

PROCOR® WATERPROOFING

- PROCOR® 75 (Part A & Part B)
- PROCOR[®] 20 (Part A & Part B)
- PROCOR[®] 10 (Part A & Part B)

GCP is a leading global provider of construction products that include high-performance specialty construction chemicals and building materials.

Program Operator	NSF Certification LLC 789 N. Dixboro, Ann Arbor, MI 48105 www.nsf.org				
General Program Instructions	NSF Program Operator Rules, February 2015				
Manufacturer Name and Address	GCP Applied Technologies Inc. 2325 Lakeview Parkway Alpharetta GA 30009 USA				
Declaration Number	EPD10790				
Declared Product and Functional Unit PROCOR® 75, PROCOR® 20, PROCOR® 10 Functional Unit: 1 m² of product					
Reference PCR and Version Number ASTM International Water-Resistive and Air Barriers					
Product's intended Application and Use	Waterproofing Systems				
Product RSL	Not Applicable				
Markets of Applicability	North America				
Date of Issue	September 26, 2022				
Period of Validity	5 years from date of issue				
ЕРД Туре	Product Specific				
Intended Audience	Business-to-Business				
Range of Dataset Variability	N/A				
EPD Scope	Cradle to Gate				
Year of reported manufacturer primary data	2020				
LCA Software and Version Number	GaBi 10.6.1.35				
LCI Database and Version Number	GaBi Database 2022.1				

LCIA Methodology and Version Number

TRACI 2.1

Graham Finch Paul H. Shipp

The PCR Review was Conducted By:

This declaration was independently verified in accordance with ISO 14025:2006. ISO 21930:2017 serves as the core PCR along with EN 15804 (2012) and UL PCR Part A, v3.1 (2018), with additional considerations from the UL PCR Part B: Insulated Metal Panels Metal Composite Panels and Metal Cladding – Roof and Wall Panels.

🗌 Internal 🗹 External

This Reference Life Cycle Assessment was Conducted in Accordance with ISO 14044 and the Reference PCRs By:

This Life Cycle Assessment was Independently Verified in Accordance with ISO 14044 and the Reference PCR By:

Thomas Gloria, PhD (chair)

Tony Favilla afavilla@nsf.org

WAP Sustainability Consulting

Jack Heiling

Jack Geibig jgeibig@ecoform.com

Limitations:

Environmental declarations from different programs (ISO 14025) may not be comparable. Comparison of the environmental performance of Products using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR. Full conformance with the PCR for Products allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible". Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared. As this EPD is based on a declared unit, the results cannot be used to compare between products.

1 Product Definition and Information

1.1 DESCRIPTION OF COMPANY

GCP is a leading global provider of construction products that include high-performance specialty construction chemicals and building materials. GCP partners with producers, contractors, designers, and engineers to achieve performance and sustainability goals. The company has a legacy of first to market and award-winning solutions that have been used to build some of the world's most renowned structures. GCP is focused on continuous improvement for its customers, end-users, and the environment.

1.2 PRODUCT DESCRIPTION

PROCOR®

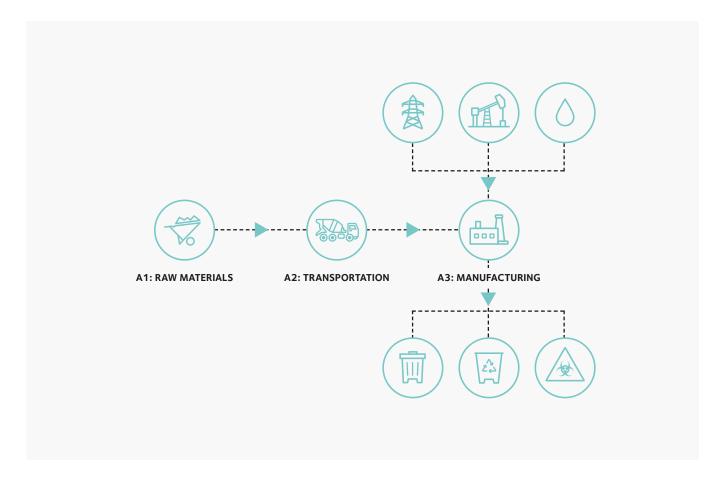
PROCOR® is a two component, synthetic rubber, cold vulcanized fluid applied waterproofing membrane. PROCOR® is formulated for application to external surfaces of structural concrete, masonry and other substrates needing waterproofing. It cures to form a resilient, monolithic, fully bonded elastomeric sheet. PROCOR[®] protects below ground structures, elevated decks, plazas and inverted roofs against water and water vapor penetration. Architectural and Industrial Maintenance Regulations limit the Volatile Organic Compound (VOC) content in products classified as Architectural Coatings. The VOC content of PROCOR® waterproofing membranes is less than 75 g/L. Refer to Technical Letters at gcpat.com for the most current list of allowable limits. PROCOR is available in different grades suitable for horizontal & Vertical hand application and spray application.

1.3 APPLICATION

A waterproofing membrane is a layer of water-tight material that lies on a surface to prevent water leaks or damages. The products assessed here are liquid-applied membranes. The objective of waterproofing is to secure a building from all kinds of water damages and prevent further repair work on the structure.

1.4 PRODUCT DESCRIPTION

Table 1: Technical Data by Product


Property	Typical Value PROCOR® 75	Typical Value PROCOR® 20	Typical Value PROCOR® 10	Test Method
Color	Pink	Pink	Pink	-
Resistance to Hydrostatic Head Over Post Formed Crack Head	65 ft (20 m)	65 ft (20 m)	65 ft (20 m)	ASTM D5385
Elongation	500%	500%	500%	ASTM D412
Peel Adhesion to Concrete	5 lbs/in (880 N/m)	5 lbs/in (880 N/m)	5 lbs/in (880 N/m)	ASTM D903 modified
Pliability	180° bend over 1 in. (25 mm) mandrel at -23° F (-30°C) – Unaffected	180° bend over 1 in. (25 mm) mandrel at -23° F (-30°C) – Unaffected	180° bend over 1 in. (25 mm) mandrel at -23° F (-30°C) – Unaffected	ASTM D1970
Low Temperature Flexibility and Crack Bridging	18 in. (3.2 mm) crack cycling at -15°F (-26°C) – Pass	18 in. (3.2 mm) crack cycling at -15°F (-26°C) – Pass	18 in. (3.2 mm) crack cycling at -15°F (-26°C) – Pass	ASTM C836
Extensibility	Over ¼ in. (6.4 mm crack after heat aging – Pass	Over ¼ in. (6.4 mm crack after heat aging – Pass	Over ¼ in. (6.4 mm crack after heat aging – Pass	ASTM C836
Water Vapor Permeance	0.08 perms (4.6 ng/Pa.s.m²)	0.08 perms (4.6 ng/Pa.s.m ²)	0.08 perms (4.6 ng/Pa.s.m ²)	ASTM E96B
Solids Content	100%	100%	100%	ASTM D1644
Density	9.97 lbs/gal (1.20 kg/L)	10.1 lbs/gal (1.21 kg/L)	9.68 lbs/gal (1.16 kg/L)	-
Coverage Rate (60 mil Thickness)	25.0 ft²/gal (0.61 m²/L)	24.9 ft²/gal (0.61 m²/L)	22.1 ft²/gal (0.54 m²/L)	-
Ratio Part A to Part B	3.27:1	3.41:1	3.18:1	-

1.5 DECLARATION OF METHODOLOGICAL FRAMEWORK

This EPD is considered a Cradle-to-Gate study. A summary of the life cycle stages included in this EPD is presented in 2.2. No known flows are deliberately excluded from this EPD. Third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impacts in all impact categories required by the PCR.

1.6 PROCESS FLOW DIAGRAM

1.7 MANUFACTURING

Raw materials are sourced from the suppliers within North America and are transported to the manufacturing facility at Chicago, IL by a combination of truck and train transportation.

1.8 MATERIAL COMPOSITION

Table 2: Material Composition per functional unit of 1 m² of product for installation

Materials	PROCOR® 75 PART A	PROCOR® 75 PART B	PROCOR® 20 PART A	PROCOR® 20 PART B	PROCOR® 10 PART A	PROCOR® 10 PART B
Naphtha	57.0%	-	54.4%	-	57.9%	-
Precipitated Zinc Oxide	1.7%	-	1.7%	-	1.7%	-
Castor Oil-based Ester	1.2%	-	2.2%	-	0.9%	-
Crystalline Silica Sand	6.8%	-	6.0%	_	4.0%	-
Calcium Oxide	30.3%	_	32.6%	_	32.5%	-
Styrene-butadiene Polymer	-	100%	-	100%	-	100%
Other	3.0%	_	3.2%	_	3.0%	-

This product contains no regulated substances.

1.9 PACKAGING

Table 3: Packaging requirements per functional unit of 1 m² of product for installation

	PROCOR® 75 PART A	PROCOR® 75 PART B	PROCOR® 20 PART A	PROCOR® 20 PART B	PROCOR® 10 PART A	PROCOR® 10 PART B	UNIT
Pallet	0.0288	0.0114	0.0255	0.0109	0.0117	0.0288	kg/m²
Carton	0.0258	-	-	-	-	0.0258	kg/m²
Plastic	_	0.0494	0.0530	0.0757	0.0455	_	kg/m²

2 Life Cycle Assessment Background Information

2.1 DECLARED UNIT

The declared unit according to the PCR is 1 m² of product for installation. Note that environmental impact results for fluid applied products will be proportional to dry product thickness if applied for a specific application to a thickness other than the one specified below.

Table 4: Declared Unit

	PROCOR® 75 PART A	PROCOR® 75 PART B	PROCOR® 20 PART A	PROCOR® 20 PART B	PROCOR® 10 PART A	PROCOR® 10 PART B
Declared Unit	1m²	1m ²	1m²	1m²	1m ²	1m ²
Weight (kg)	1.43	0.48	1.08	0.84	1.48	0.60
Density (g/cm3)	1.3	Not provided	1.2	Not provided	1.2	Not provided
Dry product thickness (mm)	1.5	1.5	1.5	1.5	1.5	1.5
Solids content by volume (%)	100%	100%	100%	100%	100%	100%

2.2 SYSTEM BOUNDARY

This EPD is considered a Cradle-to-Gate study. A summary of the life cycle modules included in this EPD is presented in Table 3. Modules A4-A5, B1-B4 and C1-C4 were not declared. Infrastructure flows have been excluded.

Table 5: Summary of Included Life-Cycle Modules

Module	Description
A1	Product Stage: Raw Material Supply
A2	Product Stage: Transport

Product Stage: Manufacturing

2.3 ESTIMATES AND ASSUMPTIONS

All estimates and assumptions are within the requirements of ISO 14040/44. Most of the estimations are within the primary data. The primary data was collected as annual totals including all material inputs, utility usage and production information. For the LCA, the total utility usage information was divided by the annual input of all materials and then allocated to the product based on its material composition.

2.4 CUTOFF CRITERIA

Material inputs greater than 1% (based on total mass of the final product) were included within the scope of analysis. Material inputs less than 1% were included if sufficient data was available to warrant inclusion and/or the material input was thought to have significant environmental impact. Cumulative excluded material inputs and environmental impacts are less than 5% based on total weight of the functional unit. No known flows are deliberately excluded from this EPD.

2.5 DATA SOURCES

Primary data were collected by GCP associates for onsite energy, water, and waste during manufacturing. Whenever available, supplier data were used for raw materials used in the production process. When primary data did not exist, secondary data for raw material production were used from GaBi Database 2022.1. All calculation procedures adhere to ISO 14044.

2.6 DATA QUALITY

The geographical scope of the manufacturing portion of the life cycle is Mt Pleasant, TN and Chicago, IL. All primary data were collected from the manufacturer. The geographic coverage of primary data is considered excellent. Primary data were provided by the manufacturer and represent all information for calendar year 2020. Secondary data meets the requirement of the PCR that all data be updated within a 10- year period. Primary data provided by the manufacturer is specific to the technology that the company uses in manufacturing their product. It is site-specific and considered of good quality. Data used to allocate energy and water on a per unit of product produced includes overhead energy such as lighting, heating, and sanitary use of water. Sub-metering was not available to extract process only energy and water use from the total energy use. Sub-metering would improve the technological coverage of data quality.

2.7 PERIOD UNDER REVIEW

The period under review is calendar year 2020.

2.8 ALLOCATION

General principles of allocation were based on ISO 14040/44. The manufacturing processes at GCP, studied in this LCA, produces different types of construction products that are similar in product specifications. A mass-based allocation method was adopted for this study. The manufacturing inputs and wastes were allocated on a mass basis to the product. As a default, secondary GaBi datasets use a physical mass basis for allocation. Throughout the study recycled materials were accounted for via the cut-off method.

A3

qcp

3 Life Cycle Assessment Results

All results are given per functional unit, which is 1 m² of applied waterproofing or air-barrier. Environmental impacts were calculated using the GaBi software platform. Impact results have been calculated using IPCC AR5 and TRACI 2.1 characterization factors. LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. These six impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes. Emerging LCA impact categories and inventory items are still under development and can have high levels of uncertainty that preclude international acceptance pending further development. Use caution when interpreting data in these categories.

Table 6: Description of the System Boundary Modules

		PRODUCT STAGE		PRO	UCTION CESS AGE	USE STAGE				END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY			
	A1	A2	A3	A4	A5	B1 B2 B3 B4 B5 B6 B7			C1	C2	С3	C4	D				
	Raw Material Supply	Transport	Manufacturing	Transport From Gate to Site	Assembly/Install	Use	Maintenance	Repair	Replacement	Refurbishment	Building Operational Energy Use During Product Use	Building Operational Water Use During Product Use	Deconstruction	Transport	Waste Processing	Disposal	Reuse, Recovery, Recycling Potential
CRADLE TO GRAVE		X MND MND MND										MND					

Table 7: LCIA Indicators

Abbreviation	Parameter	Unit
	IPCC AR 5	
GWP	Global warming potential (100 years, excludes biogenic CO_2)	kg CO $_2$ eq
	TRACI 2.1	
АР	Acidification potential of soil and water	kg SO ₂ eq

EP	Eutrophication potential	kg N eq
GWP	Global warming potential (100 years, excludes biogenic CO_2)	kg CO₂ eq
ODP	Depletion of stratospheric ozone layer	kg CFC 11 eq
SFP	Smog formation potential	kg O₃ eq

In addition to the environmental parameters described in the previous section, the following resource use and waste categories are also disclosed.

Table 8: Resource Use, Waste, and Output Flow Indicators (ISO 21930:2017)

Abbreviation	Parameter	Unit
	Resource Use Parameters	
RPR _E	Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ, net calorific value (LHV)
RPR _M	Use of renewable primary energy resources used as raw materials	MJ, net calorific value
NRPR _E	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ, net calorific value
NRPR _M	Use of non-renewable primary energy resources used as raw materials	MJ, net calorific value
SM	Use of secondary materials	kg
RSF	Use of renewable secondary fuels	MJ, net calorific value
NRSF	Use of non-renewable secondary fuels	MJ, net calorific value
RE	Recovered energy	MJ, net calorific value
FW	Net use of fresh water	m ³

	Waste Parameters and Output Flows						
HWD	Disposed-of-hazardous waste	kg					
NHWD	Disposed-of non-hazardous waste	kg					
HLRW	High-level radioactive waste, conditioned, to final repository	kg					
ILLRW	Intermediate- and low-level radioactive waste, conditioned, to final repository	kg					
CRU	Components for reuse	kg					
MR	Materials for recycling	kg					
MER	Materials for energy recovery	kg					
EEE	Exported electrical energy	LW					
EET	Exported thermal energy	LW					

In order to align with the PCR, which references ISO 21930:2007, primary energy consumption results also need to be reported for the higher heating value (HHV) / gross calorific value, as well as material resource consumption.

Table 9: Additional indicator results (ISO 21930:2007)

Parameter	Unit
	Total Primary Energy Consumption
Nonrenewable Fossil	MJ, gross calorific value (HHV)
Nonrenewable Nuclear	MJ, gross calorific value (HHV)
Renewable (Solar, Wind, Hydro, Geo)	MJ, gross calorific value (HHV)
Renewable (Biomass)	MJ, gross calorific value (HHV)

	Material Resources Consumption						
Nonrenewable Material Resources	kg						
Renewable Material Resources	kg						

3.1 RESULTS (ISO 21930:2017)

Table 10: LCIA results for selected PROCOR $^{\otimes}$ 75, per 1 m^2

Impact Category	PROCOR [®] 75 Part A	PROCOR® 75 Part A	PROCOR® 75 Part A	PROCOR® 75 Part A	PROCOR® 75 Part B	PROCOR® 75 Part B	PROCOR® 75 Part B	PROCOR® 7 Part B	
	A1	A2	A3	A1-A3	A1	A2	A3	A1-A3	
			I	PCC AR5					
GWP [kg CO2 eq]	1.15E+00	3.13E-02	4.21E-01	1.61E+00	1.56E+00	4.12E-02	1.30E-01	1.73E+00	
TRACI									
AP [kg SO2 eq]	1.48E-03	5.51E-05	1.03E-03	2.56E-03	1.96E-03	6.20E-05	4.20E-04	2.44E-03	
EP [kg N eq]	4.65E-04	7.14E-06	1.19E-04	5.92E-04	1.73E-04	8.72E-06	1.18E-04	3.00E-04	
GWP [kg CO2 eq]	1.10E+00	3.09E-02	4.05E-01	1.54E+00	1.49E+00	4.07E-02	1.25E-01	1.65E+00	
ODP [kg CFC 11 eq]	4.01E-13	5.86E-17	4.03E-15	4.06E-13	1.40E-14	7.72E-17	7.48E-14	8.89E-14	
SFP [kg O3 eq]	2.91E-02	1.25E-03	1.03E-02	4.07E-02	5.09E-02	1.39E-03	4.08E-03	5.63E-02	
			Resourc	e Use Indicators					
RPRE [MJ]	5.14E-01	1.70E-02	4.46E-01	9.77E-01	7.29E-01	2.23E-02	6.06E-01	1.36E+00	
RPRM [MJ]	6.75E-01	0.00E+00	2.77E-01	9.53E-01	0.00E+00	0.00E+00	7.26E-01	7.26E-01	
NRPRE [MJ]	1.25E+01	4.36E-01	5.38E+00	1.83E+01	2.14E+01	5.74E-01	1.74E+00	2.37E+01	
NRPRM [MJ]	3.60E+01	0.00E+00	0.00E+00	3.60E+01	2.12E+01	0.00E+00	0.00E+00	2.12E+01	
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
NRSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
FW [m3]	9.52E-04	6.10E-05	4.53E-02	4.63E-02	6.28E-03	8.03E-05	1.64E-02	2.27E-02	
			Output Flows	and Waste Categ	ories				
HWD [kg]	9.78E-07	1.81E-12	6.38E-04	6.39E-04	2.16E-09	2.39E-12	2.30E-04	2.30E-04	
NHWD [kg]	9.03E-03	3.75E-05	5.18E-02	6.08E-02	2.32E-02	4.94E-05	2.95E-02	5.28E-02	
HLRW [kg]	1.49E-07	1.43E-09	2.31E-07	3.81E-07	3.09E-07	1.89E-09	8.20E-08	3.92E-07	
ILLRW [kg]	1.29E-04	1.21E-06	1.94E-04	3.24E-04	2.59E-04	1.59E-06	7.13E-05	3.32E-04	
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
EEE [MJ]	0.00E+00	0.00E+00	6.48E-03	6.48E-03	0.00E+00	0.00E+00	2.33E-03	2.33E-03	
EET [MJ]	0.00E+00	0.00E+00	3.05E-03	3.05E-03	0.00E+00	0.00E+00	1.10E-03	1.10E-03	

Table 11: LCIA results for selected PROCOR $^{\odot}$ 20, per 1 m^2

Impact Category	PROCOR® 20 Part A	PROCOR [®] 20 Part B						
	A1	A2	A3	A1-A3	A1	A2	A3	A1-A3
			I	PCC AR5				
GWP [kg CO2 eq]	9.09E-01	1.96E-02	2.86E-01	1.21E+00	2.70E+00	7.30E-02	2.70E-01	3.05E+00
				TRACI				
AP [kg SO2 eq]	1.27E-03	3.46E-05	6.82E-04	1.99E-03	3.40E-03	1.10E-04	6.05E-04	4.12E-03
EP [kg N eq]	5.77E-04	4.48E-06	8.88E-05	6.70E-04	3.00E-04	1.54E-05	7.50E-05	3.91E-04
GWP [kg CO2 eq]	8.72E-01	1.94E-02	2.69E-01	1.16E+00	2.58E+00	7.20E-02	2.55E-01	2.91E+00
ODP [kg CFC 11 eq]	3.51E-13	3.67E-17	5.42E-15	3.56E-13	2.43E-14	1.37E-16	6.90E-15	3.13E-14
SFP [kg O3 eq]	2.32E-02	7.81E-04	7.88E-03	3.18E-02	8.82E-02	2.46E-03	7.99E-03	9.87E-02
			Resourc	e Use Indicators				
RPRE [MJ]	5.32E-01	1.06E-02	3.34E-01	8.76E-01	1.26E+00	3.95E-02	4.52E-01	1.76E+00
RPRM [MJ]	9.13E-01	0.00E+00	1.19E-01	1.03E+00	0.00E+00	0.00E+00	2.66E-01	2.66E-01
NRPRE [MJ]	9.62E+00	2.74E-01	6.26E+00	1.62E+01	3.71E+01	1.02E+00	6.24E+00	4.43E+01
NRPRM [MJ]	2.60E+01	0.00E+00	0.00E+00	2.60E+01	3.68E+01	0.00E+00	0.00E+00	3.68E+01
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW [m3]	8.55E-04	3.82E-05	3.41E-02	3.49E-02	1.09E-02	1.42E-04	2.70E-02	3.80E-02
			Output Flows	and Waste Categ	ories			
HWD [kg]	8.56E-07	1.14E-12	4.82E-04	4.83E-04	3.74E-09	4.23E-12	3.78E-04	3.78E-04
NHWD [kg]	1.18E-02	2.35E-05	3.35E-02	4.54E-02	4.03E-02	8.74E-05	2.66E-02	6.70E-02
HLRW [kg]	1.18E-07	8.99E-10	1.90E-07	3.09E-07	5.35E-07	3.34E-09	1.77E-07	7.15E-07
ILLRW [kg]	1.04E-04	7.57E-07	1.60E-04	2.64E-04	4.49E-04	2.81E-06	1.49E-04	6.00E-04
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE [MJ]	0.00E+00	0.00E+00	4.90E-03	4.90E-03	0.00E+00	0.00E+00	3.84E-03	3.84E-03
EET [MJ]	0.00E+00	0.00E+00	2.30E-03	2.30E-03	0.00E+00	0.00E+00	1.81E-03	1.81E-03

Table 12: LCIA results for selected $PROCOR^{\odot}$ 10, per 1 m^2

Impact Category	PROCOR® 10 Part A	PROCOR [®] 10 Part A	PROCOR [®] 10 Part A	PROCOR® 10 Part A	PROCOR [®] 10 Part B			
	A1	A2	A3	A1-A3	A1	A2	A3	A1-A3
			I	PCC AR5				
GWP [kg CO2 eq]	1.24E+00	2.40E-02	4.09E-01	1.67E+00	1.93E+00	5.21E-02	2.08E-01	2.19E+00
				TRACI				
AP [kg SO2 eq]	1.51E-03	4.23E-05	9.64E-04	2.51E-03	2.42E-03	7.84E-05	4.58E-04	2.96E-03
EP [kg N eq]	3.92E-04	5.47E-06	1.23E-04	5.21E-04	2.14E-04	1.10E-05	5.52E-05	2.80E-04
GWP [kg CO2 eq]	1.19E+00	2.37E-02	3.85E-01	1.60E+00	1.84E+00	5.14E-02	1.96E-01	2.09E+00
ODP [kg CFC 11 eq]	3.73E-13	4.49E-17	7.47E-15	3.81E-13	1.73E-14	9.75E-17	4.75E-15	2.21E-14
SFP [kg O3 eq]	3.04E-02	9.54E-04	1.16E-02	4.29E-02	6.28E-02	1.76E-03	6.41E-03	7.10E-02
			Resourc	e Use Indicators				
RPRE [MJ]	5.78E-01	1.30E-02	4.40E-01	1.03E+00	9.00E-01	2.82E-02	2.88E-01	1.22E+00
RPRM [MJ]	5.34E-01	0.00E+00	1.14E-01	6.48E-01	0.00E+00	0.00E+00	1.22E-01	1.22E-01
NRPRE [MJ]	1.33E+01	3.34E-01	9.20E+00	2.28E+01	2.64E+01	7.26E-01	5.03E+00	3.22E+01
NRPRM [MJ]	3.78E+01	0.00E+00	0.00E+00	3.78E+01	2.62E+01	0.00E+00	0.00E+00	2.62E+01
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW [m3]	1.08E-03	4.67E-05	4.67E-02	4.79E-02	7.75E-03	1.01E-04	1.93E-02	2.71E-02
			Output Flows	and Waste Categ	ories			
HWD [kg]	9.05E-07	1.39E-12	6.60E-04	6.61E-04	2.67E-09	3.02E-12	2.69E-04	2.69E-04
NHWD [kg]	1.04E-02	2.87E-05	4.60E-02	5.64E-02	2.87E-02	6.23E-05	1.91E-02	4.78E-02
HLRW [kg]	1.60E-07	1.10E-09	2.72E-07	4.34E-07	3.81E-07	2.38E-09	1.37E-07	5.20E-07
ILLRW [kg]	1.41E-04	9.25E-07	2.28E-04	3.70E-04	3.20E-04	2.01E-06	1.15E-04	4.36E-04
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE [MJ]	0.00E+00	0.00E+00	6.70E-03	6.70E-03	0.00E+00	0.00E+00	2.73E-03	2.73E-03
EET [MJ]	0.00E+00	0.00E+00	3.15E-03	3.15E-03	0.00E+00	0.00E+00	1.29E-03	1.29E-03

3.2 ADDITIONAL RESULTS (ISO 21930:2007)

Table 13: Additional indicator results for selected PROCOR $^{\odot}$ 75, per 1 m²

	PROCOR® 75 Part A	PROCOR® 75 Part A	PROCOR® 75 Part A	PROCOR® 75 Part A	PROCOR® 75 Part B	PROCOR® 75 Part B	PROCOR® 75 Part B	PROCOR® 75 Part B
	A1	A2	A3	A1-A3	A1	A2	A3	A1-A3
		Tot	al Primary Energ	y Consumption [[MJ (HHV)]			
Nonrenewable Fossil	5.19E+01	4.67E-01	5.29E+00	5.77E+01	4.60E+01	6.14E-01	1.70E+00	4.83E+01
Nonrenewable Nuclear	3.28E-01	3.08E-03	4.94E-01	8.25E-01	6.63E-01	4.06E-03	1.82E-01	8.49E-01
Renewable (Solar, Wind, Hydro, Geo)	1.19E+00	1.70E-02	7.23E-01	1.93E+00	7.29E-01	2.23E-02	1.33E+00	2.08E+00
Renewable (Biomass)	-	-	-	-	-	-	-	-
			Material Resou	rces Consumptio	n (kg)			
Nonrenewable Material Resources	1.96E+00	3.36E-03	8.83E-01	2.85E+00	2.08E+00	4.42E-03	3.34E-01	2.42E+00
Renewable Material Resources	5.78E-02	1.14E-02	1.60E-02	8.52E-02	1.86E-02	5.05E-03	8.39E-02	1.08E-01

Table 14: Additional indicator results for selected $PROCOR^{\odot}$ 20 per 1 m^2

	PROCOR® 20 Part A	PROCOR® 20 Part A	PROCOR® 20 Part A	PROCOR® 20 Part A	PROCOR® 20 Part B	PROCOR® 20 Part B	PROCOR® 20 Part B	PROCOR® 20 Part B
	A1	A2	A3	A1-A3	A1	A2	A3	A1-A3
		Tot	al Primary Energ	y Consumption [[(VHH)]			
Nonrenewable Fossil	3.81E+01	2.93E-01	6.41E+00	4.48E+01	7.97E+01	1.09E+00	6.42E+00	8.73E+01
Nonrenewable Nuclear	2.63E-01	1.93E-03	4.09E-01	6.74E-01	1.15E+00	7.18E-03	3.80E-01	1.54E+00
Renewable (Solar, Wind, Hydro, Geo)	1.44E+00	1.06E-02	4.52E-01	1.91E+00	1.26E+00	3.95E-02	7.19E-01	2.02E+00
Renewable (Biomass)	-	-	-	-	-	-	-	-
			Material Resou	rces Consumptio	n (kg)			
Nonrenewable Material Resources	1.60E+00	2.11E-03	4.29E-01	2.03E+00	3.61E+00	7.83E-03	4.30E-01	4.05E+00
Renewable Material Resources	7.83E-02	8.28E-03	8.07E-03	9.47E-02	3.22E-02	8.69E-03	1.23E-02	5.32E-02

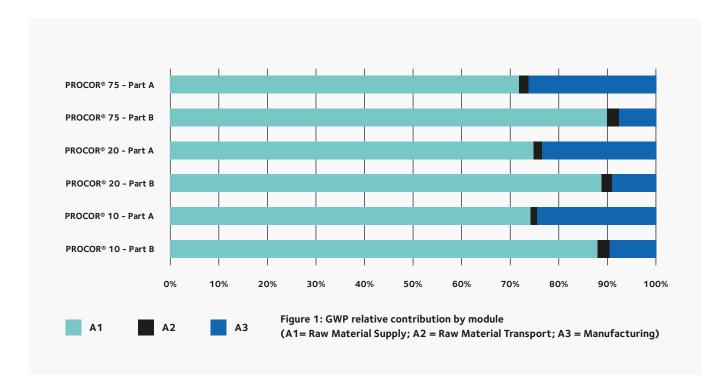

	PROCOR® 10 Part A	PROCOR® 10 Part A	PROCOR® 10 Part A	PROCOR® 10 Part A	PROCOR® 10 Part B	PROCOR® 10 Part B	PROCOR® 10 Part B	PROCOR [®] 10 Part B
	A1	A2	A3	A1-A3	A1	A2	A3	A1-A3
		Tot	al Primary Energ	y Consumption [[(VHH)]			
Nonrenewable Fossil	5.47E+01	3.58E-01	9.44E+00	6.45E+01	5.68E+01	7.76E-01	5.19E+00	6.28E+01
Nonrenewable Nuclear	3.60E-01	2.36E-03	5.84E-01	9.46E-01	8.19E-01	5.12E-03	2.93E-01	1.12E+00
Renewable (Solar, Wind, Hydro, Geo)	1.11E+00	1.30E-02	5.54E-01	1.68E+00	9.00E-01	2.82E-02	4.10E-01	1.34E+00
Renewable (Biomass)	-	-	-	-	-	-	-	-
			Material Resou	rces Consumptio	n (kg)			
Nonrenewable Material Resources	2.15E+00	2.57E-03	6.14E-01	2.76E+00	2.57E+00	5.59E-03	3.29E-01	2.91E+00
Renewable Material Resources	5.35E-02	1.13E-02	9.94E-03	7.47E-02	2.29E-02	6.20E-03	7.08E-03	3.62E-02

Table 15: Additional indicator results for selected \mbox{PROCOR}^{\otimes} 10, per 1 \mbox{m}^2

gcp

4 Life Cycle Assessment Interpretation

For the selected PROCOR[®] waterproofing systems, the primary contributors to the cradle-to-gate GWP impacts are the raw materials found in module A1. Module A3, manufacturing, is driven by packaging, thermal energy and electricity.

5 Life Cycle Assessment Interpretation

1. IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

2. ISO 14044: 2006 Environmental Management – Life cycle assessment – Requirements and Guidelines.

3. ISO 14044: 2006/ Amd 1:2017 Environmental Management – Life cycle assessment – Requirements and Guidelines – Amendment 1.

4. ISO 14025:2006 Environmental labels and declarations – Type III environmental declarations – Principles and Procedures.

5. ISO 21930:2007 Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services.

6. ISO 21930:2017 Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services.

7. TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Version 2.1 – User Guide – https://nepis.epa.gov/Adobe/PDF/P100HN53.pdf.

8. ASTM International PCR: Water-Resistive and Air Barriers (UNCPC 54530 and/or CSI MasterFormat DESIGNATIONS 072500, 072600 and 072700)