PRODUCT SUBMITTAL / SUBSTITUTION REQUEST

<i>10:</i>			
PROJECT:			
SPECIFIED ITEM:			
Section	Page	Paragraph	Description
PRODUCT SUB	MITTAL / SUBSTITUTIO	N REQUESTED:	
The attached subm	nittal package includes the prod	luct description, specifications,	drawings, and performance data for use in the evaluation
of the request.			
SUBMITTED B	Y:		
Name:			Signature:
Company:			
Address:			
Date:	Telephone:		Fax:
FOR USE BY T	HE ARCHITECT AND/OR	RENGINEER	
Approved	Approved as Noted	Not Approved	
(If not approved, pa	lease briefly explain why the pro	oduct was not accepted.)	
Ву:	Date:		
Remarks:			

Page No.

SECTION CONTENTS

General Information...... 1

Performance Data......3

Design Criteria 5

Ordering Information 7

Steel Dropin™ Internally Threaded Expansion Anchor

PRODUCT DESCRIPTION

The Steel Dropin is an all-steel, machine bolt anchor available in carbon steel and two types of stainless steel. It can be used in solid concrete, hard stone, and solid block base materials. A coil thread version for forming applications is also available.

GENERAL APPLICATIONS AND USES

•	Sus	pending	Conduit
---	-----	---------	---------

- Fire Sprinkler
- Cable Trays and Strut
- Concrete Formwork
- Pipe Supports
- Suspended Lighting

FEATURES AND BENEFITS

- + Internally threaded anchor for easy bolt removability and service work
- + Flanged (lipped) version installs flush for easy inspection and standard embedment
- + Smooth wall dropin can be installed flush mounted or below the base material surface
- + Optionally available with a knurled body
- + Coil thread version accepts coil rod and typically used for concrete formwork applications

TESTING, APPROVALS AND LISTINGS

Tested in accordance with ASTM 488 and AC01 criteria FM Global (Factory Mutual) - File No. J.I. OK4A9.AH (see ordering information) Underwriters Laboratory (UL Listed) – File No. EX1289 (N) (see ordering information)

Smooth Wall Dropin

Flange (Lipped) Dropin

GUIDE SPECIFICATIONS

CSI Divisions: *03151-Concrete Anchoring* and *05090-Metal Fastenings.* Dropin anchors shall be Steel Dropin as supplied by Powers Fasteners, Inc., Brewster, NY.

THREAD VERSION

UNC Coarse Thread Coil Thread

ANCHOR MATERIALS

Zinc Plated Carbon Steel 303 Stainless Steel 316 Stainless Steel

ROD/ANCHOR SIZE RANGE (TYP.)

1/4" to 3/4" diameter UNC Coarse Thread 1/2" and 3/4" diameter Coil Thread

SUITABLE BASE MATERIALS

Normal-weight Concrete Structural Lightweight Concrete

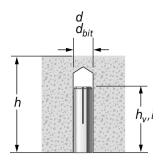
е

Installation Procedure Drill a hole into the base material to the depth of embedment required. The tolerances of the drill bit used must meet the requirements of ANSI

subset anchor.

of dust and other

and tap flush with surface. Using a


Powers setting tool

Standard B212.15. Do not over drill the hole unless the application calls for a

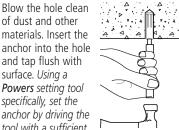
INSTALLATION SPECIFICATIONS

		Rod/Anchor Diameter, d						
Anchor (Rod) Size	1/4"	3/8"	1/2"	1/2" Coil Thread	5/8"	3/4"	3/4" Coil Thread	
ANSI Drill Bit Size, d _{bit} (in.)	3/8	1/2	5/8	5/8	7/8	1	1	
Maximum Tightening Torque, T _{max} (ftlbs.)	5	10	20	20	40	80	80	
Thread Size (UNC)	1/4-20	3/8-16	1/2-13	1/2-6	5/8-11	3/4-10	3/4-4 1/2	
Thread Depth (in.)	7/16	5/8	13/16	13/16	1 3/16	1 3/8	1 3/8	
Flange Size (in.)	7/16	9/16	45/64	_	_	_	_	
Anchor Length l , h_v (in.)	1	1 9/16	2	2	2 1/2	3 3/16	3 3/16	

Nomenclature

d = Diameter of anchor

 d_{bit} = Diameter of drill bit

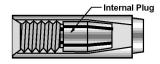

h = Base material thickness. The minimum value of h should be 1.5 h_v or 3" min. (whichever is greater)

PRODUCT INFORMATION

 $h_v = \text{Minimum embedment depth}$

l = Overall length of anchor

 T_{max} = Maximum tightening torque


specifically, set the anchor by driving the tool with a sufficient number of hammer blows until the shoulder of the tool is seated against the anchor. Anchor will not hold allowable loads required if shoulder of *Powers* setting tool does not seat

If using a fixture, position it, insert bolt and tighten. Most overhead applications utilize threaded rod. Minimum thread

against anchor.

engagement should be at least one anchor diameter.

MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel	Type 303 Stainless Steel	Type 316 Stainless Steel
Anchor Body	AISI 1008	Type 303 Stainless Steel	Type 316 Stainless Steel
Plug	AISI 1018	Type 303 Stainless Steel	Type 316 Stainless Steel
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn 5)	N	I/A

Stainless steel anchor components are passivated.

PERFORMANCE DATA

Ultimate Load Capacities for Steel Dropin in Normal-Weight Concrete^{1,2,3}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f'_c)						
Diameter	Embedment Depth	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi	(41.4 MPa)	
d in. (mm)	h _ν in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
1/4 (6.4)	1 (25.4)	1,140 (5.1)	2,120 (9.5)	1,985 (8.9)	2,120 (9.5)	2,080 (9.4)	2,120 (9.5)	
3/8 (9.5)	1 9/16 (39.7)	2,180 (9.8)	4,585 (20.6)	4,180 (18.8)	4,585 (20.6)	4,950 (22.3)	4,585 (20.6)	
1/2 (12.7)	2 (50.8)	4,105 (18.5)	6,400 (28.8)	5,760 (25.9)	6,400 (28.8)	6,585 (29.6)	6,400 (28.8)	
5/8 (15.9)	2 1/2 (63.5)	4,665 (21.0)	12,380 (55.7)	7,440 (33.5)	12,380 (55.7)	10,920 (49.1)	12,380 (55.7)	
3/4 (19.1)	3 3/16 (81.0)	8,580 (38.6)	15,680 (70.6)	9,405 (41.8)	15,680 (70.6)	11,300 (50.3)	15,680 (70.6)	

- 1. Tabulated load values are applicable to carbon and stainless steel anchors.
- 2. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.
- 3. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for Steel Dropin in Normal-Weight Concrete 1,2,3,4

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f'_c)					
Diameter	Embedment Depth	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)	
d in. (mm)	h _v in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	1 (25.4)	285 (1.3)	530 (2.4)	495 (2.2)	530 (2.4)	520 (2.3)	530 (2.4)
3/8 (9.5)	1 9/16 (39.7)	545 (2.5)	1,145 (5.2)	1,045 (4.7)	1,145 (5.2)	1,240 (5.6)	1,145 (5.2)
1/2 (12.7)	2 (50.8)	1,025 (4.6)	1,600 (7.2)	1,440 (6.5)	1,600 (7.2)	1,645 (7.4)	1,600 (7.2)
5/8 (15.9)	2 1/2 (63.5)	1,165 (5.2)	3,095 (13.9)	1,860 (8.4)	3,095 (13.9)	2,730 (12.3)	3,095 (13.9)
3/4 (19.1)	3 3/16 (81.0)	2,145 (9.7)	3,920 (17.6)	2,350 (10.5)	3,920 (17.6)	2,825 (12.6)	3,920 (17.6)

- 1. Tabulated load values are applicable to carbon and stainless steel anchors.
- 2. Allowable load capacities listed are calculated using and applied safety factor of 4.0.
- 3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.
- 4. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

Ultimate Load Capacities for Steel Dropin in Structural Lightweight Concrete^{1,2,3}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)					
Diameter	Embedment Depth	2,000 psi	(13.8 MPa)	4,000 psi (27.6 MPa)		6,000 psi	(41.4 MPa)
d in. (mm)	h _v in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	1 (25.4)	1,060 (4.8)	1,920 (8.6)	1,360 (6.1)	1,920 (8.6)	1,660 (7.5)	1,920 (8.6)
3/8 (9.5)	1 9/16 (39.7)	3,040 (13.7)	4,120 (18.5)	3,780 (17.0)	4,120 (18.5)	4,520 (20.3)	4,120 (18.5)
1/2 (12.7)	2 (50.8)	4,240 (19.1)	5,680 (25.6)	4,840 (21.8)	5,680 (25.6)	5,460 (24.6)	5,680 (25.6)
5/8 (15.9)	2 1/2 (63.5)	6,860 (30.9)	9,640 (43.4)	7,840 (35.3)	9,640 (43.4)	8,840 (39.8)	9,640 (43.4)
3/4 (19.1)	3 3/16 (81.0)	10,280 (46.3)	15,680 (70.6)	11,700 (52.7)	15,680 (70.6)	13,120 (59.0)	15,680 (70.6)

- 1. Tabulated load values are applicable to carbon and stainless steel anchors.
 2. Tabulated load values are for anchors installed in sand-lightweight concrete. Concrete compressive strength must be at the specified minimum at the time of installation.
 3. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

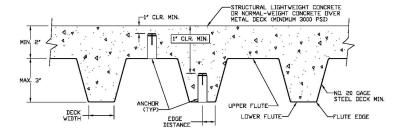
Canada: (905) 673-7295 or (514) 631-4216

3

PERFORMANCE DATA

Allowable Load Capacities for Steel Dropin in Structural Lightweight Concrete^{1,2,3,4}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)					
Diameter	Embedment Depth	3,000 psi (20.7 MPa)		4,000 psi	4,000 psi (27.6 MPa)		(34.5 MPa)
d in. (mm)	h _ν in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	1 (25.4)	265 (1.2)	480 (2.2)	340 (1.5)	480 (2.2)	415 (1.9)	480 (2.2)
3/8 (9.5)	1 9/16 (39.7)	760 (3.4)	1,030 (4.6)	945 (4.3)	1,030 (4.6)	1,130 (5.1)	1,030 (4.6)
1/2 (12.7)	2 (50.8)	1,060 (4.8)	1,420 (6.4)	1,210 (5.4)	1,420 (6.4)	1,365 (6.1)	1,420 (6.4)
5/8 (15.9)	2 1/2 (63.5)	1,715 (7.7)	2,410 (10.8)	1,960 (8.8)	2,410 (10.8)	2,210 (9.9)	2,410 (10.8)
3/4 (19.1)	3 3/16 (81.0)	2,145 (9.7)	3,920 (17.6)	2,350 (10.5)	3,920 (17.6)	2,825 (12.6)	3,920 (17.6)


- 1. Tabulated load values are applicable to carbon and stainless steel anchors.

- Allowable load capacities listed are calculated using and applied safety factor of 4.0.
 Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.
 Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

Ultimate and Allowable Load Capacities for Steel Dropin Installed Through Metal Deck into Structural Lightweight Concrete^{1,2,3,4,5}

		Lightweight Concrete over Metal Deck, $f'_c \ge 3,000$ (20.7 MPa)							
Rod/Anchor	Minimum	M	Minimum 1-1/2" Wide Deck				inimum 4-1	/2" Wide De	eck
Diameter	Embedment Depth	Ultimat	te Load	Allowal	ole Load	Ultimat	te Load	Allowak	ole Load
d in. (mm)	<i>h</i> _ν in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	1 (25.4)	400 (1.8)	2,040 (9.2)	100 (0.4)	510 (2.3)	760 (3.4)	2,040 (9.2)	190 (0.8)	510 (2.3)
3/8 (9.5)	1 9/16 (39.7)	600 (2.7)	2,760 (12.3)	150 (0.7)	690 (3.1)	960 (4.3)	2,760 (12.3)	240 (1.1)	690 (3.1)
1/2 (12.7)	2 (50.8)	-	-	-	-	2,740 (12.3)	5,560 (25.0)	685 (3.1)	1,390 (6.3)

- 1. Tabulated load values are for carbon steel and stainless steel anchors installed in sand-lightweight concrete over steel deck. Concrete compressive strength must be at the specified minimum at the time of installation
- 2. Allowable load capacities listed are calculated using and applied safety factor of 4.0.
- 3. Tabulated load values are for anchors installed in the center of the flute. Spacing distances shall be in accordance with the spacing table for lightweight concrete listed in the Design Criteria.
- 4. Flute edge distance equals one-half the minimum deck width.
- 5. Anchors are permitted to be installed in the lower or upper flute of the metal deck provided the proper installation procedures are maintained.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{N_u}{N_n}\right)^{\frac{5}{3}} + \left(\frac{V_u}{V_n}\right)^{\frac{5}{3}} \le 1$$
 or $\left(\frac{N_u}{N_n}\right) + \left(\frac{V_u}{V_n}\right) \le 1$

Where: N_u = Applied Service Tension Load

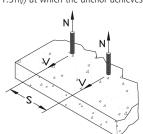
 N_n = Allowable Tension Load V_u = Applied Service Shear Load V_n = Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances¹

Anchor Installed in Normal-Weight Concrete								
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor			
Spacing (s)	Tension and Shear	$s_{cr} = 3.0 h_V$	$F_{N_S} = F_{V_S} = 1.0$	$S_{min} = 1.5 h_V$	$F_{N_S} = F_{V_S} = 0.50$			
Edge Distance (c)	Tension	$C_{cr} = 14d$	$F_{NC} = 1.0$	c _{min} = 7d	$F_{N_C} = 0.90$			
Luge Distance (c)	Shear	$C_{cr} = 14d$	$F_{VC} = 1.0$	Cmin = 7d	$F_{VC} = 0.50$			

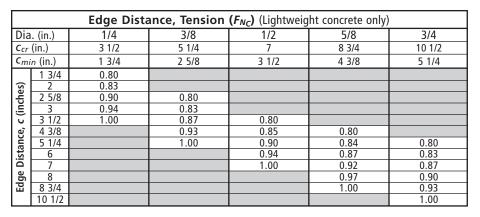
Anchor Installed in Lightweight Concrete								
Anchor Dimension Load Type Critical Distance (Full Anchor Capacity) Critical Load Factor (Reduced Capacity) Critical Minimum Distance (Reduced Capacity) Load Factor								
Spacing (s)	Tension and Shear	$s_{cr} = 3.0 h_V$	$F_{N_S} = F_{V_S} = 1.0$	$s_{min} = 1.5 h_V$	$F_{N_S} = F_{V_S} = 0.50$			
Edge Distance (c)	Tension	$C_{cr} = 14d$	$F_{N_C} = 1.0$	C _{min} = 7 d	$F_{NC} = 0.80$			
Luge Distance (C)	Shear	$c_{cr} = 14d$	$F_{VC} = 1.0$	c _{min} = 7 d	$F_{VC} = 0.50$			

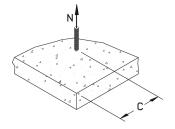
^{1.} Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.


DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

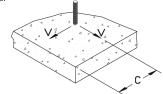
Load Adjustment Factors for Normal-Weight and Lightweight Concrete

PRODUCT INFORMATION


		Sp	acing, Tensio	n (F_{NS}) & Shea	ır (<i>F_{VS}</i>)	
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4
h _v (in.)	1	1 1/2	2	2 1/2	3
Scr	(in.)	3	4 1/2	6	7 1/2	9
Smi	n (in.)	1 1/2	2 1/4	3	3 3/4	4 1/2
	1 1/2	0.50				
۳	2 1/4	0.75	0.50			
(inches)	3	1.00	0.67	0.50		
ĽĽ	3 3/4		0.83	0.63	0.50	
s (i	4		0.89	0.67	0.53	
වූ	4 1/2		1.000	0.75	0.60	0.50
Ŀ	5			0.83	0.67	0.56
Spacing,	6			1.00	0.80	0.67
١٧	7 1/2				1.00	0.83
	9					1.00


Notes: For anchors loaded in tension and shear, the critical spacing (s_{cr}) is equal to 3 embedment depths $(3h_v)$ at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 1.5 embedment depths $(1.5 h_v)$ at which the anchor achieves 50%

	Edge Distance, Tension (F _{NC}) (Normal-Weight concrete only)									
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4				
Ccr	(in.)	3 1/2	5 1/4	7	8 3/4	10 1/2				
Cmi	n (in.)	1 3/4	2 5/8	3 1/2	4 3/8	5 1/4				
	1 3/4	0.90								
(S	2	0.91								
١۽	2 5/8	0.95	0.90							
(inches)	3	0.97	0.91							
Ü	3 1/2	1.00	0.93	0.90						
<u>ن</u> و ا	4 3/8		0.97	0.93	0.90					
Distance,	5 1/4		1.00	0.95	0.92	0.90				
st	6			0.97	0.94	0.91				
	7			1.00	0.96	0.93				
Edge	8				0.98	0.95				
ם	8 3/4				1.00	0.97				
	10 1/2					1.00				


Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load. Minimum edge distance (cmin) is equal to 7 anchor diameters (7d) at which the anchor achieves 90% of load for normal-weight concrete and 80% of load for lightweight concrete.

	Edge Distance, Shear (F _{VC})									
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4				
Ccr	(in.)	3 1/2	5 1/4	7	8 3/4	10 1/2				
Cmi	n (in.)	1 3/4	2 5/8	3 1/2	4 3/8	5 1/4				
	1 3/4	0.50								
	2	0.57								
(S	2 5/8	0.75	0.50							
١ĕ	3	0.86	0.57							
(inches)	3 1/2	1.00	0.67	0.50						
U	4 3/8		0.83	0.63	0.50					
e)	5		0.95	0.71	0.57					
Distance,	5 1/4		1.00	0.75	0.60	0.50				
st	6			0.86	0.69	0.57				
△	7			1.00	0.80	0.67				
Edge	8				0.91	0.76				
낊	8 3/4				1.00	0.83				
	10					0.95				
	10 1/2					1.00				

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7d) at which the anchor achieves 50%

PRODUCT INFORMATION

MECHANICAL ANCHORS

ORDERING INFORMATION

Carbon Steel Smooth Wall Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6304	1/4"	1"	7/16"	100	1,000	2	-
6306	3/8"	1 9/16"	5/8"	50	500	6	FM/UL
6308	1/2"	2"	13/16"	50	250	12	FM/UL
6320	5/8"	2 1/2"	1 3/16"	25	125	32	FM/UL
6312	3/4"	3 3/16"	1 3/8"	10	50	48	FM/UL

Carbon Steel Knurled Wall Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6340	1/4"	1"	7/16"	100	1,000	2	•
6342	3/8"	1 9/16"	5/8"	50	500	6	-
6344	1/2"	2"	13/16"	50	250	12	-

Carbon Steel Flanged Dropin (Lipped)

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6324	1/4"	1"	7/16"	100	1,000	2	-
6326	3/8"	1 9/16"	5/8"	50	500	6	FM/UL
6328	1/2"	2"	13/16"	50	250	12	FM/UL

Type 303 Stainless Steel Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6204	1/4"	1"	7/16"	100	1,000	2	-
6206	3/8"	1 9/16"	5/8"	50	500	6	FM/UL
6208	1/2"	2"	13/16"	50	250	12	FM/UL
6210	5/8"	2 1/2"	1 3/16"	25	125	32	FM/UL
6212	3/4"	3 3/16"	1 3/8"	10	50	48	FM/UL

Type 316 Stainless Steel Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6224	1/4"	1"	7/16"	100	1,000	2	-
6226	3/8"	1 9/16"	5/8"	50	500	6	FM/UL
6228	1/2"	2"	13/16"	50	250	12	FM/UL
6230	5/8"	2 1/2"	1 3/16"	25	125	32	FM/UL
6232	3/4"	3 3/16"	1 3/8"	10	50	48	FM/UL

Carbon Steel Coil Thread Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6330	1/2"	2"	13/16"	50	250	12	-
6332	3/4"	3 3/16"	1 3/8"	10	50	48	1

Setting Tools for Steel Dropin

Cat. No.	6305	6307	6309	6311	6313
Rod/Anchor Size	1/4"	3/8"	1/2"	5/8"	3/4"
Pin Length	39/64"	61/64"	1 3/16"	1 5/16"	1 61/64"

© 2011 Powers Fasteners, Inc. All Rights Reserved. Steel Dropin is a Trademark of Powers Fasteners, Inc. For the most current information visit www.powers.com