

GENERAL INFORMATION

POWER-BOLT®+

Heavy Duty Sleeve Anchor

PRODUCT DESCRIPTION

The Power-Bolt+ anchor is a torque controlled, heavy duty sleeve style anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete and lightweight concrete. The anchor is manufactured with a zinc plated carbon steel bolt, sleeve, cone and expansion clip. The Power-Bolt+ has a low profile finished hex head and a full size thick bearing sleeve to provide increased capacity in shear connections.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Cracked concrete / tension zone applications
- Seismic Attachments (SDC A F)
- Conveyors and Material Handling
- Base Plates and Racking
- Guards, Bumpers and Barriers
- Mounting Machinery

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Anchor design allows for follow-up expansion after setting under tensile loading
- + Drill bit size is the same as the nominal anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + High shear load capacity
- + Low profile finished hex bolt head
- + DEWALT dust removal drilling system (with HEPA dust extractor) can be used for an OSHA 1926.1153 Table 1 compliant solution

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3260 for cracked and uncracked concrete; code complaint with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ACI 355.2/ASTM E488 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor category 1 for 1/2" to 3/4" sizes)
- City of Los Angeles, LABC Supplement (within ESR-3260)

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchoring and 05 05 19 - Post-Installed Concrete Anchors Expansion anchors shall be Power-Bolt+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel Hex Head
Internal bolt	SAE Grade 8 equivalent (fy ≥ 130,000 psi)
Washer	Carbon steel, ASTM F844; meets dimensional requirements of ANSI B18.22.2, Type A Plain
Extension sleeve	Carbon Steel
Expansion clip	Carbon steel
Compression ring / Retention nut	Engineered plastic (Nylon)
Zinc plating	ASTM B633, SC1, Type III (Fe/Zn 5) – Mild service condition

SECTION CONTENTS

General Information	1
Material Specifications	1
Installation Specifications	2
Installation Instructions	2
Performance Data (ASD)	3
Strength Design Information	5
Design Strength Tables (SD)	8
Ordering Information	9

POWER-BOLT+ ASSEMBLY

HEAD STYLES

Finished Hex Head

ANCHOR MATERIALS

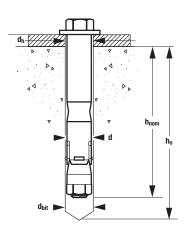
 Zinc plated carbon steel bolt, washer, cone, sleeve, and expansion clip; assembled with a plastic compression ring and retainer nut

ANCHOR SIZE RANGE (TYP.)

• 1/4" through 3/4" diameters

SUITABLE BASE MATERIALS

- · Normal-weight concrete
- Lightweight concrete



INSTALLATION SPECIFICATIONS

Power-Bolt+ Anchor Installation Specifications

Anchor Property/Setting	Notation			Nominal	Anchor Diam	eter (in.)	
Information	Notation	Units	1/4	3/8	1/2	5/8	3/4
Anchor outside diameter	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Internal Bolt Diameter (UNC)	-	in. (mm)	#8 (4)	1/4 (6.4)	3/8 (9.5)	7/16 (11.1)	9/16 (14.3)
Nominal drill bit diameter (ANSI)	dbit	in.	1/4	3/8	1/2	5/8	3/4
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (8)	7/16 (11)	9/16 (14)	11/16 (17)	13/16 (21)
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-1/4 (32)	1-5/8 (41)	2-1/2 (64)	2-3/4 (70)	3 (76.2)
Minimum hole depth	h₀	in. (mm)	h _{nom} + 1/4 (6)		h _{nom} + 3/8 (10)	h _{nom} -	+ 1/2 (13)
Minimum member thickness	h _{min}	in. (mm)	3-1/2 (89)	4-1/2 (114)	5 (127)	6-1/2 (165)	7 (178)
Minimum edge distance	Cmin	in. (mm)	1-3/4 (44)	2-3/4 (70)	3-1/4 (83)	4-1/2 (114)	6 (152)
Minimum spacing distance	S _{min}	in. (mm)	2 (51)	3-1/2 (89)	4-1/2 (114)	6 (152)	5 (127)
Installation torque	T _{inst}	ftlbf. (N-m)	4 (5)	20 (27)	40 (54)	60 (81)	110 (149)
Torque wrench/socket size	-	in.	3/8	1/2	5/8	3/4	15/16
Bolt Head Height	-	in. (mm)	1/8 (3)	13/64 (5)	9/32 (7)	5/16 (8)	3/8 (10)
Washer O.D.	-	in.	7/16	47/64	1	1-1/4	1-15/32

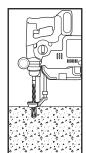
Head Marking

Legend

'PB+' Symbol = Power-Bolt+ Strength Design Compliant (see ordering information)

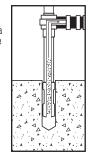
Letter Code = Length Identification Mark

Compression Ring Cone Retention Nut Bolt Washer Sleeve Expansion Wedge (Clip)

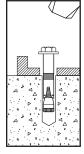

Length Identification

Mark	A	В	C	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	R
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"
Up to but not including	buit not 2" 2-1/2" 3" 3-1/2" 4" 4-1/2" 5" 5-1/2" 6" 6-1/2" 7" 7-1/2" 8" 8-1/2" 9" 9-1/2" 10" 11"																	
Length ident	Length identification mark indicates the length of the anchor measured from under the washer to the end of the anchor.																	

INSTALLATION INSTRUCTIONS

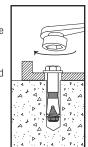

Step 1

Installation Instructions for Power-Bolt+ Anchor


Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used

should meet the requirements of ANSI Standard B212.15.

Step 2


Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling. Ensure the cone is snug and uniformly under the expansion wedge (clip) with the clip fingers overlapping the anchor cone, prior to installation using the retention nut (see photo below).

Power-Bolt+ Anchor Assembly

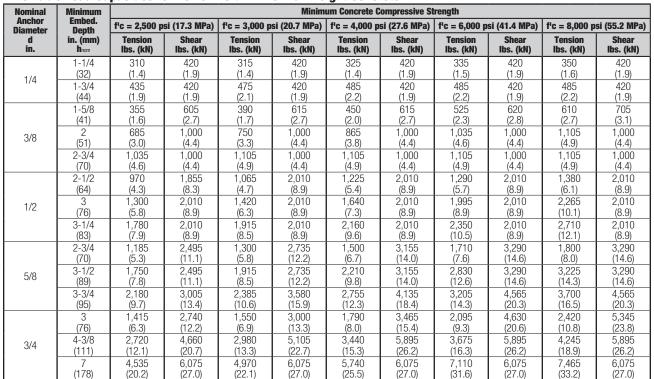
Step 3 Drive anchor through the fixture

into the hole. Be sure the anchor is driven to the minimum required embedment depth, h_{nom} .

Step 4

Tighten the anchor with a torque wrench by applying the required installation torque, Tinst.

ASD


PERFORMANCE DATA (ASD)

Ultimate Load Capacities for Power-Bolt+ in Normal-Weight Concrete^{1,2}

Nominal	Minimum				Minim	um Concrete C	Compressive St	rength			
Anchor Diameter	Embed. Depth	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)	f'c = 8,000 p	si (55.2 MPa)
d in.	in. (mm)	Tension lbs. (kN)	Shear lbs. (kN)								
	1-1/4	1,245	1,670	1,260	1,670	1,290	1,670	1,345	1,670	1,397	1,670
1/4	(32)	(5.5)	(7.4)	(5.6)	(7.4)	(5.7)	(7.4)	(6.0)	(7.4)	(6.2)	(7.4)
1/4	1-3/4	1,740	1,670	1,905	1,670	1,945	1,670	1,945	1,670	1,945	1,670
	(44)	(7.7)	(7.4)	(8.5)	(7.4)	(8.7)	(7.4)	(8.7)	(7.4)	(8.7)	(7.4)
	1-5/8	1,420	2,420	1,555	2,460	1,795	2,460	2,105	2,470	2,430	2,810
	(41)	(6.3)	(10.8)	(6.9)	(10.9)	(8.0)	(10.9)	(9.4)	(11.0)	(10.8)	(12.5)
3/8	2	2,740	3,990	3,000	3,990	3,465	3,990	4,140	3,990	4,425	3,990
3/0	(51)	(12.2)	(17.7)	(13.3)	(17.7)	(15.4)	(17.7)	(18.4)	(17.7)	(19.7)	(17.7)
	2-3/4	4,130	3,990	4,425	3,990	4,425	3,990	4,425	3,990	4,425	3,990
	(70)	(18.4)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)	(19.7)	(17.7)
	2-1/2	3,880	7,420	4,250	8,030	4,905	8,030	5,150	8,030	5,518	8,030
	(64)	(17.3)	(33.0)	(18.9)	(35.7)	(21.8)	(35.7)	(22.9)	(35.7)	(24.5)	(35.7)
1/2	3	5,190	8,030	5,685	8,030	6,560	8,030	7,985	8,030	9,065	8,030
1/2	(76)	(23.1)	(35.7)	(25.3)	(35.7)	(29.2)	(35.7)	(35.5)	(35.7)	(40.3)	(35.7)
	3-1/4	7,120	8,030	7,660	8,030	8,645	8,030	9,400	8,030	10,835	8,030
	(83)	(31.7)	(35.7)	(34.1)	(35.7)	(38.5)	(35.7)	(41.8)	(35.7)	(48.2)	(35.7)
	2-3/4	4,745	9,975	5,195	10,930	6,000	12,620	6,845	13,155	7,200	13,155
	(70)	(21.1)	(44.4)	(23.1)	(48.6)	(26.7)	(56.1)	(30.4)	(58.5)	(32.0)	(58.5)
5/8	3-1/2	6,995	9,975	7,660	10,930	8,845	12,620	11,325	13,155	12,900	13,155
3/0	(89)	(31.1)	(44.4)	(34.1)	(48.6)	(39.3)	(56.1)	(50.4)	(58.5)	(57.4)	(58.5)
	3-3/4	8,710	12,015	9,545	14,320	11,020	16,535	12,820	18,250	14,800	18,250
	(95)	(38.7)	(53.4)	(42.5)	(63.7)	(49.0)	(73.6)	(57.0)	(81.2)	(65.8)	(81.2)
	3	5,655	10,950	6,195	11,995	7,155	13,850	8,385	18,510	9,685	21,370
	(76)	(25.2)	(48.7)	(27.6)	(53.4)	(31.8)	(61.6)	(37.3)	(82.3)	(43.1)	(95.1)
3/4	4-3/8	10,870	18,635	11,910	20,415	13,750	23,575	14,705	23,575	16,975	23,575
3/4	(111)	(48.4)	(82.9)	(53.0)	(90.8)	(61.2)	(104.9)	(65.4)	(104.9)	(75.5)	(104.9)
	7	18,145	24,290	19,880	24,290	22,955	24,290	28,445	24,290	29,863	24,290
	(178)	(80.7)	(108.0)	(88.4)	(108.0)	(102.1)	(108.0)	(126.5)	(108.0)	(132.8)	(108.0)

^{1.} The tabulated load values are applicable to single anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive strength must be at the specified minimum at the time of installation

Allowable Load Capacities for Power-Bolt+ in Normal-Weight Concrete^{1,2,3}

^{1.} Allowable load capacities listed are calculated using an applied safety factor of 4.0.

^{2.} Ultimate load capacities must reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads

^{2.} Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

^{3.} Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Load Adjustment Factors for Normal-Weight Concrete

Spacing Reduction Factors - Tension (FNS)

Spacing neur	Spacing neulicion ractors - Tension (FNS)											
Diameter (in)		1/4	3/8	1/2	5/8	3/4						
Nominal Embedmen	nt h _{nom} (in)	1-1/4	2	2-1/2	2-3/4	3						
Minimum Spacing s	Smin (in)	2	3-1/2	4-1/2	6	5						
	2	0.78	-	-	-	-						
	2-1/2	0.82	-	-	-	-						
	3	0.87	-	-	-	-						
	3-1/2	0.91	0.80	-	-	-						
	4	0.96	0.83	-	-	-						
	4-1/2	1-1/2 1.00 0.8		0.83	-	-						
Spacing Distance (inches)	5	1.00	0.89	0.85	-	0.77						
j.	5-1/2	1.00	0.92	0.88	-	0.79						
l ge	6	1.00	0.95	0.91	0.85	0.81						
Dist	6-1/2	1.00	0.98	0.93	0.87	0.83						
ē	7	1.00	1.00	0.96	0.90	0.85						
bac	7-1/2	1.00	1.00	0.98	0.92	0.87						
, o	8	1.00	1.00	1.00	0.95	0.89						
	8-1/2	1.00	1.00	1.00	0.97	0.92						
	9	1.00	1.00	1.00	1.00	0.94						
	9-1/2	1.00	1.00	1.00	1.00	0.96						
	10	1.00	1.00	1.00	1.00	0.98						
	10-1/2	1.00	1.00	1.00	1.00	1.00						

Edge Distance Reduction Factors - Tension (F_{NC})

Diameter (in)	, iioaaoti	1/4	3/8	1/2	5/8	3/4
Nominal Embedmer	nt h _{nom} (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Edge Dista	nce Cmin (in)	1-3/4	2-3/4	3-1/4	4-1/2	6
	1-3/4	0.39	-	-	-	-
	2	0.44	-	-	-	-
	2-1/2	0.56	-	-	-	-
	3	0.67	0.46	-	-	-
<u> </u>	3-1/4	0.72	0.50	0.41	-	-
"	3-1/2	0.78	0.54	0.44	-	-
Edge Distance (inches)	4	0.89	0.62	0.50	-	-
ance	4-1/2	1.00	0.69	0.56	0.75	-
Dist	5	1.00	0.77	0.63	0.83	-
age dge	5-1/2	1.00	0.85	0.69	0.92	-
<u> </u>	6	1.00	0.92	0.75	1.00	0.75
	6-1/2	1.00	1.00	0.81	1.00	0.81
	7	1.00	1.00	0.88	1.00	0.88
	7-1/2	1.00	1.00	0.94	1.00	0.94
	8	1.00	1.00	1.00	1.00	1.00

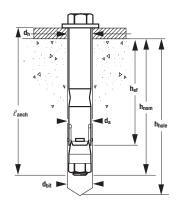
Spacing Reduction Factors - Shear (Fvs)

Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nominal Embedme	ent hoom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Spacin	g Smin (in)	2	3-1/2	4-1/2	6	5
	2	0.86	-	-	-	-
	2-1/2	0.89	-	-	-	-
	3	0.92	-	-	-	-
	3-1/2	0.94	0.88	-	-	-
	4	0.97	0.90	-	-	-
_	4-1/2	1.00	0.91	0.89	-	-
Spacing Distance (inches)	5	1.00	0.93	0.91	-	0.84
<u>i</u>	5-1/2	1.00	0.95	0.93	-	0.86
auce	6	1.00	0.97	0.94	0.89	0.87
Dista	6-1/2	1.00	0.99	0.96	0.91	0.88
iii B	7	1.00	1.00	0.97	0.93	0.90
Spac	7-1/2	1.00	1.00	0.99	0.94	0.91
•	8	1.00	1.00	1.00	0.96	0.93
	8-1/2	1.00	1.00	1.00	0.98	0.94
	9	1.00	1.00	1.00	1.00	0.96
	9-1/2	1.00	1.00	1.00	1.00	0.97
	10	1.00	1.00	1.00	1.00	0.99
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors - Shear (F_{VC})

Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nominal Embedme	ent hoom (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Edge Dista	nce c _{min} (in)	1-3/4	2-3/4	3-1/4	4-1/2	6
	1-3/4	0.39	-	-	-	-
	2	0.44	-	-	-	-
	2-1/2	0.56	-	-	-	-
	3	0.67	0.44	-	-	-
	3-1/4	0.72	0.48	0.41	-	-
	3-1/2	0.78	0.52	0.44	-	-
	4	0.89	0.59	0.51	-	-
(Sa	4-1/2	1.00	0.67	0.57	0.50	-
Edge Distance (inches)	5	1.00	0.74	0.63	0.56	-
) 90	5-1/2	1.00	0.81	0.70	0.61	-
stan	6	1.00	0.89	0.76	0.67	0.57
e Di	6-1/2	1.00	0.96	0.83	0.72	0.62
Edg	7	1.00	1.00	0.89	0.78	0.67
	7-1/2	1.00	1.00	0.95	0.83	0.71
	8	1.00	1.00	1.00	0.89	0.76
	8-1/2	1.00	1.00	1.00	0.94	0.81
	9	1.00	1.00	1.00	1.00	0.86
	9-1/2	1.00	1.00	1.00	1.00	0.90
	10	1.00	1.00	1.00	1.00	0.95
	10-1/2	1.00	1.00	1.00	1.00	1.00

STRENGTH DESIGN INFORMATION


Power-Bolt+ Anchor Installation Specifications in Concrete and Supplemental Information 1

Anchor Prevents (C	tting Information	Notation	Units		Nominal Anchor Diameter (in.)							
Anchor Property/Se	tting information	Notation	Units	1/2	5/8	3/	4					
Anchor outside diame	ter	Cla	in. (mm)	0.500 (12.7)	0.625 (15.9)	0.7 (19						
Internal bolt diameter	(UNC)	-	in. (mm)	3/8 (9.5)	7/16 (11.1)	9/ ⁻ (14	16 .3)					
Minimum diameter of hole clearance in fixtu		d _h	in. (mm)	9/16 (14.3)	11/16 (17.5)	13/ (21						
Nominal drill bit diame	eter (ANSI)	d _{bit}	in.	1/2	5/8	3/	4					
Minimum nominal embedment depth		h _{nom}	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3 (11						
Effective embedment		hef	in. (mm)	2-5/8 (67)	3 (76)	3-1 (8)						
Minimum hole depth		h _{hole}	in. (mm)	3-3/4 (95)	4-1/4 (108)	5 (12	5 27)					
Minimum member thi	ckness	h _{min}	in. (mm)	5 (127)	6-1/2 (165)	7 (17						
Minimum overall anch	nor length²	Eanch	in. (mm)	3-1/2 (89)	4 (102)	4-1 (11						
Minimum edge distan	ce	C _{min}	in. (mm)	3-1/4 (83)	4-1/2 (114)	6 (152)	8 (203)					
Minimum spacing dist	tance	Smin	in. (mm)	4-1/2 (114)	6 (152)	6 (152)	5 (127)					
Installation torque		Tinst	ftlbf. (N-m)	40 (54)	60 (81)	11 (14						
Bolt Head Height		-	in. (mm)	9/32 (7.1)	5/16 (7.9)	3/ (9.						
Torque wrench/socke	t size	-	in.	5/8	3/4	15/	16					
Washer O.D.		-	in.	1	1-1/4	1-15	5/32					
Minimum specified yie	eld strength	fy	psi (N/mm²)	130,000 (896)	130,000 (896)	130,						
Minimum specified ult strength ⁸	timate tensile	f _{uta}	psi (N/mm²)	150,000 (1,034)	150,000 (1,034)	150, (1,0						
Effective tensile stress (internal bolt threads)	s area	A _{se, N}	in² (mm²)	0.0775 (50)	0.1063 (68.6)	0.18 (117						
Effective shear stress (internal bolt shank)	area	A _{se, v}	in² (mm²)	0.1069 (69)	0.1452 (93.7)	0.2 ⁴ (153						
Mean axial stiffness ⁴	Uncracked concrete	$eta_{ ext{uncr}}$	lbf/in. (kN/mm)	366,000 (63)	871,000 (150)	256, (4						
iviean axiai suiiness*	Cracked concrete	$oldsymbol{eta}_{ ext{cr}}$	lbf/in. (kN/mm)	64,000 (11)	94,000 (16)	27,0 (5						

For SI:1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D.
- 2. The listed minimum overall anchor length is based on anchor sizes available at the time of publication compared with the requirements for the minimum nominal embedment depth and fixture attachment. The actual minimum anchor length must be determined by the taking the selected nominal embedment depth (e.g. required to obtain desired load capacity) and adding the thickness of the fixture, including any spacers or shims.
- 3. The maximum fixture thickness, t_{max} for selected anchors can be determined by taking the length of the selected anchor and subtracting the nominal embedment into the base material.
- 4. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

Power-Bolt+ Anchor Detail

Tension Design information for Power-Bolt+ Anchor in Concrete

Decium Chowastovistic	Notation	Units		Nominal Anchor Diameter					
Design Characteristic	Notation	Units	1/2	5/8	3/4				
Anchor category	1,2 or 3	-	1	1	1				
Nominal embedment depth	h _{nom}	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)				
Effective embedment	h _{ef}	in. (mm)	2.625 (67)	3.00 (76)	3.50 (89)				
STEEL STRENGTH IN TENS	ION (ACI 318	-19 17.6.1, A	CI 318-14 17.4.1 or ACI 31	8-11 D.5.1) ⁴					
Steel strength in tension	Nsa	lb (kN)	9,685 (43.1)	13,285 (59.1)	27,300 (121.4)				
Reduction factor for steel strength ³	φ	-	0.	75	0.65				
CONCRETE BREAKOUT STRENGTH IN TENSION (ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 D.5.2)									
Effectiveness factor for uncracked concrete	Kucr	-	27	27	24				
Effectiveness factor for cracked concrete	k _{cr}	-	17	17	17				
Modification factor for cracked and uncracked concrete⁵	$\psi_{\scriptscriptstyle{c,N}}$	-	1.0	1.0	1.0				
Critical edge distance (uncracked concrete only)	Cac	in. (mm)	8 (203)	6 (152)	8 (203)				
Reduction factor for concrete breakout strength ⁴	φ	-		0.65 (Condition B)					
PULLOUT STRENGTH IN TEN	SION (ACI 31	8-19 17.6.3,	ACI 318-14 17.4.3 or ACI 3	18-11 D.5.3) ⁷					
Characteristic pullout strength, uncracked concrete (2,500 psi)	N _{p,uncr}	lb (kN)	Not Applicable ⁶	Not Applicable ⁶	Not Applicable ⁶				
Characteristic pullout strength, cracked concrete (2,500 psi)	$N_{p,cr}$	lb (kN)	Not Applicable ⁶	Not Applicable ⁶	Not Applicable ⁶				
Reduction factor for pullout strength	φ	-		0.65 (Condition B)					
PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS (ACI 318-19 17.10.3, ACI 318-14 17.2.3.3 or ACI 318-11 D.3.3.3)									
Characteristic pullout strength, seismic (2,500 psi)	N _{p,eq}	lb (kN)	Not Applicable ⁶	Not Applicable ⁶	Not Applicable ⁶				
Reduction factor for pullout strength	φ	-		0.65 (Condition B)					

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

- 1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.
- 2. Installation must comply with the manufacturer's published installation instructions.
- 3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3. The anchors are ductile steel elements as defined in ACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable, except for the 3/4-inch-diameter, which is considered a brittle steel element for the purposes of design.
- 4. The tabulated value of φ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition A are satisfied, the appropriate value of φ for concrete breakout strength must be determined in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.4.
 ACI 318-11 D.4.4.
- 5. For all design cases use $\Psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (ker) or uncracked concrete (kumar) must be used.
- 6. Pullout strength does not control design and does not need to be calculated for indicated size and embedment.
- 7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8λ is applied to all values of $\sqrt{f'c}$ affecting N_a and V_b . λ shall be determined in accordance with the corresponding version of ACI 318.
- 8. In accordance with ACI 318-19 17.6.1.2 and Eq. 17.6.1.1, ACI 318-14 17.4.1.2 and Eq. 17.4.1.2 or ACI 318-11 D.5.1.2 and Eq. D-2, as applicable, the nominal steel strength in tension is calculated using a limited value of futa of 125 ksi.

Shear Design information for Power-Bolt+ Anchor in Concrete

Decision Characteristic	Notation	Units		Nominal Anchor Diameter					
Design Characteristic	Notation	Units	1/2	5/8	3/4				
Anchor category	1, 2 or 3	-	1	1	1				
Nominal embedment depth	h _{nom}	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)				
Effective embedment	h _{ef}	in (mm)	2.625 (675)	3.000 (76)	3.500 (89)				
STEEL STRENGTH IN	SHEAR (ACI 31	8-19 17.7.1,	ACI 318-14 17.5.1 or ACI 3	18-11 D.6.1)					
Steel strength in sheare	V _{sa}	lb (kN)	6,005 (26.7)	13,415 (59.7)	14,820 (65.9)				
Reduction factor for steel strength ³	φ	-	0.0	65	0.60				
STEEL STRENGTH IN SHEAR FOR SEIS	MIC APPLICATI	ONS (ACI 318	3-19 17.10.1, ACI 318-14 17	.2.3.3 or ACI 318-11 D.3.3.	3)				
Steel strength in shear, seismic ⁸	V _{sa, eq}	lb (kN)	4,565 (20.3)	7,425 (33.0)	14,820 (65.9)				
Reduction factor for steel strength in shear for seismic ³	φ	-	0.	65	0.60				
CONCRETE BREAKOUT STREE	IGTH IN SHEAR	(ACI 318-19	17.7.2, ACI 318-14 17.5.2 (or ACI 318-11 D.6.2) ⁷					
Load bearing length of anchor	ℓ _e	in (mm)	1.00 (25)	1.25 (32)	1.50 (38)				
Nominal anchor diameter	da	in (mm)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)				
Reduction factor for concrete breakout ⁴	φ	-		0.70 (Condition B)					
PRYOUT STRENGTH IN SHEAR (ACI 318-19 17.7.3, ACI 318-14 17.2.3.3 or ACI 318-11 D.6.3)									
Coefficient for pryout strength	Kcp	-	2.0	2.0	2.0				
Reduction factor for pryout strength⁵	φ	-		0.70 (Condition B)					

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

- 1. The data in this table is intended to be used with the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.
- 2. Installation must comply with the manufacturer's published installation instructions.
- 3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3. The anchors are ductile steel elements as defined inACI 318 (-19 or -14) 2.3 or ACI 318-11 D.1, as applicable, except for the 3/4-inch-diameter which is considered a brittle steel element for the purposes of design
- 4. The tabulated value of φ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-15 L.4.3, as applicable, for Condition A are satisfied, the appropriate value of φ for concrete breakout strength must be determined in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.4.
- 5. The tabulated value of for pryout strength applies if the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ for pryout strength must be determined in accordance with ACI 318-11 D.4.4, for condition B.
- 6. Tabulated values for steel strength in shear must be used for design. The tabulated values for the shear stress area are listed conservatively and the results for the steel strength will be more conservative when using ACI 318-19 Section 17.7.1.2 and Eq. 17.7.1.2a, ACI 318-14 Eq. 17.5.1.2b or ACI 318-11 Eq. D-29, as applicable.
- Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of √fc affecting N_a and V_b. λ shall be determined in accordance with the corresponding version of ACI 318.
- 8. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6.

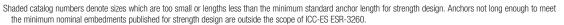
DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strengths for Power-Bolt+ in Cracked Concrete^{1,2,3,4,5,6,7,8}

	Nominal Embed. hoom (in.)	Minimum Concrete Compressive Strength										
Nominal Anchor Diameter (in.)		f'c = 2,500 psi		f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi		
		ϕ Nn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	ΦNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	ØNn Tension (lbs.)	ΦVn Shear (lbs.)	
1/2	3-1/4	2,350	3,905	2,575	3,905	2,970	3,905	3,640	3,905	4,205	3,905	
5/8	3-3/4	2,870	5,105	3,145	5,590	3,630	6,460	4,450	7,910	5,135	8,720	
3/4	4-3/8	3,620	7,740	3,965	8,475	4,575	8,890	5,605	8,890	6,470	8,890	
□ - Concrete Breakout Strength Controls ■ - Steel Strength Controls												

Tension and Shear Design Strengths for Power-Bolt+ in Uncracked Concrete^{1,2,3,4,5,6,7}

Nominal Anchor Diameter (in.)	Nominal Embed. hnom (in.)	Minimum Concrete Compressive Strength, f'c (psi)										
		f'c = 2,500 psi		f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi		
		ψNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ΦNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ψNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	
1/2	3-1/4	3,730	3,905	4,090	3,905	4,720	3,905	5,780	3,905	6,675	3,905	
5/8	3-3/4	4,560	7,145	4,995	7,830	5,770	8,720	7,065	8,720	8,155	8,720	
3/4	4-3/8	5,105	8,890	5,595	8,890	6,460	8,890	7,910	8,890	9,135	8,890	
□ - Concrete Breakout Strength Controls ■ - Steel Strength Controls												


- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = 1.5*hmin, and with the following conditions:
 - ca1 is greater than or equal to 1.5 times the critical edge distance, cac (table values based on ca1 = 1.5*cac).
 - ca2 is greater than or equal to 1.5 times ca1.
- Calculations were performed according to ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- Strength reduction factors (ø) were based on ACI 318 (-19 or -14) Section 5.3 for load combinations. Condition B is assumed. 3-
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17. 5-
- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 or -14) Chapter 17. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.
- The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.
- For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and pullout must be multiplied by a factor of 0.75.

ORDERING INFORMATION

Power-Bolt+ (Carbon Steel with Finished Hex Head)

		Approximate	Pack Qty.	Carton Qty.	Suggested ANSI Carbide Drill Bit Cat. No.					
Cat. No.	Anchor Size	Maximum Fixture Thickness			Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max	
6902SD-PWR	1/4" X 1-3/4"	1/2"	100	600	-	-	-	-	-	
6906SD-PWR	1/4" X 3"	1-3/4"	100	600	-	-	-	-	-	
6911SD-PWR	3/8" x 1-7/8"	1/4"	50	300	DW5527	DW5427	-	-	-	
6910SD-PWR	3/8" X 2-1/4"	1/4"	50	300	DW5527	DW5427	-	-	-	
6913SD-PWR	3/8" X 3"	1"	50	300	DW5527	DW5427	-	-	-	
6914SD-PWR	3/8" X 3-1/2"	1-1/2"	50	300	DW5527	DW5427	-	-	-	
6916SD-PWR	3/8" X 4"	2"	50	300	DW5527	DW5427	-	-	-	
6930SD-PWR	1/2" x 2-3/4"	1/4"	50	200	DW5537	DW5429	DW5803	DWA54012	-	
6932SD-PWR	1/2" x 3-1/2"	1/4"	50	200	DW5537	DW5429	DW5803	DWA54012	-	
6934SD-PWR	1/2" x 4-3/4"	1-1/2"	25	150	DW5537	DW5429	DW5803	DWA54012	-	
6936SD-PWR	1/2" x 5-3/4"	2-1/2"	25	150	DW5537	DW5429	DW5803	DWA54012	-	
6940SD-PWR	5/8" x 3"	1/4"	20	120	-	DW5446	DW5806	DWA54058	DWA54058	
6942SD-PWR	5/8" x 4"	1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA54058	
6944SD-PWR	5/8" x 5"	1-1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA58058	
6945SD-PWR	5/8" x 6"	2-1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA58058	
6947SD-PWR	5/8" x 8-1/2"	4-3/4"	10	40	-	DW5447	DW5809	DWA54058	DWA58058	
6950SD-PWR	3/4" x 3-1/4"	1/4"	15	90	-	DW5453	DW5809	DWA54034	DWA54034	
6952SD-PWR	3/4" x 4-1/2"	1/8"	10	60	-	DW5453	DW5809	DWA54034	DWA54034	
6954SD-PWR	3/4" x 5-1/4"	7/8"	10	60	-	DW5453	DW5809	DWA54034	DWA54034	
6956SD-PWR	3/4" x 7-1/4"	2-7/8"	10	40	-	DW5453	DW5809	DWA54034	DWA54034	
6957SD-PWR	3/4" x 8-1/4"	3-7/8"	10	40	-	DW5455	DW5809	DWA54034	DWA54034	

The published size includes the diameter and the length. The length is measured from below the washer to the end of the anchor.

Hollow drill bits must be used with a dust extraction vacuum (e.g. Cat. No. DW012).

1-800-4 **DEWALT**

The tabulated maximum fixture thickness is provided for reference and based on published nominal embedment depths. The actual maximum fixture thickness for the anchor is determined by subtracting the required nominal embedment depth for the application from the published length.

To determine the actual minimum anchor length, select the nominal embedment depth needed (e.g. required to obtain desired load capacity). Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.