0.95	0.88	0.86	0.86	0.87	0.87	0.81	0.82	0.83
	16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.96	0.98	0.91	0.89	0.88	0.90	0.90	0.83	0.84	0.85
	17	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.93	0.91	0.91	0.92	0.92	0.86	0.86	0.88
	18	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	0.94	0.93	0.95	0.94	0.88	0.89	0.90
	19	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.96	0.95	0.97	0.97	0.90	0.91	0.92
	20	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.98	1.00	0.99	0.92	0.93	0.94
	21	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.95	0.97
	22	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	0.97	0.99
	23	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.99	1.00
	24	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

	Minimum Nominal Embedment	Minimum Edge Distance	Minimum Concrete Compressive Strength									
Iominal Anchor Diameter			f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 psi (27.6 MPa)					
d in.	Depth in. (mm)	in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)				
1/4	1-5/8 (41)	1-1/2	2,060 (9.2)	1,300 (5.8)	2,260 (10.1)	1,420 (6.3)	2,600 (11.6)	1,640 (7.3)				
1/4	2-1/2 (64)	(38)	3,380 (15.0)	1,580 (7.0)	3,700 (16.5)	1,740 (7.7)	4,280 (19.0)	2,000 (8.9)				
	1-1/2 (38)		2,120 (9.4)	1,060 (4.7)	2,320 (10.3)	1,160 (5.2)	2,680 (11.9)	1,340 (6.0)				
3/8	2 (51)	1-1/2 (38)	2,600 (11.6)	1,560 (6.9)	2,840 (12.6)	1,700 (7.6)	3,280 (14.6)	1,960 (8.7)				
5/0	3-1/4 (83)		4,460 (19.8)	2,080 (9.3)	4,880 (21.7)	2,280 (10.1)	5,640 (25.1)	2,640 (11.7)				
	4-1/2 (114)		7,680 (34.2)	2,080 (9.3)	8,420 (37.5)	2,280 (10.1)	9,720 (43.2)	2,640 (11.7)				
	1-3/4 (44)		2,840 (12.6)	2,040 (9.1)	3,115 (13.9)	2,220 (9.9)	3,595 (16.0)	2,580 (11.5)				
1/2	2-1/2 (64)	1-3/4 (38)	3,820 (17.0)	2,360 (10.5)	4,180 (18.6)	2,580 (11.5)	4,820 (21.4)	2,980 (13.3)				
172	4-1/4 (108)		6,860 (30.5)	3,280 (14.6)	7,520 (33.5)	3,580 (15.9)	8,680 (38.6)	4,140 (18.4)				
	5-1/2 (140)		12,600 (56.0)	3,280 (14.6)	13,800 (61.4)	3,580 (15.9)	15,940 (70.9)	4,140 (18.4)				
	3-1/4 (83)		5,260 (23.4)	2,800 (12.5)	5,760 (25.6)	3,060 (13.6)	6,640 (29.5)	3,540 (15.7)				
5/8	5 (127)	1-3/4 (44)	8,360 (37.2)	3,660 (16.3)	9,160 (40.7)	4,020 (17.9)	10,580 (47.1)	4,640 (20.6)				
	6-1/4 (159)		10,240 (45.5)	3,660 (16.3)	11,200 (49.8)	4,020 (17.9)	12,940 (57.6)	4,640 (20.6)				
	4-1/4 (108)		7,240 (32.2)	3,460 (15.4)	7,920 (35.2)	3,780 (16.8)	9,160 (40.7)	4,360 (19.4)				
3/4	5 (127)	1-3/4 (44)	9,140 (40.7)	3,460 (15.4)	10,020 (44.6)	3,780 (16.8)	11,560 (51.4)	4,360 (19.4)				
	6-1/4 (159)		14,420 (64.1)	3,460 (15.4)	15,800 (70.3)	3,780 (16.8)	18,240 (81.1)	4,360 (19.4)				

Ultimate Load Capacities for Screw-Bolt+ in Normal-Weight Concrete at Minimum Edge^{1,2}

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

ECHANICAL ANCHORS

SCREW-BOLT+TM High Performance Screw Anchor

Nominal	Minimum	Minimum		N	linimum Concrete (Compressive Streng	th	
Anchor Diameter	Nominal Embedment	Edge Distance	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 ps	si (27.6 MPa)
d in.	Depth in. (mm)	in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
1/4	1-5/8 (41)	1-1/2	515 (2.3)	325 (1.4)	565 (2.5)	355 (1.6)	650 (2.9)	410 (1.8)
1/4	2-1/2 (64)	(38)	845 (3.8)	395 (1.8)	925 (4.1)	435 (1.9)	1,070 (4.8)	500 (2.2)
	1-1/2 (38)		530 (2.4)	265 (1.2)	580 (2.6)	290 (1.3)	670 (3.0)	335 (1.5)
3/8	2 (51)	1-1/2	650 (2.9)	390 (1.7)	710 (3.2)	425 (1.9)	820 (3.6)	490 (2.2)
3/0	3-1/4 (83)	(38)	1,115 (5.0)	520 (2.3)	1,220 (5.4)	570 (2.5)	1,410 (6.3)	660 (2.9)
	4-1/2 (114)		1,920 (8.5)	520 (2.3)	2,105 (9.4)	570 (2.5)	2,430 (10.8)	660 (2.9)
	1-3/4 (44)		710 (3.2)	510 (2.3)	780 (3.5)	555 (2.5)	900 (4.0)	645 (2.9)
1/2	2-1/2 (64)	1-3/4	955 (4.2)	590 (2.6)	1,045 (4.6)	645 (2.9)	1,205 (5.4)	745 (3.3)
1/2	4-1/4 (108)	(38)	1,715 (7.6)	820 (3.6)	1,880 (8.4)	895 (4.0)	2,170 (9.7)	1,035 (4.6)
	5-1/2 (140)		3,150 (14.0)	820 (3.6)	3,450 (15.3)	895 (4.0)	3,985 (17.7)	1,035 (4.6)
	3-1/4 (83)		1,315 (5.8)	700 (3.1)	1,440 (6.4)	765 (3.4)	1,660 (7.4)	885 (3.9)
5/8	5 (127)	1-3/4 (44)	2,090 (9.3)	915 (4.1)	2,290 (10.2)	1,005 (4.5)	2,645 (11.8)	1,160 (5.2)
	6-1/4 (159)		2,560 (11.4)	915 (4.1)	2,800 (12.5)	1,005 (4.5)	3,235 (14.4)	1,160 (5.2)
	4-1/4 (108)		1,810 (8.1)	865 (3.8)	1,980 (8.8)	945 (4.2)	2,290 (10.2)	1,090 (4.8)
3/4	5 (127)	1-3/4 (44)	2,285 (10.2)	865 (3.8)	2,505 (11.1)	945 (4.2)	2,890 (12.9)	1,090 (4.8)
	6-1/4 (159)		3,605 (16.0)	865 (3.8)	3,950 (17.6)	945 (4.2)	4,560 (20.3)	1,090 (4.8)

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less that critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. Anchors may be used in sand-lightweight concrete provided the allowable load capacities are multiplied by a reduction factor of 0.60.

Allowable Screw-Bolt+ Tension and Shear Load Capacities Installed into the face of Grout-Filled Concrete Masonry Units^{1,2,3,4,5,6,7,8,9}

			Tension Load						
Minimum Embedment	Allowable Load		Spacing Distance,	\$	Edge or End Distance, c₂ or c₁ (see Illustration of Screw-Bolt+ Installed into Grouted Concrete Mason Wall detail)				
h _{nom} in. (mm)	ibs (kN)	Critical Distance, s in. (mm)	Minimum Distance, Smin in. (mm)	Allowable Load Factor at smin	Critical Distance, ca in. (mm)	Minimum Distance, Cmin in. (mm)	Allowable Load Factor at cmin		
1-5/8 (41.3) 2-1/2 (63.5)	315 (1.4) 605 (2.7)	4 (101.6)	2 (50.8)	1.00	3-3/4 (95.3)	1-1/4 (31.8)	0.60		
2 (50.8) 3-1/4 (82.6)	450 (2.0) 1,085 (4.8)	6 (152.4)	3 (76.2)	1.00	6 (152.4)	1-1/2 (38.1)	0.70		
2-1/2 (63.5) 4-1/4 (108.0)	610 (2.7) 1,190 (5.3)	8 (203.2)	4 (101.6)	1.00	8 (203.2)	2-5/8 (66.7)	0.75		
3-1/4 (82.6) 5 (127.0)	880 (3.9) 1,270 (5.6)	10 (254.0)	4 (101.6)	1.00	10 (254.0)	3-3/8 (85.7)	0.90		
(127.0) (5.6) 4 1,150 3/4 (101.6) (5.1) 6-1/4 1,350		12 (304.8)	4 (101.6)	1.00	12 (304.8)	4 (101.6)	1.00		
	Embedment hom 1-5/8 (41.3) 2-1/2 (63.5) 2 (50.8) 3-1/4 (82.6) 2-1/2 (63.5) 2-1/2 (63.5) 4-1/4 (108.0) 3-1/4 (82.6) 5 (127.0) 4 (101.6) 6-1/4	Embedment hrom (mm) Allowable Load at cx and Sx lbs (kN) 1-5/8 (41.3) 315 (1.4) 2-1/2 605 (63.5) (2.7) 2 2 450 (50.8) (2.0) 3-1/4 3-1/4 1,085 (82.6) 2-1/2 610 (63.5) (2.7) 4.1/4 2-1/2 610 (5.3) (3.5) (2.7) 4-1/4 1,190 (108.0) (5.3) 3-1/4 880 (82.6) (3.9) 5 1,270 (5.6) 4 1,150 (101.6) (5.1) (5.1)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

			Load at Car and Ser Direction 3 & 4 Ibs° (kN) 400 (1.8) 505 (2.2) 815 (3.6) 935 (4.2) 1,380 (6.1) 0 2,180 (9.7) 0 2,180 (9.7)	Sp	Shear Load acing Distance	, S				ee Illustration of Screw-Bolt+ rete Masonry Wall detail)		
Anchor	Minimum Embedment	Allowable Load at Cor and Sor	Load at Cor		Minimum			Minimum	Allowable Load Factor at Cmin			
Diameter, d in.	hnom in. (mm)	Direction 1 & 2 Ibs ⁹ (kN)	Direction 3 & 4 Ibs ⁹	Critical Distance, sa in. (mm)	Distance, Smin in. (mm)	Allowable Load Factor at smin	Critical Distance, ca in. (mm)	Distance, Cmin in. (mm)	Load Perpendicular to Edge or End (Direction 1 & 2) ⁹	Load Perpendicular to Edge or End (Direction 3 & 4) ⁹		
1/4	1-5/8 (41.3) 2-1/2 (63.5)	400 (1.8) 505 (2.2)	(1.8) 505	4 (101.6)	2 (50.8)	1.00	3-3/4 (95.3)	1-1/4 (31.8)	0.35	1.00		
3/8	2 (50.8) 3-1/4 (82.6)	815 (3.6) 935 (4.2)	(3.6) 935	6 (152.4)	3 (76.2)	1.00	6 (152.4)	1-1/2 (38.1)	0.27	1.00		
1/2	2-1/2 (63.5) 4-1/4 (108.0)	1,380 (6.1) 2,180 (9.7)	1,380 (6.1) 2,180	8 (203.2)	4 (101.6)	1.00	8 (203.2)	2-5/8 (66.7)	0.20	1.00		
5/8	3-1/4 (82.6) 5 (127.0)	2,090 (9.3) 2,640 (11.7)	2,225	10 (254.0)	4 (101.6)	1.00	10 (254.0)	3-3/8 (85.7)	0.23	1.00		
3/4	4 (101.6) 6-1/4 (158.8)	2,800 (12.5) 3,100 (13.8)	3,330 (14.8) 3,685 (16.4)	12 (304.8)	4 (101.6)	1.00	12 (304.8)	4 (101.6)	0.25	1.00		

For SI: 1 inch = 25.4 mm; 1 lbs = 0.0044 kN, 1 psi = 0.006894 MPa.

1-800-4 DEWALT

1. All values are for anchors installed in fully grouted concrete masonry wall construction with materials meeting minimum compressive strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C90. Allowable loads are based on a safety factor of 5.0.

 Anchors may be installed in any location in the face of the masonry wall (cell, web, bed joint) except within 1-1/4-inch from the of the vertical mortar joint (head joint), center-to-center, provided the minimum edge and end distances are maintained. Anchors may not be placed in the head joint unless the vertical joint is mortared full-depth.

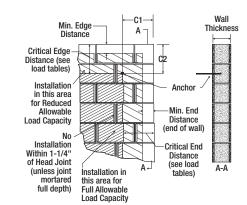
3. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor. See the Illustration of Screw-Bolt+ Anchors Installed into Grouted Concrete Masonry Wall figure.

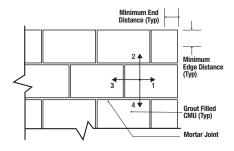
4. The critical spacing distance, s_{er}, is the anchor spacing where full load values in the table may be used. The minimum spacing distance, s_{min}, is the minimum anchor spacing for which values are available and installation is permitted. Spacing distance is measured from the centerline to centerline between two anchors.

5. The critical edge or end distance, c_m, is the distance where full load values in the table may be used. The minimum edge or end distance, c_{min}, is the minimum distance for which values are available and installation is permitted. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

6. The tabulated values are applicable for anchors installed into the ends of grout-filled concrete masonry units (e.g. wall opening) where minimum edge distances are maintained.

7. Load values for anchors installed less than ser and cer must be multiplied by the appropriate load reduction factor based on actual spacing (s) or edge distance (c). Load factors are multiplicative; both spacing and edge reduction factors must be considered.


8. Linear interpolation of load values between minimum spacing (smm) and critical spacing (sc) and between minimum edge or end distance (cmm) and critical edge or end distance (cc) is permitted.


9. See the Direction of Shear Loading in Relation to Edge and End of Masonry Wall figure for illustration of shear load directions.

REFERENCE DATA (ASD)

CODE LISTED

1. Shear load perpendicular to End and parallel to Edge

2. Shear load perpendicular to Edge and parallel to End

3. Shear load parallel to Edge and perpendicular away from End

4. Shear load parallel to End and perpendicular to bottom of wall

Allowable Screw-Bolt+ Tension and Shear Load Capacities Installed
into the Tops of Grout-Filled Concrete Masonry Units ^{1,2,3,4,5,6,7,8,9,10}

						Shear Loa	nd, Ib (kN)			
Anchor Diameter d in.	Minimum Embedment hnom in. (mm)	Minimum Spacing Distance in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Tension Load Ibs (kN)	Perpendicular to Edge of Masonry Wall (II to end) I 10 185 (0.8) 6 10 185 (0.8) 6 35 215 (1.0) 6 22 (1.0) 2 25 505 (2.2) 6 8) (2.2) 6 8) (2.5) 6 10 255 (1.1) 6 10 255 (1.2) 6 10 255 (1.2) 6 11 25 7	Load Parallel to Edge of Masonry Wall (⊥ to end)			
1/4	2-1/2	1-1/2 (38.1)	1-1/2 (38.1)	4 (101.6)	410 (1.8)		185 (0.8)			
1/4	(63.5)	1-1/2 (38.1)	3-1/2 (88.9)	4 (101.6)	485 (2.2)		215 (1.0)			
3/8	3-1/4	2 (50.8)	1-1/2 (38.1)	4 (101.6)	625 (2.8)		505 (2.2)			
3/0	(82.6)	2 (50.8)	3-1/2 (88.9)	6 (152.4)	625 (2.8)		560 (2.5)			
1/2	4-1/4	8 (203.2) (see Note 4 for	1-3/4 (44.5)	8	810 (3.6)		580 (2.6)			
1/2	(108.0)	reduced minimum spacing distances)	3-3/4 (95.3)	(203.2)	1,210 (5.4)		580 (2.6)			
5/8	5 (127.0)	10 (254.0)	1-3/4 (44.5)	10 (254.0)	900 (4.0)		950 (4.2)			
3/4	6-1/4 (158.8)	12 (304.8)	1-3/4 (44.5)	12 (304.8)	1,215 (5.4)	260 (1.2)	990 (4.4)			

For SI: 1 inch = 25.4 mm; 1 lbs = 0.0044 kN, 1 psi = 0.006894 MPa.

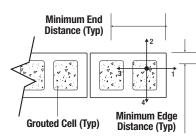
1. All values are for anchors installed in fully grouted concrete masonry wall construction with materials meeting minimum compressive strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C90. Allowable loads are based on a safety factor of 5.0.

 Anchors may be installed in any location in the top of the masonry wall except within 1-1/4-inch from the of the mortar joint (head joint), provided the minimum edge and end distances are maintained.

3. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor. See Screw-Bolt+ Anchors Installed into the Top of Grouted Concrete Masonry Wall figure.

4. Minimum spacing distance for 1/2-inch-diameter anchors shall be 8 inches and may be reduced to 2 inches provided the allowable load reduction factor of 0.40 is applied. Linear interpolation may be used to determine the reduction factor for intermediate anchor spacing distances between 8 inches and 2 inches.

5. Spacing distance is measured from the centerline to centerline between two anchors.


6. Linear interpolation may be used to for 1/4-inch and 3/8-inch-diameter anchors to determine allowable loads for edge distances between 3-1/2-inches and 1-1/2-inches.

7. Linear interpolation may be used to for 1/2-inch-diameter anchors to determine allowable loads for edge distances between 3-3/4-inches and 1-3/4-inches.

8. The edge and end distance is measured from the anchor centerline to the closest unrestrained edge and end of the CMU block, respectively. See Screw-Bolt+ Anchors Installed into the Top of Grouted Concrete Masonry Wall figure.

9. Spacing distance is measured from the centerline to centerline between two anchors.

10. Allowable shear loads parallel and perpendicular to the edge of a masonry wall may be applied in or out of plane, respectively. See Screw-Bolt+ Anchors Installed into the Top of Grouted Concrete Masonry Wall figure.

1. Shear load perpendicular to End and parallel to Edge

2. Shear load perpendicular to Edge and parallel to End

3. Shear load parallel to Edge and perpendicular away from End

4. Shear load parallel to End and perpendicular to bottom of wall

				Tension Load							
	Minimum	Allowable Load	:	Spacing Distance, s	\$	E	dge or End Distanc	e			
Anchor Diameter, d in.	Embedment, h.om in. (mm)	at Car and Sar lbs (kN)	Critical Distance, ser in. (mm)	Minimum Distance, smin in. (mm)	Allowable Load Factor at smin in. (mm)	Critical Distance, ca in. (mm)	Minimum Distance, cmin in. (mm)	Allowable Load Factor at Cmin			
1/4	1-5/8 (41.3)	550 (2.4)	4 (101.6)	2 (50.8)	0.60	3-3/4 (95.3)	1-1/4 (31.8)	0.25			
	2-1/2 (63.5)	830 (3.7)	(101.6)	(0.00)		(95.3)	(31.0)				
3/8	2 (50.8)	905 (4.0)	6	3	0.60	6	1-1/2	0.50			
5/0	3-1/4 (82.6)	1,115 (5.0)	(152.4)	(76.2)	0.00	(152.4)	(38.1)	0.30			
1/2	2-1/2 (63.5)	1,015 (4.5)	8	4	0.60	8	2-5/8	0.50			
172	4-1/4 (108.0)	1,495 (6.7)	(203.2)	(101.6)	0.00	(203.2)	(66.7)	0.50			
5/8	3-1/4 (82.6)	1025 (4.6)	10	5	0.50	10	3-3/8	0.50			
5/0	5 (127.0)	2,015 (9.0)	(254.0)	(127.0)	0.50	(254.0)	(85.7)	0.50			
3/4	4 (101.6)	1,815 (8.1)	12	6	0.50	12	4	0.50			
0/4	6-1/4 (158.8)	2,400 (10.7)	(304.8)	(152.4)	0.00	(304.8)	(101.6)	0.30			
				Shear Load							
				Spacing Distance, s	5	E	dge or End Distanc	e			
Anchor Diameter, d	Minimum Embedment, hnom	Allowable Load at cor and sor	Critical Distance, sor	Minimum Distance, Smin	Allowable Load Factor at Smin	Critical Distance, car	Minimum Distance, Cmin	Allowable Load Factor at Cmin			
in.	in. (mm)	lbs (kN)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Load Perpendicular to Edge or End			
1/4	1-5/8 (41.3)	405 (1.8)	4	2	0.70	3-3/4	1-1/4	0.20			
1/4	2-1/2 (63.5)	520 (2.3)	(101.6)	(50.8)	0.70	(95.3)	(31.8)	0.20			

Allowable Screw-Bolt+ Tension and Shear Load Capacities Installed into the Face of Brick Masonry Walls^{1,2,3,4,5,6,7,8}

	(00.0)	(2.0)						
3/8	2 (50.8) 3-1/4 (82.6)	930 (4.1) 1,030 (4.6)	6 (152.4)	3 (76.2)	0.70	6 (152.4)	1-1/2 (38.1)	0.20
1/2	2-1/2 (63.5)	1,055 (4.7)	8	4	0.65	8	2-5/8	0.25
1/2	4-1/4	1,075	(203.2)	(101.6)	0.05	(203.2)	(66.7)	0.20
	(108.0)	(4.8)						
5/8	3-1/4 (82.6)	1,700 (7.6)	10	5	0.50	10	3-3/8	0.40
5/0	5 (127.0)	1,980 (8.8)	(254.0)	(127.0)	0.50	(254.0)	(85.7)	0.40
3/4	4 (101.6)	1,700 (7.6)	12	6	0.50	12	4	0.55
J/4	6-1/4 (158.8)	2,030 (9.0)	(304.8)	(152.4)	0.30	(304.8)	(101.6)	0.55
Clutingh OF	1 mm 1 lba 0.0011	UN 1 ppi 0.00000	4 MDo					

For SI: 1 inch = 25.4 mm; 1 lbs = 0.0044 kN, 1 psi = 0.006894 MPa.

1. All values are for anchors installed in minimum two-wythe, solid clay brick masonry walls conforming to ASTM C62, grade SW minimum. Mortar must be type N, S or M. The base material must have a minimum compressive strength, f'm, of 2,000 psi (13.8 MPa). Allowable loads are based on a safety factor of 5.0.

2. Anchors may be installed in any location in the face of the masonry wall, provided the minimum edge and end distances are maintained.

3. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

4. The critical spacing distance, ser, is the anchor spacing where full load values in the table may be used. The minimum spacing distance, smn, is the minimum anchor spacing for which values are available and installation is permitted. Spacing distance is measured from the centerline to centerline between two anchors.

5. The critical edge or end distance, car, is the distance where full load values in the table may be used. The minimum edge or end distance, cmin, is the minimum distance for which values are available and installation is permitted. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

6. The tabulated values are applicable for anchors installed into wall openings where minimum edge distances are maintained.

7. Load values for anchors installed less than sa and car must be multiplied by the appropriate load reduction factor based on actual spacing (s) or edge distance (c). Load factors are multiplicative; both spacing and edge reduction factors must be considered.

8. Linear interpolation of load values between minimum spacing (smn) and critical spacing (sc) and between minimum edge or end distance (cmn) and critical edge or end distance (cc) is permitted.

igh Performance Screw Anchor

Σ

EW-BOI

6

TECHNICAL GUIDE – MECHANICAL ANCHORS © 2018 DEWALT – REV. C

INSTALLATION SPECIFICATIONS (SD)

Screw-Bolt+ Installation Specifications in Concrete and Supplemental Information^{1,2,3,4}

	Property/	Notation	Units					Nom	inal Anch	or Diame	ter (inch)				
Setting In	formation	NULALIUII	Units	1/	/4		3/8			1/2			5/8		3/4
Nominal and	chor diameter	da	in. (mm)	0.2 (6.1			0.375 (9.525)			0.500 (12.7)			0.625 (15.9)		0.750 (19.05)
Minimum di hole clearar	ameter of nce in fixture	Сh	in. (mm)	3/ (9	/8 .5)		1/2 (12.7)			5/8 (15.9)			3/4 (19.1)		7/8 (22.2)
Nominal dril	II bit diameter	d _{bit}	in.	1, AN			3/8 ANSI			1/2 ANSI		5/8 ANSI			3/4 ANSI
Minimum no embedment		h _{nom}	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)	3-1/4 (83)	2-1/2 (64)	3 (76)	4-1/4 (108)	3-1/4 (64)	4 (64)	5 (127)	4-1/4 (108)
Effective Err	nbedment	h _{ef}	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)
Minimum ho	ole depth	h _{hole}	in. (mm)	2 (51)	2-7/8 (73)	2-3/8 (60)	2-7/8 (73)	3-5/8 (92)	2-7/8 (73)	3-3/8 (86)	4-5/8 (117)	3-5/8 (92)	4-3/8 (111)	5-3/8 (137)	4-5/8 (117)
Minimum co member thi		h _{min}	in. (mm)	3-1/4 (83)	4 (102)	3-1/2 (89)	4 (102)	5 (127)	4-1/2 (114)	5-1/4 (133)	6-3/4 (171)	5 (127)	6 (152)	7 (178)	6 (152)
Minimum eo	dge distance ⁶	Cmin	in. (mm)		1/2 8)		= 1-1/2 Smin ≥ 3 (1-3/4 (44)			1-3/4 (44)		1-3/4 (44)
Minimum sp distance6	bacing	Smin	in. (mm)	1- (3	1/2 8)		min = 2 (5 Cmin ≥ 2 (2-3/4 (70)			2-3/4 (70)		3 (76)
Critical edge	e distance	Cac	in. (mm)	4.30 (109)	6.10 (155)	5.00 (127)	6.30 (160)	7.80 (198)	3.30 (84)	5.90 (150)	8.10 (206)	6.30 (160)	7.90 (201)	10.10 (257)	10.90 (277)
Minimum ov anchor leng		lanch	in. (mm)	1-3/4 (44)	3 (76)	2-1/2 (64)	3 (76)	4 (102)	3 (76)	4 (102)	5 (127)	4 (102)	5 (127)	6 (152)	5 (127)
Maximum Ir torque	nstallation	Tinst,max	ftlbf. (N-m)	19 (26)	25 (34)	25 (34)	25 (34)	40 (54)	45 (61)	45 (61)	60 (81)		60 (81)		70 (95)
Maximum ir wrench pow		Timpact,max	ftlbf (N-m).	15 (20	50 03)		300 (407)			300 (407)			700 (950)		700 (950)
Impact wrer socket size	nch	-	in.	7/	16		9/16			3/4			15/16		1-1/8
Maximum h	ead height	-	in.	21,	/64		3/8			31/64			37/64		43/64
Maximum w diameter	vasher	-	in.	37,	/64		3/4			1-1/16			1-1/8		1-13/32
Effective ter area (screw	nsile stress anchor body)	Ase	in² (mm²)	0.0 (29			0.094 (60.6)			0.176 (113.5)			0.274 (176.8)		0.399 (257.4)
Minimum sp ultimate stre		f _{uta}	ksi (N/mm²)	1((69	00 90)		92.5 (638)			115 (794)			95 (656)		95 (656)
Minimum sp strength	pecified yield	fy	ksi (N/mm²)		0 52)		74 (511)			92 (635)			76 (524)		76 (524)
Mean axial	Uncracked concrete	$eta_{ ext{uncr}}$	lbf/in (kN/mm)		2,000 11)		1,157,000 (195)	C		1,014,000 (171))		919,000 (155)		1,028,00 (173)
stiffness ⁸	Cracked concrete	$eta_{ m cr}$	lbf/in (kN/mm)		,000 0)		330,000 (56)			349,000 (59)			378,000 (64)		419,000 (71)

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

 For installations in the topside of concrete-filled steel deck assemblies with minimum concrete member thickness, hmin.deck, of 2.5 inches above the upper flute (topping thickness). See the table for anchor setting information for installation on the top of concrete-filled steel deck assemblies and the top of concrete over steel deck installation detail.

3. For installations in the topside of concrete-filled steel deck assemblies with sand-lightweight concrete fill, the maximum installation torque, Tinstmax, is 18 ft.-lb.

4. For installations through the soffit of steel deck assemblies into concrete, see the design information table for installation in the soffit of concrete-filled steel deck assemblies and the installation details in the soffit of concrete over steel deck for the applicable steel deck profile. Tabulated minimum spacing values are based on anchors installed along the flute with axial spacing equal to the greater of 3her or 1.5 times the flute width.

5. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor.

Additional combinations for minimum edge distance, cmin, and minimum spacing distance, smin, may be derived by linear interpolation between the given boundary values for the 3/8-inch diameter anchors.

7. The listed minimum overall anchor length is based on the anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth, including consideration of a fixture attachment. The minimum nominal anchor length is measured from under the head to the tip of the anchor.

8. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

Anchor Setting Information for Installation on the Top of Concrete-Filled Steel Deck Assemblies with Minimum Topping Thickness^{1,2,3,4}

	NotePas		Nominal Anchor Size (inch)								
Anchor Property / Setting Information	Notation	Units	1	/4	3/8	1/2					
Nominal anchor diameter	da	in. (mm)		250 i.4)	0.375 (9.5)	0.500 (12.7)					
Minimum diameter of hole clearance in fixture	Сh	in. (mm)		/8 I.5)	1/2 (12.7)	5/8 (15.9)					
Nominal drill bit diameter	d _{bit}	in.	1/4	ANSI	3/8 ANSI	1/2 ANSI					
Minimum nominal embedment depths	h _{nom}	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)					
Effective embedment	h _{ef}	in. (mm)	1.20 (30)	1.94 (49)	1.33 (33)	1.75 (44)					
Minimum hole depth	h₀	in. (mm)	2 (51)	2-1/2 (64)	2-3/8 (60)	2-1/2 (64)					
Minimum concrete member thickness (topping thickness)	h _{min,deck}	in. (mm)	2-1/2 (64)	2-1/2 (64)	2-1/2 (64)	2-1/2 (64)					
Minimum edge distance	Cmin,deck,top	in. (mm)		1/2 38)	2 (51)	2-1/2 (64)					
Minimum spacing distance	Smin,deck,top	in. (mm)		1/2 38)	2 (51)	2-1/2 (64)					
Critical edge distance	Cac,deck,top	in. (mm)	3 (76)	4 (102)	3.5 (89)	6 (152)					
Minimum nominal anchor length6	lanch	in. (mm)	1-3/4 (44)	3 (76)	2-1/2 (64)	3 (76)					
Maximum impact wrench power (torque)	Timpact,max	ftlb. (N-m)		50 03)	300 (407)	300 (407)					
Max. installation torque	Tinst,max	ftlb. (N-m)	18 ⁷ (26)	25 (34)	25 (34)	45 (61)					
Wrench socket size	-	in.	7/	(16	9/16	3/4					
Max. head height	-	in.	21	/64	3/8	31/64					
Max. washer diameter	-	in.	37	/64	3/4	1-1/16					

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. The anchors may be installed in the topside of concrete-filled steel deck floor and roof assemblies in accordance with this table, the anchor installation specifications in concrete table and the top of concrete over steel deck installation detail provided the concrete thickness above the upper flute meets the minimum thicknesses specified in this table. Minimum concrete member thickness, hmin.deck, refers to the concrete thickness above the upper flute (topping thickness). See the top of concrete over steel deck installation detail.

2. Applicable to the following conditions:

For 1/4-inch-diameter anchors with 1-5/8-inch nominal embedment, 2-1/2-inch \leq h_{min,deck} < 3-1/4-inch.

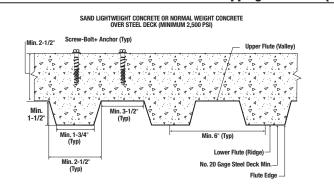
For 1/4-inch-diameter anchors with 2-1/2-inch nominal embedment, 2-1/2-inch $\leq h_{min,deck} < 4$ -inch.

For 3/8-inch-diameter anchors with 2-inch nominal embedment, 2-1/2-inch $\leq h_{\text{min,deck}} <$ 3-1/2-inch.

For 1/2-inch-diameter anchors with 2-1/2-inch nominal embedment, 2-1/2-inch $\leq h_{\text{min,deck}} < 4$ -1/2-inch.

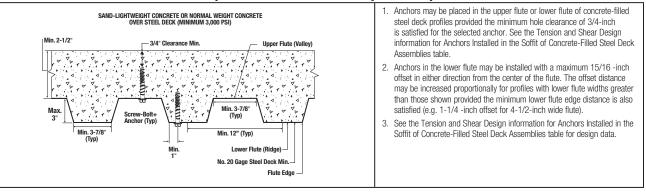
3. For all other anchor diameters and embedment depths, refer to the anchor installation specifications in concrete table for applicable values of hmin, cmin and smin, which can be substituted for hmin,deck, Cmin,decktop, and Smin,decktop, respectively.

4. Design capacities shall be based on calculations according to values in Tension Design Information and the Shear Design Information tables.

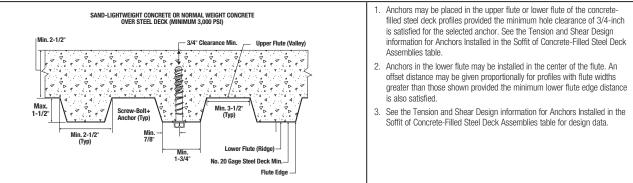

5. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor.

6. The listed minimum overall anchor length is based on the anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth, including consideration of a fixture attachment for hex head anchors. The minimum nominal anchor length is measured from under the head to the tip of the anchor.

7. For installations in the topside of concrete-filled steel deck assemblies with normal-weight concrete fill, a maximum installation torque, Timstmax, of 19 ft.-lb is allowed.



Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies with Minimum Topping Thickness (See Dimensional Profile Requirements)^{1,2}



- Anchors may be placed in the top side of concrete over steel deck profiles provided the minimum concrete thickness above the upper flute (topping thickness), minimum spacing distance and minimum edge distances are satisfied as given in Anchor Setting Information for Installation on the Top of Concrete-Filled Steel Deck Assemblies with Minimum Topping Thickness table.
- 2. For all other anchor diameters and embedment depths installed in the top of concrete over steel deck profiles with topping thickness greater than or equal to the minimum concrete member thicknesses given in the Installation Specifications in Concrete table, the minimum spacing distances and minimum edge distances must be used from the Installation Specifications in Concrete table, as applicable.

Screw-Bolt+ Installation Detail for Anchors in the Soffit of Concrete Over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)^{1,2,3}

Screw-Bolt+ Installation Detail for Anchors in the Soffit of Concrete Over Steel Deck Floor and Roof Assemblies (See Dimensional Profile Requirements)^{1,2,3}

Tension Design Information For Screw-Bolt+ Anchor In Concrete^{1,2}

Design Characteristic	Notation	Units					No	minal An	chor Dia	meter				
Design Characteristic	Notation	Units	1.	/4		3/8			1/2			5/8		3/4
Anchor category	1, 2 or 3	-		1		1			1			1		1
Minimum nominal embedment depth	hnom	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)	3-1/4 (83)	2-1/2 (64)	3 (76)	4-1/4 (108)	3-1/4 (64)	4 (64)	5 (127)	4-1/4 (108)
	Ste	el Strength i	in Tensio	n (ACI 3	18-14 17	7.4.1 or <i>l</i>	ACI 318-	11 D.5.1)						
Steel strength in tension	Nsa ¹⁰	lb (kN)		535).2)		8,730 (38.8)			20,475 (91.1)			26,260 (116.8)		38,165 (169.8)
Reduction factor for steel strength ^{3,4}	ϕ	-						C	.65					
	Concrete E	Breakout Str	<u> </u>		<u>`</u>									
Effective embedment	h _{ef}	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)
Critical edge distance	Cac	in. (mm)	4.30 (109)	6.10 (155)	5.00 (127)	6.30 (160)	7.80 (198)	3.30 (84)	5.90 (150)	8.10 (206)	6.30 (160)	7.90 (201)	10.10 (257)	10.90 (277)
Critical edge distance, topside of concrete-filled steel decks with minimum topping thickness ⁹	Cac,deck,top	in. (mm)	3.00 (76)	4.00 (102)	3.50 (89)	_11	_11	6.00 (152)	_11	_11	_11	_11	_11	_11
Effectiveness factor for uncracked concrete	Kuncr	-	27	24	30	24	24	30	24	24	30	24	24	27
Effectiveness factor for cracked concrete	k _{cr}	-	1	7		17			17			21		17
Modification factor for cracked and uncracked concrete ^₅	$\Psi_{c,N}$	-	1	.0		1.0			1.0			1.0		1.0
Reduction factor for concrete breakout strength ³	φ	-						0.65 (C	ondition	B)				
Pullou	t Strength in	Tension (N	on-Seisr	nic Appli	cations)	(ACI 318	8-14 17.4	1.3 or AC	1 318-11	D.5.3)				
Characteristic pullout strength, uncracked concrete (2,500 psi)6,10	N _{p,uncr}	lb (kN)	See N	lote 7	S	See Note	7	5	See Note	7	S	See Note	7	See Note 7
Characteristic pullout strength, cracked concrete (2,500 psi)610	N _{p,cr}	lb (kN)	765 (3.4)	1,415 (6.3)	S	See Note	7	1,645 (7.3)	2,515 (11.2)	4,700 (20.9)	3,080 (13.7)	4,720 (21.0)	6,900 (30.7)	See Note 7
Reduction factor for pullout strength ³						0.65 (C	ondition	B)						
Pullou	Strength in	Tension for	Seismic	Applica	tions (AC	CI 318-1 4	17.2.3.	3 or ACI	318-11 I	D.3.3.3)				
Characteristic pullout strength, seismic (2,500 psi)68,10	N _{eq}	lb	360 (1.6)	1,170 (5.2)	900 (4.0)	1,645 (7.3)	2,765 (12.3)	1,645 (7.3)	2,515 (11.2)	4,700 (20.9)	1,910 (8.5)	2,445 (10.9)	3,370 (15.0)	4,085 (18.2)
Reduction factor for pullout strength ³	φ	-						0.65 (C	ondition	B)				

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with published instructions and details.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that complies with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 Section D.4.3(c), as applicable for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

4. The anchors are considered a brittle steel elements as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

5. Select the appropriate effectiveness factor for cracked concrete (ker) or uncracked concrete (kuner) and use $\Psi_{c,N} = 1.0$.

6. For all design cases \(\mathcal{Y}_{cP} = 1.0\). The characteristic pullout strength, \(\mathcal{N}_{nn}\), for concrete compressive strengths greater than 2,500 psi for 1/4-inch-diameter anchors may be increased by multiplying the value in the table by (f'c / 2,500)^{a3} for psi or (f'c / 17.2)^{a3} for MPa. The characteristic pullout strength, \(\mathcal{N}_{nn}\), for concrete compressive strengths greater than 2,500 psi for 3/8-inch- to 3/4-inch-diameter anchors may be increased by multiplying the value in the table by (f'c / 2,500)^{a5} for psi or (f'c / 17.2)^{a3} for MPa.

7. Pullout strength does not control design of indicated anchors and does not need to be calculated for indicated anchor size and embedment.

8. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.Y

9. Anchors are permitted in the topside of concrete-filled steel deck assemblies in accordance with the Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies with Minimum Topping Thickness.

10. Anchors are permitted to be used in lightweight concrete provided the modification factor λ a equal to 0.8 λ is applied to all values of f'c affecting Nn.

11. Tabulated critical edge distance values, Cac.deek.top, are for anchors installed in the top of concrete over steel deck profiles with a minimum concrete thickness, hmin.deck, of 2.5 inches above the upper flute (topping thickness). For minimum topping thickness greater than or equal to the minimum concrete member thicknesses, hmin, given in the Installation Specifications table, the associated critical edge distance, cac, for indicated anchor diameters and embedment depths may be used in the calculation of $\Psi_{cp,N}$ as applicable.

CODE LISTED

ICC-ES ESR-3889

MECHANICAL ANCHORS

Shear Design Information for Screw-Bolt+ Anchor in Concrete^{1,2,7,8}

														ABLES
Dooign Charactaristic	Notation	Units					Nor	minal Anc	hor Diam	eter				
Design Characteristic			1	/4		3/8			1/2			5/8		3/4
Anchor category	1, 2 or 3	-		1		1			1			1		1
Minimum nominal embedment depth	hnom	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)	3-1/4 (83)	2-1/2 (64)	3 (76)	4-1/4 (108)	3-1/4 (64)	4 (64)	5 (127)	4-1/4 (108)
		Steel	Strength	in Shear	(ACI 318-	14 17.5.1	or ACI 31	18-11 D.6	.1)					
Steel strength in shear ⁶	Vsa	lb (kN)	1,635 (7.3)	2,040 (9.1)	3,465 (15.4)	3,465 (15.4)	4,345 (19.3)	8,860 (39.4)	8,860 (39.4)	11,175 (49.7)	12,310 (54.8)	12,310 (54.8)	15,585 (69.3)	19,260 (85.7)
Reduction factor for steel strength ^{3,4}	ϕ	-						0.	60					
	Steel Stren	igth in Sh	ear for S	eismic Ap	plications	s (ACI 318	3-14 17.2	.3.3 or AC	318-11	D.3.3.3)				
Steel strength in shear, seismic6	Veq	lb (kN)	1,360 (6.1)	1,700 (7.7)	2,415 (10.9)	2,415 (10.9)	3,030 (13.6)	7,090 (31.9)	7,090 (31.9)	8,940 (40.2)	9,845 (44.3)	9,845 (44.3)	12,465 (56.1)	15,405 (69.3)
Reduction factor for steel strength in shear for seismic ^{3,4}	φ	-						0.	60					
	Cor	ncrete Bro	akout Strength in Shear (ACI 318-14 17.5.2 or ACI 318-11 D.6.2)											
Nominal anchor diameter	da	in. (mm)										0.750 (19.1)		
Load bearing length of anchor	le	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)
Reduction factor for concrete breakout ³	φ	-						0.70 (Co	ndition B)					
		Pryout	t Strength	ı in Shear	r (ACI 318	-14 17.5.	3 or ACI 3	18-11 D.(6.3)					
Coefficient for pryout strength	k _{cp}	-	1	1	1	1	1	1	1	2	1	2	2	2
Effective embedment	hef	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)
Reduction factor for pryout strength ³	φ	-						0.70 (Co	ndition B)					
For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N	l/mm²; 1 ft-lb	= 1.356 N	√-m; 1 lb =	= 0.0044 kľ	N.									
1. The data in this table is intended to be additional requirements of ACI 318-17						17 or ACI 3	318-11 App	pendix D, as	s applicable	e; for ancho	ors resisting	j seismic lo	ad combin	ations the
2. Installation must comply with published														
 All values of <i>φ</i> were determined from t are used, the appropriate value of <i>φ</i> m D requirements for Condition A, see AO Section 5.3, or ACI 318-11 Section 9.2 	iust be determ Cl 318-14 17.	nined in ac	cordance w	vith ACI 318	8-11 Section	on D.4.4. F	or reinforce	ement that (complies w	ith ACI 318	3-14 Chapt	er 17 or AC	CI 318-11 A	Appendix
4. The anchors are considered a brittle st			,											
5. Reported values for steel strength in sh ACI 318-14 or equation D-29 in ACI 3	18-11 D.6.1.2	2.											17.5.1.2(b)) of
6 Reported values for steal strength in sh	loar are for or	viemie appl	ications on	d bacod or	a toot rooult	o in occord	ionoo with /	VU10EE 0	Continn 0 (' and must	he used fo	r dooign		

6. Reported values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6 and must be used for design.

7. Anchors are permitted in the topside of concrete-filled steel deck assemblies in accordance with the Installation Detail for Anchors in the Top of Concrete Over Steel Deck Floor and Roof Assemblies with Minimum Topping Thickness.

8. Anchors are permitted to be used in lightweight concrete in provided the modification factor λa equal to 0.8 λ is applied to all values of t'c affecting Nn.

Tension and Shear Design Information for Screw-Bolt+ Anchor in the Soffit (Through the Underside) of Concrete-Filled Steel Deck Assemblies^{1,2,3,4,5,6}

(Inrough the onderside) of	GUIIGI GL	C-LIIIC	u Jice		ASSC	1101162								ABLES	
							Nomin	al Anchor	Diamete	r (inch)					
Anchor Property/Setting Information	Notation	Units	1.	/4		3/8			1/2			5/8		3/4	
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)	2-1/2 (64)	2 (51)	2-1/2 (64)	3-1/4 (83)	2-1/2 (64)	3 (76)	4-1/4 (108)	3-1/4 (64)	4 (64)	5 (127)	4-1/ (108	
Effective Embedment	hef	in. (mm)	1.20 (30)	1.94 (49)	1.33 (34)	1.75 (44)	2.39 (61)	1.75 (44)	2.17 (55)	3.23 (82)	2.24 (57)	2.88 (73)	3.73 (95)	3.08 (78)	
Minimum hole depth	h₀	in. (mm)	1-3/4 (44)	2-5/8 (67)	2-1/8 (54)	2-5/8 (67)	3-3/8 (86)	2-5/8 (67)	3-1/8 (79)	4-3/8 (111)	3-3/8 (86)	4-1/8 (10.5)	5-1/8 (130)	4-3/ (111	
Anchors Inst	alled Throug	h the So	ffit of Ste	el Deck /	Assemblie	es into Co	ncrete (N	linimum (3-7/8-inc	h-wide d	eck flute)				
Minimum concrete member thickness ⁷	h _{min,deck,total}	in. (mm)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	5-1/2 (140)	6-1/4 (159)	6-1/ (159	
Characteristic pullout strength, uncracked concrete over steel deck, (3,000 psi)	Np,deck,uncr	lb (kN)	1,430 (6.4)	2,555 (11.4)	2,275 (10.1)	2,655 (11.8)	3,235 (14.4)	2,600 (11.6)	3,555 (15.8)	5,975 (26.6)	2,610 (11.6)	4,150 (18.5)	6,195 (27.6)	6,08 (27. ⁻	
Characteristic pullout strength, cracked concrete over steel deck, (3,000 psi)	N _{p,deck,cr}	lb (kN)	615 (2.7)	1,115 (5.0)	1,290 (5.7)	1,880 (8.4)	2,290 (10.2)	1,230 (5.5)	2,330 (10.4)	4,030 (17.9)	1,600 (7.1)	3,340 (14.9)	4,945 (22.0)	3,83 (17.1	
Characteristic pullout strength, cracked concrete over steel deck,seismic, (3,000 psi)	N _{p,deck,eq}	lb (kN)	290 (1.3)	920 (4.1)	890 (4.0)	1,570 (7.0)	2,015 (9.0)	1,230 (5.5)	2,330 (10.4)	4,030 (17.9)	990 (4.4)	1,730 (7.7)	2,415 (10.7)	3,41 (15.2	
Reduction factor for pullout strength ⁸	ϕ	-						. 0.	65						
Steel strength in shear, concrete over steel deck	Vsa,deck	lb (kN)	1,155 (5.1)	2,595 (11.5)	2,470 (11.0)	2,470 (11.0)	3,225 (14.3)	2,435 (10.8)	2,435 (10.8)	5,845 (26.0)	2,650 (11.8)	2,650 (11.8)	6,325 (28.1)	5,17 (23.0	
Steel strength in shear, concrete over steel deck, seismic	Vsa,deck,eq	lb (kN)	960 (4.3)	2,165 (9.6)	1,725 (7.7)	1,900 (8.5)	2,250 (10.0)	1,950 (8.7)	2,095 (9.3)	4,675 (20.8)	2,120 (9.4)	2,325 (10.3)	5,060 (22.5)	4,14 (18.4	
Reduction factor for steel strength in shear for concrete over steel deck ⁸	ϕ	-						0.	60						
Anchors Inst	alled Throug	h the So	ffit of Ste	el Deck /	Assemblie	es into Co	ncrete (N	linimum [.]	1-3/4-inc	h-wide d	eck flute)				
Minimum concrete member thickness ⁷	h _{min,deck,total}	in. (mm)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	N	/A		N/A		N/A	
Characteristic pullout strength, uncracked concrete over steel deck, (3,000 psi)	Np,deck,uncr	lb (kN)	1,760 (7.8)	2,075 (9.2)	1,440 (6.4)	2,135 (9.5)	3,190 (14.2)	1,720 (7.7)	N	/A		N/A		N/A	
Characteristic pullout strength, cracked concrete over steel deck, (3,000 psi)	Np,deck,cr	lb (kN)	760 (3.4)	910 (4.0)	815 (3.6)	1,510 (6.7)	2,260 (10.1)	1,280 (5.7)	N	/A		N/A		N/A	
Characteristic pullout strength, cracked concrete over steel deck,seismic, (3,000 psi)	N _{p,deck,eq}	lb (kN)	355 (1.6)	750 (3.3)	565 (2.5)	1,260 (5.6)	1,985 (8.8)	1,280 (5.7)	N	/A		N/A		N/A	
Reduction factor for pullout strength ⁸	ϕ	-			0.	65			N	/A		N/A		N/A	
Steel strength in shear, concrete over steel deck	Vsa,deck	lb (kN)	1,880 (8.4)	2,315 (10.3)	2,115 (9.4)	2,115 (9.4)	2,820 (12.5)	2,095 (9.3)	N	/A		N/A			
Steel strength in shear, concrete over steel deck, seismic	Vsa,deck,eq	lb (kN)	1,565 (7.0)	1,930 (8.6)	1,475 (6.6)	1,625 (7.2)	1,965 (8.7)	1,675 (7.5)	N	/A		N/A			
Reduction factor for steel strength in shear for concrete over steel deck [®]	ϕ	-	0.	60		0.60		0.60	N	/A		N/A		N/A	

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. Installation must comply with published instructions and details.

Values for N_{p.deek} and N_{p.deek,ar} are for sand-lightweight concrete (f¹c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.4.2 or ACI 318 D.5.2, as applicable, is not required for anchors installed in the deck soffit (through underside).

3. Values for N_{P,deck,eq} are applicable for seismic loading and must be used in lieu of N_{P,deck,cr}.

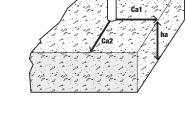
4. For all design cases Ψ_{c.P} = 1.0. The characteristic pullout strength, N_{PP}, for concrete compressive strengths greater than 3,000 psi for 1/4-inch-diameter anchors may be increased by multiplying the value in the table by (f'c / 3,000)^{0.3} for psi or (f'c / 17.2)^{0.3} for MPa. The characteristic pullout strength, N_{Pn}, for concrete compressive strengths greater than 3,000 psi for 3/8-inch- to 3/4-inch-diameter anchors may be increased by multiplying the value in the table by (f'c / 3,000)^{0.5} for psi or (f'c / 17.2)^{0.5} for MPa.

5. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

6. Values of Vsa.deck.eq are for sand-lightweight concrete and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, and the pryout capacity in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, are not required for anchors installed in the soffit (through underside).

7. The minimum concrete member thickness, hmin.deck.total, is the minimum overall thickness of the concrete-filled steel deck (depth and topping thickness).

All values of φ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318 Section 9.2. If the load combinations of ACI 318 Appendix C are used, then the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4 (ACI 318-08).


TECHNICAL GUIDE – MECHANICAL ANCHORS © 2018 DEWALT – REV. C

High Performance Screw Ancho

FACTORED RESISTANCE STRENGTH (ØNn AND ØVn) CALCULATED IN ACCORDANCE WITH ACI 318-14 CHAPTER 17:

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, h_a = h_{min}, and with the following conditions:
 - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$). - c_{a2} is greater than or equal to 1.5 times c_{a1} .
- 2- Calculations were performed according to ACI 318-14, Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (Ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14, Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14, Chapter 17. For other design conditions including seismic considerations please see ACI 318-14, Chapter 17.

Tension and Shear Design Strength Installed in Cracked Concrete

					Minim	um Concrete C	ompressive Si	trength			
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,000 psi	
Diameter (in.)	Depth h _{nom} (in.)	ØN∩ Tension (Ibs.)	∳V∩ Shear (lbs.)	ØN⊓ Tension (Ibs.)	∳Vn Shear (lbs.)	ØN⊓ Tension (Ibs.)	∳V∩ Shear (lbs.)	ØN⊓ Tension (Ibs.)	∳V∩ Shear (lbs.)	ØN∩ Tension (Ibs.)	∳V∩ Shear (Ibs.)
1/4	1-5/8	495	780	525	855	575	980	645	980	705	980
1/4	2-1/2	920	1,225	970	1,225	1,060	1,225	1,195	1,225	1,305	1,225
	2	845	915	930	1,000	1,070	1,155	1,315	1,415	1,515	1,635
3/8	2-1/2	1,280	1,375	1,400	1,510	1,620	1,740	1,980	2,080	2,290	2,080
	3-1/4	2,040	2,200	2,235	2,410	2,580	2,605	3,165	2,605	3,650	2,605
	2-1/2	1,070	1,270	1,170	1,395	1,355	1,610	1,655	1,970	1,915	2,275
1/2	3	1,635	1,900	1,790	2,085	2,070	2,405	2,535	2,945	2,925	3,400
	4-1/4	3,055	4,325	3,345	4,735	3,865	5,470	4,735	6,695	5,465	6,705
	3-1/4	1,850	1,995	2,030	2,185	2,345	2,525	2,870	3,090	3,315	3,570
5/8	4	2,700	4,155	2,960	4,550	3,415	5,255	4,185	6,435	4,830	7,385
	5	3,980	6,040	4,360	6,615	5,035	7,640	6,165	9,350	7,120	9,350
3/4	4-1/4	2,985	6,135	3,270	6,720	3,780	7,760	4,625	9,505	5,340	10,975

🖸 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔳 - Steel Strength Controls

Tension and Shear Design Strength Installed in Uncracked Concrete

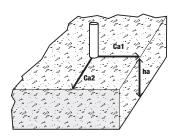
					Minim	um Concrete C	ompressive St	rength			
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	.000 psi	f'C = 6,	000 psi	f'c = 8,000 psi	
Diameter (in.)	Depth hnom (in.)	ØN∩ Tension (Ibs.)	∲V∩ Shear (lbs.)	ØN∩ Tension (Ibs.)	∳V∩ Shear (lbs.)	ØN⊓ Tension (Ibs.)	∳V∩ Shear (Ibs.)	ØN∩ Tension (Ibs.)	∲V₁ Shear (lbs.)	ØN∩ Tension (Ibs.)	ØV⊓ Shear (Ibs.)
1 / 4	1-5/8	1,155	980	1,265	980	1,460	980	1,785	980	2,065	980
1/4	2-1/2	2,110	1,225	2,310	1,225	2,665	1,225	2,950	1,225	2,950	1,225
	2	1,495	1,610	1,640	1,765	1,890	2,035	2,315	2,080	2,675	2,080
3/8	2-1/2	1,805	1,945	1,980	2,080	2,285	2,080	2,795	2,080	3,230	2,080
	3-1/4	2,880	2,605	3,155	2,605	3,645	2,605	4,465	2,605	5,155	2,605
	2-1/2	2,255	1,780	2,475	1,950	2,855	2,255	3,495	2,760	4,040	3,185
1/2	3	2,495	2,685	2,730	2,940	3,155	3,395	3,865	4,160	4,460	4,805
	4-1/4	4,530	6,050	4,960	6,630	5,725	6,705	7,015	6,705	8,100	6,705
	3-1/4	3,270	3,520	3,580	3,855	4,135	4,455	5,065	5,455	5,845	6,295
5/8	4	3,810	5,815	4,175	6,370	4,820	7,355	5,905	7,385	6,820	7,385
	5	5,620	8,455	6,155	9,265	7,110	9,350	8,705	9,350	10,050	9,350
3/4	4-1/4	4,745	8,590	5,195	9,410	6,000	10,865	7,350	11,555	8,485	11,555

FACTORED RESISTANCE STRENGTH (ØN, AND ØV,) CALCULATED IN ACCORDANCE WITH ACI 318-14, CHAPTER 17:

- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight 1concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:
 - c_{a1} is greater than or equal to the minimum edge distance, c_{min} (table values based on $c_{a1} = c_{min}$). - Ca2 is greater than or equal to 1.5 times Ca1.

DEV/A

ENGINEERED BY POWERS


- 2- Calculations were performed according to ACI 318-14, Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. 3-Condition B is assumed.
- 4-Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- For designs that include combined tension and shear, the interaction of tension and shear loads must be 5calculated in accordance with ACI 318-14, Chapter 17.
- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14, Chapter 17. For other design conditions including seismic considerations 6please see ACI 318-14. Chapter 17.

Tension and Shear Design Strength at Minimum Edge Distance, Cmin for Screw-Bolt+ in Cracked Concrete

		Minimum Concrete Compressive Strength										
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'C = 6,	000 psi	f'c = 8,000 psi		
Diameter (in.)	h _{nom} (in.)	ØN⊓ Tension (Ibs.)	∲V₅n Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV₅n Shear (Ibs.)	ØN⊓ Tension (Ibs.)	ØV₅n Shear (Ibs.)	ØN∩ Tension (Ibs.)	∲V₅n Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV₅∩ Shear (Ibs.)	
1/4	1-5/8	495	370	525	405	575	470	645	575	705	660	
1/4	2-1/2	920	450	970	495	1,060	570	1,195	700	1,305	810	
	2	785	445	860	485	990	560	1,215	685	1,405	790	
3/8	2-1/2	1,115	500	1,220	550	1,410	635	1,725	775	1,995	895	
	3-1/4	1,685	595	1,845	650	2,130	755	2,610	920	3,015	1,065	
	2-1/2	1,070	675	1,170	740	1,355	855	1,655	1,045	1,915	1,205	
1/2	3	1,520	760	1,665	835	1,925	960	2,355	1,180	2,720	1,360	
	4-1/4	2,595	935	2,840	1,025	3,280	1,180	4,015	1,445	4,640	1,670	
	3-1/4	1,585	800	1,735	875	2,005	1,010	2,455	1,240	2,835	1,430	
5/8	4	2,220	920	2,430	1,010	2,805	1,165	3,435	1,425	3,970	1,645	
	5	3,160	1,045	3,460	1,145	3,995	1,325	4,895	1,620	5,650	1,870	
3/4	4-1/4	2,430	985	2,660	1,080	3,075	1,245	3,765	1,525	4,345	1,760	

Tension and Shear Design Strength at Minimum Edge Distance, cmin for Screw-Bolt+ in Uncracked Concrete

					Minim	um Concrete C	compressive St	rength			
Nominal Anchor	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	,000 psi	f'c = 6,	000 psi	f'c = 8,000 psi	
Diameter (in.)	hnom (in.)	ØN∩ Tension (Ibs.)	∲V₅n Shear (lbs.)	ØN⊓ Tension (Ibs.)	ØV₅n Shear (Ibs.)	ØN∩ Tension (Ibs.)	ØV₅n Shear (Ibs.)	ØN⊓ Tension (Ibs.)	ØV₅n Shear (Ibs.)	ØN⊓ Tension (Ibs.)	<i>∲</i> V₅n Shear (Ibs.)
1/4	1-5/8	460	495	505	540	580	625	710	765	820	885
1/4	2-1/2	860	635	940	695	1,085	800	1,330	980	1,535	1,130
	2	550	595	605	650	700	750	855	920	990	1,065
3/8	2-1/2	655	700	720	765	830	885	1,015	1,085	1,175	1,250
	3-1/4	1,095	835	1,200	915	1,385	1,055	1,695	1,290	1,955	1,490
	2-1/2	1,615	945	1,770	1,035	2,045	1,195	2,505	1,465	2,890	1,690
1/2	3	1,185	1,065	1,300	1,165	1,500	1,345	1,835	1,650	2,120	1,905
	4-1/4	2,190	1,310	2,400	1,430	2,770	1,655	3,390	2,025	3,915	2,340
	3-1/4	1,495	1,120	1,635	1,225	1,890	1,415	2,310	1,735	2,670	2,000
5/8	4	1,715	1,290	1,875	1,410	2,165	1,630	2,655	1,995	3,065	2,305
	5	2,470	1,465	2,705	1,605	3,125	1,855	3,830	2,270	4,420	2,620
3/4	4-1/4	1,635	1,380	1,790	1,510	2,070	1,745	2,535	2,135	2,925	2,465
- Anchor Pu	llout/Pryout Strer	ngth Controls 🔲	- Concrete Breal	kout Strenath Co	ntrols 🗖 - Steel	Strenath Control	S				

Performance Screw Anchor EW-BOI

ORDERING INFORMATION

Screw-Bolt+

					20V Ma	ammers	Flexvolt SDS Max	
Cat	. No.	Anchor Size	Box Qty.	Ctn. Qty.	DCH273P2DH 1" L-Shape	DCH133M2 1" D-Handle	DCH293R2 1-1/8" L-Shape w/ E-Clutch	DCH481X2 1-9/16" w/ E-Clutch
Zinc Plated	Galvanized					Carbio	le Bits	·
PFM1411000	-	1/4" x 1-1/4"	100	600	DW5517	DW5417	DW5417	-
PFM1411020	-	1/4" x 1-3/4"	100	600	DW5517	DW5417	DW5417	-
PFM1411060	-	1/4" x 2-1/4"	100	600	DW5517	DW5417	DW5417	-
PFM1411080	-	1/4" x 2-5/8"	100	500	DW5517	DW5417	DW5417	-
PFM1411100	-	1/4" x 3"	100	500	DW5517	DW5417	DW5417	-
PFM1411160	-	3/8" x 1-3/4"	50	300	DW5527	DW5427	DW5427	-
PFM1411220	-	3/8" x 2-1/2"	50	300	DW5527	DW5427	DW5427	-
PFM1411240	PFM1461240	3/8" x 3"	50	250	DW5527	DW5427	DW5427	-
PFM1411280	PFM1461280	3/8" x 4"	50	250	DW5527	DW5427	DW5427	-
PFM1411300	PFM1461300	3/8" x 5"	50	250	DW5529	DW5429	DW5429	-
PFM1411320	PFM1461320	3/8" x 6"	50	150	DW5529	DW5429	DW5429	-
PFM1411340	-	1/2" x 2"	50	200	DW5537	DW5437	DW5437	-
PFM1411360	-	1/2" x 2-1/2"	50	200	DW5537	DW5437	DW5437	-
PFM1411380	-	1/2" x 3"	50	150	DW5537	DW5437	DW5437	-
PFM1411420	PFM1461420	1/2" x 4"	50	150	DW5537	DW5437	DW5437	-
PFM1411460	PFM1461460	1/2" x 5"	25	100	DW5538	DW5438	DW5438	-
PFM1411480	PFM1461480	1/2" x 6"	25	75	DW5538	DW5438	DW5438	-
PFM1411520	PFM1461520	1/2" x 8"	25	100	DW5538	DW5438	DW5438	-
PFM1411540	-	5/8" x 3"	25	100	DW5471	DW5446	DW5471	DW5806
PFM1411580	-	5/8" x 4"	25	100	DW5471	DW5446	DW5471	DW5806
PFM1411600	PFM1461600	5/8" x 5"	25	75	DW5471	DW5446	DW5471	DW5806
PFM1411640	PFM1461640	5/8" x 6"	25	75	DW5471	DW5446	DW5471	DW5806
PFM1411680	PFM1461680	5/8" x 8"	25	50	DW5471	DW5447	DW5471	DW5806
PFM1411700	-	3/4" x 3"	20	60	DW5474	DW5453	DW5474	DW5810
PFM1411720	-	3/4" x 4"	20	60	DW5474	DW5453	DW5474	DW5810
PFM1411760	-	3/4" x 5"	20	60	DW5474	DW5453	DW5474	DW5810
PFM1411800	PFM1461800	3/4" x 6"	20	60	DW5474	DW5453	DW5474	DW5810
PFM1411840	PFM1461850	3/4" x 8"	10	40	DW5474	DW5455	DW5474	DW5810
PFM1411880	-	3/4" x 10"	10	20	DW5475	DW5455	DW5475	DW5812
length for Strength	ers denote sizes which a Design. cludes the diameter and l				- Optimum Tool Mat - Maximum Tool Mat - Maximum Tool Ma - Not Recommended	tch		

Suggested Impact Wrench and Socket

Nominal Anchor Size	Socket Size	Impact Ra	ted Socket	20V Max* Imp	act Wrenches
1/4	7/16	DWMT74479B		DCF890M2 3/8" Impact Wrench	
3/8	9/16	DWMT75122B		DCF894HP2	
1/2	3/4	DWMT75113B	DEWALT 17-215	1/2" Impact Wrench	
5/8	15/16	DWMT75104B		DCF899HP2	
3/4	1-1/8	DWMT75125B	-	High Torque 1/2" (Use In Speed Setting #3)	

DEWALT

ENGINEERED BY POWERS

GENERAL INFORMATION

316 STAINLESS STEEL WEDGE-BOLT™

Screw Anchor

PRODUCT DESCRIPTION

The 316 Stainless Steel Wedge-Bolt anchor is a one piece, heavy duty screw anchor with a finished hex head. It is simple to install, easy to identify, a fully removable.

The 316 Stainless Steel Wedge-Bolt has many unique features and benefits that make it well suited for many applications, both indoors and out. The steel threads along the anchor body self tap into the hole during installation and provide positive keyed engagement. The benefit to the designer is higher load capacities, while the benefit to the user is ease of installation. The 316 Stainless Steel Wedge-Bolt can be installed with either a powered impact wrench or conventional hand socket.

316 Stainless Steel Wedge-Bolt screw anchors are designed to be used with a matched tolerance Wedge-Bit for optimum performance. The Wedge-Bolt works in fixture clearance holes that are 1/16" over nominal, which is typical of standard fixture holes used in steel fabrication.

316 Stainless Steel Wedge-Bolt screw anchors are not recommended for immersion in or long term exposure to chloride/chlorine environments.

GENERAL APPLICATIONS AND USES

- Interior and Exterior Applications
- Support Ledgers and Windows
- Railing and Fencing

- Storage Facilities
- Repairs & Retrofits
- Maintenance
- FEATURES AND BENEFITS
- + High corrosion resistance of Type 316 stainless steel
- + Consistent performance in high and low strength concrete
- + Anchor can be installed through standard size fixture holes in steel
- + Diameter, length and identifying marking stamped on head of each anchor
- + Can be installed with an impact wrench or conventional hand socket
- + Fast installation and immediate loading minimizes downtime
- + Finished hex head provides attractive appearance and minimizes tripping hazard
- + Can be installed closer to the edge than traditional expansion anchors
- + Ratchet teeth on underside of hex washer head contact against the fixture
- + Removable

APPROVALS AND LISTINGS

• Tested in accordance with ASTM E488

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Screw anchors shall be 316 Stainless Steel Wedge-Bolt as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	271
Material Specifications	272
Installation Instructions	272
Reference Data (ASD)	272
Ordering Information	277

316 STAINLESS STEEL WEDGE-BOLT

HEAD STYLES

Hex washer head

ANCHOR MATERIALS

Type 316 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter through 1/2" diameter

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete
- Grouted Concrete Masonry (CMU)
- Brick Masonry

Step 4

Drive the anchor

and into the hole

until the head of

the anchor comes

into contact with

the fixture. The

anchor should

be snug after

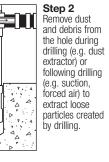
installation. Do not

spin the hex socket

off the anchor to

disengage.

through the fixture


MATERIAL SPECIFICATIONS

	Anchor component	Specification
	Anchor Body and hex washer head	Type 316 Stainless Steel ¹
1.	With sacrificial carbon steel drive tip and tapping threads.	


INSTALLATION INSTRUCTIONS

Installation Instructions for 316 Stainless Steel Wedge-Bolt

316 Stainless Steel Wedge-Bolt Anchor Detail

Ν	omenc	latur	е

- Diameter of Anchor = Diameter of Drill Bit =
- Diameter of Clearance Hole =
- = Base Material Thickness.
- The value of h should be 1.5hnom or 3", whichever is greater
- $h_{\text{nom}} =$ Minimum Nominal Embedment
 - = Minimum Hole Depth

Hex Head Marking

Diameter, material, and length identification mark

2

Å

, D ,

Matched Tolerance System

Step 3

Select a powered

maximum torque,

impact wrench that

does not exceed the

Tinst,max Or Timpact,max, for

the selected anchor

diameter. Attach an

hex socket/driver to

the impact wrench.

anchor head into the

Mount the screw

Legend

socket.

appropriate sized

BLUE WEDGE-BIT

Drive Tip

Designed and tested as a system for consistency and reliability

REFERENCE DATA (ASD)

Installation Specifications for 316 Stainless Steel Wedge-Bolt in Concrete

	Manakan			Nominal Anchor Diameter	
Anchor Property / Setting Information	Notation	Units	1/4	3/8	1/2
Anchor diameter	d₀	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (7.9)	7/16 (11.1)	9/16 (14.3)
Nominal drill bit diameter	Сbit	in.	1/4 Wedge-Bit	3/8 Wedge-Bit	1/2 Wedge-Bit
Minimum nominal embedment depth	hnom	in. (mm)	1-3/4 (44)	2 (51)	2-3/4 (70)
Minimum hole depth	h₀	in. (mm)	2 (51)	2-1/4 (57)	3 (77)
Minimum overall anchor length	lanch	in. (mm)	2 (51)	2-1/2 (64)	3 (76)
Max installation torque	T _{inst,max}	in. (mm)	15 (20)	35 (47)	60 (81)
Max impact wrench power (torque)	T _{impact,max}	ftlbf. (N-m)	115 (156)	245 (332)	300 (407)
Torque wrench/socket size	-	in.	7/16	9/16	3/4
Head height	-	in.	7/32	21/64	7/16
Ultimate tensile strength	(UTS)	ksi	80	100	100
Approximate yield strength	(YS)	ksi	64	80	80
For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.	Т.				n

Ultimate Load Capacities for 316 Stainless Steel Wedge-Bolt in Normal-Weight Concrete^{1,2}

	Minimum				Minimu	um Concrete C	ompressive S	trength			
Nominal Anchor	Embedment Depth,		500 psi MPa)		f'c = 3,000 psi f'c = 4,00 (20.7 MPa) (27.6 M					f'c = 8,000 psi (55.2 MPa)	
Diameter in.	hnom in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	1-3/4	890	1,385	975	1,520	1,130	1,755	1,440	2,560	1,440	2,850
	(44)	(4.0)	(6.2)	(4.3)	(6.8)	(5.0)	(7.8)	(6.4)	(11.4)	(6.4)	(12.7)
1/4	2-1/2	2,485	1,385	2,720	1,520	3,145	1,755	3,150	2,560	3,150	2,850
	(64)	(11.1)	(6.2)	(12.1)	(6.8)	(14.0)	(7.8)	(14.0)	(11.4)	(14.0)	(12.7)
	2	735	1,675	805	1,833	930	2,115	1,180	2,710	1,210	3,295
	(51)	(3.3)	(7.5)	(3.6)	(8.2)	(4.1)	(9.4)	(5.2)	(12.1)	(5.4)	(14.7)
3/8	2-1/2	1,515	1,675	1,655	1,833	1,915	2,115	2,130	2,710	2,180	3,295
	(64)	(6.7)	(7.5)	(7.4)	(8.2)	(8.5)	(9.4)	(9.5)	(12.1)	(9.7)	(14.7)
	3-1/2	3,525	1,675	3,860	1,833	4,455	2,115	4,570	2,710	4,680	3,295
	(89)	(15.7)	(7.5)	(17.2)	(8.2)	(19.8)	(9.4)	(20.3)	(12.1)	(20.8)	(14.7)
	2-3/4	3,000	4,675	3,285	5,120	3,790	5,915	5,975	7,560	6,900	9,205
	(70)	(13.3)	(20.8)	(14.6)	(22.8)	(16.9)	(26.3)	(26.6)	(33.6)	(30.7)	(40.9)
1/2	3-1/2	3,830	5,205	4,195	5,700	4,845	6,590	6,800	7,390	7,855	8,995
	(89)	(17.0)	(23.2)	(18.7)	(25.4)	(21.6)	(29.3)	(30.2)	(32.9)	(34.9)	(40.0)
	4-1/2	5,680	5,205	6,220	5,700	7,180	6,590	9,760	7,390	11,265	8,995
	(114)	(25.3)	(23.2)	(27.7)	(25.4)	(31.9)	(29.3)	(43.4)	(32.9)	(50.1)	(40.0)

1. Tabulated load values are for anchors installed in normal weight concrete. Concrete compressive strength must be at a minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt in Normal-Weight Concrete^{1,2,3,4,5}

	Minimum				Minim	um Concrete C	ompressive S	trength			
Nominal Anchor	Embedment Depth,		500 psi MPa)		f'c = 3,000 psi f'c = 4,0 (20.7 MPa) (27.6 M					f'c = 8,000 psi (55.2 MPa)	
Diameter in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	1-3/4	225	345	245	380	285	440	360	640	360	715
	(44)	(1.0)	(1.5)	(1.1)	(1.7)	(1.3)	(2.0)	(1.6)	(2.8)	(1.6)	(3.2)
1/4	2-1/2	620	345	680	380	785	440	790	640	790	715
	(64)	(2.8)	(1.5)	(3.0)	(1.7)	(3.5)	(2.0)	(3.5)	(2.8)	(3.5)	(3.2)
	2	185	420	200	460	235	530	295	680	305	825
	(51)	(0.8)	(1.9)	(0.9)	(2.0)	(1.0)	(2.4)	(1.3)	(3.0)	(1.4)	(3.7)
3/8	2-1/2	380	420	415	460	480	530	535	680	545	825
	(64)	(1.7)	(1.9)	(1.8)	(2.0)	(2.1)	(2.4)	(2.4)	(3.0)	(2.4)	(3.7)
	3-1/2	880	420	965	460	1,115	530	1,145	680	1,170	825
	(89)	(3.9)	(1.9)	(4.3)	(2.0)	(5.0)	(2.4)	(5.1)	(3.0)	(5.2)	(3.7)
	2-3/4	750	1,170	820	1,280	950	1,480	1,495	1,890	1,725	2,300
	(70)	(3.3)	(5.2)	(3.6)	(5.7)	(4.2)	(6.6)	(6.7)	(8.4)	(7.7)	(10.2)
1/2	3-1/2	960	1,300	1,050	1,425	1,210	1,650	1,700	1,850	1,965	2,250
	(89)	(4.3)	(5.8)	(4.7)	(6.3)	(5.4)	(7.3)	(7.6)	(8.2)	(8.7)	(10.0)
	4-1/2	1,420	1,300	1,555	1,425	1,795	1,650	2,440	1,850	2,815	2,250
	(114)	(6.3)	(5.8)	(6.9)	(6.3)	(8.0)	(7.3)	(10.9)	(8.2)	(12.5)	(10.0)

1. Tabulated load values are for anchors installed in normal weight concrete. Concrete compressive strength must be at a minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

5. Allowable loads for lightweight concrete may be determined by multiplying the tabulated allowable load capacities for normal weight concrete by 0.60.

Screw Anchor

316 STAINLESS STEEL WEDGE-BOLT

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

≤1

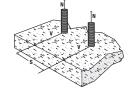
$$\left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right)$$

 $\begin{array}{l} N_u = \mbox{Applied Service Tension Load} \\ N_n = \mbox{Allowable Tension Load} \\ V_u = \mbox{Applied Service Shear Load} \end{array}$

Vn = Allowable Shear Load

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

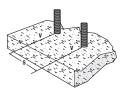
Anchor Installed in Normal-Weight Concrete


Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Creating (a)	Tension	$s_{cr} = 12d$	$F_{NS} = 1.0$	$s_{min} = 4d$	$F_{\text{NS}}=0.50$
Spacing (s)	Shear	s _{cr} = 12d	Fvs = 1.0	$S_{min} = 4d$	Fvs = 0.75
Edge Distance (c)	Tension	$c_{cr} = 8d$	$F_{NC} = 1.0$	$c_{min} = 3d$	$F_{\text{NC}} = 0.70$
	Shear	$c_{cr} = 12d$	F _{vc} = 1.0	$c_{min} = 3d$	Fvc = 0.15

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Spacing, Tension (F_{NS})


	opuoling, reliaion (ris)									
Dia	a. (in.)	1/4	3/8	1/2						
Sc	r (in.)	3	4-1/2	6						
Sm	in (in.)	1	1-1/2	2						
	1	0.50	-	-						
s)	1-1/2	0.63	0.50	-						
inche	2	0.75	0.58	0.50						
Spacing, s (inches)	2-1/2	0.88	0.67	0.56						
acing	3	1.00	0.75	0.63						
Sp	4-1/2	1.00	1.00	0.81						
	6	1.00	1.00	1.00						

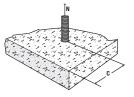
Notes: For anchors loaded in tension, the critical spacing (s_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum spacing (smin) is equal to 4 anchor diameters (4d) at which the anchor achieves 50% of load.

	Spacing, Shear (Fvs)										
Dia	a. (in.)	1/4	1/2								
So	r (in.)	3	4-1/2	6							
Sm	in (in.)	1	1-1/2	2							
	1	0.75	-	-							
s)	1-1/2	0.81	0.75	-							
inche	2	0.88	0.79	0.75							
Spacing, s (inches)	2-1/2	0.91	0.83	0.78							
acing	3	1.00	0.88	0.81							
SF	4-1/2	1.00	1.00	0.91							
	6	1.00	1.00	1.00							

Notes: For anchors loaded in shear, the critical spacing (s_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

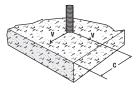
Minimum spacing (s_{min}) is equal to 4 anchor diameters (4d) at which the anchor achieves 75% of load.


Edge Distance, Tension (F_{NC}) Dia. (in.) 1/4 3/8 1/2 Ccr (in.) 2 3 4 3/4 1-1/8 1-1/2 Cmin (in.) 3/4 0.70 1-1/8 0.79 0.70 c (in.) 1-1/2 0.88 0.76 0.70 1-7/8 0.97 0.82 0.75 Distance, 2 1.00 0.84 0.76 Edge 2-1/4 1.00 0.88 0.79 3 1.00 1.00 0.88

4

1.00

1.00


1.00

Notes: For anchors loaded in tension, the critical edge distance (c_{er}) is equal to 8 anchor diameters (8d) at which the anchor achieves 100% of load.

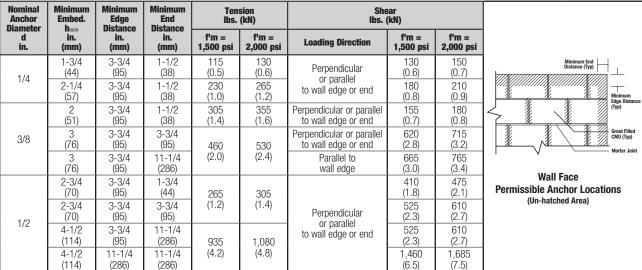
Minimum edge distance (c_{min}) is equal to 3 anchor diameters (3d) at which the anchor achieves 70% of load.

	Edge Distance, Shear (Fvc)										
Dia	a. (in.)	1/4	3/8	1/2							
C	r (in.)	3	4-1/2	6							
Cm	in (in.)	3/4	1-1/8	1-1/2							
	3/4	0.15	-	-							
	1-1/8	0.29	0.15	-							
c (in.)	1-1/2	0.43	0.24	0.15							
nce, (1-7/8	0.58	0.34	0.22							
Distance, c (in.)	2-1/4	0.72	0.43	0.29							
Edge	3	1.00	0.62	0.43							
	4-1/2	1.00	1.00	0.72							
	6	1.00	1.00	1.00							

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 3 anchor diameters (3d) at which the anchor achieves 15% of load

MASONRY PERFORMANCE DATA

Ultimate Load Capacities for 316 Stainless Steel Wedge-Bolt installed into the Face or End of Grout Filled Concrete Masonry^{1,2,3}


Nominal Anchor Diameter	Minimum Embed. hoom	Minimum Edge Distance	Minimum End Distance		sion (kN)	Shear Ibs. (kN)		
d in.	in. (mm)	in. (mm)	in. (mm)	f'm = 1,500 psi	f'm = 2,000 psi	Loading Direction	f'm = 1,500 psi	f'm = 2,000 psi
1/4	1-3/4 (44)	3-3/4 (95)	1-1/2 (38)	570 (2.5)	660 (2.9)	Perpendicular or parallel	645 (2.9)	745 (3.3)
1/4	2-1/4 (57)	3-3/4 (95)	1-1/2 (38)	1,145 (5.1)	1,325 (5.9)	to wall edge or end	910 (4.0)	1,050 (4.7)
	2 (51)	3-3/4 (95)	1-1/2 (38)	1,535 (6.8)	1,775 (7.9)	Perpendicular or parallel to wall edge or end	775 (3.4)	895 (4.0)
3/8	3 (76)	3-3/4 (95)	3-3/4 (95)	2,300	2,655 (11.8)	Perpendicular or parallel to wall edge or end	3,110 (13.8)	3,585 (15.9)
·	3 (76)	3-3/4 (95)	11-1/4 (286)	(10.2)		Parallel to wall edge	3,325 (14.8)	3,835 (17.1)
	2-3/4 (70)	3-3/4 (95)	1-3/4 (44)	1,330	1,535		2,050 (9.1)	2,365 (10.5)
1/2	2-3/4 (70)	3-3/4 (95)	3-3/4 (95)	(5.9)	(6.8)	Perpendicular	2,630 (11.7)	3,040 (13.5)
172	4-1/2 (114)	3-3/4 (95)	11-1/4 (286)	4,680	5,400	or parallel to wall edge or end	2,630 (11.7)	3,040 (13.5)
	4-1/2 (114)	11-1/4 (286)	11-1/4 (286)	(20.8)	(24.0)		7,290 (32.4)	8,415 (37.4)

1. Tabulated load values are for anchors installed in minimum 8-inch wide, Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate strength at the time of installation (f⁴m ≥ 1,500 psi).

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load.

3. The tabulated load values are applicable for screw anchors installed at a critical spacing between screw anchors of 16 times the screws anchor diameter. Reduce the tabulated load capacities by 50 percent when anchors are installed at a minimum spacing between screw anchors of 8 times the screw anchor diameter. Linear interpolation may be used for intermediate spacing distances.

Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt installed into the Face or End of Grout Filled Concrete Masonry^{1,2,3,4,5}

1. Tabulated load values are for anchors installed in minimum 8-inch wide, Grade N, Type II, normal-weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate strength at the time of installation (f'm ≥ 1,500 psi).

2. Allowable load capacities are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety.

3. Linear interpolation for allowable loads for anchors at intermediate embedment depths may be used.

4. For installation in 3,000 psi grout filled concrete masonry (f'm = 3,000 psi) the load capacity in 1,500 psi grout filled concrete masonry (f'm = 1,500) may be increased by 40% and the load capacity in 2,000 psi grout concrete masonry (f'm = 2,000 psi) may be increased by 22%.

5. The tabulated load values are applicable for screw anchors installed at a critical spacing between screw anchors of 16 times the screws anchor diameter. Reduce the tabulated load capacities by 50 percent when anchors are installed at a minimum spacing between screw anchors of 8 times the screw anchor diameter. Linear interpolation may be used for intermediate spacing distances.

(ASD)

TECHNICAL GUIDE – MECHANICAL ANCHORS © 2018 DEWALT – REV. C

Ultimate and Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt Installed in Grout Filled Concrete Masonry Wall Tops^{1,2,3,4,5,6}

Newtool	Minimum				Ultimate Load		Allowable Load		
Nominal Anchor Diameter d in.	Nominal Embed. Depth hnom in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Minimum Spacing Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Minimum End Distance (Typ)
1/4	2-1/2 (64)	1-1/2 (38)	3 (76)	4 (102)	1,025 (4.6)	625 (2.8)	205 (0.9)	125 (0.6)	Minimum Edge
3/8	3 (76)	1-1/2 (38)	4 (102)	6 (152)	1,675 (7.5)	1,075 (4.8)	335 (1.5)	215 (1.0)	Distance (Typ)
1/2	4-1/2 (114)	1-3/4 (44)	6 (152)	8 (203)	2,475 (11.0)	1,075 (4.8)	495 (2.2)	215 (1.0)	Top of Wall

1. All values are for anchors installed in fully grouted concrete masonry wall construction with materials meeting minimum compressive strength, f'm, of 1,500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C90. Allowable loads are based on a safety factor of 5.0.

2. Anchors may be installed in any location in the top of the masonry wall except within 1-1/4-inch from the of the mortar joint (head joint), provided the minimum edge and end distances are maintained.

3. A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor.

4. Spacing distance is measured from the centerline to centerline between two anchors.

5. The edge and end distance is measured from the anchor centerline to the closest unrestrained edge and end of the CMU block, respectively.

6. Allowable shear loads may be applied in any direction.

Ultimate and Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt Installed into Multiple Wythe Solid Clay Brick Masonry^{1,2,3}

Newinal	Minimum				Ultima	te Load	Allowat	ole Load	
Nominal Anchor Diameter d in.	Nominal Embed. Depth hnom in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Minimum Spacing Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Minimum End Distance (Typ)
1/4	2-1/2 (64)	3-1/2 (89)	2-1/2 (64)	4 (102)	1,170 (5.2)	1,380 (6.1)	235 (1.0)	275 (1.2)	
3/8	2-3/4 (70)	6 (152)	6 (152)	6 (152)	1,435 (6.4)	2,875 (12.8)	285 (1.3)	575 (2.6)	
1/2	3-1/4 (83)	9-1/2 (241)	9-1/2 (241)	8 (203)	1,840 (8.2)	7,655 (34.1)	370 (1.6)	1,530 (6.8)	

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be as the specified minimum at the time of installation (t⁺m ≥ 1,500 psi).

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load.

3. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be used depending on the application, such as life safety.

DEW/A

ORDERING INFORMATION

DEWALT

ENGINEERED BY POWERS

316 Stainless Steel Wedge-Bolt

		Thread Longth	Berr	Ctn.	Wt./100	Suggested Wedge-Bit Cat. No.			
Cat. No.	Anchor Size	Thread Length (inc)	Box Qty.			SDS-Plus	SDS-Max	Spline	Straight Shank
07870	1/4 x 2	1-3/4	100	600	3.94	01312	-	-	01370
07872	1/4 x 3	2-3/4	100	500	5.16	01314	-	-	01372
07876	1/4 x 4	2-3/4	100	500	6.56	01314	-	-	01372
07878	1/4 x 5	2-3/4	100	500	7.20	01315	-	-	-
07880	3/8 x 2-1/2	2-1/4	50	300	10.42	01316	-	-	01380
07882	3/8 x 3	2-1/4	50	250	11.96	01316	-	-	01380
07884	3/8 x 4	3-1/2	50	250	15.06	01316	-	-	01380
07886	3/8 x 5	3-1/2	50	250	17.92	01318	-	-	01384
07888	1/2 x 3	2-3/4	50	150	21.17	01320	01354	01340	01390
07890	1/2 x 4	2-3/4	50	150	25.87	01320	01354	01340	01390
07892	1/2 x 5	3-3/4	25	100	31.70	01322	01354	01340	01394
07894	1/2 x 6	3-3/4	25	75	36.73	01322	01354	01340	01394

The published size includes the diameter and length of the anchor measured from under the head to the tip.

*316 Stainless Steel Wedge-Bolt has a blue marking and must be installed with a matched tolerance Wedge-Bit.

Wedge-Bit

Cat. No.	Wedge-Bit Description	Usable Length	Tube Qty.	Ctn. Qty.
01312	SDS 1/4" x 4"	2"	1	250
01314	SDS 1/4" x 6"	4"	1	100
01315	SDS 1/4" x 8"	6"	1	-
01316	SDS 3/8" x 6"	4"	1	200
01318	SDS 3/8" x 8"	6"	1	100
01332	SDS 3/8" x 12"	10"	1	50
01319	SDS 3/8" x 18"	16"	1	50
01320	SDS 1/2" x 6"	4"	1	150
01322	SDS 1/2" x 10"	8"	1	50
01334	SDS 1/2" x 12"	10"	1	50
01335	SDS 1/2" x 18"	16"	1	50
01340	Spline 1/2" x 13"	8"	1	20
01342	Spline 1/2" x 16"	11"	1	-
01354	SDS-Max 1/2" x 13"	8"	1	20
01370	HD Straight Shank 1/4" x 4"	2-3/4"	1	100
01372	HD Straight Shank 1/4" x 6"	4"	1	-
01380	HD Straight Shank 3/8" x 6"	4"	1	-
01384	HD Straight Shank 3/8" x 13"	11"	1	-
01390	HD Straight Shank 1/2" x 6"	4"	1	-
01394	HD Straight Shank 1/2" x 13"	11"	1	50

Suggested Impact Wrench and Socket

suggester impact within and sucket										
Nominal Anchor Size	Socket Size	Impact Rated Socket 20V Max* Impact Wrenches			act Wrenches					
1/4	7/16	DWMT74479B		DCF883M2 3/8" Impact Wrench						
3/8	9/16	DWMT75122B	D <u>RWALE</u> 12415	DCF880M2 1/2" Impact Wrench	9 -1					
1/2	3/4	DWMT75113B		DCF894HP2 High Torque 1/2"						

316 STAINLESS STEEL WEDGE-BOLTTM Screw Anchor

NCHORS

GENERAL INFORMATION

SNAKE+®

Internally Threaded Screw Anchor

PRODUCT DESCRIPTION

The Snake+ anchor is an internally threaded, self-tapping screw anchor designed for performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, sand-lightweight concrete and concrete over steel deck. The Snake+ screw anchor is installed into a drilled hole with a power tool and a Snake+ setting tool. After installation a steel element is threaded into the anchor body.

GENERAL APPLICATIONS AND USES

- Suspending conduit, cable trays and strut
- Interior applications/low level corrosion environment
- Tension zone areas

- Pipe supports
- Seismic and wind loading applications
- Fire sprinklers
- Suspended lighting

FEATURE AND BENEFITS

- + Cracked concrete approved alternative to a dropin anchor
- + Designed for use in holes drilled with standard ANSI carbide drill bits
- + Anchor design allows for shallow embedment and mechanically interlocks with base material
- + Internally threaded anchor for easy adjustment and removability of threaded rod or bolt
- + Fast anchor installation with a powered impact wrench
- + Hammer not used for installation

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-2272 for concrete. Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, 2009 IRC, 2009 IRC, 2006 IBC, and 2006 IRC.
- Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318-14 Chapter 17 or ACI 318-11/08 (Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchor)
- Evaluated and qualified by an accredited independent testing laboratory for reliability against brittle failure, e.g. hydrogen embrittlement
- Evaluated and qualified by an accredited independent testing laboratory for supplemental recognition in redundant fastening applications
- FM Global (Factory Mutual) File No. 3038104 (see report for sizes) www.approvalguide.com - Pipe hanger components for automatic sprinkler systems

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 09 - Post-Installed Concrete Anchors. Internally threaded anchors shall be Snake+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor Body	Case hardened carbon steel
Plating	Zinc plating according to ASTM B633, SC1, Type III (Fe/Zn 5) Minimum plating requirements for Mild Service Condition

SECTION CONTENTS

General Information	278
Material Specifications	278
Installation Instructions	.279
Strength Design (SD)	.280
Performance Data	.281
Redundant Fastening	.285
Ordering Information	286

SNAKE+

INTERNAL THREAD VERSION

• Unified coarse thread (UNC)

ANCHOR MATERIALS

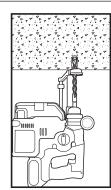
• Zinc plated carbon steel body

ANCHOR SIZE RANGE (TYP.)

• 1/4", 3/8" and 1/2" diameters

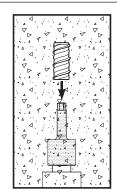
SUITABLE BASE MATERIALS

- Normal-weight concrete
- Sand-lightweight concrete
- Concrete over steel deck



NECHANICAL ANCHORS

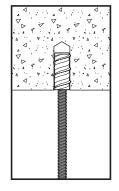
®


Internally Threaded Screw Anchor

INSTALLATION INSTRUCTIONS

Step 1

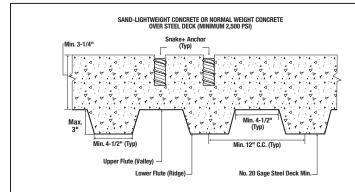
Using the proper drill bit size, drill a hole into the base material to the required depth (e.g. dust extractor, hollow bit). The tolerances of the carbide drill bit used should meet the requirements of ANSI Standard B212.15.



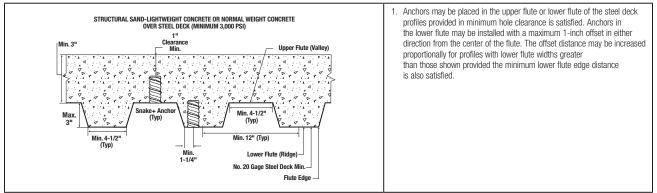
Step 2

Select a powered impact wrench that does not exceed the maximum torque, Tsrew, for the selected anchor diameter. Attach the Snake+ setting tool supplied by DEWALT to the impact wrench. Mount the anchor onto the setting tool.

Step 3


Drive the anchor into the hole until the shoulder of the Snake+ setting tool comes into contact with the surface of the base material. Do not spin the setting tool off the anchor to disengage.

Step 4


Insert threaded rod or a bolt into the Snake+, taking care not to exceed the maximum specified tightening torque of the steel insert element, T_{max}. Minimum thread engagement should be at least one anchor diameter.

Installation Detail for Snake+ in the Topside of Concrete-Filled Steel Deck floor and Roof Assemblies

 3/8-inch diameter anchors may be placed in the topside of steel deck profiles provided the minimum topping thickness, minimum spacing distance and minimum edge distance are satisfied as given in the installation information table.

Installation Detail for Snake+ Installed in the Soffit of Concrete over Steel Deck floor and Roof Assemblies

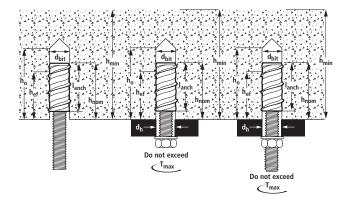
1-800-4 DEWALT

STRENGTH DESIGN (SD)

Installation Information for Snake+ Screw Anchor for Single Point Applications¹

					VABLES
Anchor Property/	Notation	Units	Nominal Anch	or Size / Threaded Coupler [Diameter (inch)
Setting Information	Notation	Units	1/4	3/8	1/2
Nominal outside anchor diameter	$d_a(d_o)^3$	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.750 (19.1)
Internal thread diameter (UNC)	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)
Minimum diameter of hole clearance in fixture for steel insert element (following anchor installation)	dh	in.	5/16	7/16	9/16
Nominal drill bit diameter	d _{bit}	in.	3/8 ANSI	1/2 ANSI	3/4 ANSI
Minimum hole depth	h₀	in. (mm)	2 (51)	2 (51)	2-1/2 (64)
Overall anchor length	lanch	in. (mm)	1-1/4 (32)	1-1/4 (32)	1-11/16 (43)
Minimum nominal embedment depth ²	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-3/16 (55)
Effective embedment	h _{ef}	in. (mm)	Not Applicable⁴	1.10 (28)	1.54 (39)
Maximum impact wrench power (torque)	Tscrew	ftlb. (N-m)	120 (163)	345 (468)	345 (468)
Maximum tightening torque of steel insert element (threaded rod or bolt)	Tmax	ftlb. (N-m)	4 (6)	8 (11)	36 (49)
	Anchor	rs Installed in Co	ncrete Construction ²		
Minimum member thickness ²	h _{min}	in. (mm)	Not Applicable ^₄	4 (102)	4 (102)
Critical edge distance ²	Cac	in. (mm)	Not Applicable⁴	3 (76)	4 (102)
Minimum edge distance ²	Cmin	in. (mm)	Not Applicable ^₄	3 (76)	4 (102)
Minimum spacing distance ²	Smin	in. (mm)	Not Applicable⁴	3 (76)	4 (102)
Ancho	rs Installed in th	e Topside of Cor	crete-Filled Steel Deck Asso	emblies ⁵	
Minimum member topping thickness	hmin,deck	in. (mm)	Not Applicable ^₄	3-1/4 (83)	Not applicable
Critical edge distance	Cac,deck,top	in. (mm)	Not Applicable⁴	3 (76)	Not applicable
Minimum edge distance	Cmin,deck,top	in. (mm)	Not Applicable⁴	3 (76)	Not applicable
Minimum spacing distance	Smin,deck,top	in. (mm)	Not Applicable ^₄	3 (76)	Not applicable
1. The information presented in this table is to be used in co	niunction with the	design criteria of AC	CL 318-14 Chapter 17 or ACL 318	3-11 Appendix D, as applicable.	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.


 For installations through the soffit of steel deck into concrete, see installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3h for 1.5 times the flute width.

3. The notation in parenthesis is for the 2006 IBC.

4. The 1/4-inch diameter anchor is limited to redundant fastening design only.

5. For 3/8-inch diameters installed in the topside of concrete-filled steel deck assemblies, steel installation detail.

Dimensional Sketch for Snake+ Screw Anchor Installed with Steel Insert Element

PERFORMANCE DATA

ension Design Information (For use with loa rom ACI 318-14 Section 5.3 or ACI 318-11 S				ICC-ES	ESR-2272
Design Characteristic	Notation		nits	Nominal Anc	hor Diameter
-				3/8 inch	1/2 inch
Anchor category	1,2 or 3		-		1
Nominal embedment depth	h _{nom}	in. (mm)		1-5/8 (41)	2-3/16 (55)
	STEEL STREN	IGTH IN TENSION ⁴			
		l	ASTM A36	36.0 (248)	
Minimum specified yield strength of steel insert element	fy	ksi (N/mm²)	ASTM A193, Grade B7	105.0 (724)	-
		l re i	ASTM A36		3.0
Minimum specified ultimate strength of steel insert element	f _{uta}	ksi (N/mm²)	ASTM A193, Grade B7	125.0 (862)	- (00
Effective tensile stress area of steel insert element	Ase, N		in ²	0.0775	0.1419
	(Ase) ¹⁰	(n	1m²)	(50) 4.495	(92) 8,230
Steel strength in tension	N _{sa}	lb	ASTM A36	(20.0)	(37.0)
	i ¥5d	(kN)	ASTM A193, Grade B7	9,685 (43.1)	-
Reduction factor for steel strength ³	ϕ	-		· · · · ·	65
CO	NCRETE BREAKOU	T STRENGTH IN TENS	SION [®]		
Effective embedment	h _{ef}		in. (mm)		1.54 (39)
Effectiveness factor for uncracked concrete	Kucr	i)	-		30
Effectiveness factor for cracked concrete	Kcr		-		24
Modification factor for cracked and uncracked concrete ⁵	$\psi_{c,N}$		-		ncrete = 1.0 oncrete = 1.0
Critical edge distance	Cac	in. (mm)		3 (76)	4 (102)
Reduction factor for concrete breakout strength ³	φ	(*	-	\ -7	B = 0.65
PULLOUT ST	RENGTH IN TENSI	on (non-seismic af	PLICATIONS) [®]	.	
Characteristic pullout strength, uncracked concrete (2,500 ps) ⁶	N _{p,uncr}		lb kN)	See note 7	See note
Characteristic pullout strength, cracked concrete (2,500 psi) ⁶	N _{p,cr}		lb KN)	See note 7	1,665 (7.4)
Reduction factor for pullout strength ³	φ	-		0.65 (Co	
PULLOUT S	TRENGTH IN TENS	ION FOR SEISMIC AP	PLICATIONS	· · · ·	
Characteristic pullout strength, seismic (2,500 psi)6	N _{p,eq}		lb <n)< td=""><td>See note 7</td><td>1,665 (7.4)</td></n)<>	See note 7	1,665 (7.4)
Reduction factor for pullout strength ³	ϕ		-	Condition	B = 0.65
PULLOUT STRENGTH IN TENSION FOR SOF	FIT OF SAND-LIGH	IT WEIGHT AND NOR	MAL-WEIGHT CONCRETI	E OVER STEEL DECK	
Characteristic pullout strength, uncracked concrete over steel deck6.9	Np,deck,uncr		lb <n)< td=""><td>1,515 (6.7)</td><td>1,625 (7.2)</td></n)<>	1,515 (6.7)	1,625 (7.2)
Characteristic pullout strength, cracked concrete over steel deck ⁶⁹	Np,deck,cr		lb <n)< td=""><td>1,075 (4.8)</td><td>1,300 (5.8)</td></n)<>	1,075 (4.8)	1,300 (5.8)
Characteristic pullout strength, cracked concrete over steel deck, seismic ^{6,9}	Np,deck,eq		lb <n)< td=""><td>1,075 (4.8)</td><td>1,300 (5.8)</td></n)<>	1,075 (4.8)	1,300 (5.8)
Reduction factor for pullout strength, concrete over steel deck ³	φ	· · · · · · · · · · · · · · · · · · ·	-	. ,	B = 0.65
 or SI: 1 inch = 25.4 mm, 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN. The data in this table is intended to be used with the design provisions additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as Installation must comply with published instructions and details. 	applicable, must ap	ply.		-	
 All values of φ were determined from the load combinations of IBC Sec used, the appropriate value of φ must be determined in accordance with requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 It is assumed that the threaded rod or bolt used with the Snake+ anchor 	h ACl 318-11 D.4.4 D.4.3(c), as applica	. For reinforcement that ble, for the appropriate	t meets ACI 318-14 Chapti ϕ factor.	er 17 or ACI 318-11 Appe	ndix D, as applica

Snake+ anchor is considered a brittle steel element in tension as defined by ACI 318-14 2.3 or ACI 318-11D.1, as applicable. Tabulated values for steel strength in tension must be used for design. 5. For all design cases use $\psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{arr}) and uncracked concrete (k_{umar}) must be used.

6. For all design cases use $\psi_{c,P} = 1.0$. For concrete compressive strength greater than 2,500 psi, Npn = (pullout strength from table)*(specified concrete compressive strength/2,500)^{a.5}. For concrete over steel deck the value of 2,500 must be replaced with the value of 3,000.

7. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

8. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_n equal to 0.8 λ is applied to all values of $\sqrt{1^{+}c}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.

9. Values for N_{p.desk} are for sand-lightweight concrete (f'c,min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, is not required for anchors installed in the deck soffit (flute).

10. The notation in parenthesis is for the 2006 IBC.

Π

Design Characteristic	Netation	Units		Nominal Anchor Diameter		
Design Characteristic	Notation			3/8 inch	1/2 in	
Anchor category	1,2 or 3	-		1	1	
Nominal embedment depth	hnom		in. (mm)	1-5/8 (41)	2-3/1 (55)	
	STEEL STREM	GTH IN SHEAR ⁴	•			
Steel strength in shear ^s	Vsa	lb	ASTM A36	770 (3.4)	1,99 (8.9	
oleer sulengur in sriedi	Vsa	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Reduction factor for steel strength ³	ϕ	-		0.	60	
	CONCRETE BREAKOU	T STRENGTH IN SI	IEAR [®]			
Nominal outside anchor diameter	da(do) ¹⁰		in. (mm)	0.500 (12.7)	0.75 (19.1	
Load bearing length of anchor (h _{ef} or 8d _o , whichever is less)	le	-		1.10 (28)	1.54 (39)	
Reduction factor for concrete breakout strength ³	ϕ	-		Condition B = 0.70		
	PRYOUT STRE	NGTH IN SHEAR [®]	,			
Coefficient for pryout strength (1.0 for $h_{\text{ef}} < 2.5$ in, 2.0 for $h_{\text{ef}} \ge 2.5$ in.)	kcp	-		1.0	1.0	
Effective embedment	hef	in. (mm)		1.10 (28)	1.5- (39	
Reduction factor for pullout strength ³	ϕ		-	Condition B = 0.70		
STEEL	STRENGTH IN SHEAP	FOR SEISMIC AP	PLICATIONS			
Steel strength in shear, seismic ^{7}	V _{sa.eq}	lb	ASTM A36	770 (3.4)	1,99 (8.9	
	* 30,64	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Reduction factor for pullout strength ³	ϕ		-	Condition	B = 0.60	
STEEL STRENGTH IN SHEAR FOR SOFI	IT OF SAND-LIGHT V	EIGHT AND NORN	IAL-WEIGHT CONCRETE OV	ER STEEL DECK [®]		
Steel strength in shear, concrete over steel deck [®]	Vsa.deck	lb	ASTM A36	770 (3.4)	1,99 (8.9	
	v Sa,ueck	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Steel strength in shear, concrete over steel deck, seismic ^a	Vsa.deck.eq	lb	ASTM A36	770 (3)	1,99 (8.9	
סוכבי שיביוקעיו זוז שובמו, נטווטיבוע טעעו צועעו עענא, צעוווני	V sa,deck,eq	(kN)	ASTM A193, Grade B7	1,665 (7.4)	-	
Reduction factor for pullout strength ³	φ		-	Condition	B = 0.60	
 For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN. The data in this table is intended to be used with the design provision additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3 s Installation must comply with published instructions and details. 		er 17 or ACI 318-11	Appendix D, as applicable; fo	r anchors resisting seism	nic load combin	

Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate ϕ factor.

4. It is assumed that the threaded rod or bolt used with the Snake+ anchor will be a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

5. Tabulated values for steel strength in shear must be used for design. These tabulated values are lower than calculated results using equation 17.5.1.2b in ACI 318-14, D-29 in ACI 318-11, and ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable.

6. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_{n} equal to 0.8 λ is applied to all values of $\sqrt{t^{r}c}$ affecting N_n and V_n. λ shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.

7. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2 Section 9.6.

8. Tabulated values for Vsa, desk are for sand-lightweight concrete (f'c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3 are not required for anchors installed in the deck soffit (flute).

9. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

10. The notation in parenthesis is for the 2006 IBC.

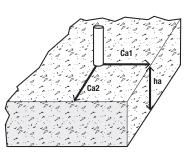
ANCHORS

ECHANICAL

Factored Design Strength (ØNn And ØVn) Calculated In Accordance With ACI 318-14 Chapter 17:

- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = hmin, and with the following conditions:
 - C_{a1} is greater than or equal to the critical edge distance, C_{ac} (table values based on $C_{a1} = C_{ac}$). - C_{a2} is greater than or equal to 1.5 times c_{a1} .
- 2- Calculations were performed according to ACI 318-14 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, hef, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.

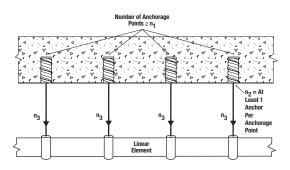
Tension and Shear Design Strengths Installed in Cracked Concrete


- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths Installed in Uncracked Concrete

		Steel		Minimum Concrete Compressive Strength, f'c (psi)								
Nominal Anchor	Nominal Embed.	Insert Element	2,5	2,500		000	4,0	00	6,000		8,000	
Size (in.)	hnom (in.)	(Threaded Rod or Bolt)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	$\begin{matrix} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{matrix}$	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (Ibs.)
0.40	1.5/0	ASTM A36	900	500	985	500	1,140	500	1,395	500	1,610	500
3/8	1-5/8	ASTM A193 Grade B7	900	970	985	1,060	1,140	1,075	1,395	1,075	1,610	1,075
1/2	2-3/16	ASTM A36	1,865	1,295	2,040	1,295	2,355	1,295	2,885	1,295	3,335	1,295
🔲 - Anchor Pu	llout/Pryout Strei	ngth Controls 🔲	- Concrete Bre	akout Strength	Controls 🔳 -	Steel Strength	Controls					



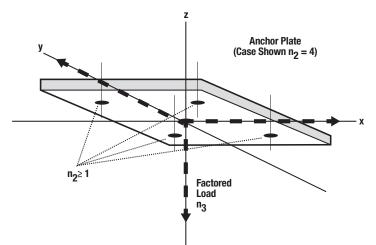
REDUNDANT FASTENING APPLICATIONS

For an anchoring system designed with redundancy, the load maintained by an anchor that experiences failure or excessive deflection can be transmitted to neighboring anchors without significant consequences to the fixture or remaining resistance of the anchoring system. In addition to the requirements for anchors, the fixture being attached shall be able to resist the forces acting on it assuming one of the fixing points is not carrying load. It is assumed that by adhering to the limits placed on n_1 , n_2 and n_3 below, redundancy will be satisfied.

Anchors qualified for redundant applications may be designed for use in normal weight and sand-lightweight cracked and uncracked concrete. Concrete compressive strength of 2,500 psi shall be used for design. No increase in anchor capacity is permitted for concrete compressive strengths greater than 2,500 psi. The anchor installation is limited to concrete with a compressive strength of 8,500 psi or less.

Redundant applications shall be limited to structures assigned to Seismic Design Categories A or B only. Redundant applications shall be limited to support of nonstructural elements.

Strength Design (Redundant Fastening):


For strength design, a redundant system is achieved by specifying and limiting the following variables

- $\label{eq:n1} n_1 = \text{the total number of anchorage points supporting the} \\ \text{linear element}$
- $n_2 =$ number of anchors per anchorage point
- $n_3 =$ factored load at each anchorage point, lbs., using load combinations from IBC Section 1605.2.1 or ACI 318-14 Section 5.3 or ACI 318 (-11,-08,-05) Section 9.2.

Strength Design (SD)

Design values for use with strength design shall be established taking $\phi_{ra} \bullet F_{ra.}$

See redundant fastening design information table for Snake+ design resistance.

Allowable Stress Design (Redundant Fastening):

Design values for use with allowable stress design shall be established taking R_{d} , $ASD = \phi_{ra} \bullet F_{ra}$

$$ASD = \frac{\phi_{ra} \bullet F_{ra}}{\propto}$$

Where α is the conversion factor calculated as the weighted average of the load factors from the controlling load combination. The conversion factor, α is equal to 1.4 assuming all dead load.

REDUNDANT FASTENING

Installation Information for Snake+ Screw Anchor in Redundant Fastening Applications

Anchor Property/	Netstien	Unite	Nominal Anche	or Size / Threaded Couplier D	iameter (inch)
Setting Information	Notation	Units	1/4	3/8	1/2
Nominal drill bit diameter	dbit	in.	3/8 ANSI	1/2 ANSI	3/4 ANSI
Nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-3/16 (55)
Effective embedment	h _{ef}	in. (mm)	1.10 (28)	1.10 (28)	1.54 (39)
Minimum hole depth	h₀	in. (mm)	2 (51)	2 (51)	2-1/2 (64)
Minimum concrete member thickness	h _{min}	in. (mm)	3 (76.2)	3 (76.2)	3 (76.2)
Overall anchor legnth	lanch	in. (mm)	1-1/4 (32)	1-1/4 (32)	1-11/16 (43)
Minimum edge distance, redundant fastening ¹	Cmin = Cac	in. (mm)	4 (102)	4 (102)	4 (102)
Minimum spacing distance, redundant fastening ¹	Smin	in. (mm)	8 (203)	8 (203)	8 (203)
Maximum tightening torque of steel insert element (threaded rod or bolt)	T _{max}	ftlb. (N-m)	4 (6)	8 (11)	36 (49)
Maximum impact wrench power (torque)	Tscrew	ftlb. (N-m)	120 (163)	345 (468)	345 (468)

Redundant Fastening Design Information for Snake+ Anchors^{1,2,3}

Anchor Property/	Notation	Units			Nominal A	nchor Size		
Setting Information	Notation	Units	1/	4"	3/	8"	1/	2"
Anchor category	1,2 or 3	-		1		1	-	1
Nominal embedment depth	h _{nom}	in. (mm)	1-{ (4	5/8 1)		5/8 1)	2-3 (5	/16 5)
	CHARACTERISTIC	STRENGTH (RES	SISTANCE) INST	ALLED IN CON	CRETE ^{4,5}			
				per of ge points		ber of ge points		per of ge points
Resistance, cracked or uncracked concrete (2,500psi)	Fra	F _{ra} (kN)	$n_1 \geq 4$	$n_1 \geq 3$	$n_1 \geq 4$	$n_1 \geq 3$	$n_1 \geq 4$	$n_1 \geq 3$
(2,00000)			550 (2.5)	360 (1.6)	675 (3.0)	450 (2.0)	675 (3.0)	450 (2.0)
Strength reduction factor ³	ϕ_{ra}	-			0.	65		
CHARACTERISTIC STRENG	TH (RESISTANCE)	FOR SAND-LIGH	TWEIGHT AND	NORMAL WEIGI	IT CONCRETE O	VER STEEL DE	CK ^{4,6}	
				per of ge points		ber of ge points		per of ge points
Resistance, cracked or uncracked concrete over steel deck (2,500 psi)	Fra,deck	lb (kN)	n1 ≥ 4	n1 ≥ 3	n1 ≥ 4	n1 ≥ 3	n1 ≥ 4	$n_1 \geq 3$
		(13.4)	550 (2.5)	360 (1.6)	675 (3.0)	450 (2.0)	675 (3.0)	450 (2.0)
Strength reduction factor ³	$\phi_{ m ra}$	-			0.	65	~	

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of Section 4.3 of this report; loads may be applied in tension, shear or any combination thereof.

2. Installation must comply with published instructions and this report.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318 (-11, -08, -05) Section 9.2, as applicable.

4. It is assumed that the threaded rod or bolt used with the Snake+ anchor has properties as listed in Tension Design Information table.

5. Anchors are permitted to be used in lightweight concrete provided the design strength ϕ_a F_m is multiplied by the modification factor λ_a . The modification factor λ_a is equal to 0.8 λ , λ shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.

6. For installations through the soffit of steel deck into concrete see the installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3her or 1.5 times the flute width.

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2018 DEWALT - REV. C

Ultimate Tension Load Capacities for Snake+ in Normal-Weight Uncracked Concrete^{1,2,3,4}

	Minimum	Minimum Concrete Compressive Strength									
Nominal Anchor	Nominal Anchor Embedment		f²c = 2,500 psi (17.2 MPa)		si (20.7 MPa)	f'c = 6,000 psi (41.4 MPa)					
Diameter Depth	Tension	Shear	Tension	Shear	Tension	Shear					
in. in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.					
(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)					
1/4	1-5/8 (41)	2,130 (9.5)	1,045 (4.6)	2,335 (10.4)	1,045 (4.6)	-	-				
3/8	1-5/8	2,165	1,045	2,370	1,045	3,190	1,045				
	(41)	(9.7)	(4.6)	(10.6)	(4.6)	(14.2)	(4.6)				
1/2	2-3/16	5,590	2,050	6,125	2,050	7,240	2,050				
	(55)	(24.9)	(9.1)	(27.3)	(9.1)	(32.0)	(9.1)				

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

3. The tabulated load values are applicable to single anchors in uncracked concrete installed at critical spacing distance between anchors and at critical edge distance.

4. Ultimate shear capacity is controlled by steel strength of ASTM A36 element (or equivalent).

ORDERING INFORMATION

Carbon Steel Snake+ Screw Anchor

Cat. No.	Anchor Size	Embedment	Internal Thread Depth	Std. Box ¹	Std. Ctn.
6400SD	1/4"	1-5/8"	11/32"	100	1,000
6401SD	3/8"	1-5/8"	23/32"	50	500
6403SD	1/2"	2-1/2"	15/16"	50	300
1. Each box con	nes with one free setting tool				

Setting Tool for Snake+ Screw Anchor

Cat. No.	Anchor Size	Std. Ctn.
6402SD	1/4"	1
6407SD	3/8"	1
6404SD	1/2"	1

Suggested Impact Wrench

20V Max* Impact Wrenches						
1/4	DCF880M2	- (
3/8	1/2" Impact Wrench					
3/8	DCF894HP2					
1/2	3/8 and 1/2" Impact Wrench High Torque	.				

ANCHORS

GENERAL INFORMATION

STEEL DROPIN[™]

Internally Threaded Expansion Anchor

PRODUCT DESCRIPTION

The Steel Dropin is an all-steel, machine bolt anchor available in carbon steel and two types of stainless steel. It can be used in solid concrete, hard stone, and solid block base materials. A coil thread version for forming applications is also available.

GENERAL APPLICATIONS AND US

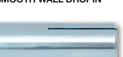
- Suspending Conduit
- Fire Sprinkler
- · Cable Trays and Strut

- Concrete Formwork
- Pipe Supports

- Suspended Lighting
- FEATURES AND BENEFITS
- + Internally threaded anchor for easy bolt removability and service work
- + Flanged (lipped) version installs flush for easy inspection and standard embedment
- + Smooth wall dropin can be installed flush mounted or below the base material surface
- + Optionally available with a knurled body
- + Coil thread version accepts coil rod and typically used for concrete formwork applications

TESTING, APPROVALS AND LISTINGS

- Tested in accordance with ASTM 488 and AC01 criteria
- Underwriters Laboratory (UL Listed) File No. EX1289 (N) (see ordering information)
- FM Approvals (Factory Mutual) File No. 3059197


GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Dropin anchors shall be Steel Dropin as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	287
Material Specifications	288
Installation Specifications	288
Performance Data	289
Design Criteria (Allowable Stress Design)	290
Ordering Information	292

FLANGE (LIPPED) DROPIN

THREAD VERSION

- UNC Coarse Thread
- Coil Thread

ANCHOR MATERIALS

- Zinc Plated Carbon Steel
- 303 Stainless Steel (Domestic)
- 304 Stainless Steel
- 316 Stainless Steel

ROD/ANCHOR SIZE RANGE (TYP.)

- 1/4" to 3/4" diameter UNC Coarse Thread
- 1/2" and 3/4" diameter Coil Thread

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

1-800-4 DEWALT

nternally Threaded Expansion Anchor

DRO

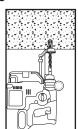
Π

Π

MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel	Type 303 Stainless Steel	Type 316 Stainless Steel	
Anchor Body	AISI 1008	Type 303/304 Stainless Steel	Type 316 Stainless Steel	
Plug	AISI 1018	Type 303/304 Stainless Steel	Type 316 Stainless Steel	
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn 5)	N/A		

ainless steel anchor components are passivated.

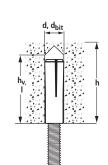

INSTALLATION SPECIFICATIONS

	Rod/Anchor Diameter, d								
Anchor (Rod) Size	1/4"	3/8"	1/2"	1/2" Coil Thread	5/8"	3/4"	3/4" Coil Thread		
ANSI Drill Bit Size, d _{bit} (in.)	3/8	1/2	5/8	5/8	7/8	1	1		
Maximum Tightening Torque, T _{max} (ftIbs.)	5	10	20	20	40	80	80		
Thread Size (UNC)	1/4-20	3/8-16	1/2-13	1/2-6	5/8-11	3/4-10	3/4-41/2		
Thread Depth (in.)	7/16	5/8	13/16	13/16	1-3/16	1-3/8	1-3/8		
Flange Size (in.)	7/16	9/16	45/64	-	-	-	-		
Anchor Length I, h_v (in.)	1	1-9/16	2	2	2-1/2	3-3/16	3-3/16		

Installation Procedure

Using the proper drill bit size, drill a hole into the base material to the depth of embedment required. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15. Do not over drill the hole unless the application calls for a subset anchor.

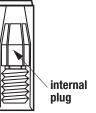
Remove dust and debris from

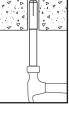


the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling Insert the anchor into the hole and tap flush with surface. Using a DEWALT setting tool specifically, set the anchor by driving the tool with a sufficient number of hammer blows until the shoulder of the tool is seated against the anchor. Anchor will not hold allowable loads required if shoulder of DEWALT setting tool does not seat against anchor.

If using a fixture, position it, insert bolt and tighten. Most overhead applications utilize threaded rod. Minimum thread engagement should be at least one anchor diameter.

DNCH


Nomenclature


h

hv

d = Diameter of anchor dbit = Diameter of drill bit

- = Base material thickness. The
- minimum value of h should be 1.5hv or 3" min. (whichever is greater) Minimum embedment depth = = Overall length of anchor
- T_{max} = Maximum tightening torque

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Steel Dropin in Normal-Weight Concrete^{1,2,3}

Rod/Anchor	Minimum			Ten	sion			Shear	
Diameter d Embedment in. in. (mm) (mm)	Embedment	2,000 psi	(13.8 MPa)	4,000 psi	4,000 psi (27.6 MPa)		(41.4 MPa)	f'c ≥ 2000 psi (20.7 MPa)	
	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable lbs. (kN)	
1/4	1	1,140	285	1,985	495	2,080	520	2,120	530
(6.4)	(25.4)	(5.1)	(1.3)	(8.9)	(2.2)	(9.4)	(2.3)	(9.5)	(2.4)
3/8	1-9/16	2,180	545	4,180	1,045	4,950	1,240	4,585	1,145
(9.5)	(39.7)	(9.8)	(2.5)	(18.8)	(4.7)	(22.3)	(5.6)	(20.6)	(5.2)
1/2	2	4,105	1,025	5,760	1,440	6,585	1,645	6,400	1,600
(12.7)	(50.8)	(18.5)	(4.6)	(25.9)	(6.5)	(29.6)	(7.4)	(28.8)	(7.2)
5/8	2-1/2	4,665	1,165	7,440	1,860	10,920	2,730	12,380	3,095
(15.9)	(63.5)	(21.0)	(5.2)	(33.5)	(8.4)	(49.1)	(12.3)	(55.7)	(13.9)
3/4	3-3/16	8,580	2,145	9,405	2,350	11,300	2,825	15,680	3,920
(19.1)	(81.0)	(38.6)	(9.7)	(41.8)	(10.5)	(50.3)	(12.6)	(70.6)	(17.6)

1. Tabulated load values are applicable to carbon and stainless steel anchors.

2. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

3. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Ultimate and Allowable Load Capacities for Steel Dropin in Lightweight Concrete^{1,2,3,4}

Rod/Anchor	Minimum			Ten	sion			Sh	ear
Diameter	Embedment	2,000 psi	(13.8 MPa)	4,000 psi	4,000 psi (27.6 MPa)		(41.4 MPa)	f¹c ≥ 2000 psi (20.7 MPa)	
d Depth	Ultimate	Allowable	Ultimate	Allowable	Ultimate	Allowable	Ultimate	Allowable	
in. in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm) (mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
1/4	1	1,060	265	1,360	340	1,660	415	1,920	480
(6.4)	(25.4)	(4.8)	(1.2)	(6.1)	(1.5)	(7.5)	(1.9)	(8.6)	(2.2)
3/8	1-9/16	3,040	760	3,780	945	4,520	1,130	4,120	1,030
(9.5)	(39.7)	(13.7)	(3.4)	(17.0)	(4.3)	(20.3)	(5.1)	(18.5)	(4.6)
1/2	2	4,240	1,060	4,840	1,210	5,460	1,365	5,680	1,420
(12.7)	(50.8)	(19.1)	(4.8)	(21.8)	(5.4)	(24.6)	(6.1)	(25.6)	(6.4)
5/8	2-1/2	6,860	1,715	7,840	1,960	8,840	2,210	9,640	2,410
(15.9)	(63.5)	(30.9)	(7.7)	(35.3)	(8.8)	(39.8)	(9.9)	(43.4)	(10.8)
3/4	3-3/16	10,280	2,570	11,700	2,925	13,120	3,280	15,680	3,920
(19.1)	(81.0)	(45.7)	(11.4)	(52.7)	(13.0)	(59.0)	(14.6)	(70.6)	(17.9)

1. Tabulated load values are applicable to carbon and stainless steel anchors.

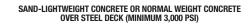
2. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

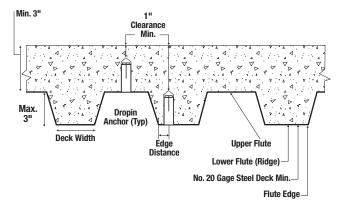
3. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

4. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

Allowable Load Capacities for Steel Dropin in Lightweight Concrete over Steel Deck^{1,2,3,4}

		Lightweight Concrete over Steel Deck, f´c \geq 3,000 (20.7 MPa)										
Rod/Anchor Diameter d b			Minimum 1-1/2" Wide Deck				Minimum 4-1	/2" Wide Deck				
		Ultimate Load		Allowable Load		Ultima	Ultimate Load		Allowable Load			
in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)			
1/4 (6.4)	1 (25.4)	400 (1.8)	2,040 (9.2)	100 (0.4)	510 (2.3)	760 (3.4)	2,040 (9.2)	190 (0.8)	510 (2.3)			
3/8 (9.5)	1-9/16 (39.7)	600 (2.7)	2,760 (12.3)	150 (0.7)	690 (3.1)	960 (4.3)	2,760 (12.3)	240 (1.1)	690 (3.1)			
1/2 (12.7)	2 (50.8)	-	-	-	-	2,740 (12.3)	5,560 (25.0)	685 (3.1)	1,390 (6.3)			


1. Tabulated load values are for carbon steel and stainless steel anchors installed in sand-lightweight concrete over steel deck. Concrete compressive strength must be at the specified minimum at the time of installation.


2. Allowable load capacities listed are calculated using and applied safety factor of 4.0.

3. Tabulated load values are for anchors installed in the center of the flute. Spacing distances shall be in accordance with the spacing table for lightweight concrete listed in the Design Criteria.

4. Flute edge distance equals one-half the minimum deck width.

5. Anchors are permitted to be installed in the lower or upper flute of the metal deck provided the proper installation procedures are maintained.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{\mathbf{Nu}}{\mathbf{Nn}}\right) + \left(\frac{\mathbf{Vu}}{\mathbf{Vn}}\right) \le 1$$

 $\begin{array}{l} N_u = \mbox{Applied Service Tension Load} \\ N_n = \mbox{Allowable Tension Load} \\ V_u = \mbox{Applied Service Shear Load} \\ V_n = \mbox{Allowable Shear Load} \\ \end{array}$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 3.0 h_{v}$	$F_{NS} = F_{VS} = 1.0$	Smin = 1.5hv	Fns= Fvs = 0.50
Edge Distance (a)	Tension	$c_{cr} = 14d$	F _{NC} = 1.0	$c_{min} = 7d$	$F_{NC} = 0.90$
Edge Distance (c)	Shear	$c_{cr} = 14d$	Fvc = 1.0	c _{min} = 7d	$F_{VC} = 0.50$

Where:

Anchor Installed in Lightweight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 3.0 h_{v}$	FNs = Fvs = 1.0	Smin = 1.5hv	$F_{NS} = F_{VS} = 0.50$
	Tension	$c_{cr} = 14d$	$F_{NC} = 1.0$	c _{min} = 7d	$F_{NC} = 0.80$
Edge Distance (c)	Shear	$c_{cr} = 14d$	$F_{VC} = 1.0$	$c_{\text{min}} = 7d$	$F_{Vc} = 0.50$

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

<u>ANCHORS</u>

NICAL

•

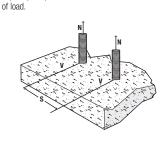
MT

ROPII

 Π

nternally Threaded Expansion Anchor

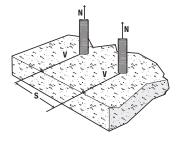
LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT AND LIGHTWEIGHT CONCRETE


Spacing, Tension (F_{NS}) & Shear (F_{VS})

DEWA

ENGINEERED BY POWERS

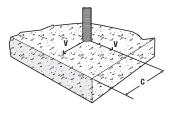
Dia. (in.) 1/4 3/8 1/2 5/8 3/4 **h**_v (in.) 1 1-1/2 2 2-1/2 3 3 7-1/2 9 Scr (in.) 4-1/2 6 Smin (in.) 1-1/2 2-1/4 3 3-3/4 4-1/2 1 - 1/20.50 2-1/4 0.75 0.50 Spacing Distance (inches) 0.67 0.50 3 1.00 _ -3-3/4 1.00 0.83 0.63 0.50 1.00 0.89 0.67 4 0.53 4-1/2 1.00 1.00 0.75 0.60 0.50 5 1.00 1.00 0.83 0.67 0.56 6 1.00 1.00 1.00 0.80 0.67 7-1/2 1.00 1.00 1.00 1.00 0.83 9 1.00 1.00 1.00 1.00 1.00


Notes: For anchors loaded in tension and shear, the critical spacing $(s_{\rm cr})$ is equal to 3 embedment depths $(3h_{\rm e})$ at which the anchor achieves 100% of load. Minimum spacing $(s_{\rm min})$ is equal to 1.5 embedment depths $(1.5h_{\rm e})$ at which the anchor achieves 50%

Edge Distance, Tension (F_{NC}) (Normal-Weight concrete only)

Dia.	(in.)	1/4	3/8	1/2	5/8	3/4
Cor	(in.)	3-1/2	5-1/4	7	8-3/4	10-1/2
Cmin	(in.)	1-3/4	2-5/8	3-1/2	4-3/8	5-1/4
	1-3/4	0.90	-	-	-	-
	2	0.91	-	-	-	-
(inches)	2-5/8	0.95	0.90	-	-	-
l de	3	0.97	0.91	-	-	-
, E	3-1/2	1.00	0.93	0.90	-	-
ą.	4-3/8	1.00	0.97	0.93	0.90	-
Edge Distance, c	5-1/4	1.00	1.00	0.95	0.92	0.90
Dist	6	1.00	1.00	0.97	0.94	0.91
ge [7	1.00	1.00	1.00	0.96	0.93
Ē	8	1.00	1.00	1.00	0.98	0.95
	8-3/4	1.00	1.00	1.00	1.00	0.97
	10-1/2	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension, the critical edge (c_o) is equal to 14 anchors diameters (14d) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7d) at which the anchor achieves 90% of load for normal-weight concrete and 80% of load for light-weight concrete.


Edge Distance, Tension (F_{NC}) (Lightweight concrete only)

-	. (in.)	1/4	3/8	1/2	5/8	3/4
Ccr	(in.)	3-1/2	5-1/4	7	8-3/4	10-1/2
Cmir	(in.)	1-3/4	2-5/8	3-1/2	4-3/8	5-1/4
	1-3/4	0.80	-	-	-	-
	2	0.83	-	-	-	-
(inches)	2-5/8	0.90	0.80	-	-	-
Ę.	3	0.94	0.83	-	-	-
Ē	3-1/2	1.00	0.87	0.80	-	-
ė,	4-3/8	1.00	0.93	0.85	0.80	-
Edge Distance, c	5-1/4	1.00	1.00	0.90	0.84	0.80
list	6	1.00	1.00	0.94	0.87	0.83
je [7	1.00	1.00	1.00	0.92	0.87
Ē	8	1.00	1.00	1.00	0.97	0.90
	8-3/4	1.00	1.00	1.00	1.00	0.93
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance, Shear (F_{VC})

Dia	n. (in.)	1/4	3/8	1/2	5/8	3/4
Co	(in.)	3-1/2	5-1/4	7	8-3/4	10-1/2
Cmin (in.)		1-3/4	2-5/8	3-1/2	4-3/8	5-1/4
	1-3/4	0.50	-	-	-	-
	2	0.57	-	-	-	-
	2-5/8	0.75	0.50	-	-	-
(sa	3	0.86	0.57	-	-	-
- E	3-1/2	1.00	0.67	0.50	-	-
Ē	4-3/8	1.00	0.83	0.63	0.50	-
é.	5	1.00	0.95	0.71	0.57	-
anc	5-1/4	1.00	1.00	0.75	0.60	0.50
list	6	1.00	1.00	0.86	0.69	0.57
Edge Distance, c (inches)	7	1.00	1.00	1.00	0.80	0.67
Ĕġ	8	1.00	1.00	1.00	0.91	0.76
	8-3/4	1.00	1.00	1.00	1.00	0.83
	10	1.00	1.00	1.00	1.00	0.95
	10-1/2	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in shear, the critical edge distance (c_{c}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7d) at which the anchor achieves 50% of load.

ORDERING INFORMATION

Carbon Steel Smooth Wall Dropin

Cat. No.	Domestic Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100
6304	6304USA	1/4"	1"	7/16"	100	1000	2
6306	6306USA	3/8"	1-9/16"	5/8"	50	500	6
6308	6308USA	1/2"	2"	13/16"	50	250	12
6320	6320USA	5/8"	2-1/2"	1-3/16"	25	125	32
6312	6312USA	3/4"	3-13/16"	1-3/8"	10	50	48

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100
6340	1/4"	1"	7/16"	100	1,000	2
6342	3/8"	1-9/16"	5/8"	50	500	6
6344	1/2"	2"	13/16"	50	250	12

Carbon Steel Flanged Dropin (Lipped)

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100
6324	1/4"	1"	7/16"	100	1,000	2
6326	3/8"	1-9/16"	5/8"	50	500	6
6328	1/2"	2"	13/16"	50	300	12

Type 300 Series Stainless Steel Dropin

Cat. No. (Type 304)	Domestic Cat. No. (Type 303)	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100
6204	6204USA	1/4"	1"	7/16"	100	1000	2
6206	6206USA	3/8"	1-9/16"	5/8"	50	500	6
6208	6208USA	1/2"	2"	13/16"	50	250	12
6210	6210USA	5/8"	2-1/2"	1-3/16"	25	125	32
6212	6212USA	3/4"	3-13/16"	1-3/8"	10	50	48

Type 316 Stainless Steel Dropin

Cat. No.	Domestic Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100
6224	6224USA	1/4"	1"	7/16"	100	1000	2
6226	6226USA	3/8"	1-9/16"	5/8"	50	500	6
6228	6228USA	1/2"	2"	13/16"	50	250	12
6230	6230USA	5/8"	2-1/2"	1-3/16"	25	125	32
6232	6232USA	3/4"	3-13/16"	1-3/8"	10	50	48

Carbon Steel Coil Thread Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100
6330	1/2"	2"	13/16"	50	300	12
6332	3/4"	3-3/16"	1-3/8"	10	50	48

Setting Tools for Steel Dropin

Cat. No.	6305	6307	6309	6311	6313
Rod/Anchor Size	1/4"	3/8"	1/2"	5/8"	3/4"
Pin Length	39/64"	61/64"	1-3/16"	1-5/16"	1-61/64"

Accu-Bit[™] Drill Stop for Steel Dropin

Cat. No.	Rod/Anchor Size	Drill Depth	Std. Box
DWA5493	1/2" Accu-Bit for 3/8" Steel Dropin	1-13/16"	1
DWA5495	5/8" Accu-Bit for 1/2" Steel Dropin	2-3/8"	1

GENERAL INFORMATION

SMART DI[™]

Internally Threaded Expansion Anchor

PRODUCT DESCRIPTION

The Smart DI is an all-steel, machine bolt anchor available in carbon steel. It can be used in solid concrete, hard stone, and solid block base materials. The Smart DI is specifically designed to be easier to fully set during installation as a benefit to the user.

GENERAL APPLICATIONS

- Suspending Conduit
- Fire Sprinkler
- · Cable Trays and Strut

- Concrete Formwork • Pipe Supports
- Suspended Lighting

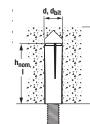
FEATURES AND BENEFITS

- + Installs with reduced effort compared to traditional drop in style anchors
- + Can be installed using the manual setting tool or Smart DI system with a hammer-drill
- + Setting indicater makes identification of properly set anchors easy (when installed using the smart tool and smart bit)
- + Internally threaded anchor for easy bolt removability and service work
- + Anchor can be installed through standard fixture holes

TESTING, APPROVALS AND LISTINGS

- FM Global (Factory Mutual) File No. 3059197 (see ordering information)
- Underwriters Laboratory (UL Listed) File No. EX1289 (N) (see ordering information)

GUIDE SPECIFICATIONS


CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Dropin anchors shall be Smart DI as supplied by DEWALT, Towson, MD.

MATERIAL SPECIFICATIONS

Anchor component	Specification
Anchor Body	AISI 1008
Plug	AISI 1008
Zinc Plating	ASTM B 633, SC1 Type III (Fe/Zn 5)

INSTALLATION SPECIFICATIONS

Anchor (Rod) Size	1/4"	3/8"	1/2"
Nominal Outside Diameter d (in.)	0.375	0.500	0.625
ANSI Drill Bit Size, dbit (in.)	3/8	1/2	5/8
Maximum Tightening Torque, T _{max} (ftlbs.)	5	10	20
Thread Size (UNC)	1/4-20	3/8-16	1/2-13
Thread Depth (in.)	7/16	5/8	13/16
Anchor Length I, h _{nom} (in.)	1	1-9/16	2

Nomenclature

- = Diameter of anchor d
- = Diameter of drill bit dhit
- h = Base material thickness. The minimum value of h should be 3" min. except for 1/2" size where minimum value of h should be 4"
- $h_{nom} = Minimum embedment depth$
- = Overall length of anchor

SECTION CONTENTS

General Information	293
Material Specifications	.293
nstallation Specifications	.293
nstallation Specifications	.294
Performance Data	.295
Design Criteria	
Allowable Stress Design)	.295
(Allowable Stress Design) Ordering Information	

SMART DI (DROP-IN)

THREAD VERSION

Coarse (UNC)

ANCHOR MATERIALS

• Zinc Plated Carbon Steel

ROD/ANCHOR SIZE RANGE (TYP.)

• 1/4", 3/8" and 1/2" diameter (UNC)

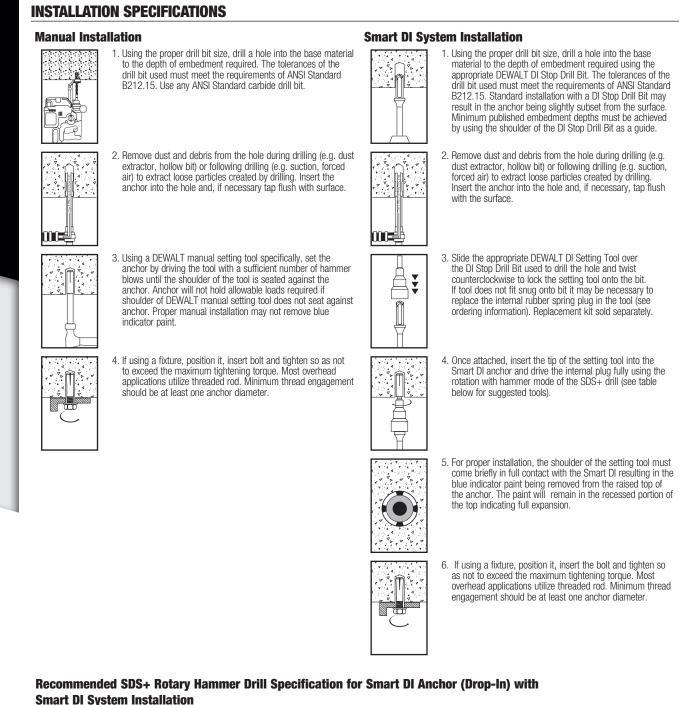
SUITABLE BASE MATERIALS

· Normal-Weight Concrete

SMART DI DROP-IN

Anchor prior to installation

When properly set with Smart DI tool (system installation tool), anchor indicator will leave blue paint in recessed cavities. Note: Blue does not have to be removed from all four top surfaces to be fully set.


- Easier to Set
- More Expansion
- Expansion Indicator with a Smart DI Svstem

FECHNICAL GUIDE – MECHANICAL ANCHORS ©2018 DEWALT – REV. B

Internally

Concrete Compressive Strength (psi)

2,500

6,500

2.500

6,500

2.500

6,500

Local concrete conditions and rotary hammer impact efficiency vary oreatly. Please verify that the tool impact energy is sufficient to fully set the internal plug of the Smart DI prior

Rated Tool Impact Energy Suggested Range* (ft-lbs)

1.3 - 2.6

2.0 - 3.5

1.3 - 4.0

2.1 - 4.0

2.0 - 4.0

2.5 - 4.0

Diameter

1/4"

3/8"

1/2"

to using the system

Recommended Rotary Hammer Tool Part Number

DCH133M2, D25323K

DCH293R2, D25263K

DCH293R2, D25413K

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Smart DI Anchor (Drop-In) in Normal-Weight Concrete^{1,2,3,4,5}

			Minimum Concrete Compressive Strength - f°c (psi)														
Nom. Anchor	Min. Embed.		2,5	500			3,000 4,0		000		6,000						
Dia.	Depth	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear
a in.	in. (mm)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable lbs. (kN)
1/4	1 (25)	1,300 (5.8)	325 (1.4)	2,495 (11.1)	625 (2.8)	1,390 (6.2)	350 (1.6)	2,510 (11.2)	630 (2.8)	1,565 (7.0)	390 (1.7)	2,550 (11.3)	640 (2.8)	1,910 (8.5)	480 (2.1)	2,620 (11.7)	655 (2.9)
3/8	1-9/16 (40)	1,985 (8.6)	495 (2.2)	4,160 (18.5)	1,040 (4.6)	2,275 (10.1)	570 (2.5)	4,360 (19.4)	1,090 (4.6)	2,850 (12.7)	715 (3.2)	4,755 (21.2)	1,190 (5.3)	4,000 (17.5)	1,000 (4.4)	5,550 (24.7)	1,390 (5.2)
1/2	2 (51)	3,630 (16.1)	910 (4.0)	7,170 (31.9)	1,795 (8.0)	3,185 (14.2)	795 (3.5)	7,280 (32.4)	1,820 (8.1)	4,190 (18.6)	1,050 (4.7)	7,505 (33.4)	1,875 (8.3)	4,935 (22.0)	1,235 (8.3)	7,955 (35.4)	1,990 (8.9)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

3. Allowable load capacities listed are calculated using and applied safety factor of 4.0.

4. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

5. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

 $\left(\frac{\mathbf{N}\mathbf{u}}{\mathbf{N}\mathbf{n}}\right) + \left(\frac{\mathbf{V}\mathbf{u}}{\mathbf{V}\mathbf{n}}\right) \le 1$

Where: N N

 N_u = Applied Service Tension Load N_n = Allowable Tension Load

$$\label{eq:Vu} \begin{split} V_u &= \text{Applied Service Shear Load} \\ V_n &= \text{Allowable Shear Load} \end{split}$$

Load Adjustment Factors for Spacing and Edge Distances¹

NOTE: Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Spac	Spacing Distance Adjustment Factors - Tension (F _{NS})					
	Dia. (in)	1/4"	3/8"	1/2"		
	hv	1	1-9/16	2		
	Scr	3	4-1/2	6		
	Smin	1-1/2	2-3/8	3		
	1/2	-	-	-		
	1	-	-	-		
8	1-1/2	0.90	-	-		
님	2	0.94	-	-		
e (j.	2-1/2	0.97	0.84	-		
Spacing Distance (inches)	3	1.00	0.87	0.85		
lista	3-1/2	1.00	0.91	0.88		
5	4	1.00	0.95	0.90		
ici I	4-1/2	1.00	1.00	0.93		
Spa	5	1.00	1.00	0.95		
	5-1/2	1.00	1.00	0.98		
	6	1.00	1.00	1.00		

Edge Distance Adjustment Factors - Tension (F_{NC})

Luge Distance Aujustinent i actors - rension (i NC)					
Dia. (in)		1/4"	3/8"	1/2"	
	hv	1	1-9/16	2	
	Ccr	2	4-11/16	6	
	Cmin	2	3-1/8	4	
	1/2	-	-	-	
	1	-	-	-	
6	1-1/2	-	-	-	
l ä	2	1.00	-	-	
j j	2-1/2	1.00	-	-	
8	3	1.00	-	-	
Edge Distance (inches)	3-1/2	1.00	0.98	-	
Dis	4	1.00	0.99	0.93	
lge	4-1/2	1.00	1.00	0.95	
Ш	5	1.00	1.00	0.97	
	5-1/2	1.00	1.00	0.98	
	6	1.00	1.00	1.00	

Spacing Distance Adjustment Factors - Shear (Fvs)

Spacing Distance Aujustinent Factors - Shear (FVS)					
	Dia. (in)	1/4"	3/8"	1/2"	
	hv	1	1-9/16	2	
	Scr	3	5	6	
	Smin	1-1/2	2-3/8	3	
	1/2	-	-	-	
	1	-	-	-	
es)	1-1/2	0.62	-	-	
년	2	0.75	-	-	
e	2-1/2	0.88	0.65	-	
ju C	3	1.00	0.73	0.62	
Spacing Distance (inches)	3-1/2	1.00	0.81	0.69	
5	4	1.00	0.89	0.75	
cin	4-1/2	1.00	0.97	0.81	
Spa	5	1.00	1.00	0.88	
	5-1/2	1.00	1.00	0.94	
	6	1.00	1.00	1.00	

Edge Distance Adjustment Factors - Shear (Fvc)

Euye	Euge Distance Aujustinent Factors - Shear (FVC)				
	Dia. (in)	1/4"	3/8"	1/2"	
	hv	1	1-9/16	2	
	Ccr	3	4-11/16	6	
	Cmin	2	3-1/8	4	
	1/2	-	-	-	
	1	-	-	-	
()	1-1/2	-	-	-	
he	2	0.87	-	-	
(inc	2-1/2	0.94	-	-	
lce	3	1.00	-	-	
Edge Distance (inches)	3-1/2	1.00	0.96	-	
Dis	4	1.00	0.98	0.91	
lge	4-1/2	1.00	1.00	0.93	
ŭ	5	1.00	1.00	0.95	
	5-1/2	1.00	1.00	0.98	
	6	1.00	1.00	1.00	

ORDERING INFORMATION

Smart DI Anchor (Drop-In) Carbon Steel Smooth Wall Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Box	Wt./100	FM or UL
6304SD	1/4"	1"	7/16"	100	1,000	2	-
6306SD	3/8"	1-9/16"	5/8"	50	500	6	FM/UL
6308SD	1/2"	2"	13/16"	50	500	12	FM/UL

DI System Setting Tool

Cat. No.	00425SD	00427SD	00429SD	
Rod/Anchor Size	1/4"	3/8"	1/2"	
Pin Length	39/64"	61/64"	1-3/16"	

DI Tool Replacement Parts Cat No

Cat. No.	00426SD	00428SD	00430SD
Kit Contents 2 Guide Screws 1 Rubber Spring Plug		2 Guide Screws 1 Rubber Spring Plug	2 Guide Screws 1 Rubber Spring Plug
Fits Tool No.	00425SD	00427SD	00429SD

DI Stop Drill Bit

Cat. No. 00391SD		00397SD	00410SD
Description	Smart Bit for 1/4"	Smart Bit for 3/8"	Smart Bit for 1/2"
Bit Diameter	3/8"	1/2"	5/8"

Manual Setting Tools for Smart DI Anchor (Drop-In)

				-
Cat. No.	6305	6307	6309	ĺ
Rod/Anchor Size	1/4"	3/8"	1/2"	
Pin Length	39/64"	61/64"	1-3/16"	1

Recommended Rotary Hammer Drills

Cat. No.	Description
DCH133M2	1" D-Handle SDS+ Brushless Rotary Hammer 20V Max
DCH293R2	1-1/8" SDS+ Brushless Rotary Hammer 3.5J w/ 6Ah Battery 20V Max
D25263K	1-1/8" SDS+ Rotary Hammer
D25323K	1" L-Shape SDS Rotary Hammer
D25413K	1-1/8" SDS Plus Rotary Hammer Kit

.297

GENERAL INFORMATION

MINI DROPIN™

Internally Threaded Expansion Anchor

PRODUCT DESCRIPTION

The Mini Dropin is a carbon steel machine bolt anchor for use in shallow embedment applications. In addition to solid concrete and precast hollow core plank, it can be used in post-tensioned concrete slabs and concrete pours over steel deck.

GENERAL APPLICATIONS AND

- Suspending Conduit
- Fire Sprinkler

- Utilities
- Pipe Supports

Suspended Lighting

· Cable Trays and Strut

FEATURES AND BENEFITS

- + Internally threaded anchor for easy bolt removability and service work
- + Ideal for precast hollow core plank and post-tensioned concrete slabs
- + Lip provides flush installation and consistent embedment
- + Manual setting tool scores flange when set to verify proper expansion depth

APPROVALS AND LISTINGS

- Tested in accordance with ASTM E488 and AC01 criteria
- Factory Mutual Research Corporation (FM Approvals) File No. 3059197 See listing for applicable sizes - www.fmglobal.com

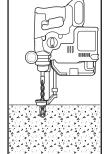
GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Anchors shall be Mini Dropin anchors as supplied by DEWALT, Towson, MD.

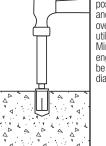
MATERIAL AND INSTALLATION SPECIFICATIONS

Material Specification

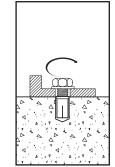
Anchor Component	Carbon Steel
Anchor Body	SAE 1009
Plug	SAE 1009
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn 5)


Installation Specification

Dimension	Rod/Anchor Diameter, d					
Dimension	1/4"	3/8"	1/2"			
ANSI Drill Bit Size dbit (in.)	3/8	1/2	5/8			
Maximum Tightening Torque, Tmax, (ft-lbs)	3	5	10			
Thread Size (UNC)	1/4-20	3/8-16	1/2-13			
Thread Depth (in.)	3/8	13/32	5/8			
Overall Anchor Length (in.)	5/8	3/4	1			


ISTALLATION PROCEDU

Drill a hole into the base material to the depth of embedment required. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15.


In post-tensioned concrete slabs, take care to avoid drilling into the posttensioned cables.

Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling Insert the anchor into the hole and tap flush with surface. Using a DEWALT setting tool specifically, set the anchor by driving the tool with a sufficient number of hammer blows until the shoulder of the tool is seated against the anchor. Anchor will not hold allowable loads required if shoulder of DEWALT setting tool does not seat against anchor.

If using a fixture, position it, insert bolt and tighten. Most overhead applications utilize threaded rod. Minimum thread engagement should be at least one anchor diameter.

SECTION CONTENTS

Design Criteria (Allowable Stress Design)	299
Ordering Information	300

THREAD VERSION

- UNC Thread
- ANCHOR MATERIALS
- Zinc Plated Carbon Steel

ROD/ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter to 1/2" diameter

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete
- Precast Hollow Core Plank
- Concrete Over Steel Deck

PERFORMANCE DATA

Ultimate Load Capacities for Mini Dropin in Normal-Weight Concrete^{1,2}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f´c)						
Size	Embedment Depth	3,000 psi (20.7 MPa)		4,000 psi ((27.6 MPa)	6,000 psi (41.4 MPa)		
d hv		Tension	Shear	Tension	Shear	Tension	Shear	
in. in.		Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm) (mm)		(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
1/4	5/8	1,100	1,260	1,150	1,650	1,200	1,650	
(6.4)	(15.9)	(6.3)	(5.7)	(5.1)	(7.4)	(5.3)	(7.4)	
3/8	3/4	1,980	2,700	2,120	4,220	2,270	4,220	
(9.5)	(19.1)	(8.9)	(12.2)	(9.5)	(19.0)	(10.2	(19.0)	
1/2	1	3,360	4,400	3,360	4,875	3,750	4,875	
(12.7)	(25.4)	(15.1)	(19.8)	(15.1)	(21.9)	(16.9)	(21.9)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for Mini Dropin in Normal-Weight Concrete^{1,2}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f´c)					
Size	Embedment Depth	3,000 psi (20.7 MPa)		4,000 psi ((27.6 MPa)	6,000 psi (41.4 MPa)	
a	h√	Tension	Shear	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
1/4	5/8	275	315	285	415	300	415
(6.4)	(15.9)	(1.2)	(1.4)	(1.3)	(1.9)	(1.3)	(1.9)
3/8	3/4	495	675	530	1,055	570	1,055
(9.5)	(19.1)	(2.2)	(3.0)	(2.4)	(4.7)	(2.6)	(4.7)
1/2	1	840	1,100	840	1,220	940	1,220
(12.7)	(25.4)	(3.8)	(5.0)	(3.8)	(5.5)	(4.2)	(5.5)

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0.

Minimum Embed.

Depth

ĥ_⊻ in.

(mm)

5/8

(15.9)

3/4

(19.1)

1

(25.4)

Rod/Anchor

Size

d

in. (mm)

1/4

(6.4)

3/8

(9.5)

1/2

(12.7)

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

Ultimate Load

Shear

lbs. (kN)

1,880

(8.5)

2,040

(9.2)

2,120

(9.5)

Ultimate and Allowable Load Capacities for Mini Dropin Installed Through Steel Deck into Lightweight Concrete^{1,2,3}

Lightweight Concrete Over Min. 20 Ga. Steel Deck. f'c \geq 3,000 psi (20.7 MPa)

Minimum 1-3/4" Wide Deck

Allowable Load

Shear

lbs. (kN)

470

(2.1)

510

(2.3)

530

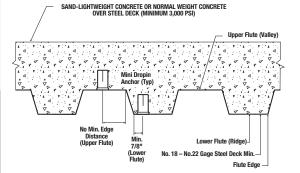
(2.4)

Tension

lbs. (kN)

185

(0.8)


220

(1.0)

345

(1.6)

 The metal deck shall be No. 22 gage to No. 18 gage thick steel [0.030-inch to 0.047-inch base metal thickness (0.75 mm to 1.20 mm)].

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0.

Tension

lbs. (kN)

740

(3.3)

880

(4.0)

1,380

(6.2)

 Tabulated load values are for anchors installed with a minimum edge distance of 7/8" when installed through the lower flute. Anchors installed through the upper flute may be in any location provided the proper installation procedures are maintained.

ECHANICAL ANCHORS

Ultimate and Allowable Load Capacities for Mini Dropin in Precast Hollow Core Concrete Plank¹²

Rod/ Anchor	Minimum Embed.	Minimum	Minimum	Min.	Concrete Con f´c ≥ 5,000 p		ngth
Size	Depth	Spacing	Edge Distance	Ultimat	te Load	Allowat	ole Load
a in. (mm)	n√ in. (mm)	in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	5/8 (15.9)	3 (76.2)	3 (76.2)	1,400 (6.2)	1,840 (8.3)	350 (1.6)	460 (2.1)
3/8 (9.5)	3/4 (19.1)	4-1/2 (114)	4-1/2 (114)	2,600 (11.7)	3,400 (15.3)	650 (2.9)	850 (3.8)
1/2 (12.7)	1 (25.4)	6 (152.4)	6 (152.4)	2,600 (11.7)	3,540 (15.9)	650 (2.9)	885 (4.0)
1 Tabulator	l load values are	for anchore in	talled in concre	te. Concrete cor	nnracciva etrana	th must ha at th	e specified

minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

ENGINEERED BY POWERS

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

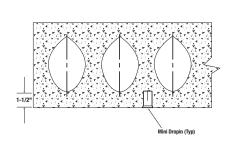
Where:

$$\left(\frac{\mathbf{N}\mathbf{u}}{\mathbf{N}\mathbf{n}}\right) + \left(\frac{\mathbf{V}\mathbf{u}}{\mathbf{V}\mathbf{n}}\right) \le 1$$

Nu = Applied Service Tension Load N_n = Allowable Tension Load $V_u =$ Applied Service Shear Load $V_n = Allowable Shear Load$

LOAD ADJUSTMENT FACTORS FOR SPACING AND ED

Anchor Installed in Normal-weight Concrete


Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 3.0 h_v$	$F_{NC} = F_{VC} = 1.0$	$s_{min} = 1.5 h_v$	$F_{\text{NS}} = F_{\text{VS}} = 0.50$
Edge Distance (c)	Tension	Ccr = 12d	FNC = FVC =1.0	$C_{min} = 6d$	Fnc = 0.90
	Shear ¹	$c_{cr} = 12d$	$F_{\text{NC}}=F_{\text{VC}}=1.0$	$c_{min} = 6d$	$F_{VC} = 0.75$

1. Allowable loads for anchors loaded in shear parallel to the edge have no load factor Fvc = 1.0 when installed at minimum edge distances.

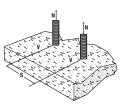
2. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

Anchor Installed in Through Steel Deck Structural Lightweight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor		
Spacing (s)	Tension and Shear	$s_{cr}=3.0h_{\text{v}}$	$F_{\text{Ns}}=F_{\text{Vs}}=1.0$	$s_{\text{min}} = 1.5 h_{\text{v}}$	$F_{\text{NS}}=F_{\text{vs}}=0.50$		
	3. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing is less than critical distances. Linear interpolation is allowed for intermediate anchor spacing between critical and minimum distances. Multiple reduction factors for anchor spacing may be required depending on the anchor group configuration.						

Ô

MECHANICAL ANCHORS


LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT AND LIGHTWEIGHT CONCRETE

Spacing, Tension (F_{Ns}) & Shear (F_{Vs}) (Normal-weight & Lightweight Concrete over deck)

Dia. (in.)		1/4	3/8	1/2	e
	h _v (in.)	5/8	3/4	1	a
:	Sar (in.)	1-7/8	2-1/4	3	N
S	Smin (in.)	1	1-1/8	1-1/2	e
	1	0.50	-	-	a
	1-1/8	0.60	0.50	-	
(in.)	1-1/2	0.80	0.67	0.50	
	1-7/8	1.00	0.83	0.63	
Spacing, s	2	1.00	0.89	0.67	
Spa	2-1/4	1.00	1.00	0.75	
	2-1/2	1.00	1.00	0.83	
	3	1.00	1.00	1.00	

Notes: For anchors loaded in tension and shear, the critical spacing $(s_{\rm cr})$ is equal to 3 embedment depths $(3h_{\nu})$ at which the anchor achieves 100% of load.

Minimum spacing (s_{min}) is equal to 1.5 embedment depths $(1.5h_v)$ at which the anchor achieves 50% of load.

Edge Distance, Tension (F_{NC}) (Normal-weight concrete only)

Edge Distance, Shear (Fvc) (Normal-weight concrete only)

1/4

3

1-1/2

0.75

0.83

0.88

0.92

1.00

1.00

1.00

1.00

1.00

D)ia. (in.)) 1/4 3/8		1/2			
	Car (in.)	3	4-1/2	6			
(Cmin (in.)	1-1/2	2-1/4	3			
	1-1/2	0.90	-	-			
~	2	0.93	-	-			
(in.)	2-1/4	0.95	0.90	-			
e, c	2-1/2	0.97	0.91	-			
Distance,	3	1.00	0.93	0.90			
	4	1.00	0.98	0.93			
Edge	4-1/2	1.00	1.00	0.95			
ü	5	1.00	1.00	0.97			
	6	1.00	1.00	1.00			

3/8

4-1/2

2-1/4

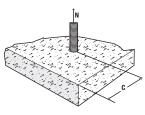
-

0.75

0.78

0.83

0.94


1.00

1.00

1.00

Notes: For anchors loaded in tension, the critical edge distance ($c_{\rm cr}$) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 6 anchor diameters (6d) at which the anchor achieves 90% of load.

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

1/2

6

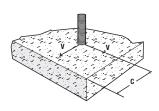
3

_

_

_

0.75


0.83

0.88

0.92

1.00

Minimum edge distance (c_{min}) is equal to 6 anchor diameters (6d) at which the anchor achieves 75% of load.

ORDERING INFORMATION

Dia. (in.)

Cer (in.)

Cmin (in.)

Distance, c (in.)

Edge

1-1/2

2

2-1/4

2-1/2

3

4

4-1/2

5

6

Carbon Steel Mini Dropin

Cat No.	Rod/Anchor Dia.	Drill Diameter	Overall Length	Standard Box	Standard Ctn.
6335	1/4"	3/8"	5/8"	100	1,000
6322	3/8"	1/2"	3/4"	100	1,000
6337	1/2"	5/8"	1"	50	250

Setting Tool for Mini Dropin

Cat No.	Mini Dropin Size	Standard Box	Standard Carton
6336	1/4"	1	50
6323	3/8"	1	50
6338	1/2"	1	50

Accu-Bit[™] Drill Stop for Mini Dropin

Cat No.	Rod/Anchor Size	Drill Depth	Standard Box
DWA5491	3/8" Accu-Bit for 1/4" Mini Dropin	7/8"	1
DWA5492	1/2" Accu-Bit for 3/8" Mini Dropin	15/16"	1
DWA5494	5/8" Accu-Bit for 1/2" Mini Dropin	1-13/32"	1

MINI DROPINTM Internally Threaded Expansion Anchor

GENERAL INFORMATION

HOLLOW-SET DROPIN[™]

Internally Threaded Expansion Anchor

PRODUCT DESCRIPTION

The Hollow-Set Dropin anchor is designed for anchoring in hollow base materials such as hollow concrete block and precast hollow core plank. It can also be used in solid base materials. Concrete masonry blocks often have a maximum outer wall thickness of 1-1/2". During the drilling process, spalling on the back side of the wall often decreases the wall thickness, leaving only 1" or less for anchoring. The Hollow-Set Dropin is designed to perform in this environment, where most conventional style anchors will not function properly.

GENERAL APPLICATIONS AND USES

- Anchoring to Concrete Block
- · Fastening to Precast Hollow Core Plank
- Suspending Conduit
- Fire Sprinkler

FEATURE AND BENEFITS

- + Internally threaded anchor for easy bolt removability and service work
- + Unique expansion design allows for anchoring in thin-walled base materials
- + Versatile setting options allows for hollow or solid base materials
- + Tested in accordance with ASTM E488 and AC01 criteria

APPROVALS AND LISTINGS

• Underwriters Laboratories (UL) File EX 1289 (Hanger, Pipe): See listing for sizes.

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Dropin anchors shall be Hollow-Set Dropin as supplied by DEWALT, Towson, MD.

SECTION CONTENTS

General Information	.301
Material Specifications	.302
Installation Specifications	.302
Performance Data	.303
Design Criteria	
(Allowable Stress Design)	.304
Ordering Information	.306

HOLLOW-SET DROPIN

ANCHOR MATERIALS

- Zamac Alloy Anchor Body with: - Carbon Steel Cone or
- Type 304 Stainless Steel Cone **ROD/ANCHOR SIZE RANGE (TYP.)**
- 1/4" through 5/8" diameters

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Precast Hollow Core Plank
- Hollow or Grout Filled Concrete Masonry (CMU)
- Brick Masonry

Iternally Threaded Expansion Anchor

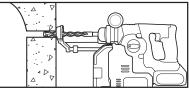
MT

DRO

LLOW-SE

- Pipe Supports
- Removable Anchorage
- · Cable Trays and Strut Suspended Lighting

•

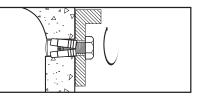

MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel	Stainless Steel		
Anchor Body	Zamac Alloy	Zamac Alloy		
Cone	AISI C 1008	Type 304 Stainless Steel		
Plating (Cone)	ASTM B633, SC1, Type III (Fe/Zn 5)	N/A		

INSTALLATION SPECIFICATIONS

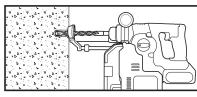
Dimension	Rod/Anchor Diameter, d						
Dimension	1/4"	5/16"	3/8"	1/2"	5/8"		
ANSI Drill Bit Size, dbit (in.)	3/8	5/8	5/8	3/4	1		
Maximum Tightening Torque, T _{max} (ftlbs)	3-4	5-7	8-10	15-20	30-40		
Thread Size (UNC)	1/4-20	5/16-18	3/8-16	1/2-13	5/8-11		
Overall Anchor Length (in.)	7/8	1-5/16	1-5/16	1-3/4	2		
Sleeve Length (in.)	5/8	15/16	15/16	1-1/4	1-1/2		
Thread Length In Cone (in.)	3/8	5/8	5/8	3/4	1		

Installation Instructions for Hollow Base Materials

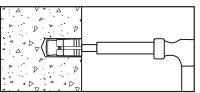


In hollow base materials, drill through into the cell or void. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15.

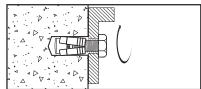
Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.


Do not expand the anchor prior to installation. Insert cone end and tap flush to surface.

Δ


Position fixture, insert bolt and tighten. The bolt should engage a minimum of 2/3 of the anchor threads. The anchor can also be expanded using a Hollow-Set Tool. (If Hollow-Set Tool is used, thread anchor onto tool prior to tapping into anchor hole. When flush with surface, turn tool clockwise to tighten. Release tool from set anchor by turning counterclockwise. Fixture can then be attached).

Installation Instructions for Solid Base Materials


Drill a hole into the base material to the required embedment depth. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15.

Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to ex tract loose particles created by drilling.

Insert the anchor into the hole. Position the setting tool in the anchor.

Using the Solid Tool, set the anchor by driving the Zamac sleeve over the cone using several sharp hammer blows.

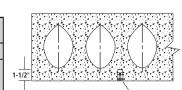
Be sure the anchor is at the required embedment depth, so that anchor threads do not protrude above the surface of the base material. Position the fixture, insert bolt or threaded rod and tighten.

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Hollow-Set Dropin in Normal-Weight Concrete^{1,2,3,4}

D edit							Minimum C	Concrete Cor	npressive St	trength, f 'c				
Rod/ Anchor	Minimum Embed	Drill Bit		2,00	0 psi			4,00	0 psi			6,000 psi		
Diameter d	Depth hy	Diameter ANSI	Tension		Sh	ear	Ten	sion	Sh	Shear		sion	Shear	
in. (mm)	in. (mm)	in.	Ultimate Ibs. (kN)	Allowable Ibs. (kN)										
1/4	3/4 (19)	3/8	760 (3.4)	150 (0.7)	1,200 (5.3)	240 (1.1)	1,140 (5.1)	230 (1.0)	1,200 (5.3)	240 (1.1)	1,440 (6.4)	290 (1.3)	1,200 (5.3)	240 (1.1)
(6.4)	7/8 (22)	3/0	880 (3.9)	175 (0.8)	1,440 (6.4)	290 (1.3)	1,145 (5.1)	230 (1.0)	1,440 (6.4)	290 (1.3)	2,045 (9.1)	410 (1.8)	1,440 (6.4)	290 (1.3)
5/16 (25)	1 (25)	- 5/8 —	1,120 (5.0)	225 (1.0)	1,980 (8.8)	395 (1.8)	1,680 (7.5)	335 (1.5)	1,980 (8.8)	395 (1.8)	2,200 (9.8)	440 (2.0)	1,980 (8.8)	395 (1.8)
(6.4)	1-1/2 (38)		2,205 (9.8)	440 (2.0)	2,740 (12.2)	550 (2.4)	2,775 (12.3)	555 (2.5)	2,740 (12.2)	550 (2.4)	4,825 (21.5)	965 (4.3)	2,740 (12.2)	550 (2.4)
3/8	1 (25)		1,370 (6.1)	275 (1.2)	2,550 (11.3)	510 (2.3)	2,070 (9.2)	415 (1.8)	2,550 (11.3)	510 (2.3)	2,290 (10.2)	460 (2.0)	2,550 (11.3)	510 (2.3)
(9.5)	1-1/2 (38)	5/0	2,445 (10.9)	490 (2.2)	3,145 (14.0)	630 (2.8)	2,800 (12.5)	560 (2.5)	3,145 (14.0)	630 (2.8)	5,085 (22.6)	1,015 (4.5)	3,145 (14.0)	630 (2.8)
1/2	1-1/2 (38)	3/4	2,140 (9.5)	430 (1.9)	4,020 (17.9)	805 (3.6)	4,025 (17.9)	805 (3.6)	4,020 (17.9)	805 (3.6)	7,285 (32.4)	1,455 (6.5)	4,020 (17.9)	805 (3.6)
(12.7)	2 (51)	3/4	2,780 (12.4)	555 (2.5)	4,020 (17.9)	805 (3.6)	4,375 (19.5)	875 (3.9)	4,020 (17.9)	805 (3.6)	9,455 (42.1)	1,890 (8.4)	4,020 (17.9)	805 (3.6)
5/8 (15.9)	2-1/4 (57)	1	5,725 (25.5)	1,145 (5.1)	6,400 (28.5)	1,280 (5.7)	9,410 (41.9)	1,880 (8.4)	6,400 (28.5)	1,280 (5.7)	10,500 (46.7)	2,100 (9.3)	6,400 (28.5)	1,280 (5.7)

1. Tabulated load values are applicable to anchors with carbon and stainless steel cones.


2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 20 or higher may be necessary depending on the application, such as life safety, overhead and in sustained tensile loading applications.

3. Linear interpolation may be used to determine allowable loads for anchors at intermediate embedment depths and compressive strengths.

4. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate and Allowable Load Capacities for Hollow-Set Dropin in Hollow Core $Plank^{1,2,3}$

Rod/ Anchor	Minimum Embedment	Drill	Min	imum Concrete (f´c ≥ 5,000 p	Compressive Str isi (34.5 MPa)	ength
Diameter	Depth	Bit Diameter	Ultimat	te Load	Allowa	ble Load
d in. (mm)	h√ in. (mm)	ANSI in.	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	7/8 (22.2)	3/8	1,190 (5.4)	1,440 (6.5)	300 (1.4)	360 (1.6)
5/16 (7.9)	1 (25.4)	5/8	2,280 (10.3)	2,740 (12.3)	570 (2.6)	685 (3.1)
3/8	1 (25.4)	5/8	2,525 (11.4)	2,740 (12.3)	630 (2.8)	685 (3.1)
(9.5)	1-1/2 (38.1)	5/8	3,620 (16.3)	3,145 (14.2)	905 (4.1)	785 (3.5)
1/2 (12.7)	1-1/4 (31.8)	3/4	5,420 (24.4)	5,580 (25.1)	1,355 (6.1)	1,395 (6.3)
5/8 (15.9)	1-1/2 (38.1)	1	6,560 (29.2)	8,320 (37.4)	1,640 (7.3)	2,080 (9.4)

Hollow Set Dropin (Typ)

MECHANICAL ANCHORS

 Tabulated load values are applicable to anchors with carbon and stainless steel cones and set with sleeve flush to surface of the plank and with setting tool for solid base materials.

 Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.
 Minimum spacing distance must not be less than eight anchor diameters (8d). TECHNICAL GUIDE - MECHANICAL ANCHORS ©2018 DEWALT - REV.B

Ultimate and Allowable Load Capacities for Hollow-Set Dropin in Hollow Concrete Masonry^{1,2,3,4,5,6,7}

	Minimum					f'm = 1	,500 psi	
Rod/Anchor Diameter	Embedment	Drill Bit Diameter	Min. Edge Distance	Min. End Distance	Ultimate Load		Allowable Load	
d in.	Depth hv in.	ANSI in.	in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	7/8* (22.2)	3/8	3-3/4 (95)	3-3/4 (95)	530 (2.4)	785 (3.5)	105 (0.5)	155 (0.7)
5/16	1* (25.4)	5/8	3-3/4 (95)	3-3/4 (95)	1,035 (4.6)	920 (4.1)	205 (0.9)	185 (0.8)
3/8	1* (25.4)	5/8	3-3/4 (95)	3-3/4 (95)	1,225 (5.4)	1,175 (5.2)	245 (1.1)	235 (1.0)
1/2	1-1/4* (31.8)	3/4	3-3/4 (95)	3-3/4 (95)	1,520 (6.8)	1,240 (5.5)	305 (1.4)	250 (1.1)
1/2	1-1/4* (31.8)	3/4	11-1/4 (286)	11-1/4 (286)	1,520 (6.8)	1,825 (8.1)	305 (1.4)	365 (1.6)
5/8	1-1/2* (38.1)	1	11-1/4 (286)	11-1/4 (286)	1,790 (8.0)	1,870 (8.3)	360 (1.6)	375 (1.7)

1. Tabulated load values are applicable to anchors with carbon and stainless steel cones.

2. Tabulated load values for anchors are installed in minimum 6" wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at specified minimum at the time of installation.

3. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

4. Allowable shear load values may be increased by 100% (multiplied by 2.0) provided the applied shear loads are not loaded toward the wall edge and end.

5. The tabulated values are applicable for anchors installed into grouted masonry wall faces or ends of block ends provided minimum edge and end distances are maintained.

6. The tabulated values are applicable to single anchors. Two anchors may be installed in the same cell provided the spacing distance between the anchors is a minimum of six diameters (6d) and the allowable loads are reduced by 50%.

7. Anchors were installed with sleeve flush to block surface and with setting tool for hollow base materials. Embedment is measured from the surface of the base material.

*Minimum face shell thickness must be minimum 1.25-inch-thick for 1/2-inch-diameter anchors and minimum 1.5-inch-thick for 5/8-inch diameter anchors.

Ultimate and Allowable Load Capacities for Hollow-Set Dropin in Solid Clay Brick Masonry^{1,2,3,4}

Rod/	Minimum	Drill Bit	Minimum	Minimum		f′m ≥ 1,500 p	si (10.4 MPa)	
Anchor Diameter	Embed. Depth	Diameter	Edge	End	Ultimat	te Load	Allowa	ble Load
d in. (mm)	h _v in. (mm)	ANSI in.	Distance in. (mm)	Distance in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	7/8 (22.2)	3/8	6 (152.4)		880 (4.0)	1,640 (7.4)	175 (0.8)	330 (1.5)
5/16 (9.5)	1-1/4 (31.8)	5/8	8 (203.2)		1,460 (6.6)	2,230 (10.0)	290 (1.3)	445 (2.0)
3/8 (12.7)	1-1/4 (31.8)	5/8	8 (203.2)	8 (203.2)	1,860 (8.4)	2,980 (13.4)	370 (1.7)	595 (2.7)
1/2 (15.9)	1-1/2 (38.1)	3/4	10 (254.0)) í F	3,240 (14.6)	4,230 (19.0)	650 (2.9)	845 (3.8)
5/8 (19.1)	2-1/4 (57.2)	1	12 (304.8)		4,680 (21.1)	6,420 (28.9)	935 (4.2)	1,605 (7.2)

1. Tabulated load values are for anchors with carbon or stainless steel cones.

Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

3. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

4. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

Where:

 $\left(\frac{\mathbf{Nu}}{\mathbf{Nn}}\right) + \left(\frac{\mathbf{Vu}}{\mathbf{Vn}}\right) \le 1$

Nn = Allowable Tension Load

Nu = Applied Service Tension Load

 $\begin{array}{l} V_u = \mbox{Applied Service Shear Load} \\ V_n = \mbox{Allowable Shear Load} \end{array}$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

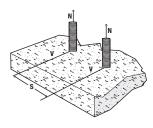
Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$S_{cr} = 3.0h_v$	$F_{NS} = F_{VS} = 1.0$	$S_{min} = 1.5h_v$	FNs = Fvs =0.50
Edge Distance (a)	Tension	c _{cr} = 14d	Fnc = 1.0	$C_{min} = 8d$	Fnc = 0.80
Edge Distance (c)	Shear	c _{cr} = 14d	$F_{vc} = 1.0$	C _{min} = 8d	$F_{VC} = 0.50$

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Spacing, Tension (F_{NS}) & Shear (F_{VS})

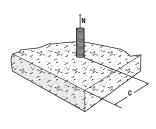

DEWALT

ENGINEERED BY POWERS

Di	ia. (in.)	1/4	5/16	3/8	1/2	5/8
h	ı⊭ (in.)	7/8	1-1/2	1-1/2	2	2-1/4
s	icr (in.)	2-5/8	4-1/2	4-1/2	6	6-3/4
S	min (in.)	1-3/8	2-1/4	2-1/4	3	3-3/8
	1-3/8	0.50	-	-	-	-
	2-1/4	0.86	0.50	0.50	-	-
()	2-5/8	1.00	0.58	0.58	-	-
(inches)	3	1.00	0.67	0.67	0.50	-
s (in	3-3/8	1.00	0.75	0.75	0.56	0.50
ng, s	4	1.00	0.89	0.89	0.67	0.59
Spacing,	4-1/2	1.00	1.00	1.00	0.75	0.67
S	5	1.00	1.00	1.00	0.83	0.74
	6	1.00	1.00	1.00	1.00	0.89
	6-3/4	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension and shear, the critical spacing $(s_{\rm cr})$ is equal to 3 embedment depths (3h_v) at which the anchor achieves 100% of load.

Minimum spacing (s_{min}) is equal to 1.5 embedment depths $(1.5h_{\text{v}})$ at which the anchor achieves 50% of load.

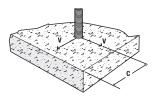


Edge Distance, Tension (F_{NC})

Di	ia. (in.)	1/4	5/16	3/8	1/2	5/8
C	cr (in.)	3-1/2	4-3/8	5-1/4	7	8-3/4
C	min (in.)	2	2-1/2	3	4	5
	2	0.80	-	-	-	-
	2-1/2	0.87	0.80	-	-	-
	3	0.93	0.85	0.80	-	-
(inches)	3-1/2	1.00	0.91	0.84	-	-
(inc	4	1.00	0.96	0.89	0.80	-
Distance, c	4-3/8	1.00	1.00	0.92	0.83	-
tanc	5	1.00	1.00	0.98	0.87	0.80
Dis	5-1/4	1.00	1.00	1.00	0.88	0.81
Edge	6	1.00	1.00	1.00	0.93	0.85
-	7	1.00	1.00	1.00	1.00	0.91
	8	1.00	1.00	1.00	1.00	0.96
	8-3/4	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 8 anchor diameters (8d) at which the anchor achieves 80% of load.



Edge Distance, Shear (Fvc)

Di	ia. (in.)	1/4	5/16	3/8	1/2	5/8
C	cr (in.)	3-1/2	4-3/8	5-1/4	7	8-3/4
C	min (in.)	2	2-1/2	3	4	5
	2	0.50	-	-	-	-
	2-1/2	0.67	0.50	-	-	-
	3	0.83	0.63	0.50	-	-
(inches)	3-1/2	1.00	0.77	0.61	-	-
	4	1.00	0.90	0.72	0.50	-
e, c	4-3/8	1.00	1.00	0.81	0.56	-
Distance,	5	1.00	1.00	0.94	0.67	0.50
Dis	5-1/4	1.00	1.00	1.00	0.71	0.53
Edge	6	1.00	1.00	1.00	0.83	0.63
	7	1.00	1.00	1.00	1.00	0.77
	8	1.00	1.00	1.00	1.00	0.90
	8-3/4	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance $(c_{\rm min})$ is equal to 8 anchor diameters (8d) at which the anchor achieves 50% of load.

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2018 DEWALT - REV. B

ORDERING INFORMATION

Hollow-Set Dropin with Carbon Steel Cone

Catalog Number	Rod/Anchor Diameter	Drill Diameter	Overall Length	Sleeve Length	Std. Box	Std. Ctn.	Wt./ 100
9320	1/4"	3/8"	7/8"	5/8"	100	1,000	1-3/4
9330	5/16"	5/8"	1-5/16"	15/16"	50	500	5-1/2
9340	3/8"	5/8"	1-5/16"	15/16"	50	300	5-1/2
9350	1/2"	3/4"	1-3/4"	1-1/4"	50	250	9-1/2
9360	5/8"	1"	2"	1-1/2"	25	125	21

Hollow-Set Dropin with Stainless Steel Cone

Catalog Number	Rod/Anchor Diameter	Drill Diameter	Overall Length	Sleeve Length	Std. Box	Std. Ctn.	Wt./ 100
9420	1/4"	3/8"	7/8"	5/8"	100	1,000	1-3/4
9440	3/8"	5/8"	1-5/16"	15/16"	100	500	5-1/2

Setting Tool for Solid Base Materials

Catalo Numb	talog Size Standard Box			Standard Carton
9322	2	1/4"	1	1
9342	2	5/16" and 3/8"	1	1
9352	2	1/2"	1	1
9362	2	5/8"	1	1

Setting Tool for Hollow Base Materials*

Catalog Number	Size	Standard Box	Standard Carton					
9323	1/4"	1	1					
9333	5/16"	1	1					
9343	3/8"	1	1					
9353	1/2"	1	1					
9363	5/8"	1	1					
* Hollow set too	* Hollow set tool for hollow block and clay brick masonry base materials							

GENERAL INFORMATION

CONCRETE HANGERMATE®+

Rod Hanging Anchor

PRODUCT DESCRIPTION

The Hangermate[®]+ concrete screw is a one piece, steel anchor designed for rod hanging applications such as fire protection systems, ventilation systems, electrical conduit, pipe hanging and cable trays. Tested and qualified for use in cracked concrete and seismic conditions. The concrete Hangermate[®]+ requires a 1/4" ANSI masonry bit for installation, accepts 1/4" and 3/8" diameter threaded rods and is also available in a 3/8" male thread version.

Suspended Ceilings

Overhead Utilities

Lighting Systems

GENERAL APPLICATIONS AND USE

- Fire Sprinkler Pipes
- Ventilation Systems
- Cable Trays

FEATURES AND BENEFITS

- + Installs with standard 1/4-inch ANSI drill bit
- + Faster installation resulting in labor savings
- + Patented thread design offers low installation torque
- + Tough threads for tapping high strength concrete

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES). ESR-3889 code compliant with the 2015 IBC/IRC, 2012 IBC/IRC, and 2009 IBC/IRC.
- FM Approvals (FM) (see listing for applicable sizes and types).
- Tested in accordance with ACI 355.2/ASTM E 488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318-14, Chapter 17 and ACI-318-11/08 Appendix D.
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)
- Evaluated and qualified by an accredited independent testing laboratory for reliability against brittle failure, e.g. hydrogen embrittlement.

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 05 05 19 - Post-Installed Concrete Anchors. Anchors shall be Concrete Hangermate+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instruction and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification
Anchor Body	Case hardened low carbon steel
Plating	Zinc plating according to ASTM B 633, SC1 Type III (Fe/Zn 5). Minimum plating requirements for Mild Service Condition.

SECTION CONTENTS

General Information	.307
Material Specifications	.307
Installation Specifications	.308
Installation Instructions	.309
Reference Data (ASD)	.310
Performance Data (SD)	.312
Ordering Information	.317

CONCRETE HANGERMATE+ (INTERNALLY THREADED COUPLER HEAD)

CONCRETE HANGERMATE+ (EXTERNAL THREAD - STUD HEAD)

THREAD VERSION

• Unified Coarse Thread (UNC)

ANCHOR MATERIALS

• Zinc Plated Carbon Steel

ANCHOR SIZE RANGE (TYP.)

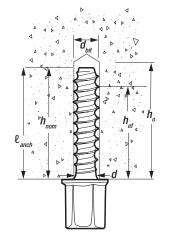
• 1/4" and 3/8" diameter (Threaded Heads)

SUITABLE BASE MATERIALS

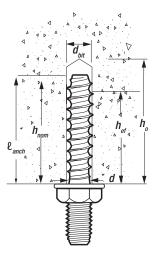
- Normal-weight concrete
- · Sand-lightweight concrete
- Concrete over steel deck

od Hanging Anchor

CONCRETE HANGERN


DNCH

Installation Specifications for Hangermate+ in Concrete and Supplementary Information



			Nominal Anchor Diameter (inch)			
Anchor Property	Notation	Units	1/4			
Anchor outside diameter		d	in. (mm)	0.250 (6.35)		
Nominal drill bit diameter		d _{bit}	in. (mm)	1/4 ANSI		
Minimum embedment dep	th	h _{nom}	in. (mm)	1-5/8 2-1/2 (41) (64)		
Minimum hole depth		h₀	in. (mm)	2 2-7/8 (51) (73)		
Minimum member thickne	SS	h _{min}	in. (mm)	3-1/4 4 (83) (102)		
Minimum edge distance		Cmin	in. (mm)	1-1/2 (38)		
Minimum spacing		Smin	in. (mm)	1-1/2 (38)		
Max. Installation torque	Tinst,max	ftlbf. (N-m)	19 (26)			
Max impact wrench power	(torque)	Timpact,max	ftlbf. (N-m)	150 (203)		
	Wrench socket size	1/4 thread 3/8 thread	in.	3/8 -		
Internal Threaded Head	Maximum head height	1/4 thread	in.	- 33/64		
	Maximum washer diameter	3/8 thread 1/4 thread	in.	43/64		
		3/8 thread	.	21/32		
	Wrench socket size			1/2		
Externally Threaded Head	Maximum head height	3/8 thread	in.	1-3/16		
	Maximum washer diameter			21/32		
Effective tensile stress area (screw anchor body)		Ase	in.² (mm²)	0.045 (29.0)		
Minimum specified ultimat	e strength	f _{uta}	ksi (N/mm²)	100 (690)		
Minimum specified yield s	trength	fy	ksi (N/mm²)	80 (552)		

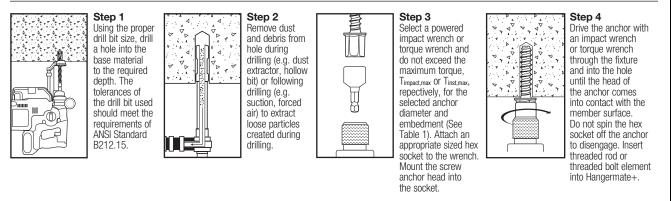
Hangermate+ Anchor Detail in Concrete

- $h_0 = Minimum Hole Depth$ $<math>\ell_{anch} = Nominal Anchor Length$

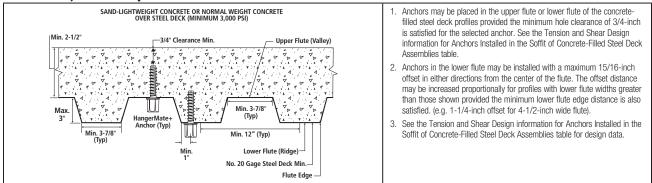
External Thread

Internally Threaded

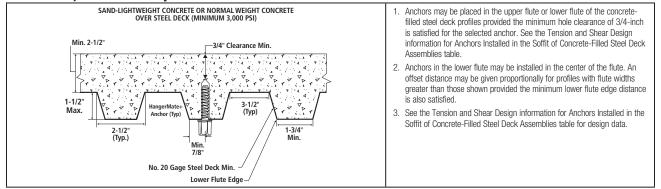
ANCHORS


GHANICAL

Π


Rod Hanging Anchor

CONCRETE HANGERMAT


INSTALLATION INSTRUCTIONS

Hangermate+ Installation Detail for Screw Anchors in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies, 3-inch Deep Deck Profile^{1,2,3}

Hangermate+ Installation Detail for Screw Anchors in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies, 1-1/2-inch Deep Deck Profile^{1,2,3}

fechnical guide – Mechanical Anchors ©2018 Dewalt – Rev. D

1-800-4 **DEWALT**

REFERENCE DATA (ASD)

Ultimate Load Capacities for Hangermate+ in Normal-Weight Concrete^{1,2}

	Minimum Concrete Compressive Strength										
Nominal Anchor Diameter in.	Nominal Embedment Depth in. (mm)	f'c = 2,500 psi (17.3 MPa)		f'c = 3,000 psi (20.7 MPa)		f'c = 4,000 psi (27.6 MPa)		f'c = 6,000 psi (41.4 MPa)		f'c = 8,000 psi (55.2 MPa)	
		Tension Ibs (kN)	Shear Ibs (kN)								
1/4	1-5/8	2,835	1,485	2,995	1,525	3,265	1,525	3,265	1,525	3,265	1,525
(1/4 Thread)	(41)	(12.6)	(6.6)	(13.3)	(6.8)	(14.5)	(6.8)	(14.5)	(6.8)	(14.5)	(6.8)
1/4	1-5/8	2,835	2,035	2,995	2,090	3,265	2,090	3,265	2,090	3,265	2,090
	(41)	(12.6)	(9.1)	(13.3)	(9.3)	(14.5)	(9.3)	(14.5)	(9.3)	(14.5)	(9.3)
(3/8 Thread)	2-1/2	3,650	2,035	3,855	2,090	4,200	2,090	4,270	2,090	4,270	2,090
	(64)	(16.2)	(9.1)	(17.1)	(9.3)	(18.7)	(9.3)	(19.0)	(9.3)	(19.0)	(9.3)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at a minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for Hangermate+ in Normal-Weight Concrete^{1,2,3,4}

	Minimum	Minimum Concrete Compressive Strength									
Nominal Anchor	Nominal Embedment		500 psi MPa)		000 psi MPa)	f'c = 4, (27.6		f'c = 6, (41.4		f'c = 8, (55.2	000 psi MPa)
Diameter in.	Depth in. (mm)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
1/4	1-5/8	710	370	750	380	815	380	815	380	815	380
(1/4 Thread)	(41)	(3.2)	(1.6)	(3.3)	(1.7)	(3.6)	(1.7)	(3.6)	(1.7)	(3.6)	(1.7)
1/4	1-5/8	710	510	750	525	815	525	815	525	815	525
	(41)	(3.2)	(2.3)	(3.3)	(2.3)	(3.6)	(2.3)	(3.6)	(2.3)	(3.6)	(2.3)
(3/8 Thread)	2-1/2	915	510	965	525	1,050	525	1,070	525	1,070	525
	(64)	(4.1)	(2.3)	(4.3)	(2.3)	(4.7)	(2.3)	(4.8)	(2.3)	(4.8)	(2.3)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

SHOHON

ECHANICA

Spacing - Tension (F_{NS})

Edge Distance - Tension (F _{NC})							
Dia	ameter (in)	1/4					
Thre	ad Diameter	1/4"	3/8"	3/8"			
Nominal E	mbedment, hnom (in)	1-5/8	1-5/8	2-1/2			
Minimum Ed	lge Distance, cmin (in)	1-1/2	1-1/2	1-1/2			
	1-1/2	0.77	0.77	0.64			
(1-3/4	0.83	0.83	0.67			
che	2	0.88	0.88	0.71			
e (in	2-1/4	0.94	0.94	0.75			
ance	2-1/2	1.00	1.00	0.78			
Dist	2-3/4	1.00	1.00	0.82			
Edge Distance (inches)	3	1.00	1.00	0.86			
ũ	3-1/2	1.00	1.00	0.93			
	4	1.00	1.00	1.00			

Dia	ameter (in)		1/4				
Thre	ead Diameter	1-5/8	1-5/8	2-1/2			
Nominal E	mbedment, hnom (in)	1-1/5	1-1/5	2			
Minimum	Spacing, Smin (in)	3-3/5	3-3/5	5-5/6			
	1-1/2	0.77	0.77	0.68			
	1-3/4	0.80	0.80	0.70			
	2	0.83	0.83	0.72			
es)	2-1/4	0.86	0.86	0.74			
nch	2-1/2	0.89	0.89	0.76			
Spacing Distance (inches)	2-3/4	0.92	0.92	0.78			
stan	3	0.99	0.99	0.82			
g Di	3-1/2	1.00	1.00	0.86			
acin	4	1.00	1.00	0.90			
Spa	4-1/2	1.00	1.00	0.94			
	5	1.00	1.00	0.97			
	5-1/2	1.00	1.00	1.00			
	6	1.00	1.00	1.00			

Edge Distance - Shear (Fvc)

Dia	ameter (in)	1/4				
Thre	ad Diameter	1/4"	3/8"	3/8"		
Nominal E	mbedment, hnom (in)	1-5/8	1-5/8	2-1/2		
Minimum Ed	lge Distance, cmin (in)	1-1/2	1-1/2	1-1/2		
	1-1/2	0.68	0.55	0.59		
ICe	1-3/4	0.79	0.64	0.68		
istar hes)	2	0.90	0.73	0.78		
Edge Distance (inches)	2-1/4	1.00	0.82	0.88		
Edg	2-1/2	1.00	0.92	0.98		
	2-3/4	1.00	1.00	1.00		

Spacing - Shear (Fvs)

Spacing - Snear (FVS)						
Dia	ameter (in)		1/4			
Thre	ad Diameter	1/4"	3/8"	3/8"		
Nominal E	mbedment, hom (in)	1-5/8	1-5/8	2-1/2		
Minimum	Minimum Spacing, Smin (in)		1-1/2	1-1/2		
	1-1/2	0.61	0.59	0.60		
	1-3/4	0.63	0.61	0.61		
	2	0.65	0.62	0.63		
	2-1/4	0.67	0.64	0.65		
	2-1/2	0.69	0.65	0.66		
~	2-3/4	0.71	0.67	0.68		
Spacing Distance (inches)	3	0.73	0.68	0.70		
(ine	3-1/2	0.76	0.71	0.73		
ance	4	0.80	0.74	0.76		
Dist	4-1/2	0.84	0.77	0.79		
l gui	5	0.88	0.81	0.83		
paci	5-1/2	0.91	0.84	0.86		
s	6	0.95	0.87	0.89		
	6-1/2	0.99	0.90	0.92		
	7	1.00	0.93	0.96		
	7-1/2	1.00	0.96	0.99		
	8	1.00	0.99	1.00		
	9	1.00	1.00	1.00		

PERFORMANCE DATA (SD)

Hangermate+ Installation Specifications in Concrete and Supplemental Information^{1,2}

					A 81	
Anchor Property/Setting Information		Notation	Units	Nominal Anchor Diameter (inch)		
Anchor Prop	serty/setting information	Notation	Units	1/4		
Nominal anchor diameter		da	in. (mm)	0.25 (6.4)		
Nominal drill bit diameter		d _{bit}	in.	1/4 ANS		
Minimum nominal embedme	ent depth ³	h _{nom}	in. (mm)	1 <i>-</i> 5/8 (41)	2-1/2 (64)	
Effective Embedment		h _{ef}	in. (mm)	1.20 (30)	1.94 (49)	
Minimum hole depth		h₀	in. (mm)	2 (51)	2-7/8 (73)	
Minimum concrete member	thickness	h _{min}	in. (mm)	3-1/4 (83)	4 (102)	
Minimum edge distance		Cmin	in. (mm)	1-1/2 (38)	2	
Minimum spacing distance		Smin	in. (mm)	1-1/2 (38)	2	
Critical edge distance		Cac	in. (mm)	4.30 (109)	6.10 (155)	
Minimum nominal anchor ler	ngth⁴	lanch	in. (mm)	1-5/8 2-1, (41) (64		
Max Installation torque		Tinst,max	ftlb. (N-m)	19 (26)	25 (34)	
Maximum impact wrench po	wer (torque)	Timpact,max	ftlb. (N-m)	150 (203)		
	Wrench socket size	1/4" thread 3/8" thread	in.	3/8	-	
Internal Threaded Head	Maximum head height	1/4" thread	in.	33/64	-	
		3/8" thread		43/64		
	Maximum washer diameter	1/4" thread	in.	1/2	-	
	Wrench socket size	3/8" thread		21/3	<u> </u>	
Externally Threaded Head	Maximum head height		in.	1/2	6	
	Maximum washer diameter	0/0 unoau		21/3		
Effective tensile stress area ((screw anchor body)	Ase	in² (mm²)	0.045 (29.0)		
Minimum specified ultimate strength		f _{uta}	ksi (N/mm²)	100 (690)		
Minimum specified yield stre	ngth	fy	ksi (N/mm²)	80 (552)	
Maan avial atiffnaaa5	Uncracked concrete	$eta_{ ext{uncr}}$	lbf/in (kN/mm)	1,381,((242)000	
Mean axial stiffness⁵	Cracked concrete	β_{cr}	lbf/in (kN/mm)	318,0 (56)	00	

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

 For installations through the soffit of steel deck assemblies into concrete, see the design information table for installation in the soffit of concrete-filled steel deck assemblies and the installation details in the soffit of concrete over steel deck for the applicable steel deck profile. Tabulated minimum spacing values are based on anchors installed along the flute with axial spacing equal to the greater of 3her or 1.5 times the flute width.

3. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor.

The listed minimum overall anchor length is based on the anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth, including consideration of a fixture attachment. The minimum nominal anchor length is measured from under the head to the tip of the anchor.
 Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

MECHANICAL ANCHORS

Tension Design Information for Hangermate+ Anchor is in Concrete^{1,2}

DE'.'/~

ENGINEERED BY POWERS

Design Characteristic	Notation	Units	Nominal Anch	or Diameter		
Design Characteristic	Notation	Units	1/4			
Anchor category	1, 2 or 3	-	1			
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)	2-1/2 (64)		
Ste	el Strength in Tension (Al	CI 318-14 17.4.1 or ACI 318-1	1 D.5.1)			
Steel strength in tension	N_{sa}^{10}	lb (kN)	4,53 (20.			
Reduction factor for steel strength ^{3,4}	ϕ	-	0.6	5		
Concrete E	Breakout Strength in Tens	sion (ACI 318-14 17.4.2 or AC	l 318-11 D.5.2)			
Effective embedment	h _{ef}	in. (mm)	1.20 (30)	1.94 (49)		
Critical edge distance	Cac	in. (mm)	4.30 (109)	6.10 (155)		
Effectiveness factor for uncracked concrete	Kuncr	-	27	24		
Effectiveness factor for cracked concrete	k _{cr}	-	17	,		
Modification factor for cracked and uncracked concrete ⁵	$\Psi_{c,N}$	-	1.0)		
Reduction factor for concrete breakout strength ³	ϕ	-	0.65 (Con	dition B)		
Pullout Strength in	Tension (Non-Seismic A	pplications) (ACI 318-14 17.4	.3 or ACI 318-11 D.5.3)			
Characteristic pullout strength, uncracked concrete (2,500 psi)69	N _{p,uncr}	lb (kN)	See No	ote 7		
Characteristic pullout strength, cracked concrete (2,500 psi)69	N _{p,cr}	lb (kN)	765 (3.4)	1,415 (6.3)		
Reduction factor for pullout strength ³	ϕ	-	0.65 (Con	dition B)		
Pullout Strength in	Tension for Seismic App	lications (ACI 318-14 17.2.3.3	3 Or ACI 318-11 D.3.3.3)			
Characteristic pullout strength, seismic (2,500 psi) ^{68.9}	N _{p,eq}	lb (kN)	360 (1.6)	1,170 (5.2)		
Reduction factor for pullout strength ³	φ	-	0.65 (Con	dition B)		

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with published instructions and details.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that complies with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 Section D.4.3(c), as applicable for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

4. The anchors are considered a brittle steel elements as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

5. Select the appropriate effectiveness factor for cracked concrete (ker) or uncracked concrete (kuner) and use $\Psi_{C,N} = 1.0$.

6. For all design cases $\Psi_{c,P} = 1.0$. The characteristic pullout strength, N_{PN}, for concrete compressive strengths greater than 2,500 psi may be increased by multiplying the value in the table by (f⁺c / 2,500)^{0.3} for psi or (f'c / 17.2)^{0.3} for MPa.

7. Pullout strength does not control design of indicated anchors and does not need to be calculated for indicated anchor size and embedment.

8. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.

9. Anchors are permitted to be used in lightweight concrete provided the modification factor λ a equal to 0.8 λ is applied to all values of $\sqrt{f^{*}c}$ affecting Nn.

Rod Hanging Anchor ©

Shear Design Information for Hangermate+ Anchor in Concrete^{1,2,7,8}

Desiry Characteristic	Notation	Units		Nominal Anchor Diameter			
Design Characteristic	Notation	Units	1/4				
Anchor category	1, 2 or 3	-	1	1			
Thread diameter	-	in.	1/4	3/8	3		
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-1/2 (64)		
	Steel Strength i	n Shear (ACI 3	18-14 17.5.1 or ACI 318-11 E).6.1)			
Steel strength in shear⁵	Vsa	lb (kN)	860 (3.8)	1,545 (6.9)	1,545 (6.9)		
Reduction factor for steel strength ^{3,4}	ϕ	-		0.60			
Steel Stre	ngth in Shear for Se	ismic Applicati	ions (ACI 318-14 17.2.3.3 or	ACI 318-11 D.3.3.3)			
Steel strength in shear, seismic6	Veq	lb (kN)	600 (2.7)	1,390 (6.2)	1,390 (6.2)		
Reduction factor for steel strength in shear for seismic ^{3,4}	φ	-		0.60			
Cc	ncrete Breakout Str	ength in Shear	(ACI 318-14 17.5.2 or ACI 31	18-11 D.6.2)			
Nominal anchor diameter	da	in. (mm)	0.250 (6.4)	0.25 (6.4			
Load bearing length of anchor	le	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)		
Reduction factor for concrete breakout ³	ϕ	-		0.70 (Condition B)			
	Pryout Strength	in Shear (ACI 3	318-14 17.5.3 or ACI 318-11	D.6.3)			
Coefficient for pryout strength	Kcp	-	1	1	1		
Effective embedment	h _{ef}	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)		
Reduction factor for pryout strength ³	φ	-	0.70 (Condition B)				

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-17 17.2.3 or ACI 318-11 D.3.3, as applicable shall apply.

2. Installation must comply with published instructions and details.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4. For reinforcement that complies with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2 are used.

4. The anchors are considered a brittle steel elements as defined by ACI 318-14 2.3 or ACI 318-11 D.1.

5. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design in lieu of the calculated results using equation 17.5.1.2(b) of ACI 318-14 or equation D-29 in ACI 318-11 D.6.1.2.

6. Reported values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6 and must be used for design.

7. Anchors are permitted to be used in lightweight concrete in provided the modification factor λ a equal to 0.8 λ is applied to all values of \sqrt{fc} affecting Nn.

Shear values are for threaded rod or steel inserts with an ultimate strength, F_u ≥ 125 ksi; threaded rod or steel inserts with an F_u less than 125 ksi are allowed provided the steel strength shear values are multiplied by the ratio of F_u (ksi) of the steel insert and 125 ksi.

Tension and Shear Design Information for Hangermate+ Anchor in the Soffit (Through the Underside) of Concrete-Filled Steel Deck Assemblies^{1,2,3,4,5,6,7}

1,960

(8.7)

0.60

(Infough the onderside) of concr	ele-rilleu Slei	ei deck asse	IIINIIG2			
Anchor Property/Setting Information	Notation	Units		Nominal Anchor Size (inch)	
Anchor Category	1, 2 or 3	-	1		1	
Head Style	-	-	Threaded			
Thread Diameter	-	in.	1/4	3	/8	
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-1/2 (64)	
Effective Embedment	h _{ef}	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)	
Minimum hole depth	h₀	in. (mm)	1-3/4 (44)	1-3/4 (44)	2-5/8 (67)	
Anchors Installed Thro	ugh the Soffit of St	eel Deck Assembli	es into Concrete (Minimum 3	3-7/8-inch-wide deck flute		
Minimum concrete member thickness ⁸	h _{min,deck,total}	in. (mm)	5-1/2 (140)		1/2 40)	
Characteristic pullout strength, uncracked concrete over steel deck, (3,000 psi)	Np,deck,uncr	lb (kN)	1,430 (6.4)	1,430 (6.4)	2,555 (11.4)	
Characteristic pullout strength, cracked concrete over steel deck, (3,000 psi)	N _{p,deck,cr}	lb (kN)	615 (2.7)	615 (2.7)	1,115 (5.0)	
Characteristic pullout strength, cracked concrete over steel deck,seismic, (3,000 psi)	N _{p,deck,eq}	lb (kN)	290 (1.3)	290 (1.3)	920 (4.1)	
Reduction factor for pullout strength ⁹	ϕ	-		0.65		
Steel strength in shear, concrete over steel deck	V _{sa,deck}	lb (kN)	1,485 (6.6)		740 2.2)	
Steel strength in shear, concrete over steel deck, seismic	V _{sa,deck,eq}	lb (kN)	1,040 (4.6)		465 1.0)	
Reduction factor for steel strength in shear for concrete over steel deck ^a	φ	-		0.60		
Anchors Installed Thro	ugh the Soffit of St	eel Deck Assembli	es into Concrete (Minimum 1	-3/4-inch-wide deck flute		
Minimum concrete member thickness ⁸	h _{min,deck,total}	in. (mm)	4 (102)		4 02)	
Characteristic pullout strength, uncracked concrete over steel deck, (3,000 psi)	Np,deck,uncr	lb (kN)	1,760 (7.8)	1,760 (7.8)	2,075 (9.2)	
Characteristic pullout strength, cracked concrete over steel deck, (3,000 psi)	Np,deck,cr	lb (kN)	760 (3.4)	770 (3.4)	910 (4.0)	
Characteristic pullout strength, cracked concrete over steel deck,seismic, (3,000 psi)	N _{p,deck,eq}	lb (kN)	355 (1.6)	635 (2.8)	750 (3.3)	
Reduction factor for pullout strength ⁸	ϕ	-		0.65	-	
Steel strength in shear, concrete over steel deck	Vsa,deck	lb (kN)	1,680 (7.5)		180 0.7)	

concrete over steel deck⁹ For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 ft-lb = 1.356 N-m; 1 lb = 0.0044 kN.

1. Installation must comply with published instructions and details.

2. Values for Np.deek.and Np.deek.ar are for sand-lightweight concrete (f'c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.4.2 or ACI 318 D.5.2, as applicable, is not required for anchors installed in the deck soffit (through underside).

lh

(kN)

1,175

(5.2)

3. Values for Np,deck,eq are applicable for seismic loading and must be used in lieu of Np,deck,cr.

4. For all design cases $\Psi_{c,P} = 1.0$. The characteristic pullout strength, Npn, for concrete compressive strengths greater than 3,000 psi anchors may be increased by multiplying the value in the table by (f'c / 3,000)03 for psi or (f'c / 17.2)03 for MPa.

5. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

6. Values of Vsadeck and Vsadeck are for sand-lightweight concrete and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, are not required for anchors installed in the soffit (through underside).

7. Shear values are for threaded rod or steel inserts with an ultimate strength, Fu ≥ 125 ksi; threaded rod or steel inserts with an Fu less than 125 ksi are allowed provided the steel strength shear values are multiplied by the ratio of F_{u} (ksi) of the steel insert and 125 ksi.

8. The minimum concrete member thickness, hmin,deck,total, is the minimum overall thickness of the concrete-filled steel deck (depth and topping thickness).

Vsa,deck,eq

φ

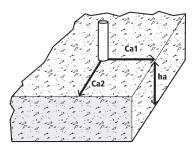
9. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318 Section 9.2. If the load combinations of ACI 318 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4 (ACI 318-08).

Steel strength in shear, concrete

Reduction factor for steel strength in shear for

over steel deck, seismic

DNCH


0

Rod Hanging Anchor

Factored Resistance Strength (ØNn And ØVn) Calculated In Accordance With ACI 318-14 Chapter 17:

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness by here and with the following conditions:
 - concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions: - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).
 - C_{a2} is greater than or equal to 1.5 times C_{a1} .
- 2- Calculations were performed according to ACI 318-14 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, hef, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.

Tension and Shear Design Strength Cracked Concrete

Nominal		Minimum Concrete Compressive Strength								
Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'C = 6,	000 psi	f'c = 8,0)00 psi
Depth hnom (in.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (lbs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)
1-5/8	495	515	525	515	575	515	645	515	705	515
1-5/8	495	780	525	855	575	925	645	925	705	925
2-1/2	920	925	970	925	1,060	925	1,195	925	1,305	925
	Depth hom (in.) 1-5/8 1-5/8	Embed. Deptin hrom (in.) f'c = 2; øNn Tension (lbs.) 1-5/8 495 1-5/8 495	Embed. Depth horm (in.) f'c = 2,500 psi øNn Tension (lbs.) øVn Shear (lbs.) 1-5/8 495 515 1-5/8 495 780	Embed. Depth hom (in.) f'c = 2,500 psi f'c = 3, 9Vn Shear (lbs.) 8Nn Tension (lbs.) 8Vn Shear (lbs.) 8Nn Tension (lbs.) 1-5/8 495 515 525 1-5/8 495 780 525	Nominal Embed. Depth hom (in.) f'c = 2,500 psi f'c = 3,000 psi #Nn Tension (lbs.) #Nn Shear (lbs.) #Nn Shear (lbs.) #Nn (lbs.) #Nn Shear (lbs.) #Nn Shear (lbs.) 1-5/8 495 515 525 515 1-5/8 495 780 525 855	Nominal Embed. Depth hom (in.) f'c = 2,500 psi f'c = 3,000 psi f'c = 4, Mon (ib.) ØVn Shear (ib.) ØNn Tension (ib.) ØNn Shear (ib.) ØVn Shear (ib.) ØNn Shear (ib.) ØNN Shear (ib.)	Nominal Embed. Depth hom (in.) if c = 2,500 psi if c = 3,000 psi if c = 4,000 psi 8Nn Tension (lbs.) 8Nn Shear (lbs.) 8Nn Tension (lbs.) 8Nn Shear (lbs.) 8Nn Shear (lbs.) 8Nn Shear (lbs.) 8Vn Shear (lbs.) 1-5/8 495 515 525 515 575 515 1-5/8 495 780 525 855 575 925	Nominal Embed. Depth hoom (in.) f'c = 2,500 psi f'c = 3,000 psi f'c = 4,000 psi f'c = 6, ØNn 1-5/8 ØNn Shear ØNn ØNn Shear ØNn Shear	Nominal Embed. Depth hom (in.) if c = 2,500 psi if c = 3,000 psi if c = 4,000 psi if c = 6,000 psi if c = 2,500 psi if c = 3,000 psi if c = 4,000 psi if c = 6,000 psi if c = 6,000 psi if c = 1,000 psi if c = 1,000 psi if c = 6,000 psi if c = 6,000 psi if c = 6,000 psi if c = 1,000 psi if c = 1,000 psi if c = 6,000 psi if c = 6,000 psi if c = 6,000 psi if c = 1,000 psi if c = 1,000 psi if c = 6,000 psi if c = 6,000 psi if c = 6,000 psi if c = 1,000 psi if c = 1,000 psi if c = 6,000 psi if c = 6,000 psi if c = 6,000 psi if c = 1,000 psi if c = 6,000 psi if c = 1,000 psi if c = 6,000 psi if c = 1,000 psi if c = 6,000 psi if c = 1,000 psi if c = 6,000 psi if c = 1,000 psi if c = 5,000 psi if c = 5,000 psi if c = 5,000 psi<	Nominal Embed. Depth hom (in.) if c = 2,500 psi if c = 3,000 psi if c = 4,000 psi if c = 6,000 psi if

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strength Uncracked Concrete

	Nominal				Minim	um Concrete C	ompressive S	trength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'C = 8,	,000 psi
Anchor Diameter	Depth hnom (in.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)								
1/4" (1/4" thread)	1-5/8	1,155	515	1,265	515	1,460	515	1,785	515	2,065	515
1/4"	1-5/8	1,155	925	1,265	925	1,460	925	1,785	925	2,065	925
(3/8" thread)	2-1/2	2,110	925	2,310	925	2,665	925	2,950	925	2,950	925
🗌 - Anchor Pullo	🛛 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls										

ORDERING INFORMATION

							20V Max* S	DS Plus Rotary	Hammers	20V Max* Impact Wrench
Catalog Number	Screw Size	Hang	Rod Size	Socket Size	Box Qty.	Ctn. Qty.	DCH273P2DH 1" L-Shape	DCH133M2 1" D-Handle	DCH293R2 1-1/8" L-Shape w/ E-Clutch"	DCF883L2 3/8" Impact Wrench
								Carbide Bits		Impact Rated Socket
Hangermate	e+ Internal	Thread		un fran fran fran fran						
PFM2211100	1/4" x 1-5/8"	Vertical	1/4"	3/8"	25	125	DW5517	DW5417	DW5417	DWMT19051B
PFM2211200	1/4" x 1-5/8"	Vertical	3/8"	1/2"	25	125	DW5517	DW5417	DW5417	DWMT19169B
PFM2211250	1/4" x 2-1/2"	Vertical	3/8"	1/2"	25	125	DW5517	DW5417	DW5417	DWMT19169B
Hangermate+ External Thread										
PFM1421000	1/4" x 1-5/8"	Vertical	3/8"	1/2"	25	125	DW5517	DW5417	DW5417	DWMT19052B
PFM1421050	1/4" x 2-1/2"	Vertical	3/8"	1/2"	25	125	DW5517	DW5417	DW5417	DWMT19052B
The published size includes the diameter and length of the anchor measured from under the head.							 Optimum Tool Maximum Tool 			

Zinc Economy Rod Coupling Nuts

Catalog Number	Coupler Size	Box Qty.	Ctn. Qty.
030007	3/8" - 16 x 1/2" x 1-1/8"	100	1000

Zinc Reducing Rod Coupling Nuts

Catalog Number	Coupler Size	Box Qty.	Ctn. Qty.
030016	3/8"-16 - 1/4"-	20 50	1000
030017	1/2"-13 - 3/8"-	16 50	500

MINI-UNDERCUT+[™]

Internally Threaded Undercut Anchor

PRODUCT DESCRIPTION

The Mini-Undercut+ anchor is an internally threaded, self-undercutting anchor designed for performance in cracked and uncracked concrete. Suitable base materials include post-tension concrete (PT slabs), hollow-core precast concrete, normal-weight concrete, sand-lightweight concrete and concrete over steel deck. The Mini-Undercut+ anchor is installed into a pre-drilled hole with a power tool and a setting tool. The result is an anchor which can provide consistent behavior at shallow embedments as low as 3/4 of an inch. After installation a steel element is threaded into the anchor body.

GENERAL APPLICATIONS AND USES

- Tension zones, seismic and wind loading applications
- Cable Trays and Strut
- Suspended Lighting

- Suspended Conduit
 FFATURE AND BENEFITS
- + Ideal for precast hollow-core plank and post-tensioned concrete slabs
- + Cracked concrete tested alternative to a mini dropin anchor
- + ANSI carbide stop bit with enlarged shoulder for accurate drill depth
- + Anchor design allows for shallow embedment as low as 3/4 of an inch
- + Internally threaded anchor for easy adjustment and removability of threaded rod or bolt
- + Drill and drive the anchor with one tool for fast anchor installation

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3912 for Concrete and Hollow-Core precast slabs, code compliant with the 2015, IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC.
- Tested in accordance with ACI 355.2 (including ASTM E 488) and ICC-ES AC193 for use in concrete under the design provisions of ACI 318-14 Chapter 17 or ACI 318-11/08 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchoring and 05 05 19 - Post Installed Concrete Anchors. Expansion anchors shall be Mini-Undercut+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	.318
Installation Instructions	.319
Reference Data (ASD)	.320
Strength Design (SD)	.321
Ordering Information	.323

MINI-UNDERCUT+

THREAD VERSION

UNC Thread

ANCHOR MATERIALS

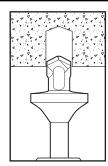
• Zinc plated carbon steel

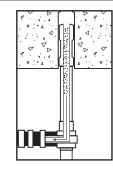
ANCHOR SIZE RANGE (TYP.)

• 3/8"

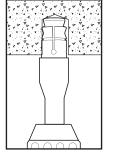
SUITABLE BASE MATERIALS

- Post-Tension Concrete
- Precast Hollow-Core Plank
- Normal-weight concrete




•

INSTALLATION INSTRUCTIONS


INSTALLATION PROCEDURE (USING SDS PLUS SYSTEM

Using the required stop drill bit, drill a hole into the base material to the required depth using the shoulder of the drill bit as a guide. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15.

Remove dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction forced air) to extract loose particles created by drilling.

Attach the required SDS setting tool to the hammer-drill. Mount the open end of the anchor onto the setting tool. Drive the anchor into the hole until the shoulder of the anchor is flush with the base material.

Thread the rod or bolt by hand until snug tight (minimum of 4 full rotations).

Do not further tighten with adjustable wrench or similar tool.

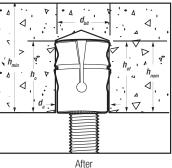
Installation Information for Mini-Undercut+ Anchor^{1,2,3}

Anchor Property/Setting Information		Symbol	Units	Nominal Anchor Diameter (inch)	
Anchor Property/3	etung imormation	Symbol	Units	3/8	
Anchor outside diameter		da	in. (mm)	0.625 (15.9)	
Internal thread diameter	(UNC)	d	in. (mm)	3/8 (9.5)	
Nominal drill bit diamete	r	d _{bit}	in. (mm)	5/8 ANSI	
Minimum nominal embe	dment depth	h _{nom}	in. (mm)	3/4 (19)	
Effective embedment de	pth	h _{ef}	in. (mm)	3/4 (19)	
Hole depth		h₀	in. (mm)	3/4 (19)	
Overall anchor length (be	efore setting)	lanch	in. (mm)	15/16 (24)	
Approximate tool impact	power (hammer-drill)	-	J	2.1 to 2.8	
Minimum diameter of hole clearance in fixture for steel insert element (following anchor installation)		dh	in.	7/16	
Minimum member thick	ness in normal-weight	h _{min}	in. (mm)	2-1/2 (64)	
Minimum cover thickness slabs (see Hollow-Core of	s in hollow core concrete concrete figure)	h _{min,core}	in. (mm)	1-1/2 (38)	
Critical edge distance		Cac	in. (mm)	2-1/4 (57)	
Minimum edge distance		Cmin	in. (mm)	2-1/2 (64)	
Minimum spacing distan	ice	Smin	in. (mm)	3 (76)	
Maximum installation to	rque	Tmax	ftlb. (N-m)	5 (7)	
Effective tensile stress area (undercut anchor body)		Ase	in.² (mm²)	0.044 (28.4)	
Minimum specified ultimate strength		futa	psi (N/mm²)	95,000 (655)	
Minimum specified yield strength		fya	psi (N/mm²)	76,000 (524)	
Moon ovial atiffacest	Uncracked concrete	eta_{uncr}	lbf/in.	50,400	
Mean axial stiffness⁴	Cracked concrete	β_{cr}	lbf/in.	29,120	

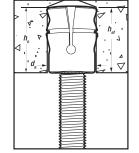
For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. For installation detail for anchors in hollow-core concrete slabs, see Hollow-Core concrete figure.


3. The embedment depth, h_{nom} , is measured from the outside surface of the concrete member to the embedded end of the anchor.

4. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.


Mini-Undercut+ Anchor Detail	
$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$	$\begin{array}{c c} A & & \nabla & & A \\ \hline & & & \nabla & & A \\ \hline & & & & \nabla & & A \\ \hline & & & & & & & & \\ \hline & & & & & & & &$
Before	

Do not exceed (Tmax

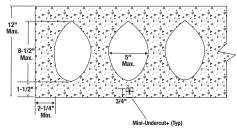
Mini-Undercut+ Anchor Installed with Steel Insert Element

REFERENCE DATA (ASD)

		Minimum Concrete Compressive Strength										
Nominal Rod/	Minimum Nominal		f'c = 3,000 p	psi (20.7 MPa) f'c = 4	f'c = 4,000 p	psi (27.6 MPa)						
Anchor Diameter		Ultin	nate	Allowable		Ultir	nate	Allowable				
d in.		Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)			
3/8	3/4 (19)	1,535 (6.8)	1,975 (8.8)	385 (1.7)	495 (2.2)	1,770 (7.9)	2,275 (10.1)	445 (2.0)	570 (2.5)			

3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

Ultimate and Allowable Tension Load Capacities for Mini-Undercut+ in Hollow-Core Plank^{1,2,3}


			Minimum Concrete Compressive Strength										
Nominal Rod/	Minimum Nominal Embed. Depth in. (mm)	f'c = 5,000 psi (34.5 MPa)			f'c = 6,000 psi (41.4 MPa)			f'c = 8,000 psi (55.2 MPa)					
Anchor Diameter d in.		Ultin	nate	Allov	rable	Ultin	nate	Allow	able	Ultin	nate	Allow	able
		Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)
3/8	3/4 (19)	1,855 (8.3)	2,590 (11.5)	465 (2.1)	650 (2.9)	2,035 (9.1)	2,835 (12.6)	510 (2.3)	710 (3.2)	2,345 (10.4)	3,275 (14.6)	585 (2.6)	820 (3.6)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

Mini-Undercut+ Installed Detail for Anchor in the Underside of Hollow-Core Concrete slabs

ASD

N

Di

STRENGTH DESIGN (SD)

Tension Design Information for Mini-Undercut+ Anchors in the Underside of Normal-weight Concrete and the Underside of Hollow-Core Concrete Slabs^{1,2,3,4,5,6,7}

Design Characteristic	Notation	Units	Nominal Anchor Size / Threaded Rod Diameter (inch)
	Notation		3/8
Anchor category	1, 2 or 3	-	1
Nominal embedment depth	h _{nom}	in. (mm)	3/4 (19)
	Steel Strength In Tensio		
Steel strength in tension	N _{sa}	lb (kN)	4,180 (18.6)
Reduction factor for steel strength	ϕ		0.65
Concre	te Breakout Strength In	Tension (ACI 318-14	17.4.2 or ACI 318-11 D.5.2)
Effective embedment	hef	in. (mm)	3/4 (19)
Effectiveness factor for uncracked concrete	Kuncr	-	24
Effectiveness factor for cracked concrete	Kcr	-	17
Modification factor for cracked and uncracked concrete	Ψ _{c,N}	-	1.0 (see note 5)
Critical edge distance	Cac	in. (mm)	2-1/4 (57)
Reduction factor, concrete breakout strength ³	φ	-	0.40
P	Pullout Strength In Tensi	on (ACI 318-14 17.4.	3 or ACI 318-11 D.5.3)
Pullout strength, uncracked concrete	N _{p,uncr}	lb (kN)	See note 7
Pullout strength, cracked concrete	N _{p,cr}	lb (kN)	455 (2.0)
Reduction factor, pullout strength	ϕ	-	0.40
Pullout Strengt	In Tension For Seismic	Applications (ACI 31	8-14 17.2.3.3 or ACI 318-11 D.3.3.3)
Characteristic pullout strength, seismic	N _{p,eq}	lb (kN)	410 (1.82)
Reduction factor, pullout strength, seismic	φ	-	0.40

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with manufacturer's published installation instructions and details.

3. All values of ϕ are applicable with the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2.

4. The threaded rod or bolt strength must also be checked, and the controlling value of ϕ_{tes} between the anchor and rod must be used for design.

5. Select the appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{uncr}) and use $\psi_{c,N} = 1.0$.

6. The characteristic pullout strength for concrete compressive strengths greater than 2,500 psi for anchors may be increased by multiplying the value in the table by (f'c / 2,500)^{as} for psi or (f'c / 17.2)^{as}. For hollow-core concrete slabs the characteristic pullout strength for concrete compressive strengths greater than 6,000 psi for anchors may be increased by multiplying the value in the table by (f'c / 6,000)05 for psi or (f'c / 41.4)05.

7. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.

₽ _**+**

Shear Design Information for Mini-Undercut+ Anchors in the Underside of Normal-weight Concrete and the Underside of Hollow-Core Concrete Slabs^{12,3,4,5,6}

Desiry Characteristic	Notation	Units	Nominal Anchor Size / Threaded Rod Diameter (inch)
Design Characteristic	Notation	Units	3/8
Anchor category	1, 2 or 3	-	1
Nominal embedment depth	h _{nom}	in. (mm)	3/4 (19)
S	teel Strength in Shear	r (ACI 318-14 17.5.1 d	or ACI 318-11 D.6.1)
Steel strength in shear	V _{sa}	lb (kN)	985 (4.4)
Reduction factor, steel strength	ϕ	-	0.60
Steel Stre	ngth in Shear for Sei	smic (ACI 318-14 17.	2.3.3 or ACI 318-11 D.3.3.3)
Steel strength in shear, seismic	V _{sa, eq}	lb (kN)	895 (4.0)
Reduction factor, steel strength in shear, seismic	ϕ	-	0.60
Concrete	e Breakout Strength in	n Shear (ACI 318-14 1	17.5.2 or ACI 318-11 D.6.2)
Load bearing length of anchor in shear	le	in. (mm)	3/4 (19)
Nominal outside anchor diameter	da	in. (mm)	0.625 (15.9)
Reduction factor for concrete breakout strength	ϕ	-	0.45
Pr	yout Strength in Shea	ır (ACI 318-14 17.5.3	or ACI 318-11 D.6.3)
Coefficient for pryout strength	k _{cp}	-	1.0
Effective embedment	h _{ef}	in. (mm)	3/4 (19)
Reduction factor, pryout strength	ϕ	-	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-17 17.2.3 or ACI 318-11 D.3.3, as applicable shall apply

2. Installation must comply with manufacturer's published installation instructions and details.

3. All values of ϕ are applicable with the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2.

4. The strengths shown in the table are for the Mini-Undercut+ anchors only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable.

5. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design in lieu of the calculated results using equation 17.5.1.2b of ACI 318-14 or equation D-29 in ACI 318-11 D.6.1.2.

6. Reported values for steel strength in shear for the Mini-Undercut+ anchors are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6 and must be used for design.

DEWALT.

ORDERING INFORMATION

Mini-Undercut+

Cat. No.	Anchor Size	Rod/Anchor Dia.	Drill Diameter	Overall Length	Box Qty.	Ctn. Qty.
PFM2111820	3/8" x 3/4"	3/8"	5/8"	3/4"	100	600

Accu-Bit[™] for DEWALT Mini-Undercut+

Cat. No.	Mini-Undercut+ Size	Rod/Anchor Dia.	Drill Diameter	Drill Depth	Std. Pack
PPA2431720	5/8" x 3/4" Stop Drill Bit - PT Anchor	3/8"	5/8"	3/4"	1

SDS Plus Setting Tool for DEWALT Mini-Undercut+

Cat. No.	Mini-Undercut+ Size	Rod/Anchor Dia.	Std. Pack
PFM2101720	3/8" SDS+ Setting Tool - PT Anchor	3/8"	1

Mini-Undercut+ Ordering Matrix

Description	Anchor Cat No.	Accu-Bit [™] Cat. No.	SDS Plus Setting Tool Cat. No.	Recommended SDS Hammer-Tools (DEWALT)
3/8" x 3/4" Mini-Undercut+	PFM2111820	PPA2431720	PFM2101720	DCH273, DCH133, D25133, D25262

ANCHORS

ECHANICAL

5

WOOD-KNOCKER®II+

Concrete Inserts

PRODUCT DESCRIPTION

Wood-Knocker II concrete inserts are specifically designed to provide hangar attachments for mechanical, electrical, plumbing (MEP) and fire protection.

Wood-Knocker II+ concrete inserts are installed onto wooden forms used to support newly poured concrete floor slabs, roof slabs or walls.

When the forms are stripped, the color-coded flange is visibly embedded in the concrete surface. The inserts allow the attachment of steel threaded rod or threaded bolts in sizes ranging from 1/4" to 3/4" in diameter, including a 3/8-1/2" multi insert. The hex impact plate offers resistance to rotation within the concrete as a steel threaded rod or threaded bolt is being installed.

GENERAL APPLICATIONS AND USES

- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays
- Mechanical Unit Overhead Utilities
- Conduit and Lighting System
- Seismic Loading and Cracked Concrete

FEATURES AND BENEFITS

- + Fast and simple to install, low installed cost
- + Color coded by size for simple identification
- + Wood-Knocker II+ can be installed in wood form pours only 3.5" thick
- + Hex head does not rotate when set
- + Insert design allows for full thread engagement
- + All sizes suitable for tension and shear loading

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3657 for concrete approved for seismic and wind loading
- Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ASTM E488 and ICC-ES AC446 for use in concrete under the design provisions of ACI 318 (Strength Design method)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes. Also UL listed and recognized for use in air handling spaces.
- FM Approvals (Factory Mutual) File No. J.I. 3059197

GUIDE SPECIFICATIONS

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be Wood-Knocker II+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	324
Material Specifications	325
Installation Instructions	325
Installation Specifications	325
Reference Data (ASD)	326
Strength Design (SD)	327
Ordering Information	330

WOOD-KNOCKER II+ WOOD FORM INSERT

ANCHOR MATERIALS

Carbon Steel and Engineered Plastic

ROD/ANCHOR SIZE RANGE (TYP.)

• 1/4" to 3/4" threaded rod for Wood-Knocker Concrete Inserts

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

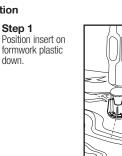
WOOD-KNOCKER®II+

•

MATERIAL SPECIFICATIONS

Wood-Knocker II+

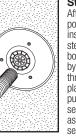
Anchor Component	Component Material
Insert Body	AISI 1008 Carbon Steel or equivalent
Flange	Engineered Plastic
Zinc Plating	ASTM B 633 (Fe/Zn5) Min. plating requirements for mild service condition


Material Properties for Threaded Rod

Steel Description	Steel Specification (ASTM)	Rod Diameter (inch)	Minimum Yield Strength, $f_{\rm y}$ (ksi)	Minimum Ultimate Strength, fº (ksi)
Standard carbon rod	A 36 or A 307, Grade C	1/4 to 3/4	36.0	58.0
High strength carbon rod	A 193, Grade B7	1/4 to 3/4	105.0	125.0

INSTALLATION INSTRUCTIONS

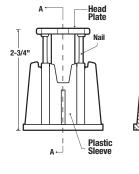
Installation Instructions for Wood-Knocker II+

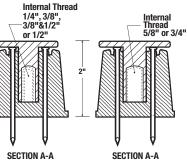

Step 2 Drive insert head down until head contacts plastic.

Drive

Prepare Step 3 After formv removal, re nails as ne (e.g. flush fixtures)

After formwork removal, remove nails as necessary (e.g. flush mounted fixtures).

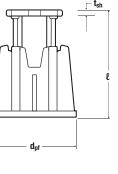

Attach



Step 4 After concrete pour and cure, install threaded steel element (rod/ bolt) into the insert by firmly pushing threaded rod through plastic center to puncture thread seal. Attach fixture as applicable (e.g. seismic brace).

INSTALLATION SPECIFICATIONS

Wood-Knocker II+ Cast-In-Place Inserts for Form Pour Concrete



After Setting

Before Setting

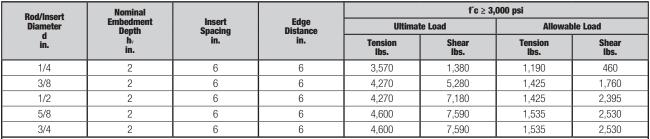
Wood-Knocker II+

Dimension	Notelien			Nomin	al Rod/Anch	or Size			
Dimension	Notation	1/4"	3/8"	3/8" & 1	/2" Multi	1/2"	5/8"	3/4"	
Thread Size, UNC	-	1/4-20	3/8-16	3/8-16	1/2-13	1/2-13	5/8-11	3/4-10	1
Approx. Internal Thread Length (in.)	-	3/8	5/8	9/16	9/16	11/16	15/16	1-1/8	1
Approx. Internal Thread Standoff from Plastic Sleeve Bottom, after setting (in.)	-	3/8	3/8	15/16	3/8	3/8	3/8	3/8	
Plastic Sleeve Flange Dia. (in.)	dpf	2-3/8	2-3/8	2-:	3/8	2-3/8	2-3/8	2-3/8	
Plastic Sleeve Flange Thickness (in.)	-	3/16	3/16	3/	16	3/16	3/16	3/16	[
Overall Length, after setting (in.)	l	2	2		2	2	2	2	
Break-Off Nail Length (in.)	ln	3/4	3/4	3.	/4	3/4	3/4	3/4	
Steel Head Plate Thickness (in.)	t _{sh}	1/8	1/8	1.	/8	1/8	1/8	1/8	1

WOOD-KNOCKER®II+ Concrete Inserts

REFERENCE DATA (ASD)

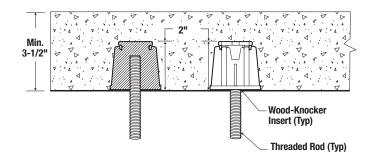
Ultimate and Allowable Load Capacities for Wood-Knocker II+ Inserts Installed in Normal-Weight Concrete^{1,2,3}

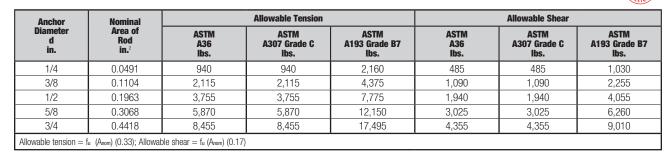

				Minimum Concrete Compressive Strength (f´c)								
Rod/Insert Diameter	Nominal Embedment	Insert	Edge	3,000 Ultimate Load		3,000 psi			4,500 psi			
d	Depth	Spacing in.	Distance in.			Ultimate Load Allowable Load		Ultimate Load		Allowable Load		
in.	in. in. in.		Tension Ibs.	Shear Ibs.	Tension lbs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.		
1/4	2	6	6	3,720	1,490	1,240	495	4,250	1,610	1,415	535	
3/8	2	6	6	4,820	5,330	1,605	1,775	7,190	5,620	2,395	1,875	
1/2	2	6	6	4,820	7,400	1,605	2,465	7,190	8,590	2,395	2,865	
5/8	2	6	6	4,650	11,360	1,550	3,785	7,350	13,010	2,450	4,335	
3/4	2	6	6	4,650	11,360	1,550	3,785	7,350	14,590	2,450	4,865	

1. Allowable load capacities listed are calculated using an applied safety factor of 3.0.

2. The allowable working load must be the lesser of the insert capacity or the steel strength of the threaded rod.

3. Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.


Ultimate and Allowable Load Capacities for Wood-Knocker II+ Inserts Installed in Sand-lightweight Concrete^{1,2}


1. Allowable load capacities listed are calculated using an applied safety factor of 3.0.

2. The allowable working load must be the lesser of the insert capacity or the steel strength of the threaded rod.

3. For 1/4", 3/8" and 1/2" diameters: When the inserts are spaced 3" center-to-center the inserts allowable tension capacity must be reduced by 25 percent and the allowable shear capacity reduced by 15 percent. When the inserts have a 3" edge distance the inserts allowable tension capacity does not require a reduction and the allowable shear capacity must be reduced by 40 percent.

Allowable Steel Strength for Threaded Rod

CHANICAL ANCHORS

STRENGTH DESIGN (SD)

Design Information	Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch		
Insert O.D.	da (do)	in. (mm)	0.7 (18)	0.7 (18)	0.7 (18)	1.0 (25)	1.0 (25)		
Insert head net bearing area	A _{brg}	in² (mm²)	1.20 (762)	1.20 (762)	1.20 (762)	1.30 (839)	1.30 (839)		
Effective embedment depth	hef	in. (mm)	1.75 (45)	1.75 (45)	1.75 (45)	1.75 (45)	1.75 (45)		
Minimum member thickness	h _{min}	-	3.5 (89)	3.5 (89)	3.5 (89)	3.5 (89)	3.5 (89)		
Effectiveness factor for cracked concrete	kc	- (SI)	24 (10)	24 (10)	24 (10)	24 (10)	24 (10)		
Modification factor for tension strength in uncracked concrete	$\Psi_{C,N}$	-	1.25	1.25	1.25	1.25	1.25		
Nominal tension strength of single insert as governed by steel strength	Nsa,insert	lb (kN)	10,270 (45.7)	10,270 (45.7)	9,005 (40.1)	12,685 (56.4)	12,685 (56.4)		
Nominal tension strength of single insert as governed by steel strength, for seismic loading	Nsa,insert,eq	lb (kN)	10,270 (45.7)	10,270 (45.7)	9,005 (40.1)	12,685 (56.4)	12,685 (56.4)		
Nominal steel shear strength of single insert	Vsa,insert	lb (kN)	7,180 (31.9)	7,180 (31.9)	7,180 (31.9)	9,075 (40.4)	9,075 (40.4)		
Nominal steel shear strength of single insert, for seismic loading	V _{sa,insert,eq}	lb (kN)	7,180 (31.9)	7,180 (31.9)	7,180 (31.9)	9,075 (40.4)	9,075 (40.4)		

Wood-Knocker II+ Insert Design Information^{1,2,3,4,5,6,7,8}

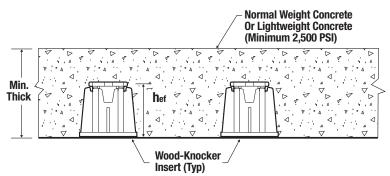
For SI: 1 inch = 25.4 mm, 1 inch² = 635 mm², 1 pound = 0.00445 kN, 1 psi = 0.006895 MPa. For pound-inch unit: 1 mm = 0.03937 inches.

1. Concrete must have a compressive strength f'c of 2,500 psi minimum.

2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D for cast-in headed anchors.

3. Strength reduction factors (ø) for the inserts are based on ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements. The value of ø applies when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D.4.4.

4. The concrete tension strength of headed cast-in specialty inserts shall be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.


5. Insert O.D. is the outside diameter of the headed insert body.

6. Only the largest size of threaded rod or bolt for the 3/8 & 1/2 inch multi insert must be used for applications resisting shear loads.

7. Minimum spacing distance between anchors and minimum edge distance for cast-in Wood-Knocker II+ anchors shall be in accordance with ACI 318-14 17.7 or ACI 318-11 D.8.

8. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod or bolt strength in tension, shear, and combined tension and shear, as applicable. See Steel Design Information table for common threaded rod elements.

Wood-Knocker II+ Insert Installed in Soffit of Form Pour Concrete Floor and Roof Assemblies

DNCH ORS

Specifications And Physical Properties Of Common Carbon Steel Threaded Rod Elements

Specifications and Physical Properties of Common Carbon Steel Inreaded Rod Elements									
Threa	ded Rod Specification	Units	Min. Specified Ultimate Strength, Futa	Min. Specified Yield Strength 0.2 Percent Offset, F _{ya}	Futa — Fya	Elongation Minimum Percent [®]	Reduction Of Area Min. Percent	Related Nut Specification ⁶	
	ASTM A36/A36M ² and F1554 ³ Grade 36	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40 (50 for A36)	ASTM A194 / A563 Grade A	
Carbon Steel	ASTM F1554 ³ Grade 105	psi (MPa)	125,000 (862)	105,000 (724)	1.19	15	45	ASTM A194 /	
	ASTM A193/A193M ⁴ Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	A563 Grade DH	

For SI: 1 inch = 25.4 mm, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Inserts may be used in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

2. Standard Specification for Carbon Structural Steel.

3. Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength.

4. Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications.

5. Based on 2-inch (50 mm) gauge length except ASTM A193, which are based on a gauge length of 4d (drod).

6. Where nuts are applicable, nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable.

Steel Design Information For Common Threaded Rod Elements Used With Concrete Inserts^{1,2,3,4}

Steel Design mormation for common fineaded nod Liements used with concrete macris								
Design Information	Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch	
Threaded rod nominal outside diameter	drod	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	
Threaded rod effective cross-sectional area	Ase	in² (mm²)	0.032 (21)	0.078 (50)	0.142 (92)	0.226 (146)	0.335 (216)	
Nominal tension strength of ASTM A36 threaded rod as governed by steel strength	Nsa,rod,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.3)	
Nominal seismic tension strength of ASTM A36 threaded rod as governed by steel strength	Nsa,rod,A36,eq	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.4)	
Nominal tension strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	N _{sa,rod,B7}	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)	
Nominal seismic tension strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	Nsa,rod,B7,eq	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)	
Nominal shear strength of ASTM A36 threaded rod as governed by steel strength	V _{sa,rod,A36}	lb (kN)	1,115 (4.9)	2,715 (12.1)	4,940 (22.0)	7,865 (35.0)	11,660 (51.9)	
Nominal seismic shear strength of ASTM A36 threaded rod as governed by steel strength	Vsa,rod,A36,eq	lb (kN)	780 (3.5)	1,900 (8.4)	3,460 (15.4)	5,505 (24.5)	8,160 (36.3)	
Nominal shear strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	V _{sa,rod,B7}	lb (kN)	2,385 (10.6)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)	
Nominal seismic shear strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	Vsa,rod,B7,eq	lb (kN)	1,680 (7.5)	4,095 (18.2)	7,455 (34.2)	11,865 (52.8)	17,590 (78.2)	

For SI: 1 inch = 25.4 mm, 1 pound = 0.00445 kN, 1 in² = 645.2 mm². For pound-inch unit: 1 mm = 0.03937 inches.

1. Values provided for steel element material types based on minimum specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29).

2. $\phi_{N_{sa}}$ shall be the lower of the $\phi_{N_{sa,red}}$ or $\phi_{N_{sa,reset}}$ for static steel strength in tension; for seismic loading $\phi_{N_{sa,eq}}$ shall be the lower of the $\phi_{N_{sa,rest,eq}}$ or $\phi_{N_{sa,rest,eq}}$

3. ϕ Vsa shall be the lower of the ϕ Vsa,rod or $\dot{\phi}$ Vsa,insert for static steel strength in tension; for seismic loading $\dot{\phi}$ Vsa,eq shall be the lower of the $\dot{\phi}$ Vsa,rod,eq or $\dot{\phi}$ Vsa,insert,eq.

4. Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for steel elements. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the threaded rod are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of ø applies when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D.4.4.

Tension and Shear Design Strengths for Wood-Knocker II+ Insert Installed in the Soffit of Form Poured Concrete and Roof Assemblies - Uncracked Concrete 1,2,3,4,5,6

		Minimum Concrete Compressive Strength									
Nominal Anchor	Embed. Depth	f'c = 3,	000 psi	f'c = 4,	000 psi	f ⁱ c = 6,000 psi					
Diameter	h _{ef} (in.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	ØVn Shear (Ibs.)				
1/4	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425				
3/8	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425				
1/2	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425				
5/8	1-3/4	2,665	2,665	3,075	3,075	3,765	3,765				
3/4	1-3/4	2,665	2,665	3,075	3,075	3,765	3,765				
Anobar Dullout/Dn/	out Strongth Controlo	Conorata Braalvaut Stra	ngth Controla 🗖 Ctaal	Ctrongth Controlo							

🗖 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Wood-Knocker II+ Insert Installed in the Soffit of Form Poured Concrete and Roof Assemblies - Cracked Concrete^{1,2,3,4,5,6}

Nominal Anchor Depth Diameter her (in.)		f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,000 psi		
		ϕ Nn Tension (Ibs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (lbs.)	
1/4	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445	
3/8	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445	
1/2	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445	
5/8	1-3/4	2,130	2,130	2,460	2,460	3,015	3,015	
3/4	1-3/4	2,130	2,130	2,460	2,460	3,015	3,015	

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = hmin, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, $c_{ac}.$

- c_{a2} is greater than or equal to 1.5 times $c_{a1}.$

- 2- Calculations were performed following methodology in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (N_{sa,insert}), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (N_{sa,rod}, V_{sa,rod}), the lowest load level controls.
- 3- Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.70 for tension and 0.60 for shear; values correspond to brittle steel elements.
- 4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

Tension and Shear Design Strength of Steel Elements (Steel Strength)^{1,2,3,4}

	Steel Elements - Threaded Rod								
Nominal Rod Diameter (in. or No.)	ASTM A36 and AST	M F1554 Grade 36	ASTM A193 Grade B7 and ASTM F1554 Grade 105						
	<i>∲</i> Nsa,rod Tension (Ibs.)	ØVsarod Shear (Ibs.)	ØNsarod Tension (Ibs.)	ØV _{sa,rod} Shear (Ibs.)					
1/4	1,390	720	3,000	1,550					
3/8	3,395	1,750	7,315	3,780					
1/2	6,175	3,210	13,315	6,915					
5/8	9,835	5,115	21,190	11,020					
3/4	14,550	7,565	31,405	16,305					
- Steel Strength Controls									

1. Steel tensile design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, ϕ Nsa = $\phi \bullet$ Ase,N \bullet futa

2. The tabulated steel design strength in tension for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pullout design strength to determine the controlling failure mode, the lowest load level controls.

3. Steel shear design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, ϕ Nsa = $\phi \bullet 0.60 \bullet A$ se,N \bullet futa

4. The tabulated steel design strength in shear for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pryout design strength to determine the controlling failure mode, the lowest load level controls

ORDERING INFORMATION

Wood-Knocker®II+ Form Insert (UNC)

Cat No.	Description	Color Code	Std. Box
PFM2521100	1/4" Wood-Knocker II+ Insert	Brown	100
PFM2521150	3/8" Wood-Knocker II+ Insert	Green	100
PFM2521200	1/2" Wood-Knocker II+ Insert	Yellow	100
PFM2521250	5/8" Wood-Knocker II+ Insert	Red	100
PFM2521300	3/4" Wood-Knocker II+ Insert	Purple	100
PFM2521350	3/8"-1/2" Wood-Knocker II+ Multi Insert	Gray	100
Threaded Inserts are color code	d to easily identify location and diameter of the internally threaded	coupling, allowing m	ultiple trades on the

Threaded Inserts are color coded to easily identify location and diameter of the internally threaded coupling, allowing multiple trades on the same job to suspend their systems with various size steel threaded rods.

Wood-Knocker®II+ Form Insert (UNC) with no nails

Cat No.	Description	Color Code	Std. Box
PFM2521100NN	1/4" Wood-Knocker II+ Insert with no nails	Brown	100
PFM2521150NN	3/8" Wood-Knocker II+ Insert with no nails	Green	100
PFM2521200NN	1/2" Wood-Knocker II+ Insert with no nails	Yellow	100
PFM2521250NN	5/8" Wood-Knocker II+ Insert with no nails	Red	100
PFM2521300NN	3/4" Wood-Knocker II+ Insert with no nails	Purple	100
PFM2521350NN	3/8-1/2" Wood-Knocker II+ Multi Insert with no nails	Gray	100
Wood-Knocker II+ Form Inserts	with no nails must be screwed to the concrete form work (screws	not included).	

GENERAL INFORMATION

BANG-IT®+

Concrete Inserts

PRODUCT DESCRIPTION

Bang-It+ concrete inserts are specifically designed to provide hangar attachments for mechanical, electrical, plumbing (MEP) and fire protection.

Bang-It+ concrete inserts are designed for installation in and through composite steel deck (i.e. "pan-deck") used to support newly poured concrete floors or roof slabs.

After installation, the protective sleeve of the insert protrudes below the surface of the deck. The sleeves are color coded by size and allow overhead attachment of steel threaded rod in sizes ranging from 1/4" to 3/4" in diameter, including a 3/8-1/2" multi insert. The sleeve prevents sprayed fireproofing material and acoustical dampening products from clogging the internal threads of the insert. It also prevents burying, masking or losing the insert location. A hex impact plate offers resistance to rotation within the concrete as a steel threaded rod is being installed.

GENERAL APPLICATIONS AND USES

- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays

FEATURES AND BENEFITS

- + Fast and simple to install, low installed cost
- + Color coded by size for simple identification
- + Bang-It+ can be installed in lower flute of steel deck as little as 1.5" topping thickness (see installation details)
- + Hex head does not rotate when set
- + Insert design allows for full thread engagement
- + All sizes suitable for tension and shear loading

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3657 for concrete Approved for seismic and wind loading
- Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ASTM E488 and ICC-ES AC446 for use in concrete under the design provisions of ACI 318 (Strength Design method)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes Also UL listed and recognized for use in air handling spaces (i.e. plenum rated locations)
- FM Approvals (Factory Mutual) File No. J.I. 3015153

GUIDE SPECIFICATIONS

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be Bang-It+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

- Mechanical Unit Overhead Utilities
- Conduit and Lighting System
- Seismic Loading and Cracked Concrete

SECTION CONTENTS

General Information	331
Material Specifications	332
Installation Instructions	332
Installation Specifications	332
Reference Data (ASD)	333
Strength Design (SD)	334
Ordering Information	338

BANG-IT+ STEEL DECK INSERT

ANCHOR MATERIALS

Carbon Steel and Engineered Plastic

ROD/ANCHOR SIZE RANGE (TYP.)

• 1/4" to 3/4" threaded rod for Bang-It Concrete Inserts

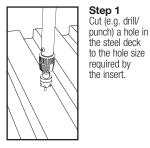
SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

MATERIAL SPECIFICATIONS

Bang-It+

Dalig-It+	
Anchor Component	Component Material
Insert Body	AISI 1008 Carbon Steel or equivalent
Flange	AISI 1008 Carbon Steel or equivalent
Spring	Steel Music Wire
Protective Sleeve	Engineered Plastic
Zinc Plating	ASTM B 633 (Fe/Zn5) Min. Plating requirements for Mild Service Condition


Material Properties for Threaded Rod

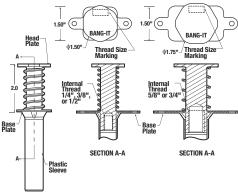
Steel Description	Steel Specification (ASTM)	Rod Diameter (inch)	Minimum Yield Strength, $f_{\rm y}$ (ksi)	Minimum Ultimate Strength, fº (ksi)
Standard carbon rod	A 36 or A 307, Grade C	1/4 to 3/4	36.0	58.0
High strength carbon rod	A 193, Grade B7	1/4 to 3/4	105.0	125.0

INSTALLATION INSTRUCTIONS

Installation Instructions for Bang-It+

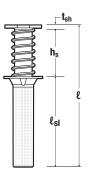
Create Hole

Position Step 2 Place the plastic sleeve of the insert through hole in steel deck.


Prepare

Step 3 Step on or impact the insert head to engage. Optionally, base plate of insert can also be screwed to steel deck. Attach

Step 4 After concrete pour and cure, install threaded steel element (rod/ bolt) into the insert. Trim away plastic sleeve as needed for application and attach fixture as applicable (e.g. seismic brace).


INSTALLATION SPECIFICATIONS

Bang-It+ Cast-In-Place Inserts for Concrete Filled Steel Deck Floor and Roof Assemblies

Bang-It+

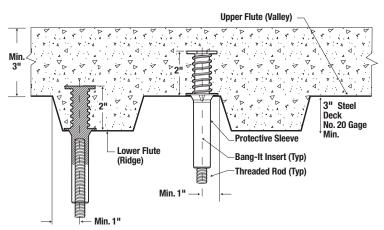
Dimension	Notation			Nomina	al Rod/Anch	or Size		
Dimension	Notation	1/4"	3/8"	3/8" & 1	/2" Multi	1/2"	5/8"	3/4"
Metal Hole Saw Diameter (in.)	-			13/16 or 7/8	3		1-3/16 or 1-1/4	
Metal Hole Saw Drilling Speed (rpm)	-	700-900	700-900	700-	-900	700-900	500-700	500-700
Steel Head Plate Thickness (in.)	tsh	1/8	1/8	1,	/8	1/8	1/8	1/8
Approx. Height of Spring (in.)	h₅	1-13/16	1-13/16	1-1;	1-13/16		1-13/16	1-13/16
Base Plate Thickness (in.)	-	1/16	1/16	1/	16	1/16	1/16	1/16
Thread Size, UNC	-	1/4-20	3-3/8	3/8-16	1/2-13	1/2-13	5/8-11	3/4-10
Approx. Internal Thread Length (in.)	-	3/8	5/8	9/16	9/16	11/16	15/16	1-1/8
Approx. Internal Thread Projection throught Deck Soffit, after setting (in.)	-	3/4	3/4	0	3/4	3/4	3/4	3/4
Length of Plastic Sleeve (in.)	lsi	3-3/8	3-3/8	3-:	3/8	3-3/8	3-3/8	3-3/8
Overall Insert Length (in.)	l	5-7/16	5-7/16	5-7	/16	5-7/16	5-7/16	5-7/16

REFERENCE DATA (ASD)

ENGINEERED BY POWERS

Ultimate and Allowable Load Capacities for Bang-It+ Inserts Installed in Sand-Lightweight Concrete or Normal Weight over Steel Deck^{1,2,3}

Rod/Insert	Nominal	Flute				f´c ≥ 3,	000 psi		
Diameter	Embedment Depth	Location	Insert Spacing	End Distance	Ultimat	te Load	Allowable Load		
in.	h _v in.	in Deck	in.	in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	
1/4	2	Upper	6	6	4,450	2,500	1,115	835	
1/4	2	Lower	0	0	3,320	2,500	830	625	
3/8	2	Upper 6	6	5,750	3,350	1,915	1,115		
3/0	2	Lower	0	0	3,320	3,350	3,350 830 84	840	
1/2	2	Upper	6	6	7,110	3,350	2,370	1,115	
1/2	2	Lower	O	0	3,320	3,350	830	840	
5/8	2	Upper	6	6	8,810	3,350	2,935	1,115	
0/6	2	Lower	6	0	3,960	3,350	990	840	
3/4	2	Upper	6	6	8,810	3,350	2,935	1,115	
3/4	2	Lower	6	0	3,960	3,350	990	840	


1. Allowable load capacities listed are calculated using an applied safety factor of 3.0 for installations in the upper flute and 4.0 for installations in the lower flute.

2. The allowable working load must be the lesser of the insert capacity or the steel strength of the threaded rod.

The allowable tension load for a single insert installed in the upper flute must be adjusted as follows for spacing less than 6 inches. When the insert are spaced 2" center-to-center across the flute the insert tension capacity must be reduced by 40 percent. When the insert are spaced 2" center-to-center along the flute the insert tension capacity must be reduced by 50 percent.

The allowable tension load for a single insert installed into the lower flute must be adjusted as follows for spacing less than 6 inches. When the insert are spaced 2" center-to-center across the flute the insert tension capacity must be reduced by 30 percent. When the insert are spaced 2" center-to-center along the flute the insert tension capacity must be reduced by 35 percent.

Sand-Lightweight Concrete or Normal Weight Concrete over Steel Deck (Minimum 3,000 psi)

Allowable Steel Strength for Threaded Rod

Anchor	Nominal		Allowable Tension		Allowable Shear				
Diameter d in.	Area of Rod in. ²	ASTM A36 Ibs.	ASTM A307 Grade C Ibs.	ASTM A193 Grade B7 Ibs.	ASTM A36 Ibs.	ASTM A307 Grade C Ibs.	ASTM A193 Grade B7 Ibs.		
1/4	0.0491	940	940	2,160	485	485	1,030		
3/8	0.1104	2,115	2,115	4,375	1,090	1,090	2,255		
1/2	0.1963	3,755	3,755	7,775	1,940	1,940	4,055		
5/8	0.3068	5,870	5,870	12,150	3,025	3,025	6,260		
3/4	0.4418	8,455	8,455	17,495	4,355	4,355	9,010		

^{3.} For 1/4", 3/8" and 1/2" Bang-It Inserts:

STRENGTH DESIGN (SD)

Bang-It+ Insert Design Information^{1,2,3,4,5,6,7,8,9}

Design In	formation	Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-incl		
Insert O.D.		da (do)	in. (mm)	0.7 (18)	0.7 (18)	0.7 (18)				
Insert head net bearing area		Abrg	in² (mm²)	1.20 (762)	1.20 (762)	1.20 (762)	1.30 (839)	1.30 (839)		
Effective embedment depth		h _{ef}	in. (mm)	1.75 (45)	1.75 (45)	1.75 (45)	1.75 (45)	1.75 (45)		
Minimum member thickness		h _{min}	-		See De	ck Figures as ap	plicable			
Minimum spacing and	Upper flute	Smin, Cmin	-		See ACI 3	18 Section D.8.1	3.1 and D.8.2			
edge distances	Lower flute	Smin, Cmin	-		See De	ck Figures as ap	24 24			
Effectiveness factor for cracked cor	ncrete	kc	- (SI)	24 (10)	24 (10)	24 (10)				
Modification factor for tension strer	ngth in uncracked concrete	Ψ _{C,N}	-	1.25	1.25	1.25	1.25	1.25		
Nominal tension strength of single steel strength (4-1/2" W-Deck, B-E		Nsa,insert	lb (kN)	10,440 (46.4)	10,440 (46.4)	8,850 (43.5)	11,985 (53.3)	11,985 (53.3)		
	nsert in tension as governed by steel ' W-Deck, B-Deck, 3-7/8" W-Deck)	Nsa,insert,eq	lb (kN)	10,440 (46.4)	10,440 (46.4)	8,850 (43.5)	11,985 (53.3)	11,985 (53.3)		
Nominal steel shear strength of sin on steel deck, (4-1/2" W-Deck)	gle insert in the soffit of concrete	Vsa,insert,deck	lb (kN)	2,280 (10.2)	2,280 (10.2)	2,280 (10.2)	3,075 (13.7)	3,075 (13.7)		
Nominal steel shear strength of sin on steel deck, for seismic loading,		Vsa,insert,deck,eq	lb (kN)	2,280 (10.2)	2,280 (10.2)	2,280 (10.2)	2,695 (12.0)	2,695 (12.0)		
Nominal steel shear strength of sin on steel deck, (B-Deck, 3-7/8" W-I		Vsa,insert,deck	lb (kN)	2,080 (10.2)	2,080 (10.2)	2,080 (10.2)	2,975 (13.2)	2,975 (13.2)		
Nominal steel shear strength of sin on steel deck, for seismic loading,		Vsa,insert,deck,eq	lb (kN)	2,080 (10.2)	2,080 (10.2)	2,080 (10.2)	2,695 (12.0)	2,695 (12.0)		

For SI: 1 inch = 25.4 mm, 1 inch² = 635 mm², 1 pound = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch unit: 1 mm = 0.03937 inches.

1. Concrete must have a compressive strength f'c of 2,500 psi minimum.

2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D for cast-in headed anchors.

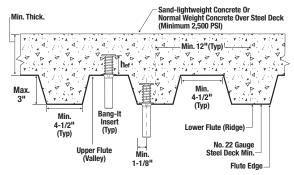
3. Strength reduction factors (a) for the inserts are based on ACI 318-14 7.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements. The value of ø applies when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D.4.3.

4. The concrete tension strength of headed cast-in specialty inserts in concrete filled steel deck assemblies shall be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D and Deck Figures.

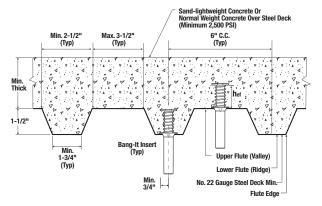
5. Insert O.D. is the outside diameter of the headed insert body.

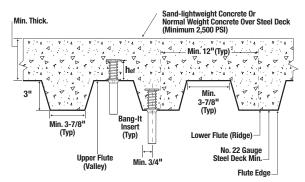
6. Minimum spacing distance between anchors and minimum edge distances for cast-in Bang-It+ anchors shall be in accordance with Deck Figures, as applicable, and noted provisions.

7. Only the largest size of threaded rod or bolt for the 3/8 & 1/2 inch multi insert must be used for applications resisting shear loads.


 The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See Steel Design Information table for common threaded rod elements.

9. The tabulated insert strength values are applicable to installations in the lower flute or upper flute of the steel deck profiles; see Deck Figures.


www.DEWALT.com


Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, 4-1/2 -inch W-Deck^{12,34}

Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, B-Deck^{1,2,3,4,5,6,7}

Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, 3-7/8 -inch W-Deck^{12,38}

- 1. Inserts may be placed in the upper flute or lower flute of the steel deck assembly. Inserts in the lower flute require a minimum 1.5" of concrete topping thickness (min. thick) from the top of the deck at the location of the installation. Upper flute installations require a minimum 3" topping thickness concrete (min. thick) from the top of the deck at the location of the installation.
- 2. Axial spacing for Bang-It inserts along the flute length shall be minimum $3h_{\mbox{\scriptsize ef}}$
- 3. Upper flute Bang-It+ inserts are not subject to steel deck dimension limitations, or the minimum steel deck gauge limitations.
- 4. Inserts in the lower flute of 4-1/2-inch W-Deck may be installed with a maximum 1-1/8 -inch offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 1-1/8 -inch is also satisfied.
- 5. Inserts in the lower flute of B-Deck may be installed with a maximum 1/8 -inch offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 3/4 -inch is also satisfied.
- 6. Lower flute installations of B-Deck with flutes widths greater than 1-3/4 -inch are permitted.
- 7. Lower flute installations of B-Deck in flute depths greater than 1-1/2 -inch are permitted provided the minimum edge distance of 3/4 -inch is met and the minimum lower flute width is increased proportionally (e.g. applicable to a lower flute depth of 2-inch with a minimum lower flute width of 2-1/4 -inch).
- 8. Inserts in the lower flute of 3-7/8-inch W-Deck may be installed with a maximum 1-3/16 -inch offset in either direction from the center of the flute.

NECHANICAL ANCHORS

Specifications And Physical Properties Of Common Carbon Steel Threaded Rod Elements

Threa	Threaded Rod Specification		Min. Specified Ultimate Strength, Futa	Min. Specified Yield Strength 0.2 Percent Offset, Fya	Futa — Fya	Elongation Minimum Percent®	Reduction Of Area Min. Percent	Related Nut Specification [®]
	ASTM A36/A36M ² and F1554 ³ Grade 36	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40 (50 for A36)	ASTM A194 / A563 Grade A
Carbon Steel	ASTM F1554 ³ Grade 105	psi (MPa)	125,000 (862)	105,000 (724)	1.19	15	45	ASTM A194 /
	ASTM A193/A193M⁴ Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	A563 Grade DH

For SI: 1 inch = 25.4 mm, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Inserts may be used in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

2. Standard Specification for Carbon Structural Steel.

3. Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength.

4. Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications.

5. Based on 2-inch (50 mm) gauge length except ASTM A193, which are based on a gauge length of 4d (drod).

6. Where nuts are applicable, nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable.

Steel Design Information For Common Threaded Rod Elements Used With Concrete Inserts^{1,2,3,4}

Design Information	Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch
Threaded rod nominal outside diameter	drod	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Threaded rod effective cross-sectional area	Ase	in² (mm²)	0.032 (21)	0.078 (50)	0.142 (92)	0.226 (146)	0.335 (216)
Nominal tension strength of ASTM A36 threaded rod as governed by steel strength	Nsa,rod,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.3)
Nominal seismic tension strength of ASTM A36 threaded rod as governed by steel strength	Nsa,rod,A36,eq	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.4)
Nominal tension strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	N _{sa,rod,B7}	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Nominal seismic tension strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	Nsa,rod,B7,eq	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Nominal shear strength of ASTM A36 threaded rod as governed by steel strength	V _{sa,rod,A36}	lb (kN)	1,115 (4.9)	2,715 (12.1)	4,940 (22.0)	7,865 (35.0)	11,660 (51.9)
Nominal seismic shear strength of ASTM A36 threaded rod as governed by steel strength	Vsa,rod,A36,eq	lb (kN)	780 (3.5)	1,900 (8.4)	3,460 (15.4)	5,505 (24.5)	8,160 (36.3)
Nominal shear strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	Vsa,rod,B7	lb (kN)	2,385 (10.6)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)
Nominal seismic shear strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	Vsa,rod,B7,eq	lb (kN)	1,680 (7.5)	4,095 (18.2)	7,455 (34.2)	11,865 (52.8)	17,590 (78.2)

For SI: 1 inch = 25.4 mm, 1 pound = 0.00445 kN, 1 in² = 645.2 mm². For pound-inch unit: 1 mm = 0.03937 inches.

1. Values provided for steel element material types based on minimum specified strengths and calculated in accordance with ACI 318-11 Eq. (D-29).

2. ϕN_{sa} shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,eq}$ shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,eq}$ shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,eq}$ shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,eq}$ shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,eq}$ shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,eq}$ shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,roser}$ shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,roser}$ shall be the lower of the $\phi N_{sa,roser}$ for static steel strength in tension; for seismic loading $\phi N_{sa,roser}$ steel strength in tension; for seismic loading $\phi N_{sa,roser}$ static steel strength in tension; for seismic loading $\phi N_{sa,roser}$ steel strength in tension; for seismic loading $\phi N_{sa,roser}$ steel strength in tension; for seismic loading $\phi N_{sa,roser}$ steel strength in tension; for seismic loading $\phi N_{sa,roser}$ steel s

3. $\dot{\phi}$ Vsa shall be the lower of the $\dot{\phi}$ Vsa.ref or $\dot{\phi}$ Vsa.inset for static steel strength in tension; for seismic loading $\dot{\phi}$ Vsa.eq shall be the lower of the $\dot{\phi}$ Vsa.ref or $\dot{\phi}$ Vsa.inset.eq.

4. Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for steel elements. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the threaded rod are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of ø applies when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-11 T.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D.4.4.

Tension and Shear Design Strengths for Bang-It+ Inserts Installed in the Soffit of Uncracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}

						Minimun	n Concrete C	ompressive	Strength				
Nominal Anchor Diameter (in.)		f'c = 3,000 psi											
			4-1/2"	W-Deck			B-D	leck			3-7/8"	W-Deck	
	Upper	Flute	Lower Flute Up		Upper	Upper Flute Lower Flute		Upper	Flute	Lower Flute			
	(in.)	ϕ Nn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	ϕ Nn Tension (lbs.)	ϕ Vn Shear (Ibs.)						
1/4	1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250
3/8	1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250
1/2	1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250
5/8	1-3/4	2,665	1,845	1,340	1,845	2,265	1,785	595	1,785	2,265	1,785	1,145	1,785
3/4	1-3/4	2,665	1,845	1,340	1,845	2,265	1,785	595	1,785	2,265	1,785	1,145	1,785
		,	· · · ·	rata Draakout (· · · ·		· · · ·		1,100	2,200	1,100	.,	1,100

🖸 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Bang-It+ Inserts Installed in the Soffit of Cracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}

						Minimun	1 Concrete C	ompressive	Strength				
		f'c = 3,000 psi											
Nominal	Embed. Depth	4-1/2" W-Deck				B-Deck				3-7/8" W-Deck			
Ancnor Diameter	Diameter hef Uppe			Upper Flute Lower Flute		Upper	Upper Flute Lower Flute			Upper Flute		Lower Flute	
	(in.)	ϕ Nn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	ϕ Nn Tension (lbs.)	ØVn Shear (lbs.)	ϕ Nn Tension (lbs.)	ØVn Shear (lbs.)	ϕ Nn Tension (lbs.)	ØVn Shear (lbs.)	ϕ Nn Tension (lbs.)	ØVn Shear (lbs.)
1/4	1-3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250
3/8	1-3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250
1/2	1-3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250
5/8	1-3/4	1,810	1,845	1,070	1,845	1,810	1,785	475	1,785	1,810	1,785	915	1,785
3/4	1-3/4	1,810	1,845	1,070	1,845	1,810	1,785	475	1,785	1,810	1,785	915	1,785
Anahan C		Name and the Operators			Shuana atha O ana hu		Character O and	ue le					

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in sand-lightweight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

- Cat is greater than or equal to the critical edge distance, Cac.

- c_{a2} is greater than or equal to 1.5 times c_{a1} .

2- Calculations were performed following methodology in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Nsa,insert), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsa,rod, Vsa,rod), the lowest load level controls.

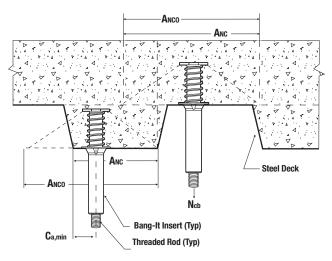
- 3- Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements. Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- 4- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.
- 5- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

Tension and Shear Design Strength of Steel Elements (Steel Strength)^{1,2,3,4}

	Steel Elements - Threaded Rod								
Nominal Rod Diameter	ASTM A36 and AST	IM F1554 Grade 36	ASTM A193 Grade B7 and ASTM F1554 Grade 105						
(in.)	ØNsarod Tension (lbs.)	ØV _{sa,rod} Shear (Ibs.)	ØN _{sarod} Tension (Ibs.)	ØV _{sa,rod} Shear (Ibs.)					
1/4	1,390	720	3,000	1,550					
3/8	3,395	1,750	7,315	3,780					
1/2	6,175	3,210	13,315	6,915					
5/8	9,835	5,115	21,190	11,020					
3/4	14,550	7,565	31,405	16,305					

Steel Strength Controls

1. Steel tensile design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, ϕ Nsa = $\phi \bullet$ Ase,N \bullet futa

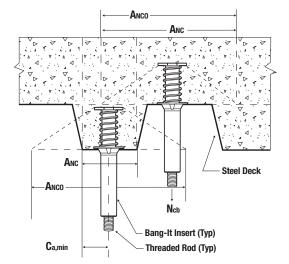

2. The tabulated steel design strength in tension for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pullout design strength to determine the controlling failure mode, the lowest load level controls.

3. Steel shear design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, ϕ Nsa = $\phi \bullet 0.60 \bullet A$ se,N \bullet futa

4. The tabulated steel design strength in shear for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pryout design strength to determine the controlling failure mode, the lowest load level controls.

Idealization of Concrete Filled Steel Decks for Determination of Concrete Breakout Strength in Accordance with ACI 318

Idealization of Standard Steel Deck Profiles


ORDERING INFORMATION

Bang-It®+ Deck Insert (UNC)

j		/			
Cat.No.	Description	Color Code	Pre-Drilled Hole	Std. Box	Std. Pallet
7540	1/4" Bang-It+	Brown	13/16" or 7/8"	100	4,000
7542	3/8" Bang-It+	Green	13/16" or 7/8"	100	4,000
7544	1/2" Bang-It+	Yellow	13/16" or 7/8"	100	4,000
7546	5/8" Bang-It+	Red	1-3/16" or 1-1/4"	50	2,400
7548	3/4" Bang-It+	Purple	1-3/16" or 1-1/4"	50	2,400
7543	3/8-1/2" Bang-lt+ Multi Insert	Gray	Gray 13/16" or 7/8"		4,000
Inserts are color	coded to easily identify location	on and diameter of th	e internally threaded coupling	g.	

Bang-It®+ Installation Accessories

Cat.No.	Description	Std. Box
7560	Bang-It Stand Up Pole tool	1
7562	13/16" Carbide Hole Saw for 1/4", 3/8" and 1/2" sizes	1
7564	1-3/16" Carbide Hole Saw for 5/8", 3/4" and 7/8" sizes	1
D180014IR	7/8" (22mm) Impact Ready® Hole Saw	1
D180020IR	1-1/4" (32mm) Impact Ready® Hole Saw	1
7566	Extra Carbide Hole Saw Center Bit	1
DWA1786IR	3/16" - 7/8" Impact Ready® Step Drill Bit	1
DWA1789IR	7/8" - 1-1/8" Impact Ready® Step Drill Bit	1
DCD980M2	20V Max* Lithium Ion Premium 3-Speed Drill/Driver Kit (4.0 Ah)	1
DWD220	1/2" VSR Pistol Grip Drill With E-Clutch Anti-Lock Control	1

Idealization of B Deck Steel Deck Profiles

CHAN CAL

GENERAL INFORMATION

DDI™+ (DECK INSERT)

Threaded Insert for Metal Deck

PRODUCT DESCRIPTION

The DDI+ (Deck Insert) is a concrete insert designed for installation in concrete-filled metal deck assemblies (i.e. "pan-deck", "Q-deck") applications. After installation, the threaded male hanger of the insert protrudes below the surface of the deck. The DDI+ comes in sizes ranging from 3/8" to 7/8" in diameter. The threaded bolt offers adjustability for precise height requirements and guarantees the minimum embedment depth. The longer "T" brace enables a variety of installation locations in across the deck.

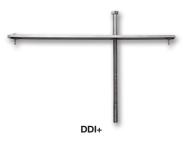
GENERAL APPLICATIONS AND USES

- Seismic Loading and Cracked Concrete
- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays
- Mechanical Unit Overhead Utilities
- Conduit and Lighting System

FEATURE AND BENEFITS

- + Fast and simple to install, low installed cost
- + Pre-mounted self drilling screws for convenient installation
- + Fine-tuned thread length for guaranteed minimum embedment
- + Lengthened "T" brace for more flexible installation positions

APPROVALS AND LISTINGS


- International Code Council, Evaluation Service (ICC-ES), ESR-3958 for concrete. Approved for seismic and wind loading
- Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes.
- FM Approvals (Factory Mutual) File No. J.I. 3059197

GUIDE SPECIFICATIONS

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be DDI+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	339
Material Specifications	340
Installation Specifications	340
Installation Instructions	340
Reference Data (ASD)	340
Strength Design (SD)	341
Ordering Information	344

THREAD VERSION

UNC Thread

ANCHOR MATERIALS

Plain and zinc plated carbon steel

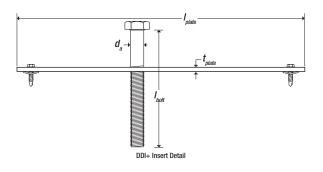
ANCHOR SIZE RANGE

• 3/8" diameter through 7/8" diameter

SUITABLE BASE MATERIALS

 Concrete or lightweight concrete over metal deck

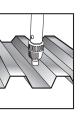
hreaded Insert for Metal


INSE

DECK

MATERIAL SPECIFICATIONS

Anchor Component	Component Material
Metal Plate	ASTM A1011 Carbon Steel or equivalent (plain)
Hex Head Bolt	ASTM A307 Grade A (zinc plated)



INSTALLATION SPECIFICATIONS

D ¹		Notation	Nominal Anchor Size							
Dimensio	Dimension		3/8"	1/2"	5/8"	3/4"	7/8"			
Typical Drill Bit Diame	eter for Deck	in.	7/16 or 1/2	9/16 or 5/8	11/16 or 3/4	13/16 or 7/8	15/16 or 1			
Overall Length of N	letal Plate	in.	12	12	12	12	12			
Approximate Width of	Metal Plate	in.	1-1/4	1-1/4	1-1/4	2	2			
Approximate Thickness	of Metal Plate	in.	3/16	3/16	3/16	3/8	3/8			
Bolt Thread Size	(UNC)	in.	3/8-16	1/2-13	5/8-11	3/4-10	7/8-9			
Length of Hex He	ead Bolt	in.	8	8	8	8	8			
Effective Embedme	ent Depth	in.	1-1/2	1-3/4	2	2-1/8	2-1/16			
Nominal Embedme	ent Depth	in.	1-3/4	2	2-3/8	2-5/8	2-5/8			
Approx. Thread Projection	Over Upper Flute	in	6-1/4	6	5-5/8	5-3/8	5-3/8			
(through 3-inch-deep deck)	Over Lower Flute	in.	3-1/4	3	2-5/8	2-3/8	2-3/8			
Dimension		Size	Point	Style	Drill Range	F	RPM (Max)			
Self-Drilling Screw 8		-18	#2		18 Gage Max		2500			

INSTALLATION INSTRUCTIONS

Cut (e.g. drill/punch) a hole in the steel deck to the hole size required by the threaded bolt of the insert.

Place the threaded bolt of the insert through the hole in the steel deck.

The metal plate of the insert must be on the top of the deck flutes. The metal plate can (optionally) be secured to the deck using the pre-assembled size drilling screws.

REFERENCE DATA (ASD)

Ultimate and Allowable Load Capacities for DDI+ (Deck Insert) Installed in the Soffit of Sand-lightweight or Normal Weight Concrete over Metal Deck Floor and Roof Assemblies^{1,2,3,4}

		Normal-weight or Sand-lightweight concrete, ftc \geq 3,000 psi															
Nominal	Nominal	Min.	Min.	Min. 3-7/8" or 4-1/2" Wide Deck													
Anchor	Embed. Depth	Concrete Topping	Insert	End	Installed Over Upper Flute				Inst	Installed Over Flute Incline				Installed Over Lower Flute			
Diameter in.	hnom (in.)	Thickness (in.)	Spacing (in.)	Distance (in.)	Ultimat	Ultimate Load Allowable Load		Ultimate Load Allowable Loa		le Load	Ultimate Load		Allowable Load				
			Tension Ibs.	Shear lbs.	Tension Ibs.	Shear lbs.	Tension Ibs.	Shear lbs.	Tension Ibs.	Shear lbs.	Tension Ibs.	Shear lbs.	Tension Ibs.	Shear lbs.			
3/8	1-3/4	2	4-1/2	9	3,420	1,985	1,140	660	5,230	1,985	1,745	660	5,230	2,610	1,745	870	
1/2	2	2-1/2	5-1/4	10-1/2	4,310	4,205	1,435	1,400	6,235	4,205	2,080	1,400	6,235	5,155	2,080	1,720	
5/8	2-3/8	3-1/4	6	12	5,265	6,450	1,755	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275	
3/4	2-5/8	3-1/4	6-3/8	12-3/4	5,770	6,450	1,925	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275	
7/8	2-5/8	3-1/4	6-3/8	12-3/4	5,770	6,450	1,925	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275	

1. Allowable load capacities listed are calculated using an applied safety factor of 3.0

2. Nominal embedment depth is measured from the bottom of the insert plate to the top of the insert bolt head.

3. Insert spacing and end distances are measured from the centerline of the insert bolt head.

4. Shear loads may be applied in any direction. For inserts installed over the upper flute, if the shear load is parallel to the flute the tabulated allowable load values may be increased by 20 percent (multiplied by 1.2)

STRENGTH DESIGN (SD)

DDI+ Insert Inst	allation Informa	tion and Supplem	nental Informatio)n ^{1,2}	ICC-ES	ESR-3958	
Design In		Symbol	Units	3/8-inch	1/2-inch	5/8-inch	
Nominal bo	lt diameter	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	
Length of	insert bolt	l _{bolt}	in (mm)	8 (203)	8 (203)	8 (203)	
Typical drill	bit diameter	Cloit	in.	7/16 or 1/2	9/16 or 5/8	11/16 or 3/4	
Nominal overall ler	ngth of insert plate	Lpiate	in.² (mm²)	12 (305)	12 (305)	12 (305)	
Nominal width	of insert plate	Wplate	in.² (mm²)	1-1/4 (32)	1-1/4 (32)	1-1/4 (32)	
Approximate thickr	ness of insert plate	tplate	in. (mm)	3/16 (4.8)	3/16 (4.8)	3/16 (4.8)	
	Over upper flute	hnom (upperflute)	in. (mm)				
Minimum nominal embedment depth	Over flute incline	hnom (upperincline)	in. (mm)	1-3/4 (45)	2 (51)	2-3/8 (60)	
	Over lower flute	hnom (lowerflute)	in. (mm)				
Minimum effective embedment depth	Over upper flute	h _{ef (upperflute)}	in. (mm)			2.00 (51)	
	Over flute incline	hef (upperincline)	in. (mm)	1.50 (38)	1.75 (45)		
	Over lower flute	h _{ef (lowerflute)}	in. (mm)				
	Over upper flute	hmin (upperflute)	in. (mm)				
Minimum concrete member thickness (topping thickness)	Over flute incline	hmin (upperincline)	in. (mm)	2 (51)	2-1/2 (64)	3-1/4 (83)	
	Over lower flute	hmin (lowerflute)	in. (mm)				
	Over upper flute	Cmin,deck (upperflute)	in. (mm)	N/A	NI/A	N/A	
Minimum flute edge distance (insert bolt)	Over flute incline	Cmin,deck (upperincline)	in. (mm)	IWA	N/A	N/A	
	Over lower flute	Cmin,deck (lowerflute)	in. (mm)	See Figure 3C	See Figure 3C	See Figure 3C	
Minimum	Over upper flute	Smin (upperflute)	in. (mm)				
spacing distance (bolt spacing,	Over flute incline	Smin (upperincline)	in. (mm)	4-1/2 (114)	5-1/4 (133)	6 (152)	
center-to-center)	Over lower flute	Smin (lowerflute)	in. (mm)			x - 7	
	Over upper flute	Cmin (upperflute)	in. (mm)				
Minimum deck end distance	Over flute incline	Cmin (upperincline)	in. (mm)	Specified cover requi ACI 318-14 17	rements for reinforceme 7.7.2 or ACI 318-11 7.7	nt in accordance with , as applicable.	
	Over lower flute	Cmin (lowerflute)	in. (mm)				
Effective tensile stre	ess area (insert bolt)	Ase	in.² (mm²)	0.078 (50)	0.142 (92)	0.226 (146)	
Insert head ne	t bearing area	Abrg	in.² (mm²)	0.17 (110)	0.28 (181)	0.45 (290)	
Minimum specified	d ultimate strength	f _{uta}	psi (N/mm²)		60,000 (400)		
Minimum specifi	ed yield strength	f _{ya}	psi (N/mm²)		36,000 (248)		
		1			· · -/		

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable,

2. For installation detail for inserts in concrete-filled steel deck assemblies, see Figures A, B and C (i.e. over upper flute, over flute incline, over lower flute).

5/8-inch

0.625

(15.9)

0.45

DDI+ Insert Design I	nformation ^{1,2,3,4,5,6}			
	esign Information			
Insert O.D. (nominal bolt dia	neter)			
Insert head net bearing area				
Effective tensile stress area				
	Over upper flute			
Effective embedment depth	Over flute incline			
	Over lower flute			
Minimum concrete member	nber thickness (topping thickness over u			
Minimum spacing and edge	distance			
Effectiveness factor for crack	ked concrete			
Modification factor for tension	n strength in uncracked concrete			
According to	Nominal tension strength of single governed by steel streng			
Figures A, B or C	Nominal tension strength of single governed by steel strength, s			
According to Figure A	Nominal steel shear strength of si in the soffit of concrete on ste			
(over upper flute)	Nominal steel shear strength of in the soffit of concrete on steel			
	Nominal steel shear strength of s			

Insert head net bearing area		Abrg	in² (mm²)	0.17 (110)	0.28 (181)	0.45 (290)		
Effective tensile stress area		Ase	in.² (mm²)	0.078 (50)	0.142 (92)	0.226 (146)		
	Over upper flute	hef (upperflute)	in. (mm)					
Effective embedment depth	Over flute incline	hef (fluteincline)	in. (mm)	1.50 (38)	1.75 (45)	2.00 (51)		
	Over lower flute	h _{ef} (lowerflute)	in. (mm)					
Minimum concrete member	thickness (topping thickness over upper flute)	h _{min}	in. (mm)	2.00 (51)	2.50 (64)	3.25 (83)		
Minimum spacing and edge	distance	Smin, Cmin	in. (mm)	See Installation Information Table and Figures A, B and C				
Effectiveness factor for crack	ked concrete	k _c	(SI)	24 (10)				
Modification factor for tensio	n strength in uncracked concrete	Щс,N	-		1.25			
According to	Nominal tension strength of single insert as governed by steel strength	N _{sa,insert}	lb (kN)	4,650	8,520	13,560		
Figures A, B or C	Nominal tension strength of single insert as governed by steel strength, seismic	N _{sa,insert,eq}	lb (kN)	(20.7)	(37.9)	(60.3)		
According to Figure A	Nominal steel shear strength of single insert in the soffit of concrete on steel deck	V _{sa,insert,deck} (upperflute)	lb (kN)	2,280 (10.1)	4,260 (18.9)	7,245		
(over upper flute)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	V _{sa,insert,deck,eq} (upperflute)	lb (kN)	1,825 (8.1)	3,410 (15.2)	(32.2)		
According to Figure B	Nominal steel shear strength of single insert in the soffit of concrete on steel deck	V _{sa,insert,deck} (fluteincline)	lb (kN)	1,310 (5.8)	3,410 (15.2)	5,240		
(over flute incline)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	V _{sa,insert,deck,eq} (fluteincline)	lb (kN)	1,045 (4.6)	2,860 (12.7)	(23.3)		
According to Figure C	Nominal steel shear strength of single insert in the soffit of concrete on steel deck	V _{sa,insert,deck} (lowerflute)	lb (kN)	2,280 (10.1)	4,260 (18.9)	5,735		
(over lower flute)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	Vsa,insert,deck,eq (lowerflute)	lb (kN)	2,015 (9.0)	3,410 (15.2)	(25.5)		
For SI: 1 inch = 25.4 mm, 1 pour	d = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch u	nit: 1 mm = 0.03937	inches.					

Symbol

da

Units

in

(mm)

in²

3/8-inch

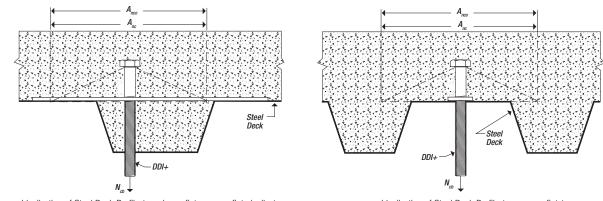
0.375

(9.5)

0.17

For

1. Concrete must have a compressive strength f 'c of 3,000 psi (20.7 MPa) minimum.


2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with the Idealization of Concrete Filled Steel Decks Figure.

3. Strength reduction factors for the inserts shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert shall be taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

4. Insert O.D. is the nominal bolt diameter of the insert.

Minimum spacing distance between anchors and minimum edge distances for cast-in headed DDI+ inserts shall be in accordance with the Installation Information Table, Design Information 5. Table, Figures A, B and C and noted provisions.

Shear loads for concrete inserts in concrete-filled steel deck assemblies may be applied in any direction (i.e. over upper flute, over flute incline, over lower flute). 6

Idealization of Steel Deck Profile (over lower flute or over flute incline)

Idealization of Steel Deck Profile (over upper flute) Idealization of Concrete Filled Steel Decks for Determination of Concrete Breakout Strength in Accordance with ACI 318

1/2-inch

0.500

(12.7)

0.28

Tension and Shear Design Strengths for DDI+ Inserts Installed in Uncracked Lightweight Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}

		Minimum Concrete Compressive Strength									
	Embed. Depth hef (in.)		f'c = 3,000 psi								
Insert 0.D. (Nominal Bolt Diameter) (in.)			r Flute ıre A)	Flute I (Figu	ncline re B)	Lower Flute (Figure C)					
		ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	ØVn Shear (Ibs.)				
3/8	1-3/4	1,795	1,480	1,795	850	1,795	1,480				
1/2	1-3/4	2,265	2,770	2,265	2,215	2,265	2,770				
5/8	1-3/4	2,765	4,710	2,765	3,405	2,765	3,730				
- Anchor Pullout/Pry	out Strength Controls	- Concrete Breakout Stre	anath Controls 🔲 - Steel	Strength Controls							

📙 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for DDI+ Inserts Installed in Cracked Lightweight Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}

f'c = 3,000 psi							
Lower Flute (Figure C)							
φVn Shear (lbs.)							
1,480							
2,770							
3,730							

🔄 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

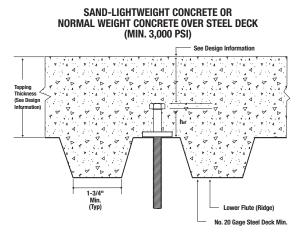
1- Tabular values are provided for illustration and are applicable for single anchors installed in sand-lightweight concrete with minimum member thickness (topping thickness), $h_a = h_{min}$, and with the following conditions:

- For Upper Flute and Flute Incline: ca1 is greater than or equal to the critical edge distance, cac - For Lower Flute: Ca1 is equal to the minimum lower flute edge distance

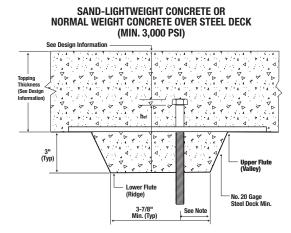
2- Calculations were performed following methodology in ACI 318-14 Chapter 17. The load level corresponding to the controlling failure mode listed (e.g. For Tension: steel strength, concrete breakout strength, or pullout strength; For Shear: steel strength). Furthermore, the capacities for concrete breakout strength in tension are calculated using the effective embedment values, her, for the selected anchors as noted in the design information table. Please also reference the installation specifications for additional information.

3- Strength reduction factors (ø) for the inserts are based on ACI 318-14 17.3.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 governed by steel strength of the insert are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements.

4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.


5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Chapter 17 and 6information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.


Figure A

DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Upper Flute)^{12.3}

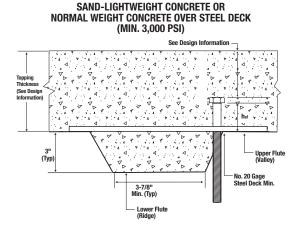
Figure C

DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Lower Flute)^{1,2,5}

Description

3/8"-16 x 1/2" x 1-1/8"

1/2"-13 x 5/8" x 1-1/4"


5/8"-13 x 13/16" x 2-1/8"

3/4"-13 x 1" x 2-1/4"

7/8"-13 x 1-1/4" x 2-1/2

DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Flute Incline)¹²⁴

Figure B

- Installations require a minimum concrete member topping thickness from the top of the upper flute as given in the Design Information Table.
- Inserts may be placed on the upper flute of the steel deck assembly; they may be installed anywhere across upper flute as follows: (Figure A) - Placed over the upper flute with threaded bolt installed through the upper flute or; (Figure B) - Placed over the upper flute spanning the lower flute with threaded bolt installed through the inclined section or;

(Figure C) - Placed over the upper flute spanning the lower flute with threaded bolt installed through the lower flute.

- Inserts over the upper flute with threaded bolt installed through the upper flute may be placed in any location and orientation that meets the minimum deck end distance requirements (see Design Information Table). The minimum deck end distance is measured from deck end to the centerline of the insert bolt.
- 4. Inserts over the upper flute spanning the lower flute with threaded bolt installed through the inclined section may be placed in any location and orientation that meets the minimum deck end distance requirements (see Design Information Table). The minimum deck end distance is measured from deck end to the centerline of the insert bolt.
- 5. Inserts over the upper flute spanning the lower flute with threaded bolt installed through the lower flute may be placed in any location that meets the minimum deck end distance and minimum lower flute edge distance requirements. The minimum deck end distance is measured from deck end to the centerline of the insert bolt. For lower flute widths of 3-7/8-inch, a maximum 1-inch centerline bolt offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 15/16 -inch is also satisfied.

DDI+ (Deck Insert)

ORDERING INFORMATION

Rod Coupling Nuts - Zinc

Cat. No.

030007

030009

030010

030011

030012

	,			
Cat. No.	Anchor Size	Rod/Anchor Dia.	Typical Drill Diameter	Box Qty.
PFM2511100	3/8" Metal Deck Insert	3/8"	7/16" or 1/2"	20
PFM2511110	1/2" Metal Deck Insert	1/2"	9/16" or 5/8"	20
PFM2511120	5/8" Metal Deck Insert	5/8"	11/16" or 3/4"	20
PFM2511130	3/4" Metal Deck Insert	3/4"	13/16" or 7/8"	12
PFM2511140	7/8" Metal Deck Insert	7/8"	15/16" or 1"	12

Rod/Anchor

Dia.

3/8

1/2"

5/8'

3/4'

7/8"

Hex Diameter

1/2'

5/8"

13/16"

1"

1-1/4

Box Qty.

100

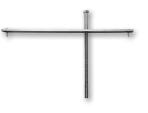
50

25

25

10

Ctn. Qty.


1000

500

250

250

100

– REV. D

TECHNICAL GUIDE - MECHANICAL ANCHORS ©2018 DEWALT

GENERAL INFORMATION

DOUBLETM

Shield Expansion Anchor

PRODUCT DESCRIPTION

The Double is a dual expansion machine bolt anchor particularly suited for materials of questionable strength or consistence such as stone. It can be used in solid concrete, block, brick, and stone. Job site tests are recommended when used in base materials of questionable strength or consistence.

FEATURE AND BENEFITS

- · Performs in base material of questionable strength
- Internally threaded anchor for easy removablility and service work
- · Corrosion resistant body
- APPROVALS AND LISTINGS
- Tested in accordance with ASTM E488
- Federal GSA Specification Meets descriptive and proof load requirements of CID A-A-1923A, Type 3

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Expansion anchors shall be Double as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	.345
Installation and Material Specifications	.345
Performance Data	.346
Design Criteria (Allowable Stress Design)	.347
Ordering Information	.348

DOUBLE

THREAD VERSION

• UNC Thread

ANCHOR MATERIALS

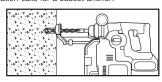
Zamac Alloy

ANCHOR SIZE RANGE (TYP.)

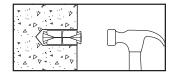
• 1/4" to 3/4" diameter

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Grout-filled Concrete Masonry (CMU)
- Hollow Concrete Masonry (CMU)
- Brick Masonry
- Stone

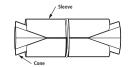

INSTALLATION AND MATERIAL SPECIFICATIONS

Installation Specifications

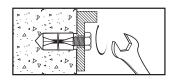

Dimension		Rod/Anchor Diameter, d						
Dimension	1/4"	5/16"	3/8"	1/2"	5/8"	3/4"		
ANSI Drill Bit Size (in.)	1/2	5/8	3/4	7/8	1	1-1/4		
Max. Tightening Torque, (ftlbs.)	5	7	10	20	30	60		
Sleeve Length (in.)	1	1-3/16	1-9/16	2	2-1/4	3-1/4		
Thread Size (UNC)	1/4-20	5/16-18	3/8-16	1/2-13	5/8-11	3/4-10		
Thread Length In Cone (in.)	1/2	1/2	5/8	3/4	7/8	1-1/8		
Overall Anchor Length (in.)	1-3/8	1-5/8	2	2-1/2	2-3/4	3-15/16		
Nominal outside diameter of anchor is	the same as	the correspo	nding ANSI d	rill bit size.				

Installation Guidelines

Drill a hole into the base material to the minimum depth required. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Do not expand the anchor prior to installation. Do not over drill the hole unless the application calls for a subset anchor.



Insert anchor into the hole, threaded cone end first until the outer sleeve is flush with the surface of the base material.



Material Specifications

Anchor Component	Component Material					
Anchor Sleeve	Zamac Alloy					
Cone	Zamac Alloy					

Position fixture, then insert screw or bolt and tighten. For maximum expansion, the upper cone should protrude slightly before setting. The bolt must engage a minimum of 2/3 of the anchor threads.

PERFORMANCE DATA

Ultimate Load Capacities for Double Expansion Anchor in Normal-Weight Concrete^{1,2}

	Minimum	Minimum Concrete Compressive Strength (f´c)							
Rod/Anchor Size in.	Embedment	2,000 psi	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		(41.4 MPa)		
	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
1/4	1-1/4	710	1,110	900	1,135	1,220	1,335		
(6.4)	(31.8)	(3.2)	(5.0)	(4.0)	(5.2)	(5.5)	(6.0)		
5/16	1-1/2	1,130	1,735	1,500	2,020	2,160	2,155		
(7.9)	(38.1)	(5.1)	(7.8)	(6.7)	(9.1)	(9.7)	(9.7)		
3/8	1-3/4	1,365	2,690	2,000	3,000	3,085	4,030		
(9.5)	(44.5)	(6.1)	(12.1)	(9.0)	(13.5)	(13.9)	(18.1)		
1/2	2-1/4	2,590	3,740	3,550	4,310	4,645	6,930		
(12.7)	(57.2)	(11.7)	(16.8)	(16.0)	(19.4)	(20.9)	(31.2)		
5/8	2-1/2	4,290	9,640	6,150	10,270	6,890	11,580		
(15.9)	(63.5)	(19.3)	(43.4)	(27.7)	(46.2)	(81.0)	(52.2)		
3/4	3-1/2	6,000	10,920	8,150	13,330	11,510	14,480		
(19.1)	(88.9)	(27.0)	(49.2)	(36.7)	(60.0)	(51.8)	(65.2)		

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.

Allowable Load Capacities for Double Expansion Anchor in Normal-Weight Concrete^{1,2,3}

		Minimum Concrete Compressive Strength (f´c)						
Rod/Anchor	Minimum Embedment	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi ((41.4 MPa)	
Size in.	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (KN)	Shear Ibs. (kN)	
1/4	1-1/4	180	280	225	285	305	335	
(6.4)	(31.8)	(0.8)	(1.3)	(1.0)	(1.3)	(1.4)	(1.5)	
5/16	1-1/2	285	435	375	505	540	540	
(7.9)	(38.1)	(1.3)	(20)	(1.7)	(2.3)	(2.4)	(2.4)	
3/8	1-3/4	340	675	500	750	770	1,010	
(9.5)	(44.5)	(1.5)	(3.0)	(2.3)	(3.4)	(3.5)	(4.5)	
1/2	2-1/4	650	935	890	1,080	1,160	1,735	
(12.7)	(57.2)	(2.9)	(4.2)	(4.0)	(4.9)	(5.2)	(7.8)	
5/8	2-1/2	1,075	2,410	1,540	2,570	1,725	2,895	
(15.9)	(63.5)	(4.8)	(10.9)	(6.9)	(11.6)	(20.3)	(13.1)	
3/4	3-1/2	1,500	2,730	2,040	3,335	2,880	3,620	
(19.1)	(88.9)	(6.8)	(12.3)	(9.2)	(15.0)	(13.0)	(16.3)	

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate and Allowable Load Capacities for Double Expansion Anchor

in Hollow Concrete Masonry^{1,2,3}

Rod/Anchor	Minimum Embedment	f´m ≥ 1,500 psi (10.4 MPa)				
Diameter d in. (mm)	Depth	Ultima	Ultimate Load		le Load	
	n√ in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
1/4	1-1/4	885	1,350	175	270	
(6.4)	(31.8)	(4.0)	(6.1)	(0.8)	(1.2)	
5/16	1-1/2	1,295	1,635	260	325	
(7.9)	(38.1)	(5.8)	(7.4)	(1.2)	(1.5)	
3/8	1-1/2	1,575	2,160	315	430	
(9.5)	(38.1)	(7.1)	(9.7)	(1.4)	(1.9)	
1/2	1-1/2	2,710	3,130	540	625	
(12.7)	(38.1)	(12.2)	(14.1)	(2.4)	(2.8)	

1. Tabulated load values are for anchors installed in minimum 8-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

life satety, and in sustained tensile loading applications.

3. Anchors with diameters of 3/8" and 1/2" installed in hollow concrete masonry units are limited to one anchor per unit cell.

Ultimate and Allowable Load Capacities for Double Shell Expansion Anchor in Clay Brick Masonry^{1,2}

Rod/Anchor	Minimum Embedment		f′m ≥ 1,500 p	si (10.4 MPa)	
Diameter	Depth	Ultima	te Load	Allowable Load	
a	n,	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)
1/4	1-1/4	1,175	1,585	235	315
(6.4)	(31.8)	(5.3)	(7.1)	(1.1)	(1.4)
5/16	1-1/2	1,585	2,040	315	410
(7.9)	(38.1)	(7.1)	(9.2)	(1.4)	(1.8)
3/8	1-3/4	1,830	3,590	365	720
(9.5)	(44.5)	(8.2)	(16.2)	(1.6)	(3.2)
1/2	2-1/4	3,420	5,185	685	1,035
(12.7)	(57.2)	(15.4)	(23.3)	(3.1)	(4.7)
5/8	2-1/2	4,460	6,055	890	1,210
(15.9)	(63.5)	(19.8)	(27.2)	(4.0)	(5.4)
3/4	3-1/2	6,000	7,935	1,200	1,585
(19.1)	(88.9)	(26.7)	(35.7)	(5.3)	(7.1)

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right) \le 1$$

Where:	

 $N_u = \text{Applied Service Tension Load}$

- $N_n = Allowable$ Tension Load
- $V_u =$ Applied Service Shear Load
- $V_n = Allowable Shear Load$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCE

Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor			
Spacing (s)	Tension and Shear	s _{cr} = 10d	$F_{NS} = F_{VS} = 1.0$	$s_{min} = 5d$	$F_{\text{NS}} = F_{\text{VS}} = 0.50$			
Edge Distance (s)	Tension	$c_{cr} = 8d$	$F_{NC} = 1.0$	$c_{min} = 5d$	$F_{NC} = 0.80$			
Euge Distance (c)	Edge Distance (c) Shear $c_{cr} = 12d$ $F_{vc} = 1.0$ $c_{min} = 5d$ $F_{vc} = 0.50$							
	d in the performance data tables a							

allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge distance for an anchor spacing and edge distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge distance for an anchor spacing and edge distance and an anchor spacing and edge distance and an anchor spacing and edge distance and an edge distance and edge distance and an anchor spacing and edge distance and an anchor spacing and edge distance and an anchor space and an anchor sp

iield Expansion Anchor

TECHNICAL GUIDE – MECHANICAL ANCHORS © 2018 DEWALT – REV. A

1-9/16

1-7/8

2-1/2

3-1/8

3-3/4

5

6-1/4

7-1/2

Distance, c (inches)

Edge

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

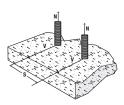
Spacing Distance, Tension (F_{NS} and F_{VS}) 5/16 Dia. (in.) 1/4 3/8 1/2 5 Scr (in.) 2-1/2 3-1/8 3-3/4 Smin (in.) 1-1/4 1-9/16 1-7/8 2-1/2 0.50 1 - 1/4---

0.50

0.60

0.80

1.00


1.00

1.00

1.00

1.00

Notes: For anchors loaded in tension and shear, the critical spacing (s_{er}) is equal to 10 anchor diameters (10d) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 5 anchor diameters (5d) at which the anchor achieves 50% of load.

Edge Distance, Tension (F_{NC})

0.63

0.75

1.00

1.00

1.00

1.00

1.00

1.00

Di	a. (in.)	1/4	5/8	3/8	1/2	5/8	3/4
C	cr (in.)	3	3-3/4	4-1/2	6	7-1/2	9
C	nin (in.)	2	2-1/2	3	4	5	6
	2	0.80	-	-	-	-	-
	2-1/2	0.90	0.80	-	-	-	-
(inches)	3	1.00	0.88	0.80	-	-	-
(inc	3-3/4	1.00	1.00	0.90	-	-	-
e, c	4	1.00	1.00	0.93	0.80	-	-
Distance,	4-1/2	1.00	1.00	1.00	0.85	-	-
	5	1.00	1.00	1.00	0.90	0.80	-
Edge	6	1.00	1.00	1.00	1.00	0.88	0.80
-	7-1/2	1.00	1.00	1.00	1.00	1.00	0.90
	9	1.00	1.00	1.00	1.00	1.00	1.00

-

0.50

0.67

0.83

1.00

1.00

1.00

1.00

-

_

0.50

0.63

0.75

1.00

1.00

1.00

5/8

6-1/4

3-1/8

-

-

_

-

0.50

0.60

0.80

1.00

1.00

3/4

7-1/2

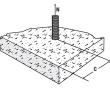
3-3/4

-

_

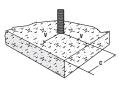
_

0.50


0.67

0.83

1.00


Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance $({\tt Cmin})$ is equal to 8 anchor diameters (8d) at which the anchor achieves 80% of load.

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance $({\tt Cmin})$ is equal to 8 anchor diameters (8d) at which the anchor achieves 50% of load.

ORDERING INFORMATION

Double Expansion Anchor

Catalog Number	Rod/Anchor Diameter	Drill Diameter	Overall Length	Minimum Hole Depth	Standard Box	Standard Carton	Wt./ 100
9510	1/4"	1/2"	1-3/8"	1-1/4"	50	500	4
9515	5/16"	5/8"	1-5/8"	1-1/2"	50	500	7-1/2
9520	3/8"	3/4"	2"	1-3/4"	50	250	12-1/2
9525	1/2"	7/8"	2-1/2"	2-1/4"	25	250	18
9530	5/8"	1"	2-3/4"	2-1/2"	25	100	25-1/2
9535	3/4"	1-1/4"	3-15/16"	3-1/2"	10	50	54-1/2

Edge Distance, Shear (Fvc)

Di	a. (in.)	1/4	5/8	3/8	1/2	5/8	3/4	
C	er (in.)	3	3-3/4	4-1/2	6	7-1/2	9	
C	min (in.)	2	2-1/2	3	4	5	6	
	2	0.50	-	-	-	-	-	
_	2-1/2	0.75	0.50	-	-	-	-	
(inches)	3	1.00	0.70	0.50	-	-	-	
(inc	3-3/4	1.00	1.00	0.75	-	-	-	
e, c	4	1.00	1.00	0.83	0.50	-	-	
Distance,	4-1/2	1.00	1.00	1.00	0.63	-	-	
	5	1.00	1.00	1.00	0.75	0.50	-	
Edge	6	1.00	1.00	1.00	1.00	0.70	0.50	
-	7-1/2	1.00	1.00	1.00	1.00	1.00	0.75	
	9	1.00	1.00	1.00	1.00	1.00	1.00	

GENERAL INFORMATION

SINGLE[™]

Shield Expansion Anchor

PRODUCT DESCRIPTION

The Single is a machine bolt anchor designed for use in concrete. The Single consists of a preassembled set of expansion shields and an expander cone formed from zamac alloy. As the anchor is tightened, the wedge-shaped cone is drawn into the shields, compressing them against the base material. The Single is not recommended for use in overhead or life safety applications.

FEATURES AND BENEFITS

- + Readily accepts machine bolts
- + Internally threaded anchor for easy removability and service work
- + Corrosion resistant body

APPROVALS AND LISTINGS

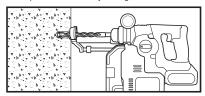
- Tested in accordance with ASTM E488
- Federal GSA Specification Meets the descriptive and proof load requirements of CID A-A 1923A, Type 2

GUIDE SPECIFICATIONS

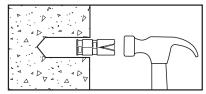
CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Expansion anchors shall be Single as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

INSTALLATION AND MATERIAL SPECIFICATIONS

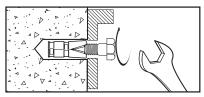
Installation Specifications


Dimension	Rod/Anchor Diameter, d								
Dimension	1/4"	5/16"	3/8"	1/2"	5/8"				
ANSI Drill Bit Size, (in.)	1/2	5/8	5/8	7/8	1				
Max. Tightening Torque, (ftlbs.)	5	7	10	20	30				
Thread Size (UNC)	1/4-20	5/16-18	3/8-16	1/2-13	5/8-11				
Thread Length In Cone (in.)	5/16	5/16	5/16	7/16	5/8				
Overall Anchor Length (in.)	1-5/16	1-1/2	1-1/2	2-1/16	2-5/8				
Nominal outside diameter of anchor is	the same as th	e correspondir	g ANSI drill bit	size					

Material Specifications


Anchor Component	Component Material						
Anchor Sleeve	Zamac Alloy						
Cone	Zamac Alloy						

Installation Guidelines


Drill a hole into the base material to the minimum depth required. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Do not expand the anchor prior to installation. Insert anchor into the hole, threaded cone end first and tap it flush to the surface.

Position fixture, then insert bolt and tighten. The bolt must engage a minimum of 2/3 of the anchor threads.

ield Expansion Anchor

SINGLE

THREAD VERSION

UNC Thread

SECTION CONTENTS

Installation and

Performance Data......350

Ordering Information......350

ANCHOR MATERIALS

• Zamac Alloy

ANCHOR SIZE RANGE (TYP.)

• 1/4" to 5/8" diameter

SUITABLE BASE MATERIALS

Normal-weight concrete

PERFORMANCE DATA

Ultimate Load Capacities for Single Expansion Anchor in Normal-Weight Concrete^{1,2,3}

	Minimum		Minimum Concrete Compressive Strength (f´c)								
Rod/Anchor Size	Embedment Depth	2,000 psi (13.8 MPa)		4,000 psi	(27.6 MPa)	6,000 psi (41.4 MPa)					
in. (mm)	h, in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)				
1/4	1-3/8	175	555	400	565	460	670				
(6.4)	(34.9)	(0.8)	(2.5)	(1.8)	(2.5)	(2.1)	(3.0)				
5/16	1-5/8	830	1,535	1,260	1,780	1,475	1,900				
(7.9)	(41.3)	(3.7)	(6.9)	(5.7)	(8.0)	(6.6)	(8.6)				
3/8	1-5/8	1,160	3,050	2,030	3,225	2,360	4,570				
(9.5)	(41.3)	(5.2)	(13.7)	(9.1)	(14.5)	(10.6)	(20.6)				
1/2	2-1/2	1,495	3,475	2,450	4,000	2,550	6,435				
(12.7)	(63.5)	(6.7)	(15.7)	(11.0)	(18.0)	(11.5)	(29.0)				
5/8	2-3/4	2,230	6,425	3,690	6,845	3,975	7,720				
(15.9)	(69.9)	(10.0)	(28.9)	(16.6)	(30.8)	(17.9)	(34.8)				

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

Allowable Load Capacities for Single Expansion Anchor in Normal-Weight Concrete^{1,2,3}

	Minimum		Minimum Concrete Compressive Strength (f´c)							
Rod/Anchor Size in. (mm)	Embedment Depth	2,000 psi	(13.8 MPa)	4,000 psi	(27.6 MPa)	6,000 psi (41.4 MPa)				
	h√ in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)			
1/4	1-3/8	45	140	100	140	115	170			
(6.4)	(34.9)	(0.2)	(0.6)	(0.5)	(0.6)	(0.5)	(0.8)			
5/16	1-5/8	210	385	315	445	370	475			
(7.9)	(41.3)	(0.9)	(1.7)	(1.4)	(2.0)	(1.7)	(2.1)			
3/8	1-5/8	290	765	510	805	590	1,145			
(9.5)	(41.3)	(1.3)	(3.4)	(2.3)	(3.6)	(2.7)	(5.1)			
1/2	2-1/2	375	870	615	1,000	640	1,610			
(12.7)	(63.5)	(1.7)	(3.9)	(2.8)	(4.5)	(2.9)	(7.2)			
5/8	2-3/4	560	1,605	925	1,710	995	1,930			
(15.9)	(69.9)	(2.5)	(7.2)	(4.2)	(7.7)	(4.5)	(8.7)			

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

3. Linear interpolation may be used to determine loads for intermediate compressive strengths.

ORDERING INFORMATION

Single Expansion Anchor

Cat. No.	Rod/Anchor Dia.	Drill Diameter	Min. Hole Depth	Std. Box	Std. Carton	Wt./100
9650	1/4"	1/2"	1-3/8"	50	250	3-3/4
9655	5/16"	5/8"	1-5/8"	50	250	5-1/2
9665	3/8"	5/8"	1-5/8"	50	250	5-1/4
9675	1/2"	7/8"	2-1/2"	25	125	15-1/4
9685	5/8"	1"	2-3/4"	25	125	24

GENERAL INFORMATION

CALK-IN[™]

Mechanical Bolt Anchor

PRODUCT DESCRIPTION

The Calk-In is a pre-assembled precision cast calking type machine bolt anchor which can be used in concrete, block, brick or stone. The Calk-In consists of an antimonial lead alloy calking sleeve and a Zamac alloy internally threaded expanded cone. This anchor is not recommended for use in overhead applications or for life safety.

GENERAL APPLICATIONS AND USES

• Windows

Sliding Doors

Screens

- Shutters
- FEATURES AND BENEFITS
- + Readily accepts machine bolts
- + Internally threaded anchor for easy removability of attachment and service work
- + Shallow embedment

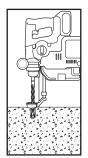
APPROVALS AND LISTINGS

• Federal GSA Specification - Meets descriptive and proof load requirements of CID A-A-1922A, Type 1

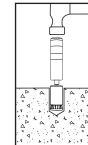
GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Machine bolt anchors shall be Calk-In as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

INSTALLATION AND MATERIAL SPECIFICATIONS

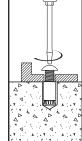

Installation Specifications

Dimension	Nominal Rod/Anchor Size									
Dimension	#8-32	#10-24	1/4"	5/16"	3/8"	1/2"				
Nominal Length (in.)	1/2	5/8	7/8	1	1-1/4	1-1/2				
ANSI Drill Bit Size, (in.)	5/16	3/8	1/2	5/8	3/4	7/8				
Nominal Outside Dia. (in.)	5/16	3/8	1/2	5/8	3/4	7/8				
Max. Tightening Torque	15 (inlbs.)	20 (inlbs.)	60 (inlbs.)	7 (ftlbs.)	10 (ftlbs.)	15 (ftlbs.)				
Threaded Length in Cone (in.)	13/32	15/32	19/32	3/4	1	1-1/8				


Material Specifications

Anchor Component	Component Material
Anchor Sleeve (Body)	Antimonial Lead Alloy
Cone	Zamac Alloy

Installation Instructions



Step 1 Drill a hole into the base material to the required depth. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15. Do not over drill the hole.

Step 2 Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Insert the anchor into the hole, cone first. Position the setting tool in the anchor with shoulder in contact with the anchor sleeve. Using the tool, set the anchor by driving the sleeve using several sharp hammer blows.

Ba sura t

Be sure the anchor is at the required embedment depth so that anchor threads do not protrude above the surface of the base material. Positions the fixture, insert screw or bolt and tighten. Do not exceed the maximum tightening torque.

echanical Bolt Anchor

SECTION CONTENTS

General Information	351
nstallation and	
Material Specifications	351
Performance Data	352
Ordering Information	352

THREAD VERSION

UNC Thread

Anction MATERIALS
 Antimonial Lead Alloy Body and Zamac Alloy Cone

ANCHOR SIZE RANGE (TYP.)

No. 8 Screw to 1/2" diameter

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Grouted-filled Concrete Masonry (CMU)
- Brick Masonry

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Calk-In in Normal-Weight Concrete^{1,2,3}

			Minimum Concrete Compressive Strength, f 'c										
Rod /	Minimum Embed.	2,000 psi				4,00	0 psi			6,000 psi			
Anchor Size	Depth	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear
in.	in.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.
#8-32	1/2	335	85	310	75	365	90	360	90	380	95	360	90
#10-24	5/8	765	190	885	220	975	245	940	235	1,105	275	940	235
1/4-20	7/8	1,200	300	1,355	340	1,500	375	1,410	355	1,640	410	1,410	355
5/16-18	1	1,570	390	1,880	470	1,965	490	2,070	520	2,160	540	2,070	520
3/8-16	1-1/4	1,985	495	2,700	675	2,485	620	3,305	825	2,895	725	3,305	825
1/2-13	1-1/2	2,795	700	3,995	1,000	3,495	875	4,545	1,135	3,810	950	4,545	1,135

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending on the application such as in sustained tensile loading applications.

3. Linear interpolation may be used to determine allowable loads for anchors at intermediate embedment depths and compressive strengths.

Ultimate and Allowable Load Capacities for Calk-In in Grout-Filled Concrete Masonry^{1,2}

	Minimum	f´m ≥ 1,500 psi (10.4 MPa)							
Rod/Anchor Size	Embedment	Ultimat	te Load	Allowable Load					
in.	Depth in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.				
#8-32	1/2	335	310	65	60				
#10-24	5/8	740	885	150	175				
1/4-20	7/8	880	1,250	175	250				
5/16-18	1	1,470	1,585	295	315				
3/8-16	1-1/4	1,700	2,265	340	455				
1/2-13	1-1/2	2,360	3,210	470	640				

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

Ultimate and Allowable Load Capacities for Calk-In in Clay Brick Masonry^{1,2}

	Minimum	f'm ≥ 1,500 psi (10.4 MPa)					
Rod/Anchor Size	Embedment	Ultima	ate Load	Allowable Load			
in.	Depth in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.		
#8-32	1/2	335	310	65	60		
#10-24	5/8	765	890	150	180		
1/4-20	7/8	1,460	1,480	290	295		
5/16-18	1	1,730	1,995	345	400		
3/8-16	1-1/4	2,200	3,600	440	720		
1/2-13	1-1/2	3,200	4,535	640	905		

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

ORDERING INFORMATION

Calk-In Anchor and Setting Tools (Ordered Separately)

Anchor Cat. No.	Tool Cat. No.	Anchor Size	Drill Diameter	Min. Hole Depth	Std. Box	Std. Carton	Wt./100
9205	9201	#8-32	5/16"	1/2"	100	1,000	1
9210	9211	#10-24	3/8"	5/8"	100	1,000	1-3/4
9220	9221	1/4"-20	1/2"	7/8"	100	1,000	4-1/2
9225	9226	5/16"-18	5/8"	1"	50	250	7-3/4
9230	9231	3/8"-16	3/4"	1-1/4"	50	250	14
9240	9241	1/2"-13	7/8"	1-1/2	50	250	19

GENERAL INFORMATION

LAG SHIELD[™]

Shell Expansion Anchor

PRODUCT DESCRIPTION

The Lag Shield is a screw style anchor designed for use with lag bolts. It is suitable for use in concrete and the mortar joints of block or brick walls. In harder masonry materials, short style Lag Shields are used to reduce drilling time. The long style version is used in soft or weak masonry to better develop strength. The Lag Shield is not recommended for overhead or life safety applications.

GENERAL APPLICATIONS AND USES

- Hard and Soft Base Materials
- Shallow Attachments
- Mortar Joints
- Masonry Anchorage

FEATURE AND BENEFITS

- + Ideal for use in masonry materials
- + Internally threaded anchor for easy removability and service work

APPROVALS AND LISTINGS

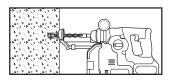
- Federal GSA Specification Meets the descriptive and proof load requirements of CID A-A 1923A, Type 1
- Tested in accordance with ASTM E 488

GUIDE SPECIFICATIONS

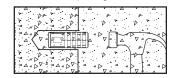
CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Shell Expansion Anchors shall be Lag Shield as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

INSTALLATION AND MATERIAL SPECIFICATIONS

Installation Specifications								
Dimension	Rod/Anchor Diameter, d							
Dimension	1/4"	5/16"	3/8"	1/2"	5/8"	3/4"		
ANSI Drill Bit Size (in.)	1/2	1/2	5/8	3/4	7/8	1		
Max. Tightening Torque, T _{max} (ftlbs.)	5	7	10	20	30	60		
Lag Bolt Size	1/4-10	5/16-9	3/8-7	1/2-6	5/8-5	3/4-4-1/2		


Material Specifications

Anchor Component	Component Material
Anchor Sleeve	Zamac Alloy
	-


Brick Masonry

Installation Guidelines

Drill a hole into the base material to the depth of at least 1/2" or one anchor diameter deeper than the embedment required. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15.

Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling. Insert the anchor into the hole until it is flush with the surface. If installing in a mortar joint, position the anchor to expand against the block or brick.

Position fixture, insert the lag bolt, and tighten. The lag bolt length selected should fully engage the entire anchor body.

|--|

ANICAL ANCHORS

Performance Data......354 Ordering Information......355

Installation and

SECTION CONTENTS

General Information......353

Material Specifications353

LAG SHIELD - SHORT

LAG SHIELD - LONG

THREAD VERSION

ANCHOR MATERIALS

• 1/4" to 3/4" diameter

Normal-Weight Concrete

ANCHOR SIZE RANGE (TYP.)

SUITABLE BASE MATERIALS

Hollow Concrete Masonry (CMU)

Lag Bolt

• Zinc alloy

FECHNICAL GUIDE – MECHANICAL ANCHORS © 2018 DEWALT – REV. A

PERFORMANCE DATA

Ultimate Load Capacities for Lag Shield in Normal-Weight Concrete^{1,2}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f´c)						
Diameter	Embedment Depth			4,000 psi	(27.6 MPa)	6,000 psi ((41.4 MPa)	
d	h _v	Tension	Shear	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(KN)	(KN)	(KN)	(kN)	(kN)	(kN)	
1/4 Short	1	200	790	280	1,005	370	1,005	
(6.4)	(25.4)	(0.9)	(3.5)	(1.2)	(4.1)	(1.6)	(4.5)	
1/4 Long	1-1/2	300	790	345	1,005	425	1,005	
(6.4)	(38.1)	(1.3)	(3.5)	(1.5)	(4.1)	(1.9)	(4.5)	
5/16 Short	1-1/4	315	995	515	1,115	660	1,115	
(7.9)	(31.8)	(1.4)	(4.4)	(2.3)	(4.9)	(2.9)	(4.9)	
5/16 Long	1-3/4	375	995	550	1,115	570	1,115	
(7.9)	(44.5)	(1.7)	(4.4)	(2.4)	(4.9)	(2.5)	(4.9)	
3/8 Short	1-3/4	590	1,175	855	1,450	910	1,450	
(9.5)	(44.5)	(2.6)	(5.2)	(3.8)	(6.4)	(4.0)	(6.4)	
3/8 Long	2-1/2	740	1,175	1,080	1,450	1,290	1,450	
(9.5)	(63.5)	(3.3)	(5.2)	(4.8)	(6.4)	(5.7)	(64)	
1/2 Short	2	800	1,335	1,190	1,600	1,265	1,600	
(12.7)	(50.8)	(3.6)	(5.9)	(5.3)	(7.1)	(5.6)	(7.1)	
1/2 Long	3	1,460	1,335	2,110	1,600	2,370	1,600	
(12.7)	(76.2)	(6.5)	(5.9)	(9.4)	(7.1)	(10.5)	(7.1)	
5/8 Short	2	855	2,000	1,230	2,250	1,355	2,250	
(15.9)	(50.8)	(3.8)	(8.9)	(5.5)	(10.0)	(6.0)	(10.0)	
5/8 Long	3-1/2	1,730	2,000	2,660	2,250	2,935	2,250	
(15.9)	(88.9)	(7.7)	(8.9)	(10.8)	(10.0)	(13.0)	(10.0)	
3/4 Short	2	930	2,000	1,540	2,400	1,640	2,400	
(19.1)	(50.8)	(4.1)	(8.9)	(6.8)	(10.6)	(17.3)	(10.6)	
3/4 Long	3-1/2	2,045	2,000	2,800	2,400	2,935	2,400	
(19.1)	(88.9)	(9.1)	(8.9)	(12.5)	(10.6)	(13.0)	(10.6)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

Allowable Load Capacities for Lag Shield in Normal-Weight Concrete^{1,2}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f´c)							
Diameter Embedment		2,000 psi (13.8 MPa)		4,000 psi	(27.6 MPa)	6,000 psi (41.4 MPa)		
d	h _v	Tension	Shear	Tension	Shear	Tension	Shear		
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.		
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)		
1/4 Short	1	50	200	70	250	90	250		
(6.4)	(25.4)	(0.2)	(0.9)	(0.3)	(1.1)	(0.4)	(1.1)		
1/4 Long	1-1/2	75	200	85	250	105	250		
(6.4)	(38.1)	(0.3)	(0.9)	(0.4)	(1.1)	(0.5)	(1.1)		
5/16 Short	1-1/4	80	245	130	275	165	275		
(7.9)	(31.8)	(0.3)	(1.1)	(0.6)	(1.2)	(0.7)	(1.2)		
5/16 Long	1-3/4	90	245	135	275	140	275		
(7.9)	(44.5)	(0.4)	(1.1)	(0.6)	(1.2)	(0.6)	(1.2)		
3/8 Short	1-3/4	145	290	210	360	225	360		
(9.5)	(44.5)	(0.6)	(1.3)	(0.9)	(1.6)	(1.0)	(1.6)		
3/8 Long	2-1/2	185	290	270	360	320	360		
(9.5)	(63.5)	(0.8)	(1.3)	(1.2)	(1.6)	(1.4)	(1.6)		
1/2 Short	2	200	330	300	400	315	400		
(12.7)	(50.8)	(1.9)	(1.5)	(1.3)	(1.8)	(1.4)	(1.8)		
1/2 Long	3	365	330	525	400	590	400		
(12.7)	(76.2)	(1.6)	(1.5)	(2.3)	(1.8)	(2.6)	(1.8)		
5/8 Short	2	215	500	305	560	335	560		
(15.9)	(50.8)	(1.9)	(2.2)	(1.1)	(2.5)	(1.5)	(2.5)		
5/8 Long	3-1/2	430	500	665	560	730	560		
(15.9)	(88.9)	(1.9)	(2.2)	(3.0)	(2.5)	(3.2)	(2.5)		
3/4 Short	2	230	500	385	600	410	600		
(19.1)	(50.8)	(1.0)	(2.2)	(1.7)	(2.7)	(1.8)	(2.7)		
3/4 Long	3-1/2	510	500	700	600	730	600		
(19.1)	(88.9)	(2.3)	(2.2)	(3.1)	(2.7)	(3.2)	(2.7)		

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

Ultimate and Allowable Load Capacities for Lag Shield in Hollow Concrete Masonry^{1,2,3,4}

Rod/Anchor	Minimum		f′m ≥ 1,500 p	si (10.4 MPa)	
Diameter	Embedment Depth	Embedment Ultimate Load			ole Load
a	h√	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)
1/4 Short	1	230	720	45	145
(6.4)	(25.4)	(1.0)	(3.2)	(0.2)	(0.7)
5/16 Short	1-1/4	360	1,025	70	205
(7.9)	(31.8)	(1.6)	(4.6)	(0.3)	(0.9)
3/8 Short	1-1/2	795	1,125	160	225
(9.5)	(38.1)	(3.6)	(5.1)	(0.7)	(1.0)
1/2 Short	1-1/2	1,025	1,600	205	320
(12.7)	(38.1)	(4.6)	(7.2)	(0.9)	(1.4)

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

3. Anchors with diameters of 3/8" and greater installed in hollow concrete masonry units are limited to one anchor per unit cell.

4. Anchors installed flush with face shell surface. The wall thickness of the masonry unit must be equal to or greater than the embedment depth.

Ultimate and Allowable Load Capacities for Lag Shield in Clay Brick Masonry^{1,2}

Ded/Ansher	Minimum		f′m ≥ 1,500 p	si (10.4 MPa)		
Diameter	Rod/Anchor Embedment Diameter Depth		te Load	Allowable Load		
d	hv	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(KN)	(kN)	(kN)	(kN)	
1/4 Short	1	240	1,025	50	205	
(6.4)	(25.4)	(1.1)	(4.6)	(0.2)	(0.9)	
5/16 Short	1 1/4	425	1,485	85	295	
(7.9)	(31.8)	(1.9)	(6.7)	(0.4)	(1.3)	
3/8 Short	1 3/4	1,190	1,620	240	325	
(9.5)	(44.5)	(5.4)	(7.3)	(1.1)	(1.5)	
1/2 Short	2	1,230	2,140	245	430	
(12.7)	(50.8)	(5.5)	(9.6)	(1.1)	(1.9)	

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

ORDERING INFORMATION

Lag Shield Anchor

Catalog Number	Size	Drill Diameter	Length	Thread Length	Standard Box	Standard Carton	Wt./ 100
1051	1/4" Short	1/2"	1"	1/2"	50	500	3
1055	1/4" Long	1/2"	1-1/2"	1"	50	500	4
1101	5/16" Short	1/2"	1-1/4"	3/4"	50	500	3
1105	5/16" Long	1/2"	1-3/4"	1"	50	500	4-1/4
1151	3/8" Short	5/8"	1-3/4"	1"	50	500	6-3/4
1155	3/8" Long	5/8"	2-1/2"	1-1/2"	50	250	9-1/2
1201	1/2" Short	3/4"	2"	1-1/8"	50	500	9-1/4
1205	1/2" Long	3/4"	3"	1-7/8"	50	200	14-1/4
1251	5/8" Short	7/8"	2"	1"	25	125	13
1255	5/8" Long	7/8"	3-1/2"	2 1/4"	25	125	22
1301	3/4" Short	1"	2"	1 1/8"	25	125	16
1305	3/4" Long	1"	3-1/2"	2 1/4"	25	100	24-1/2

LONG

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2018 DEWALT - REV. A

GENERAL INFORMATION

SPIKE[®]

Pin Anchor

PRODUCT DESCRIPTION

The Spike is a, one-piece, vibration resistant anchor for use in concrete block or stone. Several head styles, including tamperproof versions, and anchor materials are available. The Spike anchor is formed with an "s" shaped configuration at the working end of the anchor to create an expansion mechanism. Since the anchor is pre-formed, there is no secondary tightening operation required which greatly reduces the overall cost of an anchor installation.

GENERAL APPLICATIONS AND US

- Tamperproof applications
- · Cable trays and strut

- Pipe hanging
- Metal track attachments
- Available in corrosion resistance stainless steel for exterior applications
- Concrete formwork

FEATURES AND BENEFITS

- + Pre-expanded anchor design allows for easy installation
- + Mushroom and flat head Spike anchors are tamper-proof
- + Forming Spike, which is removable, can be used for temporary installations
- + Pipe and tie-wire Spike is a simple to install alternative to direct fastening (e.g. powder actuated)

APPROVALS AND LISTINGS

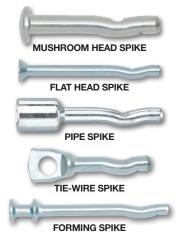
Tested in accordance with ASTM E488 and AC01 criteria

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Pre-expanded anchors shall be Spike as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Carbon Steel (Mushroom Head, Flat Head, Pipe, Tie-Wire and Forming Spike)


Anchor Component	Component Material
Anchor Body	AISI 1038 Carbon Steel
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn5)

Stainless Steel (Mushroom Head)

Anchor Component	Component Material
Anchor Body	Type 316L Stainless Steel

SECTION CONTENTS

.356
.356
.357
.357
.358
.362
.363
.365

HEAD STYLE

- Mushroom Head
- Flat Head
- Pipe (Coupler Head)
- Tie-Wire
- Forming

ANCHOR MATERIALS

- Zinc Plated Carbon Steel
- Type 316 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

• 3/16" diameter through 1/2" diameters

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Lightweight Concrete
- Grouted Concrete Masonry (CMU)

•

SP

3/8"

3/8

7/16

7/32 3/4

Nominal Anchor Size, d

1/4"

1/4

5/16

7/64

1/2

MECHANICAL ANCHORS

SPIKE® Pin Anchor

INSTALLATION SPECIFICATIONS

Mushroom Head Carbon Steel Spike

Dimension	Nominal Anchor Size, d						
Dimension	3/16"	1/4"	3/8"	1/2"			
ANSI Drill Bit Size (in.)	3/16	1/4	3/8	1/2			
Fixture Clearance Hole (in.)	1/4	5/16	7/16	9/16			
Head Height (in.)	7/64	7/64	7/32	1/4			
Head Size, O.D. (in.)	7/16	1/2	3/4	1			

Flat Head Spike (80°– 82° Head)

Dimension	Nominal An	chor Size, d
Dimension	3/16"	1/4"
ANSI Drill Bit Size (in.)	3/16	1/4
Fixture Clearance Hole (in.)	1/4	5/16
Head Height (in.)	7/64	9/64
Head Size, O.D. (in.)	3/8	1/2

Pipe Spike

Head Height (in.)

Head Size, O.D. (in.)

Dimension	Nominal An	chor Size, d
Dimension	1/4"	3/8"
ANSI Drill Bit Size (in.)	3/16	1/4
UNC Thread Size	1/4-20	3/8-16
Head Height (in.)	1/2	5/8
Head Size, O.D. (in.)	13/32	35/64

3/16"

3/16

1/4

7/64

7/16

Mushroom Head Stainless Steel Spike

Dimension

ANSI Drill Bit Size (in.)

Fixture Clearance Hole (in.)

Tie-Wire Spike

Dimension	Nominal Anchor Size, d				
Dimension	3/16"	1/4"			
ANSI Drill Bit Size (in.)	3/16	1/4			
Tie-Wire Hole (in.)	3/16	9/32			
Head Height (in.)	37/64	41/64			
Head Width (in.)	9/64 x 7/16	3/16 x 9/16			

Forming Spike

Dimension	Nominal Anchor Size, d				
Dimension	3/16"	1/4"			
ANSI Drill Bit Size (in.)	3/16	1/4			
Fixture Clearance Hole (in.)	1/4	5/16			
Head Height (in.)	9/16	9/16			
Head Size, O.D. (in.)	13/32	1/2			

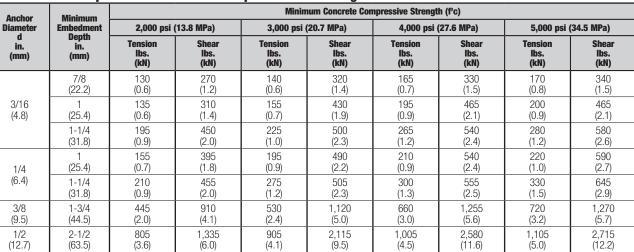
INSTALLATION INSTRUCTIONS

Mushroom/Flat Head Version Pipe Spike Version Tie-Wire Version Forming Spike Version Using the proper Using the proper Using the proper Using the proper diameter bit, drill a diameter bit, drill a diameter bit. drill a diameter bit. drill a hole into the base hole into the base hole into the base hole into the base 10 Ŵ material to a depth material to a depth material to a depth material to a depth 000 of at least one of at least one of at least one of at least one anchor diameter anchor diameter anchor diameter anchor diameter deeper than deeper than deeper than deeper than the embedment the embedment the embedment the embedment 111 required. required. required. required. D The tolerances of The tolerances of The tolerances of The tolerances of the drill bit used the drill bit used the drill bit used the drill bit used must meet the must meet the must meet the must meet the requirements of requirements of requirements of requirements of ANSI Standard ANSI Standard ANSI Standard ANSI Standard B212.15 B212.15 B212.15 B212.15 Remove dust and Remove dust and Remove dust and Remove dust and debris from the debris from the debris from the debris from the hole during drilling hole during drilling hole during drilling hole during drilling (e.g. dust extractor) (e.g. dust extractor) (e.g. dust extractor) (e.g. dust extractor) or following drilling or following drilling or following drilling or following drilling (e.g. suction, forced (e.g. suction, forced (e.g. suction, forced (e.g. suction, forced air) to extract loose air) to extract loose air) to extract loose air) to extract loose v ⊲ 4 particles created by particles created by particles created by particles created by drilling. drilling. drilling. drilling. ъ ¹ n e Drive the anchor Drive the anchor Drive the anchor Drive the anchor through the fixture into the hole through the fixture into the hole ₽. into the anchor until the head until the head into the anchor hole until the is firmly seated is firmly seated hole until the 4 head is firmly against the against the head is firmly base material. seated against the base material. seated against the Be sure the fixture. Be sure the Be sure the fixture. Be sure the anchor is driven anchor is driven anchor is driven anchor is driven to the required to the required to the required to the required embedment depth. embedment embedment embedment depth. depth. depth.

1-800-4 **DEWALT**

FECHNICAL GUIDE – MECHANICAL ANCHORS ©2018 DEWALT – REV. A

PERFORMANCE DATA


Ultimate Load Capacities for Carbon Steel Spike in Normal-Weight Concrete^{1,2}

Anchor	Minimum			Minin	num Concrete Con	npressive Strengt	h (f'c)		
Diameter d in. (mm)	Embedment	ent 2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)	
	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	7/8	520	1,080	560	1,270	660	1,310	690	1,350
	(22.2)	(2.3)	(4.9)	(2.5)	(5.7)	(2.9)	(5.9)	(3.1)	(6.1)
3/16	1	540	1,230	620	1,725	780	1,860	795	1,860
(4.8)	(25.4)	(2.4)	(5.5)	(2.8)	(7.8)	(3.5)	(8.4)	(3.5)	(8.4)
	1-1/4	780	1,800	900	2,000	1,060	2,155	1,120	2,310
	(31.8)	(3.5)	(8.1)	(4.0)	(9.0)	(4.7)	(9.7)	(5.0)	(10.4)
1/4	1	620	1,585	775	1,965	835	2,160	885	2,360
	(25.4)	(2.8)	(7.1)	(3.4)	(8.8)	(3.7)	(9.7)	(3.9)	(10.6)
(6.4)	1-1/4	830	1,815	1,100	2,020	1,210	2,220	1,320	2,585
	(31.8)	(3.7)	(8.2)	(4.9)	(9.1)	(5.4)	(10.0)	(5.9)	(11.6)
3/8	1-3/4	1,785	3,645	2,120	4,480	2,630	5,025	2,875	5,075
(9.5)	(44.5)	(8.0)	(16.4)	(9.5)	(20.2)	(11.8)	(22.6)	(12.9)	(22.8)
1/2	2-1/2	3,215	5,345	3,620	8,460	4,015	10,320	4,410	10,860
(12.7)	(63.5)	(14.5)	(24.1)	(16.3)	(38.1)	(18.1)	(46.4)	(19.8)	(48.9)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Carbon Steel Spike in Normal-Weight Concrete^{1,2,3}

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate Load Capacities for Stainless Steel Spike in Normal-Weight Concrete^{1,2}

Anchor Diameter d in. (mm)	Minimum			Minim	num Concrete Con	npressive Strengt	h (f'c)		
	Embedment	2,000 psi	(13.8 MPa)	3,000 psi ((20.7 MPa)	4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)	
	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	7/8	490	920	560	1,155	660	1,220	690	1,290
	(22.2)	(2.2)	(4.1)	(2.5)	(5.2)	(2.9)	(5.5)	(3.1)	(5.8)
3/16	1	500	1,175	620	1,650	780	1,740	795	1,830
(4.8)	(25.4)	(2.3)	(5.3)	(2.8)	(7.4)	(3.5)	(7.8)	(3.5)	(8.2)
	1-1/4	740	1,735	900	1,930	1,060	2,040	1,120	2,150
	(31.8)	(3.3)	(7.8)	(4.0)	(8.7)	(4.7)	(9.2)	(5.0)	(9.7)
1/4	1	620	1,565	775	1,845	835	2,095	885	2,250
	(25.4)	(2.8)	(7.0)	(3.4)	(8.3)	(3.7)	(9.4)	(3.9)	(10.1)
(6.4)	1-1/4	795	1,765	1,080	1,965	1,175	2,145	1,280	2,325
	(31.8)	(3.6)	(7.9)	(4.9)	(8.8)	(5.2)	(9.7)	(5.7)	(10.5)
3/8	1-3/4	1,575	3,155	1,990	3,880	2,420	4,150	2,570	4,425
(9.5)	(44.5)	(7.1)	(14.2)	(9.0)	(17.5)	(10.9)	(18.7)	(11.6)	(19.9)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Stainless Steel Spike in Normal-Weight Concrete^{1,2,3}

Anchor	Minimum			Minim	um Concrete Con	npressive Strengt	h (f'c)		
Diameter	Embedment	2,000 psi	(13.8 MPa)	3,000 psi ((20.7 MPa)	4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)	
a	Depth	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	7/8	125	230	140	290	165	305	170	325
	(22.2)	(0.6)	(1.0)	(0.6)	(1.3)	(0.7)	(1.4)	(0.8)	(1.5)
3/16	1	125	295	155	415	195	435	200	460
(4.8)	(25.4)	(0.6)	(1.3)	(0.7)	(1.9)	(0.9)	(2.0)	(0.9)	(2.1)
	1-1/4	185	435	225	485	265	510	280	540
	(31.8)	(0.8)	(2.0)	(1.0)	(2.2)	(1.2)	(2.3)	(1.7)	(2.4)
1/4	1	155	390	195	460	210	525	220	565
	(25.4)	(0.7)	(1.8)	(0.9)	(2.1)	(0.9)	(2.4)	(1.0)	(2.5)
(6.4)	1-1/4	200	440	270	490	295	535	320	580
	(31.8)	(0.9)	(2.0)	(1.2)	(2.2)	(1.3)	(2.4)	(1.4)	(2.6)
3/8	1-3/4	395	790	500	970	605	1,040	645	1,105
(9.5)	(44.5)	(1.8)	(3.6)	(2.3)	(4.4)	(2.7)	(4.7)	(2.9)	(5.0)

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

AçD

Ultimate Load Capacities for Carbon Steel Pipe Spike in Normal-Weight Concrete^{1,2}

		Minimum		Minimum Concrete Compressive Strength (f ^o c)							
	Drill Bit	Embedment	2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)		
a in. (mm)	in. Diameter Depth in. in.		Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
1/4 (6.4)	3/16	1-1/4 (31.8)	780 (3.5)	975 (4.4)	1,260 (5.7)	975 (4.4)	1,260 (5.7)	975 (4.4)	1,260 (5.7)	975 (4.4)	
3/8 (9.5)	1/4	1-3/4 (44.5)	1,100 (5.0)	1,815 (8.2)	1,660 (7.5)	2,020 (9.1)	2,000 (9.0)	2,100 (9.5)	2,000 (9.0)	2,180 (9.8)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Carbon Steel Pipe Spike in Normal-Weight Concrete^{1,2,3}

Anchor Diameter d in. (mm)		Minimum Embedment Depth in. (mm)	Minimum Concrete Compressive Strength (f'c)							
			2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)	
			Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	3/16	1-1/4 (31.8)	195 (0.9)	245 (1.1)	315 (1.4)	245 (1.1)	315 (1.4)	245 (1.1)	315 (1.4)	245 (1.1)
3/8 (9.5)	1/4	1-3/4 (44.5)	275 (1.2)	455 (2.0)	415 (1.9)	505 (2.3)	500 (2.3)	525 (2.4)	500 (2.3)	545 (2.5)

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate Load Capacities for Carbon Steel Tie-Wire Spike in Normal-Weight Concrete^{1,2}

Anchor Diameter	Minimum		Minimum Concrete Compressive Strength (f ² c)								
	Embedment	3,000 psi (20.7 MPa)		4,000 psi	(27.6 MPa)	5,000 psi (34.5 MPa)					
a	Depth	Tension	Shear	Tension	Shear	Tension	Shear				
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.				
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)				
3/16	1-1/8	975	950	1,050	950	1,120	950				
(4.8)	(28.6)	(4.4)	(4.3)	(4.7)	(4.3)	(5.0)	(4.3)				
1/4	1-1/8	1,075	1,310	1,150	1,310	1,230	1,310				
(6.4)	(28.6)	(4.8)	(5.9)	(5.2)	(5.9)	(5.5)	(5.9)				

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary
depending upon the application such as life safety or overhead.

ASD

Allowable Load Capacities for Carbon Steel Tie-Wire Spike in Normal-Weight Concrete^{1,2,3}

Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)							
Diameter	Embedment	3,000 psi (20.7 MPa)		4,000 psi	(27.6 MPa)	5,000 psi ((34.5 MPa)		
a	Depth ,	Tension	Shear	Tension	Shear	Tension	Shear		
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.		
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)		
3/16	1-1/8	245	240	265	240	280	240		
(4.8)	(28.6)	(1.1)	(1.1)	(1.2)	(1.1)	(1.3)	(1.1)		
1/4	1-1/8	270	330	290	330	310	330		
(6.4)	(28.6)	(1.2)	(1.5)	(1.3)	(1.5)	(1.4)	(1.5)		

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

ASD

ASD

Ultimate Load Capacities for Carbon Steel Forming Spike in Normal-Weight Concrete^{1,2}

Anchor	Minimum Embedment Depth in. (mm)	Minimum Concrete Compressive Strength (f'c)								
Diameter		2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)		
d in. (mm)		Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
3/16 (4.8)	1-1/4 (31.8)	780 (3.5)	1,800 (8.1)	1,000 (4.5)	2,000 (9.0)	1,260 (5.7)	2,155 (9.7)	1,260 (5.7)	2,310 (10.4)	
1/4 (6.4)	1-1/4 (31.8)	830 (3.7)	1,815 (8.2)	1,200 (5.4)	2,020 (9.1)	1,410 (6.3)	2,220 (10.0)	1,410 (6.3)	2,585 (11.6)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Carbon Steel Forming Spike in Normal-Weight Concrete¹²³

Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)								
Diameter	Embedment	2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)		
d	Depth	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
3/16	1-1/4	195	450	250	500	315	540	315	580	
(4.8)	(31.8)	(0.9)	(2.0)	(1.1)	(2.3)	(1.4)	(2.4)	(1.4)	(2.6)	
1/4	1-1/4	210	455	300	505	355	555	355	645	
(6.4)	(31.8)	(0.9)	(2.0)	(1.4)	(2.3)	(1.6)	(2.5)	(1.6)	(2.9)	

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate Load Capacities for Spike in Lightweight Concrete^{1,2,3}

Anchor	Minimum			Minimum Concrete Con	npressive Strength (f'c)		
Diameter	Embedment	3,000 psi (20.7 MPa)		4,000 psi	(27.6 MPa)	5,000 psi	(34.5 MPa)
d	Depth	Tension	Shear	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
3/16	1-1/8	440	1,280	400	1,280	380	1,280
(4.8)	(28.6)	(2.0)	(5.8)	(1.8)	(5.8)	(1.7)	(5.8)
1/4	1-1/8	480	1,720	440	1,720	400	1,720
(6.4)	(28.6)	(2.2)	(7.7)	(2.0)	(7.7)	(1.8)	(7.7)
3/8	1-3/4	1,140	3,000	960	3,000	800	3,000
(9.5)	(44.5)	(5.1)	(13.5)	(4.3)	(13.5)	(3.6)	(13.5)
1/2	2-1/2	1,860	6,440	1,860	6,440	1,860	6,440
(12.7)	(63.5)	(8.4)	(29.0)	(8.4)	(29.0)	(8.4)	(29.0)

1. Tabulated load values are applicable to carbon and stainless steel anchors.

2. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

3. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Spike in Lightweight Concrete^{1,2,3,4}

Anchor	Minimum			Minimum Concrete Con	npressive Strength (f'c)	1	
Diameter	Embedment	3,000 psi (20.7 MPa)		4,000 psi	(27.6 MPa)	5,000 psi	(34.5 MPa)
d	Depth	Tension	Shear	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
3/16	1-1/8	110	320	100	320	95	320
(4.8)	(28.6)	(0.5)	(1.4)	(0.5)	(1.4)	(0.4)	(1.4)
1/4	1-1/8	120	430	110	430	100	430
(6.4)	(28.6)	(0.5)	(1.9)	(0.5)	(1.9)	(0.5)	(1.9)
3/8	1-3/4	285	750	240	750	200	750
(9.5)	(44.5)	(1.3)	(3.4)	(1.1)	(3.4)	(0.9)	(3.4)
1/2	2-1/2	465	1,610	465	1,610	465	1,610
(12.7)	(63.5)	(2.1)	(7.2)	(2.1)	(7.2)	(2.1)	(7.2)

1. Tabulated load values are applicable to carbon and stainless steel anchors.

2. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.

4. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

AşD

Ultimate and Allowable Load Capacities for Spike Anchors in Concrete Over Steel Deck^{1,2}

	Lightweight Concrete Over Steel Deck f'c ≥ 3,000 psi (20.7 MPa)								
Anchor	Minimum Embedment		Minimum 1-1/2" Wide Deck, 20 Gage Minimum						
Diameter	d Depth		te Load	Allowat	ole Load				
in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear lbs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)				
3/16	1-1/4	560	2,000	140	500				
(4.8)	(31.8)	(2.5)	(9.0)	(0.6)	(2.3)				
1/4	1-1/4	560	2,000	140	500				
(6.4)	(31.8)	(2.5)	(9.0)	(0.6)	(2.3)				
3/8	1-3/4	600	2,620	150	655				
(9.5)	(44.5)	(2.7)	(11.8)	(0.7)	(2.9)				
1/2	2-1/2	1,120	3,020	280	755				
(12.7)	(63.5)	(5.0)	(13.6)	(1.3)	(3.4)				

1. Tabulated load values are for carbon steel and stainless steel anchors installed in sand-lightweight concrete over steel deck. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using a safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Spacing distances shall be in accordance with the spacing table for lightweight concrete.

4. Anchors are permitted to be installed in the lower or upper flute of the steel deck provided the proper installation procedures are maintained. Minimum flute edge distance is 7/8-inch.

Ultimate and Allowable Load Capacities for Spike in Grouted Concrete Masonry^{1,2,3,4}

					f′m ≥ 1,500 p	si (10.4 MPa)			
Anchor	Minimum Embedment				Minimum 6	" Wide CMU			
Diameter			Ultimate Load				Allowat	ole Load	
d	Depth	Carbon S	teel Spike	Stainless	Steel Spike	Carbon S	teel Spike	Stainless S	Steel Spike
in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	7/8	280	540	280	540	55	110	55	110
	(22.2)	(1.3)	(2.4)	(1.3)	(2.4)	(0.2)	(0.5)	(0.2)	(0.5)
3/16	1	410	590	310	590	80	120	60	120
(4.8)	(25.4)	(1.8)	(2.7)	(1.4)	(2.7)	(0.4)	(0.5)	(0.3)	(0.5)
	1-1/4	740	1,090	730	1,980	150	420	145	395
	(31.8)	(3.3)	(4.9)	(3.3)	(8.9)	(0.7)	(1.9)	(0.7)	(1.8)
	1	670	1,840	645	1,620	135	370	130	325
1/4	(25.4)	(3.0)	(8.3)	(2.9)	(7.3)	(0.6)	(1.7)	(0.6)	(1.5)
(6.4)	1-1/4	800	2,100	770	1,890	160	420	155	380
	(31.8)	(3.6)	(9.5)	(3.5)	(8.5)	(0.7)	(1.9)	(0.7)	(1.7)
4		()	(9.5)	()		,	(-7	(-)	· · ·

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi)

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

3. Linear interpolation may be used to determine allowable load capacities for intermediate embedments.

4. The tabulated values are for anchors installed at a minimum spacing and edge distance of 16 anchor diameters.

DESIGN CRITERIA

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{\mathbf{N}\mathbf{u}}{\mathbf{N}\mathbf{n}}\right) + \left(\frac{\mathbf{V}\mathbf{u}}{\mathbf{V}\mathbf{n}}\right) \le 1$$

 $\begin{array}{lll} \mbox{Where:} & \mbox{N_u} = \mbox{Applied Service Tension Load} \\ \mbox{N_n} = \mbox{Allowable Tension Load} \\ \end{array}$

 $\begin{array}{l} V_u = \text{Applied Service Shear Load} \\ V_n = \text{Allowable Shear Load} \end{array}$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

Anchor Installed in Normal-Weight Concrete

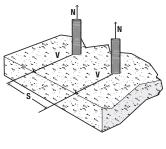
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{\text{cr}}=2.0h_{\text{v}}$	$F_{NS} = F_{VS} = 1.0$	$S_{min} = h_V$	Fns = Fvs =0.50
Edge Distance (a)	Tension	$c_{cr} = 14d$	$F_{NC} = 1.0$	$c_{min} = 5d$	$F_{NC} = 0.80$
Edge Distance (c)	Shear	$c_{cr} = 14d$	Fvc = 1.0	$C_{min} = 5d$	Fvc = 0.50

Anchor Installed in Lightweight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 3.0 h_{v}$	$F_{NS} = F_{VS} = 1.0$	$S_{min} = 1.5 h_{v}$	Fns = Fvs =0.50
Edge Distance (a)	Tension	$c_{cr} = 14d$	Fnc = 1.0	$c_{min} = 7d$	$F_{NC} = 0.80$
Edge Distance (c)	Shear	$c_{cr} = 14d$	$F_{VC} = 1.0$	$c_{\text{min}} = 7d$	$F_{VC} = 0.50$

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

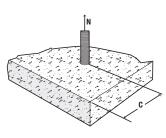

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Spacing, Tension (F_{NS}) & Shear (F_{VS})

Dia.	Dia. (in.) 3/16					1/4		3/8	1/2
h _v ((in.)	7/8	1	1-1/4	7/8	1	1-1/4	2-1/2	2-3/4
Scr	(in.)	1-3/4	2	2-1/2	1-3/4	2	2-1/2	5	5-1/2
Smin	(in.)	7/8	1	1-1/4	7/8	1	1-1/4	2-1/2	2-3/4
	7/8	0.50	-	-	0.50	-	-	-	-
	1	0.57	0.50	-	0.57	0.50	-	-	-
	1-1/4	0.71	0.63	0.50	0.71	0.63	0.50	-	-
_	1-1/2	0.86	0.75	0.60	0.86	0.75	0.60	-	-
(seut	1-3/4	1.00	0.88	0.70	1.00	0.88	0.70	-	-
(inc	2	1.00	1.00	0.80	1.00	1.00	0.80	-	-
nce	2-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.50	-
Distance (inches)	2-3/4	1.00	1.00	1.00	1.00	1.00	1.00	0.55	0.50
	3	1.00	1.00	1.00	1.00	1.00	1.00	0.60	0.55
	4	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.73
	5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91
	5-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension and shear, the critical spacing (s_{er}) is equal to 2 embedment depths (2h_v) at which the anchor achieves 100% of load.

Minimum spacing (s_{min}) is equal to 1 embedment depth (h_v) at which the anchor achieves 50% of load.

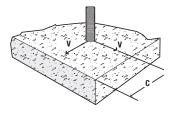


Edge Distance, Tension (F_{NC})

Dia.	(in.)	3/16	1/4	3/8	1/2
	(in.)	2-5/8	3-1/2	5-1/4	7
Cmin	(in.)	1	1-1/4	1-7/8	2-1/2
	1	0.50	-	-	-
	1-1/4	0.59	0.50	-	-
	1-7/8	0.78	0.64	0.50	-
	2	0.81	0.67	0.52	-
(s:	2-1/2	0.96	0.78	0.59	0.50
nche	2-5/8	1.00	0.81	0.61	0.51
Distance (inches)	3	1.00	0.89	0.67	0.56
tano	3-1/2	1.00	1.00	0.74	0.61
Dis	4	1.00	1.00	0.81	0.67
	5	1.00	1.00	0.96	0.78
	5-1/4	1.00	1.00	1.00	0.81
	6	1.00	1.00	1.00	0.89
	7	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension, the critical edge distance (c_{er}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 5 anchor diameters (5d) at which the anchor achieves 50% of load.


Edge Distance, Shear (Fvc)

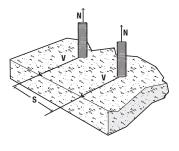
1-800-4 DEWALT

ugei	Distano				
Dia.	(in.)	3/16	1/4	3/8	1/2
Ccr	(in.)	2-5/8	3-1/2	5-1/4	7
Cmin	(in.)	1	1-1/4	1-7/8	2-1/2
	1	0.25	-	-	-
	1-1/4	0.39	0.25	-	-
	1-7/8	0.67	0.46	0.25	-
	2	0.72	0.50	0.28	-
(se	2-1/2	0.94	0.67	0.39	0.25
uch.	2-5/8	1.00	0.71	0.42	0.27
Distance (inches)	3	1.00	0.83	0.50	0.33
tano	3-1/2	1.00	1.00	0.61	0.42
Dis	4	1.00	1.00	0.72	0.50
	5	1.00	1.00	0.94	0.67
	5-1/4	1.00	1.00	1.00	0.71
	6	1.00	1.00	1.00	0.83
	7	1.00	1.00	1.00	1.00

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 5 anchor diameters (5d) at which the anchor achieves 25% of load.

Anchol

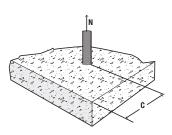

LOAD ADJUSTMENT FACTORS FOR LIGHTWEIGHT CONCRETE

Spacing, Tension (F_{NS}) & Shear (F_{VS})

Dia.	(in.)		3/16			1/4		3/8	1/2		
h√ (in.)		7/8	1	1-1/4	7/8	1	1-1/4	2-1/2	2-3/4		
Scr	s∝ (in.)		3	3-3/4	2-5/8	3	3-3/4	7-1/2	8-1/4		
Smin	(in.)	1-3/8	1-1/2	1-7/8	1-3/8	1-1/2	1-7/8	3-3/4	4-1/8		
	1-3/8	0.50	-	-	0.50	-	-	-	-		
	1-1/2	0.57	0.50	-	0.57	0.50	-	-	-		
	1-7/8	0.71	0.63	0.50	0.71	0.63	0.50	-	-		
	1-1/2	0.57	0.50	0.40	0.57	0.50	0.40	-	-		
	2-5/8	1.00	0.88	0.70	1.00	0.88	0.70	-	-		
hes	3	1.00	1.00	0.80	1.00	1.00	0.80	-	-		
Distance (inches)	3-3/4	1.00	1.00	1.00	1.00	1.00	1.00	0.50	-		
nce	4	1.00	1.00	1.00	1.00	1.00	1.00	0.53	-		
lista	4-1/8	1.00	1.00	1.00	1.00	1.00	1.00	0.55	0.50		
-	5	1.00	1.00	1.00	1.00	1.00	1.00	0.67	0.61		
	6	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.73		
	7	1.00	1.00	1.00	1.00	1.00	1.00	0.93	0.85		
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91		
	8-1/4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

Notes: For anchors loaded in tension and shear, the critical spacing (s_{cr}) is equal to 3 embedment depths (3h_v) at which the anchor achieves 100% of load.

Minimum spacing (s_{min}) is equal to 1.5 embedment depth (1.5h,) at which the anchor achieves 50% of load.

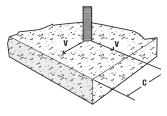


Edge Distance, Tension (F_{NC})

Dia. (in.) Car (in.)		3/16	1/4	3/8	1/2
		2-5/8	3-1/2	5-1/4	7
Cmin	(in.)	1-3/8	1-3/4	2-5/8	3-1/2
	1-3/8	0.50	-	-	-
	1-3/4	0.67	0.50	-	-
	2	0.76	0.57	-	-
(S)	2-5/8	1.00	0.75	0.50	-
nche	3	1.00	0.86	0.57	-
Distance (inches)	3-1/2	1.00	1.00	0.67	0.50
tano	4	1.00	1.00	0.76	0.57
Dis	5	1.00	1.00	0.95	0.71
	5-1/4	1.00	1.00	1.00	0.75
	6	1.00	1.00	1.00	0.86
	7	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension, the critical edge distance ($c_{\rm cr}$) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7d) at which the anchor achieves 50% of load.



Edge Distance, Shear (Fvc)

Dia. (in.) C _{er} (in.) C _{min} (in.)		3/16	1/4	3/8	1/2
		2-5/8	3-1/2	5-1/4	7
		1-3/8	1-3/4	2-5/8	3-1/2
	1-3/8	0.40	-	-	-
	1-3/4	0.60	0.40	-	-
	2	0.71	0.49	-	-
(se	2-5/8	1.00	0.70	0.40	-
nche	3	1.00	0.83	0.49	-
i) ei	3-1/2	1.00	1.00	0.60	0.40
Distance (inches)	4	1.00	1.00	0.71	0.49
Dis	5	1.00	1.00	0.94	0.66
	5-1/4	1.00	1.00	1.00	0.70
	6	1.00	1.00	1.00	0.83
	7	1.00	1.00	1.00	1.00

Notes: For anchors loaded in shear, the critical edge distance ($c_{\rm cr}$) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7d) at which the anchor achieves 40% of load.

Mushroom Head Spike (Tamperproof)

Carbon Steel Cat. No.	Stainless Steel Cat. No.	Anchor Size	Drill Diameter	Min. Embed.	Std. Box	Std. Carton	Wt./100
5502	6602	3/16" x 1"	3/16"	7/8"	100	1,000	1-1/4
5503	6603	3/16" x 1-1/4"	3/16"	7/8"	100	1,000	1-1/2
5504	6604	3/16" x 1-1/2"	3/16"	1-1/4"	100	1,000	1-3/4
5506	6606	3/16" x 2"	3/16"	1-1/4"	100	1,000	2
5508	-	3/16" x 2-1/2"	3/16"	1-1/4"	100	600	2
5510	-	3/16" x 3"	3/16"	1-1/4"	100	600	2-1/2
5511	-	3/16" x 3-1/2"	3/16"	1-1/4"	100	600	3-1/2
5512	-	3/16" x 4"	3/16"	1-1/4"	100	600	4
5522	-	1/4" x 1"	1/4"	7/8"	100	1,000	1-1/2
5523	6623	1/4" x 1-1/4"	1/4"	1"	100	1,000	2-1/4
5524	6624	1/4" x 1-1/2"	1/4"	1-1/4"	100	1,000	2-1/2
5526	6626	1/4" x 2"	1/4"	1-1/4"	100	600	3
5528	6628	1/4" x 2-1/2"	1/4"	1-1/4"	100	600	4
5530	6630	1/4" x 3"	1/4"	1-1/4"	100	600	4-1/2
5531	-	1/4" x 3-1/2"	1/4"	1-1/4"	100	600	4-1/2
5532	-	1/4" x 4"	1/4"	1-1/4"	100	600	5-1/2
5546	6646	3/8" x 2"	3/8"	1-3/4"	25	250	7-1/2
5548	6648	3/8" x 2-1/2"	3/8"	1-3/4"	25	150	9
5550	6650	3/8" x 3"	3/8"	1-3/4"	25	150	10
5551	-	3/8" x 3-1/2"	3/8"	1-3/4"	25	150	11
5552	-	3/8" x 4"	3/8"	1-3/4"	25	150	11
5554	-	3/8" x 5"	3/8"	1-3/4"	25	150	11
5556	-	3/8" x 6"	3/8"	1-3/4"	25	125	11
5569	-	1/2" x 2-3/4"	1/2"	2-1/2"	50	200	13
5571	-	1/2" x 3-1/2"	1/2"	2-1/2"	50	150	13
5572	-	1/2" x 4"	1/2"	2-1/2"	25	125	13
5574	-	1/2" x 5"	1/2"	2-1/2"	25	125	13
5577	-	1/2" x 6-1/2"	1/2"	2-1/2"	25	100	13
The publishe	d length is mea	sured from below the head	to the end of the	anchor.			

Flat Head Carbon Steel Spike (Tamperproof)

Cat. No.	Anchor Size	Drill Diameter	Min. Embed.	Std. Box	Std. Carton	Wt./100				
5608	3/16"x 2-1/2"	3/16"	1-1/4"	100	600	2				
5610	3/16" x 3"	3/16"	1-1/4"	100	600	2-1/2				
5612	3/16" x 4"	3/16"	1-1/4"	100	600	4				
5624	1/4" x 1-1/2"	1/4"	1-1/4"	100	1,000	2-1/2				
5626	1/4" x 2"	1/4"	1-1/4"	100	600	3				
5628	1/4" x 2-1/2"	1/4"	1-1/4"	100	600	3-3/4				
5630	1/4" x 3"	1/4"	1-1/4"	100	600	4-1/2				
5631	1/4" x 3-1/2"	1/4"	1-1/4"	100	600	5				
5632	1/4" x 4"	1/4"	1-1/4"	100	500	5-3/4				
The published	d length is the overall ler	ngth of the anchor.								

Pipe Spike

Cat.No.	Anchor Size	Drill Diameter	Min. Embed.	Std. Box	Std. Carton	Wt./100
3755	1/4"	3/16"	1-1/4"	100	600	4
3758	3/8"	1/4"	1-3/4"	50	300	6
Designed for rod	hanging.					

Tie-Wire Spike

Catalog Number	Anchor Size	Drill Diameter	Minimum Embed.	Tie Wire Hole Size	Standard Box	Standard Carton	Wt./100
3756	3/16"	3/16"	1-1/8"	3/16"	100	600	2
3759	1/4"	1/4"	1-1/8"	9/32"	100	600	2-1/2
Designed for s	uspended ceilings	3.					

Forming Spike

Cat. No.	Anchor Size	Drill Diameter	Min. Embed.	Std. Box	Std. Carton	Wt./100					
3795	3/16" x 1-1/2"	3/16"	1-1/4"	100	600	2-1/2					
3796	3/16" x 2"	3/16"	1-1/4"	100	600	3					
3797	3/16" x 2-3/4"	3/16"	1-1/4"	100	600	4					
3794 1/4" x 2-3/4" 1/4" 1-1/4" 100 500 5											
Designed for con	crete forming. The publis	hed length is measured	from below the hea	ad to the end of t	he anchor.						

ORDERING INFORMATION

DEWALT

ENGINEERED BY POWERS

Anchor e

1-800-4 DEWALT

DRIVE®

Pin Anchor

PRODUCT DESCRIPTION

The Drive is a one-piece, tamperproof, pre-formed anchor available in carbon steel for use in concrete. Tie-Wire Drive anchors are designed for suspended ceiling applications. The flat head (counter-sunk) style is particularly suited for wood-to-concrete anchoring. The round head style can be used for other applications requiring fast, permanent installations.

GENERAL APPLICATIONS AND USES

- Tamperproof Applications
- Suspended Ceilings

FEATURE AND BENEFITS

- · Pre-expanded anchor design allows for easy installation
- Round And Flat Head Anchors Are Tamperproof

APPROVALS AND LISTINGS

- Tested in accordance with ASTM E488
- Underwriters Laboratory (UL Listed) VFXT. EX1289

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 19 - Post-Installed Concrete Anchors. Pre-expanded anchors shall be Drive as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Component Material
Anchor Body	Heat Treated Carbon Steel
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn 5)

INSTALLATION SPECIFICATIONS

Round Head Drive

Dimension	Anchor Size, d					
Dimension	3/16"	1/4"	3/8"	1/2"		
ANSI Drill Bit Size (in.)	3/16	1/4	3/8	1/2		
Fixture Clearance Hole (in.)	1/4	5/16	7/16	9/16		
Head Height (in.)	3/32	1/8	3/16	1/4		
Head Width (in.)	3/8	1/2	3/4	1		

Flat Head Drive

Dimension	Anchor Size, d				
Dimension —	3/16"	1/4"			
ANSI Drill Bit Size (in.)	3/16	1/4			
Fixture Clearance Hole (in.)	1/4	5/16			
Head Height (in.)	7/64	9/64			
Head Width (in.)	3/8	1/2			

Tie-Wire Drive

Anchor Size, d	
1/4"	
1/4	
5/8	
13/64	
	1/4 1/4 5/8

SECTION CONTENTS

General Information	366
Installation Specifications	366
Performance Data	367
Design Criteria	
(Allowable Stress Design)	367
Ordering Information	368

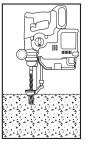
HEAD STYLES

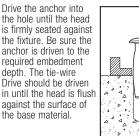
- Round Head
- Flat Head
- Tie-Wire

ANCHOR MATERIALS

• Zinc Plated Carbon Steel

ANCHOR SIZE RANGE (TYP.)


3/16" diameter to 1/2" diameter


SUITABLE BASE MATERIALS

• Normal-weight concrete

Installation Guidelines

Drill a hole into the base material to a depth of at least 1/2" deeper than the embedment required. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15. Remove dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Ultimate Load Capacities for Mushroom and Flat Head Drive in Normal-Weight Concrete^{1,2}

Anchor	Minimum	Minimum Concrete Compressive Strength (f´c)							
Diameter Embedment d Depth in. in.	Embedment	2,000 psi		4,000 psi		6,000 psi			
		Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.		
3/16	7/8	700	1,100	1,080	1,365	1,080	1,370		
1/4	1-1/8	1,320	1,665	1,760	2,090	1,760	2,090		
3/8	1-7/8	2,275	5,580	4,240	7,030	4,240	7,030		
1/2	2-5/8	2,560	7,945	4,960	10,205	4,960	10,205		

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Mushroom and Flat Head Drive in Normal-Weight Concrete^{1,2,3}

Anchor	Minimum	Minimum Concrete Compressive Strength (f´c)							
Diameter d in.	Embedment	2,000 psi		4,000 psi		6,000 psi			
	Depth in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.		
3/16	7/8	175	275	270	340	270	345		
1/4	1-1/8	330	415	440	525	440	525		
3/8	1-7/8	570	1,395	1,060	1,760	1,060	1,760		
1/2	2-5/8	640	1,985	1,240	2,550	1,240	2,550		

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate Load Capacities for Tie-Wire Drive in Normal-Weight Concrete^{1,2}

Anchor Minimum Diameter Embedment d Depth in. in.	Minimum	Minimum Concrete Compressive Strength (f´c)						
	Embedment	2,000 psi		4,000 psi		6,000 psi		
		Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	
1/4	1-1/8	1,320	1,100	1,760	1,560	1,760	1,560	

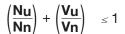
1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for Tie-Wire Drive in Normal-Weight Concrete^{1,2,3}

Anchor	Minimum	Minimum Concrete Compressive Strength (f´c)						
Diameter Embedment d Depth in. in.	2,000 psi		4,000 psi		6,000 psi			
		Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	
1/4	1-1/8	330	275	440	390	440	390	
1 Allowable load opport	1 Allowable lead expectition listed are calculated using and applied refers feature of 4.0							

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0.


2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

LOAD ADJUSTMENT FACTORS FO

Where: N_{u} = Applied Service Tension Load

 $N_n = Allowable Tension Load$

d $V_u = Applied$

capacities are mul

Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 10d$	$F_{NS}=F_{VS}\!=\!1.0$	$s_{min} = 5d$	$F_{\text{NS}} = F_{\text{VS}} = 0.50$
Edge Distance (c)	Tension	$c_{cr} = 12d$	$F_{NC} = 1.0$	$c_{min} = 5d$	$F_{NC} = 0.80$
	Shear	$c_{cr} = 12d$	$F_{VC} = 1.0$	$c_{min} = 5d$	$F_{VC} = 0.50$

 Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

ORDERING INFORMATION

Round Head Drive

Cat. No.	Size	Drill Dia.	Min. Embed.	Std. Box	Std. Carton	Wt./100
3211	1/4" x 1-1/4"	1/4"	1-1/8"	100	1,000	1-3/4
3241	1/4" x 1-1/2"	1/4"	1-1/8"	100	1,000	2-1/2
3271	1/4" x 2"	1/4"	1-1/8"	100	1,000	3
3301	1/4" x 2-1/2"	1/4"	1-1/8"	100	1,000	3-3/4
3601	3/8" x 2"	3/8"	1-7/8"	25	250	7-1/2
3631	3/8" x 2-1/2"	3/8"	1-7/8"	25	250	8-1/2
3691	3/8" x 3-1/2"	3/8"	1-7/8"	25	250	11-3/4
3781	1/2" x 3"	1/2"	2-5/8"	25	125	25

Flat Head Drive

Cat. No.	Size	Drill Dia.	Min. Embed.	Std. Box	Std. Carton	Wt./100
3092	3/16" x 1-1/2"	3/16"	7/8"	100	1,000	1-1/4
3122	3/16" x 2"	3/16"	7/8"	100	1,000	1-3/4
3152	3/16" x 2-1/2"	3/16"	7/8"	100	1,000	2
3162	3/16" x 3"	3/16"	7/8"	100	1,000	2-1/2
3242	1/4" x 1-1/2"	1/4"	1-1/8"	100	1,000	2-1/2
3272	1/4" x 2"	1/4"	1-1/8"	100	1,000	3
3302	1/4" x 2-1/2"	1/4"	1-1/8"	100	1,000	3-3/4
3332	1/4" x 3"	1/4"	1-1/8"	100	1,000	4-1/2
3362	1/4" x 3-1/2"	1/4"	1-1/8"	100	1,000	5
3392	1/4" x 4"	1/4"	1-1/8"	100	500	5-3/4

Tie-Wire Drive (13/64" Tie-Wire Hole)

Cat. No.	Size	Drill Dia.	Min. Embed.	Std. Box	Std. Carton	Wt./100
3244	1/4" x 1 3/4" Master Pack	1/4"	1-1/8"	500	500	2-1/2
3245	1/4" x 1 3/4"	1/4"	1-1/8"	100	500	2-1/2
3250	Tie-Wire Setting Tool	-	-	1	1	1/4

ZAMAC HAMMER-SCREW®

Nail Anchor

PRODUCT DESCRIPTION

The Zamac Hammer-Screw is a unique, one-step nail drive anchor featuring a Phillips type head and a screw thread for use in concrete, block, brick or stone. It is available in 1/4" diameter and lengths ranging from 3/4" to 3". With a body formed from corrosion resistant Zamac alloy and a zinc plated carbon steel or Perma-Seal™ coated drive screw, this anchor has been developed as an improvement over standard nailin anchors.

The Zamac Hammer-Screw has been designed to provide a removable anchor with higher tension load capacities compared with traditional nailin when installed in concrete. The anchor is not recommended for overhead, life-safety or sustained tensile loading applications (see performance data section).

GENERAL APPLICATIONS AND US

- Brick ties and masonry anchorage
- · Electrical fixtures
- Signage
- Flashing

FEATURES AND BENEFITS

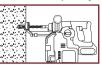
- + General purpose anchoring
- + Installs in a variety of base materials
- + Removable anchor screw can be backed out with a Phillips head driver

APPROVALS AND LISTINGS

Federal GSA Specification - Meets the proof load requirements of FF-S-325C. Group V. Type 2, Class 3, (superseded) and CID A-A 1925A, Type 1

SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Anchors shall be Zamac Hammer-Screw anchors as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.


INSTALLATION AND MATERIAL SPECIFICATIONS

Installation Specifications

Dimension	Anchor Diameter, d
Dimension	1/4
ANSI Drill Bit Size (in.)	1/4
Fixture Clearance Hole (in.)	5/16
Head Height (in.)	9/64
Head Width (in.)	35/64

Installation Guidelines

1. Drill a hole into the base material to a depth of at least 1/4" deeper than the required embedment. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Remove dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling

1-800-4 DEWALT

- Drywall track
- Maintenance
- Surveillance equipment
- Light gage attachments

SECTION CONTENTS

General Information	.369
Installation and	
Material Specifications	.369
Performance Data	.370
Design Criteria	.371
Ordering Information	.372

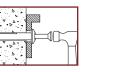
ZAMAC HAMMER-SCREW

ANCHOR MATERIALS

 Zamac Alloy body with Carbon Steel Drive Screw or Perma-Seal Coated Carbon Steel Drive Screw

ANCHOR SIZE RANGE (TYP.)

• 1/4" x 3/4" to 1/4" x 3" diameter


SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Concrete Masonry (CMU)
- Brick Masonry
- Stone

Material	Specif	ications

Anchor Component	Mushroom Head Carbon Steel Screw	Mushroom Head Perma-Seal Coated Screw		
Anchor Body	Zamac Alloy	Zamac Alloy		
Drive Screw	AISI 1018	AISI 1018		
Screw Plating/ Coating	ASTM B 633, SC1, Type III (Fe/Zn5)	Perma-Seal [™] coating		

Optional: To remove - Press a Phillips screw driver firmly into the screw head and turn counterclockwise. Remove the screw from the anchor body, then pry out the fixture and anchor body simultaneously by working the claw of a hammer under the fixture

2. Insert the anchor through the fixture. Drive the screw

into the anchor body to expand it. Be sure the head is

seated firmly against the fixture and that the anchor is

at the proper embedment. Take care not to overdrive

the screw. This anchor is not recommended for

installations at an angle or for use overhead

fechnical guide – Mechanical Anchors ©2018 Dewalt – Rev. A

MAC HAMMER-SCR

Ultimate and Allowable Load Capacities for Zamac Hammer-Screw in Normal-Weight Concrete^{1,2,3,4,5}

Dull		Minimum Concrete Compressive Strength, f 'c											
Rod/ Anchor	Min. Embed.		2,00	0 psi			4,00	0 psi			6,00	0 psi	
Diameter	Depth	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear
a	n√	Ultimate	Allowable	Ultimate	Allowable	Ultimate	Allowable	Ultimate	Allowable	Ultimate	Allowable	Ultimate	Allowable
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	5/8	675	170	650	165	850	215	880	220	890	225	880	220
	(16)	(3.0)	(0.8)	(2.9)	(0.7)	(3.8)	(1.0)	(3.9)	(1.0)	(4.0)	(1.0)	(3.9)	(1.0)
	3/4	790	200	805	200	1,135	285	1,115	280	1,190	300	1,115	280
	(19)	(3.5)	(0.9)	(3.6)	(0.9)	(5.0)	(1.3)	(5.0)	(1.2)	(5.3)	(1.3)	(5.0)	(1.2)
	7/8	930	235	990	250	1,205	300	1,230	310	1,250	315	1,230	310
	(22)	(4.1)	(1.0)	(4.4)	(1.1)	(5.4)	(1.3)	(5.5)	(1.4)	(5.6)	(1.4)	(5.5)	(1.4)
1/4	1-1/8	1,220	305	1,365	340	1,350	340	1,470	370	1,450	365	1,470	370
(6.4)	(29)	(5.4)	(1.4)	(6.1)	(1.5)	(6.0)	(1.5)	(6.5)	(1.6)	(6.4)	(1.6)	(6.5)	(1.6)
	1-3/8	1,325	330	1,555	390	1,450	365	1,645	410	1,530	385	1,645	410
	(35)	(5.9)	(1.5)	(6.9)	(1.7)	(6.4)	(1.6)	(7.3)	(1.8)	(6.8)	(1.7)	(7.3)	(1.8)
	1-3/4	1,480	370	1,840	460	1,600	400	1,910	480	1,660	415	1,910	480
	(44)	(6.6)	(1.6)	(8.2)	(2.0)	(7.1)	(1.8)	(8.5)	(2.1)	(7.4)	(1.8)	(8.5)	(2.1)
	1-7/8	1,480	370	1,840	460	1,600	400	1,910	480	1,660	415	1,910	480
	(48)	(6.6)	(1.6)	(8.2)	(2.0)	(7.1)	(1.8)	(8.5)	(2.1)	(7.4)	(1.8)	(8.5)	(2.1)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending on the application, such as in sustained tensile loading applications.

3. Linear interpolation may be used to determine allowable loads for anchors at intermediate embedment depths and compressive strengths.

4. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

5. Anchors installed flush with face or end of concrete surface.

Ultimate and Allowable Load Capacities for Zamac Hammer-Screw in Hollow Concrete Masonry^{1,2,3,4}

Nominal	Minimum	f´m ≥ 1,500 psi (10.4 MPa)					
Anchor Diameter	Embedment Depth	Ultimat	e Load	Allowable Load			
d	h√	Tension	Shear	Tension	Shear		
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.		
(mm)	(mm)	(kN)	(kN)	(kN)	(KN)		
	5/8	420	1,160	85	230		
	(15.9)	(1.9)	(5.2)	(0.4)	(1.0)		
	3/4	825	1,215	165	245		
	(19.1)	(3.7)	(5.5)	(0.7)	(1.1)		
1/4	1	1,000	1,265	200	255		
	(25.4)	(4.5)	(5.7)	(0.9)	(1.1)		
(6.4)	1-1/8	1,090	1,290	220	260		
	(28.6)	(4.9)	(5.8)	(1.0)	(1.2)		
	1-3/8 (34.9)	1,145 (5.2)	1,345 (6.1)	230 (1.0)	270 (1.2)		
	1-1/2 (38.1)	1,145 (5.2)	1,345 (6.1)	230 (1.0)	270 (1.2)		

1. Tabulated load values are for anchors installed in minimum 6-inch wide, Grade N, Type II, medium and normal-weight and lightweight concrete masonry units. Mortar must be Type N, S or M. Masonry compressive strength must be 1,500 psi minimum at the time of installation. Hollow masonry cells may also be grouted or solid.

2. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

 Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

4. Anchors installed flush with face or end of masonry surface.

Ultimate and Allowable Load Capacities for Zamac-Hammer Screw in Solid Clay Brick Masonry^{1,2,3,4}

Nominal	Minimum	f´m ≥ 1,500 psi (10.4 MPa)					
Anchor Diameter	Embedment Depth	Ultima	te Load	Allowable Load			
d in. (mm)	h√ in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
	5/8 (15.9)	680 (3.1)	1,025 (4.6)	135 (0.6)	205 (0.9)		
	3/4 (19.1)	930 (4.2)	1,200 (5.3)	185 (0.8)	240 (1.1)		
1/4	1 (25.4)	990 (4.5)	1,350 (6.0)	200 (0.9)	270 (1.2)		
(6.4)	1-1/8 (28.6)	1,040 (4.7)	1,350 (6.0)	210 (0.9)	270 (1.2)		
	1-3/8 (34.9)	1,150 (5.2)	1,350 (6.0)	230 (1.0)	270 (1.2)		
	1-1/2 (38.1)	1,260 (5.7)	1,350 (6.0)	250 (1.1)	270 (1.2)		

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

3. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

4. Anchors installed flush with face or end of masonry surface.

DESIGN CRITERIA

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

 $\left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right) \le 1$

Where: ≤ 1 $\begin{array}{l} N_u = \mbox{Applied Service Tension Load} \\ N_n = \mbox{Allowable Tension Load} \end{array}$

 V_u = Applied Service Shear Load V_n = Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 10d$	$F_{\text{NS}} = F_{\text{VS}} = 1.0$	$s_{min} = 5d$	$F_{\text{NS}} = F_{\text{VS}} = 0.50$
Edge Distance (c)	Tension	$c_{cr} = 12d$	$F_{NC} = 1.0$	$c_{min} = 6d$	$F_{\text{NC}} = 0.80$
	Shear	$c_{cr} = 12d$	$F_{VC} = 1.0$	$c_{min} = 6d$	$F_{VC} = 0.50$

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

fechnical guide – Mechanical Anchors ©2018 Dewalt – Rev. A

ORDERING INFORMATION

Mushroom Head with No. 2 Phillips Head Screw

Catalog Number	Anchor Size	Drill Diameter	Standard Box	Standard Carton	Wt./ 100
2839	1/4" x 3/4"	1/4"	100	500	1-1/2
2840	1/4" x 1"	1/4"	100	500	1-3/4
2842	1/4" x 1-1/4"	1/4"	100	500	2-1/4
2844	1/4" x 1-1/2"	1/4"	100	500	2-1/2
2846	1/4" x 2"	1/4"	100	500	3
2848	1/4" x 2-1/4"	1/4"	100	500	3-1/2
2850	1/4" x 3"	1/4"	100	500	4-1/4
The published size incl	udes the diameter and length of the	e anchor measured	from under the shou	ulder of the anchor b	ody.

Master Pack

Catalog Number	Anchor Size	Drill Diameter	Standard Box	Standard Carton	Wt./ 100		
2939	1/4" x 3/4"	1/4"	-	1,000	1-1/2		
2940	1/4" x 1"	1/4"	-	1,000	1-3/4		
2942	1/4" x 1-1/4"	1/4"	-	1,000	2-1/4		
2944	1/4" x 1-1/2"	1/4"	-	1,000	2-1/2		
2946	1/4" x 2"	1/4"	-	1,000	3		
2948	1/4" x 2-1/4"	1/4"	-	1,000	3-1/2		
2949	1/4" x 3"	1/4"	-	1,000	4-1/4		
The published size includes the diameter and length of the anchor measured from under the shoulder of the anchor body.							

s the diameter and length of the anchor measured from under the shoulder of the anchor body. I the p

Mushroom Head with No. 2 Phillips Head Perma-Seal[™] Coated Screw

Catalog Number	Anchor Size	Drill Diameter	Standard Box	Standard Carton	Wt./ 100	
2817	1/4" x 1-1/4"	1/4"	100	500	2-1/4	
2818 (Master Pack) 1/4" x 1-1/4" 1/4" - 1,000 2-1/4						
The published size includes the diameter and length of the anchor measured from under the shoulder of the anchor body						

ZAMAC NAILIN®

Nail Anchor

PRODUCT DESCRIPTION

The Zamac Nailin is a nail drive anchor which has a body formed from Zamac alloy. Drive nails are available in carbon or stainless steel. The anchor can be used in concrete, block, brick or stone.

A corrosion resistant Zamac alloy is used to form the anchor body with either a mushroom or flat head. The anchor can be used for light duty, tamperproof applications. The anchor is not recommend for overhead, life-safety or sustained tensile loading applications (see performance data section).

GENERAL APPLICATIONS AND USES

- Roof Flashing
- Mechanical Attachments
- Brick Ties and Masonry Anchorage
- Furring Strips Electrical Fixtures
- Maintenance

FEATURES AND BENEFITS

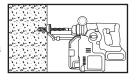
- + General purpose anchoring
- + Installs in a variety of base materials

APPROVALS AND LISTINGS

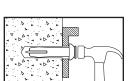
 Federal GSA Specification Meets the proof load requirements of FF-S-325C, Group V, Type 2, Class 3, (superseded) and CID A-A 1925A, Type 1 (mushroom head) & Type 2 (flat head)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors, and 05 05 19 - Post-Installed Concrete Anchors, Anchors shall be Zamac Nailin anchors as supplied by DEWALT. Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.


INSTALLATION AND MATERIAL SPECIFICATIONS

Installation Specifications


	Anchor Diameter, d					
Dimension	3/16" MH	1/4" MH	1/4" FH			
ANSI Drill Bit Size (in.)	3/16	1/4"	1/4"			
Fixture Clearance Hole (in.)	1/4	5/16	5/16			
Head Height (in.)	7/64	9/64	3/16			
Head Width (in.)	13/32	35/64	35/64			
MH = Mushroom Head FH = Flat Head						

Installation Guidelines

Using the proper diameter bit, drill a hole into the base material to a depth of at least 1/4" deeper than the required embedment. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Remove dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Insert the anchor through the fixture and into the drilled hole. Drive the nail into the anchor body to expand it. Be sure the head is seated firmly against the fixture and that the anchor is at the proper embedment. Take care not to overdrive the nail. This anchor is not recommended for installations at an angle or for use overhead.

SECTION CONTENTS

General Information	.373
Installation and	
Material Specifications	.373
Performance Data	.374
Design Criteria	.375
Ordering Information	.375

ZAMAC NAILIN

ANCHOR MATERIALS

Zamac Alloy body with Carbon or Stainless Steel Drive Nail

ANCHOR SIZE RANGE (TYP.)

• 3/16" diameter x 7/8" length to 1/4" diameter x 3" diameter

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Concrete Masonry (CMU)
- Brick Masonry
- Stone

Material Specifications

	Component Material							
Anchor Component	Mushroom Head CS Nail	Flat Head CS Nail	Mushroom Head SS Nail					
Drive Nail	AISI 1018	AISI 1018	Type 304 SS					
Anchor Body	Zamac Alloy Zamac Alloy		Zamac Alloy					
Nail Plating	ASTM B 633, SC1	N/A						
CS = Carbon Steel SS = Stainless Steel								

FECHNICAL GUIDE – MECHANICAL ANCHORS © 2018 DEWALT – REV. A

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Zamac Nailin in Normal-Weight Concrete^{1,2,3,4,5}

		Minimum Concrete Compressive Strength, f 'c											
Nominal Anchor	Min. Embed.	2,000 psi				4,000 psi			6,000 psi				
Diameter	Depth	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear
a in.	ın. (mm)	Ultimate Ibs. (kN)	Allowable lbs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)								
3/16	3/4	285	70	415	105	400	100	560	140	480	120	560	140
	(19)	(1.3)	(0.3)	(1.8)	(0.5)	(1.8)	(0.4)	(2.5)	(0.6)	(2.1)	(0.5)	(2.5)	(0.6)
	5/8	410	105	440	110	580	145	655	165	580	145	655	165
	(16)	(1.8)	(0.5)	(2.0)	(0.5)	(2.6)	(0.6)	(2.9)	(0.7)	(2.6)	(0.6)	(2.9)	(0.7)
1/4	3/4	540	135	600	150	765	190	850	215	800	200	850	215
	(19)	(2.4)	(0.6)	(2.7)	(0.7)	(3.4)	(0.8)	(3.8)	(1.0)	(3.6)	(0.9)	(3.8)	(1.0)
1/4	1	620	155	640	160	875	220	890	225	895	225	890	225
	(25)	(2.8)	(0.7)	(2.8)	(0.7)	(3.9)	(1.0)	(4.0)	(1.0)	(4.0)	(1.0)	(4.0)	(1.0)
	1-1/4	700	175	720	180	990	250	970	245	990	250	990	250
	(32)	(3.1)	(0.8)	(3.2)	(0.8)	(4.4)	(1.1)	(4.3)	(1.1)	(4.4)	(1.1)	(4.4)	(1.1)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

3. Linear interpolation may be used to determine allowable loads for anchors at intermediate embedment depths and compressive strengths.

4. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

5. Anchors installed flush with face or end of concrete surface.

Ultimate and Allowable Load Capacities for Zamac Nailin in Hollow Concrete Masonry^{1,2,3}

Nominal		f´m ≥ 1,500 psi (10.4 MPa)						
Anchor Diameter	Minimum Embedment Depth	Ultimat	ie Load	Allowable Load				
d in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)			
3/16	3/4 (19.1)	270 (1.2)	560 (2.5)	55 (0.2)	110 (0.5)			
1/4	5/8 (15.9) 3/4 (19.1) 1 (25.4)	360 (1.6) 735 (3.3) 835 (3.8)	655 (2.9) 850 (3.8) 890 (4.0)	70 (0.3) 145 (0.7) 165 (0.7)	130 (0.6) 170 (0.8) 180 (0.8)			
	1-1/4 (31.7)	(3.6) 990 (4.4)	970 (4.3)	200 (0.9)	(0.8) 195 (0.9)			

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f⁺m ≥ 1,500 psi). Hollow masonry cells may also be grouted or solid.

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

3. Anchors installed flush with face or end of masonry surface.

Ultimate and Allowable Load Capacities for Zamac Nailin in Solid or Hollow Clay Brick Masonry^{1,2,3}

Nominal		f´m ≥ 1,500 psi (10.4 MPa)						
Anchor	Minimum Embedment Depth	Ultima	te Load	Allowab	le Load			
Diameter d in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)			
3/16	3/4 (19.1)	460 (2.1)	550 (2.5)	90 (0.4)	110 (0.5)			
	5/8 (15.9)	570 (2.6)	750 (3.3)	115 (0.5)	150 (0.7)			
1/4	3/4 (19.1)	790 (3.6)	840 (3.7)	160 (0.7)	170 (0.8)			
1/4	1 (25.4)	820 (3.7)	840 (3.7)	165 (0.7)	170 (0.8)			
	1-1/4 (31.7)	865 (3.9)	840 (3.7)	175 (0.8)	170 (0.8)			

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

3. Anchors installed flush with face or end of masonry surface.

- REV. A

TECHNICAL GUIDE – MECHANICAL ANCHORS ©2018 DEWALT

DESIGN CRITERIA

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

Where:

 $\left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right)$

≤ **1**

 $N_n =$ Allowable Tension Load

 $N_u = \text{Applied Service Tension Load} \qquad V_u = \text{Applied Service Shear Load}$ Vn = Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor		
Spacing (s)	Tension and Shear	s _{cr} = 10d	$F_{\text{NS}} = F_{\text{VS}} = 1.0$	$s_{min} = 5d$	$F_{\text{NS}} = F_{\text{VS}} = 0.50$		
Edge Distnace (c)	Tension	$c_{cr} = 12d$	$F_{NC} = 1.0$	$c_{min} = 6d$	$F_{\text{NC}} = 0.80$		
Euge Distriace (c)	Shear	$c_{cr} = 12d$	$F_{VC} = 1.0$	$c_{min} = 6d$	$F_{VC} = 0.50$		
1 Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear internolation is							

allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

ORDERING INFORMATION

Mushroom Head Zamac Nailin with Carbon Steel Nail

Catalog Number	Anchor Size	Drill Diameter	Standard Box	Standard Carton	Wt./ 100	
2802	3/16" x 7/8"	3/16"	100	500	3/4	
2806	1/4" x 3/4"	1/4"	100	500	1-1/2	
2808	1/4" x 1"	1/4"	100	500	1-3/4	
2814	1/4" x 1-1/4"	1/4"	100	500	2-1/4	
2820	1/4" x 1-1/2"	1/4"	100	500	2-1/2	
2826	1/4" x 2"	1/4"	100	500	3	
2804	1/4" x 3"	1/4"	100	500	4	
The published size includes the diameter and length of the anchor measured from under the shoulder of the anchor body.						

Master Pack Mushroom Head Zamac Nailin with Carbon Steel Nail

Catalog Number	Anchor Size	Drill Diameter	Standard Box	Standard Carton	Wt./ 100	
2803	3/16" x 7/8"	3/16"	-	1,000	3/4	
2807	1/4" x 3/4"	1/4"	-	1,000	1-1/2	
2809	1/4" x 1"	1/4"	-	1,000	1-3/4	
2815	1/4" x 1-1/4"	1/4"	-	1,000	2-1/4	
2821	1/4" x 1-1/2"	1/4"	-	1,000	2-1/2	
2827	1/4" x 2"	1/4"	-	1,000	3	
2805	1/4" x 3"	1/4"	-	1,000	4	
The published size includes the diameter and length of the anchor measured from under the shoulder of the anchor body.						

Flat Head Zamac Nailin with Carbon Steel Nailin

Catalog Number	Anchor Size	Drill Diameter	Standard Box	Standard Carton	Wt./ 100
2836	1/4" x 1-1/2"	1/4"	100	500	2-1/2
2838	1/4" x 2"	1/4"	100	500	3
The published size includes the diameter and length of the anchor measured from under the shoulder of the anchor body.					

Mushroom Head Zamac Nailin with Stainless Steel Nailin

Catalog Number	Anchor Size	Drill Diameter	Standard Box	Standard Carton	Wt./ 100
2858	1/4" x 1"	1/4"	100	500	1-3/4
2864	1/4" x 1-1/4"	1/4"	100	500	2-1/4
2870	1/4' x 1-1/2"	1/4"	100	500	2-1/2
2876	1/4" x 2"	1/4"	100	500	3
The published size includes the diameter and length of the anchor measured from under the shoulder of the anchor body.					

NYLON NAILIN®

Nail Anchor

PRODUCT DESCRIPTION

The Nylon Nailin is a nail drive anchor with a body formed from engineered plastic and drive nails available in carbon and stainless steel. The anchor can be used in concrete, block, brick or stone. The anchor is pre-assembled with either a carbon steel or stainless steel nail. This anchor is not recommended for overhead, life-safety or sustained tensile loading applications.

GENERAL APPLICATIONS AND USES

- Brick Ties and Masonry Anchorage
- Furring Strips
- Electrical Fixtures

- Maintenance
- Copper FlashingAluminum Frames
- FEATURES AND BENEFITS
- + General purpose anchoring
- + Installs in a variety of base materials

APPROVALS AND LISTINGS

 Federal GSA Specification – Meets the proof load requirements of FF-S-325C, Group V, Type 2, Class 4, (superseded) and CID A-A 1925A, Type 3 (mushroom head), Type 4 (flat head) and Type 5 (round head)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Anchors shall be Nylon Nailin anchors as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

I

General Information	.376
Installation and	
Material Specifications	.376
Performance Data	.377
Design Criteria	.377
Ordering Information	.378

MUSHROOM HEAD NYLON NAILIN

ANCHOR MATERIALS

 Nylon Body with Carbon or Stainless Steel Drive Nail

ANCHOR SIZE RANGE (TYP.)

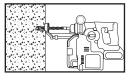
• 3/16" diameter x 1" length to 1/4" diameter x 6" length

SUITABLE BASE MATERIALS

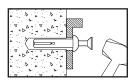
- Normal-Weight Concrete
- Hollow Concrete Masonry
- Brick Masonry
- Stone

INSTALLATION AND MATERIAL SPECIFICATIONS

Installation Specifications


	Anchor Diameter, d							
Dimension		3/16"		1/4"				
	RH	FH	MH	RH	FH	MH		
ANSI Drill Bit Size (in.)	3/16	3/16	3/16	1/4	1/4	1/4		
Fixture Clearance Hole (in.)	1/4	1/4	1/4	5/16	5/16	5/16		
Head Height (in.)	1/8	1/8	1/8	1/8	1/8	1/8		
Head Width (in.)	3/8	3/8	9/16	7/16	7/16	9/16		

Material Specifications


Anchor Component	Round Head	Flat Head	Mushroo	om Head				
	Kouna neaa	riat neau	Carbon	Stainless				
Drive Nail	AISI 1018	AISI 1018	AISI 1018	Type 304 SS				
Anchor Body	Nylon	Nylon	Nylon	Nylon				
Nail Plating	ASTM B 6	ASTM B 633, SC1, Type III (Fe/Zn 5)						

Installation Guidelines

Using the proper diameter bit, drill a hole into the base material to a depth of at least 1/4" deeper than the required embedment. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Remove dust and debris from the hole during (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Insert the anchor through the fixture and into the drilled hole. Drive the nail into the anchor body to expand it. Be sure the head is seated firmly against the fixture and that the anchor is at the proper embedment. Take care not to overdrive the nail. This anchor is not recommended for installations at an angle or for use overhead.

DEWALT ENGINEERED BY "POWERS"

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Nylon Nailin in Normal-Weight Concrete^{1,2,3}

			Minimum Concrete Compressive Strength, f 'c										
Anchor Diameter	Minimum Embed.		2,000 psi			4,000 psi			6,000 psi				
d	Depth	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear
in.	in.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.	Ultimate Ibs.	Allowable lbs.
3/16	3/4	180	45	280	70	195	50	320	80	200	50	320	80
3/10	1	200	50	280	70	220	55	320	80	230	60	320	80
	5/8	120	30	320	80	140	35	500	125	180	45	500	125
	3/4	200	50	320	80	220	55	500	125	240	60	500	125
1/4	1	230	60	320	80	250	65	500	125	260	65	500	125
	1-1/2	240	60	320	80	270	70	500	125	280	70	500	125
	2	250	65	320	80	280	70	500	125	280	70	500	125

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Anchors are not recommended for use overhead or for life safety.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate and Allowable Load Capacities for Nylon Nailin in Hollow Concrete Masonry^{1,2}

Anchor	Minimum		,500 psi			
Diameter	Embedment	Ultima	te Load	Allowable Load		
d Depti in. in.	Depth in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	
3/16	3/4	170	280	35	55	
3/10	1	180	280	35	55	
	5/8	110	320	20	65	
	3/4	160	320	30	65	
1/4	1	170	320	35	65	
	1-1/4	180	320	35	65	
	1-1/2	200	320	40	65	

1. Tabulated load values are for anchors installed in minimum 6-inch wide, Grade N, Type II, medium and normal-weight concrete masonry units. Mortar must be minimum Type N. Masonry compressive strength must be 1,500 psi minimum at the time of installation.

2. Allowable loads are based on average ultimate values using a safety factor of 5.0. Anchors are not recommended for use overhead or for life safety.

Ultimate and Allowable Load Capacities for Nylon Nailin in Solid or Hollow Clay Brick Masonry^{1,2}

Anchor	Minimum					
Diameter Embedment		Ultima	te Load	Allowable Load		
d Depth in. in.		Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.	
3/16	3/4	155	320	30	65	
3/10	1	170	320	35	65	
	5/8	150	500	30	100	
	3/4	200	500	40	100	
1/4	1	220	500	45	100	
	1-1/4	240	500	50	100	
	1-1/2	250	500	50	100	
1. Tabulated load val	lues are for anchors instal	led in Grade SW multiple wythe, solid	brick masonry conforming to ASTM C	62.		

2. Allowable loads are calculated using an applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety.

DESIGN CRITERIA

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right) \le 1$$

 $\begin{array}{ll} \mbox{Where:} & N_u = \mbox{Applied Service Tension Load} \\ N_n = \mbox{Allowable Tension Load} \end{array}$

 V_u = Applied Service Shear Load V_n = Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances in Normal-Weight Concrete¹

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{cr} = 10d$	$F_N=F_V=1.0$	$s_{min} = 5d$	$F_N=F_V=0.50$
Edgo Diatanoo (o)	Tension	c _{cr} = 12d	Fn = 1.0	$C_{min} = 5d$	Fn = 0.80
Edge Distance (c)	Shear	$c_{cr} = 12d$	$F_{v} = 1.0$	$c_{min} = 5d$	$F_{V} = 0.50$
1 Allowable load values foun	d in the performance data tables :	ra multiplied by reduction factors	when anchor spacing or odge di	stancos ara loss than critical dista	nege Linger interpolation is

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

ECHANICAL

ANCHORS

NYLON NAILIN®

ORDERING INFORMATION

Round Head Nylon Nailin with Carbon Steel Nail

Catalog Number	Anchor Size	Drill Dia.	Std. Box	Std. Carton	Wt./100
2431	3/16" x 1	3/16"	100	1,000	1/2
2451	3/16" x 1-1/2"	3/16"	100	1,000	3/4
2521	1/4" x 1"	1/4"	100	1,000	3/4
2541	1/4" x 1-1/2"	1/4"	100	1,000	1
2561	1/4" x 2"	1/4"	100	1,000	1

Flat Head Nylon Nailin with Carbon Steel Nail

Catalog Number	Anchor Size	Drill Dia.	Std. Box	Std.Carton	Wt./100
2432	3/16" x 1"	3/16"	100	1,000	1/2
2452	3/16" x 1-1/2"	3/16"	100	1,000	3/4
2522	1/4" x 1"	1/4"	100	1,000	3/4
2542	1/4" x 1-1/2"	1/4"	100	1,000	1
2562	1/4" x 2"	1/4"	100	1,000	1

Mushroom Head Nylon Nailin

Catalog	Number	Anchor Size Drill Diameter Std. Box		Std.Carton	Wt./100	
Carbon	Stainless	Anchor Size	Driii Diameter	Sta. Dox	Stalgarton	WL/100
2433	-	3/16" x 1"	3/16"	100	1,000	1/2
2513	-	1/4" x 3/4"	1/4"	100	1,000	1/2
2523	2528	1/4" x 1"	1/4"	100	1,000	3/4
2543	2548	1/4" x 1-1/2"	1/4"	100	1,000	1
2563	-	1/4" x 2"	1/4"	100	1,000	1
2573	-	1/4" x 3"	1/4"	100	1,000	2-1/4
2583	-	1/4" x 4"	1/4"	100	1,000	2-3/4
2593	_	1/4" x 6"	1/4"	100	400	4

Mushroom Head Bodies Only

Catalog Number Anchor Size Drill Dia. Std. Box Std.Carton Wt./100
74 1/4" x 3" 1/4" 2500 2500 1/2

SAFE-T PIN[™]

Nail Anchor

PRODUCT DESCRIPTION

The Safe-T Pin is a small-steel nail anchor which is designed for use in a variety of applications and as an improved alternative to traditional zamac nailin anchors where overhead use is not recommended. The Safe-T Pin can be used pre-drilled holes in solid base materials such as concrete, grouted block, and brick.

GENERAL APPLICATIONS AND USES

- Electrical fixtures
- HVAC / Mechanical
- Signage
- Drywall track
- Maintenance
- Interior applications / low level corrosion environment
- FEATURES AND BENEFITS
- + General purpose anchoring
- + Installs in a variety of solid base materials
- + Suitable for overhead use where specified
- + All-steel anchor components

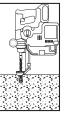
APPROVALS AND LISTINGS

- Tested in accordance with ASTM E 488
- Tested in accordance with ICC-ES AC193 for use in structural concrete

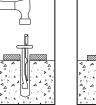
GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Anchors shall be Safe-T Pin anchors as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS


Anchor component	Specification				
Anchor body	Low carbon steel (AISI 1008 or equivalent)				
Zinc plating according to ASTM B 633 SC1, Type III. Minimum plating requirement for Mild Service Condition					

INSTALLATION SPECIFICATIONS


Anchor Property /	Notation	Units	Nominal Ancho	or Size, d (inch)	
Setting Information	Notation	Units	1/4		
Nominal outside anchor diameter	do	in.	0.250		
Safe-T Pin drill bit diameter	d _{bit}	mm	6		
Safe-T Pin bit tolerance range	-	mm	5.9 to 6.4		
Nominal Embedment	h _{nom}	in.	1-3/16	2-1/2	
Minimum hole depth	h₀	in.	1-1/2	2-3/4	
Minimum concrete member thickness	h _{min}	in.	3	4	
Minimum edge distance	Cmin	in.	3-1/2 3-1/2		
Minimum spacing distance	Smin	in.	3-1/2	3-1/2	

Installation Guidelines

Using the proper Safe-T Pin drill bit size, drill a hole into the base material to the required depth. The tolerances of the Safe-T Pin bit used must meet the requirements of the published range. Remove dust and debris from the hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

Insert the anchor through the fixture. Drive the anchor pin into the anchor body to expand it. Be sure the head is seated firmly against the fixture and that the anchor is at the minimum required embedment.

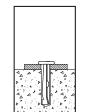
Material Specifications379

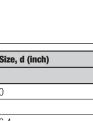
Performance Data......380

ANCHOR MATERIALS

SECTION CONTENTS

• Zinc Plated Carbon Steel


ANCHOR SIZE RANGE (TYP.)


- 1/4" diameter (6mm) x 1-3/8" length
- 1/4" diameter (6mm) x 2-1/2" length

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Structural Sand-lightweight Concrete
- Grout-filled Concrete Masonry
- Brick Masonry

Ultimate Load Capacities for Safe-T Pin in Normal-Weight Concrete^{1,2,3,4}

		Minimum	Minimum Concrete Compressive Strength		Minimum Concrete Compressive			
Nominal Anchor Diameter	Nominal Drill Bit Diameter	Embedment	Embedment f'c = 3,000 psi					
in.	(mm)	Depth in.	Tension Ibs.	Shear Ibs.				
1/4	6	1-3/16	1,330	1,745				
1. Tabulated load values are for a	1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.							
2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.								
3. The tabulated load values are a	pplicable to single anchors in uncra	acked concrete.						
4								

4. Minimum spacing and edge distances for anchors is 4 inches.

Ultimate Load Capacities for Safe-T Pin in Grouted-filled Concrete Masonry^{1,2,3}

	Minimum		Compressive Strength	
Nominal Anchor Diameter	Nominal Drill Bit Diameter	Embedment	f'm = 1,500 psi	
in.	(mm)	Depth in. Tension lbs.	Shear Ibs.	
1/4	6	1-3/16	920	1,745
1. Tabulated load values are for an	nchors installed in minimum 6-inch	wide, minimum Grade N, Type II, I	iahtweight, medium-weight or normal-weight o	concrete masonry units conforming to ASTM

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. Minimum spacing and edge distances for anchors is 4 inches.

Ultimate Load Capacities for Safe-T Pin in Solid Clay Brick Masonry^{1,2,3}

		Minimum	Minimum Concrete C	Compressive Strength	
Nominal Anchor Diameter	Nominal Drill Bit Diameter	Embedment	f'm = 1,500 psi		
in.	(mm)	Depth in.	Tension Ibs.	Shear Ibs.	
1/4	6	1-3/16	1,100	1,745	

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. Ultimate load capacities must be reduced by a minimum safety factor of 5.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

3. Minimum spacing and edge distances for anchors is 4 inches.

ORDERING INFORMATION

Safe-T Pin

Cat. No.	Size	Std. Box ¹	Std. Ctn.
2800SD	1/4" (6mm) x 1-3/8"	100	600
2801SD	1/4" (6mm) x 2-1/2"	100	600

Drill Bit

Cat. No.	Size	Std. Box ¹	Std. Ctn.	
2800	6 mm Drill Bit	1	50	

_		
0	_	

HELI-PIN[™]

Helical Facade Anchor

PRODUCT DESCRIPTION

The Heli-Pin anchor is a one-piece stainless steel helical wall tie system used for anchoring existing brick veneers to the back-up structural members without exposing hardware. The helical design allows the tie to be driven quickly and easily into a predrilled pilot hole with a Heli-Pin setting tool and a roto-hammer drill (or embedded into mortar joints in new construction) to provide a reliable mechanical connection between a masonry façade and its backup material or between multiple wythes of brick.

Existing façades constructed of various masonry materials can be reattached and reinforced using the Heli-Pin. They are ideal for stabilizing areas with missing or corroded wall ties as well as retrofits to multiple width masonry wall sections. Heli-Pin anchor performs in concrete and masonry as well as wood and steel studs.

GENERAL APPLICATIONS AND USES

- Mechanical connections between a masonry façade and its backup material
- Replace missing or corroded wall ties
- Used in new construction by being embedded into the mortar joint

FEATURES AND BENEFITS

- + Virtually invisible repairs to masonry building facades
- + Ease and speed of installation with a roto-hammer and available setting tool
- + Made of corrosion resistant stainless steel
- + Helical shaped tie is both tension and compression resistant, and provides solid connection with the base material.
- + Variety of lengths and diameters, for a broad range of applications
- + Reinforced central core for high shaft strength

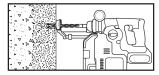
APPROVALS AND LISTINGS

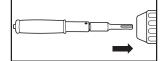
Tested in accordance with CSA A370

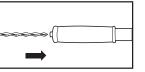
GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors and 04 05 19.16 - Masonry Anchors. Anchors shall be Heli-Pin as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

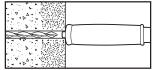
INSTALLATION AND MATERIAL SPECIFICATIONS


Material Specifications


Anchor Component	Component Material	
Anchor Body	Type 304 Stainless Steel	


Installation Procedure

Using a proper diameter bit drill a pilot hole through façade material into backup base material to a depth at least 1/4 deeper than the embedment required.


Mount installation tool on a rotary hammer drill. Position the Heli-Pin in the installation tool and insert into the pilot hole.

Drive the pin until it is about 1/2" below the surface of the façade material (setting tool should be flush with face of base material). Patch hole with appropriate material.

SECTION CONTENTS

General Information	381
Installation and	
Material Specifications	.381
Performance Data	382
Ordering Information	382

HELI-PIN

ANCHOR MATERIALS

Type 304 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

• 8mm (5/16") x 6" to 12"

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Grouted Concrete Masonry (CMU)
- Hollow Concrete Masonry (CMU)
- Brick Masonry
- Wood Studs
- Metal Studs
- Natural Stone

Typical Performance Characteristics for 8mm Heli-Pin¹

Material	Minimum Effective Embedment Depth her in.	Ultimate Tension/Compression Ibs.
Mortar Joint	3	700
Brick (solid)	3-5/8	700
Brick (cavity)	3-5/8	1200
Hollow CMU 6 (normal wt. CMU)	1	800
Grouted CMU (lightweight block)	2	550
Concrete	1-1/4	1200
2x4 Wood Stud	3	520
2x6 Wood Stud	3	520
Metal Stud	16 gauge	300
Granite	1-1/8	500
Travertine	7/8	500
Limestone	3	600
1. The data reflects the results of lab, field and in-house testi	ng and provided as a guideline for the designers. Site testing is sugg	jested for verification of load carrying capacity.

8mm Heli-Pin Masonry Bit Size

Facade Material	Holi Din	Back-up Base Material						
	Heli-Pin	Mortar Joint	Brick	Hollow CMU	Solid CMU	Concrete	Wood Stud	Metal Stud
Mortar Joint	8mm	3/16"	1/4"	3/16"	3/16"	1/4"	3/16"	3/16"
Brick	8mm	1/4"	1/4"	1/4"	1/4"	1/4"	5/16"	1/4"
Hollow CMU	8mm	3/16"	1/4"	3/16"	3/16"	1/4"	3/16"	3/16"
Solid CMU	8mm	3/16"	1/4"	3/16"	3/16"	1/4"	3/16"	3/16"
Precast Concrete	8mm	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"

8mm Heli-Pin Length Selection

	Minimum Drilled Hole	Cavity Range		
Nominal length	th Depth CMU in. (Hollow or Solid)		Concrete	
6"	6-5/8	0 to 1"	0 to 1-1/2"	
8"	8-5/8	0 to 3"	1-1/2" to 3-1/2"	
10"	10-5/8	0 to 5"	3-1/2" to 5-1/2"	

ORDERING INFORMATION

Heli-Pin Anchors

Catalog Number	Description	Standard Box	Standard Carton
08341	Heli-Pin Anchor 8mm (5/16") x 6"	100	1000
08342	Heli-Pin Anchor 8mm (5/16") x 8"	100	1000
08343	Heli-Pin Anchor 8mm (5/16") x 10"	100	1000
08344	Heli-Pin Anchor 8mm (5/16") x 12"	50	500

Heli-Pin Setting Tool

Catalog Number	Description	Standard Box	Standard Carton							
08345	Heli-Pin Setting Tool	1	12							
Essential for correct installation of Heli-Pins. The tool will automatically counter-sink the Heli-Pin, allowing for fast, efficient installation.										

