

NORTH AMERICAN PRODUCT TECHNICAL GUIDE

Cast-In Anchor Channel Fastening Technical Guide, Edition 1

A guide to design, specification, and installation

HILTI HILTI

We are a company inspired to make a difference in our customers' businesses. We want to help make your job faster, safer, and more productive. That's why Hilti North America has over 3,600 highly trained team members in sales, engineering, marketing, and other support roles whom all work to help construction professionals solve their biggest challenges.

Hilti offers products, systems, and solutions for every application on the jobsite. Whether our customers work in construction, civil engineering, energy, mechanical, electrical, steel and metal, or interior finishing, Hilti is here to help them build a better future.

With over 60 years of experience in fastening systems, Hilti is your reliable partner for secure anchor solutions. We have now further extended our range of products to include a new generation of cast-in anchor systems for reliable load transfer to concrete structures - the Hilti HAC Anchor Channel.

Hilti's extensive research and testing on anchor channels allowed the publication of the first ICC approval for anchor channels for seismic design categories C, D, E, and F.

Hilti Anchor Channels are a value engineered solution that in addition of preserving the high product performance, they have improved the function and features of the traditional anchor channel system, creating differentiating and innovative solutions that bring added value to the cast-in industry.

Every Hilti product and system is backed with research, training, software, service, and support. It's the right way. And that's the Hilti way.

Our Purpose

We passionately create enthusiastic customers and build a better future!

Enthusiastic Customers

We create success for our customers by identifying their needs and providing innovative and value-adding solutions.

Build a better future

We embrace our responsibility towards society and the environment.

Our Quality System

Hilti is one of a select group of North American companies to receive the ISO 9001 and ISO 14001 Certifications. This recognition of our commitment to quality ensures our customers that Hilti has the systems and procedures in place to maintain our position as the world market leader, and to continually evaluate and improve our performance.

That's total customer satisfaction.

For Technical Support, contact

Hilti, Inc. (US) at 1-877-749-6337 or

Hilti (Canada) Corporation at 1-800-363-4458.

CONTENTS

1.0 CAST-IN

1.1 Anchor Ch 1.1.1 Hil 1.1.2 HA 1.2 HAC Overv 1.2.1 HA 1.2.2 HA 1.2.3 HA

1.2.4 Hil 1.3 HAC Comp

1.4 HAC Selec

1.4.1 Hil 1.4.2 Hil

2.0 HILTI ANO

2.1 HAC Nome 2.2 HAC Geom

2.2.1	H.
2.2.2	H.
2.2.3	H.
2.2.4	H.
2.2.5	H.
2.2.6	H.
2.2.7	H.
2.2.8	H.
2.2.9	Н
2.2.10	Н
2.2.11	Н
2.2.12	Н
2.2.13	H.
2.2.14	H.
2.2.15	H.
2.2.16	H.
2.2.17	H.
2.2.18	Н
0 0 4 0	

2.2.19 Hil 2.2.20 Hil

ANCHOR CHANNEL SYSTEM OVERVIEW	14
annels Benefits and Features	18
ti Anchor Channel (HAC) Benefits and Features AC EDGE and HAC-T	18 20
view	22
AC Portfolio at a Glance AC Profiles AC Types Iti Channel Bolts (HBC) Conenets	22 23 24 28 29
tion	32
ti Anchor Channel Selection via Project Needs ti Anchor Channel Selection via Geometrical Constraints	32 33
CHOR CHANNEL (HAC) PORTFOLIO	36
enclature	37
netric Parameters and Requirements	45
AC (smooth channel lips) AC in Face of Slab Corners AC in Top and Bottom of Slab Corners AC CRFoS U AC CRFoS U in Face of Slab Corners AC CRFoS U in Top and Bottom of Slab Applications AC EDGE Lite, HAC EDGE, and HAC S EDGE AC EDGE and HAC S EDGE in Top and Bottom of Slab Corners It Channel Bolts It Channel Bolts: HBC-C It Locking Channel Bolts: HBC-C-N It Channel Bolts Hardware AC-T: Serrated Anchor Channels	45 48 49 50 53 54 55 62 63 63 63 65 68 70
AC-T in Face of Slab Corners AC-T in Top and Bottom of Slab Corners AC-T EDGE Lite, HAC-T EDGE, and HAC-T S EDGE AC EDGE and HAC-T EDGE in Top or Bottom of Slab Corners It Serrated Channel Bolts It Serrated Channel Bolts: HBC-T It Channel Bolts Hardware	70 73 74 75 82 83 83 83

2.3 Struct	ural Steel Performance of Hilti Anchor Channel Systems	87
2.3.1 2.3.2 2.3.3 2.3.4	HAC Structural Steel Performance — Tension HAC Structural Steel Performance — Shear HAC CRFoS U Structural Steel Performance — Tension HAC CRFoS U Structural Steel Performance — Shear	88 89 91 92
2.3.5	HAC EDGE Lite, HAC EDGE, and HAC EDGE C	94
2.3.6	Structural Steel Performance - Tension HAC EDGE Lite, HAC EDGE, and HAC EDGE C	95
2.3.7 2.3.8	EDGE Lite, EDGE, and EDGE C Plate Steel Strength Information Design Information for HAC EDGE Lite, HAC EDGE, and HAC	97 98
2.3.9	EDGE C Concrete Breakout in Perpendicular Shear HAC S EDGE and HAC S EDGE C	99
2.3.10	Structural Steel Performance — Tension HAC S EDGE and HAC S EDGE C	99
2.3.11 2.3.12	Structural Steel Performance — Shear HAC S EDGE and HAC S EDGE C Plate Steel Strength Information Design Information for HAC S EDGE and HAC S EDGE C Concrete	101 101
2.3.13 2.3.14 2.3.15 2.3.16 2.3.17	Breakout in Perpendicular Shear HBC-C AND HBC-C-N steel performance — Tension HBC-C AND HBC-C-N steel performance - Shear HAC-T Structural Steel Performance — Tension HAC-T Structural Steel Performance — Shear HAC-T EDGE Lite, HAC-T EDGE, and HAC-T EDGE C	102 103 103 104 106
2.3.18	Structural Steel Performance — Tension HAC-T EDGE Lite, HAC-T EDGE, and HAC-T EDGE C	107
2.3.19 2.3.20	Structural Steel Performance — Shear EDGE Lite, EDGE, and EDGE C Plate Steel Strength Information Design Information for HAC-T EDGE Lite and HAC-T EDGE	109 109
2.3.21	Concrete Breakout in Perpendicular Shear HAC-T S EDGE and HAC-T S EDGE C	110
2.3.22	Structural Steel Performance — Tension HAC-T S EDGE and HAC-T S EDGE C	111
2.3.23	Structural Steel Performance — Shear HAC-T S EDGE and HAC-T S EDGE C	113
2.3.24	Plate Steel Strength Information Design Information for HAC-T S EDGE and HAC-T S EDGE C Concrete Breakout in Perpendicular Shear	113
2.3.25 2.3.26	HBC-T Steel performance — Tension HBC-T Steel performance — Shear	114 114
2.4 HAC O	rdering Information (item number, lead times, and weight)	115
2.5 HAC S	tandard Portfolio Details and CAD Drawings	122
2.6 Custor	n Solutions	125
3.0 ANCH	OR CHANNEL APPLICATIONS	128
3.1 Hilti Ca	ast-in Anchor Channel Applications	129
4.0 DESIG	IN INTRODUCTION	130
4.1 Publish	ned Load Values	131
4.2 Units		131
4.3 Ancho	r Channel Design	131

5.0 BASE MA 5.1 Base Mate 5.1.1 Ba 5.1.2 Co 5.1.3 Pre 5.1.4 Bo 5.1.5 Ad 5.2 Evaluation

6.0 LOADING

6.4 Loads on

7.0 ANCHOR

7.2 Anchor Ch 7.2.1 An 7.2.2 Re 7.2.3 An 7.2.4 And 7.2.5 AC 7.2.6 Str 7.2.7 Loa 7.2.8 Ca 7.2.9 An 7.3 Anchor Ch 7.3.1 Ste 7.3.2 Co 7.4 Anchor Ch 7.4.1 St 7.4.2 Co 7.4.3 Ste 7.4.4 Co 7.5 Interaction

7.6 Seismic D

4

5.0 BASE	MATERIAL	133
5.1 Base M	aterials	134
5.1.1 5.1.2 5.1.3 5.1.4	Base Materials for Fastening Concrete Pre-tensinoned/Pre-stressed concrete Bonded Post-tensioned Concrete	134 134 135 135
5.2 Evaluat	tion of Test Data	135 135
5.2.1 5.2.2 5.2.3	Developing Fastener Performance Data Allowable Loads Statistical Evaluation of Data	135 136 136
5.3 Corros	ion	137
5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	The Corrosion Process Types of Corrosion Corrosion Proteciton Hilti Fastening Systems Applications	137 137 138 139 139
5.4 Specia	Applications	140
5.5 Seismi	c Considerations	141
5.5.1 5.5.2	Seismic Considerations Behavior of the Materials in Which 5.5 Anchors are Set	141 142
5.0 LOADI	NG	143
6.1 Strengt	h Design vs Allowable Stress Design	144
6.2 Anchoi	Channel Loading	144
6.2.1	Anchor Channel Loading	1 44
6.2.2	Load Combinations	144
6.3 Seismi	C Loading	146
6.3.2	Seismic Load Derivation for Non-Structural Componenets — ASCE 7-10, Chapter 13	146 146
6.3.2	Overstrength Factors per ASCE 7-10	147
6.4 Loads	on Handrails and Guardrail Systems — ASCE 7-10	147
7.0 ANCH	OR CHANNEL THEORY	148
7.1 Overvie		149
7.2 Anchor	Channel Theory	150
7.2.1	Anchor Principles and Design Requirements of Anchor Channels within AC232	150 152
7.2.3	Anchor Working Principles	154
7.2.4	Anchor Behavior undel Load	155
7.2.5	Strength Design Terminology	156 156
7.2.7	Load Distribution	159
7.2.8	Calculation of Loads on Anchors of the Anchor Channel	160
7.3 Anchor	Channel Design in Tension	162 163
7.3.1	Steel Tensile Strengths	164
7.3.2	Concrete Tensile Strengths	167
7.4 Anchor	Channel Design in Shear	176
7.4.1 7.4.2	Steel Strengths in Perpendicular Shear	176
7.4.3	Steel Strengths in Longitudinal Shear	184
7.4.4	Concrete Strengths in Longitudinal Shear	186
7.5 Interac	tion Equations	191
7.6 Seismi	: Design	192
7.6.1 76.2	Seismic Considerations	192
7.6.3	Seismic Considerations in Shear	192
7.6.4 7.6.5	Transfer of Longitudinal Forces Analysis in SCD A or B and SDC C, D, E or F	196 197

8.0 REINFORCING BAR THEORY					
8.1 Reinforcing Bar Theory					
8.2	Develo	pment Length	204		
8.3	Pullout	Strength of Straight Reinforcing Bars	206		
8.4	Pullout	Strength of Headed Bars in Tension	208		
8.5	Pullout	Strength of Standard Hooks	209		
8.6	Reinfor	cing Bar Lap Splices	212		
8.7	Concre	te Cover	214		
9.0 A		OR CHANNEL DESIGN	215		
9.1	Overvie	w of Hilti Anchor Channel Systems Design	216		
9.2	HAC an	nd HAC-T Design	218		
	9.2.1 9.2.2	HAC and HAC-T Design: Intermediate Applications HAC and HAC-T Design: Face of Slab Outside Corner with a	220 220		
	9.2.3	Single Anchor Channel HAC and HAC-T Design: Face of Slab Outside Corner with	223		
	9.2.4	Pair of Anchor Channel Loaded Simutaneously HAC and HAC-T Design: Face of Slab Inside Corner with	231		
	0.05	Pair of Anchor Channel			
	9.2.3	that will Assure that the Concrete Cone Does Not Intersect	233		
		Both in Shear and Tension			
	9.2.6	HAC and HAC-I Design: Example of Design of Face of Slab	234		
		at a Certain Distance			
	9.2.7	HAC and HAC-T Design: Top Or Bottom of Slab Outside Corner	235		
	9.2.8	HAC and HAC-T Design: Top Or Bottom of Slab with Pair of Anchor	237		
	9.2.9	HAC and HAC-T Design: Top Or Bottom of Slab Minimum	239		
		Distance that will Assure that the Concrete Cone Does Not			
	0.0.10	Intersect Both in Shear and Tension	0.40		
	9.2.10	Corner Pair Anchor Channel	240		
	9.2.11	HAC and HAC-T Design: Example of Design of Face of Slab	254		
		Outside Corner Where the Anchor Channels Are Located at a			
	9212	Certain Distance HAC and HAC-T Design: Top of Slab Inside Corner with Pair	255		
	0.2.12	of Anchor Channel	200		
	9.2.13	HAC and HAC-T Design: Parallel Channels	256		
	9.2.14	HAC and HAC-T Design: Parallel Channels Top and Bottom	260		
	9.2.16	HACand& HAC-T Design: Intermediate Face of Slab Anchor	265		
		Channel with Column Conflict			
	9.2.17	Case II: Perpendicular Shear	266		
9.3	HAC CH	RFOS U Design	267		
	9.3.1 9.3.2	HAC CRFOS U Design: Intermediate Face of Slab Anchor Channel HAC CRFOS U Design: Face of Slab Outside Corner with a Single	273 276		
	9.3.3	Anchor Channel HAC CRFOS U Design: Face of Slab Outside Corner with Pair of	278		
	9.3.4	HAC CRFOS U Design: Face of Slab Inside Corner with Pair of	281		
	9.3.5	HAC CRFOS U Design: Composite Slabs	282		
	9.3.6	HAC CRFOS U Design: Design of Anchor Channel for Outside	282		
	9.3.7	HAC CRFOS U Design: Design of Face of Slab Anchor Channel with Column Conflict	283		

9.4 HAC and H 9.5 HAC CRFO 9.6 HAC Edge 9.6.1 HA 9.6.2 HA 9.6.3 HA 10 I 9.6.4 HA Top 9.6.5 HA Top

10.0 DESIGN

10.1 PROFIS A 10.2 Download

10.3 PROFIS A

10.3.1 Cre 10.3.2 PR 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3.3 Gra 10.3.4 And 10.3.5 Pro 10.3.6 Res 10.3.7 Erro

11.0 BEST PF

11.1 Code Com 11.1.1 De 11.1.2 An

11.2 Hilti Anch

11.2.1 HA 11.2.2 HA 11.2.3 And

11.3 HAC Desi

11.3.1 Wo

11.4 Cast-in Ar

11.4.1 An

11.5 Substrate 11.5.1 Co

11.5.2 All-11.5.3 Pos

11.5.4 Un

11.5.5 Co

11.5.6 Cor

11.6 Anchor Cl

HAC-T Design: Posttensioned Slabs	283
DS U Design: Posttensioned Slabs	283
Design	284
AC (T) Edge, HAC (T) Edge LITE and HAC S (T) Edge Design:	284
AC (T) Edge, HAC (T) Edge LITE and HAC S (T) Edge: Design AC (T) Edge, HAC (T) Edge LITE and HAC S (T) Edge Design:	288 307
AC (T) Edge, HAC (T) Edge LITE and HAC S (T) Edge Design:	309
AC (T) Edge, HAC (T) Edge LITE and HAC S (T) Edge Design: op and Bottom of Slab Outside Corner with Pair Anchor Channels	310
I SOFTWARE: PROFIS ANCHOR CHANNEL	311
Anchor Channel Software at a Glance	313
d the Software	314
Anchor Channel Tutorial	319
reate a New Prjoect in PROFIS Anchor Channel ROFIS Anchor Channel Overview 0.3.2.1 Quick Access Toolbar 0.3.2.2 Base Material Tab 0.3.2.3 Anchor Plate 0.3.2.4 Bolt Layout 0.3.2.5 Steel Profile 0.3.2.6 Loads 0.3.2.7 Results 0.3.2.8 View raphics/Model Window nochor Channel and Bolt Slector Window oduct Filter esults Window ror Messages, Warnings Windows	319 319 320 322 325 327 328 328 330 332 332 332 334 337 338 339
RACTICES	340
npliance	341
esign of Specialty Inserts nchor Channels Outside the Scope of AC232 nor Channel Price Index	341 342 343
AC Price Index of Standard Portfolio AC vs HAC-T Price Index Inchor Channel Selection Using Price Index Charts - Example Ign Optimization	343 345 346 348
ork-Around in Tension	349
nchor Channel Layout	354
nchor Channel Layouts	354
e Considerations	356
omposite Slabs I-Lightweight Concrete vs Sand-lightweight Concrete ost-Tensioned Slabs ncracked Cocnrete oncrete Curb oncrete Consolidation	356 357 358 359 359 360
nannel Specifications	363

YOUR PARTNER
LIFE SPAN OF

12.0 INSTRUCTIONS FOR USE	366
13.0 FIELD FIXES (COMING SOON)	379
14.0 DESIGN EXAMPLES	380

to cope with typical and unique project needs such as package by floor, color coding, labeling, box-outs, and other customized services.

For additional information: www.hilti.com/hac-anchor-channel

THROUGHOUT THE YOUR PROJECT

Industry Know-How

Support from industry experts. Building Envelope Specialists available throughout North America.

Expert Technical Support

Building Envelope Field Engineer to provide training and technical support. Network of structural field engineers across North America for local support.

Value Engineering

Engineering support available to offer value engineering anchor channel designs. Additional support for custom solutions and professional services is also available.

Design Software

PROFIS Anchor Channel is a user-friendly software that provides anchor channel designs according to the most current building codes, approvals, and standards.

Do Not Miss a Pour

Project manager assigned to each project for a smooth execution phase and ensure product is in stock when required

Local Account Managers

Local support from account managers allocated to your projects.

BACKED UP BY MORE THAN 60 YEARS IN ANCHORING TO CONCRETE EXPERIENCE

HAC SUCCESS STORIES

Exelon Corp, MD

ICE District Block A, CAN

Jasper (45 Lansing), CA

Zaha Hadid Architects

488 University, CAN

42-12 28th St, NY

300 South Tryon, NC

855 6th Ave., NY

Mummmmm

JW Marriot Austin, TX

35 Hudson Yards, NY

609 Main, TX

Building Cure - Seattle Children's Research Institute, WA

601 City Center, CA

HAC Cast-In Anchor Channel Projects

Bridgestone Tower, TN

99 Hudson, NJ

Bryant Park, 20 West 40th Street, NY

Centene Plaza, MI

3rd and Lenora, WA

HAC SUCCESS STORIES

ludson Yards, NY

Energy Center IV, TX

Energy Center III, TX

Optima 2 Signature, IL

©Hi

Energy Center V, TX

BOK Park Plaza, OK

217 West 57th St, NY

Marriott Marquis Houston Houston, TX

215 Chrystie Street, NY

HILTI ANCHOR CHANNEL — ONSITE PHOTOS

Curtain wall installation

HAC CRFoS U in composite slab

configuration

Anchor channel in underside of T-beam

HAC in top of slab with installation aid

Corner configuration in top of slab

Anchor channel fixed to form-work in face of slab

Box-out solution

Curtain wall bracket

Face of slab corner condition

Installation of curtain wall panels

HAC in top of slab with box-out

HAC in face of slab spandrel beam

HAC in face of slab condition in PT slab

Anchor channel fixed to formwork in face of slab

1. Anchor Channel Systems 3. HAC Applications

4. Design Introduction

5. Base material 6. Loading

1. CAST-IN ANCHOR CHANNEL SYSTEMS

2. HAC

Portfolio

A proven anchoring technology with approved design standards.

Anchor channel systems are a cost-effective cast-in anchoring to concrete technology. This technology provides a solution for job site tolerances and on-site adjustability when connecting structural and non-structural elements.

The system consists of a group of anchors connected to a channel profile (anchor channel) and a proprietary matching head channel bolt (t-bolt). The anchor channel is installed prior to casting of the concrete. The channel profile comes with a filler foam to prevent the concrete to getting inside the profile. To install the fixture, the filler foam is removed. This leaves the channel cavity exposed and the t-bolts can be installed along the channel profile. The fixture is secured once the washer and nuts are against the fixture and the required installation torque is applied.

Compared to traditional cast-in technologies, anchor channel systems provide added savings by not requiring skilled labor to connect the fixture since welding is not required. Moreover, anchor channels reduce the installation time per connection, improve the productivity of the installer, increase the structural reliability of the connection, and may improve the safety of the installer.

(For additional anchor channel applications, see chapter 3) Only torque wrench is needed to install the fixture

Close edge distance

Design model for corners based on ESR-3520 and principles of AC232 and ACI 318. 11. Best Practices

Adjustability for on-site tolerance

12. Instructions for Use 14. Design Example

SU

aves money and time

Faster installation

No skilled labor and no welding at edge of slab or confined spaces required

No electricity required

No toxic fumes due to welding on hotdip galvanized finishing

Approved systems via reliable mechanical connection

No weld sparks near the curtain wall panels

es

Sealed system to prevent concrete from filling the channel cavities.

1. Anchor innel System

2. HAC Portfolio

4. Design **Applications** Introduction

3. HAC

5. Base material 6. Loading 10. Design Software

PLAN AHEAD

Anchor channels are installed before the concrete is poured. Proper planning between different trades is required for a successful project.

Project planning allows for feasible anchoring designs, proper layout, proper fulfillment and execution, and successful installation.

Proactivity goes a long way! By planning ahead, onsite complexities can be minimized thus allowing to take control of the project while it will leave more time to work on the unexpected.

COMPLY

Traditionally, anchor channel systems have been designed using manufacturer's data and allowable stress design. Anchor channel systems are now easier to show compliance with the International Building Code (IBC) for design with strength design provisions. Providing model Code Compliant designs ensures the use of the product will be accepted by local authorities, jurisdictions, engineer of records, inspectors, etc.

The International Code Council Evaluation Service (ICC-ES) has developed the Acceptance Criteria for Anchor Channels in Concrete Elements (AC232) to show compliance of the anchor channel systems, and to assist in designing these systems using the provisions given in AC232 and in the anchoring-toconcrete provisions provided in the American Concrete Institute (ACI) publication Building Code Requirements for Structural Concrete (ACI 318).

Hilti Anchor Channe (HAC)

All Hilti anchor channels come with end caps, tear-out strip, and low density polyethylene (closed-cell) foam to prevent concrete from entering the channel cavity.

Adjustability without drilling or welding

'NO WELDING' ADVANTAGES

Anchor channel in the slab prior to casting of the concrete.

11. Best **Practices** **12. Instructions** for Use

13. Field Fixes

14. Design Example

SAVE TIME AND MONEY

The tear out band simplifies the foam removal.

T-bolts can be installed along the channel length (except outers 1"), thus allowing for the so desired installation tolerance.

The closed-cell foam allows for an easy tear out strip, allowing the entire foam length to be continuously removed

Fixture is positioned in the proper position and the hexagonal nut is tightened to the right setting torque.

'NO DRILLING' ADVANTAGES

Faster installation

No damage of slab's reinforcement or concrete by multiple drilling attempts

Anchors with reinforcing bars allowed for superior performance

No dust control requirements

OPTIMUM CHANNEL PROFILE DESIGN

- · Optimum amount of steel allocated to each profile size • Simplifies logistical management inventory on site: 1 bolt head size that fits all anchor channels
- Feasibility via economies of scale: one bolt size for all applications
- Reduced channel width allows anchor channels to be installed up to a 2" edge distance

VALUE ENGINEERED PORTFOLIO

- Synergized anchor channel design
- Optimum anchor channel geometry
- Optimum component size

HAC-40 HAC-50 HAC-60

Price

4. Design Applications Introduction

5. Base material 6. Loading 9. Special Anchor 10. Design . Channel Design Software

TAKE YOUR ANCHOR CHANNELS TO A NEW EDGE. ANCHOR CHANNEL SYSTEM FOR SUPERIOR CONCRETE EDGE PERFORMANCE

3. HAC

HAC EDGE (Patent pending)

Provides up to 5.6X higher concrete breakout strength in shear than traditional anchor channels

HAC S EDGE (Patent pending)

State-of-the-art design model for top of slab corners based on principles of AC232. Design valid for HAC, HAC EDGE, and HAC S EDGE

HAC-T

PERFORMANCE

High slip resistances at low installation torque.

SEISMIC AND 3D LOADS

Rebar channels available on serrated.

RELIABILITY

• Optimal t-bolt/channel lip interlocking for consistent performance. Redundant system due to multiple teeth engagement between t-bolt and channel lip's serrations.

FEASIBILITY

- Innovative manufacturing process that brings serrations at minimal extra cost.
- Price of HAC-T is similar to it's equivalent HAC size with HBC-C-N.

SAFETY

- Higher installation safety via lower installation torque.
- Lighter torque wrench, less muscle fatigue.

SIMPLICITY

 Higher slip resistances without continuous inspection requirements. • One channel bolt size suitable for both channel sizes HAC-T50 and HAC-T70.

Suitable for applications that require repositioning of the T-bolts and transferring of longitudinal forces.

THE SERRATED HAC-T — THE BEST ANCHOR CHANNEL SYSTEM FOR

1.2 HAC OVERVIEW

1.2.1 HILTI ANCHOR CHANNEL PORTFOLIO AT A GLANCE

Hilti's simplified and value engineered cast-in anchor channel system portfolio, in conjunction with PROFIS Anchor Channel, helps designers to easily provide model code compliant and cost-effective anchor channel system solutions.

Hilti Anchor Channel (HAC) design models are based on state-of-the-art compliance with International Council Code Evaluation Service Report 3520 (ICC ESR-3520). Design models of anchor channels not explicitly covered by ICC Acceptance Criteria 232 (AC232) are based on applicable provisions of U.S. Concrete Standard ACI 318 and AC232, and ESR-3520, as applicable. Moreover, all Hilti Anchor Channel have been tested following applicable AC232 testing protocols.

The Hilti Anchor Channel (HAC) portfolio consists of two different V-shape channel profile types; smooth and serrated lips. To feasibly cope with the typical and non-typical conditions encountered in a project, different channel profiles sizes (HAC-40, 50, 60, and 70), channel lengths, and a versatile configuration of anchors have been integrated into the standard HAC portfolio.

The standard HAC portfolio consists of predetermined anchor channel configurations which allow for shorter lead time. The standard portfolio consists of fixed channel lengths, number of anchors per channel, anchor type (rounded headed anchors, reinforcing bar anchors, and/or EDGE plate), anchor diameter, and anchor length.

HAC's standard portfolio covers most of the extreme project conditions. For a broader application coverage range, custom solutions are offered upon request.

5. Base material

6. Loading

The Hilti Channel Bolts (HBC), commonly known as t-bolts are part of the HAC system. HBC have proprietary bolt head geometry compatible with HAC profiles. HBC are offered in different types, diameters, steel grades, finishing, and lengths. Although serrated t-bolts cannot be used with smooth lip channel profile or vise-versa, t-bolts for each profile type (smooth or serrated) can be used in all corresponding channel profile sizes.

The innovative manufacturing channel technology allows different channel profiles to have a relative constant channel width, permitting one t-bolt head size to be used in all different channel sizes, streamlining product portfolio and simplifying installation on the job site. This means more cost-effective t-bolts via economy of scale.

T-bolts for HAC (smooth lips) and HAC-T (serrated lips) are not interchangeable.

All Hilti channels come with end caps, filler foam, and a tear-out strip for a smooth and clean installation. The product comes with special identification marks to minimize the probability of confusion on the jobsite.

Hilti Anchor Channels are a value engineered solution that in addition of preserving the high product performance, they have improved the function and features of the traditional anchor channel system, creating differentiated and innovative solutions that bring added value to the cast-in industry.

1.2.2 HILTI ANCHOR CHANNEL PROFILES

7. Anchor Channel

Design Code

8. Reinforcing

Bar Anchorage

Numerical simulations allowed Hilti to design a range of channel profiles with different anchor configurations, resulting in a synergized steel to concrete performance.

9. Special Anchor

Channel Design

Hilti Anchor Channels with smooth lips (HAC) and serrated lips (HAC-T) are covered by ICC ESR-3520. The geometry of HAC versus its matching HAC-T profile (i.e. HAC-50 vs HAC-T50) is identical, with the main difference of the lip type. Generally, HAC and its equivalent HAC-T offer similar performance. The

(smooth profile)

HAC-40, HAC-50, HAC-60, & HAC-70

M Seismic approved

Optimized design Filler, tear-out band, and end caps

2. HAC 1. Anchor Portfolio nnel Syster

3. HAC 4. Design **Applications** Introduction **12. Instructions** for Use

main advantage of HAC-T is that it offers higher slip resistance at a lower installation torque.

10. Design

Software

HAC profiles (40, 50, 60, and 70) and HAC-T profiles (50 and 70) are the backbones of the Hilti's anchor channel portfolio. Such profiles are utilized in all different anchor channel types. It is only the type of anchor and connection that changes or

additional accessories are incorporated. For instance, HAC-50 with rounded head anchors has the same channel profile as HAC-50 with reinforcing bar anchors (HAC-50 CRFoS U).

HAC-T (serrated profile)

HAC-T50 and HAC-T70

 $\wedge \setminus \wedge$

Seismic approved

Lower installation torque for seismic applications Optimized design Filler, tear-out band, and end caps

Note:

HAC-30 has been added to the Hilti Anchor Channel portfolio. Although its channel profile does not have "-T", HAC-30 comes with serrated lips.

1. Ancho nnel Syste

2. HAC Portfolio

3. HAC 4. Design **Applications** Introduction

Performance Index

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing **Design Code Bar Anchorage** 9. Special Anchor 10. Design **Channel Design** Software

1.2.3 HILTI ANCHOR CHANNELS TYPES

ES HAC and HAC-T

Hilti Anchor Channels with rounded head anchors are characterized by been the most cost-effective anchor channel type. Additionally, due to its lighter weight, they are generally easier to install than anchor channels with reinforcing bars. These are excellent anchor channel systems with optimized steel components. The HAC portfolio allows for a gradual increase in performance. Moreover, they can be installed as close as 2" away from an edge. This anchor channel type is covered by ICC ESR-3520.

HAC and HAC-T have optimized components (i.e. channel profile thickness) that allow the steel performance of the product (i.e. channel lip strength) to be similar to the concrete performance

(i.e. concrete breakout strength in tension) when used in typical concrete compressive strength (4000 psi - 5000 psi).

The design of this type of anchor channel is generally limited by the tensile strength and fracture energy of the concrete. Therefore, concrete breakout strength in shear (top of slab applications), concrete breakout strength in tension (face of slab applications), or a combination of both are generally the governing failure modes. Technically speaking, the substrate's strength tends to be the limiting factor.

The substrate's strength may limit the use of these types of anchor channels in applications with high loads in low to medium concrete compressive strengths, lightweight concrete, thin substrate, close to an edge, and/or close to a corner.

HAC CRFoS U

HAC CRFoS U stands for Hilti Anchor Channel Corner Rebar Face of Slab Universal. In contrast to HAC, HAC CRFoS U has reinforcing bars instead of rounded head anchors. By replacing the rounded head anchors with reinforcing bars, the concrete breakout in tension is precluded. This allows the anchor channels to transfer higher tension forces to the concrete member or substrate. The reinforcing bar transfer the loads to the surrounding concrete via interlocking of the reinforcing bar.

The use of HAC CRFoS U is ideal for applications where the applied tensile force exceeds the concrete breakout strength in tension. Although concrete pry-out is precluded when reinforcing bars are used instead of rounded head anchors, the concrete breakout strength in shear is not impacted by the reinforcing bar anchors.

Shear

Tension

the anchor, anchor-channel connection, and channel lip. 4000 psi and no influence of a corner or edge.

Tension

State-of-art design model based on ICC ESR-3520 and principles of AC232 and ACI 318. 19 out of 20 possible failure modes are calculated in accordance with AC232.

State-of-art design based on ICC ESR-3520.

The design model of HAC CRFoS U is based on AC232 principles. All failure modes are based on AC232 except the pull-out strength of the reinforcing bar, which is calculated in accordance with ACI 318. Steel strengths not covered in ESR-3520 are based on ACI 318 and applicable testing protocols of AC232.

HAC CRFoS U comes with one diameter reinforcing bars offset/ bend. This allows to position two CRFoS U in a corner. One channel is rotated 180° to avoid clashing of the reinforcing bar. Moreover, the offset of the reinforcing bar allows for extra rebar cover in composite slab applications where the reinforcing bars may extend into the metal deck zone The use of HAC CRFoS U is not limited to corner applications.

HAC CRFoS U is commonly utilized in applications with high tension loads, thin slabs, lightweight concrete, low concrete compressive strength, and corners.

Performance Index

Comparison based on a 6" thick slab, edge distance of 3", 4000 psi NWC, 11.8"" in the face of slab with no influence of a corner.

Shear

2. HAC Portfolio

3. HAC 4. Design **Applications** Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing **Design Code Bar Anchorage** 9. Special Anchor 10. Design **Channel Design** Software

HAC EDGE Lite, HAC EDGE, HAC-T EDGE Lite, and HAC-T EDGE

Hilti Anchor Channel with the new rebar edge confinement plate (HAC EDGE) is a solution that offers superior concrete edge breakout performance in shear. HAC EDGE changes the traditional concept of anchor channels with welded reinforcing bars. Instead of relying on structural welds to transfer shear forces from the channel profile to the reinforcing bars, HAC EDGE takes advantage of the compressive strength of the concrete as a way to transfer the forces to the reinforcement attached to the edge plate. The rebar edge confinement plate (EDGE Plate) is not structurally connected to the anchor channel. HAC EDGE optimizes the shear load transfer from the channel profile to the reinforcing bars and overcomes the challenges with traditional anchor channels with welded reinforcing bars.

HAC EDGE is a new anchoring system that brings value innovation. It copes with today's fast track construction demands and requirements of the curtain wall industry such as installation tolerance, high wind loads, thin concrete members, pockets, close edge distances, and lightweight concrete. In such adverse conditions, HAC EDGE provides more than 2 times the capacity of traditional top of slab anchor channels

where the reinforcing bars are welded to the back of the channel and outperforms standard anchor channels without reinforcing bars by up to a factor of 5.6.

HAC EDGE comes in HAC-50 and HAC-T50. The anchor channel itself is identical to its matching HAC. In order to cope with the market trends such as thin slabs and pockets, anchor channels with reduced anchor depth are offered as standard.

HAC EDGE Lite is the latest addition to the HAC portfolio. It offers a gradual increase in performance and cost between the HAC and HAC EDGE. HAC EDGE Lite is offered in HAC-40, HAC-50, and HAC-T50.

The design model of HAC EDGE is based on ESR-3520, ACI 318, and principles of AC232 and ACI 318. The anchor channel itself is covered by ICC ESR-3520. The verification of the concrete edge due to perpendicular shear loads is based on a Hilti method; see section 9.6.1 for additional design information.

The use of HAC EDGE and HAC EDGE Lite is ideal for applications with high shear loads, thin slabs, small edge distances, lightweight concrete, low concrete compressive strength, and corners.

Today's market presents new challenges to contractors and designers. With a better understanding of wind loads, larger panel sizes, unique building geometries, and taller buildings, finding solutions for the very critical conditions creates added challenges. Customized anchor channel and brackets are typically needed to cope with such extreme applications. Oftentimes, longer brackets, numerous t-bolts, or the use of other anchoring technologies is required. Hilti has added HAC S EDGE to the HAC portfolio to standardize this type of applications. Thus allowing installers to keep things on site as simple as possible. The letter "S" denotes superior steel performance.

HAC EDGE overcomes the limitations of the concrete edge breakout capacity in shear. However, for some applications, the steel failure modes of the anchor channel can be the decisive factor. Generally, this is not a problem with HAC since in top of

Performance Index

Bearing forces on plate

Rebar edge confinement plate (EDGE Plate)

Concrete compression strut

HAC EDGE

State-of-art design model based on ICC ESR-3520 and principles of AC232 and ACI 318. 19 out of 20 possible failure modes are calculated in accordance with ESR-3520.

Force components on bar

Resulting forces on concrete

ternal crack

slab applications, the concrete edge tends to govern the design. When HAC EDGE is used, steel can be the limiting factor. Thus the need for higher anchor channel steel strengths.

HAC S EDGE is similar to HAC EDGE, except a strengthening element is added to the front part of the channel. It increases the moment of inertia of the system, the lip strength, and anchor connection in shear of the anchor channel.

HAC S EDGE is ideal for applications with high shear loads, thin slabs, small edge distances, lightweight concrete, low concrete compressive strength, and corners. In addition, HAC S EDGE present a solution for applications with extremely high torsional moments such as corners.

3. HAC 2. HAC Portfolio Applications

4. Design Introduction

5. Base material 6. Loading

1.2.4 HILTI CHANNEL BOLTS: HBC-C AND HBC-T

Hilti Channel Bolts (HBC and HBC-T) are part of the cast-in anchor channel system. HBC come in a variety of diameters, grades, and corrosion protection. The T-bolt head shape works with all four different channel HAC sizes (HAC-40, HAC-50, HAC-60, and HAC-70) simplifying logistical management on the jobsite. Moreover, because the size of the head of the bolt does not get bigger as the anchor channel profile gets bigger, optimizing the amount of steel used per bolt, brining economy of scale.

НВС-С

Loads in 2D only (tension and perpendicular shear)

HBC-C-N

For tension, perpendicular and longitudinal shear loads

For tension, perpendicular and longitudinal shear loads

HBC-B For tension, perpendicular and longitudinal shear loads

1.3 HAC COMPONENTS

Hilti Cast-in Anchor Channel: HAC and HAC-T

Hilti Cast-in Anchor Channel: HAC CRFoS U

Foam Filler

Environmentally freindly, low density polyethylene foam filling. It prevents fresh concrete from entering the channel cavity

Rivet

Carbon steel and hot dip galvanized ≥ 45 µm

End cap

End caps help keep concrete slurry out of the channels

Loctite-type Agent

Applied at the threads of the reinforcing bar to avoid movement and unscrewing of the reinforcing bar

Textile Tape

Eases the removal of the foam by allowing the entire foam length to be removed from the channel

Channel Profile

Temperature controlled form rolling Hot-dip galvanized \geq 55 µm (HAC-30 to HAC-(T)50) Hot-dip galvanized \geq 70 µm (HAC-60 to HAC-(T)70)

Smooth profile Serrated profile Steel grade

Anchor

Carbon steel rounded headed anchor, hot-dip galvanized ≥ 45 µm

Steel grade

Textile Tape

Eases the removal of the foam by allowing the entire foam length to be removed from the channel

Channel Profile

Temperature controlled form rolling Hot-dip galvanized ≥ 55 µm (HAC-50) Hot-dip galvanized \geq 70 µm (HAC-60 to HAC-70)

Smooth profile Serated profile

Jam Nut

San of

Non-structural stainless steel nut

Threaded End Reinforcing Bar

Allows reinforcing bar to be mechanically connected to channel profile

Zinc Rich Paint

Zinc rich paint is applies at the thread of the reinforcing bar and adjacent surface, for up to 2" to provide corrosion protection of connection

Reinforcing Bar

Reinforcement steel according to DIN 488-1. Bst 500 B fy = 72.50 ksi

29

Hilti Cast-in Anchor Channel: HAC EDGE Lite, HAC EDGE, HAC-T EDGE Lite, and HAC-T EDGE

Hilti Cast-in Anchor Channel: HAC S EDGE and HAC-T S EDGE

Unique markings for reliable identification

Markings on Hilti Anchor Channels and HBC Channel Bolts

Hilti Anchor Channels have distinct markings on the outside and inside surface that allow correct identification before and after casting in concrete. The marking consist of the Hilti logo, the channel type designation, and the type of corrosion protection. The channels bear a unique production number that indicates the production lot as well as the channel type, to aid identification.

Hilti T-bolts bear marks on the head indicating the bolt type, strength class, corrosion class, and also include a manufacturing mark. The outside face of the bolt includes a unique mark for proper bolt identification after installation.

Markings on HAC anchor channels

Traceability

A unique feature offered by our anchor channels is traceability. The lot number and our q-systems allow to trace the product back to the raw material and provide a 3.2 certificate of the raw material of each component if required.

Labeled anchor channels is our new standard

To simplify the anchor channel identification process and avoid confusion, all Hilti Anchor Channels come labeled.

A fast and accurate channel identification saves times and can help the installer to ensure the anchor channel been installed matches the specified one. Pictures on the right illustrate a Hilti Anchor Channel with a label on the back of the channel profile.

The label provides product name, item number, lot number, country of fabrication, bar code, and approval (if applicable).

Custom labels can be provided upon request.

Markings inside HAC anchor channels

Markings on Hilti HBC bolts

1.4 HAC SELECTION

1. Anchor

annel Systen

1.4.1 HILTI ANCHOR CHANNEL SELECTION VIA PROJECT NEEDS

3. HAC

Applications

4. Design

Introduction

2. HAC

Portfolio

Hilti's Anchor Channel portfolio present solutions for today's construction challenges. The Hilti Anchor Channel (HAC) system portfolio includes anchor channels with rounded head anchors (HAC and HAC-T), rebar anchors (HAC CRFoS U), and a combination of rounded head anchors and rebars (HAC-EDGE Lite, HAC-T EDGE Lite, HAC-EDGE, HAC-T EDGE, HAC S EDGE, and HAC-T S EDGE).

5. Base material

6. Loading

1.4.2 HILTI ANCHOR CHANNEL SELECTION VIA GEOMETRICAL **CONSTRAINTS**

10. Design

Software

HAC						
Ohannal			h _{min}	NWC & SLWC		
Channel	Units	n _{ef}		C _{a1,min}	C _{a2,min}	c
HAC-30	in (mm)	2.68 (68)	3.15 (80)			
HAC-40	in (mm)	3.58 (91)	4.13 (105)	1.97 (50)		
HAC-50	in (mm)	3.70 (94)	3.94 (100)			
HAC-T50	in (mm)	4.17 (106)	4.92 (125)			
HAC-60	in (mm)	5.83 (148)	6.61 (168)	2.95 (75)		
HAC-70 HAC-T70	in (mm)	6.89 (175)	7.72 (196)			

9. Special Anchor

. Channel Design

7. Anchor Channel

Design Code

8. Reinforcing

Bar Anchorage

HAC CRFoS U						
Channel	Units	h _{nom}	h _{min}	NWC & SLWC		
				C _{a1,min}	C _{a2,min}	C
HAC-50 CRFoS U	in (mm)	14.02 (356)	17.00 (431)	1.97 (50)		
HAC-60 CRFoS U	in (mm)	15.59 (396)	18.55 (471)	2.95 (75)		
HAC-70 CRFoS U	in (mm)	16.54 (420)	19.50 (495)			

HAC EDGE LITE and HAC EDGE							
			h _{min}	NWC		s	
Channel	Units	n _{ef}		C _{a1,min}	C _{a2,min}	с	
HAC-40 EDGE Lite	in (mm)	3.58 (91)	3.94 (100)	1.97 (50)			
HAC-50 EDGE Lite HAC-T50 EDGE Lite	in (mm)	3.70 (94)	3.94 (100)				
	in (mm)	4.17 (106)	4.92 (125)				
HAC-50 EDGE HAC-T50 EDGE	in (mm)	3.70 (94)	3.94 (100)				
	in (mm)	4.17 (106)	4.92 (125)				

HAC EDGE can be used in 3.125" thick slabs. Please contact Hilti at US+CA.HAC@Hilti.com for information.

HAC S EDGE						
				NWC, SLW	C, &	
Channel	Units	h _{ef}	h _{min}	C _{a1,min}		
HAC-50 S EDGE HAC-T50 S EDGE	in (mm)	3.70 (94)	3.94 (100)	3.94 (100)		
	in (mm)	4.17 (106)	4.92 (125)			

NWC: Normal weight concrete. SLWC: Sand-lightweightc concrete. ALWC: All-lightweight concrete. $C_{a1,1}$, $C_{a1,2}$, $C_{a2,1}$ and $C_{a2,2}$ are measured from an edge to the center of the anchor.

1. Anchor

3. HAC 4. Design Applications Introduction

5. Base material

6. Loading

	Base material						Load Features						
	30		LW.	Г						\$		\bigwedge	
	Uncracked concrete	Cracked concrete	Lightweight concrete	Concrete over metal deck	Post-tension slabs	Precast concrete panels	Hollow-core concrete	Grout-filled concrete block	Hollow concrete block	Hollow clay brick	Unreinforced Multi-wythe brick	Seismic	Fatigue
HAC-30							2						
HAC-40							2						
HAC-(T)50							2						
HAC-60							2						
HAC-(T)70							2						
HAC-50 CRFoS U							2						
HAC-60 CRFoS U							2						
HAC-70 CRFoS U							2						
HAC-40 EDGE Lite							2						
HAC-(T)50 EDGE Lite							2						
HAC-(T)50 EDGE							2						
HAC-(T)50 EDGE C							2						
HAC-(T)50 S EDGE C							2						
HAC-(T)50 S EDGE							2						
HBC-C							2						
HBC-C-N							2						
HBC-T HBC-B							2						

1 Technical data based on CEN/TS.

2 Anchor channel system may be suitable, contingent to minimum edge distance requirements within solid concrete. HAC-(T) indicates product is available in smooth and serrated channel profile.

			Approvals	;		Codes	Corros	sion resis	tance ¹	And	hor Char	inel Featu	ires	
	ICC-ES	COLA	UL	Florida Building Code High Velocity Hurricane Zone	FM	California Building Code	Electro / mechanically zinc plated	Hot dip galvanized	Stainless steel	End Caps	End Caps with nail holes	Nail holes	Tear out band with filler foam	
HAC-30														
HAC-40														
HAC-(T)50														
HAC-60														
HAC-(T)70														
HAC-(50 CRFoS U								1						
HAC-60 CRFoS U								1						
HAC-70 CRFoS U								1						
HAC-40 EDGE Lite								2						
HAC-(T)50 EDGE Lite								2						
HAC-(T)50 EDGE								2						
HAC-(T)50 EDGE C								2						
HAC-(T)50 S EDGE C								2						
HAC-(T)50 S EDGE								2						
нвс-с										N/A	N/A	N/A	N/A	
HBC-C-N										N/A	N/A	N/A	N/A	
HBC-T HBC-B										N/A	N/A	N/A	N/A	

1 Refer to updated section, 5.3 for a more detailed discussion on corrosion and corrosion resistance. Anchor channel is hot dip galvanized only; zinc rich paint is applied at the thread of the rebar and adjacent surface for up to 2" to provide corrosion protection. 2 Anchor channel and Rebar Edge Confinement Plate (EDGE plate) are hot dip galvanized. HAC-(T) indicates product is available in smooth and serrated channel profile.

4. Design Introduction

5. Base material 6. Loading

2. HAC PORTFOLIO

1. Anchor

2.1 HILTI ANCHOR CHANNEL NOMENCLATURE

This chapter provides product, geometrical, structural, and general information about the Hilti Anchor Channel Systems. It is intended to provide all relevant information about the product. It provides explanation about the nomenclature of the product, geometrical properties, minimum substrate requirements, and steel strengths. Moreover, this chapter provides item numbers and lead times for standard, non-standard, and information about custom solutions.

3. HAC

Applications

Example 1 (E1): HAC- 50 106/300 F 0 0 0 0 0

Example 2 (E2): HAC- T50106/350 F 0

13. Field Fixes

2.1 HAC Nomenclature

			6	
			<u>9</u>	
	4 Length	5 Finish	HAC RFoS U	
epth in mm	Anchor channel length in mm	Finish or material	HA	•
	300 [11.81 in.]	F (HDG)	C EDGE	- 0001
	350 [13.78 in.]	F (HDG)	НВС-С	

Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019

Nomenclature of HAC CRFoS U HAC-profile h_nom/length Finish CRFoS U HAC-profile h_nom/length Finish CRFoS U HAC Profile HAC Profile type and size Nominal channel height in mm Anchor channel Finish or material Corner Rebar Face of Slab	Hilti Anchor Cha									
Nomenclature of HAC CRFoS U HAC-profile h _{nom} /length Finish CRFoS U HAC-profile h _{nom} /length Finish CRFoS U HAC @ Profile @ h _{nom} @ Length @ Finish @ CRFoS U HAC @ Profile @ h _{nom} @ Length @ Finish @ CRFoS U		nannel Profile type and size	e Nominal channel height in mm	Anchor channel length in mm	Finish or material	Corner Rebar Face of Slab	Hil	ti Anchor Channel	Profile type and size	Nominal cha in n
Nomenclature of HAC CRFoS U Nomenclature of HAC CRFoS U at Co HAC-profile h_nom /length Finish CRFoS U CRFoS U CRFoS U CRFoS U <th>1 нас</th> <th>2 Profile</th> <th>3 h_{nom}</th> <th>4 Length</th> <th>5 Finish</th> <th>6 CRFoS U</th> <th></th> <th>1 нас</th> <th>2 Profile</th> <th>3 </th>	1 нас	2 Profile	3 h _{nom}	4 Length	5 Finish	6 CRFoS U		1 нас	2 Profile	3
Nomenclature of HAC CRFoS U Nomenclature of HAC CRFoS U at Co <u>1AC</u> -profile h_nom /length Finish CRFoS U <u>HAC</u> -profile h_nom /length Finish CRFoS U			0 <u></u>				•			
Nomenclature of HAC CRFoS U at Co	HAC-profile h	h _{nom} /length Finish CRF	FoS U				HAG	C-profile h _{nom} /le	ength Finish CRFo	SU
	Nomenclat	ture of HAC CRFc	os u				Νο	menclature	of HAC CRFoS	SU at Co

F (HDG)

CRFoS U

Example 1 (E1): HAC- 70 420/350 F CRFoS U

70

(E2) HAC

420 [16.54 in.]

300 [11.81 in.]

Example 2 (E2): HAC- 70 420/300 F CRFoS U

(2) HAC-70 420/300 F CRFoS U

Nomenclature of HAC EDGE Lite, HAC EDGE, HAC-T EDGE Lite, and HAC-T EDGE

HAC-profile h, /length Finish EDGE Edge distance, c,

			ē <u>ę</u>				
	1 нас	2 Profile	❸ h _{ef}	4 Length	⑤ Finish	EDGE EDGE Lite	7 Edge Distance , c _{at}
	Hilti Anchor Channel	Profile type and size	Effective embedment depth in mm	Anchor channel length in mm	Finish or material	Rebar edge confinement plate (EDGE Lite or EDGE plate)	Specified edge distance from edge of slab to C/L of HAC in inches
_	(E1) HAC	50	106 [4.17 in.]	300 [11.81 in.]	F (HDG)	EDGE Lite	4.000 in. (102 mm)
-	(E2) HAC	Т50	94 [3.70 in.]	300 [11.81 in.]	F (HDG)	EDGE	3.000 in. (76 mm)

Example 1 (E1): HAC- 50 106/300 F EDGE Lite 4.000 in.

Example 2 (E2): HAC- T50 94/ 300 F EDGE 3.000 in.

11. Best

Practices

12. Instructions

for Use

14. Design

Example

13. Field Fixes

Nomenclature of HAC S EDGE and HAC-T S EDGE

HAC-profile S h_{ef} /length Finish EDGE Edge distance, c_{a1}

000	3 4 5 6	@	8				
• нас	Ø Profile	3 s	❹ h _{ef}	ອີ Length	6 Finish	7 EDGE	③ Edge Distance, c _{a1}
Hilti Anchor Channel	Profile type and size	Superior Steel Performance	Effective embedment depth in mm	Anchor channel length (mm)	Finish or material	Rebar edge confinement plate (EDGE plate)	Specified edge distance from edge of slab to C/L of HAC in inches
(E1) HAC	50	S	106 [4.17 in.]	300 [11.81 in.]	F (HDG)	EDGE	4.000 in. (102 mm)
(E2) HAC	Т50	S	94 [3.70 in.]	300 [11.81 in.]	F (HDG)	EDGE	4.000 in. (102 mm)

Example 1 (E1): HAC- 50 S 106/300 F EDGE 4.000 in.

0 0 0 0 0 0 0

8

Example 2 (E2): HAC- T50 S 94/ 300 F EDGE 4.000 in.

HAC-profile S h_{ef} /length Finish EDGE C Edge distance, c_{a1}

Example 1 (E1A): HAC- 50 S 106/300 F EDGE 4.000 in. (E1B): HAC- 50 S 106/300 F EDGE C 4.000 in.

Hilti Anchor Channel (HAC)

2 T50

12. Instructions for Use

2.1 HAC omenclatu 5 Length 6 Finish **7** EDGE C 8 Edge Distance, c_{a1} Specified edge Corner rebar edge Anchor channel Finish or distance from edge confinement plate length in mm of slab to material (EDGE plate) C/L of HAC in inches 300 [11.81in.] F (HDG) EDGE 4.000 in. (102 mm) 300 [11.81in.] F (HDG) EDGE C 4.000 in. (102 mm) 6 Hot-dip galvanizing (F) -€ 8 4.000 in

4.17 in

2.4 Ordering 2.5 Standard 2.6 HAC Cus Information Portfolio Solutions

7 EDGE C

4. Design Applications Introduction

5. Base material

6. Loading

9. Special Anchor Channel Design

10. Design Software

Nomenclature of Hilti Channel Bolts

1. Anchor

Channel Systems

HBC-Type Steel grade Finish, diameter x length

		 @			
1 нвс	🛛 Туре	③ Steel grade	4 Finish or material	⑤ Diameter	6 Length
Hilti Channel Bolt	Bolt type			Bolt diameter in mm	Bolt length in mm
(E1) HBC	С	8.8	F (HDG)	M12	50 [1.97 in.]
(E2) HBC	С	50	R (stainless steel)	M16	60 [2.36 in.]
(E3) HBC	C-N	8.8	F (HDG)	M16	80 [3.15 in.]
(E4) HBC	т	8.8	F (HDG)	M16	60 [2.36 in.]

3. HAC

The standard HAC portfolio consists of pre-defined channel lengths, embedment depths, number of anchors, anchor standard HAC-40 to HAC-70 anchor channels. Table 2.2.1.1 provides geometric parameters of HAC portfolio.

Figure 2.2.1.2 - Section view of HAC-40, HAC-50, HAC-60, and HAC-70.

Example 1 (E1): HBC- C 8.8 F M12x 50

0000000 - 5 0.63 in. (16 mm) 6 2.36 in. (60 mm) Stainless steel (R) Hilti Channel Bolt (HBC) 20 Matching with smooth lip channel profile only

Example 2 (E2): HBC- C 50 R M16x 60

Example 3 (E3): HBC- C-N 8.8 F M16x 80

Example 4 (E4): HBC- T 8.8 F M16x 60 0 0 0 0 0 0 5 0.63 in. (16 mm) 3 8.8 4 Hot-dip galvanizing (F) 6 2.36 in. Hilti Channel Bolt (HBC) 2 Matching with serrated lip channel profile only

4. Design Introduction

3. HAC

Applications

5. Base material

6. Loading

Table 2.2.1.1 provides geometric parameters for HAC. This information is based on ICC ESR-3520 Table 8.1.

1. Anchor

Table 2.2.1.1 – Geometric parameters for HAC

Criteria	Symbol	Units		Anchor	Channel	
			HAC-40	HAC-50	HAC-60	HAC-70
Ohannal musfila hainht	Ŀ	in	1.10	1.22	1.40	1.57
Channel profile height	n _{ch}	(mm)	(28.0)	(31.0)	(35.5)	(40.0)
Channel profile width	h	in	1.61	1.65	1.71	1.79
Channel profile width	D _{ch}	(mm)	(40.9)	(41.9)	(43.4)	(45.4)
Channel profile moment		in ⁴	0.0516	0.0796	0.1392	0.2293
of inertia	l _y	(mm⁴)	(21,463)	(33,125)	(57,930)	(95,457)
Channel profile anoning	d	in	0.77	0.77	0.77	0.77
Channel profile opening	a	(mm)	(19.50)	(19.50)	(19.50)	(19.50)
Channel lip flange	£	in	0.18	0.21	0.25	0.30
thickness	T	(mm)	(4.50)	(5.30)	(6.30)	(7.40)
Channel lip thickness		in	0.09	0.11	0.14	0.18
(top)	t _{nom,t}	(mm)	(2.25)	(2.75)	(3.50)	(4.50)
Channel lip thickness		in	0.09	0.11	0.14	0.18
(bottom)	۱ _{nom,b}	(mm)	(2.25)	(2.75)	(3.50)	(4.50)
Min. effective	h	in	3.58	4.17	5.83	6.89
embedment depth1	n _{ef,min}	(mm)	(91.00)	(106.00)	(148.00)	(175.00)
Thickness of the anchor		in	0.12	0.14	0.18	0.20
head	۱ _h	(mm)	(3.00)	(3.50)	(4.50)	(5.00)
Nominal embedment	h	in	3.70	4.31	6.00	7.09
depth ²	II _{nom}	(mm)	(94.00)	(109.50)	(152.50)	(180)
Minimum and spacing	v	in	0.98	0.98	0.98	0.98
Minimum end spacing	^ _{min}	(mm)	(25)	(25)	(25)	(25)
Anchor shaft diamotor	d	in	0.28	0.36	0.36	0.43
	u ₂	(mm)	(7.19)	(9.03)	(9.03)	(10.86)
Head diameter ³	d	in	0.69	0.77	0.77	0.91
	u ₁	(mm)	(17.50)	(19.50)	(19.50)	(23.00)
Anchor length		in	2.62	3.09	4.61	5.51
	'A	(mm)	(66.50)	(78.50)	(117.00)	(140.00)
Minimum anchor	e	in	3.94	3.94	3.94	3.94
spacing	min	(mm)	(100)	(100)	(100)	(100)
Maximum anchor	e	in	9.84	9.84	9.84	9.84
spacing	9 _{max}	(mm)	(250)	(250)	(250)	(250)
Net bearing area of the	Δ	in²	0.324	0.400	0.400	0.552
anchor head	brg	(mm²)	(209)	(258)	(258)	(356)
Matching channel bolt	x _{nail}		н	ІВС-С, НВС-С	50R, HBC-C-	N
Minimum channel bolt spacing	S _{chb}			3 x bolt	diameter	
Nail hole location ⁴		in (mm)		1" offset fr (25.4 offset	om anchor from anchor)	

Figure 2.2.1.3 a — HAC dimensions.

C/L anchor C/L ancho Xnail X_{nail}

Figure 2.2.1.3 b - HAC end and nail hole distance.

Minimum substrate requirements

The minimum edge distance and member thickness for anchor channels are established via testing. It is the interaction between minimum member thickness and minimum edge distance that determines the minimum edge distance. If the anchor channel is installed closer than the minimum edge distance, cracking of the concrete may occur while applying the required installation torque to the t-bolts. Testing to determine the minimum edge distance considers unfavorable site conditions. The test is based on having the anchor channel recessed 1/8" in unreinforced concrete. Splitting/cracking may occur. Therefore, minimum substrate requirements vary depending on the anchor channel size. HAC substrate requirements are provided in Table 2.2.1.2 and 2.2.1.3.

Table 2.2.1.2 — Minimum substrate dimensions for HAC in normal weight and sand-lightweight concrete

Anchor channel	Units	C _{a1}	C _{a2}	*h _{min}
	in	1.97	1.97	4.13
HAC-40	(mm)	(50)	(50)	(105)
	in	1.97	1.97	4.92
HAC-50	(mm)	(50)	(50)	(125)
	in	2.95	2.95	6.61
HAC-60	(mm)	(75)	(75)	(168)
	in	2.95	2.95	7.72
пас-70	(mm)	(75)	(75)	(196)

Table 2.2.1.3 — Minimum substrate dimensions for HAC in all lightweight concrete

Anchor channel	Units	C _{a1}	C _{a2}	*h _{min}
	in	2.95	2.95	4.13
HAC-40	(mm)	(75)	(75)	(105)
	in	2.95	2.95	4.92
HAC-50	(mm)	(75)	(75)	(125)
	in	2.95	2.95	6.61
HAC-60	(mm)	(75)	(75)	(168)
	in	2.95	2.95	7.72
пас-70	(mm)	(75)	(75)	(196)

 * Minimum slab thickness, $h_{_{min}}$ may be reduced if anchor cover requirements can be omitted (i.e. interior applications with metal deck underneath the channel). To avoid splitting of the concrete, the minimum edge and corner distance shall be increased by a factor of 2.

Corner and edge distances are measured to the center of the anchor

Figure 2.2.1.4 — Minimum HAC edge and corner distances, plan view.

1 Longer anchors can be offered upon request; longer lead time is expected.

2 Manufacture tolerance of up to +3 mm (0.118 in.).

3 The head diameter is the inner diameter of the hexagonal shaped head, and does not fully reflect the cross sectional area of the anchor head.

11. Best **Practices** **12. Instructions** for Use

13. Field Fixes

14. Design Example

Figure 2.2.1.5 - Minimum HAC member thickness, isometric view.

Edge distance facts:

- Any edge which the distance perpendicular to the long axis of the anchor channels is considered an edge.
- For determination of the minimum edge distance of
- concrete breakout strength in tension, $c_{a1} = \min of c_{a1,1} and c_{a1,2}$
- For analysis purposes of concrete edge breakout strength in shear, c₁ is always measured in the direction of the applied shear load.
- · Edge distances are always measured from the center of the anchor under consideration.

Corner distance facts:

- Any edge which the distance parallel to the long axis of the anchor channels is considered a corner
- For determination of the minimum corner distance,
- $c_{a2} = \min of c_{a21} and c_{a22}$
- · Corner distances are always measured from the center of the anchor under consideration

2.2 Geo

etric Pa

4. Design **Applications** Introduction

3. HAC

5. Base material 6. Loading

2.2.2 HAC IN FACE OF SLAB **CORNERS**

1. Anchor

Single HAC in face of slab corners

AC232 provides design guidelines to account for the influence of corners where only one anchor channel is present. The design of this type of applications is covered in ESR-3520. Table 2.2.2.1 provides the minimum edge and corner distances for HAC.

Table 2.2.2.1 — Minimum substrate edge and corner distances for single HAC in a corner in normal weight, sand-lightweight and all light-weight concrete

Anchor channel	Units	Minimum c _{at}	Minimum c _{a2}
HAC-40	In (mm)	*1.97 (50)	*1.97 (50)
HAC-50	In (mm)	*1.97 (50)	*1.97 (50)
HAC-60	In (mm)	2.95 (75)	2.95 (75)
HAC-70	In (mm)	2.95 (75)	2.95 (75)

*For all-lightweight concrete, c_{a1} and c_{a2} = 2.95" (75 mm)

Corner distance c₂₂ is measured to the center of the anchor.

Figure 2.2.2.1- Minimum corner distance for single HAC in face of slab, plan view.

Pair of HAC in a corner

AC232 does not include provisions to account for the influence of an adjacent channel in a face of slab corner. Technically, HAC can be used in both sides of the corner, if there is no overlapping of the anchors.

Additional measurements shall be taken in consideration to account for the negative influence of the adjacent anchor channel, if both channels are to be loaded simultaneously. See chapter 9, Anchor Channel Design for additional design information. Although this solution is technically feasible, installing HAC at 4 to 7 inches away from the corner typically results in unpractical bracket sizes, large eccentricities, large forces, and consequently, inadequate concrete strengths.

Table 2.2.2.2 and figure 2.2.2.3 provide information about the minimum corner distance for pair of HAC. See chapter 9, Anchor Channel Design for additional design information.

Table 2.2.2.2 — Minimum substrate edge and corner distances for pair of HAC in corners in normal weight, sand-lightweight and all light-weight concrete

Anchor channel	Units	Minimum c _{a1}	Minimum c _{ca2}
HAC-40	In (mm)	*1.97 (50)	3.70 (94.00)
HAC-50	In (mm)	*1.97 (50)	4.31 (109.50)
HAC-60	In (mm)	2.95 (75)	6.01 (152.50)
HAC-70	In (mm)	2.95 (75)	7.09 (180.00)

*For all-lightweight concrete, c_{a1} = 2.95" (75 mm)

Concrete at corner can only be "used" once

Corner distance case is measured to the center of the anchor.

Figure 2.2.2.2 — Minimum corner distances for pair of HAC, plan view.

For face of slab applications, it is not recommended to install HAC in both sides of the corner if overlapping of the rounded head anchors occurs and simultaneous loading will be experienced. The overlapping of the anchors of the corner channels creates a weakened failure plane, making the corner susceptible to premature cracking and reduced concrete strenaths.

Figure 2.2.3.3 - Premature concrete cracking due to simultaneous loading of pair HAC at corner with overlapped anchors, plan view.

2.2.3 HAC IN TOP AND BOTTOM OF SLAB CORNERS

Single HAC in top of slab corner

AC232 provides design guidelines to account for the influence of corners where only one anchor channel is present. The design of this type of application is covered in ESR-3520. Table 2.2.3.1 provides the minimum edge and corner distances for HAC. HAC requirements for top and bottom of slab corners are equal.

Table 2.2.3.1 — Minimum substrate edge and corner distances for single HAC in a corner in normal weight, sand-lightweight and All light-weight concrete

Anchor channel	Units	Minimum c _{at}	Minimum c _{a2}		
HAC-40	In (mm)	*1.97 (50)	*1.97 (50)		
HAC-50	In (mm)	*1.97 (50)	*1.97 (50)		
HAC-60	In (mm)	2.95 (75)	2.95 (75)		
HAC-70	In (mm)	2.95 (75)	2.95 (75)		

*For all-lightweight concrete, c_{a1} = c_{a2} = 2.95" (75 mm)

Corner distance c₂₂ is measured to the center of the anchor.

Figure 2.2.3.1- Minimum corner distance for single HAC in top of slab, plan view.

Pair of HAC in top of slab corners

AC232 does not include provisions to account for the influence of an adjacent and/or corner channel. Technically, HAC can be used in both sides of the corner.

Additional measurements shall be taken into consideration to account for the negative influence of the adjacent anchor channel, if both channels are to be loaded simultaneously. See chapter 9, Special Anchor Channel Design for additional design information.

The minimum corner distances for pair of HAC in top of slab corners (c_m) are consistent with table 2.2.3.1. These minimum distances are based on installation requirements. Both HAC at corners cannot be installed at the minimum corner distance due to physical constraints (clashing of HAC will occur). However, two HAC can be installed next to each other in a

corner configuration where the anchor channels are installed perpendicular to each other; see Figure 2.2.3.2.

Figure 2.2.3.2 illustrates a pair of HAC in a corner. Corner distances greater than the minimum corner distance may be required based on the structural adequacy of the concrete at the corner.

Corner distance c_{ca2} is measured to the center of the anchor.

Figure 2.2.3.2- Minimum corner distance for pair of HAC in top of slab, plan view.

Design of Top of Slab Corners

Hilti has developed a model to account for the influence of adjacent and corner channels. The model follows the fundamentals of AC232 and allows to analyze more complex but typical applications encountered in a project such as the conditions shown in Figure 2.2.3.3. See chapter 9, Special Anchor Channel Design for additional design information.

Figure 2.2.3.3 Corner configuration of pair of HAC in top of slab.

2. HAC Portfolio

3. HAC 4. Design **Applications** Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor Channel Design

2.2.4 HAC CRFoS U

Hilti Anchor Channel Rebar Face of Slab with smooth channel lips (HAC CRFoS U) are offered in three channel profile sizes; HAC-50, HAC-60, and HAC-70. Hilti Channel Bolts C (HBC-C) are suitable for all HAC CRFoS U.

Figure 2.2.4.1 - HAC CRFoS profiles with matching channel bolts.

Figure 2.2.4.2 - Section view of HAC-50 CRFoS U, HAC-60 CRFoS U, and HAC-70 CRFoS U.

The standard portfolio consists of HAC-50, HAC-60, and HAC-70 channels profiles with pre-defined channel length, rebar lengths, number of anchors, and defined rebar diameter. Nonstandard anchor channels (i.e. custom channel length, rebar length, number of rebars etc.) can be provided upon request. Refer to sections 2.4 and 2.5 for additional information about standard items and lead times.

	Minimum rebar sp
	Maximum rebar s
	Bar effective cros
	Matching channel
·	Minimum channel
	Nail hole location
•	*Custom rebar lengths for information about

			A	Anchor Channel		
Criteria	Symbol	units	HAC-50 CRFoS U	HAC-60 CRFoS U	HAC-70 CRFoS U	
Channel profile height	h	in	1.22	1.40	1.57	
	cn	(mm)	(31)	(35.5)	(40)	
Channel profile width	b.	in	1.65	1.71	1.79	
	- cn	(mm)	(41.9)	(43.4)	(45.4)	
Channel profile moment of inertia	L.	in⁴	0.0796	0.1392	0.2293	
•	У	(mm⁴)	(33,125)	(57,930)	(95,457)	
Channel profile opening	d	in	0.77	0.77	0.77	
	_	(mm)	(19.50)	(19.50)	(19.50)	
Channel lip flange thickness	f	in	0.21	0.25	0.3	
		(mm)	(5.30)	(6.30)	(7.40)	
Channel lip thickness (top)	t _{nom} .	in	0.11	0.14	0.18	
(p)		(mm)	(2.75)	(3.50)	(4.50)	
Channel lip thickness (bottom)	t _{nom.b}	in (mark)	0.11	0.14	0.18	
		(mm)	(2.75)	(3.50)	(4.50)	
*Rebar length	ℓ_{d}	(mama)	12.80	(260)	14.96	
		(mm)	(325)	(360)	(360)	
Rebar kink/offset height	k _h	(111	(10)	0.55	(10)	
		(mm)	(12)	(14)	(10)	
Nominal anchor channel depth	h _{nom}	(mm)	(256)	(206)	(420)	
		in	0.98	0.98	0.98	
Minimum end spacing	× _{min}	(mm)	(25)	(25)	(25)	
		in	0.47	0.55	0.63	
Rebar diameter	d _b	(mm)	(12)	(14)	(16)	
		in	3.94	3.94	3.94	
Minimum rebar spacing	S _{min}	(mm)	(100)	(100)	(100)	
		in	9.84	9.84	9.84	
Maximum rebar spacing	S _{max}	(mm)	(250)	(250)	(250)	
		in ²	0,18	0.24	0.31	
Bar effective cross-sectional area	A _{se}	(mm²)	(113.10)	(153.93)	(201.06)	
Matching channel holt		. ,	HBC-	C, HBC-C 50F	R, and	

10. Design

Software

bolt spacing $\mathbf{S}_{\mathrm{chb}}$ in 1" offset from rebar X_{nail} (25.4 offset from rebar) (mm) ns can be offered upon request. Longer rebars may require longer lead times. Refer to sections 2.4 and 2.6 lead times of custom channels. 1 Nail hole diameter is 4 mm (0.16 in.)

Figure 2.2.4.3 a - HAC CRFoS U end and nail hole distance.

12. Instructions for Use

14. Design Example

HBC-C-N

3 x bolt diameter

Figure 2.2.4.3 b - HAC CRFoS U dimensions.

4. Design Introduction

3. HAC

Applications

5. Base material

6. Loading

9. Special Anchor 10. Design **Channel Design** Software

Minimum substrate requirements for HAC CRFoS U

Similarly to HAC, the minimum edge distances for HAC CRFoS U are established via testing. Although HAC CRFoS U are not implicitly covered by AC232, ESR-3520 provides the minimum edge and corner distance for the minimum member thickness. The minimum member thickness for HAC CRFoS U is larger than the minimum member thickness for HAC. However, the channel profile is the same for HAC and HAC CRFoS U. Therefore, it is conservative to use the minimum HAC edge and corner distances for HAC CRFoS U.

Table 2.2.4.2 — Minimum edge and corner distances for HAC CRFoS U in normal weight and sandlightweight concrete

Anchor channel	Units	C _{a1}	C _{a2}	*h _{min}
HAC-50	in	1.97	1.97	14.00
CRFoS U	(mm)	(50)	(50)	(356)
HAC-60	in	2.95	2.95	14.25
CRFoS U	(mm)	(75)	(75)	(362)
HAC-70	in	2.95	2.95	14.25
CRFoS U	(mm)	(75)	(75)	(362)

Table 2.2.5.2 — Minimum edge and corner distances for HAC CRFoS U in all-lightweight concrete

Anchor channel	Units	C _{a1}	C _{a2}	*h _{min}
HAC-50	in	2.95	2.95	14.00
CRFoS U	(mm)	(75)	(75)	(356)
HAC-60	in	2.95	2.95	14.25
CRFoS U	(mm)	(75)	(75)	(362)
HAC-70	in	2.95	2.95	14.25
CRFoS U	(mm)	(75)	(75)	(362)

*Minimum slab thickness, hmin may be reduced.

Edge $c_{a2} = \min \text{ of } c_{a2,1} \text{ and } c_{a2,2}$

Corner and edge distances are measured to the center of the anchor.

Figure 2.2.4.4 - Minimum HAC CRFoS U edge and corner distances, elevation view

Figure 2.2.4.5 - Minimum HAC CRFoS U member thickness, isometric view.

Minimum edge distance for anchor channels in composite slabs

The minimum edge and corner distances for HAC CRFoS U are consistent with the minimum requirements of its matching HAC profile size. Moreover, the AC232 test series 6 - splitting failure due to installation requires a 1/8 inch (3 mm) gap between channel lip and fixture to ensure introduction of a tension load into the anchor during torquing. This takes into considerations unfavorable anchor channel installation. However, this can be prevented in composite slabs where the anchor channel profile bears on the pour stop and the channel lips and fixture are flush with the pour stop.

For composite slabs where the anchor channel is fixed to the pour stop and the channel cannot be recessed in the slab, smaller edge distances may be allowed. Additional measurement may be required if the rebar is embedded in the metal deck zone. See section 9 for additional information.

Figure 2.2.4.6 - HAC CRFoS U in composite slab.

Table 2.2.4.4 – Minimum distance from face of slab to metal deck, here of

Anchor channel	Units	*h _{min,CP}
HAC-50	in	4.92
CRFoS U	(mm)	(125)
HAC-60	in	6.61
CRFoS U	(mm)	(168)
HAC-70	in	7.72
CRFoS U	(mm)	(196)

* min. distance where no concrete edge breakout in shear capacity is reduced here an contact

2.2.5 HAC CRFoS U IN FACE OF SLAB CORNERS

HAC CRFoS U are ideal for face of slab corner applications. The Hilti face of slab corner solution utilizes two independent anchor channels. The use of two independent anchor channels eases the installation in congested conditions. This minimizes clashes of the anchors with the rebar cage, preventing damag of the anchors during installation. Moreover, two independent anchor channels allows de-coupling of the loads applied on each corner channel, preventing the anchors from experiencin undesired loads.

The use of anchor channels with rebar anchors (HAC CRFoS U) allows the anchor channels to be installed as close as 2-1/8 (from end of channel profile) away from the corner, without penalizing the concrete tensile strengths in tension, as is the case for HAC.

HAC CRFoS U comes with specially bent rebars. Thus, allowing both corner channels to be installed at the same elevation without clashing of the rebars of both corner channels.

Due to the HAC CRFoS U configuration, the anchor channel used at both corners is the same type. At corners, one HAC CRFoS U is rotated 180 degrees. Therefore, one channel has the bent rebars going up while the other are going down.

Anchor channel steel strengths are provided in sections 2.3.3 and 2.3.4. For design of channels at corners, refer to chapter 9.

Figure 2.2.5.1 - HAC CRFoS U at corners.

Corner distance c_{ase} is measured to the center of the anchor.

Figure 2.2.5.2 — Minimum corner distance for pair of HAC CRFoS U in a corner.

Table 2.2.5.3 — Minimum substrate edge and corner distances for pair of HAC CRFoS U in corners in normal weight, sandlightweight and all light-weight concrete

ai c	a2
in *1.97 3.15	
(mm) (50) (80)	
in 2.95 3.62	
(mm) (75) (92)	
in 2.95 3.94	
, (100)	

*For all-lightweight concrete, c₁ = 2.95" (75 mm)

Figure 2.2.5.3 - Minimum corner distance for pair of HAC CRFoS U in a corner, plan view.

What drives the minimum corner distance?

The minimum corner distance (C_{ras}) is based on the minimum physical distance required to avoid clashing of the rebars of the two corner anchor channels, installed at the same elevation.

HAC CRFoS U at non-90° corners

Corner distance c_{ca2} is measured to the center of the anchor.

HAC CRFoS U are suitable for non-90° corners. The use of two independent anchor channels simplifies the portfolio by no requiring custom made channels. See chapter 9 for design information.

Figure 2.2.5.4 — Pair of HAC CRFoS U in an acute corner, plan view

2. HAC 1. Anchor Channel Systems Portfolio

3. HAC **Applications** Introduction

4. Design

5. Base material

6. Loading

7. Anchor Channel **Design Code**

2.2.6 HAC CRFoS U IN TOP OR BOTTOM OF SLAB APPLICATIONS

HAC CRFoS U in intermediate applications

The use of HAC CRFoS U is not limited to face of slab applications. HAC CRFoS U is ideal for applications with high tension forces. In top of slab applications, HAC CRFoS U presents a great solution for applications (intermediate and corners) with high tension forces and HAC is not adequate. The minimum member thickness, corner and edge distances are provided in tables 2.2.5.1 and 2.2.5.2. The minimum rebar length should be established in accordance with applicable provisions of AC232 and ACI 318.

HAC CRFoS U in corner applications

The requirements for HAC CRFoS U in top of slab applications are similar to the HAC requirements discussed in section 2.2.3. See section 9 for additional design information.

HAC CRFoS U in top or bottom of slab applications

A good example for a top of "slab" applications where HAC CRFoS U may be the only solution is handrails in top of curb. Although the shear forces are typically low, the high tension forces on the t-bolts due to the cantilever effect of the rails tends to create unsatisfactory concrete breakout in tension utilizations. Figure 2.2.6.1 illustrates such scenario. The curb needs to be tall enough to meet the minimum member thickness. Standard hooks and headed rebars may be used if the minimum member thickness is not met.

Another example is a kicker in a spandrel beam (corner or intermediate) where the anchor is installed at a large edge distance but the bracket eccentricity generates overly high tension forces on the t-bolts.

HAC CRFoS U transfers higher tension forces than HAC. HAC CRFoS U does not increase the concrete breakout strength in shear. See section 9 for additional design information.

Figure 2.2.6.1 - Pair of HAC CRFoS U in a top of curb corner, isometric view

The concrete breakout strength in shear is not negatively impacted by the rebars. The concrete breakout strength in shear for HAC and its matching HAC CRFoS U is asssumed to be equal and the same design standards are applied.

In bottom of slab applications, the concrete breakout strength in shear can be increased by increasing the edge distance. However, if the tension is too high as it can be the case with kicker, the interaction (or tension alone) of concrete in tension and shear can yield unsatisfactory utilizations. HAC CRFoS U can solve this limitation, if the member thickness is sufficient.

Figure 2.2.6.2 - HAC CRFoS U in bottom of slab application, section view.

Hilti Anchor Channels with smooth channel lips and rebar edge confinement plate (HAC EDGE Lite and HAC EDGE) are offered in HAC-50 profiles. The anchor channel is identical to its matching HAC, except the rebar edge confinement plate performance in shear.

The standard portfolio consists of HAC-40 with a nominal nominal anchor heights; 4.31" (109.50 mm) and 3.84" (97.50 mm). Moreover, defined channel length, EDGE Lite and EDGE number of rebar are also defined. The number of anchors per request. Refer to section 2.4 and 2.5 for additional information about standard items and lead times. For custom solutions, refer to section 2.6.

The concrete edge shear confinement plate (EDGE Plate) is the specified edge distance (c_{1}) .

Figure 2.2.7.2 - Section view of HAC-40 EDGE Lite and HAC-50 EDGE Lite.

3. HAC

Applications

4. Design

Introduction

5. Base material

6. Loading

2. HAC Portfolio

1. Anchor

Channel Systems

HAC-50 EDGE Lite (h_{ef} = 94 mm)

9. Special Anchor

10. Design

7. Anchor Channel 8. Reinforcing

Figure 2.2.7.4 – Section view of HAC-50 S EDGE and HAC-50 S EDGE C.

1. Anchor **Channel Systems**

3. HAC Applications

4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage** 9. Special Anchor 10. Design Channel Design Software

Table 2.2.7.2 — Geometric parameters of HAC EDGE Lite and HAC EDGE

Anchor Channel Criteria Symbol Units **HAC-40** HAC-50 EDGE Lite **EDGE** Lite EDGE 0.16 0.16 Thickness of the EDGE Lite in t_{pl} or EDGE plate (mm) (4.00)(4.00) 1.97 1.97 Height of the EDGE in h Lite or EDGE plate (mm) (50) (50) in 0.99 0.99 Projection of the EDGE X_{pl} Lite or EDGE plate (25) (25) (mm) Length of the EDGE Lite or in Channel length + $2(x_{n})$ I, EDGE plate (mm) 18.11 in Overall length of the EDGE 1_ Lite or EDGE plate rebars (460) (mm) 0.31 0.39 in Rebar nominal diameter d (mm) (8) (10) in² 0.08 0.12 Bar effective cross-A sectional area (mm²) (50.27) (78.54) in 3.74 3.74 Minimum rebar spacing $\mathbf{S}_{\min,\mathrm{R}}$ (95) (95) (mm)3.74 3.74 in Maximum rebar spacing S_{max,R} (mm) (95) (95) C/C distance between the 0.295 0.295 in outer rebar and the outer X_R (mm) (7.50) (7.50) anchor Distance from the end of the EDGE Lite or EDGE 0.40 in d, (10) plate to the center of the (mm)installation hole1 Edge distance (from outside face of EDGE Lite or EDGE in As specified С., plate to center of HAC (mm)anchor) Development length of in rebars (mm)

1 Nail hole diameter is equal to 6 mm (0.25 in.)

Figure 2.2.7.8 - HAC EDGE Lite and HAC EDGE dimensions, section and elevation view

HAC EDGE Lite, HAC EDGE, and HAC S EDGE utilize HAC-50 with rounded head anchors. HAC EDGE Lite is also offered in HAC-40. These are the same anchor channel covered by ICC ESR-3520. The HAC-50 with reduced embedment depth (h_{ef} < 4.17" (106 mm)) is not covered by ESR-3520. Additional components are added to improve the concrete capacity in perpendicular shear and to provide superior steel performance in perpendicular shear.

Table 2.2.7.1 provides geometric parameters for the anchor channels that compose the HAC EDGE product line. Tables 2.2.7.2 and 2.2.7.3 provide geometric information about EDGE Lite and EDGE plate.

Table 2.2.7.1 – Geometric parameters for HAC EDGE Lite, HAC EDGE, and HAC S EDGE²

2. HAC

Portfolio

			Anchor Channel				
Criteria	Symbol	Units	HAC-40 EDGE Lite	HAC-50 E HAC-50 HAC-50	EDGE Lite DEDGE SEDGE		
Min. effective	h _{ef min}	in	3.58	4.17	*3.70		
	er,min	(mm)	(91.0)	(106)	(94)		
Thickness of the anchor head	t _h	in (mm)	0.12 (3.00)	0. (3.	14 50)		
Nominal embedment	h _{nom}	in	3.70	4.31	3.84		
		(mm)	(94.00)	(109.5)	(97.5)		
Channel profile height	h _{ch}	(mm)	1.10 (28.0)	1. (31	.0)		
		in	1.61	1.	65		
Channel profile width	b _{ch}	(mm)	(40.9)	(41	.9)		
Channel profile moment		in ⁴	0.0516	0.0	796		
of inertia	l _y	(mm⁴)	(21,463)	(33,	125)		
		in	0.77	0.	77		
Channel profile opening	d	(mm)	(19.50)	(19	.50)		
Channel lip flange		in	0.18	0.	21		
thickness	t	(mm)	(4.50)	(5.	30)		
Channel lip thickness	+	in	0.09	0.	11		
(top)	fnom,t	(mm)	(2.25)	(2.	75)		
Channel lip thickness	+	in	0.09	0.	11		
(bottom)	'nom,b	(mm)	(2.25)	(2.	75)		
Minimum end spacing	x	in	0.98	0.	98		
	^min	(mm)	(25)	(2	5)		
Anchor shaft diameter	d	in	0.28	0.	36		
	u ₂	(mm)	(7.19)	(9.	03)		
Head diameter ¹	d	in	0.69	0.	77		
	G ₁	(mm)	(17.50)	(19	.50)		
Anchor length	1	in	2.60	3.09	2.62		
	-A	(mm)	(66)	(78.50)	(66.5)		
Minimum anchor	s	in	3.94	3.	94		
spacing	- min	(mm)	(100)	(100)			
Maximum anchor	s	in	9.84	9.84			
spacing	- max	(mm)	(250)	(250)			
Net bearing area of the	A,	in ²	0.324	0.4	00		
anchor head	brg	(mm²)	(209)	(258)			
Matching channel bolt			HBC-C, HBC-C 50R, HBC-C-N				
Minimum channel bolt spacing	S _{chb}			3 x bolt diameter			
		in	1" offset from anchor				

1 The head diameter is the inner diameter of the hexagonal shaped head, and does not fully reflect the cross sectional area of the anchor head.

(mm)

(25.4 offset from anchor)

2 HAC EDGE C and HAC S EDGE C are the matching corner channel and have the same anchor channel as the intermediate HAC EDGE and HAC S EDGE. Although the shear confinement plate has different geometry, the anchor channel is the same.

* Effective embedment depth not covered by ICC ESR-3520.

х

3 Nail hole diameter is 4 mm (0.16 in.)

Nail hole location³

Figure 2.2.7.5 a - Dimensions of the anchor channel of HAC EDGE Lite, HAC EDGE, and HAC S EDGE.

Figure 2.2.7.5 b - HAC end and nail hole distance.

0.20

(5.00)

2.36

(60)

1.97

(50)

23.62

(600)

0.47

(12) 0.18

(113.1)

12. Instructions for Use

14. Design Example

HAC EDGE C has rebars that are located one rebar diameter below the bottom base of the anchor channel profile to avoid clashing with the rebars of the opposite corner channel (HAC EDGE). The plate is taller and thicker.

Figure 2.2.7.9 - HAC EDGE C dimensions, section and elevation view.

59

3.74 (95) 5.71 (145) 0.295 (7.50)

3. HAC Applications

4. Design Introduction

5. Base material

6. Loading

9. Special Anchor 10. Design Channel Design Software

Table 2.2.7.3 — Geometric parameters for HAC S EDGE concrete edge shear confinement plate

Criteria	Symbol	Units	Anchor	Channel
••••••			HAC	-50 S
			EDGE	EDGE C
Thickness of the EDGE plate	t _{pl}	in (mm)	0.20 (5.00)	0.24 (6.00)
Height of the EDGE Plate	h _{pl}	in (mm)	2.36 (60)	3.94 (100)
Projection of the EDGE plate	x _{pl}	in (mm)	1. (5	97 50)
Length of the EDGE plate	I _{pl}	in (mm)	Channel le	ngth + 2(x _{pl})
Overall length of the EDGE plate rebars	I _R	in (mm)	23	.62 00)
Rebar nominal diameter	d _b	in (mm)	0.	47 2)
Bar effective cross- sectional area	A _{se}	in² (mm²)	0. (11	18 3.1)
Minimum rebar spacing	S _{min,R}	in (mm)	3.	74 95)
Maximum rebar spacing	S _{max,R}	in (mm)	5.71 (145)	
C/C distance between the outer rebar and the outer anchor	x _R	in (mm)	0.2	295 50)
Distance from the end of the EDGE Lite or EDGE plate to the center of the installation hole ¹	d,	in (mm)	0.40 (10)	
Edge distance (from outside face of EDGE Lite or EDGE plate to center of HAC anchor)	C _{a1}	in (mm)	As sp	ecified
Development length of rebars	l _d	in (mm)	$I_{R} - C_{a1} + t_{pl}$	

Figure 2.2.7.11 - Isometric view of HAC-50 S.

Figure 2.2.7.12 - Isometric view of HAC-50 S EDGE.

1 Nail hole diameter is equal to 6 mm (0.25 in.)

Figure 2.2.7.13 – HAC S EDGE dimensions, section and elevation view.

HAC S EDGE C has rebars that are located one rebar diameter below the bottom base of the anchor channel profile to avoid clashing with the rebars of the opposite corner channel (HAC S EDGE). The plate is taller and thicker.

Figure 2.2.7.14 - HAC S EDGE C dimensions, section and elevation view.

Minimum substrate requirements for HAC EDGE Lite, HAC EDGE, and HAC S EDGE

Similarly to HAC, the minimum edge distances for HAC EDGE are established via testing. Although the HAC EDGE product line are not implicitly covered in AC232, AC232 provides testing protocols for anchor channels to establish the minimum edge and corner distance for the minimum member thickness. The following substrate requirements have been established in accordance with testing protocols of AC232.

Table 2.2.7.4 — Minimum substrate dimensions for HAC EDGE Lite, HAC EDGE, and HAC S EDGE

				Normal conc	weight crete	Sand lightw lightweigh	eight and all t concrete	
Anchor channel	Units	h _{ef}	*h _{min}	C _{a1}	C _{a2}	C _{a1}	C _{a2}	
HAC-40 EDGE Lite	in	3.58						
TIAO-40 EDGE Elle	(mm)	(91)	3.94					
	in	3.70	(100)					
	(mm)	(94)		1.97	3.94 3.94 (100) (100)			
HAC-50 EDGE LITE	in	4.17	4.92					
	(mm)	(106)	(125)	(50)				
	in	3.70	3.94			94		
HAC-50 EDGE	(mm)	(94)	(100)			(100)		
	in	4.17	4.92					
HAC-50 EDGE C	(mm)	(106)	(125)					
	in	3.70	3.94					
HAC-50 S EDGE	(mm)	(94)	(100)	3.94				
	in	4.17	4.92	(100)				
HAC-DU S EDGE C	(mm)	(106)	(125)					

Corner and edge distances are measured to the center of the anchor.

Figure 2.2.7.15 — Minimum edge and corner distances for HAC EDGE Lite, HAC EDGE, and HAC S EDGE, plan view

Minimum edge distance for anchor channels in composite slabs

The minimum edge and corner distances for HAC EDGE are consistent with the minimum requirements of HAC. In response to the market trends such as composite slabs with pockets, Hilti has added HAC EDGE with shorter anchor lengths.

For composite slabs where there is a pour stop along the perimeter of the edge of slab preventing oxygen from reaching out to the bottom of the slab and concrete cover of the anchor is not required, the minimum member thickness can be reduced.

Chapters 8 and 9 provide design information for HAC EDGE in composite slabs and how to account for the potential negative influence of the metal deck.

2.2 Geometric Parameters

1	
1	

Edge distance (cal) is measured from the face of the slab (outer face of the EDGE Plate).

Figure 2.2.7.16 – Minimum member thickness for HAC EDGE Lite, HAC EDGE, and HAC S EDGE, isometric section view.

Figure 2.2.7.17 - HAC EDGE in a composite slab, section view. Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019

2.2.8 HAC EDGE AND HAC S EDGE IN TOP OR BOTTOM OF SLAB CORNERS

2. HAC

Portfolio

3. HAC

Applications

4. Design

Introduction

Pair of HAC EDGE or HAC S EDGE in top of slab corner

1. Anchor

Channel Systems

HAC EDGE and HAC S EDGE are ideal for top of slab corner applications. Two independent anchor channels at the corner allows de-coupling the loads at both channels, preventing anchors and rebars from taking undesired loads. Furthermore, using two independent channels eases the installation in congested areas, preventing damage of the anchors during installation.

Corner distance c_{ca2} is measured to the center of the anchor.

Figure 2.2.8.1 — Corner configuration of pair of HAC EDGE in top of slab, plan view.

The new Hilti design method for corners follows the principles of AC232 and allows the anchor channels to be installed as close as physically possible to the corner, as long as the minimum corner and edge distances are not exceeded. The use of HAC EDGE allows the concrete to take higher shear forces, making it the perfect solution for corner applications.

HAC EDGE at corner requires the use of HAC EDGE and HAC EDGE C. The EDGE C plate of HAC EDGE C comes with rebars that are located 1 rebar diameter below the bottom of the channel profile to prevent clashing of the rebars with the HAC EDGE.

Table 2.2.8.1 — Minimum substrate edge and corner distance for pair of HAC EDGE and HAC S EDGE at a corner

			Normal conc	weight crete	Sand light all lightweig	weight and ght concrete		
Anchor channel	Units	h _{ef}	*h _{min}	C _{a1}	C _{a2}	C _{a1}	C _{a2}	
	in	3.70	3.94					
HAC-50 EDGE	(mm)	(94)	(100)	1.97 (50)	1.97 (50) 3.94			
	in	4.17	4.92			3.94		
HAC-50 EDGE C	(mm)	(106)	(125)					
	in	3.70	3.94		(100)	(100)	(100)	
HAC-50 S EDGE	(mm)	(94)	(100)	3.94	94			
	in	4.17	4.92	(100)				
HAC-DU S EDGE C	(mm)	(106)	(125)					

HAC EDGE C and HAC EDGE C steel strengths are provided in section 2.3. For design of channels at corners, refer to Chapter 9.

5. Base material

6. Loading

Figure 2.2.8.2 — Isometric view of HAC EDGE and HAC EDGE C.

HAC EDGE and HAC S EDGE at non-90° corners

HAC EDGE C and HAC S EDGE C are suitable for non-90° corners. The use of two independent anchor channels simplifies the portfolio by no requiring custom made channels. See Chapter 9 for design information.

Figure 2.2.8.3 - HAC EDGE and HAC EDGE C in an acute corner, plan view.

2.2.9 HILTI CHANNEL BOLTS

8. Reinforcing

Bar Anchorage

7. Anchor Channel

Design Code

The Hilti Channel Bolts (HBC) are part of the anchor channel system. HBC are threaded fasteners commonly known as T-bolts. HBC are the link between the fixture and anchor channel. The HBC have a proprietary head geometry, therefore, and HBC are only compatible with Hilti Anchor Channels. The head of the HBC can be inserted along the channel cavity. The fixture is connected to the anchor channel by channel bolts with a nut and washer. Thus, allowing for the so desired jobsite tolerance.

9. Special Anchor

Channel Design

10. Design

Software

The head of the t-bolt is first installed parallel to the channel profile. Once it is positioned in place, the bolt is turned 90° clockwise. The head of the bolt has been engineered in a way that the t-bolt cannot rotate more than 90° clockwise. This ensures the bolt is properly positioned before the required installation torque is applied.

HBC come with a special marking to ease the identification before and after installation takes place. All HBC are covered by ESR-3520.

2.2.10 HILTI CHANNEL BOLTS: HBC-C

Hilti Channel Bolts — C (HBC-C) are suitable for channel profiles HAC-40, HAC-50, HAC-60, & HAC-70. HBC-C come in bolt diameters M12, M16, and M20, steel grades 8.8 and 50, finishing and materials HDG and SS, respectively

HBC-C can be used to transfer tensile loads, shear loads perpendicular to the longitudinal channel axis, or any combination of these loads. Transferring of the loads takes place via interlock between the HBC and the channel lips.

Table 2.2.10.1 — Hilti Channel Bolts (HBC-C) material information

Channel bolt	Units	Carbon steel ¹	Stainless stee
Property class	-	8.8	A4-50
£	ksi	116.0	72.5
Tu	(N/mm ²)	(800)	(500)
4	ksi	92.82	30.4
I _y	(N/mm ²)	(640)	(210)
Coating		F ²	-

1 Materials according to Annex 3, Table 1

2 Hot-dop galvanized

Special markings on the outer surface of the t-bolt aids the installer to ensure the t-bolt is properly positioned before the installation torque is applied. Moreover, it allows the installer and inspector to identify the type of bolt, after the fixture is installed. Once the fixture is installed, the head of the t-bolt is no longer visible and the only visible part of the t-bolt is its outer face.

3. HAC 4. Design Applications Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor Channel Design

r 10. Design Software

Hilti Channel Bolt Length (HBC-C)

Table 2.2.10.2 — Hilti Channel Bolts dimensions

Channel Bolt	Anchor Channel	Units	C	Dimensio	ons		Channel bolt length		
	Prome		Diameter ø	b,	b ₂	k	L		
	HAC-40	mm (in)	M12	14	33	10.4 (0.41)	40-200		
HBC-C	HAC-50 HAC-50 S	mm	M16			11.4	40-200		
1120 0	HAC-60	(in)	M20	in to		18.5	(1.30)	(0.45)	(1.57-7.87)
	HAC-70	mm		(0.73)		13.9	60-200		
		(in)	10120			(0.55)	(2.36-7.87)		

Minimum t-bolt overhang

According to AISC Steel Construction Manual, 13th Edition, Section 14-10 "Adequate thread engagement for anchor rods is identical to the condition described in the RCSC Specification as adequate for steel to steel structural joints using high strength bolts: having the end of the [anchor rod] flush with or outside the face of the nut".

There is no maximum thread protrusion limitation from the standpoint of the function of the bolt.

If needed, the excess at the end of the bolt can be cut-off. The nut shall be fully engaged. The outside face of the head of the t-bolt has special markings to identify the t-bolt type and proper head orientation of the t-bolt. If the t-bolt is to be cut or grind, inspect and ensure the orientation and t-bolt type is as specified prior to any work on the t-bolt. If the marking on the t-bolt are removed, proper inspection is not possible. Proper corrosion protection shall be required.

Although there is minimum t-bolt overhang (Lo) can be zero, for tolerance purposes it is recommended to have a minimum t-bolt overhang. Table 2.2.10.4 provides the minimum t-bolt overhang length.

Figure 2.2.10.3 - Overhang of Hilti Channel Bolts (HBC-C).

Table 2.2.10.4 — Recommended t-bolt overhang, L_{o}

Hilti locking channel bolt diameter (mm)	Minimum nominal overhang, L _o
M10	1/8 in
IVI12	(3 mm)
M16	13/64 in
IVITO	(5 mm)
MOO	9/32 in
M20	(7 mm

2.2.11 HILTI LOCKING CHANNEL BOLTS: HBC-C-N

Hilti Locking Channel Bolts (HBC-C-N) are suitable for channel profiles HAC-40, HAC-50, HAC-60, & HAC-70. HBC-C-N come in bolt diameters M12, M16, and M20, steel grade 8.8, and HDG finishing. All HBC-C-N are covered by ESR-3520.

HBC-C-N can be used to transfer tensile loads, shear loads perpendicular to the longitudinal channel axis, longitudinal shear forces, or any combination of these loads. Transferring the loads takes place via interlock between the head of the HBC-C-N and the channel lips.

Longitudinal load transfer mechanism

The inside head of the HBC-C-N has 4 hardened notches. After the required installation torque is applied, the head of the t-bolt "bites" into the channel lips, creating four (4) - 2 mm deep "notches" in the channel lip. Hence, a positive connection between channel lip and t-bolt head is created. The longitudinal shear resistance of the HBC-C-N and HAC is achieved via mechanical interlock between the channel lips and head of the notched bolt. The load transfer mechanism ensures full load capacity, even if the nut experiences up to 50 percent relaxation.

The notches created in the channel lips reduce the moment of inertia of the channel profile. Therefore, the flexural strength of the anchor channel in tension is reduced by 10-15 percent, depending on the anchor channel profile size. Corrosion of the notches is not a concern due to the tight sealing that occurs during the installation torque.

(4) Locking ridges

Figure 2.2.11.1 — Head of Hilti Locking Channel Bolt (HBC-C-N).

Installation torque of HBC-C

Table 2 2 10 5 —	Installation	torque for	Hilti C	Channel	Bolts (HBC-C	١
	matanation	lorque ior	THUCK V	Juanner	DUILS	1100-0	

Bolt type	Units	Installation torque (Installation type /		Installation torque T _{inst} (Installation type A) ¹		Installation torque T _{inst} (Installation type B) ²			
		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40	HAC-50	HAC-60	HAC-70
	ft-lb		19			55			
	(Nm)		(2	5)		(75)			
	ft-lb		4	4			1:	36	
	(Nm)		(60)				(18	35)	
	ft-lb		44				4	4	
HBC-C MITO SU K	(Nm)		(60)				(6	0)	
	ft-lb	52	52 78 89				23	36	
HBC-C M20 8.8	(Nm)	(70)	(105)	(1:	20)	(320)			

1 Installation type A: The fixture is in contact with the channel profile and the concrete surface

2 Installation type B: The fixture is fastened to the anchor channel by suitable steel part (e.g. square plate washer), fixture is in contact with the channel profile only

13. Field Fixes

Can longitudinal shear loads be resisted via friction? Although longitudinal shear forces may be justified via friction, AC232 requires a positive connection between T-bolt and channel lip. Due to different installation uncertainties, long-term relaxation, and performance variance, Hilti does not recommend the use of friction as a means of transferring longitudinal loads, especially seismic loads. Force 1 Force 2 **Friction Force** Figure 2.2.11.2 - Friction **Special channel bolt markings** Special markings on the t-bolt aid the installer to ensure the bolt is properly positioned before the installation torque is applied. Moreover, it allows the installer and inspector to identify the type of bolt, after the fixture is installed. Bolt type HBC-C-N Steel grade 8.8F Finishing/ material Identificatio marking Figure 2.2.11.3 — T-bolt marking

Mechanical interlock between channel lip and locking channel bolts via channel lip notches

Figure 2.2.11.4 - Notches in channel lips due to HBC-C-N.

Table 2.2.11.1 — Depth of notches created by Hilti Locking Channel Bolts (HBC-C-N)

Channel Bolt	Diameter (mm)	N _h
	12	2 mm
	16	2 mm
	20	2 mm

The extra 2 mm shall be considered when determining the protruding length (Ie,) of the Hilti Locking Channel Bolt

Hilti Locking Channel bolt grade

Table 2.2.11.2 — Hilti Locking Channel Bolts (HBC-C-N) material information

Channel bolt	Units	Carbon steel ¹
Property class	-	8.8
f	ksi	116.0
ч _и	(N/mm ²)	(800)
f _y	ksi	92.82
	(N/mm²)	(640)
Coating		F ²

1 Materials according to Annex 3. Table 1 2 Hot-dop galvanized

Hilti Locking Channel Bolt Length

Table 2.2.11.3 — Hilti Locking Channel Bolts dimensions

Channel Bolt	Anchor Channel	units	D	imensio	ons	
	Profile		Diameter ø	b,	b ₂	k
HBC-C-N		mm	M10		33 (1.30)	
	HAC-40 HAC-50 HAC-50 S HAC-60 HAC-70	(in)	IVI 12	18.5 (0.73)		11.4
		mm	MIC			(0.45
		(in)	IVITO			
		mm	MOO			13.9
		(in)	IVIZU			(0.55

Table 2.2.11.4 — Channel lip thickness

Anchor Channel profile		Channel lip thickness, L _{th}
		7/64 in
HAC-40	HAC-40	(2.6 mm)
	HAC-50	1/8 in
HAC-50	HAC-50 S	(3.10 mm)
		5/32 in
	HAC-00	(4.1 mm)
		13/64 in
	ПАС-70	(5.2 mm)

Minimum bolt overhang

According to AISC Steel Construction Manual, 13th Edition, Section 14-10: "Adequate thread engagement for anchor rods is identical to the condition described in the RCSC Specification as adequate for steel to steel structural joints using high strength bolts: having the end of the [anchor rod] flush with or outside the face of the nut".

There is no maximum thread protrusion limitation from the standpoint of the function of the bolt.

If needed, the excess at the end of the bolt can be cut-off. The nut shall be fully engaged. The outside face of the head of the Although there is minimum t-bolt overhang (Lo) can be zero, for tolerance purposes it is recommended to have a minimum t-bolt t-bolt has special markings to identify the t-bolt type and proper overhang. Table 2.2.11.5 provides the minimum t-bolt overhang head orientation of the t-bolt. If the t-bolt is to be cut or grind, inspect and ensure the orientation and t-bolt type is as specified. length.

Installation Torque

Table 8-2 — Installation torque for Hilti Locking Channel Bolts (HBC-C-N)

Bolt type		Installation torque T _{inst} (Installation type A) ¹			Installation torque T _{inst} (Installation type B) ²		B) ²		
Bon type	Units	HAC-40	HAC-50 HAC-50 S	HAC-60	HAC-70	HAC-40	HAC-50 HAC-50 S	HAC-60	HAC-70
HBC-C-N M12 8.8	ft-lb		55						
	(NM)				(7	5)			
	ft-lb 136				36				
HBC-C M10 0.0	(Nm)	(185)							
	ft-lb	lb 236							
	(Nm)				(32	20)	,		

1 Installation type A: The fixture is in contact with the channel profile and the concrete surface

2 Installation type B: The fixture is fastened to the anchor channel by suitable steel part (e.g. square plate washer), fixture is in contact with the channel profile only

11. Best **Practices** 12. Instructions for Use

13. Field Fixes

14. Design Example

N_b occurs after the installation torque is applied to the HBC-C-N t-bolt and the 2 mm deep notches are created in the lips of the anchor channel.

Figure 2.2.11.5 — Overhang of Hilti Locking Channel Bolt (HBC-C-N).

Hilti locking channel bolt diameter (mm)	Minimum nominal overhang, ${\rm L_{\rm o}}$
M12	1/8 in
IVITZ	(3 mm)
MIG	13/64 in
INTO	(5 mm)
MOO	9/32 in
10120	(7 mm)

Table 2.2.11.5 — Recommended t-bolt overhang, L

Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019

2.2 Ge Ţ

4. Design Introduction

3. HAC

Applications

5. Base material 6. Loading 9. Special Anchor Channel Design

10. Design Software

2.2.12 HILTI CHANNEL BOLTS HARDWARE

Hexagonal head nut

Anchor channel systems consist of a group of anchors, channel profile, and matching t-bolt. The t-bolt hardware consists of a hex head nut and a flat washer.

Table 2.2.12.1 — Material specifications of HBC-C and HBC-C-N Nuts

Material specifications				
Material	ASTM A 563 Grade A; Stainless Steel 316			
Dimensions	ASME/ANSI B18.2.2 - 1986			
Finish	ASTM B 633-98, SC 1 Type I			
Thread	Class 2A fit; Class 2B thrd; ASME B1.1			

Figure 2.2.12.1 — Isometric view of HBC-C and HBC-C-N nut.

Flat washers

Flat washers ensure compression forces (due to installation torque) from the nut are distributed over a larger surface, preventing localized damage of the base surface. Moreover, it ensures the nut presses against a smooth surface, reducing the probability of relaxation of the nut, as is the case when the nut bears against uneven surfaces.

Table 2.2.12.3 — Material specification of HBC-C and HBC-C-N washers

-	Material specifications				
	Material	Carbon steel, Hardness A, 200 HV			
	Specifications	ISO 7089 and ISO 7093-1			
	Finish	ASTM B 633-98, SC 1 Type I			

Table 2.2.12.2 - HBC-C and HBC-C-N nut dimensions

с	riteria	units	M12	M16	M20	
p _a (pitch size)		mm	1.75	2.00	2.50	
с	max.	mm	0.60	0.80	0.80	
	min.	mm	0.15	0.20	0.20	
d _a	max.	mm	13.00	17.30	21.60	
	min.	mm	12.00	16.00	20.00	
d _w	min.	mm	16.60	22.50	27.70	
е	min.	mm	20.03	26.75	32.95	
~	max.	mm	10.80	14.80	18.00	
	min.	mm	10.37	14.10	16.90	
m"	min.	mm	8.30	11.30	13.50	
	max.	mm	18.00	24.00	30.00	
S	min.	mm	17.73	23.67	29.16	

Different surfaces and materials might have a significant influence on the ratio between torque moment and pre-tension. Therefore, it is important to use the washer as per product approval or recommended by Hilti.

Figure 2.2.12.2 - HBC-C and HBC-C-N nut dimensions.

11. Best Practices

12. Instructions for Use

14. Design Example

Figure 2.2.12.3 — HBC-C and HBC-C-N washer dimensions.

2. HAC Portfolio 4. Design Introduction

5. Base material 6. Loading

8. Reinforcing 9. Special Anchor 10. Design Bar Anchorage Channel Design Software

2.2.13 SERRATED ANCHOR CHANNELS: HAC-T AND HAC-30

3. HAC

Applications

Hilti Anchor Channel with serrated channel lips (HAC-30 and HAC-T) is a cast-in solution for applications that require on-site adjustability and slip resistances along the long axis of the anchor channel resulting from loads such as seismic wind, live, gravity or other.

HAC-30 profile is cold formed and although its name does not include "-T", the profile comes with serrated lips. HAC-30 is for low range loads.

The innovative manufacturing technology allows HAC-T to offer slip resistances that require up to 58 percent lower installation torques than existing technologies without compromising the price point or performance of the anchorage. Because of the lower installation torque, the installation time per connection can be reduced and muscle fatigue may be avoided. HAC-30 and HAC-T are fully covered by the International Council Code Evaluation Service Report 3520 (ESR-3520).

Hilti Anchor Channels with serrated channel lips (HAC-T) are offered in two channel profile sizes; HAC-T50 and HAC-T70. Hilti Serrated Channel Bolts (HBC-T) are suitable for all HAC-T profiles. HAC-T50 and HAC-T70 profiles are utilized in all different types of anchor channels.

Hilti Serrated Anchor Channel (HAC-T) come with a serrated channel profile and rounded head anchors. Pre-formed serrations allows the channel to resist longitudinal shear loads via a positive connection with lower installation torque.

The standard portfolio consists of HAC30, HAC-T50, and HAC-T70 channels profiles with pre-defined channel length, rebar lengths, number of anchors, and defined rebar diameter. Nonstandard anchor channels (i.e. custom channel length, rebar length, number of rebars etc.) can be provided upon request. Refer to section 2.4, 2.5, and 2.6 for additional information about standard items lead times, and custom anchor channels.

Figure 2.2.13.1 — HAC-30 (left) and HAC-T (right) profiles with matching channel bolts.

Figure 2.2.13.1 — Hilti Serrated Anchor Channel (HAC-T)

Figure 2.2.13.3 — Section view of HAC-T50 and HAC-T70

Criteria	Symbol	units	Anchor channel size				
			HAC-30	HAC	- T 50	HAC-T70	
Channel profile height	h _{ch}	in	1.01	1.22		1.57	
		(mm)	(25.6)	(31)		(40)	
Channel profile width	b _{ch}	(mm)	(41.3)	(41.0)		(45.4)	
		in ⁴	0.0369	0.0770		0.2215	
Channel profile moment of inertia	I _y	(mm⁴)	(15,349)	(32,049) (92		(92,192)	
	d	in	0.88	0.77		0.77	
Channel profile opening		(mm)	(22.30)	(19.50) (1		(19.50)	
Channel lin, flange thickness	f	in	0.30	0.21		0.3	
		(mm)	(7.50)	(5.30)		(7.40)	
Channel lip thickness (top)	+	in	0.079	0.11		0.18	
	*nom,t	(mm)	(2.00)	(2.75)		(4.50)	
Channel lip thickness (bottom)	t.	in	0.079	0.11		0.18	
	*nom,b	(mm)	(2.00)	(2.75)		(4.50)	
Serration height	s	in	0.057	0.057			
	⁻ h	(mm)	(1.45)	(1.45)			
Serration spacing	S	in	0.118	0.118			
	s	(mm)	(3.00)		(3.00)		
Min. effective embedment depth ¹	h _{ef min}	in	2.68	3.70	4.17	6.89	
	er,min	(mm)	(68)	(94)	(106)	(175)	
Thickness of the anchor head	t _h	in (mama)	0.08	0.14 0.20			
		(mm)	(2.0)	()	.0)	(5.0)	
Nominal embedment depth ²	h _{nom}	(mm)	(70)	3.04 (97.50)	(100.5)	(180)	
	x _{min}	in	0.98	(97.30)	08	0.98	
Minimum end spacing		(mm)	(25)	(25)		(25)	
	d ₂	in	0.21	0.36		0.43	
Anchor shaft diameter		(mm)	(5.35)	(9.03)		(10.86)	
	d ₁	in	0.45	0.77		0.91	
Head diameter ³		(mm)	(11.5)	(19.50)		(23.00)	
		in	1.75	2.62	3.09	5.51	
Anchor length	A	(mm)	(44.40)	(66.50)	(78.5)	(140.00)	
Minimum anchor spacing	S _{min}	in	1 97	3.94 (100)		3.94	
		(mm)	1.57			(100)	
Maximum anchor spacing	6	in	9.84	9.84		9.84	
	Smax	(mm)	(250)	(250)		(250)	
Net bearing area of the anchor head	A.	in ²	0.138	0.4		0.552	
	brg	(mm²)	(89)	(258)		(356)	
Matching channel bolt			HBC-B	HBC-B HBC-T			
Minimum channel bolt spacing	S _{chb}		3 x bolt diameter				
Noil bolo location ³		in		1" offset from anchor		r	
Ivali note location		(mm)		25.4 offset from anchor)			

1 Manufacturing tolerance of up to +3 mm (0.118 in.).

2 The head diameter is the inner diameter of the hexagonal shaped head, and does not fully reflect the cross sectional area of the anchor head.

3 Nail hole diameter is 4 mm (0.16 in.)

Figure 2.2.13.5 a - HAC end and nail hole distance.

12. Instructions for Use

hor channels

Figure 2.2.13.4 — HAC-T dimensions.

Figure 2.2.13.5 b — HAC-T serrations dimensions.

etric Pa

rameters HAC-T HAC-30
4. Design Applications Introduction

3. HAC

5. Base material 6. Loading

Minimum substrate requirements for HAC-T and HAC-30

The minimum edge distance and member thickness for anchor channels are established via testing. It is the interaction between minimum member thickness and minimum edge distance that determines the minimum edge distance. If the anchor channel is installed closer than the minimum edge distance, cracking of the concrete may occur while applying the required installation torque to the t-bolts. Testing to determine the minimum edge distance considers unfavorable site conditions. The test is based on having the anchor channel recessed 1/8" in unreinforced concrete. Splitting/cracking may occur. Therefore, minimum substrate requirements vary depending on the anchor channel size. HAC-T substrate requirements are provided in Table 2.2.13.2 and 2.2.13.3.

Table 2.2.13.2 — Minimum substrate dimensions for HAC-T and HAC-30 in normal weight and sandlightweight concrete

Anchor channel	Units	h _{ef}	C _{a1}	C _{a2}	*h _{min}
	in	2.68	1.97	1.97	3.15
HAC-30	(mm)	(68)	(50)	(50)	(80)
	in	3.70	3.94	3.94	3.94
	(mm)	(94)	(100)	(100)	(100)
HAC-150	in	4.17	1.97	1.97	4.92
	(mm)	(106)	(50)	(50)	(125)
	in	6.89	2.95	2.95	7.72
ПАС-170	(mm)	(175)	(75)	(75)	(196)

Table 2.2.13.3 — Minimum substrate dimensions for HAC-T and HAC-30 in all lightweight concrete

Anchor channel	Units	h _{ef}	C _{a1}	C _{a2}	h _{min}
1140.20	in	2.68	2.95	2.95	3.15
HAC-30	(mm)	Units h _{er} c _{a1} c in 2.68 2.95 2 (mm) (68) (75) (7) in 3.70 3.94 3 (mm) (94) (100) (1) in 4.17 2.95 2 (mm) (106) (75) (1) in 6.89 2.95 2 (mm) (105) (75) (1)	(75)	(80)	
	in	3.70	3.94	3.94	3.94
Anchor channel HAC-30 HAC-T50 HAC-T70	(mm)	(94)	(100)	(100)	(100)
HAC-150	in	4.17	2.95	2.95	4.92
	(mm)	(106)	(75)	(75)	(125)
	in	6.89	2.95	2.95	7.72
ПАС-170	(mm)	(175)	(75)	(75)	(196)

* Minimum slab thickness, h , may be reduced if anchor cover requirements can be omitted (i.e. interior applications with metal deck underneath the channel). To avoid splitting of the concrete, the minimum edge and corner distance shall be increased by a factor of 2.

Edge distance facts:

- Any edge perpendicular to the long axis of the anchor channels is considered an edge.
- For determination of the minimum edge distance,
- $c_{a1} = \min of c_{a11} and c_{a12}$
- For analysis purposes, c₁ is always measured in the direction of the applied shear load.
- · Edge distances are always measured from the center of the anchor under consideration.

Corner distance facts:

- Any edge parallel to the long axis of the anchor channels is considered a corner
- · For determination of the minimum corner distance, $c_{a2} = \min \text{ of } c_{a21} \text{ and } c_{a22}$
- · Corner distances are always measured from the center of the anchor under consideration

Corner and edge distances are measured to the center of the anchor.

Figure 2.2.13.6 — Minimum HAC-T and HAC-30 edge and corner distances, plan view.

Figure 2.2.13.7 - Minimum HAC-T and HAC-30 member thickness, isometric view

2.2.14 HAC-T AND HAC-30 IN FACE OF SLAB CORNERS

Table 2.2.14.2 — Minimum substrate edge and corner Single HAC-T or HAC-30 in face of slab corners distances for pair of HAC-T or HAC-AC232 provides design guidelines to account for the influence of 30 in corners in normal weight, sandlightweight and all light-weight concrete

corners where only one anchor channel is present. The design of this type of applications is covered in ESR-3520. Table 2.2.13.1 provides the minimum edge and corner distances for HAC-T and HAC-30.

Corner distance c₂₂ is measured to the center of the anchor.

Figure 2.2.14.1 – Minimum corner distances for single HAC-T, plan view.

Table 2.2.14.1 — Minimum substrate edge and corner distances for single HAC-T or HAC-30 in a corner in normal weight, sand-lightweight and all light-weight concrete

Anchor channel	Units	h _{ef}	Minimum c _{a1}	Minimum
HAC-30	in (mm)	2.68 (68)	*1.97 (50)	*1.97 (50)
	in (mm)	3.70 (94)	3.94 (100)	3.94 (100
HAC-150	in (mm)	4.17 (106)	*1.97 (50)	*1.97 (50
HAC-T70	in (mm)	6.89 (175)	2.95 (75)	2.95 (75)

*For all-lightweight concrete, $c_{a1} = c_{a2} = 2.95$ " (75 mm)

Pair of HAC-T or HAC-30 in a corner

AC232 does not include provisions to account for the influence of an adjacent channel in a face of slab corner. Technically, HAC-T or HAC-30 can be used in both sides of the corner, if there is no overlapping of the anchors.

Additional measurements shall be taken in consideration to account for the negative influence of the adjacent anchor channel, if both channels are to be loaded simultaneously. See chapter 9, Anchor Channel Design for additional design information. Although this solution is technically feasible, installing anchor channels at 4 to 7 inches away from the corner typically results in unpractical bracket sizes, large eccentricities, large forces, and consequently, inadequate concrete strengths.

Tables 2.2.14.2 and figure 2.2.14.2 provide information about the minimum corner distance for pair of HAC. See chapter 9, Anchor Channel Design for additional design information.

2.2 Gec

etric Par

HAC-T HAC-30

Anchor channel	Units	h _{ef}	Minimum c _{a1}	Minimum c _{ca2}	
HAC-30	in (mm)	2.68 (68)	*1.97 (70)	2.76 (70)	
	in (mm)	3.70 (94)	3.94 (100)	3.70 (97.50)	
HAC-150	in (mm)	4.17 (106)	*1.97 (50)	4.31 (109.50)	
HAC-T70	in (mm)	6.89 (175)	2.95 (75)	7.09 (180.00	

*For all-lightweight concrete, c_{a1} = 2.95" (75 mm)

Concrete at corner can only be "used" once Corner distance c_{ca2} is measured to the center of the anchor. Figure 2.2.14.2 — Minimum corner distances for pair of HAC-T, plan view.

For face of slab applications, it is not recommended to install HAC-T or HAC-30 in both sides of the corner if there is overlapping of the rounded head anchors and they will experience simultaneous loading.

The overlapping of the two anchor of the corner channels creates a weakened failure plane, making the corner susceptible to undesired cracking and therefore, reduced concrete strengths.

1 the the state Configuration not recommended with HAC. For such configurations, the use of HAC CRFoS U is recommended Cracking pattern observed in testing

Figure 2.2.14.3 - Premature concrete cracking due to simultaneous loading of pair HAC-T at corner with overlapped anchors, plan view.

1. Anchor Channel Systems

2. HAC Portfolio

4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing **Design Code Bar Anchorage** 9. Special Anchor 10. Design **Channel Design** Software

2.2.15 HAC-T AND HAC-30 IN TOP OR BOTTOM OF SLAB CORNERS

3. HAC

Applications

Single HAC-T or HAC-30 in top of slab corner

AC232 provides design guidelines to account for the influence of corners where only one anchor channel is present. The design of this type of application is covered in ESR-3520. Table 2.2.15.1 provides the minimum edge and corner distances for and HAC-30. HAC-T and HAC-30 requirements for top and bottom of slab corners are equal.

Table 2.2.15.1 — Minimum substrate edge and corner distances for single HAC-T in a corner in normal weight, sand-lightweight and All light-weight concrete

Anchor channel	Units	h _{ef}	Minimum c _{a1}	Minimum c _{a2}	
HAC-30	In (mm)	2.68 (68)	*1.97 (70)	*1.97 (50)	
	In (mm)	3.70 (94)	3.94 (100)	3.94 (100)	
HAC-T50	In (mm)	4.17 (106)	*1.97 (50)	*1.97 (50)	
HAC-T70	In (mm)	6.89 (175)	2.95 (75)	2.95 (75)	

*For all-lightweight concrete, c_{a1} = c_{a2} = 2.95" (75 mm)

Corner distance c₂₂ is measured to the center of the anchor.

Figure 2.2.15.1 — Minimum corner distance for single HAC-T and HAC-30 in top of slab, plan view.

Pair of HAC-T or HAC-30 in top of slab corners

AC232 does not include provisions to account for the influence of an adjacent and/or corner channel. Technically, HAC-T can be used in both sides of the corner.

Additional measurements shall be taken into consideration to account for the negative influence of the adjacent anchor channel, if both channels are to be loaded simultaneously. See chapter 9, Special Anchor Channel Design for additional design information.

The minimum corner distances for pair of HAC-T in top of slab corners (c₋) are consistent with table 2.2.15.1. These minimum distances are based on installation requirements. Both HAC-T at corners cannot be installed at the minimum corner distance due to physical constraints (clashing of HAC-T will occur).

However, two HAC can be installed next to each other in a corner configuration where the anchor channels are installed perpendicular to each other.

Figure 2.2.15.2 illustrates a pair of HAC-T in a corner. Corner distances greater than the minimum corner distance may be required based on the structural adequacy of the concrete at the corner.

Corner distance c____ is measured to the center of the anchor.

Figure 2.2.15.2 — Minimum corner distance for pair of HAC-T or HAC-30 in top of slab, plan view.

Design of top of slab corners

Hilti has developed a model to account for the influence of adjacent and corner channels. The model follows the fundamentals of AC232 and allows analysis of more complex but typical applications encountered in a project such as the conditions shown in Figure 2.2.15.3. See chapter 9, Special Anchor Channel Design for additional design information.

Figure 2.2.15.3 - Corner configuration of pair of HAC-T or HAC-30 in top of slab.

2.2.16 HAC-T EDGE LITE, HAC-T EDGE, AND HAC-T S EDGE

Hilti Anchor Channels with serrated channel lips and rebar edge confinement plate (HAC-T EDGE Lite and HAC EDGE) and HAC-T EDGE with superior steel performance (HAC-T S EDGE) are offered in HAC-T50 profiles. The anchor channel is identical to its matching HAC-T, except the rebar edge confinement plate (EDGE Lite or EDGE plate) is incorporated for superior concrete performance in shear.

The standard portfolio consists of HAC-T50 with two defined nominal anchor heights; 4.31" (109.50 mm) and 3.84" (97.50 mm). Moreover, defined channel length, EDGE Plate geometry, rebar lengths, anchor and rebar diameter, and number of rebar are also defined. The number of anchors per channels is predefined and can be modified and ordered upon request. Refer to section 2.4 for additional information about standard items and lead times.

The concrete edge shear confinement plate (EDGE plate) is fixed to the form work or pour stop. The EDGE plate comes with Figure 2.2.16.1 - HAC-T EDGE Lite, HAC-T EDGE, and HAC-T S EDGE profiles with matching bolts. installation holes. As an added value, the product comes with the specified edge distance (c_{1}) .

HAC-T EDGE Lite and HAC EDGE

These anchor channel systems consist of HAC-T and the new rebar edge confinement plate (EDGE plate). The EDGE plate is not structurally attached to the anchor channel. This allows decoupling of the tension and shear forces. HAC-T50 EDGE C comes with an offset rebar and increased height of the front plate.

HAC-T S EDGE

This anchor channel is equal to its matching HAC-T EDGE, except the "S" bracket is added. The "S" bracket offers superior steel performance. The S bracket is structurally attached to the anchor channel. The S-bracket has a similar geometry to the connected channel profile to ensure direct bearing of the S bracket on the channel profile

2.2 Gec

metric Par

HAC-T

Figure 2.2.16.2 - Section view of HAC-T50 EDGE Lite.

12. Instructions for Use

13. Field Fixes

2.2 Geometric Parameters

HAC-T50 EDGE Lite, HAC-T50 EDGE, and HAC-T50 S EDGE utilize HAC-T50 with rounded head anchors. HAC-T50 is covered by ICC ESR-3520. HAC-T50 with reduced embedment depth [h_{ef} = 3.70" (94 mm)] is not covered by ESR-3520.

Table 2.2.16.1 provides geometric parameters for the anchor channels that compose the HAC-T EDGE product line. Tables 2.2.16.2 and 2.2.16.3 provide geometric information about

the EDGE Lite, EDGE, and EDGE S plate. These components increase the perpendicular concrete edge breakout strength.

The S brackets improves the shear steel performance (perpendicular shear) of HAC. Dimensions of the S bracket are given in Figures 2.2.16.8 and 2.2.16.9.

Table 2.2.16.1 — Geometric parameters for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T S EDGE²

			Anchor Channel				
Criteria	Symbol	Units	HAC-T50 E HAC-T5 HAC-T50	EDGE Lite 0 EDGE 9 EDGE			
Min. effective embedment depth	h _{ef,min}	in (mm)	4.17 (106)	*3.70 (94)			
Thickness of the anchor head	t _h	in (mm)	0.7 (3.5	14 50)			
Nominal embedment depth	h _{nom}	in (mm)	4.31 (109.2)	3.84 (97.5)			
Channel profile height	h _{ch}	in (mm)	1.2	22			
Channel profile width	b _{ch}	in (mm)	1.6	65 9)			
Channel profile moment of inertia	l _y	in ⁴	0.0796				
Channel profile opening	d	in (mm)	0.77				
Channel lip flange thickness	f	in (mm)	0.21				
Channel lip thickness (top)	t _{nom,t}	in (mm)	0.11				
Channel lip thickness (bottom)	t _{nom,b}	in (mm)	0.11				
Minimum end spacing	× _{min}	in (mm)	0.9	98 5)			
Anchor shaft diameter	d ₂	in (mm)	0.3	36 03)			
Head diameter ¹	d ₁	in (mm)	0.7	77 50)			
Anchor length	I _A	in (mm)	3.09	2.62			
Minimum anchor	S _{min}	in (mm)	3.9	94 10)			
Maximum anchor	S _{max}	in (mm)	9.8	34 50)			
Net bearing area of the anchor head	A _{brg}	in ²	(250)				
Matching channel bolt		()	HB	с-т			
Minimum channel bolt	s _{chb}		3 x bolt c	diameter			
Nail hole location ³	X _{nail}	in (mm)	1" offset fro (25.4 offset f	om anchor rom anchor)			

Figure 2.2.16.5 a - Dimensions of the anchor channel of HAC-T EDGE Lite, HAC-T EDGE, and HAC-T S EDGE.

Figure 2.2.16.5 b - HAC end and nail hole distance.

Table 2.2.16.2 — Ge	ometric	parameters	of	HAC-T	EDGE
HAC-T EDGE		•			

			А	nchor Chann	el	
Criteria	Symbol	Units		HAC-T50		
			EDGE Lite	EDGE	EDGE C	
Thickness of the EDGE Lite or EDGE plate	t _{pl}	in (mm)	0.16 (4.00)	0.20 (5.00)	0.24 (6.00)	
Height of the EDGE Lite or EDGE plate	h _{pl}	in (mm)	1.97 (50)	2.36	3.94 (100)	
Projection of the EDGE Lite or EDGE plate	x _{pl}	in (mm)	0.99 (25)	1.97 (50)		
Length of the EDGE Lite or EDGE plate	l _{pl}	in (mm)	Cha	annel length + 2(x _{pl})		
Overall length of the EDGE Lite or EDGE plate rebars	I _R	in (mm)	18.11 (460)	23.62 (600)		
Rebar nominal diameter	d _b	in (mm)	0.39 (10)	0. (1	47 2)	
Bar effective cross-sectional area	A _{se}	in² (mm²)	0.12 (78.54)	0. (11	18 3.1)	
Minimum rebar spacing	S _{min,R}	in (mm)	3.74 (95)	3.	74	
Maximum rebar spacing	S _{max,R}	in (mm)	3.75 (95)	5.	71 45)	
C/C distance between the outer rebar and the outer anchor	x _R	in (mm)	0.295 (7.50)	0.2	295 50)	
Distance from the end of the EDGE Lite or EDGE plate to the center of the installation hole ¹	d _i	in (mm)		0.40 (10)		
Edge distance (from outside face of EDGE Lite or EDGE plate to center of HAC anchor	C _{a1}	in (mm)		As specified		
Development length of rebars	I _d	in (mm)	I _R - C _{a1} + t _{pi}			

1 Nail hole diameter is equal to 6 mm (0.25 in.)

Figure 2.2.16.8 - HAC-T EDGE Lite and HAC-T EDGE dimensions, section HAC-T EDGE C has reinforcing bars that are located one reinforcing bar diameter below the bottom base of the anchor channel profile to avoid clashing with the and elevation view. reinforcing bars of the opposite corner channel (HAC-T EDGE). The plate is taller and thicker.

1 The head diameter is the inner diameter of the hexagonal shaped head, and does not fully reflect the cross sectional area of the anchor head. 2 HAC-T EDGE C is the matching corner channel and has the same anchor channel as the intermediate HAC EDGE. The shear

confinement plate has different geometry. * Effective embedment depth not covered by ICC ESR-3520.

3 Nail hole diameter is 4 mm (0.16 in.)

12. Instructions for Use

14. Design Example

2.2 Geo

metric Parameters

HAC-T EDGE

Lite and

Figure 2.2.16.6 — Isometric view of HAC-T EDGE Lite and HAC-T EDGE.

Figure 2.2.16.7 — Isometric view of fixture that attaches the EDGE Lite or EDGE plate to HAC-T.

Figure 2.2.16.9 — HAC-T EDGE C dimensions, section and elevation view.

Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019

1. Anchor **Channel Systems**

2. HAC Portfolio Applications

3. HAC

4. Design Introduction

5. Base material

6. Loading

9. Special Anchor 10. Design Channel Design Software

Table 2.2.16.3 — Geometric parameters for HAC-T S EDGE rebar edge confinement plate (EDGE Plate)

			Anchor	Channel	
Criteria	Symbol	Units	HAC-	AC-T50 S	
			EDGE	EDGE C	
Thickness of the EDGE plate	t _{pl}	in (mm)	0.20 (5.00)	0.24 (6.00)	
Height of the EDGE plate	h _{pl}	in (mm)	2.36 (60)	3.94 (100)	
Projection of the EDGE plate	x _{pl}	in (mm)	1. (5	97 0)	
Length of the EDGE plate	l _{pi}	in (mm)	Channel length + 2(x _{pl}		
Overall length of the EDGE plate rebars	I _R	in (mm)	23.62 (600)		
Rebar nominal diameter	d _b	in (mm)	0. (1	47 2)	
Bar effective cross-sectional area	A _{se}	in² (mm²)	0. (11	18 3.1)	
Minimum rebar spacing	S _{min,R}	in (mm)	3. (9	74 5)	
Maximum rebar spacing	S _{max,R}	in (mm)	5. (14	71 45)	
C/C distance between the outer rebar and the outer anchor	x _R	in (mm)	0.2	295 50)	
Distance from the end of the EDGE plate to the center of the installation hole ¹	d _i	in (mm)	0. (1	40 0)	
Edge distance (from outside face of EDGE plate to center of HAC anchor	C _{a1}	in (mm)	As sp	ecified	
Development length of rebars	l _d	in (mm)	l _R - c	_{a1} + t _{pl}	

Figure 2.2.16.11 - Isometric view of HAC-T50 S.

Figure 2.2.16.12 - Isometric view of HAC-T50 S EDGE.

1 Nail hole diameter is equal to 6 mm (0.25 in.)

Figure 2.2.16.13 — HAC-T S EDGE dimensions, section and elevation view.

HAC-T S EDGE C has reinforcing bars that are located one reinforcing bar diameter below the bottom base of the anchor channel profile to avoid clashing with the reinforcing bars of the opposite corner channel (HAC-T S EDGE). The plate is taller and thicker.

Figure 2.2.16.14 - HAC-T S EDGE C dimensions, section and elevation view.

Min. substrate requirements for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T S EDGE

Similarly to HAC, the minimum edge distances for HAC EDGE are established via testing. Although the HAC EDGE product line are not implicitly covered in AC232, AC232 provides testing protocols for anchor channels to establish the minimum edge and corner distance for the minimum member thickness. The following substrate requirements have been established in accordance with testing protocols of AC232..

Table 2.2.16.4 — Minimum substrate dimensions for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T S EDGE

				Normal cond	weight crete	Sand lightvaig	weight and ht concrete
Anchor channel	Units	h _{ef}	*h _{min}	C _{a1}	C _{a2}	C _{a1}	C _{a2}
	in	3.70	3.94				
HAC-T50 EDGE Lite	(mm)	(94)	(100)	1.97 (50)			
	in	4.17	4.92				
	(mm)	(106)	(125)				
	in	3.70	3.94				
HAC-T50 EDGE	(mm)	(94)	(100)		3.94	3.94 (100)	
HAC-T50 EDGE C	in	4.17	4.92		(100)		
	(mm)	(106)	(125)				
	in	3.70	3.94	3.94			
HAC-T50 S EDGE	(mm)	(94)	(100)	(100)			
HAC-T50 S EDGE C	in	4.17	4.92				
	(mm)	(106)	(125)				

HAC-T50 EDGE (C) Indicates HAC-T50 EDGE and HAC-T50 EDGE C HAC-T50 S EDGE (C) Indicates HAC-T50 S EDGE and HAC-T50 S EDGE C

Corner and edge distances are measured to the center of the anchor.

Figure 2.2.16.15 — Minimum edge and corner distances for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T S EDGE, plan view.

Minimum edge distance for anchor channels in composite slabs

The minimum edge and corner distances for HAC-T EDGE are consistent with the minimum requirements of HAC. However, as a response to the market trends, composite slabs with pockets, Hilti has added HAC EDGE-T with shorter anchor lengths.

For composite slabs where there is a pour stop along the perimeter of the edge of slab prevent, prevent oxygen from reaching out to the bottom of the slab, the minimum member thickness can be reduced.

Chapters 8 and 9 provide design information for HAC-T EDGE in Figure 2.2.16.17 — HAC-T EDGE in a composite slab, section view. composite slabs and how to account for the potential negative influence of the metal deck.

2.2 Geometric Parameters

HAC-T EDGE

Sector and	The state of the Part of	The second second	and the setting	Scient
Press and the	1.00000000	the second states	Design States in the	25 21 33
1000000 200	hat	a Sugar Carl	and the second	
San Serie Sal		h	(matter and the state)	1.00 1000
Dry. Part is		min	and the second	
and the set of the sector	the state of the	and the addition of the second	the sector of the sector of the	or a statest

Edge distance (c_a) is measured from the face of the slab (outer face of the EDGE Plate)

Figure 2.2.16.16 — Minimum member thickness for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T S EDGE, section view.

2.2.17 HAC-T EDGE AND HAC-T S EDGE IN TOP OR BOTTOM OF SLAB CORNERS

3. HAC

Applications

2. HAC

Portfolio

Pair of HAC-T EDGE and HAC-T S EDGE in top of slab corners

1. Anchor

Channel Systems

HAC-T EDGE and HAC-T S EDGE are ideal for top of slab corner applications. Two independent anchor channels at the corner allows de-coupling the loads at both channels, preventing anchors and rebars from taking undesired loads. Furthermore, using two independent channels eases the installation in congested areas, preventing damage of the anchors during installation.

Corner distance c_{and} is measured to the center of the anchor.

Figure 2.2.17.1 — Corner configuration of pair of HAC in top of slab.

The new Hilti design method for corners follows the principles of AC232 and allows the anchor channels to be installed as close as physically possible to the corner, as long as the minimum corner and edge distances are not exceeded. The use of HAC EDGE allows the concrete to take higher shear forces, making it the perfect solution for corner applications.

HAC-T EDGE at corner requires the use of HAC-T EDGE and HAC-T EDGE C. The EDGE C plate of HAC-T EDGE C comes with rebars that are located 1 rebar diameter below the bottom of the channel profile to prevent clashing of the rebars with the HAC-T EDGE.

5. Base material

6. Loading

Figure 2.2.17.2 — HAC-T EDGE and HAC-T EDGE C.

4. Design

Introduction

HAC-T EDGE and HAC-T S EDGE steel strengths are provided in section 2.3. For design of channels at corners, refer to chapter 9.

HAC T EDGE and HAC-T S EDGE at non-90° corners

HAC-T EDGE C and HAC-T S EDGE C are suitable for non-90° corners. The use of two independent anchor channels simplifies the portfolio by no requiring custom made channels. See chapter 9 for design information.

Figure 2.2.17.3 - HAC-T EDGE and HAC-T EDGE C in an acute corner, plan view

Table 2.2.17.1 — Minimum substrate edge and corner for pair of HAC-T EDGE and HAC-T S EDGE at a corner.

			Normal cond	weight crete	Sand lig cond	htweight crete	
Anchor channel	Units	h _{ef}	*h _{min}	C _{a1}	C _{a2}	C _{a1}	C _{a2}
	in	3.70	3.94	1.97			
HAC-50 EDGE	(mm)	(94)	(100)				
HAC-50 EDGE C	in	4.17	4.92	(50)		3.94	
	(mm)	(106)	(125)		3.94		
	in	3.70	3.94		(100)	(10	00)
HAC-50 S EDGE	(mm)	(94)	(100)	3.94			
HAC-50 S EDGE C	in	4.17	4.92	(100)			
	(mm)	(106)	(125)				

2.2.18 HILTI SERRATED CHANNEL BOLTS

The Hilti Serrated Channel Bolts (HBC-T and HBC-B) are part of the anchor channel system. HBC are threaded fasteners commonly known as T-bolts. HBC are the link between the fixture and anchor channel. The HBC have a proprietary head geometry and are compatible with Hilti channels only. The head of the HBC-T or HBC-B can be inserted along the channel cavity. The fixture is connected to the anchor channel by channel bolts with a nut and washer. Thus, allowing for the so needed jobsite tolerance.

The head of the t-bolt is first installed parallel to the channel profile. Once it is positioned in place, the bolt is turned 90° clockwise. The head of the bolt has been engineered in a way that the t-bolt cannot rotate more than 90° clockwise. This ensures that the bolt is properly positioned before the installation torque is applied.

HBC-T and HBC-B come with a special marking to ease the identification before and after installation. All Hilti serrated channel bolts are covered by ESR-3520.

2.2.19 HILTI SERRATED CHANNEL BOLTS: HBC-T AND HBC-B

Hilti serrated channel bolts (HBC-T) are only suitable for channel profiles HAC-T50 & HAC-T70. HBC-T come in bolt diameters M12, M16, and M20, steel grades 8.8 and HDG finishing. Hilti serrated channel bolts (HBC-B) are only suitable for channel profiles HAC-30.

HBC-T and HBC-B can be used to transfer tensile loads, shear loads perpendicular to the longitudinal channel axis. longitudinal shear forces, or any combination of these loads. Transferring of the loads takes place via interlock of the serrations of the HBC-T and serrated lips of HAC-T or HBC-B and serrated lips of HAC-30.

Table 2.2.19.1 — Hilti Serrated Channel Bolts (HBC-T) material information

Channel bolt	Units	Carbon steel ¹
Property class	-	8.8
£.,	ksi	116.0
IU	(N/mm ²)	(800)
<i>t.</i> ,	ksi	92.82
Ty	(N/mm²)	(640)
Coating		F ²

1 Materials according to Annex 3, Table 1 2 Hot-dop galvanized

Figure 2.2.19.2 — Head of Hilti Serrated Channel Bolt (HBC-T).

11. Best **Practices** 12. Instructions for Use

14. Design Example

Figure 2.2.18.1 - Hilti Serrated Channel Bolt with nut and washer; HBC-T (left) and HBC-B (right)

Special markings on the t-bolt aid the installer to ensure the bolt is properly positioned before the installation torque is applied. Moreover, it allows the installer and inspector to identify the type of bolt after the fixture is installed.

HBC-B 4.6F M12

HBC-T 8.8F M16

HBC-T 8.8F M20

Figure 2.2.19.3 - Hilti Serrated Channel Bolt, HBC-B M12, HBC-T M16 and **HBC-T M20**

HBC-T and HAC-T are subjected to a special corrosion protection process which reduces the amount of zinc that is accumulated in the serrations. Thus the difference in color between the HBC-B and HBC-T and the higher slip resistance of the of the HBC-T and HAC-T.

NOTE: HBC-B can only be used with HAC-30. HBC-T can only be used with HAC-T.

83

4. Design Introduction

5. Base material 6. Loading

Hilti Serrated Channel Bolt length (HBC-T and HBC-B)

2. HAC

Portfolio

Table 2.2.19.2 — Hilti Serrated Channel Bolts dimensions

1. Anchor

Channel Systems

	Channel Bolt	Anchor Channel	Units	D	imensi	ons		Channel bolt length
		Profile		Diameter ø	b,	b ₂	k	L
			mm	M10				40-200
		HAC-T50 HAC-T70	(in)	IVITZ				(1.57-7.87)
			mm	MIG	18.5	33	12.0	40-200
			(in)	IVITO	(0.55)	(1.30)	(0.47)	(1.57-7.87)
			mm	1400				60-200
			(in)	IVI20				(2.36-7.87)
			mm	M10	19.0	34.0	9.2	40-200
	HDC-D	1140-30	(in)	M12	(0.75)	(1.34)	(0.36)	(1.57-7.87)

According to AISC Steel Construction Manual, 13th Edition,

Section 14-10: "Adequate thread engagement for anchor rods is

identical to the condition described in the RCSC Specification as adequate for steel to steel structural joints using high

strength bolts: having the end of the [anchor rod] flush with or

If needed, the excess at the end of the bolt can be cut-off. The nut shall be fully engaged. The outside face of the head of the t-bolt has special markings to identify the t-bolt type and proper head orientation of the t-bolt. If the t-bolt is to be cut or grind,

inspect and ensure the orientation and t-bolt type is as specified prior to any work on the t-bolt. If the marking on the t-bolt are removed, proper inspection is not possible. Proper corrosion

There is no maximum thread protrusion limitation from the

HBC-T need not to be loaded in order to reposition the bracket. Therefore, it is not acceptable to adjust the location of the t-bolts via hammering of the bracket, if the weight of the panel is applied on the bracket

Figure 2.2.19.4 — Overhang of Hilti Channel Bolts (HBC-T).

Table 2.2.19.4 – Recommended t-bolt overhang, L	L
---	---

	Hilti locking channel bolt diameter (mm)	Minimum nominal overhang, ${\rm L_{\rm o}}$
	M12	1/8 in
		(3 mm)
	MIG	13/64 in
	WIN	(5 mm)
	Maa	9/32 in
	11/20	(7 mm)

Serrations of channel lip allow incremental longitudinal displacement of 1/8" (3 mm). If the

Minimum t-bolt overhang

outside the face of the nut".

standpoint of the function of the bolt.

bracket needs to be slightly adjusted, while a force is applied (i.e. hung panel), the HBC-T will not slide. The

Installation Torque

protection shall be required.

Onsite adjustability

Table 2-2.19.5 — Installation torque for Hilti Serrated Channel Bolts (HBC-T and HBC-B)

Bolt type	Units	Installation torque Tinst (Installation type A) ¹				Insta (Ins			
		HAC-30 F	HAC-T50 F	HAC-T50 S	HAC-T70	HAC-30 F	HAC-T50 F	HAC-T50 S	HAC-T70
HBC-B M10 4.6	ft-lb (Nm)	11 (15)		N/A		11 (15)	N/A		
HBC-B M12 4.6	ft-lb (Nm)	19 (25)		N/A		19 (25)	N/A		
HBC-T M12 8.8	ft-lb (Nm)	N/A		55 (75)			55 (75)		
HBC-T M16 8.8	ft-lb (Nm)	N/A	74 (100)			N/A		136 (185)	
HBC-T M20 8.8	ft-lb (Nm)	N/A		89 (120)		N/A	236 (320)		

1 Installation type A: The fixture is in contact with the channel profile and the concrete surface

2 Installation type B: The fixture is fastened to the anchor channel by suitable steel part (e.g. square plate washer), fixture is in contact with the channel profile only

2.2.20 HILTI CHANNEL BOLTS HARDWARE

Hexagonal head nut

Anchor channel systems consist of a group of anchors, channel profile, and matching t-bolt. The t-bolt hardware consists of a hex head nut and a flat washer.

Table 2.2.20.1 — Material specifications of HBC-T nuts

Material specifications							
Material A	STM A 563 Grade A; Stainless Steel 316						
Dimensions A	SME/ANSI B18.2.2-1986						
Finish A	STM B 633-98, SC 1 Type I						
Thread C	lass 2A fit; Class 2B thrd; ASME B1.1						

Table 2.2.20.2 — Dimensions of HBC-T Nuts

Criteria		units	M12	M16	M20
p _a (p	oitch size)	mm	1.75	2.00	2.50
с	max.	mm	0.60	0.80	0.80
	min.	mm	0.15	0.20	0.20
-1	max.	mm	13.00	17.30	21.60
0 _a	min.	mm	12.00	16.00	20.00
d _w	min.	mm	16.60	22.50	27.70
е	min.	mm	20.03	26.75	32.95
	max.	mm	10.80	14.80	18.00
m	min.	mm	10.37	14.10	16.90
m _w	min.	mm	8.30	11.30	13.50
	max.	mm	18.00	24.00	30.00
S	min.	mm	17.73	23.67	29.16

Different surfaces and materials might have a significant influence on the ratio between torque moment and pre-tension. Therefore, it is important to use the washer as per product approval or recommended by Hilti.

11. Best **Practices**

12. Instructions for Use

14. Design Example

2.2 Ge

netric Parameters

Figure 2.2.20.1 — Isometric view if HBC-T nut.

Figure 2.2.20.2 - HBC-T nut dimensions.

85 Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019

1. Anchor **Channel Systems**

2. HAC

Portfolio

3. HAC 4. Design Applications Introduction

5. Base material

7. Anchor Channel Design Code

6. Loading

9. Special Anchor **Channel Design**

10. Design Software

Flat washers

Ensures compression forces (due to installation torque) from the nut are distributed over a larger surface, preventing localized damage of the base surface. Moreover, it ensures the nut presses against a smooth surface, reducing the probability of relaxation of the nut, as is the case when the nut bears against uneven surfaces.

Table 2.2.20.3 — Material specification of HBC-T washers

Material specifications							
Material	Carbon steel, Hardness A, 200 HV						
Specifications	ISO 7089 and ISO 7093-1						
Finish	Hot dip galvanized according to ISO 10684						

Figure 2.2.20.3 - HBC-T washer dimensions.

Table 2.2.20.4 — HBC-T washer dimensions

Order Designation	Suitable for channel bolt	Units	Inner diameter, D ₁	Outer, diameter D	Thickness, T
Flat washer A 13/24-F	M12	mm (in)	13 (0.51)	24 (0.94)	2.5 (0.10)
Flat washer A 17/30-F	M16	mm (in)	17 (0.67)	30 (1.18)	3 (0.12)
Flat washer A 21/37-F	M20	mm (in)	22 (0.87)	37 (1.46)	3 (0.12

2.3 STRUCTURAL STEEL PERFORMANCE OF HILTI ANCHOR CHANNEL SYSTEMS

8. Reinforcing

Bar Anchorage

The design of cast-in anchor channels requires the verification of up to 25 different failure modes. As is the case with any other type of anchor, its design requires the verification of the adequacy of the steel, concrete at the anchorage zone, and/or anchor reinforcement. In addition, up to 5 interaction equations are required to complete the design of the anchor channel. Figure 2.3.1.1 illustrates the possible failure modes of a cast-in anchor channel system with rounded head anchors (HAC and

HAC-T). Some of the failure modes illustrated on Figure 2.3.1.1 are not applicable to HAC CRFoS U while there are additional failure modes to HAC EDGE. For instance, pry-out is not applicable to HAC CRFoS U.

This chapter provides information about the structural performance of the Hilti cast-in anchor channel system. Therefore, information about the steel strengths of the anchor channels for all possible steel failure modes are covered in this section.

Possible failure modes of anchor channel per AC232

Anchor reinforcement verifications are not included. Anchor channel design shall satisfy interaction equations for combined shear and tension loading.

Figure 2.3.1.1 – Possible failure modes of an anchor channel.

13. Field Fixes

14. Design Example

- Acceptance Criteria 232 (AC232) is a comprehensive document of technical guidelines and testing protocols for cast-in anchor channels systems. AC232 was established through public hearings with industry experts and building officials' committee approval. The published steel strength values in this brochure are based on the International Code Council — Evaluation Service Report 3520 (ICC ESR-3520) when applicable. Steel strengths of anchor channels outside the scope of AC232 and ESR-3520 (i.e. HAC CRFoS U) have been derived in accordance with applicable testing protocols of AC232.
- For additional design information such as interaction equations, impact of bolt spacing to anchor channel lip strength, etc., see anchor channel theory, see chapter 7. The provided steel strengths shall be applied in conjunction with the design guidelines provided in chapter 7. Moreover, refer to chapter 5 for information about the evaluation of the concrete at the anchorage zone and anchor reinforcement. Due of the number of factors that can influence the concrete performance, design guidelines are provided for its verification.

Shear ($\Phi V_{n,v}$) Shear ($\Phi V_{n,x}$) 2.3 Struc Concrete Steel Concrete tural Pei Anchor: $\phi V_{sa,x} /$ Anchor and channe Channel lip: $\phi V_{sl,y}$ Concrete edge Concrete edge breakout: Web, connection: $\phi V_{sc,x}$ Anchor and channe Channel bolt and Pryout: Pryout: oV. connection: ϕV_{en} channel óV.... connection: $\phi V_{sl,x}$ Channel bolt: $\phi V_{ss} / \phi V_{ssM}$

4. Design Introduction

5. Base material 6. Loading

□ 2.3.1 HAC STRUCTURAL STEEL PERFORMANCE — TENSION

3. HAC

Applications

Table 2.3.1.1 — Tension steel strength design information for Hilti Anchor Channels (HAC) with Hilti Channel Bolts (HBC-C and HBC-C-N)

с	Symbol	Units	HAC-40 F	HAC-50 F	HAC-60 F	HAC-70 F				
ES 1	Nominal tensile steel strength for local failure of channel lips	N _{si}	lb (kN)	5,620 (25.0)	7,865 (35.0)	11,240 (50.0)	15,960 (71.0)			
÷	Nominal tensile steel strength for local failure of channel lips for seismic design	$N_{\mathrm{sl,seis}}$	lb (kN)	5,620 (25.0)	7,865 (35.0)	7,865 (35.0)	15,960 (71.0)			
	Strength reduction factor for local failure of channel lips ¹	φ	-		0.	75				
ES 1	Nominal tensile steel strength of a single anchor	N_{sa}	lb (kN)	7,080 (31.5)	11,240 (50.0)	11,240 (50.0)	16,320 (72.60)			
	Nominal tensile steel strength of a single anchor for seismic design	$N_{sa,seis}$	lb (kN)	7,080 (31.5)	11,240 (50.0)	11,240 (50.0)	16,320 (72.60)			
4	Strength reduction factor for anchor failure ¹	φ	-	0.65		0.75				
ES 1	Nominal tensile steel strength of connection between anchor and channel	N _{sc}	lb (kN)	5,620 (25.0)	7,865 (35.0)	11,240 (50.0)	15,960 (71.0)			
Ü	Nominal tensile steel strength of connection between anchor and channel for seismic design	N _{sc,seis}	lb (kN)	5,620 (25.0)	7,865 (35.0)	7,865 (35.0)	15,960 (71.0)			
	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75						
ES	Nominal bending strength of the anchor channel with HBC-C	M	lb-in (N*m)	10,050 (1,136)	14,125 (1,596)	19,355 (2,187)	28,000 (3,164)			
1	Nominal bending strength of the anchor channel with HBC-C-N	M _{s,flex}	lb-in (N*m)	8,673 (980)	11,903 (1,345)	19,081 (2,156)	26,594 (3,005)			
TT.	Nominal bending strength of the anchor channel for seismic design with HBC-C	м	lb-in (N*m)	10,050 (1,136)	14,125 (1,596)	14,125 (1,596)	28,000 (3,164)			
	Nominal bending strength of the anchor channel for seismic design with HBC-C-N	IVI _{s,flex,seis}	lb-in (N*m)	8,673 (980)	11,903 (1,345)	11,903 (1,345)	26,594 (3,005)			
	Strength reduction factor for bending failure ¹	φ	-		0.	0.85				

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 2.3.1.2 –	Tension of	concrete	strength	design	information	for Hilti	Anchor	Channels	(HAC)
-----------------	------------	----------	----------	--------	-------------	-----------	--------	----------	-------

Criteria	Symbol	Units	HAC-40 F	HAC-50 F	HAC-60 F	HAC-70 F	
Edge distance required to develop full concrete capacity in absence of anchor reinforcement	C _{ac}	in (mm)	10.75 (273)	12.52 (318)	17.48 (444)	20.67 (525)	
Strength reduction factor for tension, concrete failure modes ¹	φ	-	Condition A: 0.75 Condition B: 0.70				

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

■ 2.3.2 HAC STRUCTURAL STEEL PERFORMANCE — SHEAR

Table 2.3.2.1 — Shear steel strength design information for Hilti Anchor Channels (HAC) with Hilti Channel Bolts (HBC-C and HBC-C-N)

(<u> </u>			·		·	
	Criteria	Symbol	Units	HAC-40 F	HAC-50 F	HAC-60 F	HAC-70 F
(ES) (Nominal shear steel strength for local failure of channel lips	V _{sl,y}	lb (kN)	7,835 (34.8)	10,675 (47.4)	16,205 (72.0)	21,550 (95.8)
	Nominal shear steel strength for local failure of the channel lips for seismic design	$V_{\rm sl,y,seis}$	lb (kN)	7,835 (34.8)	10,675 (47.4)	10,675 (47.4)	21,550 (95.8)
	Strength reduction factor for local failure of channel lips ¹	φ	-		0.75		
	Nominal shear steel strength of a single anchor	V _{sa,y}	lb (kN)	8,903 (39.6)	12,050 (53.6)	17,378 (77.3)	25,790 (114.7)
- S	Nominal shear steel strength of a single anchor for seismic design	$V_{sa,y,seis}$	lb (kN)	8,903 (39.6)	10,675 (47.4)	10,675 (47.4)	21,550 (95.8)
	Strength reduction factor anchor failure ¹	φ	-	0.65	0.75		
ES >	Nominal shear steel strength of connection between anchor and channel	V _{sc,y}	lb (kN)	8,903 (39.6)	12,050 (53.6)	17,378 (77.3)	25,790 (114.7)
H	Nominal shear steel strength of connection between anchor and channel for seismic design	V _{sc,y,seis}	lb (kN)	8,903 (39.6)	10,675 (47.4)	10,675 (47.4)	21,550 (95.8)
-	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-		0.	75	
	Nominal shear steel strength of connection between anchor and channel	V _{sc,x}	lb (kN)	3,552 (15.8)	5,240 (23.3)	6,722 (29.9)	9,590 (42.6)
	Nominal shear steel strength of connection between anchor and channel for seismic design	$V_{\mathrm{sc,x,seis}}$	lb (kN)	3,552 (15.8)	5,240 (23.3)	5,240 (23.3)	9,590 (42.6)
1	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-		0.	75	
	Nominal shear steel strength of a single anchor	V _{sa,x}	lb (kN)	4,249 (18.9)	6,740 (30.0)	6,740 (30.0)	9,800 (43.6)
E C	Nominal shear steel strength of a single anchor for seismic design	V _{sa,x,seis}	lb (kN)	4,249 (18.9)	6,740 (30.0)	6,740 (30.0)	9,800 (43.6)
1	Strength reduction factor anchor failure ¹	φ	-		0.	75	

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

2.3 Structural Perform

1. Anchor Channel Systems	2. HAC Portfolio	3. HAC Applications	4. Design Introduction	5. Base material	6. Loading	7. Anchor Channel Design Code	8. Reinforcing Bar Anchorage	9. Special Anchor Channel Design	10. Design Software	

Table 2.3.2.2 — Shear concrete strength design information for Hilti Anchor Channels (HAC) with Hilti Channel Bolts (HBC-C and HBC-C-N)

Criteria	Symbol	Units	HAC-40 F	HAC-50 F	HAC-60 F	HAC-70 F
Factor to account for the influence of channel size and anchor diameter on concrete edge breakout strength in shear	$\alpha_{\rm ch,V}$	lb ^{1/2} /in ^{1/3} (N ^{1/2} /mm ^{1/3})	10.50 (7.50)			
Coefficient for pryout strength	k _{cp}	-	2			
Strength reduction factor for shear, concrete failure modes ¹	φ	-	Condition A: 0.75 Condition B: 0.70			

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 2.3.2.3 — Steel strength design information for shear acting in longitudinal direction of the channel axis for Hilti Anchor Channels (HAC) with Hilti Locking Channel Bolts (HBC-C-N)

C	Criteria	Symbol	Channel bolt type HBC-C-N	Units	HAC-40 F	HAC-50 F	HAC-60 F	HAC-70 F
	Nominal shear steel strength of connection between channel lips and channel bolts		M12 ²	lb (kN)		1,9 (8	920 .5)	
		$V_{\rm sl,x}$	M16	lb (kN)	4,420 (19.7)			
			M20	lb (kN)	N/A	N/A 5,425 (24.1)		
	Nominal shear steel strength of connection between channel lips and channel bolts for		M12 ²	lb (kN)		1,920 (8.5)		
	seismic design	$V_{\rm sl,x,seis}$	M16	lb (kN)	4,420 (19.7)			
			M20	lb (kN)	N/A 5,425 (24.1)			
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹		M12					
φ	(periodic inspection)	φ	M16	-		0.	55	
			M20					
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹		M12			0.	55	
φ	¢ (continuous inspection)		M16	-		0	65	
			M20			0.	00	

1 The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

2 In case of continuous inspection the value for V_{slx} for the size M12 can be taken for all channel sizes HAC-40 F through HAC-70 F as V_{slx} = 2,021 lb (9.0 kN).

TENSION Table 2.3.3.1 — Tension steel strength design information for HAC CRFoS U with Hilti Channel Bolts (HBC-C and HBC-C-N) Criteria Nominal tensile steel strength for local failure of Nominal tensile steel strength for local failure of seismic design Strength reduction factor for local failure of cha Nominal tensile steel strength of a single anchor Nominal tensile steel strength of a single ancho design Strength reduction factor for anchor failure Nominal tensile steel strength of connection be channel Nominal tensile steel strength of connection bet channel for seismic design Strength reduction factor for failure of connection anchor and channel Nominal bending strength of the anchor channe Nominal bending strength of the anchor channe

Nominal bending strength of the anchor channel design with HBC-C Nominal bending strength of the anchor channe design with HBC-C-N

Strength reduction factor for bending failure

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 3.2.1.2 — Tension concrete strength design information for Hilti Anchor Channels HAC CRFoS U

Criteria	Symbol	Units	HAC-50 F CRFoS U	HAC-60 F CRFoS U	HAC-70 F CRFoS U
Edge distance required to develop full concrete capacity in absence of anchor reinforcement	C _{ac}	in (mm)	12.52 (318)	17.48 (444)	20.67 (525)
Strength reduction factor for tension, concrete failure modes ¹	φ	-		Condition A: 0.75 Condition B: 0.70	

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

2.3.3 HAC CRFoS U STRUCTURAL STEEL PERFORMANCE —

	Symbol	Units	HAC-50 F CRFoS U	HAC-60 F CRFoS U	HAC-70 F CRFoS U
channel lips	N _{si}	lb (kN)	7,531 (33.5)	10,723 (47.7)	14,365 (63.9)
channel lips for	N _{sl,seis}	lb (kN)	7,531 (33.5)	10,723 (47.7)	14,365 (63.9)
nnel lips	φ	-		0.75	
r	N _{sa}	lb (kN)	7,531 (33.5)	11,510 (51.2)	14,275 (63.5)
r for seismic	N _{sa,seis}	lb (kN)	7,531 (33.5)	11,510 (51.2)	14,275 (63.5)
	φ	-		0.75	
ween anchor and	N _{sc}	lb (kN)	7,531 (33.5)	10,723 (47.7)	14,275 (63.5)
ween anchor and	N _{sc,seis}	lb (kN)	7,531 (33.5)	10,723 (47.7)	14,275 (63.5)
on between	φ	-		0.75	
l with HBC-C		lb-in (N*m)	14,125 (1,596)	19,355 (2,187)	28,000 (3,164)
l with HBC-C-N	M _{s,flex}	lb-in (N*m)	11,903 (1,345)	19,081 (2,156)	26,594 (3,005)
I for seismic		lb-in (N*m)	14,125 (1,596)	19,355 (2,187)	28,000 (3,164)
I for seismic	M _{s,flex,seis}	lb-in (N*m)	11,903 (1,345)	19,081 (2,156)	26,594 (3,005)
	φ	-		0.85	

2.3 Structural Perform

1. Anchor

4. Design Introduction

5. Base material

6. Loading

2.3.4 HAC CRFoS U STRUCTURAL STEEL PERFORMANCE — SHEAR

3. HAC

Applications

Table 2.3.4.1 — Shear steel strength design information for HAC CRFoS U with Hilti Channel Bolts (HBC-C and HBC-C-N)

Criteria	Symbol	Units	HAC-50 F CRFoS U	HAC-60 F CRFoS U	HAC-70 F CRFoS U
Nominal shear steel strength for local failure of channel lips	$V_{\rm sl,y}$	lb (kN)	10,675 (47.4)	16,205 (72.0)	21,550 (95.8)
Nominal shear steel strength for local failure of the channel lips for seismic design	$V_{\rm sl,y,seis}$	lb (kN)	10,675 (47.4)	16,205 (72.0)	21,550 (95.8)
Strength reduction factor for local failure of channel lips ¹	φ	-		0.75	
Nominal shear steel strength of a single anchor	$V_{sa,y}$	lb (kN)	12,050 (53.6)	17,378 (77.3)	24,414 (108.6)
Nominal shear steel strength of a single anchor for seismic design	$V_{sa,y,seis}$	lb (kN)	12,050 (53.6)	17,378 (77.3)	24,414 (108.6)
Strength reduction factor anchor failure ¹	φ	-		0.75	
Nominal shear steel strength of connection between anchor and channel	V _{sc,y}	lb (kN)	12,050 (53.6)	17,378 (77.3)	24,414 (108.6)
 Nominal shear steel strength of connection between anchor and channel for seismic design	$V_{\rm sc,y,seis}$	lb (kN)	12,050 (53.6)	17,378 (77.3)	24,414 (108.6)
Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75		
Nominal shear steel strength of connection between anchor and channel	V _{sc,x}	lb (kN)	4,519 (20.1)	6,430 (28.6)	8,565 (38.1)
Nominal shear steel strength of connection between anchor and channel for seismic design	$V_{\mathrm{sc,x,seis}}$	lb (kN)	4,519 (20.1)	6,430 (28.6)	8,565 (38.1)
Strength reduction factor for failure of connection between anchor and channel ¹	φ	-		0.75	
Nominal shear steel strength of a single anchor	$V_{sa,x}$	lb (kN)	4,519 (20.1)	6,902 (30.7)	8,565 (38.1)
Nominal shear steel strength of a single anchor for seismic design	$V_{\mathrm{sa,x,seis}}$	lb (kN)	4,519 (20.1)	6,902 (30.7)	8,565 (38.1)
Strength reduction factor anchor failure ¹	φ	-		0.75	

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed

Table 2.3.4.2 — Shear concrete strength design information for HAC CRFoS U with Hilti Channel Bolts (HBC-C and HBC-C-N)

Criteria	Symbol	Units	HAC-50 F CRFoS U	HAC-60 F CRFoS U	HAC-70 F CRFoS U	ienclature
Factor to account for the influence of channel size and anchor diameter on concrete edge breakout strength in shear	$\alpha_{\rm ch,V}$	lb ^{1/2} /in ^{1/3} (N ^{1/2} /mm ^{1/3})	10.50 (7.50)			ΗA
Coefficient for pryout strength	k _{cp}	-	2			\cap
Strength reduction factor for shear, concrete failure modes ¹	φ	-	Condition A: 0.75 Condition B: 0.70			

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the f factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 2.3.4.3 — Steel strength design information for shear acting in longitudinal direction of the channel axis for HAC CRFoS U with Hilti Locking Channel Bolts (HBC-C-N)

	Criteria	Symbol	Channel bolt type HBC-C-N	Units	HAC-50 F CRFoS U CRFoS U	HAC-70 F CRFoS U	C HAC-T HAC-30
	Nominal shear steel strength of connection between channel lips and channel bolts		M12 ²	lb (kN)	1,920 (8.5)		HAC-T EDGE
n -		$V_{\rm sl,x}$	M16	lb (kN)	4,420 (19.7)		HBC-T HBC-B
			M20	lb (kN)	5,425 (24.1)		HAC
	Nominal shear steel strength of connection between channel lips and channel bolts for seismic design		M12 ²	lb (kN)	1,920 (8.5)		HA CRFo
n -		$V_{\rm sl,x,seis}$	M16	lb (kN)	4,420 (19.7)		S U HAC
			M20	lb (kN)	5,425 (24.1)		EDGE HI
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (periodic inspection)		M12				BC-C
φ		φ	M16	-	0.55		HAC-T HAC-30
			M20				HAC-T EDGE
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (continuous inspection)		M12		0.55		HBC-T HBC-B
φ		φ	M16	-	0.65		Inform
			M20		0.05		nation

1 The tabulated value of \$\$\phi\$ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. 2 In case of continuous inspection the value for V_{al.x} for the size M12 can be taken for all channel sizes HAC-40 F through HAC-70 F as V_{al.x} = 2,021 lb (9.0 kN).

92

6. Loading

9. Special Anchor 10. Design Channel Design Software

2.3.5 HAC EDGE LITE, HAC EDGE, AND HAC EDGE C STRUCTURAL STEEL PERFORMANCE — TENSION

2. HAC

Portfolio

1. Anchor

Channel Systems

Table 2.3.5.1 — Tension steel strength design information for HAC EDGE Lite, HAC EDGE, and HAC EDGE C with Hilti Channel Bolts (HBC-C and HBC-C-N)

3. HAC

Applications

	Criteria	Symbol	Units	HAC-40 EDGE Lite	HAC-50 EDGE Lite HAC-50 EDGE HAC-50 EDGE C
ES 1	Nominal tensile steel strength for local failure of channel lips	N _{si}	lb (kN)	5,620 (25.0)	7,865 (35.0)
	Nominal tensile steel strength for local failure of channel lips for seismic design	$N_{sl,seis}$	lb (kN)	5,620 (25.0)	7,865 (35.0)
Ţ	Strength reduction factor for local failure of channel lips	φ	-	0.	75
	Nominal tensile steel strength of a single anchor	N _{sa}	lb (kN)	7,080 (31.50)	11,240 (50.0)
ġ	Nominal tensile steel strength of a single anchor for seismic design	N _{sa,seis}	lb (kN)	7,080 (31.50)	11,240 (50.0)
	Strength reduction factor for anchor failure	φ	-	0.65	0.75
	Nominal tensile steel strength of connection between anchor and channel	N _{sc}	lb (kN)	5,620 (25.0)	7,865 (35.0)
	Nominal tensile steel strength of connection between anchor and channel for seismic design	$N_{sc,seis}$	lb (kN)	5,620 (25.0)	7,865 (35.0)
I	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.	75
	Nominal bending strength of the anchor channel with HBC-C		lb-in (N*m)	10,050 (1,136)	14,125 (1,596)
	Nominal bending strength of the anchor channel with HBC-C-N	IVI _{s,flex}	lb-in (N*m)	8,673 (980)	11,903 (1,345)
	Nominal bending strength of the anchor channel for seismic design with HBC-C	M	lb-in (N*m)	10,050 (1,136)	14,125 (1,596)
10	Nominal bending strength of the anchor channel for seismic design with HBC-C-N	IVI _{s,flex,seis}	lb-in (N*m)	8,673 (980)	11,903 (1,345)
	Strength reduction factor for bending failure	φ	-	0.	85

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 2.3.5.2 — Tension concrete strength design information for HAC EDGE Lite and HAC EDGE

Criteria	Symbol	Units	HAC-40 F h _{ef} = 91 mm	HAC-50 F h _{ef} = 94 mm	HAC-50 F h _{ef} = 106 mm
Edge distance required to develop full concrete capacity in absence of anchor reinforcement	C _{ac}	in (mm)	10.75 (273)	TBD (TBD)	12.52 (318)
Strength reduction factor for tension, concrete failure modes ¹	φ	-		Condition A: 0.75 Condition B: 0.70	

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

2.3.6 HAC EDGE LITE, HAC EDGE, AND HAC EDGE C STRUCTURAL STEEL PERFORMANCE — SHEAR

Bolts (HBC-C and HBC-C-N)

	Criteria	Symbol	Units	HAC-40 EDGE Lite	HAC-50 EDGE HAC-50 EDG HAC-50 EDG
	Nominal shear steel strength for local failure of channel lips	V _{sl,y}	lb (kN)	7,835 (34.8)	10,675 (47.4)
	Nominal shear steel strength for local failure of the channel lips for seismic design	$V_{\rm sl,y,seis}$	lb (kN)	7,835 (34.8)	10,675 (47.4)
<u> </u>	Strength reduction factor for local failure of channel lips ¹	φ	-	0.	75
ES IN	Nominal shear steel strength of a single anchor	V _{sa,y}	lb (kN)	8,903 (39.6)	12,050 (53.6)
	Nominal shear steel strength of a single anchor for seismic design	$V_{sa,y,seis}$	lb (kN)	8,903 (39.6)	10,675 (47.4)
<u> </u>	Strength reduction factor anchor failure ¹	φ	-	0.65	0.75
	Nominal shear steel strength of connection between anchor and channel	V _{sc,y}	lb (kN)	8,903 (39.6)	12,050 (53.6)
	Nominal shear steel strength of connection between anchor and channel for seismic design	V _{sc,y,seis}	lb (kN)	8,903 (39.6)	10,675 (47.4)
I	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.	75
	Nominal shear steel strength of connection between anchor and channel	V _{sc,x}	lb (kN)	3,552 (15.8)	5,240 (23.3)
	Nominal shear steel strength of connection between anchor and channel for seismic design	V _{sc,x,seis}	lb (kN)	3,552 (15.8)	5,240 (23.3)
. I.	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.	75
(ES)	Nominal shear steel strength of a single anchor	V _{sa,x}	lb (kN)	4,249 (18.9)	6,740 (30.0)
	Nominal shear steel strength of a single anchor for seismic design	V _{sa,x,seis}	lb (kN)	4,249 (18.9)	6,740 (30.0)
	Strength reduction factor anchor failure ¹	φ	-	0.	75

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the o factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are allowed

Table 2.3.6.2 — Shear concrete strength design information for for HAC EDGE Lite and HAC EDGE with Hilti Channel Bolts (HBC-C and HBC-C-N) when shear load acts away from the EDGE Plate.

Criteria	Symbol	Units	HAC-40 F	HAC-50 F		
Factor to account for the influence of channel size and anchor diameter on concrete edge breakout strength in shear ²	$\alpha_{ch,V}$	lb ^{1/2} /in ^{1/3} (N ^{1/2} /mm ^{1/3})	10.50 (7.50)			
Coefficient for pryout strength	k _{cp}	-	2			
Strength reduction factor for shear, concrete failure modes ¹	φ	-	Condition A: N/A Condition B: 0.70			

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed. 2 This factor will be applicable for shear acting in opposite direction edge plate (i.e away from edge plate). In case of shear acting in direction towards edge plate refer to Table 2.3.7.2 for design

information

Table 2.3.6.1 — Shear steel strength design information for HAC EDGE Lite, HAC EDGE, and HAC EDGE C Hilti Channel

Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019

95

2.3 Structural Perform

		1. Anchor Channel Systems	2. HAC Portfolio	3. HAC Applications	4. Design Introduction	5. Base material	6. Loading	7. Anchor Channel Design Code	8. Reinforcing Bar Anchorage	9. Special Anchor Channel Design	10. Design Software	
--	--	------------------------------	---------------------	------------------------	---------------------------	------------------	------------	----------------------------------	---------------------------------	-------------------------------------	------------------------	--

Table 2.3.6.3 — Steel strength design information for shear acting in longitudinal direction of the channel axis for HAC EDGE Lite, HAC EDGE, and HAC EDGE C with Hilti Locking Channel Bolts (HBC-C-N)

	Symbol	Channel bolt type HBC-C-N	Units	HAC-40 EDGE Lite	HAC-50 EDGE Lite HAC-50 EDGE HAC-50 EDGE C	
	Nominal shear steel strength of connection between channel lips and channel bolts		M12 ²	lb (kN)	1,9 (8	120 .5)
8 18		V _{sl,x}	M16	lb (kN)	4,4 (19	20).7)
			M20	lb (kN)	5,4 (24	l25 l.1)
	Nominal shear steel strength of connection between channel lips and channel bolts for seismic design		M12 ²	lb (kN)	1,9 (8	120 .5)
5 5		$V_{\rm sl,x,seis}$	M16	lb (kN)	4,4 (19	20 9.7)
			M20	lb (kN)	5,4 (24	4.1)
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (periodic inspection)		M12			
φ		φ	M16	-	0.	55
			M20			
	Strength reduction factor for failure of connection between channel lips and channel bolts' (continuous inspection)		M12		0.	55
φ		φ	M16	-		65
			M20			

1 The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. 2 In case of continuous inspection the value for V_{al.x} for the size M12 can be taken for all channel sizes HAC-40 F through HAC-70 F as V_{al.x} = 2,021 lb (9.0 kN).

2.3.7 EDGE LITE, HAC EDGE, AND HAC EDGE C PLATE STEEL STRENGTH INFORMATION

Table 2.3.7.1 — Steel strength design information for HAC EDGE Lite, HAC EDGE, and HAC EDGE C rebar edge confinement plate (EDGE Lite, EDGE, and EDGE C plate)

			Anchor Channel					
Criteria	Symbol	Units	HAC-40		HAC-50			
			EDGE Lite	EDGE Lite	EDGE	EDGE C		
Modulus of elasticity of the EDGE lite and EDGE plate	E	ksi (MPa)	30,458 (210.000)					
Minimum specified ultimate strength	f _{uta}	psi (MPa)	79,750 (550)					
Minimum specified yield strength	f _{ya}	psi (MPa)		72, [;] (50	500)0)			
Nominal rebar steel strength	N _{s,r}	lb (kN)	5,650	8 828 12 713				
Nominal rebar-shear confinement plate connection strength	N _{s,c}	lb (kN)	(25.13)	(39.27)	(56.55)			
Strength reduction factor for rebar tensile steel strength	φ	-		0.	75			

2.3.8 DESIGN INFORMATION FOR HAC EDGE LITE , HAC EDGE AND HAC EDGE C CONCRETE BREAKOUT IN PERPENDICULAR SHEAR

0.11. is	Querra ha a l	Unite	Anchor Channel				
Criteria	Symbol	Units	HAC-40 EDGE Lite	HAC-50 EDGE Lite	HAC-50 EDGE	HAC-50 EDGE C	
Factor to account for the influence of plate size and	k _{edge} /	Imperial units	575	700	880	720	
in shear for the EDGE Lite and EDGE plate	k _{edge c}	SI units	(270)	(330)	(415)	(340)	
Exponent for the edge distance in the basic value of the concrete edge breakout	x ₁	-		0.9	97		
Exponent for the concrete strength in the basic value of the concrete edge breakout	x ₂	-		0.	18		
Exponent for the modification factor to account for influence of member thickness on concrete edge breakout strength for anchors channels loaded in shear	x ₃	-	0.25				
Exponent for the modification factor for corner effects on concrete edge breakout strength for anchor channels loaded in shear	X ₄	-		0.	11		
Modification factor for the critical anchor spacing in combination with the EDGE Lite and EDGE plate	$\alpha_{_{1,V}}$	-		0.0	60		
Coefficient for pry out strength	k _{cp}	-		2.	.0		
Modification factor for HAC EDGE Lite and HAC EDGE to control splitting	Ψ_{cp}	-	1.0				
Modification factor to account for influence of cracked or uncracked concrete for concrete edge breakout strength	$\Psi_{c,V}$	-	1.0				
Strength reduction factor for shear, concrete failure modes ¹	φ	-		0.	70		

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided

See chapter 9 for additional design information for HAC EDGE Lite, HAC EDGE, and HAC EDGE C

Table 2.3.8.1 — Shear concrete strength design information for HAC EDGE Lite, HAC EDGE, and HAC EDGE C with Hilti Channel Bolts (HBC-C and HBC-C-N) when shear load acts towards the EDGE Plate.

2.3.9 HAC S EDGE AND HAC S EDGE C STRUCTURAL STEEL **PERFORMANCE** — TENSION

2. HAC

Portfolio

1. Anchor

Channel Systems

Table 2.3.9.1 — Tension steel strength design information for HAC S EDGE and HAC S EDGE C with Hilti Channel Bolts (HBC-C and HBC-C-N).

3. HAC

Applications

4. Design

Introduction

5. Base material

6. Loading

7. Anchor Channel

Design Code

8. Reinforcing

ES

(ES

Bar Anchorage

9. Special Anchor

Channel Design

	Criteria	Symbol	Units	HAC-50 S EDGE HAC-50 S EDGE C
ES 1	Nominal tensile steel strength for local failure of channel lips	N _{si}	lb (kN)	7,865 (35.0)
	Nominal tensile steel strength for local failure of channel lips for seismic design	$N_{sl,seis}$	lb (kN)	7,865 (35.0)
Д	Strength reduction factor for local failure of channel lips	φ	-	0.75
ĨES Î	Nominal tensile steel strength of a single anchor	N _{sa}	lb (kN)	11,240 (50.0)
	Nominal tensile steel strength of a single anchor for seismic design	N _{sa,seis}	lb (kN)	11,240 (50.0)
Ä	Strength reduction factor for anchor failure		-	0.75
ĨES Î	Nominal tensile steel strength of connection between anchor and channel	N _{sc}	lb (kN)	7,865 (35.0)
	Nominal tensile steel strength of connection between anchor and channel for seismic design	N _{sc,seis}	lb (kN)	7,865 (35.0)
I	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75
	Nominal bending strength of the anchor channel with HBC-C	M	lb-in (N*m)	14,125 (1,596)
	Nominal bending strength of the anchor channel with HBC-C-N	IVI _{s,flex}	lb-in (N*m)	11,903 (1,345)
	Nominal bending strength of the anchor channel for seismic design with HBC-C	M	lb-in (N*m)	14,125 (1,596)
	Nominal bending strength of the anchor channel for seismic design with HBC-C-N	IVI _{s,flex,seis}	lb-in (N*m)	11,903 (1,345)
	Strength reduction factor for bending failure	φ	-	0.85

Table 2.3.9.2 — Tension concrete strength design information for HAC S EDGE and HAC S EDGE C

Criteria	Symbol	Units	HAC-50 S h _{ef} = 94 mm	HAC-50 S h _{ef} = 106 mm	
Edge distance required to develop full concrete capacity in absence of anchor reinforcement	C _{ac}	in (mm)	TBD (TBD)	12.52 (318)	
Strength reduction factor for tension, concrete failure modes1	φ	-	Condition A: N/A Condition B: 0.70		

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installation ons where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

2.3.10 HAC S EDGE AND HAC S EDGE C STRUCTURAL STEEL STEEL PERFORMANCE — SHEAR

10. Design

Software

Table 2.3.10.1 — Shear steel strength design information for HAC S EDGE and HAC S EDGE C with Hilti Channel Bolts (HBC-C and HBC-C-N).

	Criteria	Symbol	Units	HAC-50 S EDGE HAC-50 S EDGE C
*	*Nominal shear steel strength for local failure of channel lips in opposite direction of the S bracket	V _{sl,y}	lb (kN)	10,675 (47.4)
	Nominal shear steel strength for local failure of the channel lips in direction of the S bracket	V _{sl,y,clip}	lb (kN)	17,707 (78.7)
I	Nominal shear steel strength for local failure of the channel lips for seismic design in both directions	$V_{\rm sl,y,seis}$	lb (kN)	10,675 (47.4)
Con the second	Strength reduction factor for local failure of channel lips1	φ	-	0.75
*	*Nominal shear steel strength of a single anchor in opposite direction of the S bracket	$V_{sa,y}$	lb (kN)	12,050 (53.6)
	Nominal shear steel strength of a single anchor in direction of the S bracket	$V_{sa,y,clip}$	lb (kN)	13,865 (61.7)
	Nominal shear steel strength of a single anchor for seismic design in both directions	$V_{sa,y,seis}$	lb (kN)	10,675 (47.4)
	Strength reduction factor anchor failure ¹	φ	-	0.75
· ()	*Nominal shear steel strength of connection between anchor and channel in opposite direction of the S bracket	V _{sc,y}	lb (kN)	12,050 (53.6)
	Nominal shear steel strength of connection between anchor and channel in direction of the S bracket	$V_{sc,y,clip}$	lb (kN)	13,865 (61.7)
	Nominal shear steel strength of connection between anchor and channel for seismic design in both directions	$V_{\rm sc,y,seis}$	lb (kN)	10,675 (47.4)
	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75
\rightarrow	Nominal shear steel strength of connection between anchor and channel	V _{sc,x}	lb (kN)	5,240 (23.3)
	Nominal shear steel strength of connection between anchor and channel for seismic design	$V_{sc,x,seis}$	lb (kN)	5,240 (23.3)
	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75
\rightarrow	Nominal shear steel strength of a single anchor	$V_{sa,x}$	lb (kN)	6,740 (30.0)
	Nominal shear steel strength of a single anchor for seismic design	$V_{sa,x,seis}$	lb (kN)	6,740 (30.0)
Ĩ	Strength reduction factor anchor failure ¹	φ	-	0.75

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying mentary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 2.3.10.2 — Shear concrete strength design information for for HAC S EDGE and HAC S EDGE C with Hilti Channel Bolts (HBC-C and HBC-C-N) when shear load acts away from the EDGE Plate.

Criteria	Symbol	Units	HAC-50 S h _{ef} = 106 mm
Factor to account for the influence of channel size and anchor diameter on concrete edge breakout strength in shear ²	$\alpha_{\rm ch,V}$	lb ^{1/2} /in ^{1/3} (N ^{1/2} /mm ^{1/3})	10.50 (7.50)
Coefficient for pryout strength	k _{cp}	-	2
Strength reduction factor for shear, concrete failure modes!	φ	-	Condition A: N/A Condition B: 0.70

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the of factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed. 2 This factor will be applicable for shear acting in opposite direction edge plate (i.e away from edge plate). In case of shear acting in direction towards edge plate refer to Table 2.3.12.1 for design

information.

2.3 Struc HAC EDGE

	1. Anchor Channel Systems	2. HAC Portfolio	3. HAC Applications	4. Design Introduction	5. Base material	6. Loading	7. Anchor Channel Design Code	8. Reinforcing Bar Anchorage	9. Special Anchor Channel Design	10. Design Software	
-											

Table 2.3.10.3 — Steel strength design information for shear acting in longitudinal direction of the channel axis for HAC S EDGE and HAC S EDGE C with Hilti Locking Channel Bolts (HBC-C-N)

	Symbol		Units	HAC-40 EDGE Lite	HAC-50 S EDGE HAC-50 S EDGE C	
	Nominal shear steel strength of connection between channel lips and channel bolts		M12 ²	lb (kN)	1,9 (8)20 .5)
5 15		V _{sl,x}	M16	lb (kN)	4,4 (19	920 9.7)
			M20	lb (kN)	5,4 (24	425 I.1)
ES -	Nominal shear steel strength of connection between channel lips and channel bolts for seismic design		M12 ²	lb (kN)	1,9 (8	20 .5)
. 12		$V_{\rm sl,x,seis}$	M16	lb (kN)	4,4 (19	120 9.7)
			M20	lb (kN)	5,4 (24	125 I.1)
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (periodic		M12			
φ		φ	M16	-	0.55	
			M20			
φ	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (continuous inspection)		M12		0	55
		φ	M16	-	0	65
			M20		0.	

1 The tabulated value of \$\phi\$ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

2 In case of continuous inspection the value for V_{elx} for the size M12 can be taken for all channel sizes HAC-40 F through HAC-70 F as V_{elx} = 2,021 lb (9.0 kN).

2.3.11 HAC S EDGE AND HAC S EDGE C PLATE STEEL STRENGTH **INFORMATION**

Table 2.3.11.1 — Steel strength design information for HAC S EDGE and HAC S EDGE C rebar edge confinement plate (EDGE and EDGE C plate)

			Anchor Channel HAC-50 S			
Criteria	Symbol	Units				
			EDGE	EDGE C		
Modulus of elasticity of the	E	ksi	30,458			
EDGE plate		(MPa)	(210,000)			
Minimum specified ultimate	f _{uta}	psi	79,750			
strength		(MPa)	(550)			
Minimum on a sife divided attrangth	4	psi	72,500			
Minimum specified yield strength	ya	(MPa)	(500)			
	N	lb				
Nominal rebar steel strength	IN _{s,r}	(kN)	12,	713		
Nominal connection strength of		lb	(56	.55)		
rebar-EDGE plate	N _{s,c}	(kN)				
Strength reduction factor for Rebar steel tensile strength	φ	-	0.	75		

2.3.12 DESIGN INFORMATION FOR HAC S EDGE AND HAC S EDGE C CONCRETE BREAKOUT IN PERPENDICULAR SHEAR

Criteria Symbol Units -		Anchor	Channel	
Criteria	Symbol	Units	HAC-50 S EDGE	HAC-50 S EDGE C
Factor to account for the influence of plate size	k _{EDGE} /	Imperial units	880	720
strength in shear for the EDGE plate	k _{edge c}	SI units	(415)	(340)
Exponent for the edge distance in the basic value of the concrete edge breakout	x ₁	-	0.	97
Exponent for the concrete strength in the basic value of the concrete edge breakout	x ₂	-	0.18	
Exponent for the modification factor to account for influence of member thickness on concrete edge breakout strength for anchors channels loaded in shear	x ₃	-	0.25	
Exponent for the modification factor for corner effects on concrete edge breakout strength for anchor channels loaded in shear	X ₄	-	0.	11
Modification factor for the critical anchor spacing in combination with the EDGE plate	α _{1,V}	-	0.60	
Coefficient for pry out strength	k _{cp}	-	2.0	
Modification factor for HAC EDGE to control splitting	Ψ_{cp}	-	1.0	
Modification factor to account for influence of cracked or uncracked concrete for concrete edge breakout strength	$\Psi_{c,V}$	-	1.0	
Strength reduction factor for shear, concrete failure modes ¹	φ	-	0.	70

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided.

See chapter 9 for additional design information for HAC S EDGE and HAC S EDGE C

Table 2.3.12.1 — Shear concrete strength design information for HAC S EDGE and HAC S EDGE C with Hilti Channel Bolts (HBC-C and HBC-C-N) when shear load acts towards the EDGE Plate.

1. Anchor

4. Design Introduction

5. Base material

6. Loading Design Code

TENSION

2.3.13 HBC-C AND HBC-C-N STEEL PERFORMANCE — TENSION

3. HAC

Applications

Table 2.3.13.1 — Tension steel strengths design information for Hilti Channel Bolts (HBC-C and HBC-C-N).

(Criteria	Symbol	Bolt type	Units	M12	M16	M20
ES 1	Nominal tensile strength of a channel bolt		HBC-C 50R	lb (kN)	-	14,080 (62.6)	-
		N _{ss}	HBC-C 8.8	lb (kN)	15,160 (67.4)	28,235 (125.6)	39,190 (174.3)
			HBC-C-N 8.8	lb (kN)	15,160 (67.4)	28,235 (125.6)	45,524 (202.5)
	Nominal tensile strength of a channel bolt for a seismic design		HBC-C 8.8	lb (kN)	15,160 (67.4)	28,235 (125.6)	39,190 (174.3)
		N _{ss,seis}	HBC-C-N 8.8	lb (kN)	15,160 (67.4)	28,235 (125.6)	45,524 (202.5)
φ	Strength reduction factor for tension, steel failure modes ¹	φ	-	-		0.65	

1 The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

2.3.14 HBC-C AND HBC-C-N STEEL PERFORMANCE — SHEAR

Table 2.3.14.1 — Shear steel strengths design information for Hilti Channel Bolts (HBC-C and HBC-C-N).

	Criteria	Symbol	Bolt type	Units	M12	M16	M20
ES L	Nominal shear strength of a channel bolt		HBC-C 50R	lb (kN)	-	8,450 (37.5)	-
		V _{ss}	HBC-C 8.8	lb (kN)	9,095 (40.4)	16,940 (75.3)	27,427 (122.0)
			HBC-C-N 8.8	lb (kN)	9,095 (40.4)	16,940 (75.3)	27,427 (122.0)
	Nominal shear strength of a channel bolt for seismic design	V _{ss,seis}	HBC-C-N 8.8	lb (kN)	9,095 (40.4)	16,940 (75.3)	27,427 (122.0)
ES A	Nominal flexural strength of the channel bolt		HBC-C 50R	lb-in (N*m)	-	1,180 (132.80)	-
		M° _{ss}	HBC-C 8.8	lb-in (N*m)	930 (104.8)	2,355 (266.3)	4,768 (538.7)
			HBC-C-N 8.8	lb-in (N*m)	930 (104.8)	2,355 (266.3)	4,768 (538.7)
	Nominal flexural strength of the channel bolt for seismic design	M° _{ss,seis}	HBC-C-N 8.8	lb-in (N*m)	930 (104.8)	2,355 (266.3)	4,768 (538.7)
φ	Strength reduction factor for shear, steel failure modes ¹	φ	-	-		0.60	

	Criteria	Symbol	Units	HAC-30 (compatible with HBC-B)	HAC-T50 (compatible with HBC-T)	HAC-T70 (compatible with HBC-T)
	Nominal tensile steel strength for local failure of channel lips	N _{si}	lb (kN)	3,935 (17.5)	7,865 (35.0)	15,960 (71.0)
	Nominal tensile steel strength for local failure of channel lips for seismic design	N _{sl,seis}	lb (kN)	3,935 (17.5)	7,865 (35.0)	15,960 (71.0)
	Strength reduction factor for local failure of channel lips	φ	-		0.75	
ES 1	Nominal tensile steel strength of a single anchor	N _{sa}	lb (kN)	3,890 (17.3)	11,240 (50.0)	16,320 (72.6)
	Nominal tensile steel strength of a single anchor for seismic design	N _{sa,seis}	lb (kN)	3,890 (17.3)	11,240 (50.0)	16,320 (72.6)
	Strength reduction factor for anchor failure	φ	-		0.75	
	Nominal tensile steel strength of connection between anchor and channel	N _{sc}	lb (kN)	3,935 (17.5)	7,865 (35.0)	15,960 (71.0)
	Nominal tensile steel strength of connection between anchor and channel for seismic design	N _{sc,seis}	lb (kN)	3,935 (17.5)	7,865 (35.0)	15,960 (71.0)
<u> </u>	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-		0.75	
	Nominal bending strength of the anchor channel with HBC-T	$M_{s,flex}$	lb-in (N*m)	5,955 (673)	14,125 (1,596)	26,331 (2,975)
	Nominal bending strength of the anchor channel for seismic design with HBC-T	M _{s,flex,seis}	lb-in (N*m)	5,955 (673)	14,125 (1,596)	26,331 (2,975)
	Strength reduction factor for bending failure	φ	-		0.85	

Table 2.3.15.2 — Tension concrete strength design information for HAC-T and HAC-30.

Criteria	Symbol	Units	HAC-30	HAC-T50 h _{ef} = 94 mm	HAC-T50 h _{ef} = 106 mm	HAC-T70
Edge distance required to develop full concrete capacity in absence of anchor reinforcement	C _{ac}	in (mm)	8.03 (204)		12.52 (318)	20.67 (525)
Strength reduction factor for tension, concrete failure modes ¹	φ	-	Condition A: 0.75 Condition B: 0.70			

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

2.3.15 HAC-30 AND HAC-T STRUCTURAL STEEL PERFORMANCE -

Table 2.3.15.1 — Tension steel strength design information for HAC-T with Hilti Serrated Channel Bolts (HBC-T)

2.3 Structural Performance HAC-T HAC-30

1. Anchor 2. HAC 3. HAC 4 Channel Systems Portfolio Applications In

4. Design Introduction

5. Base material 6. Loading

9. Special Anchor Channel Design Software

2.3.16 HAC-30 AND HAC-T STRUCTURAL STEEL PERFORMANCE — SHEAR

Table 2.3.161 – Shear steel strength design information for HAC-T with Hilti Serrated Channel Bolts (HBC-T) HAC-30 with Hilti Channel Bolts (HBC-B).

	Criteria	Symbol	Units	HAC-30 (compatible with HBC-B)	HAC-T50 (compatible with HBC-T)	HAC-T70 (compatible with HBC-T)
ES IL	Nominal shear steel strength for local failure of channel lips	V _{sl,y}	lb (kN)	5,620 (25.0)	10,675 (47.4)	21,550 (95.8)
	Nominal shear steel strength for local failure of the channel lips for seismic design	V _{sl,y,seis}	lb (kN)	5,620 (25.0)	10,675 (47.4)	21,550 (95.8)
	Strength reduction factor for local failure of channel lips ¹	φ	-		0.75	
	Nominal shear steel strength of a single anchor	V _{sa,y}	lb (kN)	5,620 (25.0)	12,050 (53.6)	25,790 (114.7)
	Nominal shear steel strength of a single anchor for seismic design	V _{sa,y,seis}	lb (kN)	5,620 (25.0)	10,675 (47.4)	21,550 (95.8)
	Strength reduction factor anchor failure ¹	φ	-		0.75	
	Nominal shear steel strength of connection between anchor and channel	V _{sc,y}	lb (kN)	5,620 (25.0)	12,050 (53.6)	25,790 (114.7)
	Nominal shear steel strength of connection between anchor and channel for seismic design	V _{sc,y,seis}	lb (kN)	5,620 (25.0)	10,675 (47.4)	21,550 (95.8)
Ī	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-		0.75	
	Nominal shear steel strength of connection between anchor and channel	V _{sc,x}	lb (kN)	2,360 (10.5)	5,240 (23.3)	9,590 (42.6)
	Nominal shear steel strength of connection between anchor and channel for seismic design	V _{sc,x,seis}	lb (kN)	2,360 (10.5)	5,240 (23.3)	9,590 (42.6)
	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-		0.75	
	Nominal shear steel strength of a single anchor	V _{sa,x}	lb (kN)	2,340 (10.4)	6,740 (30.0)	9,800 (43.6)
	Nominal shear steel strength of a single anchor for seismic design	V _{sa,x,seis}	lb (kN)	2,340 (10.4)	6,740 (30.0)	9,800 (43.6)
	Strength reduction factor anchor failure ¹	φ	-		0.75	

1 The tabulated value of φ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 2.3.16.2 — Shear concrete strength design information for HAC-T with Hilti Serrated Channel Bolts (HBC-T) and HAC-30 with Hilti Channel Bolts (HBC-B).

Criteria	Symbol	Units	HAC-30 F HAC-T50 F HAC-T70 F
Factor to account for the influence of channel size and anchor diameter on concrete edge breakout strength in shear	$\alpha_{ch,V}$	lb ^{1/2} /in ^{1/3} (N ^{1/2} /mm ^{1/3})	10.50 (7.50)
Coefficient for pryout strength	k _{cp}	-	2
Strength reduction factor for shear, concrete failure modes ¹	φ	-	Condition A: 0.75 Condition B: 0.70

1 The tabulated value of φ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 2.3.16.3 — Steel strength design information for shear acting in longitudinal direction of the channel axis for HAC-T with Hilti Serrated Channel Bolts (HBC-T) and HAC-30 with Hilti Channel Bolts (HBC-B).

			*Channel bolt type						HAC-3
	Criteria	Symbol	HBC-B (compatible with HAC-30)	HBC-T (compatible with HBC-T)	Units	(compatible with HBC-B)	(compatible with HBC-T)	(compatible with HBC-T)	0 EDGE
ES >	Nominal shear steel strength of connection between channel lips and channel bolts		M	112	lb (kN)	790 (3.5)	3,3 (15	95 .1)	HBC-B
		V _{sl,x}	M	116	lb (kN)	-	4,5 (20	519 0.1)	ΠAU
			М	20	lb (kN)	-	4,5 (20	519 0.1)	CRFoS
	Nominal shear steel strength of connection between channel lips and channel bolts for seismic design		M	112	lb (kN)	790 (3.5)	3,3 (15	95 1)	
		$V_{\text{sl,x,seis}}$	M	116	lb (kN)	-	4,5 (20	519 0.1)	
			M	20	lb (kN)	-	4,5 (20	519).1)	HA
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (periodic inspection)		М	112					C-30
φ		φ	М	116	-	0.55	0.	65	EDGE
			м	20					HBC-B
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (continuous inspection)		M	112					
φ		φ	M	116	-	0.55	0.	75	
			м	20					

1 The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. * Note: HBC-T are only compatible with HAC-T. HBC-B are only compatible with HAC-30.

2.3 Structural Performance 2 HAC-T HAC-T HBC-T H

2.3.17 HAC-T EDGE LITE, HAC-T EDGE, AND HAC-T EDGE C STRUCTURAL STEEL PERFORMANCE — TENSION

2. HAC

Portfolio

1. Anchor

Channel Systems

Table 2.3.17.1 — Tension steel strength design information for HAC-T EDGE Lite, HAC-T EDGE and HAC-T EDGE C with Hilti Serrated Channel Bolts (HBC-T)

3. HAC

Applications

4. Design

Introduction

5. Base material

6. Loading

	Criteria	Symbol	Units	HAC-T50 EDGE Lite HAC-T50 EDGE HAC-T50 EDGE C
	Nominal tensile steel strength for local failure of channel lips	N _{sl}	lb (kN)	7,865 (35.0)
	Nominal tensile steel strength for local failure of channel lips for seismic design	N _{sl,seis}	lb (kN)	7,865 (35.0)
Ţ	Strength reduction factor for local failure of channel lips ¹	φ	-	0.75
ES 1	Nominal tensile steel strength of a single anchor	N _{sa}	lb (kN)	11,240 (50.0)
	Nominal tensile steel strength of a single anchor for seismic design	N _{sa,seis}	lb (kN)	11,240 (50.0)
<u>н</u> Д	Strength reduction factor for anchor failure ¹	φ	-	0.75
ES 1	Nominal tensile steel strength of connection between anchor and channel	N _{sc}	lb (kN)	7,865 (35.0)
	Nominal tensile steel strength of connection between anchor and channel for seismic design	N _{sc,seis}	lb (kN)	7,865 (35.0)
I	Strength reduction factor for failure of connection between anchor and channel ¹	φ	0	0.75
	Nominal bending strength of the anchor channel with HBC-T	$M_{s,flex}$	lb-in (N*m)	14,125 (1,596)
	Nominal bending strength of the anchor channel with HBC-T	$M_{s,flex,seis}$	lb-in (N*m)	14,125 (1,596)
	Strength reduction factor for bending failure ¹	φ	-	0.85

Table 2.3.17.2 — Tension concrete strength design information for HAC-T EDGE Lite, HAC-T EDGE and HAC-T EDGE C

Criteria	Symbol	Units	HAC-T50 h _{ef} = 94 mm	HAC-T50 h _{ef} = 106 mm
Edge distance required to develop full concrete capacity in absence of anchor reinforcement	C _{ac}	in (mm)	12.52 (318)	20.67 (525)
Strength reduction factor for tension, concrete failure modes ¹	φ	-	Conditio Conditio	n A: 0.75 n B: 0.70

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

2.3.18 HAC-T EDGE LITE, HAC EDGE, AND HAC-T EDGE C STRUCTURAL STEEL PERFORMANCE — SHEAR

	Criteria	Symbol	Units	HAC-T50 EDGE Li HAC-T50 EDGE HAC-T50 EDGE (
(ES) 1	Nominal shear steel strength for local failure of channel lips	$V_{sl,y}$	lb (kN)	10,675 (47.4)
	Nominal shear steel strength for local failure of the channel lips for seismic design	$V_{\rm sl,y,seis}$	lb (kN)	10,675 (47.4)
1	Strength reduction factor for local failure of channel lips ¹	φ	-	0.75
ES IL	Nominal shear steel strength of a single anchor	V _{sa,y}	lb (kN)	12,050 (53.6)
	Nominal shear steel strength of a single anchor for seismic design	$V_{sa,y,seis}$	lb (kN)	10,675 (47.4)
I	Strength reduction factor anchor failure ¹	φ	-	0.75
	Nominal shear steel strength of connection between anchor and channel	V _{sc,y}	lb (kN)	12,050 (53.6)
	Nominal shear steel strength of connection between anchor and channel for seismic design	$V_{\rm sc,y,seis}$	lb (kN)	10,675 (47.4)
I	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75
	Nominal shear steel strength of connection between anchor and channel	V _{sc,x}	lb (kN)	5,240 (23.3)
	Nominal shear steel strength of connection between anchor and channel for seismic design	$V_{\rm sc,x,seis}$	lb (kN)	5,240 (23.3)
	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75
	Nominal shear steel strength of a single anchor	V _{sa,x}	lb (kN)	6,740 (30.0)
	Nominal shear steel strength of a single anchor for seismic design	$V_{\rm sa,x,seis}$	lb (kN)	6,740 (30.0)
	Strength reduction factor anchor failure ¹	φ	-	0.75

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

Table 2.3.18.2 — Shear concrete strength design information for HAC-T EDGE Lite and HAC-T EDGE with Hilti Serrated Channel Bolts (HBC-T) when shear load acts away from the EDGE Plate.

Criteria	Symbol	Units	HAC-70 F
Factor to account for the influence of channel size and anchor diameter on concrete edge breakout strength in shear	$\alpha_{ch,V}$	lb ^{1/2} /in ^{1/3} (N ^{1/2} /mm ^{1/3})	10.50 (7.50)
Coefficient for pryout strength	k _{cp}	-	2
Strength reduction factor for shear, concrete failure modes ¹	φ	-	Condition A: 0.75 Condition B: 0.70

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed. 2 This factor will be applicable for shear acting in opposite direction edge plate (i.e away from edge plate). In case of shear acting in direction towards edge plate refer to Table 2.3.7.2 for design

information

Channel Systems Portfolio Applications Introduction 5. Base material 6. Loading Design Code Bar Anchorage Channel Design Software

Table 2.3.18.3 — Steel strength design information for shear acting in longitudinal direction of the channel axis for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T EDGE C with Hilti Serrated Channel Bolts (HBC-T)

	Criteria	Symbol	Channel bolt type HBC-T	Units	HAC-T50 EDGE Lite HAC-T50 EDGE HAC-T50 EDGE C
ES ->	Nominal shear steel strength of connection between channel lips and channel bolts		M12	lb (kN)	3,395 (15.1)
T 17		$V_{\rm sl,x}$	M16	lb (kN)	4,519 (20.1)
			M20	lb (kN)	4,519 (20.1)
	Nominal shear steel strength of connection between channel lips and channel bolts for seismic design		M12	lb (kN)	3,395 (15.1)
*]*		$V_{\rm sl,x,seis}$	M16	lb (kN)	4,519 (20.1)
			M20	lb (kN)	4,519 (20.1)
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (periodic inspection)		M12		
φ		φ	M16	-	0.65
			M20		
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (continuous inspection)		M12		
φ		φ	M16	-	0.75
			M20		

1 The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

2.3.19 HAC-T EDGE LITE, HAC-T EDGE, AND HAC-T EDGE C PLATE STEEL STRENGTH INFORMATION

Table 2.3.19.1 — Steel strength design information for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T EDGE C rebar edge confinement plate (EDGE Lite, EDGE, and EDGE C plate)

			Anchor Chan		Channel	
Criteria	Symbol	Units	HAC-T50	HAC-T50		
			EDGE Lite	EDGE	EDGE C	
Modulus of elasticity of the	E	ksi	30,458			
EDGE lite and EDGE plate	L	(MPa)	(210,000)			
Minimum specified ultimate	f _{uta}	psi	79,750			
strength		(MPa)	(550)			
Minimum specified yield strength	f _{ya}	psi	72,500			
winning of strength		(MPa)	(500)			
Nominal robar stool strongth	N	lb				
Norminal rebai steel strength	IN _{s,r}	(kN)	12,713			
Nominal connection strength of	Ν	lb	(56.55)			
rebar-EDGE Lite or EDGE plate	IN _{s,c}	(kN)				
Strength reduction factor for rebar tensile steel strength	φ	-		0.75		

2.3.20 DESIGN INFORMATION FOR HAC-T EDGE LITE, HAC-T EDGE, AND HAC-T EDGE C CONCRETE BREAKOUT IN PERPENDICULAR SHEAR

Orthonia	Querra ha d	Unite	Anchor Channel			
Criteria	Symbol	Units	HAC-T50 EDGE Lite	HAC-T50 EDGE	HAC-T50 EDGE C	
Factor to account for the influence of plate size and rebar diameter on concrete edge breakout strength in shear for the EDGE Lite and EDGE plate	k _{edge} / k _{edge c}	Imperial units SI units	700 (330)	880 (415)	720 (340)	
Exponent for the edge distance in the basic value of the concrete edge breakout	x ₁	-	0.97			
Exponent for the concrete strength in the basic value of the concrete edge breakout	x ₂	-	0.18			
Exponent for the modification factor to account for influence of member thickness on concrete edge breakout strength for anchors channels loaded in shear	x ₃	-	0.25			
Exponent for the modification factor for corner effects on concrete edge breakout strength for anchor channels loaded in shear	x ₄	-	0.11			
Modification factor for the critical anchor spacing in combination with the EDGE Lite and EDGE plate	α _{1,V}	-	0.60			
Coefficient for pry out strength	k _{cp}	-	2.0			
Modification factor for HAC-T EDGE Lite and HAC-T EDGE to control splitting	Ψ_{cp}	-	1.0			
Modification factor to account for influence of cracked or uncracked concrete for concrete edge breakout strength	$\Psi_{c,V}$	-	1.0			
Strength reduction factor for shear, concrete failure modes ¹	φ	-		0.70		

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided.

See chapter 9 for additional design information for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T EDGE C

Table 2.3.20.1 — Shear concrete strength design information for HAC-T EDGE Lite, HAC-T EDGE, and HAC-T EDGE C with Hilti Serrated Channel Bolts (HBC-T) when shear load acts towards the EDGE Plate.

2.3.21 HAC-T S EDGE AND HAC-T S EDGE C STRUCTURAL STEEL PERFORMANCE — TENSION

2. HAC

Portfolio

1. Anchor

Channel Systems

Table 2.3.21.1 — Tension steel strength design information for HAC-T S EDGE and HAC-T S EDGE C with Hilti Serrated Channel Bolts (HBC-T)

3. HAC

Applications

4. Design

Introduction

5. Base material

6. Loading

7. Anchor Channel

Design Code

8. Reinforcing

ES

ES

Bar Anchorage

9. Special Anchor

Channel Design

	Criteria	Symbol	Units	HAC-T50 S EDGE HAC-T50 S EDGE C
ES 1	Nominal tensile steel strength for local failure of channel lips	N _{sl}	lb (kN)	7,865 (35.0)
	Nominal tensile steel strength for local failure of channel lips for seismic design	N _{sl,seis}	lb (kN)	7,865 (35.0)
<u> </u>	Strength reduction factor for local failure of channel lips ¹	φ	-	0.75
ES 1	Nominal tensile steel strength of a single anchor	N _{sa}	lb (kN)	11,240 (50.0)
	Nominal tensile steel strength of a single anchor for seismic design	N _{sa,seis}	lb (kN)	11,240 (50.0)
<u> </u>	Strength reduction factor for anchor failure ¹	φ	-	0.75
	Nominal tensile steel strength of connection between anchor and channel	N _{sc}	lb (kN)	7,865 (35.0)
	Nominal tensile steel strength of connection between anchor and channel for seismic design	N _{sc,seis}	lb (kN)	7,865 (35.0)
	Strength reduction factor for failure of connection between anchor and channel ¹	φ	0	0.75
ES 1	Nominal bending strength of the anchor channel with HBC-C		Ib-in (N*m)	14,125 (1,596)
	Nominal bending strength of the anchor channel with HBC-C-N	M _{s,flex}	lb-in (N*m)	11,903 (1,345)
	Nominal bending strength of the anchor channel for seismic design with HBC-C	Μ	Ib-in (N*m)	14,125 (1,596)
	Nominal bending strength of the anchor channel for seismic design with HBC-C-N	IVI _{s,flex,seis}	Ib-in (N*m)	11,903 (1,345)
	Strength reduction factor for bending failure	φ	-	0.85

Table 2.3.21.2 — Tension concrete strength design information for HAC-T S EDGE and HAC-T S EDGE C

Criteria	Symbol	Units	HAC-50 S h _{ef} = 94 mm	HAC-50 S h _{ef} = 106 mm
Edge distance required to develop full concrete capacity in absence of anchor reinforcement	C _{ac}	in (mm)	TBD (TBD)	12.52 (318)
Strength reduction factor for tension, concrete failure modes ¹	φ	-	Condition A: 0.75 Condition B: 0.70	

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

2.3.22 HAC-T S EDGE AND HAC-T S EDGE C STRUCTURAL STEEL STEEL PERFORMANCE - SHEAR

10. Design

Software

Table 2.3.22.1 — Shear steel strength design information for HAC-T S EDGE and HAC-T S EDGE C with Hilti Serrated Channel Bolts (HBC-T)

	Criteria	Symbol	Units	HAC-T50 S EDGE HAC-T50 S EDGE C
	*Nominal shear steel strength for local failure of channel lips in opposite direction of the S bracket	V _{sl,y}	lb (kN)	10,675 (47.4)
	Nominal shear steel strength for local failure of the channel lips in direction of the S bracket	$V_{\rm sl,y,clip}$	lb (kN)	17,707 (78.7)
	Nominal shear steel strength for local failure of the channel lips for seismic design in both directions	$V_{\rm sl,y,seis}$	lb (kN)	10,675 (47.4)
	Strength reduction factor for local failure of channel lips1	φ	-	0.75
	*Nominal shear steel strength of a single anchor in opposite direction of the S bracket	V _{sa,y}	lb (kN)	12,050 (53.6)
	Nominal shear steel strength of a single anchor in direction of the S bracket	$V_{\rm sl,y,clip}$	lb (kN)	13,865 (61.7)
	Nominal shear steel strength of a single anchor for seismic design in both directions	$V_{\rm sa,y,seis}$	lb (kN)	10,675 (47.4)
	Strength reduction factor anchor failure ¹	φ	-	0.75
	*Nominal shear steel strength of connection between anchor and channel in opposite direction of the S bracket	V _{sc,y}	lb (kN)	12,050 (53.6)
	Nominal shear steel strength of connection between anchor and channel in direction of the S bracket	$V_{\rm sl,y,clip}$	lb (kN)	13,865 (61.7)
	Nominal shear steel strength of connection between anchor and channel for seismic design in both directions	$V_{\rm sc,y,seis}$	lb (kN)	10,675 (47.4)
	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75
\rightarrow	Nominal shear steel strength of connection between anchor and channel	V _{sc,x}	lb (kN)	5,240 (23.3)
	Nominal shear steel strength of connection between anchor and channel for seismic design	$V_{\rm sc,x,seis}$	lb (kN)	5,240 (23.3)
	Strength reduction factor for failure of connection between anchor and channel ¹	φ	-	0.75
\rightarrow	Nominal shear steel strength of a single anchor	V _{sa,x}	lb (kN)	6,740 (30.0)
	Nominal shear steel strength of a single anchor for seismic design	$V_{\mathrm{sa,x,seis}}$	lb (kN)	6,740 (30.0)
	Strength reduction factor anchor failure ¹	φ	-	0.75

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are allowed

Table 2.3.22.2 — Shear concrete strength design information for HAC-T S EDGE and HAC-T S EDGE C with Hilti Serrated Channel Bolts (HBC-T) when shear load acts away from the EDGE Plate.

Criteria	Symbol	Units	HAC-T50 S EDGE HAC-T50 S EDGE C
Factor to account for the influence of channel size and anchor diameter on concrete edge breakout strength in shear	$\alpha_{\rm ch,V}$	lb ^{1/2} /in ^{1/3} (N ^{1/2} /mm ^{1/3})	10.50 (7.50)
Coefficient for pryout strength	k _{cp}	-	2
Strength reduction factor for shear, concrete failure modes ¹	φ	-	Condition A: N/A Condition B: 0.70

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the o factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition A are allowed.

2 This factor will be applicable for shear acting in opposite direction edge plate (i.e away from edge plate). In case of shear acting in direction towards edge plate refer to Table 2.3.26.1 for design information

2.3 Structural Perfor

1. Anchor 2. HAC 3. HAC 4. Design 5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing 9. Special Anchor 10. Design Channel Systems Portfolio Applications Introduction 5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing 9. Special Anchor 10. Design	gn re
---	----------

Table 2.3.22.3 — Steel strength design information for shear acting in longitudinal direction of the channel axis for HAC-T S EDGE and HAC-T S EDGE C with Hilti Serrated Channel Bolts (HBC-T)

	Criteria	Symbol	Channel bolt type HBC-T	Units	HAC-40 HAC-T50 S EDG EDGE Lite HAC-T50 S EDG	
	Nominal shear steel strength of connection between channel lips and channel bolts		M12 ²	lb (kN)	3,395 (15.1)	
8 18		V _{sl,x}	M16	lb (kN)	4,519 (20.1)	
			M20	lb (kN)	4,519 (20.1)	
ES P	Nominal shear steel strength of connection between channel lips and channel bolts for seismic design		M12 ²	lb (kN)	3,395 (15.1)	
8 18		$V_{\rm sl,x,seis}$	M16	lb (kN)	4,519 (20.1)	
			M20	lb (kN)	4,5 (20	519).1)
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (periodic inspection)		M12			
φ		φ	M16	-	0.	65
			M20			
	Strength reduction factor for failure of connection between channel lips and channel bolts ¹ (continuous		M12			
φ	inspection)	φ	M16	-	0.	75
			M20			

1 The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

2.3.23 HAC-T S EDGE AND HAC-T S EDGE C PLATE STEEL STRENGTH INFORMATION

Table 2.3.23.1 — Steel strength design information for HAC-T S EDGE and HAC-T EDGE C rebar edge confinement plate (EDGE and EDGE C plate)

			Anchor Channel			
Criteria	Symbol	Units	HAC-T50 S			
			EDGE	EDGE C		
Modulus of elasticity of the	F	ksi	30,4	458		
EDGE plate		(MPa)	(210	,000)		
Minimum specified ultimate	f _{uta}	psi	79,	750		
strength		(MPa)	(55	50)		
Minimum on edited vield etveneth	f _{ya}	psi	72,	500		
Minimum specified yield strength		(MPa)	(50	00)		
	N	lb				
Nominal rebar steel strength	N _{s,r}	(kN)	12,713			
Nominal connection strength of	N	lb	(56.55)			
rebar-EDGE Lite or EDGE plate	IN _{s,c}	(kN)				
Strength reduction factor for rebar tensile steel strength	φ	-	0.75			

2.3.24 DESIGN INFORMATION FOR HAC-T S EDGE AND HAC-T S EDGE C CONCRETE BREAKOUT IN PERPENDICULAR SHEAR

Table 2.3.24.1 —Shear concrete strength design information for HAC-T S EDGE and HAC-T S EDGE C with Hilti Serrated Channel Bolts (HBC-T) when shear load acts towards the EDGE Plate.

Critorio		Unite	Anchor Channel		
Criteria			HAC-T50 S EDGE	HAC-T50 S EDGE C	
Factor to account for the influence of plate size and rebar diameter on concrete edge breakout	k _{EDGE} /	Imperial units	880	720	
strength in shear for the EDGE plate	K _{EDGE C}	SI units	(415)	(340)	
Exponent for the edge distance in the basic value of the concrete edge breakout	x ₁	-	0.97		
Exponent for the concrete strength in the basic value of the concrete edge breakout	x ₂	-	0.18		
Exponent for the modification factor to account for influence of member thickness on concrete edge breakout strength for anchors channels loaded in shear	x ₃	-	0.25		
Exponent for the modification factor for corner effects on concrete edge breakout strength for anchor channels loaded in shear	X ₄	-	0.11		
Modification factor for the critical anchor spacing in combination with the EDGE plate	α _{1,v}	-	0.60		
Coefficient for pry out strength	k _{cp}	-	2.0		
Modification factor for HAC-T EDGE to control splitting	Ψ_{cp}	-	1.0		
Modification factor to account for influence of cracked or uncracked concrete for concrete edge breakout strength	$\Psi_{c,V}$	_	1.0		
Strength reduction factor for shear, concrete failure modes ¹	φ	-	0.	70	

1 The tabulated value of ϕ applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided.

See chapter 9 for additional design information for HAC-T S EDGE and HAC-T S EDGE C

HAC	
HAC EDGE	2.2 Geor
	netric Pai
HAC-T HAC-30	ameters
HAC-T EDGE	
HBC-T	
HAC	
HAC CRFoS U	
HAC EDGE	2.3 Struc
HBC-C	tural Peri
HAC-T HAC-30	formance
HAC-T EDGE	
HBC-T	
	2.4 Ordering

4. Design Introduction

5. Base material 6. Loading 10. Design Software

2.3.25 HBC-B AND HBC-T STEEL PERFORMANCE — TENSION

Table 2.3.25.1 — Tension steel strengths design information for Hilti Serrated Channel Bolts (HBC-B and HBC-T).

3. HAC

0.1	Criteria		Cumbel Deltature		Bolt type:	HBC-B 4.6	Bolt type: HBC-T 8.8		
Un	iteria	Symbol	воптуре	Units	M10	M12	M12	M16	M20
ES 1	Nominal tensile strength of a channel bolt								
Û.		N _{ss}	HBC-T 8.8	lb (kN)	5,215 (23.2)	7,575 (33.7	15,160 (67.4)	28,235 (125.6)	39,229 (174.5)
	Nominal tensile strength of a channel bolt for seismic design								
		N _{ss,seis}	HBC-T 8.8	lb (kN)	-	7,575 (33.7	15,160 (67.4)	28,235 (125.6)	39,229 (174.5)
φ	Strength reduction factor for tension, steel failure modes ¹	φ	-	-			0.65		

1 The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

2.3.26 HBC-B AND HBC-T STEEL PERFORMANCE — SHEAR

Table 2.3.26.1 — Shear steel strengths design information for Hilti Serrated Channel Bolts (HBC-B and HBC-T).

0	tavia	Cumhal	Deltature	Unite	Bolt type:	HBC-B 4.6	Bolt	type: HBC-1	8.8
Un		Symbol	воптуре	Units	M10	M12	M12	M16	M20
	Nominal shear strength of a channel bolt	V _{ss}	HBC-T 8.8	lb (kN)	3,125 (13.9)	4,540 (20.2)	9,095 (40.4)	16,940 (75.3)	27,427 (122.0)
	Nominal shear strength of a channel bolt for seismic design	$V_{\rm ss,seis}$	HBC-T 8.8	lb (kN)	-	4,540 (20.2)	9,095 (40.4)	16,940 (75.3)	27,427 (122.0)
	Nominal shear strength of a channel bolt	M° ss	HBC-T 8.8	lb-in (N*m)	265 (29.9)	465 (52.4)	930 (104.8)	2,355 (266.3)	4,768 (538.7)
	Nominal shear strength of a channel bolt for seismic design	M° _{ss,seis}	HBC-T 8.8	lb-in (N*m)		465 (52.4)	930 (104.8)	2,355 (266.3)	4,768 (538.7)
ф	Strength reduction factor for shear, steel failure modes ¹	φ	-	-			0.60		

1 The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used.

2.4 ORDERING INFORMATION

НАС

ESR-3520	Item Number	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Weight (lb/unit)
HAC-40 91/150 F	2107348	В	5.91 (150)	3.7 (94.0)	2	3.94 (100)	0.79
HAC-40 91/200 F	2122491	В	7.87 (200)	3.7 (94.0)	2	5.91 (150)	1.01
HAC-40 91/250 F	2122492	A	9.84 (250)	3.7 (94.0)	2	7.87 (200)	1.21
HAC-40 91/300 F	2107349	A	11.81 (300)	3.7 (94.0)	2	9.84 (250)	1.41
HAC-40 91/350 F	2122493	A	13.78 (350)	3.7 (94.0)	3	5.91 (150)	1.72
HAC-40 91/450 F	2122494	A	17.72 (450)	3.7 (94.0)	3	7.87 (200)	2.14
HAC-40 91/550 F	2122495	В	21.65 (550)	3.7 (94.0)	3	9.84 (250)	2.58
HAC-40 91/800 F	2122496	A	31.50 (800)	3.7 (94.0)	4	9.84 (250)	3.70
HAC-40 91/5800 F	2122536	С	228.35 (5800)	3.7 (94.0)	24	9.84 (250)	26.68
HAC-40 91/ "custom length"	tbd	С	other ²⁾	3.7 (94.0)			
HAC-50 106/150 F	2107510	В	5.91 (150)	4.3 (109.5)	2	3.94 (100)	1.13
HAC-50 106/200 F	2122537	В	7.87 (200)	4.3 (109.5)	2	5.91 (150)	1.39
HAC-50 106/250 F	2122538	В	9.84 (250)	4.3 (109.5)	2	7.87 (200)	1.65
HAC-50 106/300 F	2107511	A	11.81 (300)	4.3 (109.5)	2	9.84 (250)	1.92
HAC-50 106/350 F	2122539	A	13.78 (350)	4.3 (109.5)	3	5.91 (150)	2.34
HAC-50 106/450 F	2122540	A	17.72 (450)	4.3 (109.5)	3	7.87 (200)	2.87
HAC-50 106/550 F	2122541	В	21.65 (550)	4.3 (109.5)	3	9.84 (250)	3.40
HAC-50 106/800 F	2122542	A	31.50 (800)	4.3 (109.5)	4	9.84 (250)	4.87
HAC-50 106/5800 F	2122553	С	228.35 (5800)	4.3 (109.5)	24	9.84 (250)	34.80
HAC-50 106/ "custom length"	tbd	С	other 2)	4.3 (109.5)			
HAC-60 148/250 F	2075654	В	9.84 (250)	6.0 (152.5)	2	7.87 (200)	
HAC-60 148/300 F	431850	A	11.81 (300)	6.0 (152.5)	2	9.84 (250)	2.56
HAC-60 148/350 F	431851	A	13.78 (350)	6.0 (152.5)	3	5.91 (150)	3.13
HAC-60 148/450 F	431852	A	17.72 (450)	6.0 (152.5)	3	7.87 (200)	3.82
HAC-60 148/550 F	431853	В	21.65 (550)	6.0 (152.5)	3	9.84 (250)	4.54
HAC-60 148/5800 F	431856	С	228.35 (5800)	6.0 (152.5)	24	9.84 (250)	46.26
HAC-60 148/ "custom length"	tbd	С	other 2)	6.0 (152.5)			
HAC-70 175/300 F	431860	A	11.81 (300)	7.1 (180.0)	2	9.84 (250)	3.56
HAC-70 175/350 F	431861	A	13.78 (350)	7.1 (180.0)	3	5.91 (150)	4.39
HAC-70 175/450 F	431862	A	17.72 (450)	7.1 (180.0)	3	7.87 (200)	5.34
HAC-70 175/550 F	431863	В	21.65 (550)	7.1 (180.0)	3	9.84 (250)	6.31
HAC-70 175/5800 F	431866	С	228.35 (5800)	7.1 (180.0)	24	9.84 (250)	66.41
HAC-70 175/ "custom length"	tbd	С	other 2)	7.1 (180.0)			

1) Lead Time Categories

A = Standard inventory item in North America, typically available from stock

B = Standard item, not stocked in North America, typical lead time 8 weeks

C = Make to order item, typical lead time 12 weeks D = Make to order item with minimum order quantity, lead time may be longer than 12 weeks"

General note: It's recommended to always check availability with Hilti for all items

Custom lengths are available upon request in increments of 5 mm. Min length 150 mm, max length 5800 mm. See section for custom made anchor channels

12. Instructions for Use

13. Field Fixes

2. HAC 1. Anchor **Channel Systems** Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material

6. Loading

9. Special Anchor 10. Design Channel Design Software

HAC S EDGE

(for superior perpendicular shear steel performance)

	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
HAC-50 S 94/300 F EDGE	2200863	A	11.81 (300)	3.7 (94.0)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	10.45
HAC-50 S 94/350 F EDGE	2200873	С	13.78 (350)	3.7 (94.0)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	11.44
HAC-50 S 94/450 F EDGE	2200874	С	17.72 (450)	3.7 (94.0)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	13.07
HAC-50 S 94/610 F EDGE	-	С	24.00 (610)	3.84 (97.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	18.08
HAC-50 S 106/300 F EDGE	2200875	A	11.81 (300)	4.3 (109.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	10.47
HAC-50 S 106/350 F EDGE	2200876	С	13.78 (350)	4.3 (109.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	11.46
HAC-50 S 106/450 F EDGE	2200877	С	17.72 (450)	4.3 (109.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	13.10
HAC-50 S 106/610 F EDGE	-	С	24.00 (610)	4.31 (109.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	18.10

HAC S EDGE C

(for superior perpendicular shear steel performance)

	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
HAC-50 S 94/300 F EDGE C	-	A	11.81 (300)	3.7 (94.0)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	11.90
HAC-50 S 94/350 F EDGE C	-	С	13.78 (350)	3.7 (94.0)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	13.05
HAC-50 S 94/450 F EDGE C	-	С	17.72 (450)	3.7 (94.0)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	15.28
HAC-50 S 94/610 F EDGE C	-	С	24.00 (610)	3.84 (97.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	20.59
HAC-50 S 106/300 F EDGE C	2201070	A	11.81 (300)	4.3 (109.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	11.93
HAC-50 S 106/350 F EDGE C	-	С	13.78 (350)	4.3 (109.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	13.07
HAC-50 S 106/450 F EDGE C	-	С	17.72 (450)	4.3 (109.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	15.30
HAC-50 S 106/610 F EDGE C	-	С	24.00 (610)	4.31 (109.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	20.61

(t-b

ESR-3520	Item Number	Lead Time Category ¹⁾	Material	Thread size	Channel Bolt Length in. (mm)	Pieces per sales unit	Weight (Ib/unit)
HBC-C M12x40 8.8F	2095644	В		M12	1.57 (40)	100	18.17
HBC-C M12x50 8.8F	2095645	В		M12	1.97 (50)	100	19.80
HBC-C M12x60 8.8F	2095646 A 2095647 A			M12	2.36 (60)	100	21.40
HBC-C M12x80 8.8F				M12	3.15 (80)	100	23.80
HBC-C M12x100 8.8F	2095648	A		M12	3.94 (100)	100	27.10
HBC-C M16x50 8.8F	2095649	В		M16	1.97 (50)	100	31.10
HBC-C M16x60 8.8F	2095650	А	class 8.8	M16	2.36 (60)	100	34.10
HBC-C M16x80 8.8F	2095651	A	galvanized	M16	3.15 (80)	50	20.15
HBC-C M16x100 8.8F	2095652	А	g	M16	3.94 (100)	50	23.05
HBC-C M20x60 8.8F	2095653	В		M20	2.36 (60)	50	25.19
HBC-C M20x80 8.8F	2095654	В		M20	3.15 (80)	50	29.74
HBC-C M20x100 8.8F	2095655	2095655 B		M20	3.94 (100)	50	34.41
HBC-C M20x125 8.8F	2095656	В		M20	4.92 (125)	25	20.24
HBC-C M20x150 8.8F	3.8F 2095657 B			M20	5.91 (150)	25	23.10

1) Lead Time Categories A = Standard inventory item in North America, typically available from stock

B = Standard item, not stocked in North America, typical lead time 8 weeks

C = Make to order item, typical lead time 12 weeks

D = Make to order item with minimum order quantity, lead time may be longer than 12 weeks" General note: It's recommended to always check availability with Hilti for all items

2) Custom lengths are available upon request in increments of 5 mm. Min length 150 mm, max length 5800 mm. See section for custom made anchor channels

C	Item Number	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
HAC-50 356/300 F CRFoS U	2157397	A	11.81 (300)	12.80 (325)	2	9.84 (250)	2.98
HAC-50 356/350 F CRFoS U	2157398	A	13.78 (350)	12.80 (325)	3	5.91 (150)	3.92
HAC-50 356/450 F CRFoS U	2157399	A	17.72 (450)	12.80 (325)	3	7.87 (200)	4.45

HAC CRFoS U (Item number is for one anchor channel. A corner requires ordering a quantity of two.)

HAC-50 356/450 F CRFoS U	2157399	A	17.72 (450)	12.80 (325)	3	7.87 (200)	4.45
HAC-60 396/300 F CRFoS U	2157540	A	11.81 (300)	14.17 (360)	2	9.84 (250)	4.30
HAC-60 396/350 F CRFoS U	2157541	A	13.78 (350)	14.17 (360)	3	5.91 (150)	5.67
HAC-60 396/450 F CRFoS U	2157542	A	17.72 (450)	14.17 (360)	3	7.87 (200)	6.39
HAC-70 420/300 F CRFoS U	2157543	A	11.81 (300)	14.96 (380)	2	9.84 (250)	5.84
HAC-70 420/350 F CRFoS U	2157544	A	13.78 (350)	14.96 (380)	3	5.91 (150)	7.72
HAC-70 420/450 F CRFoS U	2157545	A	17.72 (450)	14.96 (380)	3	7.87 (200)	8.71
HAC-70 420/350F 4R CRFoSU	2157546	A	13.78 (350)	14.96 (380)	4	3.94 (100)	9.15
HAC-70 420/450F 4R CRFoSU	2157547	A	17.72 (450)	14.96 (380)	4	5.25 (133)	10.14
HAC-70 420/610 F 5R CRFoS U	2163563	A	24.02 (610)	14.96 (380)	5	5.51 (140)	13.23

HAC EDGE Lite

	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
Rebar HAC-40 91/300 F EDGE Lite	2217526	A	11.81 (300)	3.71 (94.0)	2	9.84 (250)	18.11 (460)	4	3.74 (95)	4.61
Rebar HAC-50 94/300 F EDGE Lite	2217527	A	11.81 (300)	3.84 (97.5)	2	9.84 (250)	18.11 (460)	4	3.74 (95)	6.24
Rebar HAC-50 106/300 F EDGE Lite	2217528	A	11.81 (300)	4.31 (109.5)	2	9.84 (250)	18.11 (460)	4	3.74 (95)	6.26

	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
HAC-50 94/300 F EDGE	2200864	A	11.81 (300)	3.84 (97.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	8.98
HAC-50 94/350 F EDGE	2200865	A	13.78 (350)	3.84 (97.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	9.70
HAC-50 94/450 F EDGE	2200866	A	17.72 (450)	3.84 (97.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	10.87
HAC-50 94/610 F EDGE	tbd	В	24.00 (610)	3.84 (97.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	15.08
HAC-50 106/300 F EDGE	2200867	A	11.81 (300)	4.31 (109.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	8.68
HAC-50 106/350 F EDGE	2200868	А	13.78 (350)	4.31 (109.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	9.36
HAC-50 106/450 F EDGE	2200869	A	17.72 (450)	4.31 (109.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	10.42
HAC-50 106/610 F EDGE	tbd	В	24.00 (610)	4.31 (109.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	15.10

	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (lb/unit)	
HAC-50 94/300 F EDGE C	2200908	A	11.81 (300)	3.84 (97.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	10.43	
HAC-50 94/350 F EDGE C	tbd	A	13.78 (350)	3.84 (97.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	11.31	
HAC-50 94/450 F EDGE C	2200909	A	17.72 (450)	3.84 (97.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	12.83	
HAC-50 94/610 F EDGE C	tbd	В	24.00 (610)	3.84 (97.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	17.59	
HAC-50 106/300 F EDGE C	2200906	A	11.81 (300)	4.31 (109.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	10.45	
HAC-50 106/350 F EDGE C	tbd	A	13.78 (350)	4.31 (109.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	11.33	
HAC-50 106/450 F EDGE C	2200907	A	17.72 (450)	4.31 (109.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	12.85	
HAC-50 106/610 F EDGE C	tbd	В	24.00 (610)	4.31 (109.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	17.61	
1) Lead Time Categories	Lead Time Categories 2) Custom lengths are available upon request in increments of 5 mm. Min length 150 mm, max										

1) Lead Time Categories A = Standard inventory item in North America, typically available from stock

B = Standard item, not stocked in North America, typical lead time 8 weeks

C = Make to order item, typical lead time 12 weeks

D = Make to order item with minimum order quantity, lead time may be longer than 12 weeks" General note: It's recommended to always check availability with Hilti for all items

See section for custom made anchor channels

3) The provide Item number is for HAC EDGE products with 4.00" edge distance. If your product's edge distance differs from 4.00", Please contact Brian.Chasteen@hilti.com for the correct item number

AC-50 S 106/300 F EDGE C	2201070	A	11.81 (300)	4.3 (109	0.5) 2	3.94 (100)	23.6 (600)	4	3.74 (95)	
AC-50 S 106/350 F EDGE C	-	С	13.78 (350)	4.3 (109	0.5) 3	5.91 (150)	23.6 (600)	4	4.41 (112)	
AC-50 S 106/450 F EDGE C	-	С	17.72 (450)	4.3 (109	0.5) 3	7.87 (200)	23.6 (600)	4	5.71 (145)	
AC-50 S 106/610 F EDGE C	-	С	24.00 (610)	4.31 (109	9.5) 4	7.35 (187)	23.6 (600)	6	4.68 (119)	
HBC-C polt comes with nut)										
ESR-3520	Item Number	Lead Time Category	e Mate	erial	Thread size	Channel Bol Length in. (mm)	t Pieces p sales ur	per hit	Weight (Ib/unit)	
BC-C M12x40 8.8F	2095644	В			M12	1.57 (40)	100		18.17	
BC-C M12x50 8.8F	2095645	В			M12	1.97 (50)	100		19.80	
BC-C M12x60 8.8F	2095646	A			M12	2.36 (60)	100		21.40	
BC-C M12x80 8.8F	2095647	A			M12	3.15 (80)	100		23.80	
BC-C M12x100 8.8F	2095648	A B A	A			M12	3.94 (100)	100		27.10
BC-C M16x50 8.8F	2095649				M16	1.97 (50)	100		31.10	
BC-C M16x60 8.8F	2095650		class	s 8.8	M16	2.36 (60)	100		34.10	
BC-C M16x80 8.8F	2095651	A	galva	nized	M16	3.15 (80)	50		20.15	
BC-C M16x100 8.8F	2095652	A			M16	3.94 (100)	50		23.05	
BC-C M20x60 8.8F	2095653	В			M20	2.36 (60)	50		25.19	
BC-C M20x80 8.8F	2095654	В			M20	3.15 (80)	50		29.74	
BC-C M20x100 8.8F	2095655	В			M20	3.94 (100)	50		34.41	
BC-C M20x125 8.8F	2095656	В			M20	4.92 (125)	25		20.24	
BC-C M20x150 8.8F	2095657	В			M20	5.91 (150)	25		23.10	

11. Best Practices **12. Instructions** for Use

13. Field Fixes

14. Design Example

3) HAC EDGE product line comes with the specified edge distance. Therefore, the edge distance is part of the product. The provide Item number is for HAC EDGE products with 4.00" edge distance. This item number can be used for pricing purposes. A different edge distance does not impact the price. Please contact Brian.Chasteen@hilti.com for the correct item number for a HAC EDGE product with an edge distance different to 4.00".

117

2.4 Ordering Information

3. HAC Applications

4. Design Introduction

5. Base material

МАС-Т

ESR-3520	Item Number	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Weight (Ib/unit)
HAC-30 68/150 F	-	В	5.91 (150)	2.76 (70)	2	3.94 (100)	0.65
HAC-30 68/200 F	431889	В	7.87 (200)	2.76 (70)	2	5.91 (150)	0.83
HAC-30 68/250 F	431890	В	9.84 (250)	2.76 (70)	2	7.87 (200)	1.01
HAC-30 68/300 F	431891	A	11.81 (300)	2.76 (70)	2	9.84 (250)	1.20
HAC-30 68/350 F	-	В	13.78 (350)	2.76 (70)	3	5.91 (150)	1.39
HAC-30 68/450 F	-	В	17.72 (450)	2.76 (70)	3	7.87 (200)	1.77
HAC-30 68/550 F	431892	В	21.65 (550)	2.76 (70)	3	9.84 (250)	2.14
HAC-30 68/800 F	431893	A	31.50 (800)	2.76 (70)	4	9.84 (250)	3.12
HAC-30 68/5800 F	431900	С	228.35 (5800)	2.76 (70)	24	9.84 (250)	22.47
HAC-30 68/"custom length"	tbd	С	other ²⁾	2.76 (70)			
HAC-T50 106/150 F	2152090	В	5.91 (150)	4.3 (109.5)	2	3.94 (100)	1.13
HAC-T50 106/200 F	2152091	В	7.87 (200)	4.3 (109.5)	2	5.91 (150)	1.39
HAC-T50 106/250 F	2152092	В	9.84 (250)	4.3 (109.5)	2	7.87 (200)	1.65
HAC-T50 106/300 F	2152093	A	11.81 (300)	4.3 (109.5)	2	9.84 (250)	1.92
HAC-T50 106/350 F	2152094	A	13.78 (350)	4.3 (109.5)	3	5.91 (150)	2.34
HAC-T50 106/450 F	2152095	A	17.72 (450)	4.3 (109.5)	3	7.87 (200)	2.87
HAC-T50 106/550 F	2152096	В	21.65 (550)	4.3 (109.5)	3	9.84 (250)	3.40
HAC-T50 106/800 F	2152097	A	31.50 (800)	4.3 (109.5)	4	9.84 (250)	4.87
HAC-T50 106/5800 F	tbd	С	228.35 (5800)	4.3 (109.5)	24	9.84 (250)	34.80
HAC-T50 106/ "custom length"	tbd	С	other 2)	4.3 (109.5)			
HAC-T70 175/150 F	2153637	В	5.91 (150)	4.3 (109.5)	2	3.94 (100)	
HAC-T70 175/300 F	2152098	A	11.81 (300)	7.1 (180.0)	2	9.84 (250)	3.57
HAC-T70 175/350 F	2152099	A	13.78 (350)	7.1 (180.0)	3	5.91 (150)	4.39
HAC-T70 175/450 F	2152100	A	17.72 (450)	7.1 (180.0)	3	7.87 (200)	5.34
HAC-T70 175/550 F	2152101	В	21.65 (550)	7.1 (180.0)	3	9.84 (250)	6.31
HAC-T70 175/800 F	2152102	A	31.50 (800)	7.1 (180.0)	4	9.84 (250)	9.15
HAC-T70 175/5800 F	tbd	С	228.35 (5800)	7.1 (180.0)	24	9.84 (250)	66.41
HAC-70 175/ "custom length"	tbd	С	other 2)	7.1 (180.0)			

HAC-T EDGE Lite

	Item Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar	Rebar Spacing in. (mm)	Weight (lb/ unit)
Rebar HAC-T50 94/300 F EDGE Lite	2217529	А	11.81 (300)	3.71 (94.0)	2	9.84 (250)	19.68 (500)	4	3.74 (95)	6.24
Rebar HAC-T50 106/300 F EDGE Lite	2217930	A	11.81 (300)	3.71 (94.0)	2	9.84 (250)	19.68 (500)	4	3.74 (95)	6.26

HAC-T EDGE

	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
HAC-T50 94/300 F EDGE	2200870	A	11.81 (300)	3.71 (94.0)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	8.98
HAC-T50 94/350 F EDGE	2200871	С	13.78 (350)	3.71 (94.0)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	9.70
HAC-T50 94/450 F EDGE	2200872	A	17.72 (450)	3.71 (94.0)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	10.87
HAC-T50 94/610 F EDGE	tbd	A	24.00 (610)	3.71 (94.0)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	15.08
HAC-T50 106/300 F EDGE	2200884	A	11.81 (300)	4.31 (109.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	8.68
HAC-T50 106/350 F EDGE	2200885	С	13.78 (350)	4.31 (109.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	9.36
HAC-T50 106/450 F EDGE	2200886	A	17.72 (450)	4.31 (109.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	10.42
HAC-T50 106/610 F EDGE	tbd	A	24.00 (610)	3.71 (94.0)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	15.10

3) HAC EDGE product line comes with the specified edge distance. Therefore, the edge distance is part of the product. The provide Item number is for HAC EDGE products with 4.00" edge distance. This item number can be used for pricing purposes. A different edge distance does not impact the price. Please contact Brian. Chasteen@hilti.com for the correct item

НВС-	C-N	(t-bolt comes with nut)
------	-----	-------------------------

ESR-3520	Item Number	Lead Time Category ¹⁾	Material	Thread size	Channel Bolt Length in. (mm)	Pieces per sales unit	Weight (Ib/unit)
HBC-C-N M12x40 8.8F	2066370	В		M12	1.57 (40)	100	18.08
HBC-C-N M16x40 8.8F	2069471	В		M16	1.57 (40)	100	28.62
HBC-C-N M16x50 8.8F	2019736	A		M16	1.97 (50)	100	34.39
HBC-C-N M16x60 8.8F	2019736	A	class 8.8	M16	2.36 (60)	100	34.39
HBC-C-N M16x80 8.8F	433479	A	steel, hot dip	M16	3.15 (80)	50	20.16
HBC-C-N M16x100 8.8F	2019737	В	galvanized	M16	3.94 (100)	50	22.71
HBC-C-N M16x150 8.8F	2019738	В		M16	5.91 (150)	50	30.42
HBC-C-N M20x80 8.8F	2019739	A]	M20	3.15 (80)	50	29.98
HBC-C-N M20x150 8.8F	2019820	В		M20	5.91 (150)	25	23.13

HBC-C Stainless Steel (t-bolt comes with nut)

ESR-3520	Item Number	Lead Time Category ¹⁾	Material	Thread size	Channel Bolt Length in. (mm)	Pieces per sales unit	Weight (lb/ unit)
HBC-C M10x40 50R	2095682	С		M10	1.57 (40)	50	7.68
HBC-C M10x40 50R	433460	С		M10	1.57 (40)	50	7.68
HBC-C M10x50 50R	2095683	С]	M10	1.97 (50)	50	8.23
HBC-C M10x50 50R	433461	С		M10	1.97 (50)	50	8.23
HBC-C M12x40 50R	2095684	С		M12	1.57 (40)	50	9.36
HBC-C M12x40 50R	433463	С]	M12	1.57 (40)	50	9.36
HBC-C M12x50 50R	2095685	С]	M12	1.97 (50)	50	10.16
HBC-C M12x50 50R	433465	С		M12	1.97 (50)	50	10.16
HBC-C M12x80 50R	2095686	С	316 stainless	M12	3.15 (80)	50	12.56
HBC-C M12x80 50R	433466	С	31001	M12	3.15 (80)	50	12.56
HBC-C M12x100 50R	2095687	С]	M12	3.94 (100)	50	14.16
HBC-C M12x100 50R	433467	С		M12	3.94 (100)	50	14.16
HBC-C M16x50 50R	2095688	С		M16	1.97 (50)	50	15.58
HBC-C M16x50 50R	433471	С]	M16	1.97 (50)	50	15.58
HBC-C M16x60 50R	2095689	С		M16	2.36 (60)	50	17.05
HBC-C M16x80 50R	2095690	С]	M16	3.15 (80)	25	10.11
HBC-C M16x100 50R	2095691	С		M16	3.94 (100)	25	11.58

Flat Washers

ESR-3520	ESR-3520		Material	Thread size	Channel Bolt Length in. (mm)	Pieces per sales unit	Weight (Ib/unit)
Flat washer A 13/24-F	304771	А		M12	0.95 (24)	100	1.30
Flat washer A 17/30-F	304772	А	steel, hot dip	M16	1.18 (30)	100	2.27
Flat washer A 21/37-F	2008399	В	garvanizeu	M20	1.46 (37)	200	6.82

1) Lead Time Categories

- A = Standard inventory item in North America, typically available from stock
- B = Standard item, not stocked in North America, typical lead time 8 weeks

C = Make to order item, typical lead time 12 weeks D = Make to order item with minimum order quantity, lead time may be longer than 12 weeks"

General note: It's recommended to always check availability with Hilti for all items

2) Custom lengths are available upon request in increments of 5 mm. Min length 150 mm, max length 5800 mm. See section for custom made anchor channels

2. HAC Portfolio

4. Design Introduction

5. Base material

6. Loading

HAC-T EDGE C

¥	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
HAC-T50 94/300 F EDGE C	2201073	A	11.81 (300)	3.71 (94.0)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	10.43
HAC-T50 94/350 F EDGE C	-	С	13.78 (350)	3.71 (94.0)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	11.31
HAC-T50 94/450 F EDGE C	2200904	A	17.72 (450)	3.71 (94.0)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	12.83
HAC-T50 94/610 F EDGE C	-	С	24.00 (610)	3.71 (94.0)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	17.59
HAC-T50 106/300 F EDGE C	2201071	A	11.81 (300)	4.31 (109.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	10.45
HAC-T50 106/350 F EDGE C	-	С	13.78 (350)	4.31 (109.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	11.33
HAC-T50 106/450 F EDGE C	2201072	A	17.72 (450)	4.31 (109.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	12.85
HAC-T50 106/610 F EDGE C	-	С	24.00 (610)	4.31 (109.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	17.61

3. HAC

Applications

МВС-Т

ESR-3520	Item Number	Lead Time Category ¹⁾	Material	Thread size	Thread size Channel Bolt Length in. (mm)		Weight (lb/unit)
HBC-T M12x40 8.8F	2152672	D		M12	1.57 (40)	100	17.37
HBC-T M12x60 8.8F	2152673	A		M12	2.36 (60)	100	20.28
HBC-T M12x80 8.8F	2152674	А		M12	3.15 (80)	100	23.81
HBC-T M16x60 8.8F	2152675	А	class 8.8	M16	2.36 (60)	100	34.13
HBC-T M16x80 8.8F	2152676	A	steel, hot dip	M16	3.15 (80)	50	19.86
HBC-T M16x100 8.8F	2152677	D	galvanized	M16	3.94 (100)	50	22.47
HBC-T M20x60 8.8F	2152678	D		M20	2.36 (60)	50	25.21
HBC-T M20x80 8.8F	2152679	А		M20	3.15 (80)	50	29.76
HBC-T M20x100 8.8F	2152710	D		M20	3.94 (100)	50	34.44

HAC-T S EDGE

(for superior perpendicular shear steel performance)

	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
HAC-T50 S 94/300 F EDGE	2200878	С	11.81 (300)	3.71 (94.0)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	10.45
HAC-T50 S 94/350 F EDGE	2200879	С	13.78 (350)	3.71 (94.0)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	11.44
HAC-T50 S 94/450 F EDGE	2200880	С	17.72 (450)	3.71 (94.0)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	13.07
HAC-T50 S 94/610 F EDGE	-	С	24.00 (610)	3.71 (94.0)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	18.08
HAC-T50 S 106/300 F EDGE	2200881	С	11.81 (300)	4.31 (109.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	10.47
HAC-T50 S 106/350 F EDGE	2200882	С	13.78 (350)	4.31 (109.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	11.46
HAC-T50 S 106/450 F EDGE	2200883	С	17.72 (450)	4.31 (109.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	13.10
HAC-T50 S106/610 F EDGE	-	С	24.00 (610)	4.31 (109.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	18.10

HAC-T S EDGE C

(for superior perpendicular shear steel performance)

	ltem Number ³⁾	Lead Time Category ¹⁾	Anchor Channel Length in. (mm)	Nominal Channel Depth in. (mm)	No. of Anchors	Anchor Spacing in. (mm)	Nominal Rebar Length in. (mm)	No. of Rebar- tails	Rebar Spacing in. (mm)	Weight (Ib/unit)
HAC-T50S 94/300 F EDGE	-	С	11.81 (300)	3.7 (94.0)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	11.90
HAC-T50S 94/350 F EDGE	-	С	13.78 (350)	3.7 (94.0)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	13.05
HAC-T50S 94/450 F EDGE	-	С	17.72 (450)	3.7 (94.0)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	15.28
HAC-T50 S 94/610 F EDGE	-	С	24.00 (610)	3.71 (94.0)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	20.59
HAC-T50S 106/300 F EDGE	2200905	С	11.81 (300)	4.3 (109.5)	2	3.94 (100)	23.6 (600)	4	3.74 (95)	11.93
HAC-T50S 106/350 F EDGE	-	С	13.78 (350)	4.3 (109.5)	3	5.91 (150)	23.6 (600)	4	4.41 (112)	13.07
HAC-T50S 106/450 F EDGE	-	С	17.72 (450)	4.3 (109.5)	3	7.87 (200)	23.6 (600)	4	5.71 (145)	15.08
HAC-T50 S106/610 F EDGE	-	С	24.00 (610)	4.31 (109.5)	4	7.35 (187)	23.6 (600)	6	4.68 (119)	20.59

МВС-В

ESR-3520	Item Number	Lead Time Category ¹⁾	Material	Thread size	Channel Bolt Length in. (mm)	Pieces per sales unit	Weight (lb/unit)
HBC-B M10x40 4.6G	433527	D		M10	1.57 (40)	100	16.56
HBC-B M10x60 4.6G	433528	A	class 4.6 steel	M10	2.36 (60)	100	15.47
HBC-B M10x100 4.6G	433529	A	gaivanizeu	M10	3.94 (100)	100	19.83
HBC-B M12x40 4.6F	433534	A	class 4.6	M12	1.57 (40)	100	16.42
HBC-B M12x60 4.6F	433535	A	steel, hot dip galvanized	M12	2.36 (60)	100	19.65

Flat Washers

ESR-3520	Item Number	Lead Time Category ¹⁾	Material	Thread size	Channel Bolt Length in. (mm)	Pieces per sales unit	Weight (Ib/unit)
Flat washer A 13/24-F	304771	A		M12	0.95 (24)	100	1.30
Flat washer A 17/30-F	304772	A	steel, hot dip	M16	1.18 (30)	100	2.27
Flat washer A 21/37-F	2008399	В	galvanizeu	M20	1.46 (37)	200	6.82

1) Lead Time Categories

A = Standard inventory item in North America, typically available from stock B = Standard item, not stocked in North America, typical lead time 8 weeks

 D = Make to order item, typical lead time 12 weeks
 D = Make to order item with minimum order quantity, lead time may be longer than 12 weeks" General note: It's recommended to always check availability with Hilti for all items

2) Custom lengths are available upon request in increments of 5 mm. Min length 150 mm, max length 5800 mm. See section for custom made anchor channels

3) HAC EDGE product line comes with the specified edge distance. Therefore, the edge distance is part of the product. The provide Item number is for HAC EDGE products with 4.00" edge distance. This item number can be used for pricing purposes. A different edge distance does not impact the price. Please contact Brian.Chasteen@hilti.com for the correct item number for a HAC EDGE product with an edge distance different to 4.00". **12. Instructions** for Use

13. Field Fixes

14. Design Example

121

2.5 — STANDARD ANCHOR CHANNEL **CONFIGURATION**

3. HAC

Applications

4. Design

Introduction

5. Base material

6. Loading

2.5.1 HAC STANDARD ANCHOR CONFIGURATION

2. HAC

Portfolio

1. Anchor

Channel Systems

HAC and HAC-T

Units	Channel Length	Anchor Spacing	Number of Anchors	
in	5.91	3.94	2	0.98" 3.94" 0.98"
[mm]	[150]	[100]		[25] [100] [25]
in	7.87	5.91	2	0.98" 5.91" 0.98"
[mm]	[200]	[150]		[25] [150] [25]
in	9.84	7.87	2	0.98" 7.87" 0.98"
[mm]	[250]	[200]		[25] [200] [25]
in	11.81	9.84	2	0.98" 9.84" 0.98"
[mm]	[300]	[250]		[25] [250] [25]
in	13.78	5.91	3	0.98" 5.91" 5.91" 0.98"
[mm]	[350]	[150]		[25] [150] [150] [25]
in	17.72	7.87	3	0.98" 7.87" 7.87" 0.98"
[mm]	[450]	[200]		[25] [200] [200] [25]
in	21.65	9.84	3	0.98" 9.84" 9.84" 0.98"
[mm]	[550]	[250]		[25] [250] [250] [251]
in	31.50	9.84	4	0.98" 9.84" 9.84" 9.84" 0.98"
[mm]	[800]	[250]		[25] [250] [250] [250] [250]
in	41.34	9.84	5	0.98" 9.84" 2 x 9.84" 9.84" 0.98"
[mm]	[1050]	[250]		[25] [250] 2 x [250] [250] [25]
in	228.35	9.84	24	0.98" 9.84" 21 x 9.84" 9.84" 0.98"
[mm]	[5800]	[250]		[25] [250] 21 x [250] [250] [25]

Custom anchor channel lengths with custom anchor configurations are available upon request.

Anchor channel figures show rounded head anchors. The configuration for HAC CRFoS U (rebar anchors) have the same anchor configuration as its matching HAC.

2.5.2 HAC EDGE LITE, HAC EDGE, AND HAC S EDGE ANCHOR AND EDGE PLATE CONFIGURATION HAC EDGE Lite, HAC EDGE, HAC S EDGE HAC-T EDGE Life, HAC-T EDGE, HAC-T S EDGE HAC EDGE Lite and HAC-T EDGE Lite are only available in 11.81" (300 mm) lengths. 2.5.3 HAC CRFOS U STANDARD ANCHOR CONFIGURATION 2.5 Standard Portfolio Custom anchor channel lengths with custom anchor configurations are available upon request. The minimum anchor spacing is equal to 4.00" (102 mm).

Units	Channel Length	Anchor Spacing	Number of Anchors	Rebar Spacing	Number of Rebar
in [mm]	11.81 [300]	9.84 [250]	2	3.74 [95]	4
in [mm]	13.78 [350]	5.91 [150]	3	4.41 [112]	4
in [mm]	17.72 [450]	7.87 [200]	3	5.71 [145]	4
in [mm]	24 [610]	9.84 [250]	3	4.68 [119]	6

-						
Units	Channel Length	Anchor Spacing	Number of Anchors			
in [mm]	7.87 [200]	5.91 [150]	2			
in [mm]	9.84 [250]	7.87 [200]	2	1		
in [mm]	11.81 [300]	9.84 [250]	2			
		3 Re	bars			
in	13.78 [350]	5.91 [150]	3			
[mm]		4 Re	bars			_
		3.94" [100]	4			
		3 Re	bars			
in	17.72	7.87 [200]	3		1	1
[mm]	[450]	4 Re	bars	Ļ	Ļ	Ţ
		5.25 [133.33]	4			
in [mm]	24.00 [610]	5.51 [140]	5			

3. HAC Applications

4. Design Introduction

5. Base material 6. Loading 9. Special Anchor **Channel Design**

10. Design Software

2.5.3 HAC DRAWINGS AND HAC CAD DRAWINGS

2. HAC

Portfolio

DWG and pdf files for the entire HAC library can be downloaded in the following link:

https://www.hilti.com/content/hilti/W1/US/en/engineering/technical-information/specifications-and-cad-details.html#id-anchor-channelchildsection_716608241

ANCHOR CHANNEL

The following sections include details for the various types of anchor channels and T-boits that Hilti has to offer. Select the products that meet your needs and download the details in PDF or DWG format.

SMOOTH CHANNEL PROFILE

			EDIT COLUMN
Description	Update date	Format	Format
HAC Includes HAC-40, HAC-50, HAC-60, and HAC-70 channel profiles	11/1/18	DWG	PDF
HAC-40 EDGE Lite	11/1/18	DWG	PDF
HAC-50 EDGE Lite also includes HAC-T50 EDGE Lite details (serrated channel profile)	11/1/18	DWG	PDF
HAC-50 EDGE includes HAC-50 EDGE (EDGE C, S EDGE, & S EDGE C)	11/1/18	DWG	PDF
HAC CRFoS U - Rebar Face of Slab includes HAC-50, HAC-60, and HAC-70 channel profiles	11/1/18	DWG	PDF

Figure 2.5.3.1 - HAC on-line library.

2.6 CUSTOM SOLUTIONS

Hilti keeps in stock anchor channel that are commonly used in North America. Non-standard and custom anchor channel can be provided upon request. A non-stock item is not necessarily a custom item. See section 2.4 for standard non-stock items. Depending on the level of customization, longer lead times and minimum order may be required.

Custom or non-stock channel may be required due to performance or geometric constraints. It is recommended to always specify products that are kept in stock in North American. However, there are cases where custom conditions cannot be avoided. The information in this section provides guidelines of the level of customization of the HAC product line. For questions, please reach out to Hilti.

2.6.1 CUSTOM ANCHOR CHANNEL LENGTHS (HAC, HAC CRFOS U, HAC EDGE)

Anchor channel with custom lengths (non-standard anchor spacing) can be provided upon request. AC232 and ICC ESR-3520 have minimum spacing requirements that shall be met. The lead time for anchor channels with non-standard anchor spacing is 10-12 weeks.

This information is applicable to HAC and HAC CRFoS U.

The minimum anchor spacing (S) for anchor channels is as follows: HAC-40, HAC-50, HAC-60, and HAC-70 is 3.94" (100 mm)

The maximum anchor spacing (S) for anchor channels is 9.84" (250 mm).

Figure 2.5.3.2 - HAC library, "pdf" format.

12. Instructions for Use

13. Field Fixes

Anchor channels outside the lead time category "A" provided in section 2.4 are not necessarily custom channels. What defines a custom anchor channel is whether a custom component is required. A component is referred to any member of an anchor channel (i.e. anchor, channel profile, rivet, rebar, or EDGE Plate). For instance, an anchor channel with a non-standard anchor spacing (i.e. 2 anchors at 6.75 in. O.C.) or number of anchors (i.e. 11.80 in. (300 mm) long with 3 anchors) do not require custom components. However, an anchor channel with a custom anchor length (i.e. HAC-50 with 7" long anchors) requires the use of a new component.

The level of customization of an anchor channel may be limited by code requirements, structural performance, and design constraints.

Minimum Anchor Spacing

Maximum Anchor Spacing

2.6 HAC Cu Solutio

2.6.2 CUSTOM ANCHOR LENGTH (HAC, HAC EDGE, HAC EDGE LITE)

Anchor channels with custom anchor lengths can be provided upon request. For such applications, the standard lead time (shipping via sea-freight) is 6 months. A minimum order of 4000 channels is required. The only exception is HAC-50 and HAC-60. These two channels utilize the same anchor diameter and therefore, they are interchangeable.

Minimum Anchor Spacing

See chapter 7 for the AC232 minimum requirements and design provisions for anchor channels with reduced anchor lengths.

For rounded head anchors, the maximum anchor length is 25 in.

2.6.4 CUSTOM NUMBER OF ANCHORS/REBARS

The Hilti Anchor Channel portfolio comes with predetermined configurations. Some conditions may require anchor channel with different anchor configurations. The minimum anchor spacing is 3.94 in (100 mm). The maximum anchor spacing is 9.84 in (250 mm). The standard lead time (shipping via sea-freight) is 10-12 weeks.

2.6.3 CUSTOM REBAR LENGTHS (HAC CRFOS U)

Anchor channels with custom anchor lengths can be provided upon request. For longer rebars, the lead time is 6 months and the minimum order is 1000 channels. Anchor channels with shorter rebars than the standard rebar length require two additional weeks than the standard lead time and no minimum order is required.

2.6 HAC Cust Solutions

on the applied loads.

4. Design Introduction

3. HAC

Applications

This chapter provides a general overview of some of the most common applications. The applications of cast-in anchor channels are not limited to the ones mentioned in the chapter.

Generally speaking, Hilti Anchor Channel Systems can be used in any application where a cast-in solution is needed, site tolerance is required, and/or high performing anchors are demanded based

5. Base material

6. Loading

9. Special Anchor . Channel Design

10. Design Software

3. APPLICATIONS

1. Anchor

APPLICATIONS

Curtain wall façade

Window wall (precast members)

Pipe Support

Stadium seat

Pipe support

3.1 HILTI CAST-IN ANCHOR CHANNEL

Brick façade

Elevator guide rail

Network rack

Precast concrete member

Lateral restrain for masonry wall

Man-Lifts

3. HAC

4. Design Introduction

5. Base material

6. Loading

9. Special Anchor **Channel Design**

10. Design Software

4. DESIGN **INTRODUCTION**

The design of an anchor channel system depends on two different aspects; substrate type and applied loads. They are both equally important and therefore they are both essential for an accurate anchor channel analysis. The design introduction opens up the sections that cover the design of an anchor channel.

INTRODUCTION 4.1 PUBLISHED LOAD VALUES

Acceptance Criteria for Anchor Channels in Concrete Elements (AC232) establishes the requirements for anchor channels in normal weight or lightweight concrete elements comply with International Building Code Evaluation Service, LLC (ICC-ES), evaluation report under the 2018, 2015, 2012, 2009, and 2006 International Building Code (IBC) and the 2018, 2015, 2012, 2009, and 2006 International Residential Code (IRC). The bases of compliance are IBC Section 104.11, and IRC Section R104.11. AC232 requires the verification of up to 20 different anchor channel failure modes, in addition to 6 additional anchor reinforcement failure modes if anchor reinforcement is used. Moreover, a total of up to 5 different interaction equations are required.

Technical data presented herein was current as of the date of publication (see back cover). Anchor channel strength (capacity) published in this technical manual are based on International Council Code Evaluation Research Report 3520 (ICC ESR-3520) when applicable. Likewise, analytical calculations are based on ICC ESR-3520 and ACI 318 when applicable. Capacity (strength) of anchor channels outside the scope of ICC ESR-3520 are based on applicable testing protocols of Acceptance Criteria 232 (AC232). Load values obtained from testing represent the average results of multiple identical samples. Analytical calculations are based on applicable design provisions of AC232 and ACI 318.

Variations in base materials such as concrete and local site conditions require on-site testing to determine actual performance at any specific site.

The tables and diagrams in this guide are intended purely as an aid to the user and no guarantee can be given regarding their correctness or accuracy when used for design calculations for a specific application. Should you, despite the care we have taken, discover an error in the information given here, please notify us accordingly. In any event, the static system or, respectively, the specific application must always be checked for plausibility by the user.

For information regarding updates and changes, please contact Hilti, Inc. (U.S.) Technical Support at 1-877-749-6337 or Hilti (Canada) Corporation at 1-800-363-4458.

4.2 UNITS

Technical data is provided in Imperial units. Metric values, when provided, use the International System of units (SI) in observance with the Metric Conversion Act of 1975 as amended by the Omnibus Trade and Competitiveness Act of 1988. MI and MQ connector and base dimensions are converted from SI units, shown in parentheses, to Imperial units.

4.3 ANCHOR CHANNEL DESIGN

The design process of an anchor channel requires the verification of its structural adequacy to resist specific loads. Nowadays, design software such as PROFIS Anchor Channel facilitates and helps to speed up the design process. However, in order to utilize the software at its maximum potential and ensure the design is correct, a thorough understanding of several requirements is needed. For instance, PROFIS Anchor Channel does not allow the input of a cold join in the substrate element. On the other hand, even when a specific condition is fully covered by the software, one must still understand these

elements for a proper design.

Such elements are as follows:

Base material (chapter 5) Applied loads (chapter 6) Anchor strength (chapter 2) Anchoring to concrete theory and design guidelines (chapter 7) Reinforcing bar theory (chapter 8)

Figure 4.3.1 – Overview of anchor channel design elements.

3. HAC 2. HAC Portfolio Applications

4. Design Introduction

5. Base material 6. Loading

Software

The first Acceptance Criteria for Anchor Channels in Concrete Elements (AC232) was first approved by the ICC-ES Evaluation Committee in October 2010. Since then, several improvements and additions to the original AC232 provisions such as seismic provisions have been performed.

Figure 4.3.2 - AC232.

AC232 provisions are in a continuous state of development. AC232 it is still a work-in-progress document. The design provisions and testing protocols are limited to specific type of anchor channels, anchor channel configurations, base materials, and type of loads. Design information for anchor channels and configurations not implicitly covered by AC232 such as HAC EDGE and corners with pair of channels load simultaneously, are covered in Chapter 9 of this technical manual.

Figure 4.3.3 — Pair of anchor channels in an outside 90, corner.

Chapter 10 provides a general overview of PROFIS Anchor Channel.

Figure 4.3.4 – PROFIS Anchor Channel.

Chapter 11 covers a wide range of best practices for an optimal anchor channel design and ensure designers can offer value engineered anchor channel designs as well as to help contractors to minimize field fixes.

Radius of action

Figure 4.3.5 - Best practices for concrete consolidaation.

Chapter 12 provides Instructions for use.

Chapter 13 provides general recommendations for typical field fixes encountered in jobsites.

8. Reinforcing 9. Special Anchor 10. Design 11. Best **12. Instructions** 14. Design 13. Field Fixes Bar Anchorage Channel Design **Practices** for Use Example **5. BASE MATERIAL**

Base materials or substrate information is fundamental in determining the anchor channel strength. Oftentimes, the design of an anchor channel is limited by the substrate's strength. Therefore, the design of an anchor channel is contingent to the adequacy of the base material at the anchor zone.

Having the right substrate properties and a solid understanding of how different base materials properties impacts the design of an anchor channel design is essential. Therefore, the base material shall be carefully examined prior to the design of an anchor channel, in order to assess how the anchor channel design may be impacted.

1. Anchor 2. HAC **Channel Systems** Portfolio

3. HAC **Applications**

4. Design Introduction

6. Loading 5. Base material

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

9. Special Anchor 10. Design **Channel Design** Software

5.1 BASE MATERIALS

5.1.1 BASE MATERIALS FOR FASTENING

The wide variety of building materials used today provides different anchoring conditions for anchors. There is hardly a base material in or to which a fastening cannot be made with a Hilti product. However, the properties of the base material play a decisive role when selecting a suitable fastener/anchor and determining the load it can hold. It is the responsibility of the designer to carefully match the type of fastener with the base material to obtain the desired results.

5.1.2 CONCRETE

Concrete is a synthetic stone consisting of a mixture of cement, aggregates, and water. In many cases, special additives are used to influence or change certain properties. Concrete has a relatively high compressive strength compared to its tensile strength. Thus, steel reinforcing bars are frequently cast in concrete to carry tensile forces, and this combination is referred to as reinforced concrete.

Cement is a binding agent which combines with water and aggregates and hardens through the process of hydration to form concrete. Portland cement is the most commonly used cement and is available in several different types to meet specific design requirements (ASTM C150).

The aggregates used in concrete consist of both fine aggregate (usually sand) and coarse aggregate graded by particle size. Different types of aggregates can be used to obtain concrete with specific characteristics. Normal-weight concrete is generally made from crushed stone or gravel, while lightweight concrete is obtained using expanded clay, shale, slate, or blast-furnace slag. Lightweight concrete is used when it is desirable to reduce the dead load on a structure or to achieve a superior fire rating for a floor structure. When thermal insulating properties are a prime consideration, lightweight aggregates are manufactured from perlite, vermiculite, blast-furnace slag, clay or shale. Finally, sand lightweight concrete is obtained using lightweight aggregate and natural sand. In general, all concretes with a unit weight between 85 and 115 pcf are considered to be structural lightweight concretes. The ASTM specifications related to concrete type and weight can be summarized as follows:

ASTM concrete type	Aggregate grading specification	Concrete unit weight pcf
Normal-weight	Fine: ASTM C33 Coarse: ASTM C33	145-155
Sand-lightweight	Fine: ASTM C33 Coarse: ASTM C330	105-115
All-lightweight	Fine: ASTM C330 Coarse: ASTM C330	85-110

The effect of aggregate mechanical properties on anchor performance is less well understood. In general, harder/ denser aggregates (i.e. granite) tend to result in higher concrete cone breakout loads, whereas lightweight aggregates produce lower tension and shear capacities. Concrete is typically assumed to crack under normal service load conditions or, more specifically, when tensile stresses imposed by loads or restraint conditions exceed its tensile strength. Crack width and distribution are generally controlled through the use of reinforcement. With consideration for the protection of the reinforcing steel, crack widths, per ACI 318, are assumed to be less than approximately 0.012 in (0.3 mm). Under seismic loading, flexural crack widths corresponding to the onset of reinforcing yield are assumed to be approximately 1-1/2 x static crack width = 0.02" (0.5 mm). Both ACI 318 and the International Building Code conservatively assume cracked concrete as the baseline condition for the design of cast-in-place and post-installed anchors since the existence of cracks in the vicinity of the anchor can result in a reduced ultimate load capacity and increased displacement at ultimate load compared to uncracked concrete conditions. Design for uncracked concrete conditions is permitted by the model Building Codes only for cases where it can be shown that cracking of the concrete at service load levels will not occur over the anchor service life. For cases involving design for seismic actions, cast-in anchor channels must be demonstrated as being suitable for use in cracked concrete as well as for seismic loading.

Values for the ultimate strength of fasteners in concrete are traditionally given in relation to the 28-day uniaxial compressive strength of the concrete (actual, not specified). Concrete that has cured for less than 28 days is referred to as green concrete. Aggregate type, cement replacements such as fly ash, and admixtures can affect the capacity of some fasteners, and this may not be reflected in the concrete strength as measured in a standard uniaxial compression test. In general, Hilti data reflects testing with common aggregates and cement types in plain, unreinforced concrete. In questionable cases, consult with Hilti Technical Services.

In view of the significantly lower strength of green concrete (less than 28-day cure), it is recommended that cast-in anchor channels not be loaded in concretes cured for less than 7 days, unless site testing is performed to verify the fastening capacity. If an anchor is installed in green concrete, but not loaded until the concrete has achieved full cure, the capacity of the anchor can be based on the strength of the concrete at the time of loading.

5.1.3 PRE-TENSIONED / PRE-STRESSED CONCRETE

Pretensioned concrete refers to concrete cast around pretensioned steel tendons.

Cast-in anchor channel systems can be a solution for pretensioned concrete, as it does not require drilling into the concrete. AC232 does not provide provisions to account for the influence of pre-tensioned cables on the anchor channel concrete capacity.

Anchor channels installed near tendon(s) may induce additional stresses in the concrete. Likewise, tendon(s) near anchor for Strength Design. channel(s) may impact the performance of the channel. Conditions where anchor channels are installed near tendon(s) Strength Design data for Hilti anchor channels in concrete shall be designed accordignly. Additional coordination with the elements is derived from testing as per the provisions of Engineer of Records (EOR), design engineer, and/or Pre-stressed ICCES AC232. concrete engineer is required.

5.1.4 BONDED POST-TENSIONED CONCRETE

Post-tensioned concrete refers to a concrete member containing steel tendons that are tensioned after casting the concrete.

As with the prestressed concrete case, anchor channels close to post-tensioning strands should be designed accordingly and additional coordination with the Engineer of Records (EOR), design engineer, and/or post-tensioned concrete engineer is required. AC232 does not provide provisions to account for the influence of post-tensioned cables on the anchor channel concrete capacity.

5.1.5 ADMIXTURES

Chemical admixtures are ingredients added to the basic components of concrete or mortar (cement, water, and aggregates) immediately before or during mixing. Chemical admixtures are used to enhance the properties of concrete and mortar in the plastic and hardened state. These properties may be modified to increase compressive and flexural strength, decrease permeability and improve durability, inhibit corrosion, reduce shrinkage, accelerate or retard initial set, increase slump and working properties, increase cement efficiency, improve the economy of the mixture, etc.

Testing of post-installed anchors is performed in concrete without admixtures. Designers should take into consideration the effects produced by admixtures on concrete when considering the use of post-installed anchors.

5.2 EVALUATION OF TEST DATA

5.2.1 DEVELOPING FASTENER PERFORMANCE DATA

State-of-the-art anchor design uses what is known as the Strength Design Method. By using the Strength Design Method, nominal strengths are first calculated for all the possible anchor failure modes. Subsequently, strength reduction factors are applied to each nominal strength to obtain a design strength. The controlling design strength is finally compared to a factored load. The provisions of ACI 318-14 Chapter 17 are the basis used

- Beginning with IBC 2003, the IBC Building Codes have adopted the Strength Design Method for anchorage into concrete of both cast-in-place and post-installed anchors.
- Another anchor design method known as "Allowable Stress Design" can be used as an alternative to the Strength Design provisions. Section 2.2.2 provides detailed explanations to
- analyze cast-in anchor channels via Allowable Stress Design. Allowable Stress Design data for Hilti cast-in anchor channels is derived from testing based on ICC-ES AC232.

Allowable loads are developed applying a statistical method to the test data which relates the allowable working load to the performance variability of the fastening.

2. HAC 1. Anchor **Channel Systems** Portfolio

3. HAC Applications Introduction

4. Design

5. Base material

6. Loading

5.2.2 ALLOWABLE LOADS

Historically, allowable loads for anchors have been derived by applying a global safety factor to the average ultimate value of test results as shown in Eq. (5.2.1).

$$F_{all} = \frac{\overline{F}}{v}$$

Where:

- F mean ultimate value of test data (population sample)
- v = global safety factor

Global safety factors of 3 for cast-in anchor channels have been industry practice for nearly three decades. The global safety factor is assumed to cover expected variations in field installation conditions and in anchor performance from laboratory tests.

Note that global safety factors applied to the mean do not explicitly account for the coefficient of variation, i.e., all anchors are considered equal with respect to variability in the test data.

5.2.3 STATISTICAL EVALUATION OF DATA

Experience from a large number of tests on anchors has shown that ultimate loads generally approximate a normal Gaussian probability density function as shown in Fig. 5.2.1. This allows for the use of statistical evaluation techniques that relate the resistance to the system performance variability associated with a particular anchor.

The 5% fractile characteristic value has been adopted by the IBC as the basis for determining published design loads based on anchor testing results for Strength Design. There is a 90% probability that 95% of the test loads will exceed a 5% fractile value. The 5% fractile value is calculated by subtracting a certain number of standard deviations of the test results from the mean based on the number of trials. See Eq. (5.2.2) and the referenced statistical table by D. B. Owen. For a series of 5 trials, the 5% fractile value is calculated by multiplying the standard deviations by k = 3.401 and subtracting from the mean.

Owen, D.B., (1962) Handbook of Statistical Tables, Section 5.3. Reading: Addison-Wesley Publishing.

(5.2.1) Fig. 5.2.1 Frequency distribution of anchor ultimate loads, demonstrating the significance of the 5% fractile

$$R_{k} = \overline{F} - k \cdot s = \overline{F} (1 - k \cdot cv)$$
(5.2.2)

Where:

- R, characteristic resistance of the tested anchor system
- F = mean ultimate resistance of the tested anchor system
- k distribution value for test sample size n =
- standard deviation of the test data s
- coefficient of variation = CV

Thus, test series with low standard deviations are rewarded with higher 5% fractile characteristic design values. This is typical of ductile steel failure modes.

5.3 CORROSION

5.3.1 THE CORROSION PROCESS

Corrosion is defined as the chemical or electrochemical reaction between a material, usually a metal, and its environment that produces a deterioration of the material and its properties (ASTM G15). The corrosion process can be very complex and have many contributing factors that lead to immediate or gradual destructive results. In anchorage and fastener design, the most common types of corrosion are direct chemical attack and electro-chemical contact.

5.3.2 TYPES OF CORROSION

5.3.2.1 DIRECT CHEMICAL ATTACK

Corrosion by direct chemical attack occurs when the base material is soluble in the corroding medium. One method of mitigating these effects is to select a fastener that is not susceptible to attack by the corroding chemical. Compatibility tables of various chemical compounds with Hilti adhesive and epoxy fastening systems are provided in this technical quide.

When selection of a base metal compatible with the corroding medium is not possible or economical, another solution is to provide a coating that is resistant to the corroding medium. This might include metallic coatings such as zinc or organic coatings such as epoxies or fluorocarbons.

5.3.2.2 ELECTROCHEMICAL CONTACT CORROSION

All metals have an electrical potential relative to each other and are classified accordingly in the galvanic series of metals and alloys. When metals of different potential come into contact in the presence of an electrolyte (moisture), the metal with more negative potential becomes the anode and corrodes, while the other becomes the cathode and is galvanically protected.

The severity and rate of attack are influenced by:

- a. Relative position of the contacting metals in the galvanic series
- b. Relative surface areas of the contacting materials
- c. Conductivity of the electrolyte

The effects of electro-chemical contact corrosion may be mitigated by: a. Using similar metals close together in the electromotive force series,

- b. Separating dissimilar metals with gaskets, plastic washers or paint with low electrical conductivity. Materials typically used in these applications include:
 - 1. High Density Polyethylene (HDPE)
 - 2. Polytetrafluoroethylene (PTFE)
 - 3. Polycarbonates
 - 4. Neoprene/chloroprene
 - 5. Cold galvanizing compound 6. Bituminous coatings or paint

Note: Specifiers must ensure that these materials are compatible with other anchorage components in the service environment.

- c. Selecting materials so that the fastener is the cathode, the most noble or protected component
- d. Providing drainage or weep holes to prevent entrapment of the electrolyte

11. Best **Practices**

12. Instructions

for Use

3.	.	Fi	e	1	d	F	i	Х	(E

Galvanic Series of Metals and Alloys	
Corroded End (anodic, or least noble)	
Magnesium Magnesium alloys Zinc	ase Materia
Aluminum 1100 Cadmium Aluminum 2024-T4 Steel or Iron Cast Iron Chromium-iron (active) Ni-Resist cast iron	
Type 304 Stainless (active) Type 316 Stainless (active)	anano
Lead tin solders Lead Tin	
Nickel (active) Inconel nickel-chromium alloy (active) Hastelloy Alloy C (active)	1
Brasses Copper Bronzes Copper-nickel alloys Monel nickel-copper alloy	
Nickel (passive) Inconel nickel-chromium alloy (passive)	
Silver solder Chromium-iron (passive) Type 304 Stainless (passive) Type 316 Stainless (passive) Hastelloy Alloy C (passive)	ر ب
Silver Titanium Graphite Gold Platinum	opecial Applica
Protected End (cathodic, or most poble)	

Source: IFI Fastener Standards, 6th Edition

14. Design

2. HAC 1. Anchor **Channel Systems** Portfolio

3. HAC **Applications** 4. Design

Introduction

5. Base materia

6. Loading **Design Code**

7. Anchor Channel 8. Reinforcing **Bar Anchorage** 9. Special Anchor 10. Design Software

5.3.2.3 HYDROGEN ASSISTED STRESS CORROSION CRACKING

Often incorrectly referred to as hydrogen embrittlement, hydrogen assisted stress corrosion cracking (HASCC) is an environmentally induced failure mechanism that is sometimes delayed and most times occurs without warning. HASCC occurs when a hardened steel fastener is stressed (loaded) in a service environment which chemically generates hydrogen (such as when zinc and iron combine in the presence of moisture). The potential for HASCC is directly related to steel hardness. The higher the fastener hardness, the greater the susceptibility to stress corrosion cracking failures. Eliminating or reducing any one of these contributing factors (high steel hardness, corrosion or stress) reduces the overall potential for this type of failure. Hydrogen embrittlement, on the other hand, refers to a potential damaging side effect of the steel fastener manufacturing process, and is unrelated to project site corrosion. Hydrogen embrittlement is neutralized by proper processing during fastener pickling, cleaning and plating operations (specifically, by "baking" the fasteners after the application of the galvanic coating).

5.3.3 CORROSION PROTECTION

The most common material used for corrosion protection of carbon steel fasteners is zinc. Zinc coatings can be uniformly applied by a variety of methods to achieve a wide range of coating thickness depending on the application. All things being equal, thicker coatings typically provide higher levels of protection.

An estimating table for the mean corrosion rate and service life of zinc coatings in various atmospheres is provided to the right. These values are for reference only, due to the large variances in the research findings and specific project site conditions, but they can provide the specifier with a better understanding of the expected service life of zinc coatings. In controlled environments where the relative humidity is low and no corrosive elements are present, the rate of corrosion of zinc coatings is approximately 0.15 microns per year.

Zinc coatings can be applied to anchors and fasteners by different methods. These include (in order of increasing coating thickness and corrosion protection):

- a. ASTM B633 Standard Specification for Electrodeposited Coatings of Zinc on Iron and Steel
- b. ASTM B695 Standard Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel
- c. ASTM A153 Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware
- d. Sherardizing Process Proprietary Diffusion Controlled Zinc Coating Process

Atmosphere	Mean corrosion rate
Industrial	5.6 µm/year
Urban non-industrial or marine	1.5 µm/year
Suburban	1.3 µm/year
Rural	0.8 µm/year
Indoors	Considerably less than 0.5 µm/year

Source: ASTM B633 Appendix X1. Service life of zinc

5.3.3.1 SUGGESTED CORROSION RESISTANCE

Use of AISI 316 stainless steel in environments where pitting or stress corrosion is likely to occur should be avoided due to the possibility of sudden failure without visual warning. Fastenings used in these applications should be regularly inspected for serviceability conditions. See chart below for more details.

Corrosion resistance	Typical conditions of use
Phosphate and oil coatings (Black oxide)	 Interior applications without any particular influence of moisture
Zinc electro-plated 5 – 10 µm (ASTM B633, SC 1, Type III) Organic coatings – KWIK Cote≥17.8 µm	 Interior applications without any particular influence of moisture If covered sufficiently by noncorrosive concrete
Mechanically deposited zinc coating 40 - 107 µm	 Interior applications in damp environments and near saltwater (ASTM B695)
Hot-dip galvanizing (HDG) >50 μm (ASTM A153) Sherardizing process > 50 μm	Exterior applications in only slight to mild corrosive atmospheres
Stainless steel (AISI 303 / 304)	 Interior applications where heavy condensation is present Exterior applications in corrosive environments
Stainless steel (AISI 316)	Near saltwater Exterior corrosive environments

5.3.4 HILTI FASTENING SYSTEMS

Channel Design

5.3.4.1 ANCHOR CHANNELS

Most Hilti metal anchors are available in carbon steel with an electrodeposited zinc coating of at least 5 µm with chromate passivation. Chromate passivation reduces the rate of corrosion for zinc coatings, maintains color, abrasion resistance and, when damaged, exhibits a unique "self healing" property. This means that the chromium contained within the film on the anchor surface will repassivate any exposed areas and lower the corrosion rate.

Component	Carbon steel	Surface	Stainless steel
Channel Profile		Hot dip galvanized (F) ≥ 55 µm¹ Hot dip galvanized (F) ≥ 70 µm²	-
Rivet	Carbon steel	Hot dip galvanized (F) \ge 45 μ m	-
Anchort		Hot dip galvanized (F) \ge 45 μ m	-
Rebar	BSt500 B	Hot dip galvanized (F) \ge 45 μ m	-
Front Plate	S235	Hot dip galvanized (F) \ge 45 μ m	-
Channel bolt	Grade 4.6 and 8.8 according to DIN EN ISO 898-1:2009-8	Hot dip galvanized (F) ≥ 45 μm, or electroplated (G) ≥ 8 μm	Grade 50 according to DIN EN ISO 3506-1:2010-4, passivation according ASTM A380
Plain washer ³ ISO 7089 and ISO 7093-1	Hardness A, 200 HV	Hot dip galvanized (F), or electroplated (G)	Hardness A, 200 HV according to ISO 3506-1
Hexagonal nut ISO 4032 or DIN 934 ⁴	Property class 8 according to ISO 898-2, or property class 5 according to DIN 267-4	Hot dip galvanized (F) ≥ 45 μm, or electroplated (G) ≥ 8 μm	Property class 70 according to DIN 267-11

5.3.5.1 GENERAL APPLICATION

These application charts are offered as general guidelines. Site specific conditions may influence the decision.

Application	Conditions	Fastener recommendations
Structural steel components to concrete and masonry (interior connections within the building envelope not subjected to free weathering) ^{1,2}	Interior applications without condensation	Galvanic zinc electroplating
	Interior applications with occasional condensation	HDG or Sherardized
Structural steel components to concrete and masonry (exterior connections subjected to free weathering) ^{1,2}	Slightly corrosive environments	HDG or Sherardized
	Highly corrosive environments	Stainless steel
Temporary formwork, erection bracing and short-term scaffolding	Interior applications	Galvanic zinc electroplating
	Exterior applications	HDG or Sherardized
Parking garages / parking decks subject to periodic application of de-icers including chloride solutions ³	Non-safety critical	HDG, Sherardized
	Safety critical	Stainless steel ¹
Road / bridge decks subject to periodic application of de-icers including chloride solutions	Non-safety critical	HDG or Sherardized
	Safety critical	Stainless steel

1 Refer to ACI 318-14 Chapter 19 - Durability

2 Refer to ACI 530.1 Section 2.4F - Coatings for Corrosion Protection

3 Refer to PCI Parking Structures: Recommended Practice for Design and Construction - Chapters 3, 5 and Appendix

4 General guidelines address environmental corrosion (direct chemical attack). Additional considerations should be taken into account when using hardened steel fasteners susceptible to HASCC

5.3.5 APPLICATIONS

It is difficult to offer generalized solutions to corrosion problems. A general guide can be used as a starting point for fastener material selection based on the desired application.

- The specifier should also consult:
- a. Local and national building code requirements (e.g., IBC, UBC)
- b. Standard practice manuals for specific types of construction (e.g., ACI, PCI, AISC, PCA, CRSI, AASHTO, NDS/APA)
- c. Manufacturers of structural components
- d. Hilti Technical Support

4. Design Applications Introduction

6. Loading 5. Base materia

9. Special Anchor 10. Design **Channel Design** Software

5.4 SPECIAL APPLICATIONS

1. Anchor

Channel Systems

This application chart offers a general guideline addressing environmental corrosion (direct chemical attack). Site specific conditions may influence the decision.

3. HAC

Application	Conditions	Fastener Recommendations
Aluminum fastenings (flashing / roofing accessories, hand rails, grating panels, sign posts and miscellaneous fixtures)	Interior applications without condensation	Galvanic zinc plating
	Exterior applications with condensation	Stainless steel, X-CR
Water treatment	Not submerged	HDG, Sherardized or Stainless steel
	Submerged	Stainless steel
Waste water treatment	Not submerged	HDG or Stainless steel
	Submerged	Stainless steel
Marine (salt water environments, shipyards, docks, off-shore platforms)	Non-safety critical or temporary connections	HDG
	High humidity with the presence of chlorides — splash zone	Stainless steel ¹
	On the off-shore platform or rig	Stainless steel
Indoor swimming pools	Non-safety critical	HDG
	Safety critical or subjected to high concentrations of soluble chlorides	Stainless steel ¹
Pressure / chemically treated wood	Above grade	HDG
	Below grade	Stainless steel
Power plant stacks / chimneys	Non-safety critical	HDG or Stainless steel
	Safety critical or subjected to high concentration of soluble chlorides	Stainless steel
Tunnels (lighting fixtures, rails, guard posts)	Non-safety critical	HDG, Stainless steel
	Safety critical	Stainless steel ¹

1 Steel selection depends on safety relevance

5.5 SEISMIC CONSIDERATIONS

5.5.1 SEISMIC CONSIDERATIONS

The U.S Geological Survey (USGS) has produced a one-year 2017 seismic hazard forecast for the central and eastern United Rapid ground movement during an earthquake leads to relative States from induced and natural earthquakes that updates displacement of a building's foundation. Owing to the inertia the 2016 one-year forecast; this map is intended to provide of its mass, the building cannot follow this movement without information to the public and to facilitate the development of experiencing deformations in the building frame. In addition, induced seismicity forecasting models, methods, and data. The accelerations are induced in the structure. Due to the stiffness 2017 hazard model applies the same methodology and input of the structure, restoring forces result and cyclic strains are logic tree as the 2016 forecast, but with an updated earthquake induced in the structure. These strains are also experienced catalog. by anchors used for attachment of nonstructural components, such as cladding, to the structural frame. The loads acting on In order to ensure the adequacy of the anchor to resist seismic these anchors can be calculated directly on the basis of the loads, the seismic analysis needs to be performed, even when dynamic characteristics of the building, local site seismicity, at first glance, the seismic loads seem to be significant lower soil characteristics, and the dynamic characteristics of the than the static loads. components fastened to the building.

Figure 5.5.1.2 illustrates the different seismic design categories In general terms, the main difference between static loading and in different states of the United States. Although regulations in seismic loading of attachments is the multi-directional cyclic some state are more stringent than others, in order to provide loading induced by the seismic event as shown in Figure 5.5.1.1.

No significant cyclic loading with inertia

Significant cycle loading with multi-directional inertia force

Figure 5.5.1.1 Comparison of loading characteristics under seismic and static conditions (reinforcement not shown for clarity).

In addition, loading frequencies during earthquakes often lead to resonance phenomena which result in greater vibration amplitudes on the upper floors than on lower floors. This may result in a need for different designs for anchor systems situated A seismic hazard is the probability that an earthquake will occur in a given geographic area, within a given window of time, and with ground motion intensity exceeding a given threshold.

IBC-compliant solutions and ensure the general welfare of citizens, seismic design verification for anchor channels is performed for anchor channels located in structures assigned to Seismic Design Categories C, D, E, or F.

Figure 5.5.1.2 - U.S. seismic hazard map.

In summary:

- · Seismic conditions can significantly change the behavior of anchors, compared to static conditions.
- It's important to include seismic design for both structural and non-structural elements of a build, as research shows that non-structural systems suffer the largest damage in commercial buildings during an earthquake.
- Adequate seismic construction design and specification reduces the probability of a failure of the anchorage during a seismic event.
- · Seismic events have a big impact on the loading and behavior of anchors in the supporting material, resulting
- in the possibility of some anchors being unsuitable for seismic conditions or having a lower capacity under seismic conditions than under static conditions.

1. Anchor Channel Systems

2. HAC Portfolio 3. HAC 4. Design Applications Introduction

5. Base material 6. Loading

9. Special Anchor Channel Design

10. Design Software

5.5.2 BEHAVIOR OF THE MATERIALS IN WHICH ANCHORS ARE SET

Due to the multiple responses of seismic action, the assumed compression zone under static action may suddenly become the tension zone. The possibility of cracks intersecting the anchor location can therefore be assumed to be highly probable, even if the original anchoring location was assumed to be uncracked, as indicated.

Static loading: cracks may occur in defined tension zones

Seismic loading:cracks may occur almost everywhere in concrete members.

Figure 5.5.2.1 — Comparison of potential crack positions under seismic and static conditions (reinforcement not shown for clarity).

The width of cracks generated during earthquakes is, on average, significantly greater than those resulting from static loading. Under static conditions, cracks are normally restricted to a width of 0.3 mm under service load conditions, and at the load levels of designed resistance they may reach a width of up to 0.5 mm. However, during seismic events, cracks can easily reach a width of up to 0.8 mm. This has been confirmed by tests with groups of 4 anchors carried out in 2006, as shown in Figure 5.5.2.2.

Figure 5.5.2.2 Comparison of crack width under seismic and static conditions

The crack opens and closes with the changing of live load and rebar restrain, which is less severe compared to seismic conditions

Concrete beside the cracks is alternately under compression and tension, resulting in the worst conditions for the anchor zone.

Figure 5.5.2.3 - Comparison of crack width under static and seismic conditions

The nature of seismic loads is very different than the static loads, hence there is a different testing criteria for the anchor channel used in seismic zones replicating the seismic activity and also the design methodology is more stringent.

According to ACI §318-14 17.2.3, anchors in structures assigned to Seismic Design Category (SDC) C, D, E, or F shall satisfy the additional requirements of ACI 318 § 17.3.2 through §17.2.3.7. Commentary §R17.2.3 states that these additional requirements shall be satisfied regardless of whether earthquake loads are included in the controlling load combination for the anchor design.

According to section ACI 318-14 §17.2.3.4.4, the anchor concrete design tensile strength for resisting earthquake forces shall be reduced by an additional 0.75. The reduced anchor nominal tensile strengths associated with concrete failure modes is to account for increased cracking and spalling in the concrete resulting from seismic actions.

Because seismic design generally assumes that all or portions of the structure are loaded beyond yield, it is likely that the concrete is cracked throughout for the purpose of determining the anchor strength. In locations where it can be demonstrated that the concrete does not crack, uncracked concrete may be assumed for determining the anchor strength as governed by concrete failure modes.

6. LOADING

Acceptance Criteria 232 (AC232) provides design guidelines for cast-in anchor channels. Anchor channels are now easier to show compliance with the International Building Code via an Evaluation Service Report. The lack of explicit provisions for anchor channels in the anchor provisions of ACI 318 are addressed by the design guidelines provided in AC232, which are written as amendments to ACI 318.

Historically, anchor channels have been designed using ASD (allowable stress design) concepts. With the introduction of AC232, the use of LRFD (strength design) for the design of anchor channels was made possible. Whereas ASD assigns global safety factors to cover all aspects of the design problem (variability, consequences of failure, etc.) strength design permits explicit consideration of the variability in resistance and loads. In many cases, strength design may result in more efficient design solutions. The ACI 318 model code has used strength design since 1971, and its use for anchorage problems is now accepted practice throughout the U.S.

6.2 Anchor Channel Loading
6.1 STRENGTH DESIGN VS ALLOWABLE STRESS DESIGN

1. Anchor

Channel Systems

2. HAC

Portfolio

3. HAC

Applications

Allowable Stress Design (ASD)

Design philosophy based on ensuring the service loads do not exceed the elastic limit. This is accomplished by ensuring that stresses remain within the limits through the use of safety factors. The safety factor accounts for all of the uncertainties in loads and strength (material).

$$\frac{R_n}{FS} \ge \sum_{i=1}^m L_i$$

Where:

 R_n = nominal or design strength (stress, moment, force, etc.) FS FS= Safety factor 3-4 typically)

 $L_{\!_{\gamma}}$ = nominal (or service) value for the $i^{\rm th}$ load component out of m components

Strength Design

Also known as Load and Resistance Factor Design (LRFD). Design philosophy considers uncertainties in material properties, construction tolerances, and loads. It incorporates state-of-the-art analysis and load and resistance factors are statistically calibrated to ensure a uniform level of safety.

$$\phi R_n \geq \sum_{i=1}^m \gamma_i L_{ni}$$

Where:

 ϕ = strength reduction factor

- Y_i = load factor for the ith load component out of n components
- R_n = nominal or design strength (stress, moment, force, etc.) L_{n1} = nominal (or service) value for the ith load component out of m components

6.2 ANCHOR CHANNEL LOADING

6.2.1 ANCHOR CHANNEL LOADING

4. Design

Introduction

The design of anchor channels is now based on Strength Design philosophy. Applied loads shall be factored according to the applicable building code.

Terminology

Load Factors:

Strength Design philosophy uses load factors to amplify the magnitude of the calculated loads to account for the uncertainties involved in estimating the magnitude of different loads.

Load Combinations:

Different types of loads can be combined since it can be applied simultaneously, however they may not be with the same magnitudes and factors.

6.2.2 LOAD COMBINATIONS

Anchor channels shall be designed using the applicable load combination. When selecting the required load combination, it is important to ensure the load combinations are consistent with the International Building Code used to derive the loads. If load combinations and derive loads use different IBC versions, the anchor channel design may result in very unconservative or conservative results.

IBC refers to ASCE Standards for the determination of loads and selection of the required load combinations. Although some of the load combinations do not change in different ASCE year, ASCE 7-10 has undergone some important changes. Special attention shall be paid to the ASCE version used for the determination of forces and load combinations.

Symbols and Notation

D = dead load

8. Reinforcing

Bar Anchorage

- D_i = weight of ice
- E = earthquake load
- F = load due to fluids with well-defined pressures and maximum heights

9. Special Anchor

Channel Design

10. Design

Software

- F₂ = Flood load
- H = load due to lateral earth pressure, ground water pressure, or pressure of bulk materialsL = live load
- L = roof live load
- R = rain loadS = snow load
- T = self-straining forceW = wind load
- Wi = wind-on-ice determined in accordance with Chapter 10.

Load Combinations ASCE 7-05 — Strength Design

- 1. 1.4(D + F)
- 2. $1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$
- 3. 1.2D + 1.6(L, or S or R) + ((0.5 or 1.0)*L or 0.8W)
- 4. 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(L, or S or R)
- 5. 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
- 6. 0.9D + 1.6W + 1.6H
- 7. 0.9D + 1.0E + 1.6H

Load Combinations ASCE 7-05 — Allowable Stress Design

- 1. D+F
- 2. D + H + F + L + T
- 3. $D + H + F + (L_r \text{ or } S \text{ or } R)$
- 4. D + H + F + 0.75(L + T) + 0.75(L_r or S or R)
- 5. D + H + F + (W or 0.7E)
- 6. D + H + F + 0.75(W or 0.7E) + 0.75L + 0.75(L_r or S or R)
- 7. 0.6D + W + H
- 8. 0.6D + 0.7E + H

7. Anchor Channel Design Code

Introduction

Wind design in ASCE 7-10 underwent several major changes. Wind provisions in ASCE 7-10 follow the form introduced for the seismic provisions in the 2005 edition. New wind speed maps that vary by risk category have been introduced. The wind speeds provided in such maps are applicable for determining wind pressures for strength design. Therefore, wind pressures are strength level and the wind load factor was changed to 1.0.

Load Combinations ASCE 7-10 — Strength Design

1. 1.4D

- 2. $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- 3. 1.2D + 1.6(L_r or S or R) + (L or 0.5W)
- 4. 1.2D + 1.0W + L + 0.5(L_r or S or R)
- 5. 1.2D + 1.0E + L + 0.2S
- 6. 0.9D + 1.0W
- 7. 0.9D + 1.0E

Load Combinations ASCE 7-10 — Allowable Stress Design

- 1. D
- 2. D + L
- 3. $D + (L_r \text{ or } S \text{ or } R)$
- 4. D + 0.75L + 0.75(L_r or S or R)
- 5. D + (0.6W or 0.7E)
- 6a. D + 0.75L + 0.75(0.6W) + 0.75(L_r or S or R)
- 6b. D + 0.75L + 0.75(0.7E) + 0.75S
- 7. 0.6D + 0.6W
- 8. 0.6D + 0.7E

3. HAC 4. Design **Applications** Introduction

5. Base material 6. Loading 10. Design Software

6.3.0 SEISMIC LOADING

1. Anchor

6.3.1 SEISMIC LOAD BEHAVIOR

Cyclic loads are a characteristic feature of actions acting on structures and anchorages during earthquakes. During seismic events, anchors used to connect structural and non-structural elements to concrete are subjected to cyclic tension and cyclic shear loads. Cycling loads may induce additional cracking that can ultimately reduce the concrete capacity of the anchor. This effect is reflected in figure 6.3.1.Incorrectly designed or inadequately gualified anchors have caused severe damage and failure of the connection.

a) Cracking of concrete due to dead load

b) Cracking of concrete due to seismic load

c) Cracking of concrete after a seismic event

Figure 6.3.1.1 - Cracks in a reinforced concrete member subjected to cycling loads.

6.3.1 SEISMIC LOAD DERIVATION FOR NONSTRUCTURAL COMPONENTS -ASCE 7-10, CHAPTER 13

ASCE 7-10: §12.14.3.1 Seismic Load Effect The seismic load effect, E, shall be determined in accordance with the following:

1. For use in load combination 5 in ASCE 7-10 Section §2.3.2 or load combinations 5 and 6 in ASCE 7-10 Section §2.4.1, E shall be determined in accordance with ASCE 7-10 Eq. 12.14-3 as follows:

$$E = E_{b} + E_{v}$$
 (ASCE 7-10 Eq. §12.14-3)

2. For use in load combinations 7 in ASCE 7-10 Section §2.3.2 or load combination 8 in ASCE 7-10 Section §2.4.1, E shall be determined in accordance with ASCE 7-10 Eq. §12.14-4 as follows:

 $E = E_{h} - E_{v}$ (ASCE 7-10 Eq. §12.14-3)

where

E = seismic load effect

 E_{h} = effect of horizontal seismic forces as defined in ASCE 7-10 Section §12.14.3.1.1

E = effect of vertical seismic forces as defined in ASCE 7-10 Section §12.14.3.1.2

ASCE 7-10 §12.14.3.1.1 Horizontal Seismic Load Effect

The horizontal seismic load effect, E_h, shall be determined in accordance with Eq. §12.14-5 as follows:

where

 Q_{r} = effects of horizontal seismic force from V or F_n as specified in ASCE 7-10 Sections §12.14.7.5, 12.14.8.1, and 13.3.1

The horizontal seismic design force (F₂) shall be applied at the component's center of gravity and distributed relative to the component's mass distribution and shall be determined in accordance with Eq. ASCE 7-10 Eq. §13.3-1:

F₂ is not required to be taken as greater than

$$F_p \le 1.6S_{DS}\ell_pW_p$$

and F₂ shall not be taken as less than

$$F_p \ge 0.3S_{DS}\ell_pW_p$$

(ASCE 7-10 Eq. §13.3-3)

(ASCE 7-10 Eq. §13.3-2)

where

- F_ = seismic design force
- = spectral acceleration, short period, as determined from Sne ASCE 7-10 Section §11.4.4
- a_a = component amplification factor that varies from 1.00 to 2.50 (select appropriate value from ASCE 7-10 Table § 13.5-1 or 13.6-1)
- $\ell_{\rm c}$ = component importance factor that varies from 1.00 to 1.50 (see ASCE 7-10 Section §13.1.3)
- W = component operating weight
- R_{a} = component response modification factor that varies from 1.00 to 12 (select appropriate value from ASCE 7-10 Table §13.5-1 or §13.6-1)
- Overstrength factor is used to satisfy seismic detailing respect to the base. For items at or below the base, z shall requirement of ACI 318. Structures in Seismic Design be taken as 0. The value of z/h need not exceed 1.0 Category (SDC) C, D, E or F are designed to yield which induces additional cracking in concrete. The objective of the overstrength factor is to cope with the unpredictability of the seismic forces and to avoid brittle failure (concrete failure) of the anchorage in a seismic event. This can be achieved by increasing the concrete capacity of the anchorage by increasing the seismic load by the overstrength factor.
- z = height in structure of point of attachment of component with h = average roof height of structure with respect to the base The force (F₁) shall be applied independently in at least two orthogonal horizontal directions in combination with service loads associated with the component, as appropriate. For

vertically cantilevered systems, however, the force F_ shall be assumed to act in any horizontal direction. In addition, the component shall be designed for a concurrent vertical force $\pm 0.2S_{ps}W_{p}$. The redundancy factor, p, is permitted to be taken equal to 1 and the overstrength factor, Ω_{α} , does not apply.

ASCE 7-10 §12.14.3.1.2 Vertical Seismic Load Effect The vertical seismic load effect, Ev, shall be determined in accordance with Eq. §12.14-6 as follows:

E_v = 0.2S_{DS}D (ASCE 7-10 Eq. §12.14-6)

where

 S_{ps} = design spectral response acceleration parameter at short periods obtained from ASCE 7-10 §11.4.4

Further, all handrail and guardrail systems shall be designed to D = effect of dead load resist a load of 50 lb/ft (pound-force per linear foot) (0.73 kN/m) EXCEPTION: The vertical seismic load effect, E, is permitted to applied in any direction along the handrail or top rail. be taken as zero for either of the following conditions:

- 1. In ASCE 7-10 Eqs. §12.4-3, 12.4-4, 12.4-7, and 12.14-8 where S_{DS} is equal to or less than 0.125.
- 2. In ASCE 7-10 Eqs. §12.14-4 where determining demands on the soil-structure interface of foundations.

ASCE 7-10 §12.14.3.1.3 Seismic Load Combinations Where the prescribed seismic load effect, E, defined in ASCE 7-10 Section §12.14.3.1 is combined with the effects of other loads as set forth in ASCE 7-10 Chapter 2, the following seismic load combinations for structures not subject to flood or atmospheric ice loads shall be used in lieu of the seismic load combinations in Sections ASCE 7-10 Sections §2.3.2 or 2.4.1:

Basic Combinations for Strength design (see ASCE 7-10 Sections §2.3.2 and 2.2 for notation).

7. (0.9 – 0.2S_{De})D + QE + 1.6H

Under seismic conditions, the direction of shear may not be predictable. The full shear force should be assumed in any direction for a safe design.

6.3.2 OVERSTRENGTH FACTORS PER ASCE 7-10

6.4.0 LOADS ON HANDRAIL AND **GUARDRAIL SYSTEMS** — **ASCE 7-10**

ASCE 7-10 §4.5.1

All handrail and guardrail systems shall be designed to resist a single concentrated load of 200 lb (0.89 kN) applied in any direction at any point on the handrail or top rail and to transfer this load through the supports to the structure to produce the maximum load effect on the element being considered.

7. ANCHOR **CHANNEL DESIGN CODE**

1. Anchor

Channel Systems

2. HAC

Portfolio

Base material or substrate information is fundamental in determining the anchor channel strength. Although Chapter 2 provides nominal steel strengths of the anchor channel, the adequacy of an anchor in general is contingent on the adequacy of the base material.

3. HAC

Applications

4. Design

Introduction

5. Base material

6. Loading

Having the right substrate properties and a good understanding of how different base materials' properties or requirements may impact the anchor channel design. Therefore, the base material shall be carefully examined prior to the design of an anchor channel system.

This chapter contains testing, theory and design methodology of anchor channel described in AC232. The AC232 acceptance criteria describes the principles and requirements for safety. serviceability and durability of anchor channels for use in uncracked or cracked concrete.

The AC232 applies to anchor channels used to resist loads in cracked and uncracked normal weight and lightweight concrete and included assessments of strength capacity, design procedures and quality control. This chapter will cover testing procedure based on AC232 for evaluation of the steel strengths of anchor channel as well as the design methodology described in AC232 in order to evaluate the various concrete breakout failure modes for standard anchor channel with headed studs and anchor channels with deformed bars.

7.1 — OVERVIEW OF ANCHOR CHANNEL THEORY

10. Design

Software

Before the publication of Acceptance Criteria 232 (AC232), it Since its inception, AC232 has been an ever-evolving document. was difficult to show cast-in anchor channels compliant with In its infancy stage, AC232 did not include provisions for anchor the International Building Code (IBC) since ACI 318 Anchoringchannels systems in structures assigned to Seismic Design to-Concrete provisions exclude the design of specialty inserts. Category C, D, E, or F. In 2015, AC232 incorporated seismic The publication of (AC232) brought significant benefits to the provisions for anchor channels in Seismic Design Category C, D, cast-in anchor channel industry and design community. The use E, or F. Later provisions permitting the use of anchor channels of optimized anchor channel solutions and simplification of the in all-lightweight concrete and sand-lightweight concrete were design and approval processes for anchor channels ultimately adopted by AC232. can avoid construction shutdowns.

Cast-in anchor channels can now more easily be shown compliant with the IBC, as AC232 3.0 Design Requirements provides suggested additions to ACI 318 Anchoring-to-Concrete provisions that permit the design of anchor channel systems as if they were included in ACI 318 Anchoring-to-Concrete provisions. In addition, AC232 allows the design community to have a clear understanding of cast-in anchor channel systems.

9. Special Anchor

Channel Design

8. Reinforcing

Bar Anchorage

Anchor Channel

Design Code

Prior to AC232, designers had to design anchor channels via engineering judgment, which may require applying design provisions not applicable to anchor channels, research papers, and/or using manufactures' technical data. The non-model code design methodology used to approve the anchor channel design had to be backed-up by the P.E. stamp of a licensed engineer of This chapter provides design and testing information for anchor the state of the project's location. In some extreme cases, this channels covered by AC232 (HAC and HAC-T). Chapter 2 was not accepted by local jurisdictions and additional testing provides design steel strengths for the anchor channel system. was required. Additional testing added an extra problem since However, additional calculations are needed to complete the testing protocol for anchor channels did not exist. Providing steel verification of anchor channels. Moreover, this chapter model code compliant designs increases the probability of provides design provisions for the verification of the concrete acceptance by local jurisdictions and reduce the probability of at the anchorage zone. Due to the number of variables that can additional testing. impact the performance of the concrete, AC232 has provided additional design guidelines.

Relying on technical data is adequate only if the tests are performed correctly. Tests results can be positively or negatively impacted if the system is not tested properly. Technical data via testing created an additional problem since prior to AC232, there were no testing protocols for cast-in anchor channel systems neither. AC232 provides testing protocols and design guidelines for anchor channels.

7.1 & 7.2 Intro Anchor Char

oduction to nnel Design

Important design provisions have been added to AC232 over the last years. The ultimate goal is to have a complete framework that covers all typical and non-typical applications encountered in a building such as corners with a pair of anchor channels loaded simultaneously or parallel channels.

- The scope of AC232 was limited to anchor channels with
- rounded head anchors or I-anchors. The latest AC232 approved in June 2018 also includes anchor channels replacing rounded head anchors with deformed reinforcing bars. AC232 also includes provisions for anchor reinforcement, where the concrete breakout in shear and/or tension can be precluded.

7.2 ANCHOR CHANNEL

THEORY

7.2.1 ANCHOR PRINCIPLES AND DESIGN

Definitions

5 percent Fractile Value corresponding to a 5 percent probability of non-exceedance

Adhesive anchor is a post-installed anchor that is inserted into a drilled hole in hardened concrete, masonry or stone. Loads are transferred to the base material by the bond between the anchor and the adhesive and the adhesive and the base material.

Anchor category is an assigned rating that corresponds to a specific strength reduction factor for concrete failure modes associated with anchors in tension. The anchor category is established based on the performance of the anchor in reliability tests.

Anchor Channel is steel profile with rigidly connected anchors installed prior to concrete placement.

Anchor Channel Assemblies anchor channel consist of a channel produced from hot rolled or cold-formed steel and at least two metal anchors on the channel web as illustrated in figure 7.2.2.1 & 7.2.2.2. The anchor channel shall be flushed with the concrete surface. A fixture shall be connected to the anchor channel by channel bolts (hammer head or hooked channel bolts) with nut and washer in accordance with figure 7.2.2.2.

Anchor Channel Installation Instructions for placement of subject anchor channel.

Anchor Channel loading: Axial Tension is Load applied perpendicular to the surface of the base material and in direction of the anchor axis.

Anchor Channel loading: Bending Bending effect induced by a tension load applied in direction of the anchor axis at any location between anchors.

Anchor Channel loading: Longitudinal shear Loads acting parallel to the concrete surface and co-linear with the longitudinal axis of the anchor channel.

Anchor Channel loading: Perpendicular shear Loads acting parallel to the concrete surface and perpendicular to the longitudinal axis of the anchor channel.

Anchor Channel System Specific combination of anchor channel and channel bolt under consideration.

Anchor Diameter Nominal diameter of the anchor channel.

Anchor group is a group of anchors of approximately equal effective embedment and stiffness where the maximum anchor spacing is less than the critical spacing.

Anchor reinforcement is reinforcement used to transfer the full design load from the anchors into the structural member.

Anchor spacing is centerline-to-centerline distance between loaded anchors.

Attachment Structural assembly, external to the surface of the concrete, that transfers loads to or receives loads from the anchor channel.

Attachment is the structural assembly, external to the surface of the concrete, that transmits loads to or receives loads from the anchor.

Base Material Material, such as concrete, in which the anchor channel is installed.

Cast-in-place anchor is traditionally a headed bolt, headed stud or hooked bolt installed before placing concrete. Additionally, cast-in-place internally threaded inserts are a form of cast-in-place anchors.

Channel Bolt Threaded fastener that connects the element to be attached to the anchor channel.

Characteristic capacity is a statistical term indicating 90 percent confidence that there is 95 percent probability of the actual strength exceeding the nominal strength. This is also called the 5% fractile capacity.

Characteristic spacing Spacing for ensuring the characteristic resistance of a single anchor.

Clamping Force Prestressing force resulting from tightening of the channel bolt against the fixture.

Concrete breakout is a concrete failure mode that develops a cone or edge failure of the test member due to setting of the anchor or applied loads.

Concrete Edge Failure failure of an anchor channel installed at the edge of a concrete member and loaded in shear towards the edge characterized by the formation of a fracture surface originating at the channel and projecting towards the edge of the concrete member

Concrete splitting failure is a concrete failure mode in which the concrete fractures along a plane passing through the axis of the anchor or anchors.

Cracked concrete is condition of concrete in which the anchor is located. See Section 2.1.2.

Critical edge distance is minimum required edge distance to achieve full capacity.

Critical spacing is minimum required spacing between loaded anchors to achieve full capacity.

Cure time is the elapsed time after mixing of the adhesive material components to achieve a state of hardening of the adhesive material in the drilled hole corresponding to the design mechanical properties and resistances. After the full cure time has elapsed, loads can be applied.

Displacement Movement of an anchor channel, measured relative to the concrete member in which the load is transmitted. In tension tests, displacement is measured parallel to the anchor

axis; in shear tests, displacement is measured perpendicular the anchor axis.

Displacement controlled expansion anchor is a postinstalled anchor that is set by expansion against the side of th drilled hole through movement of an internal plug in the sleeve or through movement of the sleeve over an expansion element (plug). Once set, no further expansion can occur.

Ductile steel element are anchors designed to be governed ductile yielding of the steel. This is determined by performing tension testing on coupons machined from the finished anchor The minimum requirements are 14% elongation and 30% reduction of area.

Edge distance is distance from centerline of anchor to the free edge of base material in which the anchor is installed.

Effective embedment depth is the overall depth through which the anchor transfers force to or from the surrounding concrete. The effective embedment depth will normally be the depth of the concrete failure surface in tension applications. If cast-in headed anchor bolts and headed studs, the effective embedment depth is measured from the bearing contact surface of the head. For expansion anchors, it is taken as the distance from surface of base material to tip of expansion element(s).

Expansion anchor is a post-installed anchor that is inserted into a drilled hole in hardened concrete or masonry. Loads at transferred to and from the base material by bearing, friction both.

Fastening Assembly of fixture and anchor channel used to transmit loads to concrete.

Fixture Steel part attached to the anchor channel by channel bolt.

Gel time is the elapsed time after mixing of the adhesive material components to onset of significant chemical reaction as characterized by an increase in viscosity. After the gel time has elapsed, the anchors must not be disturbed.

Minimum Edge Distance Minimum distance from the concre edge to the center of the anchor channel and the anchors fixed to the channel profile, to allow adequate placement and compaction of concrete and to avoid damage to the concrete during torqueing of the channel bolt, to be reported in the ICC-ES evaluation Service Report.

Minimum edge distance is the spacing from the centerline of the anchor to the edge of the base material required to minim the likelihood of splitting of the base material during anchor installation.

Minimum member thickness is minimum required thickness of member where the anchor channels can be installed, to be reported in the ICC-ES Report.

Minimum Spacing Minimum distance between anchors of anchor channels, measured in the direction of the longitudinal channel axis to allow adequate placing and compaction of the concrete, measured centerline to centerline, to be reported in the ICC-ES Evaluation Service Report.

1. Anchor2. HACChannel SystemsPortfolio

3. HAC 4. Design Applications Introduction

5. Base material 6. Loading

8. Reinforcing

Bar Anchorage

13. Field Fixes

' to	Minimum spacing is distance between the centerlines of adjacent loaded anchors to minimize the likelihood of splitting of the base material during anchor installation.	Anchor	7.1 & 7.2
he re nt	Post-installed anchor is an anchor installed in hardened concrete and masonry. Expansion, undercut, and adhesive anchors are examples of post-installed anchors.	Channel De	Introductio
l by g	Projected area is the area on the free surface of the concrete member that is used to represent the larger base of the assumed rectilinear failure surface.	sign	in to 7.:
ors. ree	Pryout failure is a failure mode where anchors having limited embedment depth and loaded in shear exhibit sufficient rotation to produce a pryout fracture whereby the primary fracture surface develops behind the point of load application. This failure mode does not depend on the presence of free edges.	Steel	3 Anchor Channel T
е	Pullout failure is a failure mode in which the anchor pulls out of the concrete without development of the full steel or concrete capacity.		ension Desig
For	Pull-through failure is a failure mode in which the anchor body pulls through the expansion mechanism without development of the full steel or concrete capacity.		gn 7.4 A
, Inc.	Side face blowout strength is the strength of anchors with deeper embedment but thinner side cover corresponding to concrete spalling on the side face around the embedded head while no major breakout occurs at the top concrete surface.	Steel	nchor Channel
or	Splitting Failure A failure in which the concrete fractures along a plane passing through the axis of the tensioned anchor or anchors.		Shear Desig
el n	Statistically Equivalent Two groups of test results shall be considered as statistically equivalent if there are no significant differences between the means and between the standard deviations of the two groups. Such statistical equivalence shall be demonstrated using a one-sided Student's t-Test at a confidence level of 90 percent.		ו (y) 7.4 Anchor Ct
e	Steel failure is a failure mode in which the steel anchor parts fracture.		annel Sh
ete I e	Supplementary reinforcement is reinforcement that acts to restrain the potential concrete breakout area but is not designed to transfer the full design load from the anchors into the structural member.		ear Design (X)
of nize	Torque controlled expansion anchor is a post-installed expansion anchor that is set by the expansion of one or more sleeves or other elements against the sides of the drilled hole through the application of torque, which pulls the cone(s) into the expansion sleeve(s). After setting, tensile loading can cause additional expansion (follow-up expansion).	(Combined Loadi	
s e al	Undercut anchor is a post-installed anchor that derives tensile holding strength by the mechanical interlock provided by undercutting the concrete, achieved either by a special tool or by the anchor itself during installation.		ations 7.6 S

151

4. Design Introduction

5. Base material

6. Loading

7.2.2 REQUIREMENTS OF ANCHOR CHANNEL WITHIN AC232

What is an anchor channel system

Anchor channels consist of a channel produced from hot-rolled or cold-formed steel and at least two metal anchors on the channel web as illustrated in Figure 7.2.2.1.

An anchor channel system consists of

The fixture being attached

- T-bolts attaching the fixture to the channel
- Steel channel cast into a concrete element
- Anchor elements attached to the channel and embedded into the concrete

The anchor channels shall be placed flush with the concrete surface as illustrated in Figure 7.2.2.2. A fixture shall be connected to the anchor channel by channel bolts (also known as T-bolts) with nut and washer in accordance with Figure7.2.2.1 and Figure 7.2.2.2.

Cross-sectional view of an anchor channel system, A-A'

Figure 7.2.2.1 — Anchor channel with corresponding channel bolt.

Elevation view of an anchor channel system

Cross-sectional view of an anchor channel system, A-A'.

Figure 7.2.2.2 — Anchor channel system in a concrete member; elevation and section view

What is an anchor channel?

Steel profile with rigidly connected anchors installed prior to concrete placement. The anchors shall be produced from carbon or stainless steel. The anchors may be welded, forged or bolted to the channel. All anchors attached to the anchor channel shall be of the same type, size and embedment.

Figure 7.2.2.3 — Anchor channel.

What is the minimum channel bolt (t-bolt) spacing, S_{ch,b}?

3 x d, Where d, is the diameter of channel bolt refer figure 7.2.2.2

What are the anchor channel requirements according to AC232?

Channel height, h_{ab} : 0.60 in. (15 mm) $\leq h_{ab} \leq 2$ in. (51 mm) Channel width, b_{ab} : 1 in. (25.4 mm) $\leq b_{ab} \leq 3$ in (76 mm).

Minimum channel length: 4 in. (102 mm). Maximum channel length: unlimited.

The maximum effective embedment according to AC 318-14 section 17.4.2.2, h_{of} = 25 in.

Geometry requirements: $h_{ch}/h_{ef} \le 0.5$ $b_{ab}/h_{af} \le 0.70$

Figure 7.2.2.4 — Anchor channel system (HAC and HBC-C).

Minimum number of anchors: 2

Maximum number of anchors: unlimited

Minimum round headed anchor spacing: 2.00 in. (50 mm) Minimum deformed reinforcing bars anchor spacing: 4.00 in. (100 mm)

Maximum anchor spacing s: shall not be larger than 5 times minimum edge distance cmin and 16 in (400 mm) Spacing between the anchors or deformed reinforcing bars should be constant.

Minimum allowable slab thickness shall be $h_{min} = h_{sf} + t_{h} + c_{max}$ t_{h} = anchor head thickness

c_{nom} = required concrete cover

The anchors may be welded, forged or bolted to the channel. All anchors attached to the anchor channel shall be of the same type, size and embedment.

The axial spacing between round headed anchors, s, shall be at least 2 in. (51 mm). The axial spacing between deformed bars s, shall be at least 4 in. (100 mm). The maximum spacing, s, shall not be larger than the smaller of 5 times the minimum edge distance c_{min} and 16 in. (400 mm). If more than two anchors are connected to the channel back, their spacing shall be constant.

What are the requirements for round anchors and deforming rebars under AC232?

Round headed anchors shall comply with the following dimensions: length $I_a \ge 19/16$ in. (30 mm), shaft diameter $d_a \ge 1/5$ in. (5 mm), and head diameter $d_1 \ge 1/2$ in. (12 mm). The head is forged to the anchor or may consist of a nut.

The anchors shall be placed into prefabricated holes in the back of the channel and connected rigidly with the channel back.

7.1 & 7.2 Introduction to Anchor Channel Design

Deformed reinforcing bars as defined in section 2.3 of ACI 318-14 may be attached to the channel in lieu of anchors as

described above.Deformed reinforcement is defined as that meeting the reinforcement specifications in the model Code. No other reinforcement qualifies. This definition permits accurate statement of developent lengths. Where deformed reinforcing bars are welded, they shall be of a weldable grade.

Deformed bars should conform with ACI 20.2.1.3, 20.2.1.5 or 20.2.1.7. 20.2.1.3:

Deformed bars shall conform a, b, c, d or e.

- a) ASTM A615 carbon steel
- b) ASTM A706 low-alloy steel
- (c) ASTM A996 axle steel and rail steel; bars from rail steel shall be Type R
- (d) ASTM A955 stainless steel

(e) ASTM A1035 — low-carbon chromium steel

The axial distance between the end of the channel and the nearest anchor, x, shall be \geq 1 in. (25.4 mm).

Figure 7.2.2.5 - Plan view of an anchor channel system in a concrete member.

Figure 7.2.2.6 - Section view of an anchor channel system in a concrete member

The elongation and reduction of area of each anchor channel

determined in accordance with a recognized test standard

reduction of area is at least 30 percent, the anchor channel

anchor channel shall be considered to be a brittle steel

(e.g. ASTM F606). If elongation is at least 14 percent and the

element.

1. Anchor Channel Systems Portfolio

2. HAC

3. HAC

Applications

4. Design

Introduction

7.2.3 ANCHOR CHANNEL WORKING **PRINCIPLES**

Loading of Anchor Channels

The anchor channel may be used to transmit tensile loads, shear loads perpendicular to the longitudinal channel axis, shear loads acting in the direction of the longitudinal channel axis (optional), or any combination of these loads applied at any location between the outermost anchors of the anchor channel in accordance with Figure 7.2.3.1 as shown. Transfer of tension loads takes place via interlock between the channel bolt and the channel lips, bending of the channel, tension in the anchors, and mechanical interlock with the concrete. Shear loads perpendicular to the longitudinal channel axis are transferred by the anchors and by compression stresses between the side of the channel and the concrete. However, for reasons of simplicity, it is assumed that the shear loads are transferred by the anchors only [see D.3.1.1.3 (ACI 318-05, ACI 318-08), D.3.1.2.3 (ACI 318-11), Section 17.2.1.2.3 (ACI 318-14)]. Shear loads acting in the direction of the longitudinal channel axis are assumed to be transferred from the channel bolt via the channel and the anchors into the concrete without consideration of friction and/or adhesion [see D.3.1.1.5 (ACI 318-05, ACI 318-08), D.3.1.2.5 (ACI 318-11), Section 17.2.1.1.5 (ACI 318-14)].

Figure 7.2.3.1 — Anchor channel loaded in three directions.

Where compliance is sought for static shear loading along the longitudinal axis of the anchor channel, the longitudinal loads shall be transferred by a positive load transfer mechanism [e.g. mechanical interlock between the channel bolt and the channel profile by notches in the smooth channel lips created by notching channel bolts (example see Fig. 7.2.3.2a) or by matching serrations between the channel lips and channel bolt (example see Fig. 7.2.3.2b)].

5. Base material

6. Loading

Transfer of shear load in the direction of the longitudinal channel axis from the channel bolt via channel and anchors into the concrete shall use a positive load transfer mechanism that shall be capable of ensuring safe and effective behavior under normal and adverse conditions, both during installation and in service. Factors included are installation conditions in concrete and torqueing of the channel bolt.

Where compliance is sought for seismic loading in Seismic Design Categories C, D, E and F compliance for shear loads in the direction of the longitudinal channel axis is required.

a) HAC with HBC-C

N, b) HAC with HBC-C-N

7.2.4 ANCHOR CHANNEL BEHAVIOR UNDER LOAD

8. Reinforcing

Bar Anchorage

When loaded to failure, anchor channels may exhibit one or more identifiable failure modes.

9. Special Anchor

Channel Design

10. Design

Software

These include:

Anchor Channel

Design Code

Possible failure modes of anchor channel per AC232

11. Best **Practices**

12. Instructions for Use

13. Field Fixes

14. Design Example

7.1 & 7.2 Introduction to Anchor Channel Design

3. HAC Applications 4. Design Introduction

8. Reinforcing 9. Special Anchor Bar Anchorage . Channel Design

10. Design Software

7.2.5 A	CI 318 CHAPTER 17 STRENGTH DESIGN - SD (LRFD)	d ₁	width of head of I-anchors or diameter of head of round anchor, in. (mm) as shown in Figure 7.2.2.2	S _{cr,V}	critical anchor spacing for shear loading, concreed edge breakout, in. (mm)
The sheet		d ₂	shaft diameter of round anchor, in. (mm) as shown	t _h	thickness of head portion of headed anchor, in. (n
well as Se	an strength of anchor channels under the 2015 IBC as ection R301.1.3 of the 2015 IRC must be determined in		in Figure 7.2.2.2	W _A	width of I-shaped anchor, in. (mm)
accordance with ACI 318-14 Chapter 17 and ESR-3520.		d _a	diameter of anchor reinforcement, in. (mm) as shown in Figure 7.2.2.2	х	distance between end of channel and nearest anchor, in. (mm)
The desig	gn strength of anchor channels under the 2012 IBC as	ds	diameter of channel bolt, in. (mm)	Z	internal lever arm of the concrete member, in. (m
well as Se	ection R301.1.3 of the 2012 IRC must be determined in uce with ACI 318-11 Appendix D and ESB-3520	e ₁	distance between shear load and concrete surface,	A_{brg}	bearing area of anchor head, in. ² (mm ²)
			III. (IIIII)	A _i	ordinate at the position of the anchor I, in. (mm)
The desig well as S	gn strength of anchor channels under the 2009 IBC as ection R301.1.3 of the 2009 IRC must be determined in	e _s	the axis of the anchor reinforcement resisting the shear load, in. (mm)	$A_{se,N}$	effective cross-sectional area of anchor or chan bolt in tension, in. ² , (mm ²)
The desid	an strength of anchor channels under the 2006 IBC	f	distance between anchor head and surface of the concrete, in. (mm)	$A_{se,V}$	effective cross-sectional area of channel bolt in shear, in. ² , (mm ²)
as well as	s Section R301.1.3 of 2006 IRC must be determined in	f'	specified concrete compressive strength, psi (MPa)	l _y	moment of inertia of the channel about principal
accordar	ice with ACI 318-05 Appendix D and ESR-3520.	h	thickness of concrete member or test member, as		y-axis, in.4 (mm4)
			shown in Figure 7.2.2.2, in. [mm]	M ₁	bending moment on fixture around axis in direct
7.2.6 S	TRENGTH DESIGN TERMINOLOGY	h _{ch}	height of channel, as shown in Figure 7.2.2.2, in. (mm)	M	bending moment on fixture around axis in direct
Fauation	s are provided in units of inches and pounds. For	h _{cr,V}	critical member thickness, in. (mm)	IVI ₂	2, lbf-in (Nm)
convenience, SI (metric) units are provided in parentheses where appropriate. Unless otherwise noted, values in SI units		h _{ef}	effective embedment depth, as shown in Figure 7.2.2.2, in. (mm)	$\rm M_{\rm s, flex}$	nominal flexural strength of the anchor channel, lbf-in (Nm)
shall be r inches ar	not used in equations without conversion to units of ad pounds.	$\mathbf{h}_{\rm ef,red}$	reduced effective embedment depth, in. (mm) (17.4.2.10.2c, ACI 318-14)	M_{ss}	nominal flexural strength of the channel bolt, lbf (Nm)
0 _{ch}	width of channel, as shown in Figure 7.2.2.2, inch	k	load distribution factor (17.2.1.2.1a, ACI 318-14)	M _{uflex}	bending moment on the channel due to tension
	(mm)	$k_{_{cp}}$	pryout factor	_,	loads, lbf-in (Nm)
C _a	edge distance of anchor channel, measured from edge of concrete member to axis of the nearest	ℓ_{A}	length of l-anchor or headed anchor, plus channel height, in. (mm)	N _b	basic concrete breakout strength of a single anchor in tension, lbf (N)
C _{a1}	edge distance of anchor channel in direction 1, in.	ł	lever arm of the shear force acting on the channel bolt, in. (mm)	N_{ca}	nominal strength of anchor reinforcement to take up tension loads, lbf (N)
o'	(mm)	$\ell_{_{ m dh}}$	development length in tension of deformed bar or	N _{cb}	concrete breakout strength of a single anchor of
a1	net distance between edge of the concrete member and the anchor channel: $c'_{a1} = c_{a1} - b_{ch}/2$ in. (mm)		deformed wire with a standard hook, measured from critical section to outside end of hook, in. (mm)	N _n	anchor channel in tension, lbf (N) lowest nominal tension strength from all
D _{o1 rod}	reduced edge distance of the anchor channel	l.	influence length of an external load Nua along an	N	appropriate failure modes under tension, lbt (N)
3,100	edge distance of anchor channel in direction 2, in.	in	anchor channel, in. [mm]	IN _p	channel in tension. Ibf (N)
dZ	(mm)	S	spacing of anchors in direction of longitudinal axis	N	nominal pullout strength of a single anchor of an
C _{a,max}	maximum edge distance of anchor channel, in. (mm)		of channel, in. (mm)	pn	anchor channel in tension, lbf (N)
a,min	minimum edge distance of anchor channel, in. (mm)	S _{chb}	clear distance between channel bolts in direction	N _{nc}	nominal tension strength of one anchor from all
Pac	edge distance required to develop full concrete capacity in absence of reinforcement to control splitting, in. (mm)	S _{cr}	anchor spacing required to develop full concrete capacity in absence of anchor reinforcement, in.		concrete failure modes (lowest value of N_{cb} (anchor channels without anchor reinforcement to take up tension loads) or N_{ca} (anchor channels with anchor
C	edge distance required to develop full concrete		(mm)		reinforcement to take up tension loads), $N_{_{pn}}$, and N
CI	capacity in absence of anchor reinforcement, in. (mm)	$\mathbf{S}_{\mathrm{cr,N}}$	critical anchor spacing for tension loading, concrete breakout, in. (mm)	N _{ns}	nominal steel strength of anchor channel loaded tension (lowest value of $\rm N_{sa},N_{sc}$ and $\rm N_{si}$), lbf (N)
C _{cr,N}	critical edge distance for anchor channel for tension loading for concrete breakout, in. (mm)	S _{max}	maximum spacing between anchor elements in anchor channels, in. (mm)	$N_{ns,a}$	nominal tension strength for steel failure of anch or connection between anchor and channel (low
C _{cr,Nb}	critical edge distance for anchor channel for tension loading, concrete blow out, in. (mm)	S _{min}	minimum spacing between anchor elements in anchor channels, in. (mm)	N _{sa}	value of N_{sa} and N_{sc} , nominal tensile steel strength of a single anchor,
C _{cr,V}	critical edge distance for anchor channel for shear	S _{cr,Nb}	critical anchor spacing for tension loading, concrete blow-out, in. (mm)		(14)

loading, concrete edge breakout, in. (mm)

oncrete	N_{sb}	nominal concrete side-face blowout strength, lbf (N)		7.1 :
in. (mm)	$N^0_{\ sb}$	basic nominal concrete side-face blowout strength, lbf (N)	hor Cha	& 7.2 Intr
est	N _{sc}	nominal tensile steel strength of the connection channel/anchor, lbf (N)	nnel Des	oductior
n. (mm)	N _{sl}	nominal tensile steel strength of the local bending of the channel lips, lbf (N)	ign	đ
mm)	N _{ss}	nominal tensile strength of a channel bolt, lbf (N)		
channel	N^{a}_{ua}	factored tension load on a single anchor of the anchor channel, lbf (N)		unchor C
olt in	N ^a _{ua,i}	factored tension load on anchor i of the anchor channel, lbf (N)		
ainal	N^{s}_{ua}	factored tension load on a channel bolt, lbf (N)		
cipai	$N_{ua,re}$	factored tension load acting on the anchor reinforcement, lbf (N)		ion Desi
	$T_{allowable,ASD}$	allowable tension load for use in allowable stress design environments, lb (N)		
lirection	T _{inst}	Installation torque moment given in Hilti's installation instruction, Ibf-in. (N-m)		
nnel,	$V_{allowable,ASD}$	allowable shear load for use in allowable stress design environments, lb (N)		or Chan
lt, lbf-in	V _b	basic concrete breakout strength in shear of a single anchor, lbf (N)		
sion	$V_{ca,y}$	nominal strength of the anchor reinforcement of one anchor to take up shear loads perpendicular to the channel axis. lbf (N)		ar Design (y
o take	V _{ca,x}	nominal strength of the anchor reinforcement of one anchor to take up shear loads in longitudinal channel axis, lbf (N)		
or of	$V_{ca,max}$	maximum value of $V_{_{ca}}$ of one anchor to be used in design, lbf (N)		hor Chai
f (N) chor	$V_{cb,y}$	nominal concrete breakout strength in shear perpendicular to the channel axis of an anchor channel, lbf (N)	Cor	nel Shear D
of an	$V_{cb,x}$	nominal concrete breakout strength in shear in longitudinal channel axis of an anchor channel, lbf (N))esign ()
all	$V_{cp,y}$	nominal pry-out strength perpendicular to the channel axis of a single anchor, lbf (N)		() 7.5
inchor ke up	$V_{cp,x}$	nominal pry-out strength in longitudinal channel axis of a single anchor, lbf (N)	(Combin	
and N _{sb}) aded in	V _{n,y}	lowest nominal steel strength from all appropriate failure modes under shear perpendicular to the channel axis, lbf (N)		
anchor (lowest	V _{n,x}	lowest nominal steel strength from all appropriate failure modes under shear loading in longitudinal channel axis, lbf (N)		
chor, lbf	V _{nc}	nominal shear strength of one anchor from all concrete failure modes (lowest value of $\rm V_{\rm cb}$) anchor channels with anchor reinforcement to take up		

1. Anchor Channel Systems

2. HAC Portfolio 3. HAC

Applications

4. Design Introduction

5. Base material 6. Loading

	shear loads) or $V_{_{\rm ca}}$ (anchor channels with anchor reinforcement to take up shear loads) and $V_{_{\rm cp}}$	λ
ns	Nominal steel strength of anchor channel loaded in shear (lowest value of V_{sa}, V_{sc} , and V_{sl}), lbf (N)	$\alpha_{ch,V}$
ns,a	nominal shear strength for steel failure of anchor or connection between anchor and channel (lowest value of V_{sa} and V_{sc}), lbf (N)	α _{v,sei}
sa,y	nominal shear steel strength perpendicular to the channel axis of a single anchor, lbf (N)	α _{v,sei}
sa,x	nominal shear steel strength in longitudinal channel axis of a single anchor, lbf (N)	$\psi_{c,N}$
sa,y,seis	nominal seismic shear steel strength perpendicular to the channel axis of a single anchor, lbf (N)	
sa,x,seis	nominal seismic shear steel strength in longitudinal channel axis of a single anchor, lbf (N)	$\Psi_{c,Nb}$
sc,y	nominal shear strength of connection between one anchor bolt and the anchor channel, lbf (N)	$\psi_{\text{c},\text{V}}$
sc,x	nominal shear strength in longitudinal channel axis of connection between one anchor bolt and the anchor channel, lbf (N)	$\Psi_{\text{co,N}}$
sc,y,seis	nominal seismic shear strength perpendicular to the channel axis of connection between one anchor bolt and the anchor channel, lbf (N)	$\Psi_{co,N}$
sc,x,seis	nominal seismic shear strength in longitudinal channel axis of connection between one anchor bolt and the anchor channel, lbf (N)	$\Psi_{co,V}$
sl,y	nominal shear steel strength perpendicular to the channel axis of the local bending of the channel lips, lbf (N)	Ψ _{cp,N} Ψ _{ed N}
sl,x	nominal shear steel strength in longitudinal channel axis of connection between channel bolt and channel lips, lbf (N)	$\Psi_{g,Nb}$
sl,y,seis	nominal seismic shear steel strength perpendicular to the channel axis of the local bending of the channel lips, lbf (N)	$\Psi_{h,Nb}$
sl,x,seis	nominal seismic shear steel strength in longitudinal channel axis of connection between channel bolt and channel lips, lbf (N)	$\Psi_{h,V}$
ss	nominal strength of channel bolt in shear, lbf (N)	
ua	factored shear load on anchor channel, lbf (N)	$\Psi_{s,N}$
'a ua	factored shear load on a single anchor of the anchor channel, lbf (N)	
'a ua,i	factored shear load on anchor i of the anchor channel, lbf (N)	$\psi_{\text{s,Nb}}$
's ua	factored shear load on a channel bolt, lbf (N)	
I	exponent of interaction equation	
ASD	conversion factor for allowable stress design	$\psi_{\text{s},\text{V}}$
ch,N	factor to account for the influence of channel size on concrete breakout strength in tension [-]	
м	factor to account for the influence of restraint of fixture on the flexural strength of the channel bolt [-]	

Modification factor for sand-lightweight concrete in
accordance with Section 8.6.1 of ACI 318-08 and
318-11 or Section 19.2.4 of ACI 318-14

- factor to account for the influence of channel size and anchor diameter on concrete edge breakout strength in shear (lbf^{0.5}/in)^{0.33} (N^{0.5}/mm^{0.33})
- adjustment factor for seismic loading (y-direction, seis.y perpendicular to the channel axis)
- adjustment factor for seismic loading (x-direction, seis,x in longitudinal channel axis)
 - modification factor to account for influence of cracked or uncracked concrete on concrete breakout strength [-]
 - modification factor to account for influence of cracked or uncracked concrete on concrete blowout strength [-]
- modification factor to account for influence of cracked or uncracked concrete for concrete edge breakout strength [-]
- modification factor for corner effects on concrete breakout strength for anchors loaded in tension [-]
- modification factor for corner effects on concrete o.Nb blowout strength for anchors loaded in tension [-]
- modification factor for corner effects on concrete edge breakout strength for anchor channels loaded in shear [-]
- modification factor for anchor channels to control splitting

modification factor for edge effect on concrete breakout strength for anchors loaded in tension [-]

modification factor to account for influence of bearing area of neighboring anchors on concrete blowout strength for anchors loaded in tension [-]

modification factor to account for influence of member thickness on concrete blowout strength for anchors loaded in tension [-]

modification factor to account for influence of member thickness on concrete edge breakout strength for anchors channels loaded in shear [-]

modification factor to account for influence of location and loading of neighboring anchors on concrete breakout strength for anchor channels loaded in tension [-]

modification factor to account for influence of location and loading of neighboring anchors on concrete blowout strength for anchor channels loaded in tension [-]

modification factor to account for influence of location and loading of neighboring anchors on concrete edge breakout strength for anchor channels loaded in shear [-]

7.2.7 LOAD DISTRIBUTION

8. Reinforcing

Bar Anchorage

Determination of t-bolt forces acting on anchor channels

The forces on a t-bolt can generally be determined using general principles of structural mechanics. In doing so, the displacement of the t-bolt is usually assumed to be small (i.e negligible). The distribution of forces acting on a fixture of a t-bolt group to the individual t-bolt of the group can be calculated with elastic theory.

Tension Loads:

Calculation of t-bolt loads induced by tension loads and bending moments acting on the fixture per elastic theory involves the following assumptions (Fig. 7.2.7.1)

- a) The fixture remains plane (flat) under the influence of internal forces. In order to warrant this supposition, the fixture must be sufficiently stiff and must be in contact with the base material. A stiff fixture may be assumed if under the design actions, the stresses in the fixture are smaller than the design resistance of the fixture material. The stiff fixture assumption corresponds to the Bernoulli hypothesis in reinforced concrete design, wherein plane cross-sections are assumed to remain plane.
- b) In the part of the fixture subjected to compression, t-bolts do not act in either tension or compression.
- c) The stiffness of all t-bolt in a group are identical. The t-bolt stiffness is directly proportional to the area of the stressed cross-section and the modulus of elasticity of the steel. The stiffness of the concrete is characterized by its elastic modulus and the stressed area.

Consequently, the calculation of the tension forces in the t-bolts corresponds to how one determines the tension resultant in the reinforcing bars of a reinforced concrete member. However, in contrast to strength design of reinforced concrete members, we assume here that the response of the concrete and steel elements remains linear elastic.

Figure 7.2.7.1 — Distribution of forces predicted by elastic theory in an t-bolt group subjected to tension force and bending moment

Shear Loads:

In calculating the distribution of shear loads through a fixture to the t-bolts of a group positioned away from an edge, it is assumed that all t-bolts exhibit the same shear stiffness. Additionally, it is generally assumed that all t-bolts participate in accommodating the shear loads (Fig. 7.2.7.2). It is assumed that the shear load acts at the center of gravity of the group of t-bolts. When the shear load acts eccentrically, the forces in the anchors should be calculated taking into account equilibrium conditions based on steel design principles.

connections in which all t-bolts participate in resisting the shear load.

In most cases, elastic analysis yields satisfactory results and is recommended. It should be noted, however, that the assumption of anchor load linearly proportional to *the magnitude of the applied load and the distance from the neutral axis of the group is valid only if the attachment (e.g. baseplate) is sufficiently stiff in comparison to the axial stiffness of the t-bolts. Note: Assuming a rigid base plate condition, Hilti's PROFIS Anchor channel analysis and design software performs a simplified finite element analysis to establish anchor load distribution on an elastic basis.

Figure 7.2.7.2 — Distribution of shear forces in an anchor group Example of

7.1 & 7.2 Introduction to Anchor Channel Design

3. HAC

5. Base material

9. Special Anchor 10. Design **Channel Design** Software

7.2.8 CALCULATION OF LOADS ON ANCHORS OF THE ANCHOR CHANNEL

1. Anchor

Channel Systems

2. HAC

Portfolio

Anchor channels is designed for critical effects of factored loads as determined by elastic analysis taking into account the elastic support by anchors and the partial restraint of the channel ends by concrete compression stresses. An alternative, the triangular load distribution method in accordance with 17.2.1.2.1 through 17.2.1.2.3 (ACI 318-14) to calculate the tension and shear loads on anchors is permitted.

Tension Loads:

The stiffness of an anchor channel is less than that of a stiff fixture. The distribution of tension loads acting on the channel to the anchors is calculated using a beam on elastic supports with partial restraint of the channel ends. The stiffness of the elastic supports corresponds to the displacement of the anchors which includes the displacements of the channel lips, anchors and concrete. The distribution of anchor forces can be approximated by a triangle load distribution with a peak at the applied load and an influence length l.

The influence length depends mainly on the anchor spacing, the moment of inertia of the channel and on the head size. Further minor influencing factors are the concrete compression strength, the type of steel (galvanized or stainless steel) and the state of concrete (cracked or non-cracked). For sufficiently large head sizes (head pressure $p_{1} < 6.f'_{2}$) the influence length can be taken as:

4.93(I_)^{0.05} √s≥s, in l. =

=

- 13(I_)^{0.05} √s ≥ s , mm ESR-3520 Equation (3)
- = anchor spacing, in. (mm) S
- N factored tension load on channel bolt, lb (N) =
- the moment of inertia of the channel shall be taken = from Table 2.2.1.1

For an arbitrary position of the load N the forces on the anchors can be calculated in accordance with equation:

 $N_{auai} = k \cdot A'_i \cdot N_{ua}$ ESR-3520 Equation (1) where:

A'_{iaua.i} = ordinate at the position of the anchor i assuming a triangle with the unit height at the position of load N_{in} and the base length $2\ell_{in}$ with ℓ_{in} determined in accordance with Eq. (1).

$$k = \frac{1}{\sum A'_{I}}$$

ESR-3520 Equation (2)

The tension loads, N_{auai} on an anchor due to a tension load, N_{ua} , acting on the channel shall be computed in accordance with Eq. (1). An example for the calculation of the tension loads acting on the anchors is given in Figure 7.2.8.1.

Figure 7.2.8.1 — Example for the calculation of anchor forces in accordance with the triangular load distribution method for an anchor channel with five anchors. The influence length is assumed as l_{in} = 1.5s.

If more than one t-bolt are transferring the tension loads on to the channel then the linear superposition of the anchor forces for all loads should be assumed as shown in the figure 7.2.8.2. If in the design the exact position of the load on the channel is unknown the most unfavorable loading position should be assumed for each failure mode (e.g. load acting over an anchor for the case of failure of an anchor by steel rupture or concrete break-out and load acting between anchor's in case of bending failure of the channel).

The bending moment, $M_{u \text{ flex}}$, on the channel due to tension loads acting on the channel shall be computed assuming a simply supported single span beam with a span length equal to the anchor spacing.

Figure 7.2.8.2 — Triangular load distribution for different anchor channe system configurations.

Perpendicular Shear Loads:

8. Reinforcing

Shear loads acting on the channel are mainly transferred by compression stresses between channel profile and concrete and to a smaller extent by the anchors. However, the anchors are stressed by tension forces due to the eccentricity between the acting shear load and the resultant of the stresses in the concrete. A model to calculate the concrete edge capacity of channel anchors under shear loading towards the edge is described in section 7.4.2. It assumes that shear forces acting on the channel are transferred by bending of the channel to the anchors and by the anchors into the concrete. This approach simplifies the real behavior. It has been chosen to allow for a simple interaction between tension and shear forces acting on the channel. For reasons of simplicity it is proposed to calculate the (fictitious) shear forces on anchors using the same approach and the same influence length as for tension loads. The shear load, V_{auavi} on an anchor due to a shear load V_{uav} acting on the channel perpendicular to its longitudinal axis shall be computed in accordance with the previous Section of tension replacing N in Eq. (3) by $V_{\mu a \nu}$.

Longitudinal Shear loads:

- The shear loads acting in the direction of the longitudinal channel axis are transferred from the channel bolt to the channel and by the anchors into the concrete without considering friction and/or adhesion between channel and concrete.
- Longitudinal shear loads shall be transferred by a positive load transfer mechanism (e.g. mechanical interlock between the channel bolt and the channel). In the design model it is assumed that longitudinal shear loads are solely transferred by the anchors into the concrete. A positive load transfer mechanism from the channel bolt via the channel and anchors into the concrete is required.
- · Load transfer in the longitudinal direction shall not rely on friction.

Figure 7.2.8.3 - HAC loaded in the direction of the longitudinal channel axis.

6. Loading

7.1 & 7.2 Introduction to Anchor Channel Design

 The shear load, V_{III v}, on an anchor due to a shear load, V_{III v} acting on the channel in direction of the longitudinal channel axis shall be computed as follows: For the verification of the strength of the anchor channel for failure of the anchor or failure of the connection between anchor and channel, pryout failure, and concrete edge failure in case of anchor channels arranged parallel to the edge without corner effects, the shear load, V_{us}, shall be equally distributed to all anchors for anchor channels with not more than three anchors or to three anchors for anchor channels with more than three anchors (as illustrated in Figure 7.2.8.4). The shear load, Vugu, shall be distributed to those three anchors that result in the most unfavorable design condition [in the example given in Figure 7.2.8.4 the shear load, $V_{\mu a x}$, shall be distributed to the anchors 3 to 5. For the verification of the strength of the anchor channel for concrete edge failure in case of anchor channels arranged perpendicular to the edge and in case of anchor channels arranged parallel to the edge with corner effects, the shear load, V_{un}, shall be equally distributed to all anchors for anchor channels with not more than three anchors or to the three anchors closest to the edge or corner for anchor channels with more than three anchors (as illustrated in Figure 7.2.8.5).

a

Figure 7.2.8.4 – Example for the calculation of anchor forces in case of anchor channels with 5 anchors loaded in shear longitudinal to the channel axis for steel and pryout failure.

a

as

2. HAC Channel Systems Portfolio

1. Anchor

3. HAC 4. Design **Applications** Introduction

5. Base material 6. Loading 9. Special Anchor **Channel Design**

10. Design Software

 $V_{ua,x,1}^{a} = V_{ua,x,2}^{a} = V_{ua,x,3}^{a} = V_{u,x}/3$ Figure 7.2.8.5 — Example for the calculation of anchor channels with 6 anchors loaded in shear longitudinal to the channel axis for concrete edge failure

7.2.9 ANCHOR CHANNEL DESIGN

The design of anchors channel is based on an assessment of the loading conditions and anchorage capacity. Strength design (SD), limit state design (LSD), and allowable stress design (ASD) methods are currently in use in North America for the design of anchors.

Strength Design: The Strength Design Method for anchor design has been incorporated into several codes such as IBC and ACI 318. The method assigns specific strength reduction φV_{nY} factors to each of several possible failure modes, provides predictions for the strength associated with each failure mode, and compares the controlling strength with factored loads. The Strength Design Method is a more accurate estimate of anchor α_{ASD} resistance as compared to the ASD approach. The Strength Design Method, as incorporated in ACI 318-14 Chapter 17. Strength Design is state-of-the-art and Hilti recommends its use where applicable.

Limit State Design: The limit state design method for anchor design is described and included in the CSA A23.3 Annex D.

In principle, the method follows the strength design concept with the application of different strength reduction factors. The limit states design method generally results in a more accurate estimate of anchor resistance as compared to the ASD approach.

Allowable loads: Under the Allowable Stress Design Method, the allowable load, or resistance, is based on the application of a safety factor to the mean result of laboratory testing to failure, regardless of the controlling failure mode observed in the tests. The safety factor is intended to account for reasonably expected variations in loading. Adjustments for anchor spacing and edge distance are developed as individual factors based on testing of two- and four-anchor groups and single anchors near free edges. These factors are multiplied together for specific anchor layouts.

For anchors designed using load combinations in accordance with IBC Section 1605.3 (Allowable Stress Design) allowable loads shall be established using following equations.

$$T_{allowable, ASD} = \frac{\phi N_n}{\alpha_{ASD}}$$

$$V_{x, allowable, ASD} = \frac{\phi V_{n, x}}{\alpha_{ASD}}$$

$$V_{y, allowable, ASD} = \frac{\phi V_{n, y}}{\alpha_{ASD}}$$

$$M_{s, flex, allowable, ASD} = \frac{\phi M_{s, flex}}{\alpha_{ASD}}$$

where: $\mathsf{T}_{\mathsf{allowable},\mathsf{ASD}}$

φV

- Allowable tension load, lb (N) Allowable shear load in longitudinal
- $V_{x,allowable,ASD}$ channel axis, lb (N) Allowable shear load perpendicular to the $V_{v,allowable,ASD}$
- channel axis, lb (N)
- Allowable bending moment due to tension $\mathsf{M}_{\mathsf{s},\mathsf{flex},\mathsf{allowable}.\mathsf{ASD}}$ loads, lb-in (Nm) φN
 - Lowest design strength of an anchor, channel bolt. or anchor channel in tension for controlling failure mode, lb (N)
 - Lowest design strength of an anchor, channel bolt, or anchor channel in shear in longitudinal channel axis for controlling failure mode, lb (N).
 - Lowest design strength of an anchor, channel bolt. or anchor channel in shear perpendicular to the channel axis for controlling failure mode lb (N).

Conversion factor calculated as a weighted average of the load factors for the controlling load combination. In addition, α_{ASD} shall include all applicable factors to account for non-ductile failure modes and required overstrength.

7.3 ANCHOR CHANNEL DESIGN IN TENSION

Tension Analysis

The ultimate load associated with tension failure of the steel bolt or anchor may be determined with equation $N_{u_0}^0 = A_{u_0}f_{u_0}$ (f =tensile steel strength, A = Tensile cross-sectional area). The failure load corresponding to rupture of the connection between the anchor and the channel web may be assessed using ordinary structural steel design principles. In contrast, the ultimate load associated with distortion of the channel flanges is quite difficult to establish without testing. The flanges are to some degree supported by the surrounding concrete and therefore exhibit a different load-bearing behavior compared to a free-standing channel. Similarly, the failure load corresponding to the separation of an anchor element that is swaged onto or pressed into the back of the channel can only be determined through testing.

Table 7.3.1.1 (AC232 Table 4.1) — Test program for anchor channels for use in uncracked and cracked concete

Testas	Test Def	Test description	4	A	Minimum	Channel	Anchor	Motorial	Chann	el bolt	
Test no.	Test Ref	Test description	Г _с	Δw	tests	Channel	Anchor	wateria	d_{s}	strength	
[-]	Secion in Annex A	[-]	psi [N/mm²]	inch (mm)	[-]	[-]	[-]	[-]	inch (mm)	[-]	
			Steel failure	under tensio	n load						
1	7.3	Channel/anchor	-	-	5 ¹		See A	C232 sectior	n 7.3.2		·
2	7.3	Bending of channel lips, pull-out of channel bolt	-	-	5 ¹				ļ		
3	7.3	Channel bolt head	-	-	5	1					
4	7.4	Bending strength of the channel ²	Low	0		See AC232 section 7.4.2					
		s = s _{min} inch [mm]			5						
		s < s _{min} inch [mm]			5]					
5	7.5	Torque tests ⁴	-	-	5	See AC232 section 7.5.2					
Concrete failure under tension load											
6	7.6	Splitting failure due to installation ⁵	Low	0	5	See AC232 section 7.6.2					
		$c_a = c_{a,min}$ s < s _{min} h < h _{min}									
7	7.7	Concrete breakout strength	Low	0	5		See A	C232 section	า 7.7.2		

1 If the coefficient of variation Vof the failure loads is $V \le 5$ percent, the number of tests can be reduced to n = 3.

2 Tests are only necessary if restraint of channels embedded in concrete shall be taken into account ($\alpha_{c} > 4.0$, see Section 8.8)

3 The tests shall only be performed if the conditions in Section 7.4.2.1 of this annex apply. 4 If the prestressing force is determined in accordance with Section 8.9.2 of this annex, only the smallest, medium and large channel bolts need to be tested in the corresponding medium sized channel. The most unfavorable combination of material and coating for the channel bolt and the channel shall be tested. No torque tests are required with channel bolts without lubrication or friction-reducing coatings if the prestressing force is calculated according to AC 232 Eq. (8.11) of this AC 232 annex with k = 0.15. See also Section 7.5.2.1 of AC 232 annex. 5 Only the small, medium and large channel sizes need to be tested if the conditions of Section 7.6.2.1 are fulfilled

11. Best **Practices** **12. Instructions** for Use

13. Field Fixes

14. Design Example

7.3 Anchoi

. Chan

el Tension Design

Figure 7.3.1 — Possible tensile failure modes of an anchor channel

1. Anchor Channel Systems

2. HAC 3. HAC Portfolio Applications

4. Design Introduction

5. Base material

6. Loading

9. Special Anchor 10. Design Channel Design Software

7.3.1 STEEL TENSILE STRENGTHS

Anchor Strength, φN_s

φ N_{sa} ≥ N^a_{ua}

Anchor strength N_{sa} , and ϕ is tabulated in Table ESR-3520 Table 8-3 for HAC and HAC-T with Hilti channel bolts (HBC-C, HBC-T and HBC-C-N).

The nominal strength N_{sa} , of a single shall be computed in accordance with Section 17.4.1.2 (ACI318-14) as shown below.

where $A_{se,N}$ is the effective cross-sectional area of an anchor in tension, in.², and f_{uta} shall not be taken greater than the smaller of 1.9 f_{uta} and 125,000 psi.

The nominal strength of anchors in tension is best represented as a function of f_{uta} rather than f_{ya} because the large majority of anchor materials do not exhibit a well-defined yield point. The limitation of $1.9f_{ya}$ on f_{uta} is to ensure that, under service load conditions, the anchor does not exceed f_{ya} . The limit on f_{uta} of $1.9f_{ya}$ was determined by converting the LRFD provisions to corresponding service level conditions.

The average load factor of 1.4 (from 1.2D + 1.6L) divided by the highest φ -factor (0.75 for tension) results in a limit of f_{uta}/f_{ya} of 1.4/0.75 = 1.87. Although not a concern for standard structural steel anchors (maximum value of f_{uta}/f_{ya} is 1.6 for ASTM A307), the limitation is applicable to some stainless steels.

Anchor Strength of Connection Between Anchor and Channel $\varphi N_{_{\rm Sc}}$

$\phi N_{sc} \ge N_{aua}$

The connection between anchor and channel strength N_{sc} , and ϕ is tabulated in Table ESR-3520 Table 8-3 for HAC and HAC-T with Hilti Channel Bolts (HBC-C, HBC-T and HBC-C-N).

The Test No. 1 of AC232 is performed to determine the strength of the connection between anchor and channel. All anchor channel sizes

with all anchor types and all materials are tested. The largest channel bolt with the maximum steel strength specified for the tested anchor channel shall be used as a component of the test specimen to avoid failure of the channel bolt. The anchors shall be tested in a tension test rig without being cast into concrete. Insert the channel bolt over one anchor and apply the load directly to channel bolt without a fixture.

Figure 7.3.1.1 — Tension test for testing anchor channels in a universal testing machine.

Channel Lip Strength φN

Channel lip strength N_{sl}, and ϕ is tabulated in Table ESR-3520 Table 8-3 for HAC and HAC-T with Hilti channel bolts (HBC-C, HBC-T and HBC-C-N).

The Test No. 2 of AC232 is performed to determine the strength of local rupture of the channel lips. Test No. 2 the anchors shall be tested in a tension

test rig without being cast into concrete (See Figure 7.3.1.2). Insert the channel bolt over one anchor and apply the load directly to channel bolt without a fixture.

Exception: In Test No. 2 (determination of the channel lip strength) tests shall be performed with anchor channels with two anchors cast into low-strength concrete with anchor spacing $s > s_{min}$ where s_{min} , shall be taken as the value which will be published in the ICC-ES Evaluation Service Report but shall not be taken less than 4 inches (100 mm). The distance between the end of the channel and the anchor axis shall correspond to the minimum value specified for the tested channel size. Insert the channel bolt over one anchor and apply the load directly to the channel bolt. A fixture with the following dimensions shall be used: width = b_{ab} length = $3b_{ab}$, thickness = d_c . The fixture shall be shimmed with steel strips having a thickness = 1/8 inch (3.2 mm) located on each side of the anchor channel as shown in Figure 7.3.1.3 below. The diameter of the hole in the fixture shall be approximately 10 percent larger than the diameter of the shaft of the channel bolt. The channel bolt shall be pretensioned. However, the support spacing may be reduced to 1.0 h_{af} in every direction as shown in Figure 7.3.1.4. Direct contact between the test stand and the channel profile is not permitted.

The failure load, the corresponding displacement, and the failure mode shall be recorded.

12. Instructions for Use

13. Field Fixes

Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019

anchor channels (Figure taken from AC232, Figure 5.4).

1. Anchor Channel Systems

2. HAC Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material 6. Loading 9. Special Anchor 10. Design **Channel Design** Software

The nominal strength of the channel lips to take up tension loads transmitted by a channel bolt, N_a, must be taken from ESR 3520 Table 8-3. This value is valid only if the center-tocenter distance between the channel bolt under consideration and adjacent channel bolts, S_{chb}, is at least 2b_{ch} (see fig 7.3.1.5). If this requirement is not met then the value N_a given in table 8-3 must be reduced by the factor

Where the center-to-center spacing between channel bolts shall not be less than 3-times the bolt diameter d.

Figure 7.3.1.5 — Anchor channel dimensions.

Channel Bolt Strength ϕN_{a}

Channel bolt strength N_a, and ϕ are tabulated in ESR-3520 Table 8-11 for HAC and HAC-T with Hilti channel bolts (HBC-B, HBC-C, HBC-T and HBC-C-N).

φN_e ≥ N_{bua}

The nominal strength of the channel bolt, N_a, shall not exceed the value determined in accordance with the following equation:

 $N_{ss} \ge A_{use,N} f_{utb}$

where A_{una N} is the effective cross-sectional area in tension, in² (mm²); and f_{utb} shall be taken as the smaller of 1.9 f_{vb} and 125,000 psi (860 MPa)

Test No. 3 is performed to evaluate the strength of the head of the channel bolt. All channel bolt sizes have been tested. For test No. 3, test the channel bolts in a section of channel that is sufficiently restrained to cause failure of the channel bolt (Figure 7.3.1.6 a). If the channel bolt is intended to be used for different channel sizes, conduct the tests in the channel profile with the

maximum width of the slot between the channel lips. Insert

the channel bolt in the channel profile and apply the load with

a coupling nut to avoid thread failure. Alternatively, in case of

standard channel bolts, channel bolts may be tested in a steel

template (Figure 7.3.1.6 b). This template shall represent the

(Figures a and b taken from AC232, Figure 5.8). Figure 7.3.1.6 - Test on channel bolts, test series No. 3.

Channel Flexural Strength, φM

Bending strength M_{s.flex} $M_{_{s,flex,seis}}$ and φ are tabulated in ESR-3520 Table 8-3 for HAC and HAC-T with Hilti channel bolts (HBC-C, HBC-T and HBC-C-N).

 $\phi M_{s,flex} \ge M_{u,flex}$

The flexural strength of an anchor channel shall be established in accordance to Test No. 4 of AC232. The purpose of this test is to measure the bending strength of the channel taking account of the restraint of the deformation of the outer ends of the channel by the concrete. The tests shall be performed with all sizes and materials of anchor channels. Anchor channels with two anchors with a maximum spacing and the minimum distance between the end of the channel and the anchor axis as specified by the manufacturer and with an anchor type that provides the lowest anchor strength shall be tested. The channel bolt with the smallest head size and maximum steel strength that, when tested, still results in steel failure of a part of the anchor channel other than the channel bolt shall be used. If the largest channel bolt size still results in bolt failure, the bolt failure load shall be taken as the load corresponding to bending failure. In case of locking channel bolts in combination with non-serrated channels, test has been performed with all channel bolt sizes.

In Test No. 4, concrete failure shall be avoided. This may be achieved by testing anchor channels with anchors that have an increased embedment depth.

In tension Test No. 4 the distance between the support reaction and any loaded anchor may be smaller than 2h_a to avoid concrete failure.

Photo of an anchor channel after test; failure by bending of channel and distortion of anchor flanges

Figure 7.3.1.7 — Flexural test on anchor channels.

This behavior of anchor channel in concrete is influenced by a multitude of parameters, including the condition of the base material (cracked or uncracked), the direction of the action (tension, shear, combined tension and shear, or shear with lever arm), concrete strength, embedment depth, distance to neighboring fasteners and to edges, nature of the action (transitory, sustained, seismic or shock load) and amount and configuration of proximate reinforcement. In addition, environmental factors such as corrosion, extreme temperatures, and fire can affect anchor performance and must be properly considered in anchor channel design.

7.3.2 CONCRETE TENSILE STRENGTHS

Pull Out Strength φN

Pull-out and pull-through failure is characterized by the anchor being pulled out, whereby the concrete in the immediate vicinity of the anchor may not be damaged.

Per ESR-3520 Section 4.1.3.2.4, **nominal pullout strength (N**_m) is calculated using ACI 318 anchoring to concrete provisions. ACI 318-11 Appendix D and ACI 318-14 Chapter 17

provisions.

λ

λ

φN _{pn}	≥	N _{aua}		
N _{pn}	=	Ψ _{с.P} .	λ.	Ν
Np	=	8 Å	, f' 。	
e			· .	

reference ACI 318-14 Eq. (17.4.3.1) reference ACI 318-14 Eq. (17.4.3.4)

concrete compressive strength ť.

A. for anchor channel is found in ESR-3520 Table 8-1

- modification factor for lightweight concrete =
- λ = 1 for Normal weight concrete
- λ = 0.85 for Sand Light weight concrete
- = 0.75 for All Light weight concrete

7.3 Anchor Channel Tension Design

The value calculated from Eq. (17.4.3.4) corresponds to the load at which crushing of the concrete occurs due to bearing of the anchor head (CEB 1997; ACI 349). It is not the load required to pull the anchor completely out of the concrete, so the equation contains no term relating to embedment depth. Local crushing of the concrete greatly reduces the stiffness of the connection, and generally will be the beginning of a pullout failure.

In lightweight concrete subjected to tensile stress, the aggregate fractures and the surface of the crack is, compared to the fracture process in concrete containing normal weight aggregate, relatively smooth. Therefore, the descending (strain softening) part of the load-deformation curve for normal weight concrete is less steep than in the case of lightweight concrete. Hence the strength is reduced using reduction factor λ .

Figure 7.3.2.1 - Influence of crack path on the stress-deformation behavior of concrete. concrete.(Picture from Anchorage in Concrete Construction, R. Eligehausen).

Figure 7.3.2.2 - Concrete cone in cracked (left) and uncracked (right) concrete.

A cracked tension zone is assumed because concrete possesses relatively low tensile strength, which may be fully or partly used by internal or restraint tensile stresses not taken into account in the design. The load-bearing behavior of an anchor can be significantly influenced by the presence of a crack passing through the anchor location. For anchor channels located in a region of a concrete member where analysis indicates no cracking at service load levels, the following modification factor shall be permitted

ψ_{cp} = 1.25

Where analysis indicates cracking at service load levels ψ_{aa} shall be taken as 1.0.

Concrete	$\Psi_{c,p}$
Cracked	1.00
Uncracked	1.25

2. HAC Portfolio

4. Design **Applications** Introduction

3. HAC

5. Base material 6. Loading

8. Reinforcing Anchor Channe Design Code Bar Anchorage

φ factor:

Condition A (ϕ =0.75) is considered when

- Supplementary reinforcement is present
- Reinforcement does not need to be explicitly designed for the anchor channel
- · Arrangement should generally conform to anchor reinforcement

1. Anchor

Channel Systems

Development is not required

Condition	φ
A	0.75
В	0.7

Condition B (ϕ =0.70) is considered when

No Supplementary reinforcement is present

Figure 7.3.2.3 — Arrangement of anchor reinforcement for anchor channels loaded by tension load at an edge

Figure 7.3.2.4 Arrangement of anchor reinforcement for anchor channels loaded by tension load in a narrow member.

Concrete breakout strength also known as concrete cone failure, the concrete breakout failure mode is characterized by the formation of a coneshaped fracture surface in the concrete. The full tensile capacity of the concrete is utilized. Anchor channels

with an adequately large bearing surface will generate concrete cone breakout failures if the steel capacity is not exceeded. Headed studs transfer the tensile force into the base material through bearing (mechanical interlock). Consequently, for the same load, the amount of displacement depends on the bearing contact area.

Figure 7.3.2.5 - Concrete cone in tension. (Picture from Anchorage in Concrete Construction, R. Eligehausen).

If the anchors are short, or if they are closely spaced or positioned near a free edge, a cone-shaped concrete breakout may limit the tension capacity of the anchor. For this type of failure the load-bearing behavior of channels with two anchors or of channels with more than two anchors and equal load on each anchor mimics that of headed studs. The presence of the channel profile in the breakout cone may influence the loadcarrying capacity depending on the ratio of the height of the channel to embedment depth.

Per ESR-3520 Section 4.1.3.2.3, nominal concrete breakout strength (N_{ab}) is calculated using ESR 3520 Equation (6). The value calculated for concrete breakout strength in tension (N_{ab}) is based on the location of the anchor element being considered. The basic concrete breakout strength in tension (N_L)is not dependent on the anchor element being considered or the concrete geometry. Therefore, the calculated value for N_b will be the same for each anchor element.

$$\begin{split} \phi & N_{cb} \geq N_{ua}^{a} \\ N_{cb} = N_{b} \cdot \psi_{s,N} \cdot \psi_{ed,N} \cdot \psi_{co,N} \cdot \psi_{cp,N} \cdot \psi_{c,N} \end{split}$$

ESR-3520 Equation (6)

- basic concrete breakout strength in tension Ν modification factor for anchor spacing $\Psi_{s,N}$ $\Psi_{\text{ed},N}$ modification factor for edge effects modification factor for corner effects $\Psi_{co,N}$
- modification factor cracked/uncracked concrete $\Psi_{c,N}$
- modification factor for splitting $\Psi_{cp,N}$

Figure 7.3.2.6 - Concrete cone breakout of a group of anchors. (Picture from Anchorage in Concrete Construction, R. Eligehausen).

N = Basic concrete breakout strength

The basic concrete breakout strength of a single anchor in tension in cracked concrete, N_b, shall be determined in accordance with Eq. (7).

 λ = modification factor for lightweight concrete

- $\lambda = 1$ for Normal weight concrete
- λ = 0.85 for Sand Light weight concrete
- λ = 0.75 for All Light weight concrete
- f' = concrete compressive strength

$$\begin{split} \mathbf{N}_{\mathrm{b}} &= 24 \cdot \lambda \cdot \alpha_{\mathrm{ch,N}} \cdot \sqrt{f_{\mathrm{c}}^{'}} \cdot \mathbf{h}_{\mathrm{ef}}^{1.5} \text{ , Ib} \\ \mathbf{N}_{\mathrm{b}} &= 10 \cdot \lambda \cdot \alpha_{\mathrm{ch,N}} \cdot \sqrt{f_{\mathrm{c}}^{'}} \cdot \mathbf{h}_{\mathrm{ef}}^{1.5} \text{ , N} \end{split}$$

ESR-3520 Equation (7)

ACI 318-14: Equation17.4.2.2a

$$u_{ch,N} = \left(\frac{h_{ef}}{7.1}\right)^{0.15} \le 1.0 \quad \text{(inch-pound)} \quad \text{ESR-3520 Equation}$$
$$u_{ch,N} = \left(\frac{h_{ef}}{180}\right)^{0.15} \le 1.0 \quad \text{(SI-units)}$$

According to ACI 318-14 of section 17.4.2.2 the basic concrete breakout strength of a single anchor in tension in cracked concrete, N_k, shall not exceed ESR-3520 Equation 7 or ACI 318-14: 17.4.2.2a. Alternatively in accordance to ACI 318-14, for cast-in headed studs and headed bolts with 11 in. $\leq h_{sc} \leq 25$ in., N_b shall not exceed ACI 17.4.2.2b. Hence in case of an anchor channel with 11 in. $\leq h_{..} \leq 25$ in., N, shall not exceed ACI 318-14 Equation 17.4.2.2b. The values of 24 in Eq. (17.4.2.2a) were determined from a large database of test results in uncracked concrete (Fuchs etal. 1995) at the 5 percent fractile. The values were adjusted to corresponding 24 value for cracked concrete (Eligehausen and Balogh 1995; Goto 1971). For anchors with a deeper embedment ($h_{st} > 11$ in.), test evidence indicates the use of h_{ef}^{1.5} can be overly conservative for some cases. An alternative expression (Eq. (17.4.2.2b)) is provided using h_{ef}^{5/3} for 7.3 Anchor Channel Tension Design

evaluation of cast-in headed studs and headed bolts with 11 in. ≤ h, < 25in.

$$N_b = 16\lambda_a \sqrt{f'_c} h_{ef}^{\left(\frac{5}{3}\right)}$$

ACI 318-14: Equation17.4.2.2b

A practical solution to assess the failure loads of anchors is via empirically derived equations that encompass theoretical models. This approach has led to the development of the CCD (Concrete Capacity Design) Method. Concrete cone failure loads subjected to concentric tension as a function of embedment depth.

 $\alpha_{\rm rb}$ factor to account for the influence of channel size on concrete breakout strength in tension. It decreases the concrete breakout capacity for the anchor channels with embedment depth less than 7.1".

The presence of the channel profile in the breakout cone may influence the load-carrying capacity depending on the ratio of the height of the channel to embedment depth. As shown in Fig 7.3.2.7. It has been observed in testing that having less concrete because of profile occupying the volume of concrete reduces the concrete breakout capacity in tension by the reduction factor $\alpha_{ch N}$. Another observation that has been seen is that the anchor channels with effective embedment greater than 7.1" the reduction in this capacity is negligible. This observation has been included in the reduction ESR-3520 Equation (8).

Figure 7.3.2.7 - Concrte Breakout cone in tension

Anchor channel h_a can be found in ESR-3520 Table 8-1

Where anchor channels with $h_{st} > 7.1$ in. (180 mm) are located in an application with three or more edges (as illustrated in Figure 7.3.2.8 & 7.3.2.9) with edge distances less than c_{arN} (c_{arN} in accordance with Eq. (14)) from the anchor under consideration, the values of h_{a} used in Eq. (7), (8), and (11) may be reduced to h_{ef red} in accordance with Eq. (9).

$$h_{ef,red} = \max\left(\frac{c_{a,\max}}{c_{cr,N}}.h_{ef};\frac{s}{s_{cr,N}}.h_{ef}\right), in.(mm)$$

ESR-3520 Equation (9)

where

c_{a max} = maximum value of edge or corner distance, in. (mm) The values $c_{cr.N}$ and $s_{cr.N}$ in Eq. (9) shall be computed with h_{ar} .

3. HAC

Applications

5. Base material

7.3.2.12), the minimum value of c_{a11} and c_{a12} shall be inserted in Eq. (13).

Figure 7.3.2.12 a)— at an edge

Figure 7.3.2.12 b)— in a narrow member

Figure 7.3.2.12 - Idealized projected area of anchor of an anchor channel loaded in tension near a corner (top) near a corner and in a narrow member (bottom)

$\Psi_{co,N}$ = modification factor for corner influence

The modification factor for corner effect of anchors loaded in (15) or tension, $\psi_{co.N}$, shall be (16)

f
$$c_{a2} \ge c_{cr,N}$$
 ESR-3520 Equation (15
hen $\psi_{co,N} = 1.0$

ESR-3520 Equation (16)

then
$$\psi_{co,N} = \left(\frac{c_{a2}}{c_{cr,N}}\right)^{0.5} \le 1.0$$

$$c_{cr,N} = 0.5 s_{cr,N} \ge 1.5 h_{ef}$$
 ESR-3520 Equation (14)

c_=distance of the anchor under consideration to the corner (see figure 7.3.2.13 a, b).

If an anchor is influenced by two corners (as illustrated in Figure 7.3.2.13 c), the factor ψ_{coN} shall be computed for each of the values $c_{a2,1}$ and $c_{a2,2}$ and the product of the factors, $\psi_{co,N}$, shall be inserted in Eq. (6).

$$\Psi_{co,N,3} = \left(\frac{c_{a2.1}}{c_{cr,N}}\right)^{0.5} \le 1.0$$

and

$$\psi_{co,N,3} = \left(\frac{c_{a2.2}}{c_{cr,N}}\right)^{0.5} \le 1.0$$

 $C_{a2,1} \leq C_{cr,N}$ $C_{a2.2} \leq C_{cr,N}$ $C_{a1} \leq C_{cr.N}$ nchor Anchor Anchor under consideration

Figure 7.3.2.8 — Anchor channel with influence of one edge and two corners

Figure 7.3.2.9 - Anchor channel with influence of two edges and one corner.

Ψ_{sN} = modification factor influencing the location of adjacent anchors

Channels with more than two anchors and loaded in the span behave like continuous beams on springs, whereby the stiffness of the springs corresponds to the load-displacement curve of the anchor. The concrete cone capacity of the anchor in question is influenced by the distance of and the load on neighboring anchors. This is taken into account by multiplying the basic concrete cone capacity N_{h} , with the modification factor $\psi_{s,N}$. The factor $\psi_{s,N}$ replaces the ratio $A_{c,N}/A^{\circ}_{c,N}$, the factor $\psi_{ec N}$ of ACI equation of concrete breakout of headed stud anchor. For anchor channel with two anchors the factor $\psi_{\alpha N}$ and the product $(A_{c,N} / A^{\circ}_{c,N}) \psi_{ec,N}$ give practically the same results.

The modification factor to account for the influence of location and loading of adjacent anchors, $\psi_{s,N}$, shall be computed in accordance with Eq below.

Figure 7.3.2.10 - Example of anchor channel with non-uniform tension forces

$$\begin{split} \nu_{s,N} &= \frac{1}{1 + \sum_{i=2}^{i} \left[\left(1 - \frac{s_i}{s_{cr,N}} \right)^{1.5} \cdot \frac{N_i}{N_1} \right]} & \text{ESR-3520 Equation (10)} \\ s_{cr,N} &= 2 \left(2.8 - \frac{1.3h_{ef}}{7.1} \right) h_{ef} \ge 3h_{ef} & \text{in.} \\ s_{cr,N} &= 2 \left(2.8 - \frac{1.3h_{ef}}{180} \right) h_{ef} \ge 3h_{ef} & \text{mm.} \end{split}$$

- s, = distance between the anchor under consideration and \leq s_{cr N} adjacent anchor, in. (mm)
- N_i = tension force of a neighboring anchor
- N_{c} = tension force of the anchor which resistance is determined

$$y_{s,N3} = \frac{1}{1 + \sum \left[\left(1 - \frac{s_2}{s_{cr,N}} \right)^{1.5} \cdot \frac{N_{ua,2}^a}{N_{ua,1}^a} \right] + \left[\left(1 - \frac{s_3}{s_{cr,N}} \right)^{1.5} \cdot \frac{N_{ua,3}^a}{N_{ua,1}^a} \right] + \left[\left(1 - \frac{s_4}{s_{cr,N}} \right)^{1.5} \cdot \frac{N_{ua,4}^a}{N_{ua,1}^a} \right]$$

If an anchor channel is located with the edge $c_{a1} \ge c_{crN}$ in all directions the modification factors for concrete edge and corner effect is taken as 1. For applications where $c_{a1} \le c_{crN}$ for example close to the edge or corner, equation should be reduced according to the modification factors given below.

Figure 7.3.2.11 - Idealize failure plane in concrete due to tension forces.

$\psi_{ed,N}$ = modification factor for edge effect

The modification factor for edge effect of anchors loaded in tension, $\psi_{\text{ed,N}}$, shall be computed in accordance with Eq. (12) or (13)

If
$$c_{a1} \ge c_{cr,N}$$

Escale to the equation (12)
Escale to the equation (12)
Escale to the equation (13)
Escale to the equation (14)
Escale to the equation (13)
Escale to the equation (13)
Escale to the equation (14)
Escale to the equation (13)
Escale to the equation (14)
Escale to the equation (13)
Escale to the equation (14)
Escale to the equation (15)
Escale to the equation (14)
Escale to the equation (15)
Escale to the equati

where:

$$c_{cr,N} = 0.5 s_{cr,N} \ge 1.5 h_{ef}$$

If anchor channels are located in a narrow concrete member with multiple edge distances c_{a11} and c_{a12} (as shown in Figure

$$_{2} \ge c_{cr,N}$$
 ESR-3520 Equation $\psi_{co,N} = 1.0$

If
$$c_{a2} < c_{cr,N}$$

Figure 7.3.2.13 — Anchor channel with the influence of one edge and one corner (a and b), two corners and one edge (c), and two edges and one corner (d).

$\psi_{c,N}$ = modification factor for cracked/uncracked concrete

A cracked tension zone is assumed because concrete possesses relatively low tensile strength, which may be fully or partly used by internal or restraint tensile stresses not taken into account in the design. The load-bearing behavior of an anchor can be significantly influenced by the presence of a crack passing through the anchor location. For anchor channels located in a region of a concrete member where analysis indicates no cracking at service load levels, the following modification factor shall be permitted

ψ_{c N} = 1.25

Where analysis indicates cracking at service load levels $\psi_{\alpha N}$ shall be taken as 1.0. The cracking in the concrete shall be controlled by flexural reinforcement distributed in accordance with ACI 318-14 Section 24.3.2 and 24.3.3, or equivalent crack control shall be provided by confining reinforcement.

 $\Psi_{c,N}$ Concrete Cracked 1 Uncracked 1.25

The anchor gualification tests of ACI 355.2 or ACI 355.4 require that anchors in cracked concrete zones perform well in a crack that is 0.012 in. wide. If wider cracks are expected, confining reinforcement to control the crack width to approximately 0.012 in. should be provided.

3. HAC

5. Base material 6. Loading

8. Reinforcing 9. Special Anchor **Bar Anchorage Channel Design**

Figure 7.3.2.14 — Cracked and uncracked concrete

$\Psi_{co,N}$ = modification factor for splitting

The modification factor for anchor channels designed for uncracked concrete without supplementary reinforcement to control splitting, $\psi_{co.N}$, shall be computed in accordance with Eq. (17) or (18). The critical edge distance, c_{oo}, shall be taken from Table 8-4 of ESR-3520.

- critical edge distance for splitting C =
- critical anchor edge distance C_{cr.N}
- minimum edge distance C_{s,min} =

	$\Psi_{cp,N}$
Uncracked concrete with no supplementary reinforcement	
If c _{a,min} ≥ c _{ac} ESR 3520 eq (17)	1
If c _{a,min} < c _{ac} ESR 3520 eq (18)	$\Psi_{cp,N} = MAX\left\{\left(\frac{c_{a,\min}}{c_{ac}}\right); \left(\frac{c_{\sigma,N}}{c_{ac}}\right)\right\}$
Uncracked concrete with supplementary reinforcement	1
Cracked concrete	1

The basic concrete breakout strength can be achieved if the minimum edge distance ca, min equals c_{are}. Test results, however, indicate that it require minimum edge distances exceeding c_{ern} to achieve the basic concrete breakout strength when tested in uncracked concrete without supplementary reinforcement to control splitting. When a tension load is applied, the resulting tensile stresses at the embedded end of the anchor are added to the tensile stresses induced due to anchor installation, and splitting failure may occur before reaching the concrete breakout strength. To account for this potential splitting mode of failure, the basic concrete breakout strength is reduced by a factor $\psi_{cn N}$ if $c_{a \min}$ is less than the critical edge distance c.... If supplementary reinforcement to control splitting is present or if the anchors are located in a region where analysis indicates cracking of the concrete at service loads, then the reduction factor $\psi_{cn N}$ is taken as 1.0. The presence of supplementary reinforcement to control splitting does not affect the selection of Condition A or B.

φ factor for concrete breakout strength in tension

Condition A (ϕ =0.75) is considered when

- Supplementary reinforcement is present
- Reinforcement does not need to be explicitly designed for the anchor channel
- Arrangement should generally conform to anchor reinforcement
- Development is not required

Condition B (ϕ =0.70) is considered when

No Supplementary reinforcement is present

Condition	φ
А	0.75
В	0.70

Figure 7.3.2.15 — Arrangement of anchor reinforcement for anchor channels loaded by tension load in a narrow member.

Figure 7.3.2.16 — Arrangement of anchor reinforcement for anchor channels loaded by tension load at an edge.

Anchor reinforcement in tension

As opposed to supplementary reinforcement, anchor reinforcement acts to transfer the full design load from the anchors into the reinforcement. Hence, concrete breakout is precluded. Where anchor reinforcement is developed in accordance with ACI 318 on both sides of the breakout surface for an anchor of an anchor channel, the design strength of the anchor reinforcement shall be permitted to be used instead of the concrete breakout strength in determining ΦNn or ΦVn , dependent upon the if the load is tension or shear. A strength reduction factor of 0.75 shall be used in the design of the anchor reinforcement. Anchor reinforcement can be utilized in tension, longitudinal shear, and perpendicular shear. An explicit design and full development are required for anchor reinforcement.

Tension* (AC232 D5.2.10.9)

In accordance with the provisions of AC232 D5.2.10.9, the tension anchor reinforcement shall consist of stirrups made from deformed reinforcing bars with a maximum diameter of 5/8 in (No. 5 bar)

Figure 7.3.2.17 — Arrangement of anchor reinforcement for anchor channels loaded in tension, plan view.

- effective embedment depth h_ =
- N = factored tension load
- ℓ_{d} = development length
- = development length in tension of a deformed bar or lah deformed wire with a standard hook, measured from critical section to outside end of hook

Where anchor reinforcement is developed in accordance with ACI 318-11 Chapter 12 or ACI 318-14 Chapter 25 on both sides of the breakout surface for an anchor of an anchor channel, the design strength of the anchor reinforcement, ϕN_{a} , shall be permitted to be used instead of the concrete breakout strength, ϕN_{ab} , in determining ϕN_{a} . The anchor reinforcement for one anchor shall be designed for the tension force, N^a, on this anchor using a strut-and-tie model. The provisions in Figure -7.3.2.17 shall be taken into account when sizing and detailing the anchor reinforcement. Anchor reinforcement shall consist of stirrups made from deformed reinforcing bars with a maximum diameter of 5/8 in. (No. 5 bar) (16 mm). A strength reduction factor, ϕ , of 0.75 shall be used in the design of the anchor reinforcement.

1. Anchor 2. HAC **Channel Systems** Portfolio

3. HAC **Applications**

4. Design Introduction

5. Base material 6. Loading

Concrete side-face blowout strength ϕN_{a}

Tension-loaded headed studs provided with small edge distances can generate local blowout failures in the vicinity of the head. Side blow-out failure will govern the concrete capacity of studs having small edge distance (concrete cover) in combination with large embedment depth. Local concrete side blow-out failure is caused by the quasihydrostatic pressure in the region of the head of the stud which gives rise to a lateral bursting force. The failure

load will increase in proportion to the edge distance c₁. For anchor channels located perpendicular to the edge and loaded uniformly, verification is only required for the anchor closest to the edge.

For anchor channels with deep embedment close to an edge $(h_{4} > 2c_{4})$ the nominal side-face blowout strength, N_{ab}, of a single anchor shall be computed in accordance with Eq. (19)

$$\phi \quad N_{sb} \ge N_{ua}^{a}$$
$$N_{sb} = N_{sb}^{0} \cdot \psi_{s,Nb} \cdot \psi_{g,Nb} \cdot \psi_{co,Nb} \cdot \psi_{h,Nb} \cdot \psi_{c,Nb}, \ lb(N)$$

ESR-3520 Equation (19)

- basic concrete side-face blowout strength in tension N_b
- modification factor for effect of distance to $\Psi_{s,Nb}$ neighboring anchors
- modification factor for effect of influence of the $\Psi_{a,Nb}$ = bearing area of neighboring anchors
- modification factor to account for influence of corner effects
- modification factor to account for influence of the member thickness
- modification factor to account for influence of $\Psi_{c,Nb}$ uncracked concrete
- N_{sh} Basic concrete side-face blowout strength =

N_{cb} = Basic concrete side-face blowout strength

The basic nominal strength of a single anchor without influence of neighboring anchors, corner or member thickness effects in cracked concrete, Nº shall be computed in accordance with Eq. (20).

$$N_{sb}^{0} = 128 \cdot \lambda \cdot c_{a1} \cdot \sqrt{A_{brg}} \cdot \sqrt{f_{c}}, \ lb$$

$$N_{sb}^{0} = 10.5 \cdot \lambda \cdot c_{a1} \cdot \sqrt{A_{brg}} \cdot \sqrt{f_{c}}, \ N$$
ESR-3520 Equation (20)

$\psi_{{}_{s,Nb}}$ = modification factor for effect of distance to neighboring anchors

The modification factor accounting for the distance to and loading of neighboring anchors, $\psi_{s,Nb}$, shall be computed in accordance with Eq. (10), however s_{crN} shall be replaced by s_{or Nb}, which shall be computed in accordance with Eq. (21).

 $s_{cr,Nh} = 4c_{a1}, in.(mm)$

ESR-3520 Equation (21)

$\psi_{s,Nb}$ = modification factor to account for influence of uncracked concrete

The following modification factor to account for influence of uncracked concrete, $\psi_{c,Nb}$, shall be permitted:

 $\Psi_{c,Nb}$ = 1.25

Figure 7.3.2.18 - Blowout failure of a deep anchor near an edge. (Picture from Anchorage in Concrete Construction, R. Eligehausen).

= modification factor for effect of influence of the $\Psi_{a,Nb}$ bearing area of neighboring anchors

The modification factor to account for influence of the bearing area of neighboring anchors, $\Psi_{a Nb}$, shall be computed in accordance with Eq. (22) or Eq. (23).

If
$$s \ge 4c_{a1}$$
, then $\Psi_{g,Nb} = 1.0$
If $s < 4c_{a1}$, then $\Psi_{g,Nb} = \sqrt{n} + (1 - \sqrt{n}) \cdot \frac{s}{4c_{a1}} \ge 1.0$
ESR-3520 Equation

ESR-3520 Equation (23)

where:

n = number of tensioned anchors in a row parallel to the edge

$\psi_{_{\text{co,Nb}}}$ = modification factor to account for influence of corner effects

The modification factor to account for influence of corner effects, $\psi_{co,Nb}$, shall be computed in accordance with Eq. (24).

$$\psi_{\text{co,Nb}} = \left(\frac{c_{a2}}{c_{\text{cr,Nb}}}\right)^{0.5} \le 1.0$$
ESR-3520 Equation (

 c_{ab} = corner distance of the anchor for which the resistance is computed, in. (mm)

 $c_{crNh} = 2c_{a1}$, in. (mm)

ESR-3520 Equation (2)

If an anchor is influenced by two corners ($c_{a2} < 2c_{a1}$), then the factor, $\psi_{co,Nb}$, shall be computed for c_{a21} and c_{a22} and the product of the factors shall be inserted in Eq. (19).

= modification factor to account for influence of the $\Psi_{h Nh}$ member thickness

The modification factor to account for influence of the member thickness, $\psi_{h N h}$ shall be computed in accordance with Eq. (26) or Eq. (27).

If $f \ge 2c_{a1}$ then $\psi_{h N b} = 1.0$

If
$$f \ge 2c_{a1}$$
 then $\psi_{h,Nb} = \left(\frac{h_{ef} + f}{4c_{a1}}\right) \le \left(\frac{2c_{a1} + f}{4c_{a1}}\right)$

ESR-3520 Equation (26) ESR-3520 Equation (27)

where.

f = distance between the anchor head and the surface of the concrete member opposite to the anchor channel (as illustrated in Figure 7.3.2.19), in. (mm)

11. Best **Practices** 12. Instructions for Use

14. Design Example

7.3 Anchor Channel Tension Design

Figure 7.3.2.19 — Anchor channel at the edge of thin concrete member

φ factor for concrete side-face blowout strength

Condition A (ϕ =0.75) is considered when

- Supplementary reinforcement is present
- Reinforcement does not need to be explicitly designed for the anchor channel
- Arrangement should generally conform to anchor reinforcement
- Development is not required (24)

Condition B (ϕ =0.70) is considered when

No Supplementary reinforcement is present

25)	Condition	φ
	А	0.75
	В	0.70

Anchor cahnnel with deformed rebar anchors

Where anchors consist of deformed reinforcing bars, verification for concrete breakout is not required provided that the deformed reinforcing bars are lap spliced with reinforcing bars in the member according to the requirements of ACI 318-14 Section 25.5. Refer Section 8.6 of Chapter 8 regarding splice length.

6. Loading

10. Design Software

7.4 ANCHOR CHANNEL DESIGN IN SHEAR

2. HAC

Portfolio

3. HAC

Applications

Shear Load Acting Perpendicular to Channel

1. Anchor

Channel Systems

7.4.1 STEEL STRENGTHS IN PERPENDICULAR SHEAR

Steel failure Anchors loaded in shear exhibit steel failure when the edge distance and the embedment depth are sufficiently large, whereby conical spalling of the surface concrete precedes steel failure Figure 7.4.1.1. For a given anchor, steel failure represents a limit on the maximum shear capacity. Anchors made of ductile steels can develop relatively large displacements at failure.

Figure 7.4.1.1 — Steel failure in shear of anchor channel lip.

4. Design

Introduction

Channel lip: ϕV_{slv}

Anchor and channel connection: $\phi V_{sc,y}$

Figure 7.3.1.1— Possible tensile failure modes of an anchor channel.

Table 7.4.1.1 — Test program for anchor channels for use in uncracked and cracked concrete (Table 4.1 of AC232).

					Minimum				Chann	el bolt
Test no.	Test Ref	Test description	f _c	Δw	No. of tests	Channel	Anchor	Material	d _s	strength
[-]	Secion in Annex A	EI	psi [N/mm²]	inch (mm)	[-]	[-]	[-]	[-]	inch (mm)	[-]
	Steel failure under Shear load									
8	7.8	Failure of anchor, failure of connection between anchor and channel, local rupture of channel lips ⁶	Low	0	5 ^{1,8}	See AC 232 section 7.8.2				
9		intentionally left blank								
			Concrete fail	ure under she	ear load					
10	7.10	$\begin{array}{c} Concrete \mbox{ edge failure}^7 \mbox{ factor } \alpha_{ch,V} \\ c_a = c_{a,min}, \mbox{ s = s}_{max}, \\ and \mbox{ h > h}_{crV} \end{array}$	Low	0	5	See AC 232 section 7.10.2				
11		intentionally left blank								

1 If the coefficient of variation Vof the failure loads is $V \le 5$ percent, the number of tests can be reduced to n = 3

6 Tests may be omitted if the nominal shear strength of the channel, V_{nsv} is taken as $< N_n$

7 Tests may be omitted if the nominal strength, V_{mut} is computed in accordance with Eq. (D-24a, ACI 318-05,-08), (D-33a, ACI 318-11), (17.5.2.10.2, ACI 318-14) with αch,v= 5.6 lbf^{1/2}/in^{1/3} $(\alpha_{abu} = 4.0 \text{ N}^{1/2}/\text{mm}^{1/3} \text{ for SI})$ (Normal weight concrete

8 Five tests need to be conducted with the channel bolt positioned over the anchor and an additional five tests with the channel bolt positioned midway between the two anchors, unless footnote 1 applies

Concrete edge breakout: $\phi V_{cb,y}$

5. Base material

Pryout: $\phi V_{cp,y}$

Channel Lip Strength φV

The nominal strength of the channel lips to take up shear loads perpendicular to the channel transmitted by a channel bolt, V must be taken from Table 8-5 for HAC and HAC-T with Hilti channel bolts (HBC-B, HBC-C, HBC-T and HBC-C-N).

Local rupture of channel lips is determined from Test 8. The test is performed on anchor channels cast into concrete.

 $\phi V_{slv} \ge V^a_{uav}$

Anchor Strength ϕV_{sav} and Anchor and Channel Connection Strength φV_{sc}

The nominal strength of one anchor, $V_{sa,v}$, and anchor and channel connection V_{scr} to take up shear loads perpendicular to the channel must be taken from Table 8-5 for HAC and HAC-T with Hilti channel bolts (HBC-B, HBC-C, HBC-T and HBC-C-N).

Anchor strength is determined from Test 8. The test is performed on anchor channels cast into concrete.

 $\phi V_{sa,v} \ge V^a_{uav}$ $\phi V_{sc.v} \ge V^a_{uav}$

Tests 8 can be omitted if the nominal shear strength of the channel, $V_{n_s,v}$, is taken as $\leq N_{n_s}$. V_{n_s} is the nominal steel strength of anchor channel loaded in shear (lowest value of V, V, V, and V_{a} . N_a is the nominal steel strength of the anchor channel loaded in tension (lowest value of N_{sa} , N_{sc} and N_{sl}).

V_a: Nominal steel strength of anchor channel loaded in shear (lowest value of V_{sa} , V_{sc} , and V_{sl})

12. Instructions for Use

Bolt Strength φV_{ss}, φV_{ss.M}

$$\phi V_{ss} \ge V_{ua}^{b} \quad \phi V_{ss,M} \ge V_{ua}^{b}$$

The nominal strength of a channel bolt in shear, V_{aa}, must be taken from Table 8-12. The maximum value shall be computed in accordance with Eq. 17.5.1.4.1a, ACI 318-14). $V_{ss} = 0.6.A_{seV} f_{utb}$, lbf (N)

where

 f_{utb} shall be taken as the smaller of 1.9 f_{vb} and 125,000 psi (860 MPa)

If the fixture is not clamped against the concrete but secured to the channel bolt at a distance from the concrete surface (e.g. by double nuts), the nominal strength of a channel bolt in shear, V_{ssM} , shall be computed in accordance with Eq. (28).

$$V_{ss,M} = \frac{\alpha_M M_{ss}}{l}, \ lb(N)$$

- α_{M} = factor to take into account the restraint condition of the fixture
 - = 1.0 if the fixture can rotate freely (no restraint)
 - = 2.0 if the fixture cannot rotate (full restraint)

$$M_{ss} = M_{ss}^0 \left(1 - \frac{N_{ua}}{\phi N_{ss}} \right), \text{ lb-in (N-mm)} \text{ ESR-3520 Equation (29)}$$

=minimum [(1.9 fyb and 125,000 psi (860 MPa)], psi (MPa)). M_{m}^{0} = nominal flexural strength of channel bolt according to

Table 8-12.

= $1.2(S_{chb})f_{utb}$, lbf-in (N-mm) ≤ 0.5N a

= internal lever arm, in. (mm) as illustrated in Figure 7.4.1.2 а

- Т = tension force acting on channel lips
- C. = compression force acting on channel lips

Figure 7.4.1.2 - Definition of internal lever arm.

7.4 Anchor <u>Ω</u> el Shear Design (y)

4. Design **Applications** Introduction

3. HAC

8. Reinforcing 9. Special Anchor Bar Anchorage **Channel Design**

10. Design Software

a) α = 1; fixture can rotate

b) α = 2; fixture cannot rotate

Figure 7.4.1.4 — Channel bolt resisting shear forces with stand off.

7.4.2 CONCRETE STRENGTHS IN PERPENDICULAR SHEAR

Concrete Edge Breakout Shear Strength φ V_{ab}

Concrete edge breakout failure: Failure of an anchor channel installed at the edge of a concrete member and loaded in shear towards the edge characterized by the formation of a fracture surface originating at the channel and projecting towards the edge of the concrete member as shown in the figure 7.4.2.1.

Anchors loaded in shear toward

a proximate free edge may fail by development of a semiconical fracture surface in the concrete originating at the point of bearing and radiating to the free surface Fig. 7.4.2.2 b1. A group of anchors loaded in shear and proximate to an edge may develop a common conical fracture surface (Anchors loaded in shear toward a proximate free edge may fail by development of a semi-conical fracture surface in the concrete originating at the point of bearing and radiating to the free surface Fig. b1. A group of anchors loaded in shear and proximate to an edge may develop a common conical fracture surface Fig. b2, and the development of the fracture surface is interrupted by the presence of a corner Fig. b3 by the limited depth of the member (Fig. b4) or by proximate edges parallel with the load direction (Fig. b5). In these cases the failure load associated with the anchor or one anchor of the group is reduced compared to the application shown in Fig. b1. Fig. b2) and the development of the fracture surface may be interrupted by the presence of a

corner (Fig. b3) by the limited depth of the member Fig. b4) or by proximate edges parallel with the load direction (Fig. b5). In these cases the failure load associated with the anchor or one anchor of the group is reduced compared to the application shown in Fig. b1

The behavior of anchor channels loaded towards the free edge is based on numerical and experimental investigations. The shear load is initially transferred into the concrete via the channel and the anchors. Owing to the edge distance from the front face of the channel closer to the edge, which is smaller than the edge distance of the anchor, a local concrete failure starting at the front edge of the channel frequently occurs before the ultimate load is reached. Thereafter, the entire load is transferred to the concrete via the anchors.

Figure 7.4.2.1 — Concrete edge failure due to an anchor channel loaded in shear. Spacing of anchors equal to 5 times the edge distance

Figure 7.4.2.2 - Failure of concrete breakout in shear b,, b, and b) close to an edge, close to an edge and corner, away from the edge b, close to an edge, b, close to an edge and two corners in a deep member.

Figure 7.4.2.3 - Projected area of an anchor channel loaded in shear.

The ultimate load of a channel segment with one anchor depends on the size of the channel and anchor and is given by : $V_{\rm b}$ = Basic concrete breakout strength in shear

$$V_{b} = \lambda \cdot \alpha_{ch,V} \cdot \sqrt{f_{c}} \cdot (c_{a1})^{\frac{4}{3}}$$
ESR-3520 Equation (31)

 f'_{a} = the lesser of the specified concrete compressive strength and 8,500 psi (59 MPa)

- λ... Modification for lightweight concrete Lightweight concrete = 0.75 Sand-Lightweight concrete = 0.85
- α_{chv} ... Influence factor for channel size (channel factor depending on dimensions of profile and anchor) (10.50, max) AC232 test 10 has been used to determine α_{abv} for various anchor channel. Tests may be omitted if the nominal strength, V_{p} , is computed in accordance with (17.5.2.10.2, ACI 318-14) with $\alpha_{chv} = 5.6 \text{ lbf}^{1/2}/\text{in}^{1/3}$ $(\alpha_{cbv} = 4.0 \text{ N}^{1/2}/\text{mm}^{1/3} \text{ for SI})$ (Normal weight concrete)

The model described for the calculation of the concrete edge capacity of anchor channels under shear loading towards the edge assumes that shear forces are transferred by bending of the channel to the anchors and from the anchors into the concrete. This approach simplifies the real behavior. It has been chosen to allow for a simple interaction between tension and shear forces acting on the channel. Equation 31 gives the failure load of one anchor of an anchor channel. The influence of the geometric parameters edge distance, anchor spacing and component thickness is taken into account with sufficient accuracy. The nominal concrete breakout strength, V_{chu}, in shear perpendicular to the channel of a single anchor of an anchor channel in cracked concrete shall be computed as follows:

a) For a shear force perpendicular to the edge by Eq. (30)

$$\phi V_{cb} \ge V_{ua}^{a}$$
$$V_{cb} = V_{b} \cdot \psi_{s,V} \cdot \psi_{col,V} \cdot \psi_{co2,V} \cdot \psi_{h,V} \cdot \psi_{d}$$

c,V ESR-3520 Equation (30)

Basic concrete breakout strength in shear ٧. = Modification factor for anchor spacing Ψ_{sv} = Modification factor for corner effects $\Psi_{co,V}$ = Modification factor cracked/uncracked concrete Ψ_{cV} = Modification factor for concrete thickness Ψ_{hV}

b) For a shear force parallel to an edge (as shown in Figure 7.4.2.4), V_{cby} shall be permitted to be 2.5 times the value of the shear force determined from Eq. (30) with the shear force assumed to act perpendicular to the edge.

Figure 7.4.2.4 — Anchor channel arranged perpendicular to the edge and loaded parallel to the edge.

 Ψ_{uv} : The modification factor to account for the influence of location and loading of adjacent anchors shall be computed in accordance with Eq. (32).

S _i	=	distance between the anchor under consideration
		and the adjacent anchors ≤ s _{cr.v}
S _{crV}	=	$4c_{a1} + 2b_{ch}$
Valla i	=	factored shear load of an influencing anchor, lb (N)
Vaual	=	factored shear load of the anchor under
add,i		consideration, lb (N)
n	=	number of anchors within a distance s _{erv} to both sides
		of the anchor under consideration

ESR-3520 Equation (32)

The value calculated for concrete breakout strength in shear (V_{ab}) is based on the location of the anchor element being considered. The basic concrete breakout strength in shear (V_{μ}) is not dependent on the anchor element being considered, but it is dependent on the concrete geometry via the parameter c₁ However, the calculated value for $V_{\rm b}$ will be the same for each anchor element if the c_{d} value is the same for each element. The parameter ψ_{av} will be dependent on the anchor element being considered and the concrete geometry. Reference ESR-3520 Equation (32) for more information on how to calculate ψ_{ev}

179

1. Anchor Channel Systems

3. HAC **Applications**

2. HAC

Portfolio

4. Design Introduction

5. Base material

The parameter s_{crv} corresponds to the maximum distance that is assumed with respect to the influence of an anchor element on the anchor element being considered. Any anchor elements that are within s_{arv} from the anchor element being considered are assumed to have an influence on that anchor element. The calculated value for $s_{_{\rm cr,V}}$ will be the same for each anchor element if the c₁ value is the same for each element; however, the number of anchor elements within the distance s_{ave} from the anchor element being considered may not always be the same. Reference ESR-3520 Equation (33) for more information on how to calculate s_{crv} . Example for finding s_{crv} is demonstrated below.

Figure 7.4.2.5 - Example of an anchor channel with different anchor shear forces.

ψ_{cov} : The modification factor for corner effect for an anchor loaded in shear perpendicular to the channel, shall be computed in accordance with Eq. (34) or (35).

If $c_{a2} \ge c_{cr,V}$ then $\psi_{co,V} = 1.0$	ESR-3520 Equation (34)
If $c_{a2} < c_{cr,V}$ then $\psi_{co,V} = (c_{a2}/c_{cr,V})^{0.5}$	ESR-3520 Equation (35)
where: $c_{cr,V} = 0.5 \cdot s_{cr,V} = 2c_{al} + b_{ch}$ in. (mm)	ESR-3520 Equation (36)

If an anchor is influenced by two corners (as shown in Figure e), then the factor ψ_{cov} shall be computed for each corner in accordance with Eq. (34) or (35) and the product of the values of ψ_{cov} shall be inserted in Eq. (30).

Figure 7.4.2.6 - Example of an anchor channel loaded in shear with anchors a) influenced by one corner and b) influenced by two corners.

Ψ_{cv} : The modification factor for cracked/uncracked concrete.

Cracked concrete conditions with no supplementary reinforcement $\rightarrow \psi_{cv} = 1.0$

Note: if cracked concrete conditions are assumed, and supplementary edge reinforcement as defined in ESR-3520 Section 4.1.3.3.3 is used, ψ_{cv} can be increased to either $\psi_{cv} = 1.2 \text{ or } \psi_{cv} = 1.4.$

Cracked concrete $\psi_{cv} = 1.0$

No supplementary reinforcement

With supplementary reinforcement

Cracked concrete with edge reinforcement (#4 min.)

 Cracked concrete with edge reinforcement (#4 min.) and stirrups (#4 min.) spaced at 4" O.C.

 $\psi_{c,V} = 1.2$

Uncracked Concrete $\psi_{c.v}$ = 1.4

Anchor channels located in a region of a concrete member where analysis indicates no cracking at service load levels.

Note: in order to activate the reinforcement, concrete has to crack. Therefore, if uncracked concrete is assumed, supplementary reinforcement does not impact this factor.

Concrete is typically assumed to be cracked under normal service load conditions. If cracked concrete conditions are assumed, an increase in $V_{ch,v}$ is permitted via the modification factor ψ_{cv} if supplementary edge reinforcement is used. If uncracked concrete conditions are assumed, an increase in $V_{cb,v}$ is likewise permitted via the modification factor $\psi_{\text{c,v}}$. Reference ESR-3520 Section 4.1.3.3.3 for more information.

$\psi_{h,v}$: The modification factor for member thickness.

The modification factor for anchor channels located in a concrete member with $h < h_{crv}$, ψ_{crv} (an example is given in Figure 7.4.2.7), shall be computed in accordance with Eq. (37).

c_{at} is measured perpendicular to the anchor channel longitudinal axis, and is considered when calculating the basic concrete breakout strength in shear (V_{μ}) and the modification factor for member thickness ($\psi_{\mu\nu}$).

- h_{ch} ... height of anchor channel
- Given in ICC-ESR alternatively a default value of 0.50 shall β₁... be used
- h_{crv} ... critical member thickness

r,v 20a1 21 ch	h	l cr,V	=	2c _{a1}	+	2h _{ch}	
----------------	---	-----------	---	------------------	---	------------------	--

ESR-3520 Equation (38)

ESR-3520 Equation (37)

11. Best **Practices** **12. Instructions** for Use

Anchor channel influenced by two corners and member thickness (c_{a1.red})

Where an anchor channel is located in a narrow member $(c_{a2,max} < c_{crv})$ with a thickness h < h_{crv} (see Figure 7.4.2.8), the edge distance c_{a1} in Eq. (31), (33), (36) and (38) shall not exceed the value $c_{a1,red}$ determined in accordance with Eq. (39).

$$C_{a1,red} = \max\left(\frac{c_{a2,\max} - b_{ch}}{2}, \frac{h - 2h_{ch}}{2}\right), in. (mm)$$

ESR-3520 Equation (39)

where $c_{a2,max}$ is the largest of the edge distances perpendicular to the longitudinal axis of the channel. For this example, the value of c_{a1 red} is obtained by moving the failure surface forward until it intersects the corner as shown.

Figure 7.4.2.8 — Example of an anchor channel influenced by two corners and member thickness (in this example $c_{a2,2}$ is decisive for the determination of c_{a1.red})

7.4 Anchor Channel Shear De

ign (y)

3. HAC **Applications**

4. Design Introduction

5. Base material

6. Loading

8. Reinforcing Anchor Channe **Design Code** Bar Anchorage 9. Special Anchor 10. Design **Channel Design** Software

Anchor reinforcement in perpendicular shear, ACI 318-14 17.5.2.10.1

For condition where reinforcement is anchored as illustrated in figure 7.4.2.9, the concrete breakout strength in perpendicular shear can be that of the reinforcement strength.

The anchor reinforcement of an anchor channel shall be designed for the maximum perpendicular shear load acting at the anchor channel anchors and channel bolts. Such anchor reinforcement shall be arranged at all anchors of an anchor channel. The maximum strength of the anchor reinforcement (V_{cavmax}) of a single anchor of an anchor channel shall be computed in accordance with ACI 318-14,

$$V_{ca,y,\max} = \left(\frac{2.85}{(c_{a1})^{0.12}}\right) (V_{cb,y}) , \ lbf$$

= edge distance (in) Cal

= nominal concrete breakout strength in shear perpendicular to the channel axis of an anchor channel

In accordance with the provisions of ACI 318-14, 17.5.2.10.8.2, perpendicular shear anchor reinforcement shall consist of stirrups made from deformed reinforcing bars with a maximum diameter of 5/8 in (No. 5 bar) and straight edge reinforcement with a diameter not smaller than the diameter of the stirrups. Only one bar at both sides of each anchor shall be assumed as effective. The distance of this bar from the anchor shall not exceed 0.5ca1 and the anchorage length in the breakout body shall not be less than 4 times the bar diameter. The distance between stirrups shall not exceed the smaller of anchor spacing or 6 inches.

Because the anchor reinforcement is placed below where the shear is applied, the force in the anchor reinforcement will be larger than the shear force acting on the anchor channel bolts. If a shear load (V_{uau}) is acting on the anchor channel, the resultant factored tension force of the anchor reinforcement Numer, shall be computed by the following equation

N_{ua, re} =
$$V_{ua, y}\left(\frac{e_s}{z}+1\right) lbf(N)$$

- distance between reinforcement and shear force e acting on the anchor channel (in)
- z = internal lever arm of the concrete member, (in)
 - $= 0.85 (h h_{ob} 0.5d_{o})$
 - \leq (2h_{of}, 2c_{of})
- c_{1} = edge distance of anchor channel in direction 1
- spacing on anchors in direction of longitudinal axis of channel
- critical anchor spacing for shear loading, concrete edge breakout
- d diameter of anchor reinforcement =
- l development length
- = development length in tension of a deformed bar or deformed wire with a standard hook, measured from critical section to outside end of hook

The anchor reinforcement of an anchor channel shall be designed for the highest anchor load, V_{auav} , of all anchors but at least for the highest individual shear load, V_{buout} acting on the channel. This anchor reinforcement shall be arranged at all anchors of an anchor channel.

Figure 7.4.2.9b — Internal forces and detailing requirements for anchor reinforcement to resist shear loads; section view.

Concrete Pryout Strength of Anchor Channels in Shear Perpendicular to the Longitudinal Channel Axis ϕV_{ca}

Failure load associated with pryout; The load-bearing mechanism of a single headed stud anchorage subjected to a shear load is illustrated schematically in Fig 7.4.2.10. The applied shear load gives rise to bearing stresses in the concrete. With increasing load the surface concrete is crushed or spalled, shifting the centroid of resistance V_k to a location deeper in the concrete.

Figure 7.4.2.10 - Load-bearing mechanism of headed stud anchorage subjected to shear loading (schematic).

Figure 7.4.2.11 — Typical failure body of a stud anchorage far from an edge loaded in shear : Cross-section of failure body (schematic).

- Anchor reinforcement is effective if rebar is embedded a minimum of 4da (da = rebar diameter) after idealized failure plane in shear meets the rebar. Reinforcing outside the anchor channel is effective if it is located within 0.5Ca1 from the center of the outer anchor

Figure 7.4.2.9a - Detailing requirements for anchor reinforcement to resist shear loads; plan view.

13. Field Fixes

14. Design Example

Also with increasing load and stud elongation, the baseplate rotates and loses contact with the concrete on the loaded side. These two mechanisms act to further increase the eccentricity between the applied shear load V and the stress resultant V. in the concrete. The moment resulting from this eccentricity generates a compressive force C between baseplate and concrete and a tensile force N in the stud. If the tensile force in the stud exceeds the tensile capacity associated with the maximum fracture surface that can be activated by the stud, a fracture surface originating at the head of the stud and projecting in conical fashion behind the stud forms Figure 7.4.2.11. This is defined as a pry-out failure.

 $V_{cp} = V_{cp,v} = k_{cp}N_{cb}, \ lb(N)$ $k_{cp} = 2.0$

ESR-3520 Equation (41)

The nominal pryout strength, $V_{cp,y}$, in shear of a single anchor of an anchor channel without anchor reinforcement shall be computed in accordance with Eq. (41).

where:

k_m = shall be taken from ESR-3520 Table 8-10

N₁ = nominal concrete breakout strength of the anchor under consideration, lb (N), determined in accordance with breakout in tension; however in the determination of the modification factor $\psi_{s,N}$, the values $N^{a}_{\mu a 1}$ and $N^{a}_{\mu a 1}$ in Eq. (10) shall be replaced by $V^a_{\mbox{\tiny ua.1}}$ and $V^a_{\mbox{\tiny ua.i}},$ respectively.

Tests indicates that the pryout shear resistance can be approximated as one to two times the anchor tensile resistance with the lower value appropriate for hef less than 2.5 in.

 $k_{co} = 1.0$ for $h_{ef} < 2.5$ in.; and $k_{co} = 2.0$ for $h_{ef} \ge 2.5$ in.

The nominal pryout strength, $V_{_{\rm CD,V}}$ in shear of a single anchor of an anchor channel with anchor reinforcement shall not exceed:

$$V_{cp} = V_{cp,y} = 0.75.k_{cp}N_{cb}, \ lb(N)$$

ESR-3520 Equation (42)

The ICC-ES Acceptance Criteria AC232 includes amendments to the ACI 318 anchoring to concrete provisions. These amendments are given in Section 3.1 Strength Design -Amendments to ACI 318. Part D.6.3.2 (ACI 318-11) and Section 17.5.3.2 (ACI 318-14) of these amendments require the factor $\Psi_{a,b}$ to be modified when calculating concrete pryout strength in shear. All of the parameters used to calculate $\psi_{s,N}$ in tension are used except the parameter (N_{uai}^{a}/N_{uai}^{a}). The shear loads acting on the anchor elements are substituted for the tension loads such that (V_{uai}^a / V_{uai}^a) is used instead of (N_{uai}^a / N_{uai}^a)

2. HAC Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material 6. Loading Anchor Channel 8. Reinforcing **Design Code Bar Anchorage** 9. Special Anchor 10. Design **Channel Design** Software

7.4.3 STEEL STRENGTHS IN LONGITUDINAL SHEAR

1. Anchor

Channel Systems

Anchor Strength ϕV_{a} and Anchor and Channel Connection Strength ϕV_{sc}

The nominal strength of one anchor, V_{sax}, and anchor and channel connection $V_{sc,x}$ to take up shear loads acting in longitudinal channel axis must be taken from Table 8-5 for HAC and HAC-T with Hilti channel bolts (HBC-C, HBC-T and HBC-C-N).

Channel Lip Strength φV

The nominal strength of the connection between channel lips and channel bolt to take up shear loads acting in longitudinal channel axis, V_{slx} , must be taken from ESR-3520 Table 8-7, 8-8 or 8-9, as applicable. Table 8-9 gives steel strength information for shear acting in longitudinal direction of the channel

axis for anchor channel HAC-T and channel bolts HBC-T. Please note the following:

 $\phi V_{sl,x} \ge V_{uax}^{b}$

to the channel bolt at a distance from the concrete surface (e.g. The ϕ value is 0.65 for in which periodical inspection is provided by double nuts), the nominal strength of a channel bolt in shear, $V_{ss M}$, shall be computed in accordance with Eq. (28). for M12 to M20 t-bolts.

The ϕ value is 0.75 for in which continuous inspection is provided for M12 to M20 t-bolts.

Table 8-8 gives steel strength information for shear acting in longitudinal direction of the channel axis for anchor channel HAC and channel bolts HBC-C-N. Please note the following: The ϕ value is 0.55 for which periodical inspection is provided for all t-bolts.

The ϕ value is 0.65 for which continuous inspection is provided for M16 and M20 t-bolts. The steel strength for M12 t-bolts used with continuous inspection an increased value of 2,021lbs should be used with φ value of 0.55. Test No 15, 16 and 17 of AC-232 table 4.2, is performed.

Table 8-7 gives steel strength information for shear acting in longitudinal direction of the channel axis for anchor channel HAC and channel bolts HBC-B.

Figure 7.4.3.1 — Definition of lever arm.

Channel bolt: $\phi V_{ss} / \phi V_{ss,N}$

Figure 7.4.3.1 - Possible tensile failure modes of an anchor channel.

										-
Tast no	Tost Pof	Test description	e e	A.w.	Minimum	Channel	Anchor	Matorial	Channel bolt	
Test no.	restrief	Test description	c	A W	tests	Unanner	Anchor	Wateria	d _s	strength
[-]	Secion in Annex A	E	psi [N/mm²]		[-]	[-]	[-]	[-]	inch (mm)	[-]
Steel failure under shear load acting in longitudinal chaennel axis										
15	7.14	Failure of connection between channel lips and channel bolt	Low	0	5	see AC232 Section 7.14.2		1		
16	7.16	Failure of connection between channel lips and channel bolt — influence of level of prestressing force	Low	0	5	see AC232 Section 7.16.2		1		
17	1.17	Failure of connection between channel lips and channel bolt — influence of channel below concrete surface	Low	0	5	:	see AC232 S	Section 7.17.2	2	1

Table 7.4.3.1 — Test program for anchor channels for use in uncracked and cracked concete (Table 4.2 of AC232)

11. Best **Practices** **12. Instructions** for Use

14. Design Example

Channel Bolt in Shear, ϕV_{ac} , ϕV_{ac}

 $\phi V_{ss,M,x} \ge V_{uax}^{b}$ $\phi V_{ss,x} \ge V_{uax}^{b}$

The nominal strength of a channel bolt in shear, V_{ss}, must be taken from ESR-3520 Table 8-6 of this report.

Shear load with lever arm In standoff installations, t-bolt are clearly subjected to cantilever bending. Flexural failure of the steel rod generally defines the capacity.

The coefficient αM depends on the degree of rotational fixity of the anchor where it joins the baseplate.

If the fixture is not clamped against the concrete but secured

$V_{ss,M} = \frac{\alpha_M M_{ss}}{l}, \ lb(N)$ ES	R-3520 Equation (28)
--	----------------------

- $\alpha_{i,i}$ = factor to take into account the restraint condition of the fixture
 - = 1.0 if the fixture can rotate freely (no restraint)

= 2.0 if the fixture cannot rotate (full restraint)

$$M_{ss} = M_{ss}^{0} \left(1 - \frac{N_{ua}}{\phi N_{ss}} \right), \text{ lb-in (N-mm)} \text{ ESR-3520 Equation (29)}$$

- M_{m}^{0} = nominal flexural strength of channel bolt according to Table 8-12.
 - ≤ 0.5N_s a
 - ≤ 0.5N_o a
- = lever arm, in. (mm) ł
- = internal lever arm, in. (mm) as illustrated in Figure 7.4.3.1 α

Figure 7.4.3.2- Channel bolt resisting shear forces with stand off.

7.4.4 CONCRETE STRENGTHS IN LONGITUDINAL SHEAR

Longitudinal Concrete Edge Breakout Strength, ϕV_{chv}

The nominal concrete breakout strength, $V_{cb.x}$, in shear acting in the longitudinal direction of an anchor channel in cracked concrete shall be computed as follows:

a) For a shear force perpendicular to the edge, by Eq. (17.5.2.1a), Section 17.5.2.1 (ACI 318-14). The basic concrete breakout strength in shear in longitudinal channel axis of a single round anchor in an anchor channel in cracked concrete, V_b, shall be computed in 17.5.2.2 (ACI 318-14).

b) For a shear force parallel to an edge, V_{chx} shall be permitted to be twice the value of the shear force determined from Eq. (17.5.2.1a), Section 17.5.2.1 (ACI 318-14) with the shear force assumed to act perpendicular to the edge.

The shear strength equations were developed from the CCD method. They assume a breakout cone angle of approximately 35 degrees (refer to Fig. 7.4.4.1) and consider fracture mechanics theory. The effects of multiple anchors, spacing of anchors, edge distance, and thickness of the concrete member on nominal concrete breakout strength in shear are included by applying the reduction factor of A_{VA}/A_{Va} in Equation (43).

V_b: Basic concrete breakout strength in shear of a single anchor in cracked concrete, Vb, shall be the smaller of (a) and (b):

5. Base material

$$V_{\rm b} = 7.(l_e/d_a)^{0.2} \sqrt{d_a} \cdot \lambda \cdot \sqrt{f_{\rm c}^{'}} \cdot (c_{\rm a1})^{1.5}$$

$$V_{b} = 9\lambda \sqrt{f'_{c}} c_{a1}^{(1.5)}$$

4. Design

Introduction

3. HAC

Applications

 V_{b}

A

$$V_{cb,x} = (A_{vc} / A_{vco}) \cdot \psi_{ed, V} \cdot \psi_{c, V} \cdot \psi_{h, V} \cdot \psi_{parallel, V} \cdot V_{b}$$

Equation (44)

Equation (43-a)

Equation (43-b)

6. Loading

- = Basic concrete breakout strength in shear
- = Projected area of the failure surface
- A_{vco} = Projected area for a single anchor in a deep member
- $\Psi_{_{ed,V}}$ Modification factor for edge effect =
- $\Psi_{\text{c,V}}$ Modification factor cracked/uncracked concrete
 - = Modification factor for concrete thickness
- $\Psi_{\text{h,V}}$ Modification factor for shear force V_{μ} parallel to the Ψ_{parallel.V} edge
- λ Modification for lightweight concrete Lightweight concrete = 0.75
 - Sand-Lightweight concrete = 0.85
- ℓ_{o}Minimum (h_{eff} 8xd_o) according to section 17.5.2.2a of ACI 318-14. ℓ_{o} is the load-bearing length of the anchor for shear:
- $\ell_{a} = h_{a}$ for anchors with a constant stiffness over the full length of embedded section, such as headed studs. $\ell_{1} \leq 8d_{2}$
- d_Anchor shaft diameter (value can be taken from Table 8-1 ESR 3520)
- f'_Concrete compressive strength (psi) (8,500 psi, max)
- c₁Distance from the edge to axis (in.) (edge to center line of channel)
- According to AC232 the shear load V_{uax} shall be equally distributed to not more than three anchors
- c₁ is based on distance from edge to farthest anchor and all of the shear is assumed to be carried by that anchor.
- Like the concrete breakout tensile strength, the concrete breakout shear strength does not increase with the failure surface, which is proportional to $(c_1)^2$. Instead, the strength increases proportionally to (c,)^{1.5} due to size effect.
- The strength is also influenced by the anchor stiffness and the anchor diameter (Fuchs et al. 1995; Eligehausen and Balogh 1995; Eligehausen et al. 1987/1988, 2006b).
- The influence of anchor stiffness and diameter is not apparent in large-diameter anchors (Lee et al. 2010), resulting in a limitation on the shear breakout strength provided by Eq.(43).
- The constant, 7, in the shear strength equation was etermined from test data reported in Fuchs et al. (1995) at the 5 percent fractile adjusted for cracking.
- · For shear force perpendicular to an edge $\Psi_{\text{parallel.V}} = 1.0$
- For shear force parallel to an edge

$$parallel.V = 2.0$$

 Minimum value of V_{cb} is considered of the two cases for corner anchors

ACI 318-14 (eqn 17.5.2.1c)

8. Reinforcing

Bar Anchorage

Anchor Channel

Design Code

 $A_{V_{co}} = 4.5.(c_{a1})^2$ Equation (45)

10. Design

Software

A...: Projected area for a single anchor in a deep member

9. Special Anchor

Channel Design

Case I: Concrete edge failure governs, Uparallel=1.0

Case I-a:

Full shear forces acting on the 3rd anchor away from the edge. The anchor close to the edge is anchor 1.

- AC232 limits the number of anchors to effectively resist longitudinal forces to three, if more than three anchors are present.
- Having the full shear load at the 3rd anchor verifies the adequacy of the concrete as a system (group of anchors).
- C_{ot} is measured from the edge to the center of the third anchor.
- · Projected areas are in accordance with ACI 318-14.

Calculation of projected area for a single anchor in a deep member.

Calculation of projected area of the failure surface, A_v: $A_{vc} = \{\min(h, 1.5 c_{a1}) [\min(c_{a21}, 1.5 c_{a1}) + (c_{a22}, 1.5 c_{a1})]\}$

11. Best **Practices** **12. Instructions** for Use

Figure 7.4.4.2 - Projected area due to an anchor channel loaded in shear acting parallel to the long channel axis. Full shear loading acting on the 3rd anchor away from the edge.

Case I-b:

Shear forces are distributed amongst the three anchors closer to the edge. The leading/front anchor is the controlling one.

- V_/3 is applied to the front anchor.
- Projected area is based on the edge distance of the first anchor.
- C₁ is measured from the edge of the slab to the center of the first anchor.
- Projected areas are in accordance with ACI 318-14.

Calculation of projected area for a single anchor in a deep member.

A_{vco}: $A_{vco} = (1.5c_{a1})(2)(1.5c_{a1})$ $A_{100} = (4.5)(c_{21})^2$

Calculation of projected area of the failure surface, A.: $A_{vc} = \{\min(h, 1.5 c_{a1}) [\min(c_{a21}, 1.5 c_{a1}) + (c_{a22}, 1.5 c_{a1})]\}$

Figure 7.4.4.3 - Projected area due to an anchor channel loaded in shear acting parallel to the long channel axis. Shear forces acting on the leading anchor.

2. HAC 1. Anchor Channel Systems Portfolio

3. HAC 4. Design **Applications** Introduction

5. Base material 6. Loading 8. Reinforcing

10. Design Software

Case II: Shear force parallel, Uparallel=2.0

Concrete edge breakout may be limited by the side concrete edge breakout, even if the load acts in a different direction. The side concrete edge breakout is equal to twice the perpendicular concrete edge breakout strength.

- C, is measured from the corner to the center of the anchor channel
- The analysis shall consider a maximum of three anchors.
- Projected areas are in accordance with ACI 318-14.

Calculation of projected area for a single anchor in a deep member, A_{ucc} :

 $A_{uco} = (1.5c_{a1}) \times \{ [2(1.5c_{a1}) \times [(1.5c_{a1}) + [(N_{a} - 1) \times s)] + (1.5c_{a2}) \}$

Calculation of projected area of the failure surface, Avc:

$$A_{vc} = \{min (h, 1.5 c_{a1}) \times [min (c_{a2'1}, 1.5c_{a1}) + (N_{a} - 1) + (c_{a2'2}, 1.5c_{a1})]\}$$

where

N_{a} = number of anchors

Figure 7.4.4.4 - Projected area due to an anchor channel loaded in shear acting parallel to the long channel axis. Verification of side concrete edge breakout.

Ψ_{ady} : Modification factor for edge effect in Shear

The modification factor for edge effect for a single anchor or group of anchors loaded in shear, $\psi_{ed V}$, shall be calculated as follows using the smaller value of c₂₂.

If $c_{a2} \ge 1.5c_{a1}$, then $\psi_{edv} = 1.0$ If $c_{2} < 1.5c_{1}$, then

$$\Psi_{ed,V} = 0.7 + 0.3(\frac{c_{a2}}{1.5c_{a1}}) \le 1.0$$

- c₁: Distance from the edge to axis (in.) (edge to center line of channel)
- c_{a2} : Edge distance (in) of anchor channel in direction 2

If anchors are located close to an edge so that there is not enough space for a complete breakout prism to develop, the strength of the anchor is further reduced beyond that reflected in $A_{V/A}$. If the smallest side cover distance is greater than or equal to 1.5hef, a complete prism can form and there is no reduction ($\psi_{ed,v}$ = 1). If the side cover is less than 1.5h_{ef}, the factor $\psi_{ed,N}$ is required to adjust for the edge effect

For anchors located in a region of a concrete member where analysis indicates no cracking at service loads, the following modification factor shall be permitted ψ_{ev} = 1.4

 ψ_{ev} = 1.4 For anchors located in a region of a concrete member

where analysis indicates cracking at service load levels, the following modification factors shall be permitted:

 ψ_{cv} = 1.0 For anchors in cracked concrete without supplementary reinforcement or with edge reinforcement smaller than a No. 4 bar

 ψ_{av} = 1.2 For anchors in cracked concrete with straight reinforcement of a No. 4 bar or greater between the anchor and the edge

 ψ_{cv} = 1.4 For anchors in cracked concrete with reinforcement of a No. 4 bar or greater between the anchor and the edge, and with the reinforcement enclosed within stirrups spaced at not more than 4 in.

$\Psi_{k,v}$: Modification factor for concrete thickness

The modification factor for anchors located in a

concrete member where ha < $1.5c_{a1}$, ψ_{hv} shall be calculated as

$$\Psi_{h,V} = \frac{\sqrt{1.5.c_{a1}}}{\sqrt{h_a}} \ge 1.0$$

c₁...Distance from the edge to axis (in.) h.Height of the concrete member (in)

 $\psi_{\rm by}$ shall not be taken less than 1.0.

For anchors located in a concrete member where $h_a < 1.5c_{a1}$, tests have shown that the concrete breakout strength in shear is not directly proportional to the member thickness h. The factor ψ_{hv} accounts for this effect.

For anchors located in a concrete member where $h_{1} < 1.5c_{21}$, tests (CEB 1997; Eligehausen et al. 2006b) have shown that the concrete breakout strength in shear is not directly proportional to the member thickness h_a . The factor $\psi_{\mu\nu}$ accounts for this effect

Anchor reinforcement in longitudinal shear(ACI 318-11 D6.2.9)

For conditions where anchor reinforcement is provided as illustrated in figure 7.4.4.5, the concrete breakout strength in longitudinal shear can be that of the reinforcement strength.

The anchor reinforcement of an anchor channel shall be designed for the total longitudinal shear load acting at the anchor channel anchors and channel bolts. Such anchor reinforcement shall be arranged at all anchors of an anchor channel.

Anchor reinforcement shall consist of stirrups made from deformed reinforcing bars with a maximum diameter of 5/8 in (No. 5 bar). The enclosing anchor reinforcement should be in contact with the anchor and as close to the concrete surface as possible, while still observing minimum cover requirements.

To ensure yielding of the anchor reinforcement, the enclosing anchor reinforcement in Fig. R17.5.2.9a should be in contact with the anchor and placed as close as practicable to the concrete surface

Figure 7.4.4.5 - Anchor reinforcement to preclude concrete breakout in shear acting along the longitudinal axis of the anchor channel

In accordance with the provisions of ACI 318-14, 17.5.2.10.8.2, longitudinal shear anchor reinforcement shall consist of stirrups made from deformed reinforcing bars with a maximum diameter of 5/8 in (No. 5 bar) and straight edge reinforcement with a diameter not smaller than the diameter of the stirrups. Only one bar at both sides of each anchor shall be assumed as effective. The distance of this bar from the anchor shall not exceed 0.5c and the anchorage length in the breakout body shall not be less than 4 times the bar diameter. The distance between stirrups shall not exceed the smaller of anchor spacing or 6 inches.

11. Best **Practices** **12. Instructions** for Use

Figure 7.4.4.6 - Anchor reinforcement to resist shear loads acting along the longitudinal axis of the anchor channel.

Because the anchor reinforcement is placed below where the shear is applied, the force in the anchor reinforcement will be larger than the shear force acting on the anchor channel bolts. If a shear load (V_{uav}) is acting on the anchor channel, the resultant factored tension force of the anchor reinforcement, N_{uare}, shall be computed by the following equation:

$$N_{ua, re} = V_{ua, y} \left(\frac{e_s}{z} + 1\right) lbf(N)$$

- = distance between reinforcement and shear force acting on the anchor channel (in)
- = internal lever arm of the concrete member. (in)
- $= 0.85 (h h_{h} 0.5d_{s})$
- < (2h_{ef}, 2c₂₁)

7.4 Anchor Channel Shear Design (X)

1. Anchor Channel Systems F

2. HAC 3. HAC Portfolio Applications

C 4. Design ions Introduction

5. Base material 6. Loading

Concrete Pryout Strength of Anchor Channels in Shear Longitudinal to the Channel Axis ϕV_{cnx}

Failure load associated with pryout; The load-bearing mechanism of a single headed stud anchorage subjected to a shear load is illustrated schematically in Figure 7.4.47. The applied shear load gives rise to bearing stresses in the concrete. With increasing load, the surface concrete is crushed or spalled, shifting the

centroid of resistance V_b to a location deeper in the concrete.

Figure 7.4.4.7 — Load-bearing mechanism of headed stud anchorage subjected to shear loading (schematic).

Also with increasing load and stud elongation, the baseplate rotates and loses contact with the concrete on the loaded side. These two mechanisms act to further increase the eccentricity between the applied shear load V and the stress resultant Vb in the concrete. The moment resulting from this eccentricity generates a compressive force C between baseplate and concrete and a tensile force N in the stud. If the tensile force in the stud exceeds the tensile capacity associated with the maximum fracture surface that can be activated by the stud, a fracture surface originating at the head of the stud and projecting in conical fashion behind the stud forms. This is defined as a pry-out failure.

ESR-3520 Equation (41)

$$V_{cp,x} = k_{cp} N_{cb}, \ lb(N)$$
$$k_{cp} = 2.0$$

where: k_{cp} = shall be taken from Table 8-10

 N_{cb}^{μ} = nominal concrete breakout strength of the anchor under consideration, lb (N), determined in accordance with breakout in tension; however in the determination of the modification factor $\Psi_{s,N}$, the values $N_{ua,1}^{a}$ and $N_{ua,1}^{a}$ in Eq. (10) shall be replaced by $V_{ua,1}^{a}$ and $V_{ua,1}^{a}$, respectively.

The nominal pryout strength, V_{cnx}, in shear of a single anchor

of an anchor channel without anchor reinforcement shall be

computed in accordance with ESR 3520 Eq. (41).

 $N_{cb} = N_{b} \cdot \psi_{sN} \cdot \psi_{edN} \cdot \psi_{cON} \cdot \psi_{cN} \cdot \psi_{cNN}$

The nominal pryout strength, $V_{_{cp,y}}$, in shear of a single anchor of an anchor channel with anchor reinforcement shall not exceed:

$$V_{cp} = V_{cp,x} = 0.75.k_{cp}N_{cb}, \ lb(N)$$

ESR-3520 Equation (42)

The ICC-ES Acceptance Criteria AC232 includes amendments to the ACI 318 anchoring to concrete provisions. These amendments are given in Section 3.1 Strength Design — Amendments to ACI 318. Part D.6.3.2 (ACI 318-11) and Section 17.5.3.2 (ACI 318-14) of these amendments requires the factor $\psi_{s,N}$ to be modified when calculating concrete pryout strength in shear. All of the parameters used to calculate $\psi_{s,N}$ in tension are used except the parameter ($N^a_{ua,i} / N^a_{ua,1}$). The shear loads acting on the anchor elements are substituted for the tension loads such that ($V^a_{ua,i} / V^a_{ua,1}$) is used instead of ($N^a_{ua,i} / N^a_{ua,1}$).

Minimum Member Thickness, Anchor Spacing, and Edge Distance:

Anchor channels shall satisfy the requirements for edge distance, spacing, and member thickness.

The minimum edge distance, minimum and maximum anchor spacing and minimum member thickness shall be taken from Table 8-1 ESR-3520. The critical edge distance, c_{ac} , shall be taken from Table 8-4 ESR-3520.

c_{ac} : Edge distance required to develop full concrete capacity in absence of anchor reinforcement.

Requirements for lightweight concrete:

For the use of anchor channels in lightweight concrete, the modification factor λ shall be taken as 0.75 for all-lightweight concrete and 0.85 for sand-lightweight concrete. Linear interpolation shall be permitted if partial sand replacement is used.

8. Reinforcing

Bar Anchorage

If forces act in more than one direction, the combination of loads has to be verified. Anchor channels subjected to combined tension and shear loads shall be designed to satisfy the following requirements by distinguishing between steel failure of the channel bolt, steel failure modes of the channel and concrete failure modes. Interaction equations for each anchor channel element are required. Moreover, concrete and steel utilizations need not to be combined. The verification of up to 5 interaction equations are required.

Steel Failure of Channel Bolts Under Combined Loads

 $\left(\frac{N^{b}_{ua}}{\phi N_{ss}}\right)^{2} + \left(\frac{V^{b}_{ua}}{\phi V_{ss}}\right)^{2} \le 1.0$

ESR-3520 Equation (43)

$$V^{b}_{ua} = \left[\left(V^{b}_{ua, y} \right)^{2} + \left(V^{b}_{ua, x} \right)^{2} \right]^{0.5}$$

This verification is not required in case of shear load with lever arm as Eq. (28) accounts for the interaction. $\binom{N^a}{N^a}$

Steel Failure Modes of Anchor Channels Under Combined Loads:

Interaction equations based on Acceptance Criteria 232, February 2019. ICC ESR-3520 to be updated.

a) Anchor and connection between anchor and channel:

$$\max\left(\frac{N_{ua}^{a}}{\phi N_{sa}}, \frac{N_{ua}^{a}}{\phi N_{sc}}\right)^{\alpha} + \max\left(\frac{V_{ua,y}^{a}}{\phi V_{sa,y}}, \frac{V_{ua,y}^{a}}{\phi V_{sc,y}}\right)^{\alpha} + \max\left(\frac{V_{ua,x}^{a}}{\phi V_{sa,x}}, \frac{V_{ua,x}^{a}}{\phi V_{sc,x}}\right)^{2} \le$$

ESR-3520 Equation (44)

where:

 α = 2 for anchor channels with max (V_{sa,y}; V_{sc,y}) ≤ min (N_{sa}; N_{sc}) In all other cases:

 α = 1 for anchor channels with max (V_{sa,y}; V_{sc,y}) > min (N_{sa}; N_{sc}) It shall be permitted to assume reduced values for V_{sa,y} and V_{sc} corresponding to the use of an exponent α = 2. In this case the reduced values for V_{sa,y} and V_{scy} shall also be used. 12. Instructions for Use

b) At the point of load application:

$$\left(\frac{N_{ua}^{b}}{\phi N_{sl}}\right)^{\alpha} + \left(\frac{V_{ua,y}^{b}}{\phi V_{sl,y}}\right)^{\alpha} + \left(\frac{V_{ua,x}^{b}}{\phi V_{sl,x}}\right)^{2} \le 1.0$$
 ESR-3520 Equation (45)
$$\left(\frac{M_{u,flex}}{\phi M_{s,flex}}\right)^{\alpha} + \left(\frac{V_{ua,y}^{b}}{\phi V_{sl,y}}\right)^{\alpha} + \left(\frac{V_{ua,x}^{b}}{\phi V_{sl,x}}\right)^{2} \le 1.0$$
 ESR-3520 Equation (46)

where:

 α = 2 for anchor channels with V_{sl,y} \leq N_{s,l}

 α = 1 for anchor channels with V_{slv} > N_{sl}

It shall be permitted to assume reduced values for V_{sl,y} corresponding to the use of an exponent α = 2. In this case the reduced value for V_{sl,y} shall also be used.

Concrete failure modes of anchor channels under combined loads:

Concrete Failure Modes of Anchor Channels Under

For concrete failure modes, anchor channels shall be designed to satisfy the requirements given in a) through d). D.7.4.3, Section D.7.4.3 (ACI 318-14) :

Section D.7.4.3.1, Section 17.6.4.3.1 (ACI 318-14) through D.7.4.3.3, Section 17.6.4.3.3 (ACI 318-14).

a) D.7.4.3.1, Section 17.6.4.3.1 (ACI 318-14) - If

$$\left(\frac{V_{ua,y}^{a}}{\phi V_{nc,y}}\right) + \left(\frac{V_{ua,x}^{a}}{\phi V_{nc,x}}\right) \le 0.2$$

Combined Loads:

$$\begin{pmatrix} N_{ua,y}^{n} \\ \phi N_{nc} \end{pmatrix} \leq 1.0$$

b) D.7.4.3.2, Section 17.6.4.3.2 (ACI 318-14) - If $\begin{pmatrix} N_{ua,y}^{a} \\ \phi N_{nc} \end{pmatrix} \leq 0.2$

then the full strength in shear shall be permitted:

$$\left(\frac{V_{ua,y}^{a}}{\phi V_{nc,y}}\right) + \left(\frac{V_{ua,x}^{a}}{\phi V_{nc,x}}\right) \le 1.0$$

c) D.7.4.3.3, Section 17.6.4.3.3 (ACI 318-14)- If

1.0
$$\left(\frac{V_{ua,y}^a}{\phi V_{nc,y}}\right) + \left(\frac{V_{ua,x}^a}{\phi V_{nc,x}}\right) > 0.2$$
 and $\left(\frac{N_{ua,y}^a}{\phi N_{nc}}\right) > 0.2$

44) then Eq. (D-32e), Eq. (17.6.4.3.a ACI318-14) applies:

$$\left(\frac{N_{ua}^{a}}{\phi N_{nc}}\right) + \left(\frac{V_{ua,y}^{a}}{\phi V_{nc,y}}\right) + \left(\frac{V_{ua,x}^{a}}{\phi V_{nc,x}}\right) \leq 1.2$$

d) D.7.4.3.4, Section 17.6.4.3.4 (ACI 318-14) - Alternatively, instead of satisfying "a" through "c", the interaction equation may be satisfied:

$$\stackrel{\text{sy}}{=} \left(\frac{N_{ua}^{a}}{\phi N_{nc}}\right)^{\frac{5}{3}} + \left(\frac{V_{ua,y}^{a}}{\phi V_{nc,y}}\right)^{\frac{5}{3}} + \left(\frac{V_{ua,x}^{a}}{\phi V_{nc,x}}\right)^{\frac{5}{3}} \le 1.0$$

7.6 SEISMIC DESIGN

1. Anchor

Channel Systems

2. HAC

Portfolio

3. HAC

Applications

4. Design

Introduction

7.6.1 SEISMIC CONSIDERATIONS

The anchors in structures assigned to Seismic Design Category (SDC) C, D, E, or F shall satisfy the additional requirements of 17.2.3.2 through 17.2.3.7 of ACI 318-14.Unless 17.2.3.4.1 or 17.2.3.5.1 apply, all anchors in structures assigned to Seismic Design Categories (SDC) C, D, E, or F are required to satisfy the additional requirements of 17.2.3.1 through 17.2.3.7, regardless of whether earthquake loads are included in the controlling load combination for the anchor design.

- The most recent development of structural classification has been the establishment of seismic design categories to determine seismic detailing requirements. Recognizing that building performance during a seismic event depends not only on the severity of subsurface rock motion, but also on the type of soil upon which a structure is founded, the Seismic Design Category (SDC) is a function of location, building occupancy, and soil type.
- Seismic provisions are applicable for all the load combinations if the condition is in a project located in SDC C, D, E or F.
- The behavior of concrete under static and seismic loading is
- different. Concrete member statically loaded have defined tensile and compression zones. Cracking of the concrete due to static loads is predictable, well understood, and the crack width is limited to 0.3 mm.
- · Concrete members that undergo seismic loads deal with more unpredictable loads. Additional safety factors are built-in the seismic design to deal with such variances. Due to the cycling nature of seismic loads, tension and compression zones can be inverted and cracking of the concrete can occur through the structure. Moreover, according to extensive research results, the crack width can be up to 0.5mm during seismic events. Crack open and closes dramatically, concrete tends to pushing anchor out during crack closing. Where as crack open and close with changing of live load, crack close naturally.
- The wind analysis should also have the seismic design provision of reduced tensile strengths associated with concrete failure modes. This is applicable to account for increased cracking and spalling in the concrete resulting from seismic actions.
- Non-structural systems (suspended ceilings, conduit attachments, mechanical, plumbing, electrical and communications equipment, doors, windows, wood sill plates, cold-formed steel track attachments, and architectural components) suffer the largest damage in commercial buildings during an earthquake. Since nonstructural elements of a building are not a part of the main load resisting system, they are often neglected from the structural design point of view. It's important to include seismic design for both structural and non-structural elements as Seismic conditions significantly change the behavior of anchors, compared to static conditions. Research is compelling! The percentage of damage caused by non-structural elements is significantly higher than structural elements.

According to ACI 318-14 Section 17.2.3.2: The provisions of the chapter 17 do not apply to the design of anchors in plastic hinge zones of concrete structures under earthquake forces.

5. Base material

6. Loading

- The possible higher levels of cracking and spalling in plastic hinge zones are beyond the conditions for which the nominal concrete governed strength values are applicable.
- Plastic hinge zones are considered to extend a distance equal to twice the member depth from any column or beam face, and also include any other sections in walls, frames, and slabs where yielding of reinforcement is likely to occur as a result of lateral displacements.
- Where anchors must be located in plastic hinge regions, they should be detailed so that the anchor forces are transferred directly to anchor reinforcement that is designed to carry the anchor forces into the body of the member beyond the anchorage region. Configurations that rely on concrete tensile strength should not be used.

7.6.2 SEISMIC CONSIDERATIONS TENSION

The Requirements for tensile loading is stated in section 17.2.3.4 of ACI 318-14

 17.2.3.4.1 Where the tensile component of the strength level earthquake force applied to a single anchor or group of anchors is equal to or less than 20 percent of the total factored anchor tensile force associated with the same load combination, it shall be permitted to design a single anchor or group of anchors.

• 17.2.3.4.2 Where the tensile component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor tensile force associated with the same load combination, anchors and their attachments shall be designed in accordance with 17.2.3.4.3 as described in Figure 7.6.2.1 and 7.6.2.2. The anchor design tensile strength shall be determined in accordance with 17.2.3.4.4, which states that an additional seismic reduction factor of 0.75 is applied to the concrete or non steel tensile design strengths.

• The requirements of 17.2.3.4.3 need not apply where the applied earthquake tensile force is a small fraction of the total factored tension force.

Refer to Figure 7.6.2.1 and 7.6.2.2 explaining the requirements in ACI 318-14 Section 17.2.3.4.3 in figure and in a flow chart.

- Option a): For tension loadings, anchor strength should be governed by yielding of the ductile steel element of the anche For single anchors, the concrete-governed strength shall be greater than the steel strength of the anchor. For anchor grou the ratio of the tensile load on the most highly stressed ancho to the steel strength of that anchor shall be equal to or greate than the ratio of the tensile load on tension loaded anchors to the concrete-governed strength of those anchors. In each ca (i) The steel strength shall be taken as 1.2 times the nomina steel strength of the anchor.
- (ii) The concrete-governed strength shall be taken as the nominal strength considering pullout, side-face blowout, concrete breakout, and bond strength as applicable. For consideration of pullout in groups, the ratio shall be calculated for the most highly stressed anchor. In addition the following shall be satisfied:
- (iii) Anchors shall transmit tensile loads via a ductile steel element with a stretch length of at least eight anchor diameters unless otherwise determined by analysis.

Section	17.2.3.4.3	

d	(iv) Where anchors are subject to load reversals, the anchor shall be protected against buckling.	
	 (v) Where connections are threaded and the ductile steel elements are not threaded over their entire length, the ratio 	C
or.	of f _{uta} /f _{ya} shall not be less than 1.3 unless the threaded portions are upset. The upset portions shall not be included in the stretch length.	oncrete
ıps,	(vi) Deformed reinforcing bars used as ductile steel elements	
or	to resist earthquake effects shall be limited to ASTM A615	
er	Grades 40 and 60 satisfying the requirements of	2
)	ACI 318-14 20.2.2.5(b) or ASTM A706 Grade 60.	
se:		
	The design of anchors in accordance with option (a) should be	
	used only where the anchor yield behavior is well defined and	
	where the interaction of the yielding anchor with other elements	9
	In the load path has been adequately addressed	
on,	Please note that when it comes to anchor channel none of the manufacturers satisfy ductility requirements. We are now left with satisfying one of the other three seismic requirement	

options.

193

1. Anchor **Channel Systems**

2. HAC Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material

6. Loading

10. Design Software

Option b) The anchor or group of anchors shall be designed for the maximum tension that can be transmitted to the anchor or group of anchors based on the development of a ductile yield mechanism in the attachment in tension, flexure, shear, or bearing, or a combination of those conditions, and considering both material overstrength and strain hardening effects for the attachment. The anchor design tensile strength shall be calculated from 17.2.3.4.4, which states that an additional seismic reduction factor of 0.75 is applied to the concrete or non steel tensile design strengths. For the design of anchors, the force associated with yield of a steel attachment, such as an angle, baseplate, or web tab, should be the expected strength, rather than the specified yield strength of the steel.

Option (c) The anchor or group of anchors shall be designed for the maximum tension that can be transmitted to the anchors by a non-yielding attachment. The anchor design tensile strength shall be calculated from 17.2.3.4.4, which states that an additional seismic reduction factor of 0.75 is applied to the concrete or non steel tensile design strengths. This option may apply to a variety of special cases, such as the design of sill bolts where the crushing of the wood limits the force that can be transferred to the bolt, or where the provisions of the American National Standards Institute/American Institute of Steel Construction (AISC) Code Seismic Provisions for Structural Steel Buildings (AISC 341) specify loads based on member strengths.

Option d) The anchor or group of anchors shall be designed for the maximum tension obtained from design load combinations that include E, with E increased by Ω_{a} . The anchor design tensile strength shall satisfy the tensile strength requirements of 17.2.3.4.4, which states that an additional seismic reduction factor of 0.75 is applied to the concrete or non steel tensile design strengths. This seismic provisions intend to ensure anchors resisting significant seismic forces do not undergo sudden brittle failure. One way to achieve this is to add sufficient extra strength to the anchor by design, so that the failure must occur elsewhere in the system. Increasing the earthquake inertial load with an overstrength factor Ω o has been included in the ACI 318-14 standard as one of four possible options for preventing premature anchor failure. Here ACI refers us back to ASCE 7-10 load combination 5 and 7 of chapter 12.

5. (1.2+ 0.2SDS) D+ Ω₂Q₂+ L + 0.2S

6. (0.9- 0.2SDS) D + Ω_αQ_E + 1.6H

 Ω_{c} overstrength factor for architectural component can be obtained from Table 13.5.1 of ASCE 7-10 and for structural components from Table 12.2.1.

Ω _o Structural component	ASCE 7-10 chapter 12 Table 12.2.1
Ω _o Non structural component	ASCE 7-10 chapter 13 Table 13.5.1

Figure 7.6.2.3 — Tensile anchor channel failure modes with an additional 0.75 reduction strength when resisting earthquake forces

According to ACI 318-14 section 17.2.3.4.4 The anchor design tensile strength for resisting earthquake forces shall be determined from consideration of (a) through (e) for the non steel tensile failure modes assuming the concrete is cracked unless it can be demonstrated that the concrete remains uncracked:

- (a) ϕN_{a} for a single anchor, or for the most highly stressed individual anchor in a group of anchors
- (b) $0.75\varphi N_{ch}$ or $0.75\varphi N_{cha}$, except that N_{ch} or N_{cha} need not be calculated where anchor reinforcement is provided
- (c) $0.75\phi N_{m}$ for a single anchor, or for the most highly stressed individual anchor in a group of anchors

(d) 0.75 \phi N b or 0.75 \phi N

(e) 0.75 \ N_ or 0.75 \ N_ a

where ϕ is in accordance with ACI 318-14 section 17.3.3.

Where anchor reinforcement is provided in accordance with 17.4.2.9, no reduction in design tensile strength beyond that specified in 17.4.2.9 shall be required. The reduced anchor nominal tensile strengths associated with concrete failure modes is to account for increased cracking and spalling in the concrete resulting from seismic actions. Because seismic design generally assumes that all or portions of the structure are loaded beyond yield, it is likely that the concrete is cracked throughout for the purpose of determining the anchor strength. In locations where it can be demonstrated that the concrete does not crack, uncracked concrete may be assumed for determining the anchor strength as governed by concrete failure modes.

7.6.3 SEISMIC CONSIDERATIONS SHEAR

Requirements for shear loading is stated in ACI 318-14 Section 17.2.3.5

 According to ACI-318-14 section 17.2.3.5.1. Where the shear component of the strength level earthquake force applied to the anchor or group of anchors is equal to or less than 20 percent of the total factored anchor shear force associated with the same load combination, it shall be permitted to design the anchor or group of anchors to satisfy 17.5 and the shear strength requirements of 17.3.1.1.

Figure 7.6.3.1 - Seismic provisions for tension; ACI 318-14 Section 17.2.3.5.3.

• 17.2.3.5.2 Where the shear component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor shear force associated with the same load combination, anchors and their attachments shall be designed in accordance with 17.2.3.5.3 as described in Figure 7.6.3.1 and 7.6.3.2 .

7.6 Seis

1. Anchor Channel Systems

2. HAC Portfolio

3. HAC **Applications** 4. Design

Introduction

5. Base material 6. Loading

• Refer to Figure 7.6.3.1 and 7.6.3.2 explaining the requirements in ACI 318-14 Section 17.2.3.5.3 in figure and in a flow chart.

Option (a) of 17.2.3.4.3 Ductility requirement of tension is not available for shear because the cross section of the steel element of the anchor cannot be configured so that steel failure in shear provides any meaningful degree of ductility.

17.2.3.5.3 Anchors and their attachments shall be designed using one of options (a) through (c):

- **Option a)** The anchor or group of anchors shall be designed for the maximum shear that can be transmitted to the anchor or group of anchors based on the development of a ductile yield mechanism in the attachment in flexure, shear, or bearing, or a combination of those conditions, and considering both material overstrength and strain hardening effects in the attachment.
- **Option b)** The anchor or group of anchors shall be designed for the maximum shear that can be transmitted to the anchors by a nonyielding attachment.
- Option c) The anchor or group of anchors shall be designed for the maximum shear obtained from design load combinations that include E, with E increased by Ω_{a} . This seismic provisions intend to ensure anchors resisting significant seismic forces do not undergo sudden brittle failure. One way to achieve this is to add sufficient extra strength to the anchor by design, so that the failure must occur elsewhere in the system. Increasing the earthquake inertial load with an overstrength factor Ω o has been included in the ACI 318-14 standard as one of four possible options for preventing premature anchor failure. Here ACI refers us back to ASCE 7-10 load combination 5 and 7 of chapter 12.

5. (1.2+ 0.2SDS) D+ ΩoQE+ L + 0.2S

6. (0.9- 0.2SDS) D + ΩoQE + 1.6H

 $\Omega_{\rm c}$ overstrength factor for architectural component can be obtained from Table 13.5.1 of ASCE 7-10 and for structural components from Table 12.2.1.

Ω _o Structural component	ASCE 7-10 chapter 12 Table 12.2.1
Ω _o Non structural component	ASCE 7-10 chapter 13 Table 13.5.1

7.6.4 TRANSFER OF LONGITUDINAL FORCES

- Historically, longitudinal loads in anchor channels have been transferred by means of friction. AC232 requires a positive connection for transferring of the forces.
- Traditionally the longitudinal loads are transferred by means of friction
- The loads are assumed to be transferred is larger than the frictional resistance caused by tightening the bolts
- The bolts are fully pretensioned to cause a clamping force between the connected components, which allows frictional resistance to develop between them
- The frictional resistance prevents the connected components from slipping into bearing against the body of the bolt
- To ensure successful performance, the faying surfaces require special preparation
- The longitudinal load transfer depended on installation and special inspection on site
- There were no measures that would include into the design for reduction of capacity

In order to validate the global level of safety or conservatism for a product application, AC232 section 1.3.2 states that the load transfer in the longitudinal direction shall not rely on friction.

Where compliance is sought for seismic loading or for static shear loading along the longitudinal axis of the anchor channel, the longitudinal loads shall be transferred by a positive load transfer mechanism.

The anchor channel must be flush with the substrate surface and installed with specified installation torque to ensure proper interlock between channel lip and t-bolt.

AC232 - Page 8

Transfer of shear load in the direction of the longitudinal channel axis from the channel bolt via channel and anchors into the concrete shall use a positive load transfer mechanism that shall be capable to ensure safe and effective behavior under normal and adverse conditions., both during installation and in service. Factors included are installation conditions in concrete and torqueing of the channel bolts.

The transferring of longitudinal forces shall not rely on friction. The cycling nature of seismic loading combined with the longterm relaxation of the nut and the high sensitivity to installation error are some of the major reasons why a positive load transfer mechanism (a connection that does not rely on friction) is required.

Anchor channels provide two options to positively transfer longitudinal forces; using locking channel bolts with smooth channel profiles or serrated channels with serrated bolts. AC232 covers both systems. The load transfer mechanism is mechanical interlock.

Locking t-bolt HBC-N with HAC plain profile

Figure 7.6.4.1: Standard HAC channel with locking t-bolt HBC-C-N.

- Positive connection via mechanical interlock between channel lips and t-bolt head
- (4) Notches in channel lip are created by HBC-C-N after installation torque is applied.
- The ϕ value is 0.55 for in which periodical inspection is provided for all t-bolts.
- The ϕ value is 0.65 for in which continuous inspection is provided for M16 and M20 t-bolts.
- The steel strength for M12 t-bolts used with continuous inspection an increased value of 2,021lbs should be used with φ value of 0.55.

Serrated t-bolt HBC-T with HAC-T serrated profile

Figure 7.6.4.2 Serrated channel-HAC-T with HBC-T bolts.

- Positive connection via mechanical interlock between channel lips and t-bolt head.
- Channel comes with pre-made serrations. Installation torque is lower than the one required for the notched t-bolt.
- The ϕ value is 0.65 for in which periodical inspection is
- provided for M12 to M20 t-bolts.
- The φ value is 0.75 for in which continuous inspection is
- provided for M12 to M20 t-bolts.

Note:

HAC-30 comes with serrated channel lips. HAC-30 matching serrated t-bolts are HBC-B.

1. Anchor **Channel Systems**

2. HAC Portfolio

3. HAC 4. Design **Applications** Introduction

5. Base material 6. Loading

8. Reinforcing 9. Special Anchor **Bar Anchorage Channel Design**

10. Design Software

7.6.5 ANALYSIS IN SCD A OR AND SDC C, D, E OR F

Seismic tension Seismic Loading (SDC C, D, E and F)

All anchor channels systems in a test series shall complete the simulated seismic-tension load history. Subject the anchor channel to the sinusoidal tension loads with a cycling frequency between 0.1 and 2 Hz. All anchor channels systems in a test series shall complete the simulated seismic-tension load history specified. Failure of an anchor channel system to develop the required tension resistance in any cycle before completing the loading history shall be recorded as a failure of an anchor channel system to develop the required tension resistance in any cycle before completing the loading history. Test No. 12 is performed to extract seismic strength values for various failure listed above.

Figure 7.6.4.1 - Required load history for simulated seismic tension test

Table 7.1-a — Required load history for simulated seismic tension test

Load level	N _{eq}	N,	N _m
Number of cycles	10	30	100

Nominal bending strength of the anchor channel for seismic design HBC-C-N and HBC-T

$\phi M_{s,flex,seis} \ge M_{u,flex}$

 $M_{_{s\,flex\,seis}}$ and φ are tabulated in Table ESR-3520 Table 8-3

Nominal tensile strength of a channel bolt for seismic design

$$\phi N_{ss,seis} \ge N_{ua}^{b}$$

 $N_{_{\text{ss.seis}}}$ and φ are tabulated in Table ESR-3520 Table 8-10

Nominal tensile steel strength for local failure of channel lips for seismic design

 $N_{_{SI\,seis}}$ and φ are tabulated in Table ESR-3520 Table 8-3

Nominal tensile steel strength of a single anchor for seismic design

$$\phi N_{sa,seis} \ge N_{aua}$$

N_{ca asia}, and ϕ are tabulated in Table ESR-3520 Table 8-3

Nominal tensile steel strength of connection between anchor and channel for seismic design

 $\phi N_{sc seis} \ge N_{aua}$

 $N_{sc sais}$ and ϕ are tabulated in Table ESR-3520 Table 8-3

Anchors in structures assigned to Seismic Design Category (SDC) C, D, E, or F shall satisfy the additional requirements

According to section ACI 318-14 section17.2.3.4.4 0.75 pN_ for a single anchor, or for the most highly stressed individual anchor in a group of anchors. ϕ_{seis} is 0.75.

AC232 Table 4.2 — Optional test program for anchor channels for use in uncracked and cracked concete for shear loading in longitudinal channel axis and for siesmic loading (SDS C, D, E and F)

Tost no	Tost Pof	Tost description		Aw.	Minimum	Channel	Anchor	Matorial	Chann	Channel bolt	
Test no.	Test her	Test description	°,	Δw	tests	Ghanner	Anchor	Material	d _s	strength	
[-]	Secion in Annex A	[-]	psi [N/mm²]	inch (mm)	[-]	[-]	[-]	[-]	inch (mm)	[-]	
	Seismic Tests										
12	7.12	Seismic tension	Low	0.020 (0.5)	5	see Section 7.12.2		1			
13	7.13	Seismic shear perpendicular to the channel profile	Low	0	5	see Section 7.13.2		1			
14	7.14	Seismic shear in longtitudinal channel axis	Low	0.020 (0.5)	5		see Sect	ion 7.15.2		1	

Apply a seismic reduction factor (Ø_aiamia) of 0.75 to non-steel tension design strengths per ACI 318-14 Section 17.2.3.4.4.

The reduced anchor nominal tensile strengths associated with concrete failure modes is to account for increased cracking and spalling in the concrete resulting from seismic actions. Because seismic design generally assumes that all or portions of the structure are loaded beyond yield, it is likely that the concrete is cracked throughout for the purpose of determining the anchor strength. In locations where it can be demonstrated that the concrete does not crack, uncracked concrete may be assumed for determining the anchor strength as governed by concrete failure modes.

 $\phi . \phi_{\text{seismic}} N_{\text{cb}} \ge N_{\text{ua}}^{a}$

Seismic shear perpendicular to the channel profile Seismic Loading (SDC C, D, E and F)

All anchor channels systems in a test series shall complete the simulated seismic-shear loads. Test No. 13 is performed to extract seismic strength values for the various failures listed below.

Perform the tests on anchor channels with two anchors embedded in concrete. The frequency of loading shall be between 0.1 and 2 Hz. To reduce the potential for uncontrolled slip during reversal, the alternating shear loading shall be permitted to be approximated by the application of two halfsinusoidal load cycles at the desired frequency connected by a reduced-speed, ramped load as shown in figure 7.8. The edge distance shall be large enough to avoid an edge influenced failure.

Table 7.1-b — Required load history for simulated seismic shear test

Load level	∓V _{eq}	∓ ν ,	∓V _m
Number of cycles	10	30	100

12. Instructions for Use

±٧

30

Number

14. Design Example

±Vm

100

Figure 7.5.4.3 – Permitted approximation of seismic shear cycle (Figure taken from AC232, Figure 7.8).

Nominal shear steel strength for local failure of the channel lips for seismic design

 $\varphi \; V_{_{sl,y,seis}}$ and φ are tabulated in ESR-3520 Table 8-5 $\phi V_{sl,y,seis} \ge V_{ua}^{b}$

Nominal shear steel strength of a single anchor for seismic design

 $V_{_{sa,y,seis}}$ and φ are tabulated in ESR-3520 Table 8-5 φ V_{sa,y,seis} ≥ V^a_{ua}

Nominal shear steel strength of connection between anchor and channel for seismic design

 $V_{_{sc.v.seis}}$ and φ are tabulated in ESR-3520 Table 8-5 $\phi V_{sc,y,seis} \ge V_{ua}^a$

Nominal shear steel strength of a single anchor for seismic desian

 $V_{_{sa,y\!,seis}}\!,$ and φ are tabulated in ESR-3520 Table 8-5 $\phi V_{sa,y,seis} \ge N^a_{ua}$

Nominal shear strength of a channel bolt for seismic design and Nominal flexural strength of the channel bolt for seismic design $V_{_{ss,seis}}$, $M_{_{ss,seis}}$ and φ are tabulated in ESR-3520 Table 8-11 φ V_{ss,y,seis} ≥ V^b_{ua}

7.6 Seis

1. Anchor **Channel Systems**

2. HAC Portfolio 3. HAC

Applications

Seismic shear longitudinal to the channel profile Seismic Loading (SDC C, D, E and F)

All anchor channels systems in a test series shall complete the simulated seismic-shear loads. Test No. 14 is performed to extract seismic strength values for the various failures listed below.

Perform the tests on anchor channels to evaluate the nominal shear strength of the connection between the channel lips and channel bolt for shear acting in longitudinal axis without influence of concrete edges. Test No. 14 shall be permitted to be performed with anchor channels with two anchors outside of the concrete with the maximum anchor spacing and the minimum distance between the end of the channel and the anchor axis. The frequency of loading shall be between 0.1 and 2 Hz. To reduce the potential for uncontrolled slip during load reversal, the alternating shear loading shall be permitted to be approximated by the application of two half-sinusoidal load cycles at the desired frequency connected by a reduced-speed, ramped load as shown in Figure 7.8 of this annex.

Nominal shear steel strength in the longitudinal direction for local failure of the channel lips for seismic design anchor channel HAC-T with t-bolt HBC-T

 $\varphi \; V_{_{SI,x,seis}}$ and φ are tabulated in ESR-3520 Table 8-6 $\phi V_{sl,x,seis} \geq V_{us}^{b}$

Please note the following:

- The φ value is 0.65 for which periodical inspection is provided for M12 to M20 t-bolts
- The φ value is 0.75 for which continuous inspection is provided for M12 to M20 t-bolts

Nominal shear steel strength in longitudinal direction for local failure of the channel lips for seismic design anchor channel HAC with t-bolt HBC-C-N

 $\phi V_{sl x seis}$ and ϕ are tabulated in ESR-3520 Table 8-7 $\phi V_{slx seis} \geq V_{ua}^{b}$

Please note the following:

- The φ value is 0.55 for which periodical inspection is provided for all t-bolts
- The φ value is 0.65 for which continuous inspection is provided for M16 and M20 t-bolts
- The steel strength for M12 t-bolts used with continuous inspection gives an increased value of 2,021lbs which should be used with ϕ value of 0.55

Nominal longitudinal shear steel strength of a single anchor for seismic design

5. Base material

6. Loading

 $V_{sax seis}$ and ϕ are tabulated in ESR-3520 Table 8-5 φ V_{sa,x,seis} ≥ V^a_{ua}

4. Design

Introduction

Nominal longitudinal shear steel strength of connection between anchor and channel for seismic design

 $V_{_{sc,x,seis}}$ and φ are tabulated in ESR-3520 Table 8-5 φ V_{sc,y,seis} ≥ V^a_{ua}

Nominal longitudinal shear steel strength of a single anchor for seismic desian

 $V_{_{sa,x,seis}}\text{,}$ and φ are tabulated in ESR-3520 Table 8-5 φ V_{sa,x,seis} ≥ N^a_{ua}

Nominal shear strength of a channel bolt for seismic design and Nominal flexural strength of the channel bolt for seismic design

 $V_{_{ss,seis}},\,M_{_{oss,seis}}$ and φ are tabulated in ESR-3520 Table 8-11 $\phi V_{ss.v.seis} \geq V_{us}^{b}$

Interaction equation seismic loading (SDC C, D, E and F) :

According to AC 232 June 2018 there is no distinction made in interaction equation, if project is in SDC A or B versus project located in SDC C. D E or F. Please refer to section 7.4.5.

	SDC A or B	SDC C, D, E or F
Testing	The anchor channel is subjected to tests to determine the performance of anchor channel under service conditions in accordance with AC232	Simulated seismic tests are performed where an anchor channel is subjected to the sinusoidal loads. (refer to AC232 section 7.12 to 7.13)
Concrete breakout in tension	The reduction factor of 0.75 is not required.	Apply a seismic reduction factor of 0.75 to non-steel tension design strengths per ACI 318-14 Section 17.2.3.4.4.
Concrete breakout in shear	An overstrength factor (Ω_0) must not be applied.	Load combination is based on ASCE 7-10 chapter 12 and ACI 318-14. When the anchorage design is controlled by a brittle anchor failure mode, an over strength factor (Ω_0) must be applied to the earthquake component (E) of the factored load.

8. REINFORCIN BAR **ANCHORAG**

9. Special Anchor

Channel Design

10. Design

Software

7. Anchor Channel

Design Code

8. Reinforcing

Bar Anchorage

Anchor channels equipped with headed and T-shaped anchors are generally adequate for applications with thick concrete members, large edge and corner distances, normal weight concrete, high concrete compressive strengths, and medium load range, etc. However, the need for anchor channel solutions suitable for more stringent applications such as thin concrete members, lightweight concrete, high loads, corners, amongst others, led manufacturers, designers, and contractors to look beyond typical anchor channel geometries. For example concrete edge breakout typically governs the design of anchor channels used for near-edge applications such as curtain wall anchorage.

Anchor channels equipped with reinforcing bars that can engage the reinforcing in the slab directly are one way to extend anchor channel application range and efficiency. The use of anchor reinforcement and anchor channels with reinforcing bars requires a thorough understanding of development length theory as expressed in the ACI 318 model code. This chapter provides background on reinforcing bar development as it relates to the specific problem of anchor channel anchorage (see HAC CRFoS U and HAC EDGE).

Mechanics & Design, by James K. Wight and James G. MacGregor.

11. Best Practices	12. Instructions for Use 13. Field Fixes 14. Design Example	
IG		8.1 Reinfor
E		cing Bar Theory
		8.2

Rebar theory presented in this chapter is based on ACI 318-14 and Reinforced Concrete

1. Anchor Channel Systems

Portfolio

2. HAC

4. Design Introduction

3. HAC

Applications

5. Base material 6. Loading

7. Anchor Channel Design Code

el 8. Reinforcing Bar Anchorage 9. Special Anchor 10. Design Channel Design Software

8.1 REINFORCING BAR THEORY

The information presented in this chapter is mainly based on Reinforced Concrete Mechanics & Design, by Jams K. Wight and James G. MacGregor, chapter 8 and ACI 318-14.

Introduction

In reinforced concrete structures, concrete resists flexural compressive forces, while the reinforcement resists the flexural tensile forces. Therefore, the bond between the two materials is necessary to ensure the transfer of forces. If no bond stresses are present, the bar will pull out of the concrete causing the reinforced concrete structure to fail.

Bond refers to the interaction between reinforcing steel and the surrounding concrete which allows for transferring of tensile stress from the steel into the concrete.

Figure 8.1.1.1 — Bond stresses on a reinforcing bar.

The bond-transfer mechanism via mechanical interlock between reinforcing bar (transverse ribs on reinforcing bar) and concrete is shown in Figure 8.1.1.1. The reinforcing bar acts to transfer the forces into the concrete via bearing on the deformations of the reinforcing bar. While adhesion and friction are present initially, they are quickly lost as the rebar is loaded in tension. Figure 8.1.1.2 a, b, c, and d illustrate the equal and opposite bearing stresses that act on the concrete. The forces on the concrete have a longitudinal and a radial component. The component force causes circumferential tensile stresses in the concrete around the reinforcing bar as illustrated on Figure 8.1.1.2 f and g.

a) Bearing forces on rebar

c) Bearing forces on concrete

e) Components of force on concrete

f) Radial forces on concrete and splitting stresses shown on a section through the bar

g) Radial splitting and longitudinal bearing forces on concrete

Figure 8.1.1.2 — Stresses and forces on a reinforcing bar and concrete. Source: Wight, James & MacGregor, James. Reinforced Concrete Mechanics & Design, 2012.

b) Components of bearing forces on rebar

d) Components of bearing forces on concrete

When reinforcing bars are loaded beyond the bond strength,

the concrete will split parallel to the bar. The resulting crack

will follow the path of least resistance, propagating out to

reinforcing bars along the bottom, top, and side surfaces.

in vertical and horizontal planes. The splitting crack may

illustrates different potential splitting cracks patterns.

the surface of the substrate. The splitting cracks follow the

Splitting cracks along the reinforcing bar will generally occur

also occur between two rebars if the spacing is less than the

a) splitting stresses due to overstressed reinforcing bars.

b) Side cover and half
 the bar spacing both
 less than bottom cover

a) splitting stresses due to overstressed reinforcing bars c) Side cover equal to bttom cover, both less than half the bar spacing

d) Bottom cover less than side cover and half the bar spacing

e) Side cover and half reinforcing bars spacing less than bottom cover.

Figure 8.1.1.3 — Radial splitting stresses and splitting crack patterns. Source: Wight, James & MacGregor, James. Reinforced Concrete Mechanics & Design, 2012.

Splitting cracks occur mainly due to the wedging action of the reinforcing bar bearing against the concrete. Horizontal splitting cracks generally begin diagonally. The dowel action increases the tendency toward splitting.

After development of the cracks occurs, the bond transfer drops rapidly unless reinforcement is provided to restrain the opening of the splitting crack.

Figure 8.1.1.4 — Potential plane of splitting due to closely spaced reinforcing bars.

The load at which splitting failure develops is a function of

- 1. The minimum distance from the reinforcing bar to the surface of the concrete or to the next reinforcing bars — the smaller this distance, the smaller is the splitting load.
- 2. The tensile strength of the concrete.
- 3. The average bond stress—as this increases, the wedging forces increase, leading to a splitting failure.

If the cover and reinforcing bar spacing are large compared to the bar diameter, a pull-out failure can occur, where the bar and the annulus of concrete between successive deformations pull out along a cylindrical failure surface joining the tips of the deformations.

8.2 DEVELOPMENT LENGTH

1. Anchor

Channel Systems

2. HAC

Portfolio

3. HAC

Applications

Establishing the required reinforcing bar length

Although bond stress varies along the length of a bar anchored in a tension zone, ACI uses the concept of development length rather than bond stress. The development length concept is based on the attainable average bond stress over the length of embedment of the reinforcement.

Figure 8.2.1.1 — Stresses in concrete and rebar.

Development length

As stated before, the ACI concept of development length is based on the attainable average bond stress over the length of embedment of the reinforcement. Development length (ℓ_{\star}) can be defined as the shortest length in which the bar stress increases from zero to the nominal yield strength (f.). Providing the minimum development length of a bar ensures adequate load transfer from the reinforcing bar to the concrete.

Development lengths are required to avoid splitting of the substrate (especially thin substrates) when rebars are highly stressed. The development length concept requires minimum lengths beyond all points of peak stress in the reinforcement. In other words, the reinforcement needs to be anchored properly beyond the point of peak stress. Figure 8.2.1.2 illustrates rebars developed beyond all points of peak stress.

Construction join

Figure 8.2.1.2 — Development length of a reinforcing bar in a cantilever member. Source: Wight, James & MacGregor, James. Reinforced Concrete Mechanics & Design, 2012.

The development length concept incorporates two very important concepts - reinforcing bar stress and nominal yield strength. Bar stress is the force per unit area of the bar crosssection. The nominal vield strength is the minimum bar stress at which permanent (inelastic) deformation occurs.

Structural reinforced concrete design is based on the assumption that the reinforcing bar will develop its yield strength before premature failure occurs due to inadequate bond. Development length is intended to ensure that the nominal yield strength of the bar can be developed under structure loading.

Orangun, et al. [13] proposed an expression for determining the development length ℓ_{\star} of deformed reinforcing bars in tension. The ACI bond committee simplified the design expression

Development length in accordance with the provisions of ACI 318-14

ACI 318-14 Chapter 25 contains provisions for reinforcing bar development lengths. Development lengths are assumed to preclude concrete splitting and reinforcing bar pullout failure prior to "development" (attainment) of bar yield stress.

In all cases, the development length of a reinforcing bar in tension should not be less than 12 in. Moreover, the values of $\sqrt{f'}$ used to calculate development length shall not exceed 100 psi

Development length for straight deformed bars in tension given in §25.4.2.3 of ACI 318-14 as follows:

9. Special Anchor

Channel Design

10. Design

Software

Deformed bars or deformed wires, development length (ℓ_a) shall be calculated as follows:

$$\ell_{d} = \left(\frac{3}{40} \frac{f_{y}}{\lambda \sqrt{f_{c}^{\prime}}} \frac{\psi_{l} \psi_{e} \psi_{s}}{\left(\frac{c_{b} + k_{tr}}{d_{b}}\right)}\right) d_{b}$$

where:

 $\ell_{\rm H}$ = development length, in. *ℓ* ≥ 12 in.

 f_{u} = yield strength of bar

Ψ_{i} = bar-location factor

Horizontal reinforcement so placed that more than 12 in. of fresh concrete is cast in the member below the development length or splice	k _{tr} is a confining reinforcement across potential splitting planes factor
Other reinforcement 1.0	40 A _{tr}
III = enoxy-coating factor	= s·n

ψ_{a} = epoxy-coating factor

The product $\psi_{\mu}\psi_{\mu}$ need not exceed 1.7

ψ_{c} = bar-size factor

No. 6 and smaller bars and deformed wires	. 0.8
No. 7 and larger bars	. 1.0

λ = modification factor for lightweight concrete

When any lightweight-aggregate concrete is used0.75 When the splitting tensile strength f, is specified, shall be permitted to be taken as $f_{a}/6.7\sqrt{f'}$ but not more then 1.0 When normal-weight concrete is used 1.0

ACI 318-14, §R25.4.2.4 The lightweight factor λ for calculating development length of deformed bars and deformed wire in tension is the same for all types of lightweight aggregate concrete. Research does not support the variations of this factor in Codes prior to 1989 for all-lightweight and sand-lightweight concrete. Section 25.4.2.4 allows a higher factor to be used when the splitting tensile strength of the lightweight concrete is specified. Refer to 19.2.4.

f' = concrete compressive strength

f′ ≤ 10,000 psi

c_b = reinforcing bar cover factor

Reinforcing bar cover factor is: a) the least of the side cover

b) the concrete cover to the bar or wire

c) One-half the center-to-center spacing of the bars.

5. Base material

4. Design

6. Loading

7. Anchor Channel 8. Reinforcing **Design Code** Bar Anchorage

In all cases, c, is measured from the center of the bar.

Figure 8.2.1.3 — Minimum reinforcing bar cover. Source:Wight, James & MacGregor, James. Reinforced Concrete Mechanics & Design, 2012.

d_L = nominal diameter of the reinforcing bar

- 1.5 where 1.2
- A, = total cross-sectional area of all transverse reinforcement 1.0 within the spacing s, which crosses the potential plane of splitting along the reinforcement being developed within the development length, (illustrated in Fig. 8-11)
- 1.0

Figure 8.2.1.4 — Transverse reinforcement (A,.).

- s = maximum center-to-center spacing of transverse reinforcement within ℓ_{d} , in
- n = number of bars or wires being developed or spliced along the plane of splitting.

For simplicity, K_v can be taken equal to zero, even if there is transverse reinforcement. This assumption results in conservative development lengths.

A limit of 2.5 is placed on the term $(c_{h} + K_{h})/d_{h}$. When $(c_{h} + K_{r})/d_{h}$ is less than 2.5, splitting failures are likely to occur. For values above 2.5, a pullout failure is expected, and an increase in cover or transverse reinforcement is unlikely to increase the anchorage capacity.

Potential plane

of splitting

2. HAC Portfolio 3. HAC

4. Design Applications Introduction

5. Base material 6. Loading

10. Design Software

Reduction of development length for excess reinforcement

A reduction in development length is permitted in limited circumstances. If the flexural reinforcement provided exceeds the amount required to resist the factored moment required by analysis, reduction of development length is allowed. In such a case, ACI 318-14, §25.4.10 allows to be multiplied by (As required/ A_{s,provided}).

A reduction of development length in accordance with 25.4.10.1 is not permitted for (a) through (e): (a) At non-continuous supports

- (b) At locations where anchorage or development for f, is required
- (c) Where bars are required to be continuous
- (d) For headed and mechanically anchored deformed reinforcement
- (e) In seismic-force-resisting systems in structures assigned to Seismic Design Categories D, E, or F

 $\ell_{\rm J}$ shall not be taken less than 12 in.

Additional requirements

ACI 318-14, §18.8.5.3 For bar sizes No. 3 through No. 11, ℓ_{\star} , the development length in tension for a straight bar, shall be at least the greater of (a) and (b):

- (a) 2.5 times the length in accordance with 18.8.5.1 if the depth of the concrete cast in one lift beneath the bar does not exceed 12 in.
- (b) 3.25 times the length in accordance with 18.8.5.1 if the depth of the concrete cast in one lift beneath the bar exceeds 12 in.

ACI 318-14, §18.8.5.4 Straight bars terminated at a joint shall pass through the confined core of a column or a boundary element. Any portion of ℓ_1 not within the confined core shall be increased by a factor of 1.6.

8.3 PULLOUT STRENGTH OF STRAIGHT REINFORCING BARS

Pullout strength of reinforcing bar per ACI 318-14. §25.4.2.3

The ACI concept of development length is based on the attainable average bond stress over the length of embedment of the reinforcement.

If a reinforcing bar provides the required development length, the reinforcing bar will yield before it is pulled-out of the concrete. In situations where the force at the reinforcing bar is less than its yield strength, ACI 318 allows reducing the excess reinforcement.

The simplified development length equation for a reinforcing bar in tension is as follows:

ACI 318-11 Equation (25.4.2.3a) for deformed bars in tension can be recast in terms of an equivalent bond stress equation as follows:

 $A_{sfv} = T_{bond} \pi d_b \ell_d$

where

T_{hond} is the equivalent bond stress

Substituting $A_{a} = \pi d_{b}^{2}/4$, the following expression for bond can be derived from the development length equation given in Section 12 2 3:

$$(f_y =)\sigma_d = \ell_{d,prov}\left(\frac{3}{40}\right)\lambda\sqrt{f_c}\left(\frac{c_b + k_{tr}}{d_b}\right)\left(\frac{1}{\psi_t\psi_e\psi_s}\right)\left(\frac{1}{d_b}\right)$$

$$N_{p,R} = \frac{\pi d_{s,R}^2}{4}$$
$$N_{p,R} = \ell_{d,prov} \pi d_b \left(\frac{10}{3}\right) \lambda \sqrt{f_c'} \left[\min\left(\frac{c_b + k_p}{d_b}, 2.5\right)\right] \left(\frac{1}{\psi_{,}\psi_{e}\psi_{s}}\right)$$

Pullout strength reduction Ø-factor

ACI 318-14 development length equation does no require a Ø factor to be applied to the development length equation. An allowance for strength reduction is already included in the expression for determining development length. R25.4.1.3

When calculating the pull-out strength of the reinforcing reinforcing bar, per ACI 318-14, §17.4.2.9 a reduction factor, Ø of 0.75 shall be applied to the nominal pull-out rebar strength.

Pullout strength of reinforcing bar per ACI 318-14 with $(c_{h} + K_{h})/d_{h} < 2.5$

R25.4.2.2 This provision recognizes that many current practical values of c_b equal to d_b. Thus, for "other cases," the values are construction cases use spacing and cover values along with based on using $(c_{b} + K_{tr})/d_{b} = 1.0$ in Eq. (25.4.2.3a). confining reinforcement, such as stirrups or ties, that result in a value of $(c_{L} + K_{L})/d_{L}$ of at least 1.5. Examples include a minimum As long as minimum cover of d_b is provided along with a clear cover of d_b along with either minimum clear spacing of 2d_b, minimum clear spacing of 2d, or a minimum clear cover of db or a combination of minimum clear spacing of d, and minimum and a minimum clear spacing of d_b are provided along with ties or stirrups. For these frequently occurring cases, the minimum ties or stirrups, then $\ell_{d} = 47d_{h}$. The penalty for spacing development length for larger bars can be taken as bars closer or providing less cover is the requirement that $\ell_{\rm s} = [f_{\rm s} \psi_{\rm s} \psi_{\rm s} / (20\lambda \sqrt{f'_{\rm s}})] d_{\rm s}$. In the formulation of the provisions in $\ell_{d} = 71d_{b}$. ACI 318-95, a comparison with past provisions and a check of a database of experimental results maintained by ACI 408.1R § 25.4.2.2 For deformed bars or deformed wires, ℓ_1 shall be indicated that for No. 6 deformed bars and smaller, as well as calculated in accordance with Table 25.4.2.2. for deformed wire, the development lengths could be reduced 20 percent using ψ_{1} = 0.8. This is the basis for the No. 6 and smaller bars and deformed wires column of Table § 25.4.2.2.

Table 8.3.1.1 (ACI 318-14 Table 25.4.2.2) — Development length for deformed bars and deformed wires in tension

Spacing and cover No. 6 and smaller bars and deformed wires No. 7 and larger bars	Spacing and cover No. 6 and smaller bars and deformed wires No. 7 and larger bars	Spacing and cover No. 6 and smaller bars and deformed wires No. 7 and larger bars	ng Barsrs
Clear spacing of bars or wires being developed or ap spliced not less than db, clear cover at least d _b , and stirrups or ties throughout ℓ , not less than the			
Code minimum	$\left(\frac{f_y \psi_i \psi_e}{25\lambda \sqrt{f_c}}\right) d_b$	$egin{pmatrix} \displaystyle \displaystyle rac{\displaystyle f_y \psi_i \psi_e}{\displaystyle 20 \lambda \sqrt{f_c^{'}}} \end{pmatrix} \!\! d_b \end{cases}$	Heade
Clear spacing of bars or wires being developed or ap spliced at least 2_{db} and clear cover at least \mathbf{d}_{b}			ed Bars
Other cases	$\left(\frac{3f_y\psi_t\psi_e}{50\lambda\sqrt{f_c}}\right)\!\!d_b$	$egin{pmatrix} \displaystyle \left(rac{3f_y\psi_i\psi_e}{40\lambda\sqrt{f_c'}} ight)\!d_b \end{split}$	In Tension

12. Instructions for Use

13. Field Fixes

8.3 Pullout Stre Reinforci

With less cover and in the absence of minimum ties or stirrups, the minimum clear spacing limits of 25.2.1 and the minimum concrete cover requirements of 20.6.1.3 result in minimum

8.4 PULLOUT STRENGTH OF HEADED BARS IN TENSION

1. Anchor

Channel Systems

2. HAC

Portfolio

3. HAC

Applications

Headed anchored bars in tension

When adequate space is not provided to reach full development length of a straight reinforcing bar, ACI 318 allows the use of headed reinforcing bars to reduce the development length. The development length for a headed reinforcing bar generally will be shorter than that for a straight or hooked rebar. Headed reinforcing bars are ideal for applications where there is limited space available to develop bars in tension.

The transfer of force from the bar to the concrete is assumed to be achieved by a combination of bond-transfer mechanism along the straight portion of the bar and bearing forces at the head.

Figure 8.4.1.1 - Stresses on headed anchored reinforcing bars.

Headed anchored bars in tension, ℓ_{dt} per ACI 318-14, 25.4.4

The provision for headed deformed bars were formulated with due consideration of the provisions for anchorage in ACI 318-14 Chapter 17 and the bearing strength provisions of ACI 318-14 Chapter 22.

The use of heads to develop deformed bars in tension shall be permitted if conditions (a) through (g) are satisfied: (a) Bar shall conform to 20.2.1.3

(b) Bar f, shall not exceed 60,000 psi

(c) Bar size shall not exceed No. 11

(d) Net bearing area of head Abrg shall be at least $4A_{L}$

(e) Concrete shall be normal weight

- (f) Clear cover for bar shall be at least 2d,
- (g) Clear spacing between bars shall be at least 4d,

The provisions for developing headed deformed bars give the length of bar, $\ell_{\rm av}$ measured from the critical section to the bearing face of the head, as shown in Fig.###

5. Base material

Figure 8.4.1.2 — Development length of headed anchored reinforcing bar.

The head is considered to be part of the bar for the purposes of satisfying the specified cover requirements in 20.6.1.3, and aggregate size requirements of 26.4.2.1(a)(4).

25.4.4.2 Development length $\ell_{\rm m}$ for headed deformed bars in tension shall be the greatest of (a) through (c):

$$\ell_{a} = \left(\frac{0.016 f_{y} \psi_{e}}{\lambda \sqrt{f_{c}}}\right) d_{b}, \quad \text{With } \psi_{e} \text{ given in ACI 318-14 25.4.4.3 and value}$$

of f_c shall not exceed 6.000 psi

4. Design

Introduction

(b) $8d_{\mu}$ (c)6 in.

 $\ell_{\rm ac}$ = development length of headed anchored rebar, in.

f, = yield strength of bar

Ψ_{i} = epoxy-coating factor

• e			0					
All	other	ерох	y-coated b	ars or wir	res	 	1.2	-
Un	coated	d anc	l galvanized	d reinforc	ement.	 	1.0)

f' = concrete compressive strength

f′ ≤ 10,000 psi

d_L = nominal diameter of the reinforcing bar

Transverse reinforcement, however, helps limit splitting cracks in the vicinity of the head and for that reason is recommended.

8.5 PULLOUT STRENGTH OF STANDARD HOOKS

Behavior of hooked rebar

When adequate space is not provided to reach full development length of a straight reinforcing bar, the reinforcing bar can be hooked or bent. The behavior of the hooked reinforcing bar changes as a result of the bend in the reinforcing bar. Hooked reinforcing bar resists bond failure by bond strength along the straight portion, anchorage provided by the hook, and by the bearing on the concrete inside the hook.

The forces that develop in a 90° hook are shown in Figure 8.5.1.1. The developed stresses cause the bar to move inwards, leaving a gap of concrete on the outside of the hook. The bar tends to straighten out due to the formation of the gap and directional change in force along the bend, causing compressive stresses on the outside of the tail. Because the compressive force inside the bend is not collinear with the applied tensile force, the bar tends to straighten out, producing compressive stresses on the outside of the tail. Therefore, the failure of the hook can most often be attributed to the crushing of concrete inside the hook. If the hook is close to a side face, the crushing may extend to the surface of the concrete, removing the side cover. If cracking in the outside of the tail occurs, the tail may straighten.

Figure 8.5.1.1 - Stresses in standard 90 degree hook. Source: Wight, James & MacGregor, James. Reinforced Concrete Mechanics & Design, 2012.

The stresses and slip of the reinforcing bar are also dependent upon the degree of bend of the reinforcing bar, as shown in Figure 8.5.1.2. The slip of the rebar at point A is nearly twice as large in the 180-degree hook as compared to the 90-degree hook.

The main cause of failure of hooked bars is splitting failure of the concrete cover in the plane of the hook. Splitting failure depends on hook cover and anchorage strength can be improved through confinement provided by stirrups.

12. Instructions for Use

8.4 Pull Out Strengt Headed Bars In Ten

sion

8.5 Pull Out Stren Standard Hoo

Figure 8.5.1.2 - Stresses in 90 and 180 degree hooks. Source: Wight, James & MacGregor, James. Reinforced Concrete Mechanics & Design, 2012.

Tension development length of hooked reinforcing bar: ACI 318-14, §25.4.3.1

A minimum value of hook development length (ℓ_{u}) is specified to prevent failure by direct pullout in cases where a hook may be located very near the critical section. The development length for deformed bars in tension terminating in a standard hook (90° and 180° or between top and bottom bar hooks) shall be the greater of (a) through (c):

$$\ell_{a} \qquad \ell_{dh} = \left(\frac{f_{y}\psi_{e}\psi_{c}\psi_{r}}{50\lambda\sqrt{f_{c}}}\right)d_{b}$$

$$(b)$$
 $8d_b$

$$(c)$$
 6 in.

The modification factors applicable to hooked reinforcing bar development length are as follows:

$\ell_{\rm ab}$ = development length of a standard hook, in.

measured from the critical section to the outside end (or edge of the hook)

f, = yield strength of bar

w = epoxy-coating factor

Te opening lacter	
All other epoxy-coated bars or wires	1.2
Uncoated and galvanized reinforcement	1.0
Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019	209

1. Anchor 2. HAC Channel Systems Portfolio

folio

3. HAC

Applications

4. Design Introduction

5. Base material 6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design Channel Design Software

 ψ_c = bar-cover factor

No. 11 bar and smaller hooks with side cover (normal to plane	;
of hook) \geq 2-1/2 in and for 90-degree hook with cover on bar	
extension beyond hook \geq 2 in	D.7
Other	1.(

ψ_r = confining reinforcement factor

For 90-degree hooks of No. 11 and smaller bars (1) enclosed along $\ell_{\rm dh}$ within ties or stirrups perpendicular to $\ell_{\rm dh}$

at s ≤ 3d_b, or

(2) enclosed along the bar extension beyond hook including the bend within ties or stirrups perpendicular to

ℓ_{ext} at s ≤ 3d _b	,	0.80
-------------------------------------	---	------

Figure 8.5.1.3 — Confinement of hooks by stirrups and ties. Source: Wight, James & MacGregor, James. Reinforced Concrete Mechanics & Design, 2012.

λ = modification factor for lightweight concrete

When any lightweight-aggregate concrete is used0.75
When the splitting tensile strength f
permitted to be taken as $f_{c_1}/6.7\sqrt{f'_c}$ but not more then 1.0
When normal-weight concrete is used 1.0

ACI 318-14, §R25.4.2.4 The lightweight factor λ for calculating development length of deformed bars and deformed wires in tension is the same for all types of lightweight aggregate

concrete. Research does not support the variations of this factor in Codes prior to 1989 for all-lightweight and sand-lightweight concrete. Section 25.4.2.4 allows a higher factor to be used when the splitting tensile strength of the lightweight concrete is specified. Refer to 19.2.4.

f' _c = concrete compressive strength f' _ ≤ 10,000 psi

_c ≤ 10,000 psi

d_b = nominal diameter of the reinforcing bar

Bar hooks are especially susceptible to a concrete splitting failure if both side cover (perpendicular to plane of hook) and top or bottom cover (in plane of hook) are small. For bars being developed by a standard hook at discontinuous ends of members with both side covers and top (or bottom) cover to hook less than 2-1/2 in., (a) through (c) shall be satisfied: (a) The hook shall be enclosed along ℓ_{dh} within ties or stirrups perpendicular to ℓ_{un} at s ≤ 3d.

(b) The first tie or stirrup shall enclose the bent portion of the hook within 2d, of the outside of the bend

(c) ψ_{r} shall be taken as 1.0 in calculating ℓ_{dh} in accordance with 25.4.3.1(a)

Reduction of development length for excess reinforcement

A reduction in development length is permitted in limited circumstances. If the flexural reinforcement provided exceeds the amount required to resist the factored moment, the bar stress that must be developed is less than In such a case, ACI 318-14, §25.4.10 allows to be multiplied by $(A_{s,required}/A_{s,provided})$.

A reduction of development length in accordance with 25.4.10.1 is not permitted for (a) through (e):

- (a) At non-continuous supports
- (b) At locations where anchorage or development for ${\rm f_y}$ is required
- (c) Where bars are required to be continuous
- (d) For headed and mechanically anchored deformed reinforcement
- (e) In seismic-force-resisting systems in structures assigned to Seismic Design Categories D, E, or F

Minimum bending requirements: ACI 318-14, §25.4.3.1.

Standard hooks need to follow some specific geometrical requirements. Standard hooks should meet the minimum lengths and bending requirements provided in ACI 318-14. The primary factors affecting the minimum bend diameter are feasibility of bending without breakage and avoidance of crushing the concrete inside the bend.

The minimum inside bend diameter and extension length for a hooked reinforcing bar is as follows in the table:

Pull-out strength reduction factor, Ø

ACI 318-14 development length equation does not require a ϕ factor to be applied to the development length equation. An allowance for strength reduction is already included in the expression for determining development length. R25.4.1.3

When calculating the pull-out strength of the reinforcing bar, per ACI 318-14, §17.4.2.9 a reduction factor, \emptyset of 0.75 shall be applied to the nominal pull-out reinforcing bar strength.

Pull-out strength of L-bolts

If standard hook requirements of ACI are not met, the reinforcing bar may behave similar to the one of an L-bolt

The pullout strength in tension of a single hooked bolt $\rm (N_{p})$ per ACI 318-14, §17.4.3.5 shall not exceed

 $N_p = 0.9f'_c e_c d_a$

where: $3d_a \le e_h \le 4.5d_a$

R17.4.3.5 Equation (17.4.3.5) for hooked bolts was developed by Lutz based on the results of Kuhn and Shaikh (1996). Reliance is placed on the bearing component only, neglecting any frictional

Table 8.5.1.1 (ACI 318-14 Table 25.3.1) — Bending Requirements for Development of Standard Hook

Type of standard hook	Bar size	Minimum inside bend diameter(in)	Straight extension lext, (in)	Type of standard hook	
90-degree hook	No. 3 through No. 8	6d _b	12d _b	Point at which reinforcing bar is developed	
	No. 9 through No. 11	8d _b		Bend diameter	
	No. 14 through No. 18	10d _b		e _{dh}	
180-degree hook	No. 3 through No. 8	6d _b		Point at which reinforcing bar is developed	
	No. 9 through No. 11	8d _b	Greater of: 4d _b 2.5 in	Bend diameter	
	No. 14 through No. 18	10d _b		e _{dh}	

^[1]The first tie or stirrup shall enclose the bent portion of the hook within 2db of the outside of the bend.

component because crushing inside the hook will greatly reduce the stiffness of the connection and generally will be the beginning of pullout failure. The limits on e_n are based on the range of variables used in the three tests programs reported in Kuhn and Shaikh (1996).

1. Anchor **Channel Systems**

2. HAC Portfolio

3. HAC 4. Design **Applications** Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing **Design Code** Bar Anchorage 9. Special Anchor 10. Design **Channel Design** Software

8.6 REINFORCING BAR LAP SPI ICFS

Behavior of lap splices

Opposed to development length where the length of the reinforcing bar needed to transfer the stresses to the concrete is calculated, lap splice calculates the lap length of the reinforcing bar needed to transfer the stresses to another bar.

The mechanism of force-transfer in lap splicing is the force in one reinforcing bar is transferred into the concrete, which then is transferred to the adjacent reinforcing bar, or spliced reinforcing bar. This behavior is shown in Figure 8.6.1.1 and 8.6.1.2. Although the term "lap splice" implies direct transfer of stress from bar to bar, forces between bars are transferred via struts and hoop stresses in the concrete.

The transfer of forces out of the reinforcing bar into the concrete causes radially outward pressures on the concrete, as shown in figure 8.6.1.3. This force transfer may create pressures that result in splitting cracks on concrete between and along the two reinforcing bar. When such cracks occur, the splice fails. Therefore, transverse reinforcement can be supplemented to delay the openings of the splitting cracks and improve the splice capacity.

Figure 8.6.1.1 - Forces on bars at splice

Figure 8.6.1.2 — Compressive struts at splice.

Figure 8.6.1.3 - Radial forces on concrete and splitting stresses shown on section through the splice.

Tension lap splices per ACI 318-14 25.5.2.1

Lap splices in tension in accordance to ACI 318-14 are classified as a Class A or Class B splice. The lap splice length (ℓ_{a}) is a multiple of the tensile development length (ℓ_{d}).

A class B splice taken as the greater of $1.3\ell_{d}$ and 12 in. is required in all cases unless 1) the area of reinforcement is at least twice that determined by analysis over the entire length of the splice and 2) one-half or less of the total reinforcement is spliced within the lap length. Where 1) and 2) are satisfied, a Class A splice taken as the greater of $1.0\ell_{d}$ and 12 in. may be used.

The transverse center-to-center spacing of spliced bars shall not exceed the lesser of one-fifth the required splice length and 6 in. If individual bars are too widely spaced, an unreinforced section is created causing potential cracks.

Table 8.6.1.1 (ACI 318-14 Table 25.5.2.1) — Lap splice lengths of deformed bars and deformed wires in tension

As,provided/ As,required ^[1] over length of splice	Maximum percent of As spliced within required lap Length	Splice type	ℓ _{st}	
≥2.0	50	Class A	Greater of:	1.0ℓ _d and 12 in.
	100	Class B	Greater of: 1.3ℓ _d and 12 in.	1.3ℓ _d
< 2.0	All cases	Class B		12 in.

§ 25.5.1.2 For contact lap splices, minimum clear spacing between the contact lap splice and adjacent splices or bars shall be in accordance with the requirements for individual bars in 25.2.1.

Figure 8.6.1.4 - Contact lap splice.

§ 25.5.1.3 For non-contact splices in flexural members, the transverse center-to-center spacing of spliced bars shall not exceed the lesser of one-fifth the required lap splice length and 6 in.

Figure 8.6.1.5 - Non-contact lap splice

If individual bars in noncontact lap splices are too widely spaced, an unreinforced section is created. Forcing a potential crack to follow a zigzag line (5-to-1 slope) is considered a minimum precaution. The 6 in. maximum spacing is added because most research available on the lap splicing of deformed bars was conducted with reinforcement within this spacing.

There is no difference in the performance of contact and noncontact lap splices. Forces are transferred from one bar to another via the concrete.

§ 25.5.1.4 Reduction of development length in accordance with § 25.4.10.1 is not permitted in calculating lap splice lengths. Because the splice classifications already reflect excess reinforcement, the development length, $\ell_{\rm e}$, used to determine the lap length should not include reduction factors for excess reinforcement.

§ 25.5.2.2 If bars of different size are lap spliced in tension, $\ell_{\rm st}$ shall be the greater of ℓ_{d} of the larger bar and ℓ_{d} of the smaller bar.

2. HAC 3. HAC Portfolio Applications

4. Design s Introduction

5. Base material 6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor Channel Design Software

8.7 CONCRETE COVER

Minimum cover requirements: ACI 318-14 20.6.1.3

The specified concrete cover is measured as the distance between the outermost surface of embedded reinforcement and the closest outer surface of the concrete. The concrete cover can also be measured as the spacing from rebar to rebar. The tables below further explain the specified concrete cover requirements.

Table 8.7.1.1 (ACI 318-14 Table 20.6.1.3.1) — Specified concrete cover for cast-in-place nonprestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, in.
Cast against and permanently in contact with ground	All	All	3
Exposed to weather or in contact	All	No. 6 through No. 18 bars	2
with ground		No. 5 bar, W31 or D31 wire, and smaller	1-1/2
	Slabs, joists, and walls	No. 14 and No. 18 bars	1-1/2
Not exposed to weather or in		No. 11 bar and smaller	3/4
contact with ground	Beams, columns, pedestals, and tension ties	Primary reinforcement, stirrups, ties, spirals, and hoops	1-1/2

Table 8.7.1.2 (ACI 318-14 Table 20.6.1.3.2) — Specified concrete cover for cast-in-place prestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, in.
Cast against and permanently in contact with ground	All	All	3
Exposed to weather or in contact	Slabs, joists, and walls	All	1
with ground	All other	All	1-1/2
	Slabs, joists, and walls	All	3/4
Not exposed to weather or in contact with ground	Beams, columns, and tension ties	Primary reinforcement, stirrups, ties, spirals, and hoops	1-1/2
		Stirrups, ties, spirals, and hoops	1

For corrosive environments, the concrete cover shall be increased as deemed necessary and specified by the licensed design professional per the exposure categories and classed in ACI 318-14 Section 19.3. The recommended cover for corrosive environments is not less than 2 in for walls and slabs and not less than 2-1/2 in. for other members.

For fire protection requirements, the general building code may require greater concrete cover than the required cover specified in ACI 318-11 7.7.1 through 7.7.7.

9. SPECIAL ANCHOR CHANNEL DESIGN

Chapter 7 (Anchor Channel Design Code) and chapter 8 (Reinforcing Bar Theory) provide the required information to have a deep understanding of the behavior of an anchor channel with rounded headed anchors and rebars. This chapter combines the information presented in chapter 7 and 8 and covers the design models for HAC, HAC CRFoS U, and HAC EDGE. The special conditions like anchor channels installed in metal deck, two anchor channels installed parallel to each other at an edge, anchor channels installed top and bottom of slab at the same elevation are the few examples. This chapter also introduces and explains the design methodology of the anchor channels used for high wind loads.

Design methods provided in chapter 9 are allowed for applications with known boundary conditions. The provisions described in this section are only valid for Hilti Anchor Channels. The design models presented in this chapter have not been evaluated with any other anchor channel type or anchoring technology. For applications that deviate from the design boundary conditions presented in this chapter, reach out to Hilti.

11. Best Practices 12. Instructions for Use 14. Design Example
4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

. Special Anchor 10. Design Channel Design Software

9.1 — OVERVIEW OF HILTI ANCHOR CHANNEL SYSTEMS DESIGN

3. HAC

Applications

Introduction

Prior to the publication of the Acceptance Criteria 232 (AC232), cast-in anchor channels could not receive recognition under the International Building Code (IBC) as ACI 318 Anchor-to-Concrete provisions exclude specialty inserts. The publication of (AC232) brought major benefits to the cast-in anchor channel industry and design community. The use of optimized anchor channel solutions and simplification of the design and approval processes for anchor channels ultimately can avoid construction shutdowns.

1. Anchor

Channel Systems

2. HAC

Portfolio

Cast-in anchor channels can now receive recognition under the IBC, as AC232 3.0 Design Requirements provides amendments to ACI 318 Anchoring-to-Concrete provisions that permit the design of anchor channel systems as if they were included in ACI 318 Anchoring-to-Concrete provisions. In addition, AC232 allows the design community to have a clear understanding of the behavior of cast-in anchor channel systems.

Figure 9.1.1 — Anchor Channel Code Landscape

Prior to AC232, designers had to design via engineering judgment, applying provisions not fully applicable to anchor channels, research papers, and/or using manufactures' technical data. The design methodology used to approve the anchor channel design would have to be backed-up by the P.E. stamp of a licensed engineer of the state of the project's location and still might have to go to local jurisdiction for final approval. In some extreme cases, this was not accepted by local jurisdictions and additional testing was required. This added an extra problem since testing protocol for anchor channels did not exist neither.

Relying on technical data is adequate only if the tests are performed correctly. Tests results can be positively or negatively altered if they are not tested properly. Technical data via testing was a problem since prior to AC232, there were no testing protocols for cast-in anchor channel systems. As mentioned in chapter 7, AC232 provides testing protocols and design quidelines for anchor channels.

Since its inception, AC232 has been an ever-evolving document. In its infancy stage, it did not include provisions for the qualification and design of anchor channels systems in structures assigned to Seismic Design Category C, D, E, or F.

In 2015, AC232 incorporated the so needed seismic provisions for anchor channels in Seismic Design Category C, D, E, or F. Later that year, provisions permitting the use of anchor channels in all-lightweight concrete and sand-lightweight concrete were adopted by AC232.

Important design provisions have been added to AC232 over the last years. The ultimate goal is to have a complete framework that covers all common applications encountered in a building such as corners with a pair of anchor channels loaded simultaneously, parallel channels, and wind corner zones with practical design requirements (i.e typical edge distance). For these conditions, it is typically concrete that is limiting factor and having "fixed" design parameter such as member thickness, concrete type, concrete compressive strength, etc., brings the need of the so call anchor channels with rebars.

Figure 9.1.2 - HAC Channel Protfolio

The scope of AC232 is limited to anchor channels with rounded headed anchors or I-anchors and anchor channels with rebars replacing headed anchors or I-anchors. AC232 includes provisions for anchor reinforcement, where the concrete breakout in shear and/or tension can be precluded, but specifying additional reinforcement implies additional burdens and is typically an unpractical solution. The use of a complete anchor channel systems that allow the introduction of higher loads into the structure without specifying anchor reinforcement is the preferred solution.

All Hilti anchor channels covered by AC232 (HAC and HAC-T) are designed in accordance to ESR-3520. Hilti's mission is to create a better future. That is why these so needed anchor channels with rebars are tested in accordance with AC232 and the design models are using AC232 principles and applicable provisions of AC232 and ACI 318. Table 9.1.1 provides a summary of the design method of the Hilti anchor channel systems. Our ultimate goal is to offer designers and contractors anchor channel system solutions that are 100 percent IBC compliant.

Table 9.1.1 — Overview of Hilti anchor channel systems design method

Tension design model							
Failure mode	Symbol	HAC HAC-T	HAC CRFoS U HAC-T CRFoS U	HAC EDGE HAC-T EDGE			
Anchor	ΦΝ _{sa}	ESR-3520	AC232 based ¹	ESR-3520			
Anchor and channel connection	ΦN _{sc}	ESR-3520	AC232 based ¹	ESR-3520			
Channel lip	ΦΝ _{si}	ESR-3520	AC232 based ¹	ESR-3520			
Bending of channel	$\Phi M_{s, flex}$	ESR-3520	ESR-3520	ESR-3520			
Channel bolt	ΦN _{ss}	ESR-3520	ESR-3520	ESR-3520			
Pullout	ΦN _{pn}	ESR-3520	ACI 3182	ESR-3520			
Side-face blowout	ΦN _{sb}	ESR-3520	N/A	ESR-3520			
Concrete breakout	ΦN _{cb}	ESR-3520	N/A	ESR-3520			

Perpendicular shear design model							
Failure mode	Symbol HAC HAC-T		HAC CRFoS U HAC-T CRFoS U	HAC EDGE HAC-T EDGE			
Channel lip	$\Phi V_{sl,y}$	ESR-3520	AC232 based ¹	ESR-3520			
Anchor	ΦV _{sa,y}	ESR-3520	AC232 based ¹	ESR-3520			
Anchor and channel connection	ΦV _{sc,y}	ESR-3520	AC232 based ¹	ESR-3520			
Channel bolt	ΦV _{ss}	ESR-3520	ESR-3520	ESR-3520			
Channel bolt with bending	$\Phi V_{ss,M}$	ESR-3520	ESR-3520	ESR-3520			
Concrete edge breakout	ΦV _{cb,y}	ESR-3520	ESR-3520	Hilti Method ³			
Pryout	ΦV _{cp,y}	ESR-3520	N/A	ESR-3520			

Longitudinal shear design model						
Failure mode	Symbol	HAC HAC-T	HAC CRFoS U HAC-T CRFoS U	HAC EDGE HAC-T EDGE		
Anchor	$\Phi V_{sa,x}$	ESR-3520	AC232 based ¹	ESR-3520		
Anchor and channel connection	ΦV _{sc,x}	ESR-3520	AC232 based ¹	ESR-3520		
Channel bolt and channel connection	$\Phi V_{sl,x}$	ESR-3520	AC232 based ¹	ESR-3520		
Channel bolt	ΦV _{ss}	ESR-3520	ESR-3520	ESR-3520		
Channel bolt with bending	$\Phi V_{ss,M}$	ESR-3520	ESR-3520	ESR-3520		
Concrete edge breakout	ΦV _{cb,x}	ESR-3520	ESR-3520	ESR-3520		
Pryout	$\Phi V_{cp,x}$	ESR-3520	N/A	ESR-3520		

1 AC232 based indicates product has been tested in accordance to AC232 testing protocols for that specific failure mode and the design is based on applicable provisions and/or fundamentals of AC232 and/or ACI 318.

2 ACI 318 indicates the analysis of that specific failure modes is in accordance to the applicable ACI 318 provision. 3 Hilti method is derived based on testing according to AC232 testing protocols for that specific failure mode. However, the design is adjusted accordingly to account for the additional contribution of the added rebars

216

12. Instructions for Use

2. HAC Portfolio

3. HAC 4. Design **Applications** Introduction

Shear ($\Phi V_{n,v}$)

Concrete

Concrete edge

breakout: $\phi V_{cb,y}$

Pryout: $\phi V_{cp,y}$

Steel

Channel lip: $\phi V_{sl,y}$

Anchor and channe

connection: $\phi V_{sc,y}$

Channel bolt:

 $\phi V_{ss} / \phi V_{ss,M}$

5. Base material 6. Loading

Shear ($\Phi V_{n,x}$)

Steel

Anchor: $\phi V_{sa,x}$ /

Anchor and channel

connection: $\phi V_{sc.x}$

Channel bolt and

channel connection: $\phi V_{sl,x}$

Channel bolt $\phi V_{ss} / \phi V_{ss,M}$

Concrete

Concrete edge

breakout: dV.

Pryout:

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

fundamentals of AC232 and/or ACI 318

9. Special Anchor 10. Design **Channel Design** Software

9.2 — HAC AND HAC-T DESIGN

The general design of HAC and HAC-T is based on ICC ESR-3520. The design theory of rounded headed anchors is presented in chapter 7. This section provides additional design information for applications outside the scope of AC232 and therefore ESR-3520 such as corners and parallel channels.

The anchor channel design encompasses the verification of the steel and concrete at the anchorage zone. For conditions outside the scope of AC232, it is only the concrete failure mode that are excluded. The steel strengths of the anchor channel do

Concrete

Pullout: ϕN_{pn}

Side-face

Concrete breakout: ϕN_{cb}

blowout: oN.,

Tension (ΦN_{μ})

Anchor and channel

connection: 6N ...

Channel bolt: ϕN_{ss}

Steel

Channel lip:
Nal

Bending of channel:
M. for

not depend on the concrete and therefore, the steel strengths of HAC and HAC-T are based on ESR-3520.

This section provides guidelines to determine the concrete strengths of anchor channels for applications outside the scope of AC232. The design methodology of such applications is based on applicable provisions and principles of AC232. Table 9.2.1 summarizes the design methodology for each potential failure mode of HAC and HAC-T for intermediate, corners, and parallel anchor channels applications.

Table 9.2.1 — Design methodology for all potential failure modes of HAC and HAC-T for common applications

Tension design model						
Ecilium mode		HAC & HAC-T				
Failure mode	Symbol	Intermediate	Corners	Parallel channels		
Anchor	ΦΝ _{sa}	ESR-3520	ESR-3520	ESR-3520		
Anchor and channel connection	ΦΝ _{sc}	ESR-3520	ESR-3520	ESR-3520		
Channel lip	ΦΝ _{si}	ESR-3520	ESR-3520	ESR-3520		
Bending of channel	ΦM _{s,flex}	ESR-3520	ESR-3520	ESR-3520		
Channel bolt	ΦΝ _{ss}	ESR-3520	ESR-3520	ESR-3520		
Pullout	ΦN _{pn}	ESR-3520	ESR-3520	ESR-3520		
Side-face blowout	ΦΝ _{sb}	ESR-3520	ESR-3520	ESR-3520		
Concrete breakout	ΦN _{cb}	ESR-3520	AC232 principles	AC232 principles		

		Ŭ				
Ecilure mode	Symbol	HAC & HAC-T				
Failure mode	Symbol	Intermediate	Corners	Parallel channels		
Channel lip	ΦV _{sl,y}	ESR-3520	ESR-3520	ESR-3520		
Anchor	ΦV _{sa,y}	ESR-3520	ESR-3520	ESR-3520		
Anchor and channel connection	ΦV _{sc,y}	ESR-3520	ESR-3520	ESR-3520		
Channel bolt	ΦV _{ss}	ESR-3520	ESR-3520	ESR-3520		
Channel bolt	ΦV _{ss,M}	ESR-3520	ESR-3520	ESR-3520		
Concrete edge breakout	$\Phi V_{cb,y}$	ESR-3520	AC232 principles	AC232 and ACI 318 principles		
Pryout	ΦV _{cp,y}	ESR-3520	AC232 principles	AC232 principles		
	Tensior	n design model	esign model			
			HAC & HAC-T			
Failure mode	Symbol	Intermediate	Corners	Parallel channels		
Anchor	ΦV _{sa,x}	ESR-3520	ESR-3520	ESR-3520		
Anchor and channel connection	ΦV _{sc,x}	ESR-3520	ESR-3520	ESR-3520		
Channel bolt and channel connection	ΦV _{si,x}	ESR-3520	ESR-3520	ESR-3520		
Channel bolt	ΦV _{ss}	ESR-3520	ESR-3520	ESR-3520		
Channel bolt	ΦV _{ss,M}	ESR-3520	ESR-3520	ESR-3520		
Concrete edge breakout	ΦV _{cb,x}	ESR-3520	AC232 principles	AC232 and ACI principles		
Pryout	ΦV _{cp,x}	ESR-3520	AC232 principles	AC232 principles		

Superposition of tension and shear loads (up to 5 interaction equations)

IMPORTANT! Failure analysis modes evaluated follow ACI 318-14, chapter 17. This DOES NOT include evaluating the base material (e.g. edge-of-slab) capacity to resist compressive forces generated by the fixture. The engineer must ALWAYS verify the base material (e.g. edge-of-slab) design is capable of resisting the applied loading. For additional information, please contact Hilti at US+CA.HAC@Hilti.com

Tension design model

1 1AC232 based indicates product has been tested in accordance to AC232 testing protocols for that specific failure mode and the design is based on applicable provisions and/or

2 AC232 and ACI 318 based indicates the analysis of that specific failure modes is in accordance to the applicable ACI 318 provision.

1. Anchor 2. HAC Channel Systems Portfolio 3. HAC Applications

4. Design Introduction

5. Base material 6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor Channel Design Software

9.2.1 — HAC AND HAC-T DESIGN: INTERMEDIATE APPLICATIONS

HAC and HAC-T at intermediate applications are designed in accordance with ESR-3520. Design methodology is fully in accordance with the anchor channel Design Code presented in chapter 7.

Figure 9.2.1.2:TOS

HAC

Idealized failure

Figure 9.2.2.1: 90° Corner with single

channel

plane in tension a

9.2.2 — HAC AND HAC-T DESIGN: FACE OF SLAB OUTSIDE CORNER WITH A SINGLE ANCHOR CHANNEL

90° corners

Outside corners where only one anchor channel is present are fully covered by ESR-3520. The design methodology is fully in accordance with the anchor channel Design Code presented in Chapter 7.

AC232 includes design provisions to account for the influence of a corner. The concrete strengths in tension and shear of the anchor channel may be reduced (depending on how far the anchor channel is away from the corner) since the concrete cones may not be fully developed. See chapter 7 for design provisions for corners.

In PROFIS Anchor Channel, these conditions can be simply modeled by reducing the corner distance.

Acute and obtuse corners

Although AC232 does not specifically address acute and obtuse corners, Hilti's general recommendation is to not follow the idealized failure planes but the path of least resistance to assess the concrete volume available for the anchor channel. Upon determination of the corner distance, AC232 provisions can be used to analyze this type of corners.

In order to avoid calculating unconservative concrete strength, the path of least resistance for the crack should be always considered.

Obtuse corners: Tension analysis

Corner distance shall be considered assuming an imaginary edge at the joint of the corner. The following two options that has been illustrated and used for the analysis **OPTION I.** This condition should be modeled in PROFIS anchor channel software with a corner (C_{a2}) distance of the closest anchor and the corner. Therefore, the concrete represented by the darker shade of gray shall be ignored. **OPTION II:** This is an optimized condition where the analysis of the a_1 anchor is performed using new h'_{eff} as the new embedment depth with side edge distance of C'_{a2} and ignoring the concrete represented by the darker shade of gray. The h_{eff} for rest of the other anchors will not change. This can be solved using hand calculations only. Please contact Hilti for support if any obtuse angle conditions need an optimized solution.

Conservatively the side edge distance of C_{a2} should be assumed as seen in figure: 9.2.2.4 and figure: 9.2.2.5 because of the discontinuity in the propagation of breakout failure plane in perpendicular shear. This will reduce the perpendicular shear capacity by introducing the reduction factor for corner effect.

$$c_{\rm cr,V} = 0.5 \cdot s_{\rm cr,V} = 2c_{a1} + b_{ch} \tag{BSR-3520 Equation (36)}$$

$$\psi_{\rm co,V} = \left(\frac{c_{\rm a2}}{c_{\rm cr,V}}\right)^{0.5} \le 1.0$$

ESR-3520 Equation (35)

Figure 9.2.2.4 — Obtuse corner — perpendicular shear —Section view.

Figure 9.2.2.5 – Obtuse corner – perpendicular shear – Plan view.

^L Neglect contribution of this concrete volume for analysis purposes
Figure 9.2.2.2 — Obtuse — Tension-Option I.

Z Neglect contribution of this concrete volume for analysis purposes. Figure 9.2.2.3 – Obtuse -Tension-Option II.

sis Obtuse corners: Longitudinal shear analysis

Conservatively the side edge distance of C_{a1} should be assumed as seen in figure: 9.2.2.6 and figure: 9.2.2.7 because of the discontinuity in the propagation of breakout failure plane in longitudinal shear. Having a C_{a1} will reduce the A_{vc} and also reduces V_b , (V_b basic longitudinal shear capacity depends on the longitudinal distance) which in turn reduces the Longitudinal shear capacity as seen in fig 9.2.2.6.

$$V_{cb,x} = (A_{vc} / A_{vco}) \cdot \psi_{ed, v} \cdot \psi_{c, v} \cdot \psi_{h, v} \cdot \psi_{parallel, v} V_{b}$$

Figure 9.2.2.6 — Obtuse corner — Longitudinal shear —Section view.

Figure 9.2.2.7 - Obtuse corner - Longitudinal shear - Plan view.

3. HAC

4. Design Introduction

 $c_{cr,V} = 0.5 \cdot s_{cr,V} = 2c_{a1} + b_{ch} in.(mm)$

 $h_{cr,V} = 2c_{al} + 2h_{ch}$

 $\psi_{\rm h,V} = \left(\frac{\rm h}{\rm h_{m\,V}}\right)^{\beta_{\rm l}} \le 1.0$

 $\psi_{\rm co,V} = \left(\frac{c_{\rm a2}}{c_{\rm co,V}}\right)^{0.5} \le 1.0$

5. Base material 6. Loading

ESR-3520 Equation (38)

ESR-3520 Equation (37)

ESR-3520 Equation (36)

ESR-3520 Equation (35)

7. Anchor Channel **Design Code**

Acute corners: Tension analysis

1. Anchor

Channel Systems

Corner distance shall be considered as the shortest distance between the anchor and the edge. The straight line is drawn from the end of the headed stud of anchor channel. The line is extended until it intersects the edge of the acute angle corner. The point of intersection is extended back to the face of slab edge as shown in the Figure 9.2.2.8. The side edge distance C_{ab} is used for analyzing the tension breakout capacity of anchor channel which reduces the tension concrete breakout capacity by introducing the corner factor as seen in the equation below.

----- Failure plane of path of least resistance.

Figure 9.2.2.8 - Acute corner - Tension.

Acute corners: Perpendicular Shear analysis

A path of least resistance line is drawn emitting from the headed stud a, as shown in Figure 9.2.2.9, intersecting thee edge 2 at 90°. A straight line is drawn limiting the height of the substrate going through the intersection of path of least resistance and edge 2. This straight line that limits the height of the substrate is drawn parallel to edge 1 as shown in Figure 9.2.2.9. The distance of path of least resistance is measured and modelled as c_{ab} in profis anchor channel software. By limiting the side edge distance to c₂₂, we will reduce the perpendicular shear capacity. This is done by introducing stringent corner factor reflecting an acute angle corner effect. The substrate height is also measured and modelled in Profis anchor channel software. By limiting the height of the substrate we will introduce the height reduction factor, hence further reducing the overall capacity of perpendicular shear. Please refer to Figure 9.2.2.9 and Figure 9.2.2.10.

Figure 9.2.2.9 - Acute corner - Perpendicular shear - Section view.

Acute corners: Longitudinal Shear analysis

The straight line is drawn limiting the height of the substrate. The line is extended until it intersects the edge of the acute angle corner. The point of intersection is extended back to the face of slab edge as shown in the Figure 9.2.2.11 and Figure 9.2.2.12. By limiting the height of the substrate we will reduce the A_m in a basic longitudinal shear capacity which in turns reduces the longitudinal capacity.

$$\mathbf{V}_{cb,x} = (\mathbf{A}_{vc} / \mathbf{A}_{vco}) \cdot \boldsymbol{\psi}_{ed, V} \cdot \boldsymbol{\psi}_{c, V} \cdot \boldsymbol{\psi}_{h, V} \cdot \boldsymbol{\psi}_{parallel, V} \cdot \mathbf{V}_{b}$$

9.2.3 — HAC AND HAC-T DESIGN: FACE OF SLAB OUTSIDE CORNER WITH PAIR OF ANCHOR CHANNEL LOADED SIMULTANEOUSLY

90° corners

Outside corners where two anchor channels are present and are loaded simultaneously are outside the scope of AC232. Most of the AC232 provisions can be applied to this type of application. However, the influence of the adjacent anchor channel shall be considered, as the concrete strength may be negatively impacted.

perpendicular shear The concrete at the corner is shared by the two anchor channels and therefore, using the AC232 provisions with the actual corner Path of least distance for analysis purposes can yield very unconservative resistance concrete strengths. The crack will propagate along the path Ccr.N of least resistance at the corner instead of following idealized failure plane. Figure 9.2.3.1 shows an example of a FOS corner, where anchor channels are installed at the distance away from Channel b Ccr.N the corner that the failure planes do not intersect, hence there will not be any reduction in concrete breakout capacity in Figure 9.2.3.1 - 90° corner with anchor channels on both sides - Failure tension. A side edge distance of h_{eff} + C_{crN} at the corner should planes does not intersect be provided to make sure that the planes do not intersect.

Tension

For the concrete failure modes in tension, the stresses in the concrete induced by the two anchors of the anchor channels closer to the corner change the concrete behavior. The concrete crack instead of following the idealized failure plane ($C_{cr,N}$), it takes the path of least resistance at the corner. This concept is illustrated in figure 9.2.3.2.

Hilti uses applicable provisions of AC232 to analyze this type of anchor application. To account for the influence of the adjacent corner anchor channel, the corner distance is reduced by assuming the concrete crack follows the path of 9.2 HAC and HAC-T Des

2. HAC Portfolio **Applications**

3. HAC

4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

9. Special Anchor 10. Design **Channel Design** Software

least resistance and considering the corner distance where the "crack" of each anchor channel overlaps. The shaded area for 90° angle outside corner with anchor channel with studs, the true side edge can be used once in an analysis of one of the two channel as shown in Figure 9.2.3.3. Concrete breakout in tension check for Channel a, the side edge is C_{a2a} is used in the analysis. Concrete breakout tension check for Channel b, the true side edge is $C_{a^2 h}$ is used in the analysis. This has been illustrated in Figure 9.2.3.3. The total distance of (a+b) can be divided between the two channels, while analyzing the individual channels. For example if channel a is loaded more than channel b than side edge distance of 3/4(a+b) can be assumed for channel a and side edge distance 1/4(a+b) can be assumed for channel b.

Concrete at corner can only be "used" once for tension check. Figure 9.2.3.2 - 90° corner with anchor channels on both sides overlapping of tension failure planes.

Figure 9.2.3.3 – 90° corner with anchor channels on both sides – Detail showing the edge distance that needed be used in analysis.

Perpendicular shear analysis

In simplified analysis concrete breakout perpendicular shear check at outside corner for Channel a or b, the side edge distance of true edge is considered for analysis with multiplying corner reduction factor of 0.8 to the perpendicular shear capacity. True side edge distance is the distance from the anchor to the edge at the corner.

On other hand detailed analysis can be performed which takes into account the effect of adjacent anchor channel with headed studs. This is incorporated in modification spacing factor ψ_{a} as described below. The diagonal distance from the second channel is taken into consideration along with the ratio of the shear load that each of the anchor has over anchor in consideration. Side edge used in the analysis will remain the true side edge distance. Determination of the critical spacing S_{cr,V}:

$$b = max\left(\frac{(4c_{a1} + 2b_{ch})}{2}; 2c_{a1} + 2h_{ch}\right)$$

Considering the linear distance between the anchors as s_i =

$$x_i = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

is equivalent to use a circular idealized

breakout body. Condition to ensure the same area as for the

rectangles:
$$: s_{cr,V} = 2 * \frac{2}{\sqrt{\pi}}b = 2 * 1.13b$$

$$V_{cb} = V_b \cdot \psi_{s,V} \cdot \psi_{ed,V} \cdot \psi_{co,V} \cdot \psi_{c,V}$$

$$\psi_{s,V} = \frac{1}{1 + \sum_{i=2}^{n_1 + n_2 + 1} \left[\left(1 - \frac{s_i}{s_{cr,V}} \right)^{1.5} \frac{\mathbf{v}_{ua,i}^a}{\mathbf{v}_{ua,1}^a} \right]}$$

n₁= number of anchors of channel 1 n₂= number of anchors of channel 2

$$s_i = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

 ψ_{sv} modification factor for spacing influence for 90° angle corner: Example of spacing factor $\psi_{a,v}$ calculation for a_i . Please refer to Figure 9.2.3.7 for understanding the distance of anchor a, from anchor b, b, and b, as well as anchor a, and a, . The shear force experienced by theses anchors.

 $b = max(c_{crv}; h_{crv})$

$$s_{cr,V} = 2 * \frac{2}{\sqrt{\pi}}b = 2 * 1.13b$$

Effect of Channel a due to a1 Effect of Channel b due to b₁

Figure 9.2.3.5 – 90° FoS corner with anchor channels on both sides – Effect of anchors closest to the edges.

 ψ_{cov} modification factor for corner influence for 90° angle corner: The true edge distance is taken into consideration for determination of reduction factor for corner distance C₂₂₂ or C_{a^2b} is taken as distance in case of a 90° angle corner for corner anchors a, or b, respectively.

 $C_{a2} = (C_{a2,a})$ distance of the anchor a_1 under consideration to the corner (see Figure 9.2.3.7).

If
$$C_{a2} \ge C_{cr,v}$$
 than $\psi_{co,V} = 1.0$
If $C_{a2} < C_{cr,v}$ than $\psi_{co,V} = \left(\frac{C_{a2,a}}{C_{cr,V}}\right)^{0.5} \le 1.0$
 $S_{cr,v} = 2b_{ch} + 4C_{a1}$

 $C_{cr,v} = 0.5S_{cr,v} = b_{ch} + 2C_{a1}$

Figure 9.2.3.6 - 90° FoS corner with anchor channels on both sides - S_{crv}.

Figure 9.2.3.7.a - 90° FoS corner with anchor channels on both sides -Plan view

Figure 9.2.3.7.b - 90° FoS corner with anchor channels on both sides -Example of determination of ψ_{sval} – Section view.

2. HAC 1. Anchor **Channel Systems** Portfolio

3. HAC **Applications**

4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing **Bar Anchorage**

9. Special Anchor **Channel Design**

10. Design Software

Longitudinal shear analysis

When Longitudinal shear is applied on both sides of the anchor channel towards the corner edge. The longitudinal shear capacity is determined with the edge distance of c₁ or with c', which ever controls. Please refer Figure 9.2.3.8 and Figure 9.2.3.9.

Interaction Equation

Interacting the concrete utilization in tension, perpendicular shear and longitudinal shear of both channels which will include the effect of all of these breakout cones as described below. 3D Load Interaction for Front of Slab solutions (verification for every anchor):

$$\beta_{N+V,c} = \left(\beta_N + max(\beta_{Vx})_{chj,Edi}\right)^{\alpha} + \left(\beta_{Vy}\right)^{\alpha} + \left(\beta_{Vx}_{chi}\right)^{\alpha}$$
$$\beta_{N+V,c} = \left(\left(\frac{N_{ua}^a}{\phi \cdot N_{nc}}\right) + max\left(\frac{V_{ua,x}^a}{\phi \cdot V_{nc,x}}\right)_{ch^*b^*Edb}\right)^{\alpha} + \left(\frac{V_{ua,y}^a}{\phi \cdot V_{nc,y}}\right)^{\alpha} + \left(\frac{V_{ua,x}^a}{\phi \cdot V_{nc,x}}\right)^{\alpha} \le 1.0$$

with $\alpha = 1.67$

: Tension of anchor channel in consideration $\phi \cdot N_{nc}$ (channel a - anchor a)

- Concrete breakout in tension utilization (anchor, including) influence of the other channels)
- Pull Out Strength Utilization

$$\max\left(\frac{V_{ua,x}^{a}}{\phi \cdot V_{nc,x}}\right)_{ch^{"}b^{"}Edt}$$

: Longitudinal shear of anchor channel on perpendicular edge (channel b)

- Longitudinal concrete edge failure Utilization
- Anchor reinforcement for concrete edge failure Utilization

$$\frac{V_{ua,y}^{a}}{\phi \cdot V_{nc,y}}$$

: Perpendicular shear of anchor channel in consideration (channel a - anchor a)

 Maximum Concrete edge breakout utilization for Perpendicular shear

 $\frac{V_{ua,x}^a}{1}$: Longitudinal shear of anchor channel in consideration $\phi \cdot V_{nc,x}$ (channel a - anchor a₁)

- Concrete edge (anchor)
- Anchor reinforcement for concrete edge failure

Please note that using this interaction equation is a conservative method to incorporate longitudinal force utilization in the analysis. In order to optimize the design contact Hilti. We will optimize the design using the method that takes into consideration the longitudinal utilization of both the anchor channels.

Figure 9.2.3.8 – 90° FoS corner with anchor channels on both sides – Effect of longitudinal, perpendicular shear and tension.

Figure 9.2.3.9 - 90° FoS corner with anchor channels on both sides -Effect of longitudinal, perpendicular shear and tension-section view

Acute and obtuse corners

Acute Corner:

Acute angle corners with HAC (rounded headed anchors) loaded simultaneously in tension, perpendicular shear and longitudinal shear

Tension analysis:

The crack will propagate along the path of least resistance at the corner instead of following idealized failure plane. The side edge distance used in the analysis should be as shown in the Figure 9.2.3.10. This approach is followed in order to avoid utilizing the same concrete twice in the analysis, hence generating the results replicating the real condition. The shaded region of concrete shown in the figure is not utilized. Please refer Figure 9.2.3.10. The total distance of (a+b) can be divided between the two

channels, while analysing the individual channels. For example if channel a is loaded more than channel b than side edge distance of 3/4(a+b) can be assumed for channel a and side edge distance 1/4(a+b) can be assumed for channel b.

Perpendicular shear analysis:

The reduced side edge distance needed to be considered as shown in Figure 9.2.3.12. The ideal failure plane for perpendicular shear breakout is drawn propagating into the slab. The line is drawn parallel to edge 1 at a distance h_{arr} (2(h_{ab} + c_{ad})). The intersection point of this line with edge 2 is projected back to edge 1 in order to determine side edge distance c', for the analyses of channel b. Similar line can be drawn parallel to edge 2 at a distance h_{avy} (2(h_{ab} + c_{ad})) to determine the side edge distance of channel a. This side edge is measured from that point to the anchor and is modelled in profis for analysis for analyses of individual channels. This will reduce the perpendicular shear capacity by taking into consideration the small edge introducing the more stringent corner modification factor. Please refer Figure 9.2.3.11 and Figure 9.2.3.12.

Moreover, the $\psi_{s,v}$ is calculated taking into consideration the respective distances of neighboring anchors with respect to the anchor that is in consideration. Refer to 90° corner section describing the method in detail. Please refer Figure 9.2.3.14

 ψ_{av} modification factor for spacing influence for acute angle corner: Example of spacing factor ψ_{au} calculation for b, of anchor channel "b" taking into consideration the presence of anchor channel a.

$$b = max(c_{crv}; h_{crv})$$

$$s_{cr,V} = 2 * \frac{2}{\sqrt{\pi}} b = 2 * 1.13b$$

$$\psi_{syal} = \frac{1}{1 + \left[\left(1 - \frac{s_{b,11}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,n1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k2}^a}{V_{un,n1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,n1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,n1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,n1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,n1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}} \right)^{15} \cdot \frac{V_{un,k1}^a}{V_{un,k1}^a} \right] + \left[\left(1 - \frac{s_{b,12}}{s_{cr,V}}$$

 ψ_{cov} modification factor for corner influence for acute angle corner: A reduced edge distance is taken into consideration for determination of reduction factor for corner distance C'_22 is taken as distance in case of a acute angle corner for corner anchor b. Refer Figure 9.2.3.12

 $C_{22} = (C'_{22})$ distance of the anchor a1 under consideration to the corner (see Figure 9.2.3.12).

If
$$C'_{a2} \ge C_{cr,v}$$
 than $\psi_{co,V} = 1.0$
If $C'_{a2} < C_{cr,v}$ than $\psi_{co,V} = \left(\frac{C'_{a2}}{C_{cr,V}}\right)^{0.5} \le 1.0$

 $S_{cr,v} = 2b_{ch} + 4C_{a1}$ $C_{cr,v} = 0.5S_{cr,v} = b_{ch} + 2C_{a1}$

Design Code

Figure 9.2.3.10 – Acute angle FoS corner with anchor channels on both sides - Tension analysis.

Figure 9.2.3.12 – Acute angle FoS corner with anchor channels on both sides - Perpendicular shear analysis- Section view.

227

1. Anchor **Channel Systems** Portfolio

2. HAC

3. HAC 4. Design Applications Introduction

5. Base material

6. Loading

Bar Anchorage

Obtuse Corner

Tension:

Obtuse angle corners with headed studs HAC channel loaded 1.0 only in tension: The crack will propagate along the path of least resistance at the corner instead of following idealized failure plane. The side edge distance used in the analysis should be $C_{cr,v} = 0.5S_{cr,v} = b_{ch} + 2C_{a1}$ as shown in Figure 9.2.3.15. This approach is followed in order to avoid utilizing the same concrete twice in the analysis, hence $C_{a2} = (C_{a2a})$ distance of the anchor a_1 under consideration to the generating the results replicating the real condition. The shaded corner (see Figure 9.2.3.17). region of concrete shown in Figure 9.2.3.15 is not utilized.

The shaded area for obtuse angle corner with headed studs anchor channel the true side edge can be used once in an analysis as shown in Figure 9.2.3.16. Assigning true edge to one channel and assigning reduced edge to another channel. Concrete breakout in tension check for Channel a, the reduced side edge is $C_{a2,a}$ can be used in the analysis. Concrete breakout tension check for Channel b, the true side edge is C_{a2 b} can be used in the analysis. The total distance of (a+b) can be divided between the two channels, while analyzing the individual channels. For example if channel a is loaded more than channel b than side edge distance of 3/4(a +b) can be assumed for channel a and side edge distance 1/4(a+b) can be assumed for channel b.

Perpendicular shear:

Concrete breakout perpendicular shear check at outside corner for Channel a or b, the side edge distance of true edge is considered for analysis in determining the perpendicular shear capacity. True side edge distance is the distance from the anchor to the corner edge at the corner. Moreover, the ψ_{au} is calculated taking into consideration the respective distances of neighboring anchors with respect to the anchor that is in consideration. Refer to 90° corner section describing the method in detail. Please refer to the Figure 9.2.3.17.

 ψ_{av} modification factor for spacing influence for acute angle corner:

Example of spacing factor ψ_{au} calculation for a, of channel a with respect to a, channel b on the other side of obtuse angle corner. Please refer to the Figure 9.2.3.17.

 $b = max(c_{crv}; h_{crv})$

$$s_{cr,V} = 2 * \frac{2}{\sqrt{\pi}}b = 2 * 1.13b$$

$=\frac{1}{1+\left[\left(1-\frac{\mathbf{s}_{b,1,1}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,b1}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,b2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,b2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{\mathbf{s}_{cry}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{V_{uu,a1}^{a}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{V_{uu,a1}^{a}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a1}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{V_{uu,a2}^{a}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a2}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{V_{uu,a2}^{a}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a2}^{a}}\right]+\left[\left(1-\frac{\mathbf{s}_{b,1,2}}{V_{uu,a2}^{a}}\right]+\left(1-\frac{\mathbf{s}_{b,1,2}}{V_{uu,a2}^{a}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a2}^{a}}\right]+\left(1-\frac{\mathbf{s}_{b,1,2}}{V_{uu,a2}^{a}}\right)^{1.5}\frac{V_{uu,a2}^{a}}{V_{uu,a2}^{a}}\right]$

 Ψ_{aav} modification factor for corner influence for an obtuse angle corner: A true side edge distance is taken into consideration for determination of reduction factor for corner distance C₂₂ or

The reduced side edge distance needed to be conservatively considered as shown in Figure 9.2.3.14 as done for perpendicular shear for determining the longitudinal shear capacity.

Interaction Equation:

Interacting the concrete utilization in tension, perpendicular shear and longitudinal shear of both channel will include the effect of all of these breakout cones as described below. Refer section for 90° corner describing the longitudinal shear check.

3D Load Interaction for Front of Slab solutions (verification for every anchor):

$$\beta_{N+V,c} = \left(\left(\frac{N_{ua}^a}{\varphi \cdot N_{nc}} \right) + \max \left(\frac{V_{ua,x}^a}{\varphi \cdot V_{nc,x}} \right)_{ch^*a^*Eda} \right)^{\alpha} + \left(\frac{V_{ua,y}^a}{\varphi \cdot V_{nc,y}} \right)^{\alpha} + \left(\frac{V_{ua,x}^a}{\varphi \cdot V_{nc,x}} \right)^{\alpha} \le 1.0$$

with $\alpha = 1.67$

$$\frac{N_{ua}^a}{\phi \cdot N_{nc}}$$
: Tension of anchor channel in consideration (channel b)

- Concrete breakout in tension utilization (anchor, including) influence of the other channels)
- Pull Out Strength Utilization

 $max \left(\frac{V_{ua,x}^{a}}{\phi \cdot V_{nc,x}} \right)_{ch"a"Eda}$

: Longitudinal shear of anchor channel on acute edge (channel a)

- Longitudinal concrete edge failure utilization
- Anchor reinforcement for concrete edge failure

$$V_{ua,y}^a$$

- : Perpendicular shear of anchor channel in $\phi \cdot V_{nc,y}$ consideration (channel b)

 Maximum Concrete edge breakout utilization for Perpendicular shear

 $V_{ua,x}^a$: Longitudinal shear of anchor channel in consideration $\phi \cdot V_{nc,x}$ (channel a)

- Concrete edge (anchor)
- Anchor reinforcement for concrete edge failure

Please note that using this interaction equation is a conservative method to incorporate longitudinal force utilization in the analysis. In order to optimize the design contact Hilti. We will optimize the design using the method that takes into consideration the longitudinal utilization of both the anchor channels.

Figure 9.2.3.13 - Acute FoS corner with anchor channels on both sides -Example of determination of $\psi_{s,v,a1}$

Figure 9.2.3.14 - Acute FoS corner with anchor channels on both sides -Effect of longitudinal, perpendicular shear and tension.

13. Field Fixes

C_{abb} is taken as distance in case of a obtuse angle corner for corner anchor a, and b, respectively.

If
$$C_{a2,a} \ge C_{cr,v}$$
 than $\psi_{co,v} = 1.0$

$$f C_{a2,a} < C_{cr,v} \ than \ \psi_{co,v} = \left(\frac{C_{a2,a}}{C_{cr,v}}\right)^{0.5} \le C_{cr,v} = 2b_{ch} + 4C_{a1}$$

Figure 9.2.3.15 - Obtuse angle FoS corner with anchor channels on both sides - Tension analysis

2. HAC Portfolio

4. Design **Applications** Introduction

3. HAC

5. Base material

6. Loading

. Special Anchor 10. Design Channel Design Software

Longitudinal shear:

Concrete breakout longitudinal shear check for channel a and b, the true side edge is considered for analysis with no added corner reduction factor to the capacity.

Interaction Equation:

Interacting the concrete utilization in tension, perpendicular shear and longitudinal shear of both channel will include the effect of all of these breakout cones as described below.

3D Load Interaction for Front of Slab solutions (verification for every anchor):

with $\alpha = 1.67$

$$\beta_{\mathsf{N}+\mathsf{V},c} = \left(\left(\frac{\mathsf{N}_{ua}^a}{\varphi \cdot \mathsf{N}_{nc}} \right) + \max\left(\frac{\mathsf{V}_{ua,x}^a}{\varphi \cdot \mathsf{V}_{nc,x}} \right)_{ch^*b^*Edb} \right)^\alpha + \left(\frac{\mathsf{V}_{ua,y}^a}{\varphi \cdot \mathsf{V}_{nc,y}} \right)^\alpha \\ + \left(\frac{\mathsf{V}_{ua,x}^a}{\varphi \cdot \mathsf{V}_{nc,x}} \right)^\alpha \le 1.0$$

 N_{ua}^{a} : Tension of anchor channel in consideration (channel a) $\phi \cdot N_{nc}$

- Concrete breakout in tension utilization (anchor, including influence of the other channels)
- Pull Out Strength Utilization

 $max \left(\frac{V^a_{ua,x}}{\varphi \cdot V_{nc,x}} \right)_{ch"b"Edi}$

: Longitudinal shear of anchor channel on obtuse edge (channel b)

Longitudinal concrete edge failure Utilization

 $V_{ua,y}^a$

: Perpendicular shear of anchor channel in $\overline{\phi} \cdot V_{nc,y}$ consideration (channel a)

 Maximum Concrete edge breakout utilization for Perpendicular shear

 $V_{ua,x}^{a}$: Longitudinal shear of anchor channel in $\overline{\phi \cdot V_{nc,x}}$ consideration (channel a)

- Concrete edge (anchor)
- Anchor reinforcement for concrete edge failure

Figure 9.2.3.16.17- Obtuse FoS corner with anchor channels on both sides -Example of determination of $\psi_{s,v,a1}$

9.2.4 — HAC AND HAC-T DESIGN: FACE OF SLAB INSIDE CORNER WITH PAIR OF ANCHOR CHANNEL

Inside corners where two anchor channels are present and are loaded simultaneously are outside the scope of AC232. Most of the AC232 provisions can be applied to this type of application. However, the influence of the adjacent anchor channel should be considered, as the concrete strength may be negatively impacted.

90° Inside Corner

An Imaginary edge is assumed while analyzing anchor channel b. The side edge distance of C_{222} is taken as shown in figure 9.2.4.1 and Figure 9.2.4.2.

The side edge distance with infinite amount of concrete to the right of the anchor channel a is assumed while analyzing as shown in the figure 9.2.4.1 and figure 9.2.4.2.

Figure 9.2.4.2 - Acute angle interior FoS corner with anchor channels on **Tension:** Refer Figure 9.2.4.1. This condition can be analyzed by both sides - Perpendicular shear. fictitious edge between $c_{a2b} + c_{crN}$ assigning side edge concrete between channel a and b. The total distance of (a+b) can be divided between the two channels, while analysing the individual Acute and obtuse interior corners channels. For example if channel a is loaded more than channel Acute Interior Corner: b than side edge distance of 3/4(a+b) can be assumed for channel a and side edge distance 1/4(a+b) can be assumed for channel b.

Figure 9.2.4.1 - 90° interior FoS corner with anchor channels on both sides.

Perpendicular shear: Refer Figure 9.2.4.2. This condition can be analyzed by fictitious edge between $c_{a2b} + c_{crv}$ assigning side edge concrete between channel a and b. The total distance of (a+b) can be divided between the two channels, while analyzing the individual channels. For example if channel a is loaded more than channel b than side edge distance of 3/4(a+b) can be assumed for channel a and side edge distance 1/4(a+b) can be assumed for channel b.

An Imaginary edge is assumed while analyzing anchor channel b. The side edge distance of C_{22} is taken as shown in the figure to the right figure 9.2.4.3 and figure 9.2.4.4. The concrete shaded in dark color in these Figures is not neglected, while analyzing anchor channel a or b.

The side edge distance with infinite amount of concrete to the right of the anchor channel a is assumed while analyzing as shown in the figure 9.2.4.3 and figure 9.2.4.4.

Tension: Refer Figure 9.2.4.3. This condition can be analyzed by fictitious edge between $c_{a2b} + c_{crN}$ assigning side edge concrete between channel a and b. The total distance of (a+b) can be divided between the two channels, while analyzing the individual channels. For example if channel a is loaded more than channel b than side edge distance of 3/4(a+b) can be assumed for channel a and side edge distance 1/4(a+b) can be assumed for channel b.

Perpendicular shear: Refer Figure 9.2.4.4. This condition can be analyzed by fictitious edge between $c_{a2b} + c_{crv}$ assigning side edge concrete between channel a and b. The total distance of (a+b) can be divided between the two channels, while analyzing the individual channels. For example if channel a is loaded more than channel b than side edge distance of 3/4(a+b) can be assumed for channel a and side edge distance 1/4(a+b) can be assumed for channel b.

2. HAC Portfolio 3. HAC

Applications

4. Design Introduction

C_{a2.b}

Imaginary

edge for

channel

analysis

purposes

5. Base material

Portion of

should he

nealected

Ca2.a Imaginary edge for channel

analysis purposes

concrete that

Channel b

6. Loading

Channel a

Idealized failur

plane in tension

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

9. Special Anchor 10. Design Channel Design

Tension: The amount of concrete that is needed to assure that the tension concrete breakout cones do not overlap should be as shown in Figure 9.2.5.1. The corner distance required should be sum of effective embedment (heff) and critical spacing (c_{arb}) for any one of the two channels. With that distance the channel perpendicular to the edge can be installed at critical distance c_{ave} away from the corner. In Figure 9.2.4.7 the channel b is installed at corner distance of $(h_{aff} + c_{af} N)$ on edge 2, then the channel a can be installed at the corner distance of c_{rrN} on edge 1

 $h_{cr,V} = 2c_{al} + 2h_{ch}$

$$s_{cr,N} = 2\left(2.8 - \frac{1.3h_{ef}}{7.1}\right)h_{ef} \ge 3h_{ef}$$

$$c_{cr,N} = 0.5s_{cr,N} \ge 1.5h_{ef}$$

$$S_{cr,V} = 4c_{a1} + 2b_{ch} in.(mm)$$

$$c_{mV} = 0.5 \cdot s_{mV} = 2c_{a1} + b_{ab} in.(mm)$$

Perpendicular shear: The amount of concrete that is needed to assure that the concrete breakout planes in perpendicular shear do not overlap should be as shown in Figure 9.2.5.2. The corner distance required should be sum of critical height (h_{av}) and critical spacing (c_{crv}) for any one of the two channels. With that distance the channel perpendicular to the edge can be installed at critical distance c_{arv} away from the corner. In Figure 9.2.4.8 the channel b is installed at corner distance of (h_{av}) + c_{arv}) on edge 2, then the channel a can be installed at the corner distance of c_{rrv} on edge 1.

Figure 9.2.4.3 - Acute angle interior FoS corner with anchor channels on both sides - Tension

Figure 9.2.4.4 — Acute interior FoS corner with anchor channels on both sides - Perpendicular shear

Obtuse Interior Corner

Tension: The anchor channels installed at an obtuse angle interior corner will generate the overlapping concrete breakout cones in tension as seen in Figure 9.2.4.5. The portion of the concrete shaded in dark should be neglected in order to replicate the real condition. A side edge of c_{a2 b} should be consider in analysis of channel b and side edge of c₂₂₂ should be consider in the analysis of channel a.

Perpendicular shear: The anchor channels installed at an obtuse angle interior corner will generate the overlapping concrete breakout planes in perpendicular shear as seen in Figure 9.2.4.6. The portion of the concrete shaded in dark should be neglected in order to replicate the real condition. A side edge of c_{a2 b} should be consider in analysis of channel b and side edge of c_{a2.a} should be consider in the analysis of channel a.

Figure 9.2.4.5 — Obtuse angle interior FoS corner with anchor channels on

Figure 9.2.4.6 - Obtuse angle interior FoS corner with anchor channels on both sides - perpendicular shear

9.2.5 — HAC AND HAC-T DESIGN: FACE OF SLAB THE MINIMUM DISTANCE THAT WILL ASSURE THAT THE CONCRETE CONE DOES NOT INTERSECT BOTH IN SHEAR AND TENSION

Figure 9.2.5.1 – Minimum distance between anchor channels at the corner to assure the breakout cones do not intersect - Tension

Figure 9.2.5.2- Minimum distance between anchor channels at the corner to assure the breakout cones do not intersect - Tension

2. HAC Portfolio

3. HAC 4. Design Applications Introduction

5. Base material 6. Loading

9. Special Anchor 10. Design **Channel Design** Software

9.2.6 — HAC AND HAC-T DESIGN: EXAMPLE OF DESIGN OF FACE OF SLAB OUTSIDE CORNER WHERE THE ANCHOR CHANNELS ARE LOCATED AT A CERTAIN DISTANCE

Quick conservative check can be done by using the method described in this section. For concrete breakout, in tension and concrete breakout, and pryout in shear, the imaginary concrete side edge of "(x/2)-1" is considered. This is done in order to take into account the overlapping of the failure planes.

The example is modeled as shown in the Figure 9.2.6.1 and Figure 9.2.6.2. Having the true edge distance yields unconservative results.

Alternatively the detailed method described section 9.2.3 can be applied in analyzing the anchor channels.

Figure 9.2.6.1 - Example of design of FOS outside corner.

9.2.7 — HAC AND HAC-T DESIGN: TOP OR BOTTOM OF SLAB OUTSIDE **CORNER SINGLE ANCHOR CHANNEL**

90° corners

Outside corners where only one anchor channel is present are fully covered by

ESR-3520. The design methodology is fully in accordance with the anchor channel Design Code presented in Chapter 7.

AC232 includes design provisions to account for the influence of a corner. The concrete strengths in tension and shear of the anchor channel may be reduced (depending on how far the anchor channel is away from the corner) since the concrete cones may not be fully developed. See chapter 7 for design provisions for corners. In PROFIS Anchor Channel, these conditions can be simply modeled by reducing the corner distance.

Acute and obtuse corners

Although AC232 does not specifically address acute and obtuse corners, by not following the idealized failure planes but the path of least resistance, AC232 provisions can be used to analyze this type of corners.

In order to avoid calculating unconservative concrete strength, the path of least resistance for the crack should be always considered.

Obtuse corners

Perpendicular Shear: The line is drawn originating from the corner of the obtuse corner. The C₂₂ is measured from the corner to the anchor. Not using the darkened shaded region of concrete in analysis as illustrated in Figure 9.2.7.2. This is done to make sure the concrete edge of C_{d} width is available through out for C₂ side edge.

Tension: Similar to the perpendicular shear in tension analysis the line is drawn originating from the corner of the obtuse angle corner case with one channel. The C_{aa} is measured from the anchor a, to the line. The darkened shaded region of concrete is not used in analysis as illustrated in Figure 9.2.7.3.

Longitudinal Shear: Similar to the perpendicular shear again in longitudinal analysis the line is drawn originating from the corner of the obtuse corner. The C_{at} is measured from the corner to the anchor. The darkened shaded region of concrete is not used in analysis as illustrated in Figure 9.2.7.4. This is done to make sure the concrete edge of C_{a2} width is available through out for C_{a1} .

Figure 9.2.7.1 - TOS or BOS single channel at certain distance.

Figure 9.2.7.2 — Obtuse angle corner — TOS or BOS single channel at certain distance - Perpendicular Shear.

Figure 9.2.7.3 - Obtuse angle corner - TOS or BOS single channel at certain distance - Tension.

Figure 9.2.7.4 – Obtuse angle corner – TOS or BOS single channel at certain distance - Longitudinal Shear.

1. Anchor 2. HAC Portfolio **Channel Systems**

3. HAC Applications

4. Design Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

9. Special Anchor 10. Design **Channel Design** Software

Acute corners

Perpendicular Shear: Corner distance shall be considered as the shortest distance between the intersection of the formation of failure planes using C_{crv} as shown in the Figure 9.2.4.5. The straight line is drawn (representing path of least resistance) extending out straight until it intersects the inclined slab edge. Which is then extended back on to the perpendicular edge. The C₂₂ is measured from that point onwards to the closest anchor.

Tension: Corner distance shall be considered as the shortest distance between the intersection of the formation of failure cones C_{arN} as shown in the Figure 9.2.4.6. The circle with radius of C_{orp} and the shortest intersection of that circle with the edge is C₂ distance.

Longitudinal Shear: Corner distance shall be considered as the shortest distance between the intersection of the formation of failure cones using $1.5 C_{11}$ as shown in the Figure 9.2.4.7. The C₄ distance is assumed, where the 35° line intersects the inclined portion of the slab.

Figure 9.2.7.7 — Acute angle ToS corner with anchor channels on one sides - Longitudinal shear

9.2.8 — HAC AND HAC-T DESIGN: TOP OR BOTTOM OF SLAB WITH PAIR OF ANCHOR CHANNEL ADJACENT TO EACH OTHER

Minimum distance that does not reduce the concrete capacity in tension and perpendicular shear: The capacity anchor channel on the concrete capacity, it is recommended to of anchor channel should be reduced because of the presence have them installed at least at a distance $2^{*}Max(C_{crv}; C_{crv})$. of the adjacent anchor channel. The anchor channels installed next to each other and subjected to perpendicular shear and Please refer to anchor channel theory for detailed instruction on tension as seen in Figure 9.2.8.1 does not require the reduction. the factor C_{arv} and C_{arv} . Below are the equation defining these The reason for this is that the breakout failure plane in shear variables. and breakout failure cones in tension has been completely developed on the left side of channel a and right side of channel b. There is no overlapping of the breakout cones from the adjacent anchor channel. The shear breakout planes as represented by the red shaded area and breakout failure cone in tension as represented by brown circle are completely developed.

Figure 9.2.8.1 - TOS and BOS with pair of anchor channel adjacent to each other - Tension and perpendicular capacity doesnot get reduced.

Figure 9.2.8.2 - TOS and BOS with pair of anchor channel adjacent to each other - Overlapping tension and perpendicular shear concrete cones.

11. Best **Practices** **12. Instructions** for Use

13. Field Fixes

14. Design Example

In order to make sure that there is no influence of the adjacent

$$s_{cr,N} = 2\left(2.8 - \frac{1.3h_{ef}}{7.1}\right)h_{ef} \ge 3h_{ef}$$

$$c_{cr,N} = 0.5 s_{cr,N} \ge 1.5 h_{ef}$$

$$c_{cr,V} = 0.5 \cdot s_{cr,V} = 2c_{a1} + b_{ch} in.(mm)$$

2. HAC Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

9. Special Anchor 10. Design **Channel Design** Software

Design method for analyzing channels besides each other with concrete cones in tension and perpendicular shear intersecting each other: This method is based AC232 principles. The capacity of anchor channel should be reduced because of the presence of the adjacent anchor channel. The anchor channels installed next to each other and subjected to perpendicular shear and tension as seen in Figure 9.2.8.2 requires the reduction in the concrete capacities. The reason for this is that the breakout failure plane in shear has not been completely developed as represented by the red shaded area and breakout failure cone in tension is also not been able to completely developed as represented by brown circle. These failure planes intersect as seen in the detail.

Having anchor channel "a" closer to anchor channel "b" has influence on the concrete breakout capacities. In order to incorporate the influence, the ψ_{eN} and ψ_{eN} the modification factor influencing location of adjacent anchors should be modified following the concept in AC232. Anchor channel a and b are modelled in profis anchor channel software individually with infinite edges to the sides and then incorporating the modification factor $\psi_{s,v}$ and $\psi_{s,v}$ using the method described below later by hand calculation. Please note that there will not be any imaginary corner influence taken into consideration when the method described below is used. The influence of the neighboring anchor channel is incorporated into the design by incorporating the influence in the spacing modification factor.

Example:

Lets consider the anchor b₂ with shear V^a_{aub2} and tension N^{a}_{aub2} of channel b. To find the modification factor ψ_{a} used in determining concrete breakout capacity in tension and shear of b₂.

 $\Psi_{s,N,b2}$: Tension modification is factor for spacing of b, the case shown in Figure 9.2.8.2 should be found out using the Equation 9.2.8-a. The tension concrete breakout capacity of anchor b gets reduced because of presence of anchor a, and b,. The a, has no effect on tension concrete breakout capacity of b, since the concrete breakout tension failure cone generated by a does not coincides with breakout cone generated by anchor b_a. Please refer to the equation below for calculating the modification factor for b_o.

 Ψ_{sy2} : Shear modification is factor for spacing of b₂ the case shown in Figure 9.2.8.2 should be found out using the Equation 9.2.8-b as shown below. The shear concrete breakout capacity of anchor b, gets reduced because of presence of anchor b, a, and a. The a, has effect on shear concrete breakout capacity of b2, since the concrete breakout failure shear cone generated by b, coincides with breakout cone generated by anchor a,. Please refer to the equation below for calculating the modification factor.

Equation 9.2.8-b

6. Loading

Equation 9.2.8-a

	1		
$\varphi_{s,V,b2} = \frac{1}{1 + \left[\left(1 - \frac{x_{b1,b2}}{s_{cr,V}} \right)^{1.5} \right]}$	$\cdot \frac{V_{ua,b1}^a}{V_{ua,b2}^a} \Bigg] + \Bigg[\Bigg(1 - \frac{\mathbf{x}_{b2,a1}}{\mathbf{s}_{cr,V}} \Bigg)^{\mathbf{l}} \cdot$	$\frac{5}{V_{ua,a1}^a} \cdot \frac{V_{ua,a1}^a}{V_{ua,b2}^a} \right] + \left[\left(1 - \frac{\mathbf{x}_{b2,a2}}{\mathbf{s}_{cr,V}} \right)^1 \right]$	$\left.\cdot \frac{V_{ua,a2}^a}{V_{ua,b2}^a}\right]$

 Ψ_{coN} and Ψ_{coN} : modification factor for corner influence when using the method described above should be considered as 1. This is because here in this method the influence of adjacent anchor channel is incorporated in spacing modification factor $\psi_{s,v,b2}$ and $\psi_{s,N,b2}.$ Hence there is no fictitious edge consideration required here in this method.

On other hand, anchor channel can be analyzed using a simplified method as described below. Here anchor channel a and b are analyzed individually limiting the side edge distance as described below.

Simplified method: An imaginary edge is assumed in between the channels. The distance between channels is y as seen in the Figure 9.2.8.2. The anchor channel is modelled with the side edge distance of the ratio of the distance y to optimize the concrete in between the channels and to make sure that the concrete is not being utilized twice. For example channel b can be modelled to have a right side edge of ³/₄ y and channel a can be modeled separately with left side edge distance of 1/4 y. Or imaginary edge is assumed to be at 1/2 y for both anchor channel a and b. This approach will lead to conservative results because concrete breakout capacity is reduced in tension and shear with modification factor $\psi_{co,N}$ and $\psi_{co,V}$ for corner influence respectively. Please refer equation 9.2.8-c and 9.2.8-d. This approach assumes a real edge which in turn leads to higher utilization by reducing the capacity tremendously.

If
$$C_{a2} \leq C_{Cr,v}$$
 then $\Psi_{co,v} = \left(\frac{C_{a2}}{C_{cr,v}}\right)$

Equation 9.2.8-c

If $C_{a2} < C_{cr,N}$ then $\psi_{co,N} = \left(\frac{C_{a2}}{C_{cr,N}}\right)^{1}$

Equation 9.2.8-d

If we have 2 times the maximum of C_{crN} and C_{crV} distance between the two anchors closest to the edge of an anchor channel, we can say that there will not be any influence of the anchor channel at the other side of the outside corner as shown in the figure. Please refer to anchor channel theory for more information on this topic. A similar concept can be applied for inside corners as well.

In this case the real side distance can be used to analyze each anchor channel. The example illustrated in Figure 9.2.9.1, C_{cr.N} critical edge distance in tension controls the x dimension.

The critical spacing for anchors is given as 3h,, as described in the following Figure 9.2.9.2. For anchor channels the equation 9.2.9.1 is used for S_{or N}. Figure 9.2.9.3 shows the comparison of c for anchors and anchor channels. For effective embedment depth smaller than 180 mm the anchor channels have a larger c_{arN} than anchors.

 $c_{cr N} = 0.5 s_{cr N} \ge 1.5 h_{ef}$

 $c_{crV} = 0.5 \cdot s_{crV} = 2c_{a1} + b_{ch} in.(mm)$

area, for the proposed model for anchor

channels is represented, together with

the squared one used for anchors. For

influence area of the anchor of an anchor

anchor. Therefore, for embedment depths

smaller than 6.10 in. (155 mm) the method

can be applied without any modification.

embedment depth larger than 6.10 in. (155

In order to use this concept also for

equation 9.2.9.2 is proposed:

mm) the following increase for s_{cr N corner}

 $s_{cr,N,corner} = 2\left(2.8 - \frac{1.3h_{ef}}{7.1}\right)h_{ef} \ge 3.4h_{ef}$

channel is larger than those of a single

h_a smaller than 6.10 in. (155 mm) the

 $S_{cr, V} = 4c_{a1} + 2b_{ab}$ in.(mm)

not intersect.

concrete con

Figure 9.2.9.2 - ACI 318-14 - Fig. R17.4.2.1 - (a) Calculation of A_{Nac} per ACI318-14

I: TOP OR BOTTOM OF SLAB MINIMUM SURE THAT THE CONCRETE CONE SOTH IN SHEAR AND TENSION

Figure 9.2.9.1 - TOS and BOS outside corner - Tension and perpendicular shear concrete cones does

A. = Sath Sath

Figure 9.2.9.3 — Comparison of c_{crN} for anchors and for an anchor channels (left), Comparison of the idealized breakout area for anchors and for an anchor channel (right)

239

2. HAC Portfolio

4. Design **Applications** Introduction

5. Base material 6. Loading

9.2.10 — HAC AND HAC-T DESIGN: TOP OR BOTTOM OF SLAB OUTSIDE CORNER WITH PAIR OF ANCHOR CHANNEL

3. HAC

Outside corners where two anchor channels are present and are loaded simultaneously are outside the scope of AC232. Most of the AC232 provisions can be applied to this type of application. However, the influence of the adjacent anchor channel should be consider, as the concrete strength may be negatively impacted.

In this section an extension for the design AC232 to a group of channels and to channels close to a corner is presented. The method is valid for standard anchor channels.

The loads are distributed on each channel independently, according ESR3520 the steel verifications are not affected by the neighbored channels, some considerations should be done for the concrete failure modes.

According to ESR-3520 the minimum distance between the two anchors is 2" 100mm, hence Profis anchor channel software follows the rule stated in the Figure 9.2.10.1.a and Figure 9.2.10.1.b. The software has to be activated for corner in order to design the outside corner with two anchor channels.

When two HAC channels are placed close to each other or to a corner only the concrete verifications needed modifications. The calculation of the anchor loads and of the steel failure modes is calculated independently for the two different channels. The method applies in general to a group of channels with the same edge distance c₁ in profis anchor channel software.

When the second element is enabled the following condition must be fulfilled (Figure 9.2.10.1.a, Figure 9.2.10.1.b and Figure 9.2.10.1.c):

 $(d_1) + (d_2) \ge 100 \text{mm}$

Figure 9.2.10.1: Geometric condition for the second channel after the activation of the second element at the corner

Concrete breakout strength in tension

The main difference in the calculation of the concrete cone capacity is the modification factor to account for influence of location and loading of neighboring anchors $\psi_{a,v}$. Verification: $\varphi N_{ch} \ge N_{ua}^{a}$

 $N_{cb} = N_{b} \cdot \psi_{s,N} \cdot \psi_{ed,N} \cdot \psi_{co,N} \cdot \psi_{cp,N} \cdot \psi_{c,N}$

The modification factor for spacing $\psi_{{}_{\scriptscriptstyle N}{}_{\scriptscriptstyle N}}$ is adjusted to take the loading of the adjacent anchors into account.

Given an anchor channel with only two anchors equally loaded $\psi_{s,N}$ varies from 0.5 to 1, if the relative spacing varies from $s_i = 0$ to $s_i = s_{arN}$ respectively. In practice, if $s_i = 0$ the capacity of each anchor is the half, both together have the same capacity of 1 anchor. The equation of ψ_{e_N} limits the maximum capacity of the concrete for each anchor due to the presence of the other cone. Figure 9.2.10.3 shows ψ_{eN} for two anchors symmetrically loaded increasing the spacing from 0 to $s_i = s_{crN}$.

The relative concrete utilization of each anchor is considered with the ratio $N_{\mu a i}^{a}/N_{\mu a 1}^{a}$ In this way if the load on the second anchor is much higher than that on the first, it results in a lower ψ_{sN1} for the first anchor. Figure 9.2.10.4 shows the variation of ψ_{sN} for two anchors with a spacing of $0.5s_{\rm cr.N}$ varying the load ratio between the two anchors. The concrete cone capacity is almost proportional to A_{cN} / A_{cN}^0 like in the CC Method (Concrete Capacity design method for anchors).

The same considerations are valid as well also for more than two anchors and a linear superposition applies.

In Figure 9.2.10.3 standard anchor channel with 2 anchors is represented, where the red rectangle areas are the "influence areas" or idealized breakout surface of each anchor. Since the anchor spacing is smaller than the critical one there are several intersections represented by darker shaded area of cone projection. These intersections are considered with the $\psi_{e,N}$.

If second anchor channel is placed at a distance $s_{a1 bi} < s_{cr.N}$ (Figure 9.2.10.8), further intersections would be generated between the influence areas of the anchors of first and of the second channel. In the calculation of the concrete cone failure, these intersections can be considered with the factor $\psi_{a,N}$ including in sum also for the anchors of the second channel. In this way, the capacity of each anchors is additionally reduced due to the presence and utilization of second channel and varies smoothly with the relative distance.

The same considerations are valid as well also for more than two anchors and a linear superposition applies.

 $s_i = \sqrt{(x_i - x_j)^2 + (v_i - v_j)^2}$ $n = n_{ch1} + n_{ch2}$

Moreover, considering the spacing of each single anchor in two dimensions, it is possible to consider even more anchor channels, and each possible relative position.

The critical spacing for anchors is 3xh_{eff} based on idealized rectangular concrete cone area. For anchor channels the following equation is in accordance to AC232:

$$s_{cr,N} = 2\left(2.8 - \frac{1.3h_{ef}}{180}\right)h_{ef} \ge 3h_{ef}$$

Comparison of c_{ren} for anchors and for an anchor channels and comparison of the idealized breakout area for anchors and for an anchor channel of various embedment depths shows for effective embedment depth smaller than 7.1" (180 mm) the anchor channels have a larger $c_{_{\mbox{\tiny Cr,N}}}$ than anchors. The proposed expression assumes a circular area of the influence areas of each anchor.

The influence area of the anchor of an anchor channel is larger than those of a single anchor, hence the following equation of $\boldsymbol{s}_{\mbox{\tiny cr,N,corner}}$ is proposed:

$$s_{cr,N,corner} = 2\left(2.8 - \frac{1.3h_{ef}}{180}\right)h_{ef} \ge 3.4h_{ef}$$

12. Instructions for Use

Figure 9.2.10.3 — ψ_{SN} for two anchors symmetrically loaded.

Figure 9.2.10.4 – Graph s vs ψ_{0 N}.

Figure 9.2.10.5 – Influence on $\Psi_{s,N}$,1 (of the anchor 1) of the relative load on the anchors

1. Anchor Channel Systems

2. HAC Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage

 $C_{cr,N}$

. Special Anchor 10. Design **Channel Design** Software

Acute angle Corner: Lets consider the anchor a, of anchor channel a with tension $N^{a}_{ua,a1}$ of channel a. To find the modification factor ψ_N used in determining concrete breakout capacity in tension of a. Please refer Figure 9.2.10.9.

$$s_{a1,b1} = \sqrt{(x_{b1} - x_a)^2 + (y_{a1} - y_{b1})^2}$$
Equation 9.2.10.7 f
$$s_{a1,b2} = \sqrt{(x_{b2} - x_a)^2 + (y_{b2} - y_{a1})^2}$$
Equation 9.2.10.7 g

 $\psi_{s,N,a1}$: Tension modification is factor for spacing of $a_{_1}$ the case shown in Figure 9.2.10.9 should be found out using the Equation 9.2.10.7 h. The tension concrete breakout capacity of anchor a, gets reduced because of presence of anchor a, b, and b. Please refer to the Equation 9.2.10.7 h for calculating the modification factor for a_1 . The $s_{a1,b1}$ and $s_{a1,b2}$ distances are evaluated by using Equation 9.2.10.7 f and Equation 9.2.10.7 g.

$$\Psi_{s,N,a1} = \frac{1}{1 + \left[\left(1 - \frac{s_{a1,b1}}{s_{cr,N}} \right)^{1.5} \cdot \frac{N_{ua,b1}^a}{N_{ua,a1}^a} \right] + \left[\left(1 - \frac{s_{a1,b2}}{s_{cr,N}} \right)^{1.5} \cdot \frac{N_{ua,b2}^a}{N_{ua,a1}^a} \right] + \left[\left(1 - \frac{s_{a1,a2}}{s_{cr,N}} \right)^{1.5} \cdot \frac{N_{ua,b2}^a}{N_{ua,a1}^a} \right]$$

Equation 9.2.10.7 h

 Ψ_{coN} : (modification factor for corner influence) The true edge distance is taken into consideration as shown in the Figure 9.2.10.9 for Acute angle corner to determine of reduction factor for corner distance c_{a2} . The perpendicular line is drawn from a_1 of anchor channel a on to edge 2 to get the side edge distance c_a. Please refer to Equation 9.2.10.7 i for $\psi_{co.N}$.

$$If c_{a2} \ge c_{cr,N}$$

$$then \ \psi_{co,N} = 1.0$$

$$If c_{a2} < c_{cr,N}$$

$$If c_{a2} < c_{cr,N}$$

$$then \ \psi_{co,N} = \left(\frac{c_{a2}}{c_{cr,N}}\right)^{0.5} \le 1.0$$
Equation 9.2.10

Obtuse angle Corner: Lets consider the anchor a, of anchor channel a with tension $N_{ua a1}^a$ of channel a. To find the modification factor ψ_N used in determining concrete breakout

$$f_{a1,b1} = \sqrt{(x_{b1} - x_a)^2 + (y_{a1} - y_{b1})^2}$$
Equation 9.2.10.7
$$f_{a1,b2} = \sqrt{(x_{b2} - x_a)^2 + (y_{b2} + y_{a1})^2}$$
Equation 9.2.10.7

9.2.10.10 for obtuse angle corner to determine of reduction

$$\begin{array}{c}
a_{1,3} \\
a_{1,2} \\
a_{1,1} \\
a_{2,1} \\
a_{2,2} \\
a_{2,3} \\
a_{2,3} \\
a_{3,1} \\
a_{2,1} \\
a_{2,2} \\
a_{2,3} \\
a_{3,3} \\
a_{3,3}$$

Figure 9.2.10.7 - definition of the relative distance of the anchors in a anchor channels group.

The concrete cone verification remains the same:

Verification: $\phi \cdot N_{cb} \ge N^{a}_{ua}$ $N_{cb} = N_{cb}.\psi_{s,N}.\psi_{ed,N}.\psi_{co,N}.\psi_{c,N}.\psi_{cp,N}$

The only parameter which is adjusted is the modification factor to take the loading of the adjacent anchors $\psi_{s,N}$ into account:

$$\psi_{s,N} = \frac{1}{1 + \sum_{i=2}^{n+1} \left[\left(1 - \frac{s_i}{s_{er,N}} \right)^{1.5} \cdot \frac{N_{ua,j}^a}{N_{ua,i}^a} \right]}$$
Equation 9.2.10.7

Where

 $n=n_{ch1}+n_{ch2}$ is the number of all the anchors of the two channels

s, is the relative distance of two anchors

```
\boldsymbol{s}_{_{\text{cr,N,corne}}} critical anchor spacing for tension
```

xi, xj, yi, yj coordinate of the anchors from the corner (Figure 9.2.10.7)

90°Corner: Lets consider the anchor a, of anchor channel a with tension N^a_{ua.a1} of channel a. To find the modification factor $\psi_{\scriptscriptstyle N}$ used in determining concrete breakout capacity in tension and shear of a. Please refer Figure 9.2.10.8.

$$s_{a1,b1} = \sqrt{(x_{b,1} - x_a)^2 + (y_{a,1} - y_b)^2}$$

 $s_{a1,b2} = \sqrt{(x_{b,2} - x_a)^2 + (y_{a,1} - y_b)^2}$

Figure 9.2.10.8 - 90° Corner.

 $\Psi_{s,N,a1}$: Tension modification is factor for spacing of a1 the case shown in Figure 9.2.10.8 should be found out using the Equation 9.2.10.7 c. The tension concrete breakout capacity of anchor a, gets reduced because of presence of anchor a, b, and b_1 . Please refer to the Equation 9.2.10.7 c for calculating the modification factor for a_1 . The s_{a_1,b_1} and s_{a_1,b_2} distances are evaluated by using Equation 9.2.10.7 a and Equation 9.2.10.7 b. $\psi_{s,N,a1}$ is evaluated using Equation 9.2.10.7 c.

Equation 9.2.10.7 c

Equation 9.2.10.7 d

 Ψ_{coN} : (modification factor for corner influence) The true edge distance is taken into consideration as shown in the Figure 9.2.10.8 for 90° corner to determine reduction factor for corner distance c_{a2} . Please refer to Equation 9.2.10.7 d for ψ_{caN} .

$$c_{cr.N} = 0.5 s_{cr.N} \ge 1.5 h_{ef}$$

If $c_{a2} \ge c_{crN}$

Equation 9.2.10.7 a

Equation 9.2.10.7 b

then
$$\psi_{\rm coN} = 1.0$$

If
$$c_{a2} < c_{cr,N}$$

then $\psi_{co,N} = \left(\frac{c_{a2}}{c_{cr,N}}\right)^{0.5} \le 1.0$

 c_{a2} = distance of the anchor under consideration to the corner

refer Figure 9.2.10.8

13. Field Fixes

factor for corner distance c_{a2}. Please refer to Equation 9.2.10.7 m for $\psi_{co,N}$.

$$c_{cr,N} = 0.5 s_{cr,N} \ge 1.5 h_{ef}$$

then
$$\psi_{co,N} = 1.0$$
 Equation 9.2.10.7 m
If $c_{a2} < c_{cr,N}$
then $\psi_{co,N} = \left(\frac{c_{a2}}{c_{cr,N}}\right)^{0.5} \le 1.0$

 C_{a2} = distance of the anchor under consideration to the corner refer Figure 9.2.10.10

If $c_{a2} \ge c_{cr,N}$

Figure 9.2.10.10 - Obtuse Corner.

3. HAC 4. Design Applications Introduction

5. Base material 6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage

Concrete Pryout for perpendicular and longitudinal load failure

The pryout failure is calculated based on the N_{cb} as indicated above both for longitudinal and perpendicular shear. Test restults show that two anchor channels that are located at the corner k_{cp} for pry out check can be used as 3. k_{cp} =3 is used for two corner anchors located at the corner edge.

Concrete breakout strength for perpendicular shear

A similar consideration on the modification factor for the anchor spacing can be done for the concrete edge failure for perpendicular shear. Figure 9.2.10.11 shows a similar approach to that proposed for the concrete cone for the concrete edge breakout for perpendicular shear. If two channels are located at a distance $d_{a1,b1}$ smaller than $C_{cr,V}$ (Figure 9.2.10.11 b) the concrete edge failure of the two channels would intersect and the capacity of the system will be reduced. In this case, all the anchors of both channels are considered for the calculation of the modification factor Ψ_{cv} .

Figure 9.2.10.11a — Single anchor channel in shear.

Figure 9.2.10.11b — anchor channels adjacent to each other.

Placing two channels close to a corner (Figure 9.2.10.11 c), it is possible to calculate the channels with the method of "unfolding" the edge (Figure 9.2.10.11 d). Doing this operation, a fictitious distance between the two channels has to be defined and it is important to make sure that the corner area is used only once. In the case of Figure 9.2.10.11 c the area which can be considered only once is represented with black rectangle. If the channel a collapses under shear load, then the area in black would also collapse. The channel b would be left only with the area up to the black rectangle to resist shear loads. The same consideration is made for the channel b.

Therefore, it is proposed to calculate the factor $\Psi_{s,v}$ with the two anchor channels placed in a row with the edge of "fictitious" edge distance d*:

 $\mathbf{d}^* = \mathbf{c}_{a2,a1} + c_{a2,b1} - c_1$

12. Instructions for Use

Figure 9.2.10.11d — Unfolding of the corner.

Where c, is the minimum edge distance of channel a and channel b. In case that $c_{a1,a}$ and $c_{a1,b}$ are different, the minimum will be assumed for the calculation of both channels.

 $s_{_i}$ is calculated with d*= $c_{_{a2,a}}$ + ($c_{_{a2,b}}$ – $c_{_1}$) fictitious distance between channel a and b.

If $c_{a_{1,a}} \neq c_{a_{1,b}}$ both channel will be considered as with

$$c_1 = min(c_{a1,a}; c_{a1,b})$$

$$\phi V_{cb,y} \ge V_{ua,y}^a$$

With:

$$V_{cb,y} = V_{b} \cdot \psi_{s,V} \cdot \psi_{co,V} \cdot \psi_{h,V} \cdot \psi_{c,V}$$

┣━┫┋┠▃╤┲╸

2. HAC 1. Anchor Channel Systems Portfolio

3. HAC 4. Design Applications Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage

9. Special Anchor 10. Design **Channel Design** Software

$$a_{r,V} = 4c_{a1} + 2b_{ch} in.(mm)$$

is the number of all the anchors of the two $n = n_{cha} + n_{chb}$ channels

> is the relative distance of two anchors, considering all the anchor on an imaginary "unfolded" channel, where the first anchor of the second channel, is located at a distance d^{*} from the last anchor of the first (Figure 9.2.10.11d)

$$\mathbf{d}^* = \mathbf{c}_{a2,a1} + c_{a2,b1} - c_1$$

90° angle Corner: 90° angle cases of corner has been drawn in Figure 9.2.10.12a. The corner is unfolded in Figure 9.2.10.12b. Please refer to the distance marked on the detail for 90° angle corner case. The variable a and b has been defined and marked up on figure representing 90° corner condition. While unfolding the corner for this case the fictitious distance of

(a+b) is taken into consideration while placing them (a+b) apart as shown in Figure 9.2.10.12b. Lets take into consideration anchor b, of anchor channel b with shear V_{auabt}. Please refer Figure 9.2.10.12b. The following equation modification factor for spacing is used.

		1			
$\gamma_{s,v,b1} = \frac{1}{1 + \left[\left(1 - \frac{(a+b)}{s_{cr,v}} \right)^2 \right]}$	$\underbrace{)}^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,b1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,a1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,a1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,a1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,a1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,a1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,a1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{1}{2} \right)^{1.5} \cdot \underbrace{\frac{V_{ua,a1}^a}{V_{ua,a1}^a}}_{+ [a,b1]} \right] + \left[\left(\frac{V_{ua,a1}^a}{V_{ua,a1}^a}}_{+ [a,b1$	$\left(1 - \frac{(a+b+a_{a1;a2})}{s_{cr,v}}\right)^{1.5}$	$\cdot \frac{V^a_{ua,a2}}{V^a_{ua,b1}} +$	$\left(1 - \frac{\mathbf{a}_{b1;b2}}{\mathbf{s}_{cr,v}}\right)^{1.5} \cdot \frac{V_{ua,b2}^a}{V_{ua,b1}^a}$	

For the condition illustrated below in Figure 9.2.10.12b the shear breakout plane emitting from anchor b, overlaps shear plane emitting from anchor a, b, and a,. Therefore the spacing modification factor will be the equation above including the effects of anchors a₁, b₂ and a₂ on anchor b₁.

 Ψ_{cov} modification factor for corner influence for 90° angle corner:

The true edge distance is taken into consideration for determination of reduction factor for corner distance. The corner distance $c_{a2,a1}$ or $c_{a2,b1}$, is into consideration respectively depending on the anchor in consideration.

If
$$c_{a2} \ge c_{cr,V}$$

then
$$\psi_{co,V} = 1.0$$
 C_e
If $c_{a2} < c_{cr,V}$ ar
then $\psi_{co,V} = \left(\frac{c_{a2}}{c_{cr,V}}\right)^{0.5} \le 1.0$ c_e

 $C_{a2} = (C_{a2,a1} \text{ or } C_{a2,b1})$ distance of the nchor under consideration to the orner (see Figure 9.2.10.12a). $S_{cr V} = 2b_{ch} + 4C_{a1}$ $c_{cr,V} = 0.5s_{cr,N} = b_{ch} + 2c_{a1}$

Figure 9.2.10.12b - Unfolding of 90°Corner.

Acute angle Corner: Acute corner has been drawn in Figure 9.2.10.13a. The corner is unfolded in Figure 9.2.10.13b. Please refer to the distance marked on the detail for acute angle corner case. The variable a and b has been defined and marked up on figure representing acute angle corner condition. The line is drawn perpendicular to edge 2 emitting from anchor a, of anchor channel. The intersection point of this line with edge 2 is extended perpendicular to edge 1. The distance between intersection point of this line with edge 1 and a, of anchor channel a is $c_{a2,a1}$. $c_{a2,a1}$ is taken as "a". In order to get the dimension b, $c_{a2,a;b1}$ is calculated and is deducted from $c_{a2,b1}$ to get b. c_{a2.ab1} is distance between anchor b, and intersection of perpendicular line emitting from a, perpendicular to edge 2 and line emitting b, perpendicular to edge 1. Refer Figure 9.2.10.13b. While unfolding the corner for this case the fictitious distance of (a+b) is taken into consideration while placing them (a+b) apart as shown in Figure 9.2.10.13b.

Let's take into consideration anchor b, of anchor channel b with shear $V^{a}_{\mu a b 1}$. Please refer Figure 9.2.10.13b. The following equation modification factor for spacing is used.

For the condition illustrated below in Figure 9.2.10.13b the shear breakout plane emitting from anchor b, overlaps shear plane emitting from anchor a₁, a₂ and b₂, hence the spacing modification factor will be the equation above for the example in the Figure 9.2.10.13b.

 ψ_{cov} modification factor for corner influence for Acute angle corner:

The side edge distance is taken into consideration for determination of reduction factor for corner distance c₂₀. The $c_{a2,a1}$ is taken as distance "a" in case of a acute degree angle corner.

 $c_{a2} = c_{a2,a1}$ side distance of the anchor a_1 to the corner (see Figure 9.2.10.13b). The side edge distance c_{a2a1} as shown in Figure 9.2.10.13b is used in the corner modification factor for anchor a of anchor channel a. The side edge distance for anchor b, of anchor channel b is c_{a2.b1} is used in the corner modification factor.

If $c_{a2} \ge c_{crV}$ then $\psi_{\rm co,V} = 1.0$

Figure 9.2.10.13b — Unfolding of Acute angle Corner.

2. HAC Portfolio 3. HAC

Applications

4. Design Introduction

5. Base material 6. Loading

Obtuse angle Corner: Obtuse corner has been drawn in Figure 9.2.10.14a. The corner is unfolded in Figure 9.2.10.14b. Please refer to the distance marked on the detail for obtuse angle corner case. The variable a and b has been defined and marked up on figure representing obtuse angle corner condition. The dimension b is evaluated by measuring a line emitting from anchor b_1 and having it perpendicularly intersect edge 1, this distance is $c_{a2,b1}$. The dimension b is evaluated by taking difference between $c_{a2,b1}$ and $c_{a1,a}$. The side edge distance $c_{a2,b1}$ or $c_{a2,a1}$ is used as side edge distance. While unfolding the corner for this case the fictitious distance of (a+b) is taken into consideration while placing them (a+b) apart as shown in Figure 9.2.10.14b.

Lets take into consideration anchor b_1 of anchor channel b with shear V^a_{ua,b1}. Please refer Figure 9.2.10.14b. The following equation modification factor for spacing is used.

 $\psi_{s,v,b1} = \frac{1}{1 + \left[\left(1 - \frac{(a+b)}{s_{cr,v}} \right)^{1.5} \cdot \frac{V_{ua,a1}^a}{V_{ua,b1}^a} \right] + \left[\left(1 - \frac{(a+b+a_{a1;a2})}{s_{cr,v}} \right)^{1.5} \cdot \frac{V_{ua,a2}^a}{V_{ua,b1}^a} \right] + \left[\left(1 - \frac{a_{b1;b2}}{s_{cr,v}} \right)^{1.5} \cdot \frac{V_{ua,b2}^a}{V_{ua,b1}^a} \right]$

For the condition illustrated below in Figure 9.2.10.14b the shear breakout plane emitting from anchor b_1 overlaps shear plane emitting from anchor a_1 , a_2 and b_2 , hence the spacing

Figure 9.2.10.14a — Obtuse angle Corner.

modification factor will be the equation above for the example in the Figure 9.2.10.14b.

 $\psi_{{}_{\text{co,V}}}$ modification factor for corner influence for obtuse angle corner:

The side edge distance is taken into consideration for determination of reduction factor for corner distance c_{a2} . The $c_{a2,b1}$ or $c_{a2,a1}$ is taken as side edge distance.

 $c_{a2} = c_{a2,b1}$ or $c_{a2,a1}$ side distance of the anchor b_1 or a_1 to the corner respectively (see Figure 9.2.10.14b).

If
$$c_{a2} \ge c_{cr,V}$$

then $\psi_{co,V} = 1.0$
If $c_{a2} < c_{cr,V}$
 $s_{cr,V} = 2b_{ch} + 4C_{a1}$
 $c_{cr,V} = 0.5s_{cr,N} = b_{ch} + 2c_{a1}$
then $\psi_{co,V} = \left(\frac{c_{a2}}{c_{cr,V}}\right)^{0.5} \le 1.0$

Edge Channel a ua a2 a_{1;a2} Channel b Ca2,a1 C_{a2,b1} - C_{a1,a} 11 Ø 11 0 Edge 2 ua.b1 a_{b1;b2} Channel b V^aua,b2 C_{cr,v}

Concrete side-face blow out

The concrete side blowout is calculated with the same verification of ESR3520:

$$\begin{split} \phi \ N_{sb} &\geq N_{ua}^{a} \\ N_{sb} &= N_{sb}^{0} \cdot \psi_{g,Nb} \cdot \psi_{co1,Nb} \cdot \psi_{co2,Nb} \cdot \psi_{h,Nb} \cdot \psi_{c,Nb} \end{split}$$

With the only differences:

 $\psi_{co2 \text{ Nb}} = 1$ Since the second corner is not available

 $n = n_{ch1} + n_{ch2}$

is the number of all the anchors of the two channels

S,

is the relative distance of two anchors, considering all the anchor on an imaginary "unfolded" channel, where the first anchor of the second channel, is located at a distance d' from the last anchor of the first (Figure 9.2.10.11)

Concrete breakout strength for parallel shear

The concrete breakout strength for parallel shear is calculated according ESR for both channels are verified independently. The concrete utilization of both edges is then combined in conservative way as described in the next paragraph.

Figure 9.2.10.14b — Unfolding of Obtuse angle Corner.

Concrete failure, load interaction

Every anchor already considers the second channel for tension and perpendicular shear. The governing failure modes in the three directions are combined according to the following method. Refer Figure 9.210.15.

A verification for each anchor of both anchor channel is needed.

ch, a is the channel of the considered anchor

ch, b indicate the other channel

Ed, i is the edge parallel to the channel of the considered anchor

Ed, j indicate the edge parallel to the other channel

Considering the channel b, tension and perpendicular shear of the channel b are considered "precisely" as described. Longitudinal shear of the channel itself is considered according to ESR3520. The effects of the channel a due to longitudinal shear on the channel b is difficult to consider. Therefore, on the safe side, the highest utilization for longitudinal shear of channel b on the edge i is added linearly to the utilization of perpendicular shear of the considered anchor. Longitudinal shear on the channel b is calculated according to ESR3520.

f

Verification of the anchors of the channel b.

Figure 9.2.10.15 — Interacting tension with perpendicular shear and longitudinal shear.

Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019

249

2. HAC 3. HAC Portfolio Applications

4. Design Introduction

6. Loading 5. Base material

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

an

9. Special Anc Channel Des

$$\beta_{N+V,c,b1} = \left(\frac{N_{ua}^a}{\phi N_{nc}}\right)_{chb1}^{\alpha} + \left(\left(\frac{V_{ua,y}^a}{\phi V_{nc,y}}\right)_{chb1} + \left(\frac{V_{ua,x}^a}{\phi V_{nc,x}}\right)_{cha,Edi}\right)^{\alpha} + \left(\frac{V_{ua,x}^a}{\phi V_{nc,x}}\right)_{chb1}^{\alpha} \le 1.0$$

$$\beta_{Nc,b1} = \left(\frac{N_{ua}^a}{\phi N_{nc}}\right)_{chb1} \le 1.0$$

 β_{N_c} highest anchor utilization for tension loading between anchor b, of anchor channel b :

- blow out (N₋)
- anchor pull-out (N₁)
- concrete breakout (N₋)
- anchor reinforcement (if available N_{cas}, N_{ca})

 $\beta_{v_{c,v}}$ highest utilization under shear loading (perpendicular) $b_{\scriptscriptstyle 1}$ of anchor channel b:

 pryout for perpendicular shear (V_{cn.v}), • concrete edge failure (V_{cby})

 $\beta_{V_{c,y,b1}} = \left(\frac{V_{ua,y}^a}{\phi V_{nc,y}}\right)_{chb1} \le 1.0$ $\beta_{V_{c,x,b1}} = \left(\frac{V_{ua,x}^a}{\phi V_{nc,x}}\right)_{chb1} \le 1.0$ $\beta_{v_{c,x}}$ highest utilization under shear loading (parallel) $b_{_1}$ of anchor channel b:

 concrete breakout (V_{ch}) pryout for parallel shear (V, ...)

$$\beta_{V,c,xa} = \left(\frac{V_{ua,x}^{a}}{\phi V_{nc,x}}\right)_{cha,Edi} \le 1.0$$

 $\beta_{V_{CX,chi}}$ highest utilization for longitudinal shear of channel j for concrete failure involving the edge i.

concrete breakout (V_{ch x})

· concrete breakout for shear parallel to on edge i due to perpendicular shear on edge j

 $\alpha = 1$ with anchor reinforcement to take up tension and parallel shear loads

 $\alpha = 5/3$ for channels without reinforcement

Simplified method

The concrete at the corner is shared by the two anchor channels and therefore, using the AC232 provisions with the actual corner distance for analysis purposes can yield very unconservative concrete strengths. Moreover, if the idealized failure plane is followed and the corner distance is taken to the point where the two idealized failure planes overlap. this may still create unconservative concrete strengths, as the concrete crack will follow the path of least resistance. Therefore, this model is only applicable for applications loaded in tension and/ or perpendicular shear.

90° Corner

Tension: To account for the influence of the adjacent corner anchor channel, the corner distance is reduced by assuming the concrete crack follows the path of least resistance and considering the corner distance where the "crack" of each anchor channel overlaps. For the concrete failure modes in tension, the stresses in the concrete induced by the two anchors of the anchor channels closer to the corner generates a concrete cone with the radius of $c_{cr,N}$. The distance between the closest anchor heads is defined as x, as shown in the Figure 9.2.10.16-a. These channels should be analyzed using a fictitious c_{ab} of (x/2). To evaluate channel a and b the anchor channel is modelled in Profis anchor channel software with c of x/2. With limiting the edge the concrete breakout strength in tension is reduced by the modification factor for corner effect $\Psi_{co,N}$.

Perpendicular shear: For the concrete failure modes in shear, b the stresses in the concrete induced by the two anchors of a=c_{a2,a1} the anchor channels closer to the corner change the concrete behavior. The concrete crack does not follow the idealized failure plane (c_{crv}) but the path of least resistance. This concept is illustrated in Figure 9.2.10.16-b. The fictitious edge can be b=c_{a1,b1}-c_{a1,a} C_{a1,a} Edge 2 taken in between the distance (a+b) for analyzing the anchor C_{cr.V} Ca1.b1 channel a and b depending on whichever anchor channel needed more concrete. To evaluate channel a and b the anchor Figure 9.2.10.16-b- Simplified Method-90° Corner - Perpendicular Shear. channel is modelled with c₂₀ distance of in between distance (a+b). With limiting the edge the concrete breakout strength in shear is reduced by the modification factor for corner effect $\Psi_{co,V}$.

Perpendicular outside corners with headed stud HAC channel loaded only in tension or in all three directions: The distance between the closest anchor heads is defined as x, as shown in the Figure 9.2.10.16-a. These channels should be analyzed using a fictitious c_{22} of (x/2).

12. Instructions for Use

Figure 9.2.10.16-a - Simplified Method-90° Corner - Tension.

1. Anchor Channel Systems

2. HAC Portfolio **Applications**

3. HAC

4. Design Introduction

5. Base material

6. Loading

9. Special Anchor 10. Design **Channel Design** Software

Acute and obtuse corners

Acute Corner:

Tension: To account for the influence of the adjacent corner anchor channel, the corner distance is reduced by assuming the concrete crack follows the path of least resistance and considering the corner distance where the "crack" of each anchor channel overlaps. For the concrete failure modes in tension, the stresses in the concrete induced by the two anchors of the anchor channels closer to the corner generates a concrete cone with the radius of c_{rrN} . The distance between the closest anchor heads is defined as x, as shown in the Figure 9.2.10.17-a. These channels should be analyzed using a fictitious c_{10} of (x/2). To evaluate channel a and b the anchor channel is modelled in Profis anchor channel software with c_{ab} of x/2. With limiting the edge the concrete breakout strength in tension is reduced by the modification factor for corner effect $\psi_{co.N}$.

Perpendicular shear: For the concrete failure modes in shear, the stresses in the concrete induced by the two anchors of the anchor channels closer to the corner change the concrete behavior. The concrete crack does not follow the idealized failure plane (c_{crv}) but the path of least resistance. This concept is illustrated in Figure 9.2.10.17-b. The fictitious edge can be taken in between the distance (a+b) for analyzing the anchor channel a and b depending on whichever anchor channel needed more concrete. To evaluate channel a and b the anchor channel is modelled with c₂₂ distance of in between distance (a+b). With limiting the edge the concrete breakout strength in shear is reduced by the modification factor for corner effect ψ_{cov} . Channel a is evaluated using c_{a2a1} and channel b can be evaluated using c_{a2.b1}.

Acute outside corners with headed stud HAC channel loaded only in tension or in all three directions: The distance between the closest anchor heads is defined as x, as shown in the Figure 9.2.10.17-a. These channels should be analyzed using a fictitious c₂₂ of (x/2).

Figure 9.2.10.17-b - Simplified Method - Acute Corner - Perpendicular Shear

Obtuse Corner:

Tension: To account for the influence of the adjacent corner anchor channel, the corner distance is reduced by assuming the concrete crack follows the path of least resistance and considering the corner distance where the "crack" of each anchor channel overlaps. For the concrete failure modes in tension, the stresses in the concrete induced by the two anchors of the anchor channels closer to the corner generates a concrete cone with the radius of $c_{cr,N}$. The distance between the closest anchor heads is defined as x, as shown in the Figure 9.2.10.18-a. These channels should be analyzed using a fictitious c_{a} of (x/2). To evaluate channel a and b the anchor channel is modelled in Profis anchor channel software with c of x/2. With limiting the edge the concrete breakout strength in tension is reduced by the modification factor for corner effect $\Psi_{co.N}$.

Perpendicular shear: For the concrete failure modes in shear. the stresses in the concrete induced by the two anchors of the anchor channels closer to the corner change the concrete behavior. The concrete crack does not follow the idealized failure plane (c_{crv}) but the path of least resistance. This concept is illustrated in Figure 9.2.10.18-b. The fictitious edge can be taken in between the distance (a+b) for analyzing the anchor channel a and b depending on whichever anchor channel needed more concrete. To evaluate channel a and b the anchor channel is modelled with c₂₂ distance of in between distance (a+b). With limiting the edge the concrete breakout strength in shear is reduced by the modification factor for corner effect ψ_{cov} . Channel a is evaluated using c_{a2a1} and channel b can be evaluated using c_{a2 b1}.

Obtuse angle corners with headed stud HAC channel loaded only in tension or forces in all three directions: The distance between the closest anchor heads is defined as x, as shown in Figure 9.2.10.18-a. These channels should be analyzed using a fictitious c_{22} of (x/2).

12. Instructions for Use

Cala

Idealized failure plane in shear

Figure 9.2.10.18-b - Simplified Method - Obtuse Corner - Perpendicular Shear

C_{a1,b1}

Edge 2

· C_{cr,V}

material 6. Loading

11.8

(x/2)-1"

9.2.11 — HAC AND HAC-T DESIGN: EXAMPLE OF DESIGN OF TOP OF SLAB OUTSIDE CORNER

3. HAC

Applications

2. HAC

Portfolio

The distance between the closest anchor heads is defined as x, as shown in the Figure 9.2.11.1. For concrete breakout in tension, concrete breakout and pryout in shear the imaginary concrete side edge distance of (x''/2) is considered. The side edge distance of (x''/2)-(1'') can be used while modeling in Hilti PROFIS Anchor Channel software as shown in Figure 9.2.11.2. 1'' is anchor channel's overhang that is needed to be deducted from side edge when modelling it in profis.

1. Anchor

Channel Systems

curb corner

Figure 9.2.11.1 - Example of simplified method of HAC in a top of

Figure 9.2.11.2 — Analysis of channel 1 using the simplified method in PROFIS Anchor Channel.

9.2.12 — HAC AND HAC-T DESIGN: TOP OF SLAB INSIDE CORNER WITH PAIR OF ANCHOR CHANNEL

Tension: To account for the influence of the adjacent corner anchor channel, the corner distance is reduced by assuming the concrete crack follows the path of least resistance and considering the corner distance where the "crack" of each anchor channel overlaps. For the concrete failure modes in tension, the stresses in the concrete induced by the two anchors of the anchor channels closer to the corner generates a concrete cone with the radius of $c_{cr,N}$. The distance between the closest anchor heads is defined as x, as shown in the Figure 9.2.12.1-a. These channels should be analyzed using a fictitious c_{a2} of (x/2). To evaluate channel a and b the anchor channel is modelled in Profis anchor channel software with c_{a2} of x/2. With limiting the edge the concrete breakout strength in tension is reduced by the modification factor for corner effect $\psi_{cr,N}$.

Perpendicular shear: For the concrete failure modes in shear, the stresses in the concrete induced by the two anchors of the anchor channels closer to the corner change the concrete behavior. The concrete crack does not follow the idealized failure plane ($c_{cr,V}$) but the path of least resistance. This concept is illustrated in Figure 9.2.12.1-b. The fictitious edge can be taken in between the distance (a+b) for analyzing the anchor channel a and b depending on whichever anchor channel needed more concrete. To evaluate channel a and b the anchor channel is modelled with c_{a2} distance in between distance (a+b). With limiting the edge, the concrete breakout strength in shear is reduced by the modification factor for corner effect $\psi_{cr,V}$.

Interior angle corners with headed stud HAC channel loaded only in tension or forces in all three directions: The distance between the closest anchor heads is defined as x, as shown in Figure 9.2.12.1-a. These channels should be analyzed using a fictitious c_{a2} of (x/2).

Same concept can be used for analyzing acute and obtuse degree inside corners with headed studs anchor channel.

Figure 9.2.12.1-b - Inside Corner - Shear Perpendicular

4. Design Introduction

5. Base material 6. Loading

9.2.13 — HAC AND HAC-T DESIGN: PARALLEL CHANNELS

3. HAC

Applications

Two TOS or BOS channels:

Currently, AC232 excludes parallel anchor channels. Hilti anchor channel analysis of parallel anchor channels are based on ACI 318 provisions. The analysis of the concrete breakout strength in shear is based on ACI 318 principles in conjunction with AC232 design methodology.

All steel failure modes are in accordance to ESR-3520.

1. Anchor

Concrete breakout strength in shear of parallel anchor channels is per ACI 318 concepts pertaining to dividing the concrete between the two channels.

Perpendicular Shear

Case 1: One assumption of the distribution of forces indicates that half of the shear force would be critical on the front anchor and the projected area. For the calculation of concrete breakout, c_{a1} is taken as c_{a1}.

Figure 9.2.13.1 – ACI-Fig. R17.5.2.1b – Calculation of A for single anchors and groups of anchors per ACI 318-14..

Front anchor channel analysis: Refer Figure 9.2.13.2 and 9.2.13.3. The perpendicular concrete breakout strength of front channel should be evaluated using the concrete edge distance of c₁₁. The front anchor channel should be loaded with half of the total shear force acting on the double anchor channel system. This is required to be checked following ACI 318-14 chapter 17 section commentary Fig17.5.2.1b case I. This is shown in Figure 9.2.13.1.

FFigure 9.2.13.3 - Parallel Channels - Shear Casel-Section view.

Case 2: Another assumption of the distribution of forces indicates that the total shear force would be critical on the rear anchor and its projected area. This assumption needs to be considered only when anchors are welded to a common plate independent of "s". In the case of anchor channels, this condition is applicable for "filled" holes conditions.

This provision is checked for parallel double channels in order to confirm that the total available concrete between the back channel of the parallel channels and the front edge has sufficient capacity to take the total shear force experiencing by the system.

Figure 9.2.13.4 - Fig. R17.5.2.1b - Calculation of A for single anchors and groups of anchors per ACI 318-14..

Back anchor channel analysis: Refer Figure 9.2.13.5 and 9.2.13.6. The perpendicular concrete breakout strength of the back channel should be evaluated using the concrete edge distance of $c_{a1,b}$. The back anchor channel should be loaded with the total shear force acting on the double anchor channel system. This is required to be checked following ACI 318-14 chapter 17 section commentary Fig17.5.2.1b case II. This is shown in Figure 9.2.13.4.

Both Case 1 and Case 2 should be evaluated to determine which controls for design.

9.2 HAC and HAC-T De

2. HAC 1. Anchor Portfolio Channel Systems

3. HAC 4. Design Applications Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage

9. Special Anchor 10. Design **Channel Design** Software

Tension

Both the front and back anchor channels are analyzed in tension using an imaginary concrete edge of x/2 as shown in Figure 9.2.13.7, if both anchor channels are equally loaded.

Please note that the location of imaginary concrete edge can be optimized according to the magnitude of tensile forces each anchor channel is experiencing as shown in Figure 9.2.13.8. The imaginary edge is assumed at a distance of (3/4)x from the back channel, if the back channel is experiencing a larger tension force.

Alternatively, the spacing method can be used to determine the spacing modification factor $\psi_{_{S\,N}}$ for the anchor in consideration, considering the effect of the anchors of the channel parallel to the one in consideration. Please note that there is no need to assume the imaginary edge in between the channel when spacing method is used. The actual perpendicular edge distance of the channel has to be consider, while calculating the edge modification factor $\psi_{ed N}$. Refer Figure 9.2.13.8.

Please refer to the formula below for finding the spacing modification factor for anchor a, of channel a.

The edge modification factor for anchor channel a is given below.

$$c_{a1,a} \leq C_{Cr, N}$$
 then $\Psi_{ed, N} = \left(\frac{c_{a1,a}}{C_{cr, N}}\right)^0$

The edge modification factor for anchor channel b is given below.

$$c_{a1,b} \leq C_{Cr, N}$$
 then $\Psi_{ed, N} = \left(\frac{c_{a1,b}}{C_{cr, N}}\right)^{0.2}$

Figure 9.2.13.7 - Tension - Equal tension force-Section view.

Figure 9.2.13.9 - Tension - Equal tension force-Plan" view.

Longitudinal shear

The longitudinal shear force V_{uax} is applied at an eccentricity, as shown in Figure 9.2.13.10. This eccentricity creates the force V_{uax} on anchor channel b in opposite to the direction of V_{uax} . Where as anchor channel a experiences the longitudinal force in the direction of V_{uax} . Having infinite sides edges on both sides will create breakout planes perpendicular to the edge as seen in the Figure 9.2.13.10. For analyzing anchor channel a the front edge of c_{a1} , a is considered. For analyzing anchor channel b the edge available in between the two channels is used, which is x $(c_{a1b} - c_{a1a})$ as shown in Figure 9.2.13.10.

Figure 9.2.13.10 - Longitudinal Shear - Plan view.

11. Best **Practices**

12. Instructions for Use

1. Anchor **Channel Systems**

2. HAC 3. HAC Portfolio Applications

4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage

9. Special Anchor Channel Design

10. Design Software

9.2.14 — HAC AND HAC-T DESIGN: PARALLEL CHANNELS TOP AND BOTTOM

One BOS and another TOS channels: BOS away from TOS

Current AC232 excluded parallel anchor channels. Hilti anchor channel analysis of parallel anchor channels is based on ACI 318 provisions. The analysis of the concrete breakout strength in shear is based on ACI 318 principles in conjunction with AC232 design methodology.

All steel failure modes are in accordance to ESR-3520.

One can use the principles of to use ACI 318-14 provision to evaluate top and bottom.

Concrete breakout strength in shear of parallel anchors is per ACI 318 concepts pertaining to dividing the concrete between the two channels. Principles of AC232 should be used while evaluating the concrete breakout capacity of all the concrete failure modes.

Perpendicular Shear

TOP OF SLAB embed: Shear forces on TOS and BOS are V_{uav} a and V_{uavb} respectively. The front edge of the ToS embed is checked against the V_{uava} force. For the calculation of concrete breakout, c_{a1} , is taken as c_{a1a} .

Another assumption of the distribution of forces indicates that the total shear force would be critical on the rear anchor and its projected area.

This provision is checked for parallel double channels in order to confirm that the total available concrete between the BOS channel and the front edge has sufficient capacity to take the total shear force experienced by both channels.

Figure 9.2.14.5-Calculation of A for single anchors and groups of anchors per ACI 318-14.

Figure 9.2.14.1 — Parallel Channels Top and Bottom: BOS away from TOS Plan View

Figure 9.2.14.3 — Parallel Channels Top and Bottom: BOS away from TOS-Perpendicular Shear TOS-Plan View.

Figure 9.2.14.2 - Parallel Channels Top and Bottom: BOS away from TOS -Section View.

Figure 9.2.14.4 – Parallel Channels Top and Bottom-BOS away from TOS: Perpendicular Shear TOS-Section View

Figure 9.2.14.7 — Parallel Channels Top and Bottom: BOS away from TOS-Perpendicular Shear BOS-Plan View.

260

BOTTOM OF SLAB: The perpendicular concrete breakout strength of the BOS channel should be evaluated using c₁ as the concrete edge distance of $c_{a1,b}$. The BOS anchor channel should be loaded with the total shear force $(V_{uava} + V_{uavb})$ acting on both anchor channels. The height (h) used in the analysis is h as shown in Figure 9.2.14.6.

Figure 9.2.14.6 - Parallel Channels Top and Bottom: BOS away from TOS-Perpendicular Shear BOS Section View.

1. Anchor 2. HAC Channel Systems Portfolio 3. HAC Applications

4. Design Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor Channel Design Software

Tension

TOS and BOS: In the case shown in figure 9.2.14.8 the two anchor channels are drifted apart so much so that the failure planes in tension do not intersect. The idealized failure plane is represented by brown line while the red line represents the path of least resistance. For the concrete failure modes in tension, the stresses in the concrete induced by the two anchors of the anchor channels closer to each other change the concrete behavior. The concrete crack does not follow the idealized failure plane ($C_{cr,N}$) but the path of least resistance. This concept is illustrated in Figure 9.2.14.8 and Figure 9.2.14.9.

The front edge concrete for the BOS anchor channel is as taken as 0.5x in the analysis. The ToS channel is modeled as having a back edge of 0.5x. The distance x is defined as the shortest straight line connecting one anchor stud to another as shown in the Figure 9.2.14.8 and Figure 9.2.14.9.

Please note that the location of the imaginary line in between channel a and b can be optimized in accordance to the amount of tension experienced by each channel as needed.

Longitudinal shear

TOS and BOS anchor channels

The longitudinal shear force V_{uax,a} and V_{uax,b} is applied at the center line of the anchor channel, as shown in Figure 9.2.14.10-a and Figure 9.2.14.10-b. Having infinite sides edges on both sides will create breakout planes perpendicular to the edge as seen in the Figure 9.2.14.10-a and Figure 9.2.14.10-b. For analyzing anchor channel "a" the front edge of c_{a1,a} is considered subjecting it to shear force of V_{ua,xa}. For analyzing anchor channel "b" the edge of c_{a1,b} is used against the total shear force (V_T = V_{uax,a}+V_{uax,b}) following the ACI 318-14 provision as shown in Figure 9.2.14.10-b.

Figure 9.2.14.8 — Parallel Channels Top and Bottom-BOS away from TOS: Tension- TOS and BOS Section View.

Figure 9.2.14.10-b add the figure name.

BOS and TOS channels: BOS under from TOS

TOS and BOS: This section describes the conditions where two anchor channels are placed one on top of the other, facilitating the connection above and below the slab. For analyzing these condition it is recommended to assign half of the concrete height to the TOS channel and half to the BOS channel.

In Figure 9.2.14.11 the failure planes are drawn in tension and in Figure 9.2.14.12: failure planes are drawn for perpendicular shear. An imaginary line is drawn at the intersection of these failure planes limiting the height of the slab to h/2 for each anchor channel analysis.

The location of the imaginary line can be optimized. More concrete in height can be assigned to the channel subjected to more shear force.

Figure 9.2.14.11 — Top and Bottom Channel: TOS under BOS -Tension — Section View.

Figure 9.2.14.12 — Top and Bottom Channel: TOS under BOS -Perpendicular Shear — Section View.

4. Design **Applications** Introduction

6. Loading 5. Base material

BOS and TOS Channel intersecting

The two channels may be installed at top and bottom of slab as seen in the Figure 9.2.14.13. The simulations were performed at the University of Rijeka with configuration as seen in Figure 9.2.14.14, Figure 9.2.14.15, and Figure 9.2.14.16. With these simulations following design procedure has been concluded.

3. HAC

Top channel and bottom channel should be analyzed separately considering the total height of the substrate. The interaction of the breakout planes of the two top and bottom channels are taken into account by using the interaction equation below. This interaction equation combines the concrete breakout utilizations of top and bottom channels, hence including the effect of the two overlapping concrete breakout planes into the design.

Figure 9.2.14.13 — Intersecting Top and Bottom Channel; tension loading

Figure 9.2.14.14 — Intersecting Top and Bottom Channel; shear loading

9.2.15 — HAC AND HAC-T DESIGN: COMPOSITE SLABS

Figure 9.2.15.1 - FOS: Composite Slab - Tension - Section View.

The concrete breakout in shear failure modes needs to be modified in order to take into account of metal deck when HAC or HAC-T anchor channels are used:

Concrete breakout strength in shear

This dimension h effects concrete breakout strength in perpendicular shear. This will change the factor $\Psi_{\mu\nu}$.

The dimension h in the formula below for Ψ_{hv} factor should be taken as h as shown in Figure 9.2.15.1-b and Figure 9.2.15.2-b.

Please refer to anchor channel theory for more information on concrete breakout in shear.

Figure 9.2.15.2 - TOS: Composite Slab - Tension - Section View.

Figure 9.2.15.1-b - FOS: Composite Slab - Perpendicular Shear - Section View.

Concrete Breakout in tension

The concrete breakout capacity in tension will get reduced with having the c_{a12} is less than c_{a11} as seen in Figure 9.2.15.1-a Figure 9.2.15.2-a. The imaginary line is drawn to simulate the effect of metal deck It is recommended to limit the available concrete for tension to be c_{a12} . The following modification should be incorporated in the design by modelling the edge $c_{a_{1,2}}$ or manually changing the reduction factor in report if profis does not allow modelling at edge care because of minimum edge requirement. Reduction factor for edge is as seen below. In this equation minimum of $c_{a1,1}$ or $c_{a1,2}$ is used.

$$C_{a1} \leq C_{Cr,N}$$
 then $\Psi_{ed,N} = \left(\frac{C_{a1}}{C_{cr,N}}\right)^{0.5}$

Figure 9.2.15.2-b - TOS: Composite Slab - Perpendicular Shear -Section View.

9.2 HAC

HAC-T D

2. HAC Portfolio

4. Design **Applications** Introduction

5. Base material 6. Loading

9.2.16 — HAC AND HAC-T DESIGN: INTERMEDIATE FACE OF SLAB ANCHOR CHANNEL WITH COLUMN CONFLICT

3. HAC

When there is a column conflict in an intermediate condition. It is recommended to have the bracket extended and determine the bolt forces. The anchor channel is analyzed using a side distance of x. This side edge is used since the concrete breakout plane gets interrupted by the presence of column.

The concrete breakout in tension, concrete breakout in shear, and concrete pryout strength are analyzed using the side edge distance of x. Please refer Figure 9.2.16.1.

Figure 9.2.16.1 - FOS With Column Conflict - Section View.

9 2 17 — CASE II: PERPENDICULAR SHEAR

The method described in sections 9.2.2 to 9.2.16 for shear force perpendicular is the case I of the perpendicular shear. The case Il of the perpendicular shear should also be checked, where the concrete breakout planes are in longitudinal direction due to perpendicular shear. The worst results of the two cases should be taken into consideration. This will be the controlling load case, where the side edge distance is small and perpendicular shear capacity is more than longitudinal capacity due

For a shear force parallel to an edge, V_{cby} shall be permitted to be 2.5 times the value of the shear capacity determined from ESR-3520 equation 30 with the shear force assumed to act perpendicular to the edge.

Figure 9.2.17— Anchor channel arranged perpendicular to the edge and loaded parallel to the edge.

9.3 — HAC CRFOS U DESIGN

International Council Code Acceptance Criteria 232 (AC232) only covers anchor channel with rounded headed anchors. I-anchors and straight deformed reinforcing bars. Historically, the verification of the pull-out strength of the reinforcing bar has been based on the development length. Therefore, the pullout strength is calculated in accordance with ACI 318. ACI 318 requires a minimum reinforcing bar length of 12 in. AC232 requires anchor channels with reinforcing bars that meet splice length requirements.

HAC CRFoS U come with predetermined reinforcing bar lengths that comply with the development length requirements of ACI 318. Moreover, its design model ensures that the pullout strength of the reinforcing bar is not exceeded and the combined shear and tension concrete utilization meets the required concrete interaction equation. However, there may be applications such as lightweight concrete where the splice lengths may not be met.

Additional testing conducted by Hilti validates the similarities in the behavior of an anchor channel with rounded headed anchors and reinforcing bar anchors. Naturally, there are differences in some specific failure modes. Hence, the design of HAC CRFoS U follows the principles of AC232 and ACI 318. For

HAC CRFoS U loaded in tension

Figure 9.3.2 - Concrete failure mode of Cast-in anchor channel with rebar anchors (HAC CRFoS U) - Section View.

9.3 HAC CRFoS U D

11. Best **Practices**

further code compliance, the steel strengths of HAC CRFoS U are based on testing protocols of AC232.

The published steel strength of HAC CRFoS U were derived based on testing protocols of AC232. The overall anchor channel design (i.e. failure modes, load distribution, and concrete and steel assessment) is in accordance with AC232.

- The main differences between HAC and HAC CRFoS U design models are in the concrete breakout in tension, pull-out, and pry-out.
- As is the case with HAC, the design of corners with a pair of channels loaded simultaneously is excluded from AC232. This section provides information about the overall HAC CRFoS U design. Moreover, design guidelines for failure modes not covered by AC232 but applicable to HAC CRFoS U and design guidelines for corners with a pair of channels loaded simultaneously are given in this chapter.

In contrast to anchor channels with rounded head anchors, anchor channels with reinforcing bars with configurations such as HAC CRFoS U do not require the verification of the concrete breakout strength in tension.

Steel

2. HAC Portfolio

Concrete

4. Design Introduction

Concrete

Concrete edge breakout: $\phi V_{cb,y}$

3. HAC

Applications

Steel

Channel lip: $\phi V_{sl,y}$

Shear ($\Phi V_{n,v}$)

5. Base material

Steel

Channel bolt and

connection: ϕV_{st}

channel

Shear $(\Phi V_{n,x})$

6. Loading

Concrete

Concrete edge

breakout: $\phi V_{cb,x}$

7. Anchor Channel 8. Reinforcing Design Code

9. Special Anchor 10. Design **Bar Anchorage Channel Design** Software **Steel Failure Modes** Channel bolt: Channel lip: Connectio Bending of ΦN_{ss} ΦN channel: $\Phi M_{s,flex}$ ΦN_{sc} ¥. ESR-3520 Hilti Method ESR-3520 Hilti Metho Sec. 4.1.3.2.2 based on AC232 Sec. 4.1.3.2.2 based on AC Refer anchor Refer anchor testing guidelines testing guide channel theory channel theory

Channel lip: ΦN

 $\Phi N_{sl} > N_{bua}$

The tests follow AC232 testing guidelines. Refer to anchor channel theory for further clarification. Please refer table 2.3.3.1 for strength values.

Channel lip: ΦN

Connection Anchor and Channel: ΦN

 $\Phi N_{sc} > N_{aua}$

The tests follow AC232 testing guidelines. Refer to anchor channel theory for further clarification. Please refer table 2.3.3.1 for strength values.

Anchor and channel connection: ΦN_{cont}

Anchor: ΦΝ

 $\Phi N_{sa} > N_{aua}$

The tests follow AC232 testing guidelines. Refer to anchor channel theory for further clarification. Please refer table 2.3.3.1 for strength values.

Anchor: ΦN

Tension (ON)

IMPORTANT! Failure analysis modes evaluated follow ACI 318-14, chapter 17. This DOES NOT include evaluating the base material (e.g. edge-of-slab) capacity to resist compressive forces generated by the fixture. The engineer must ALWAYS verify the base material (e.g. edge-of-slab) design is capable of resisting the applied loading.

For additional information, please contact Hilti at US+CA.HAC@Hilti.com

Figure 9.3.3 - Failure modes for HAC CRFOS U.

12. Instructions for Use

Tension							
		Co	oncrete Failure Mod	es			
on:	Anchor: ΦN _{sa}	Concrete breakout: ФN _{cb}	Pullout: ΦΝ _{pn}	Side-face Blow-out: ΦN _{sb}			
and a second second		NA	*	N/A			
od C232 elines	Hilti Method based on AC232 testing guidelines	N/A	ACI 318-11 Ch. 12.2	N/A			

Pullout: ΦN

 $\Phi N_{nn} > N_{aua}$

I, is in accordance ACI318-11; chapter 12.2 is used. The stress in rebar is found by isolating (f_v =) σ_d in the equation as shown below.

The ACI concept of development length is based on the attainable average bond stress over the length of embedment of the reinforcement.

If a rebar provides the required development length, the rebar will yield before it is pulled-out of the concrete. In situations where the force at the rebar is less than its yield strength, ACI 318 allows reduction the excess reinforcement.

In cases where ℓ_{d} is provided ($\ell_{d,prov}$), the nominal pull-out strength of the rebar $(N_{p,p})$ is as follows:

$$\begin{aligned} & \log_{prov} \geq l_{d} = \left(\frac{3}{40} \cdot \frac{f_{y}}{\lambda \cdot \sqrt{f'c}} \cdot \frac{\psi_{t} \cdot \psi_{c} \cdot \psi_{s}}{\frac{c_{d} + K_{tr}}{db}}\right) db \geq 12in \\ & Ktr = 0 \\ & \frac{cd}{db} \leq 2.5 \\ & (f_{y} =)\sigma_{d} = \log_{prov} \cdot \pi \cdot db \cdot \frac{10}{3} \cdot \lambda \cdot \sqrt{f'c} \cdot \min\left(\frac{c_{d}}{db}, 2.5\right) \cdot \frac{1}{\psi_{t} \cdot \psi_{c} \cdot \psi_{s}} \\ & N_{P,R} = \frac{\pi \cdot d^{2}s_{r,R}}{4} \cdot \sigma_{d} = l_{d, prov} \cdot \pi \cdot db \cdot \frac{10}{3} \cdot \lambda \cdot \sqrt{f'c} \cdot \min\left(\frac{c_{d}}{db}, 2.5\right) \cdot \frac{1}{\psi_{t} \cdot \psi_{c} \cdot \psi_{s}} \end{aligned}$$

Pullout: ΦN_{n}

1. Anchor 2. HAC Channel Systems Portfolio 3. HAC 4. Design Applications Introduction

5. Base material 6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design Channel Design Software

- ℓ_{d} = development length, in.
- ℓ_d ≥ 12 in.
- $f_v =$ yield strength of bar

Rebar cover factor is:

- a) the least of the side cover
- b) the concrete cover to the bar or wire
- c) One-half the center-to-center spacing of the bars.

In all cases, $\mathbf{c}_{_{\mathrm{b}}}$ is measured from the center of the bar.

Figure 9.3.4 — Rebar Cover — HAC CRFOS U — Section View

Figure 9.3.5 - Rebar Cover - HAC CRFOS U - Plan View

Hilti offers a special anchor channel with rebars for front of slab applications. The rebar which is connected to the channel profile is kinked in order to also allow the installation of two anchor channels in a corner (see Figure 9.3.5). This product is called CRFoS U (U = universal installation close to an edge or in a corner).

Figure 9.3.7 — Tension test setup for testing anchor channels under static and simulated seismic conditions.

Evaluation of test results:

The test results shows that no hairline cracks were observed under static and simulated seismic conditions prior to failing the connection between rebar and channel profile.

The one diameter kink is provided in CRFoS U anchor channel. Hence in the PROFIS report there will be a k value of a diameter representing the kink in the rebar.

Rebar strength: ΦV_{s.R.}

 $\Phi V_{s,R,v} > V_{ua}^{a}$

The tests follow AC232 testing guidelines. Refer to anchor channel theory for further clarification. Please refer to table 2.3.4.1 for strength values.

Rebar: ΦV_{s,R,y}

Connection Anchor and Channel : ΦV_{SRV}

 $\Phi V_{s,R,y} > V_{ua}^{a}$

The tests follow AC232 testing guidelines. Refer to anchor channel theory for further clarification. Please refer to table 2.3.4.1 for strength values.

Rebar and channel connection: $\Phi V_{s,R,y}$

Figure 9.3.5 — HAC CRFOS U.

 c_{b} minimum of a) c_{b1} b) $c_{b2/2}$

Figure 9.3.6-b — Tension test setup universal testing machine.

Tests have been performed on CRFoS (U) to demonstrate that, in front of slab applications no hairline cracks or spalling in the most critical condition (corner condition and minimum slab thickness) are observed due to the kinked rebar before steel failure of the anchor channel occurs.

The steel strength of the channel lips (N_{sl}), connection between anchor/rebar and channel profile (N_{sc}) and anchor (N_{sa}) is derived from a tension test in a universal testing machine without being cast into concrete (test series 1 in AC232). In this test series one anchor is fixed to the testing frame (see Figure 9.3.6-b). **270**

A channel bolt is inserted directly over the anchor and loaded without a fixture.

The test setup is shown in Figure 9.3.7.

12. Instructions for Use 14. Design Example

	Concrete Fa	ilure Modes
	Concrete Breakout $\Phi_{_{Vcb,y}}$	Concrete Pryout
		N/A
d 232 ines	ESR-3520 Sec. 4.1.3.3.3 Refer anchor channel theory	N/A

Concrete breakout in perpendicular shear: ΦV_c

 $\Phi V_{cb,y} > V_{ua}^{a}$

Please refer to anchor channel theory for more information on this failure mode. The design methodology is the same as that of headed stud anchor channel. This check is compliant with ESR 3520.

Concrete edge breakout: $\Phi V_{_{cb,y}}$

Channel bolt:

ΦV

ESR-3520

Sec. 4.1.3.3.2,

4.1.3.4.2

2. HAC Portfolio

connection

 $\Phi V_{sc,R,y}$

Hilti Method

based on AC232

testing guidelines

Steel Failure Modes

Channel Lip

 $\Phi V_{sl,y}$

ESR-3520

Sec. 4.1.3.3.2,

4.1.3.4.2

Longitudinal Shear

Rebar

 $\Phi V_{s,R,y}$

Hilti Method

based on AC232

testing guidelines

4. Design Introduction

Concrete Failure Modes

Concrete Pryout

N/A

N/A

Concrete

Breakout

 $\Phi_{_{Vcb,y}}$

ESR-3520

Sec. 4.1.3.4.3

3. HAC

Applications

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

9. Special Anchor 10. Design **Channel Design** Software

9.3.1 — HAC CRFOS U DESIGN: INTERMEDIATE FACE OF SLAB ANCHOR CHANNEL

Cast-in anchor channels with rebar anchors for face of slab applications

The overall design of HAC CRFoS U follows the principles described in chapter 7 with some modifications to the verification of some failure modes. Table 9.3.1.1, 9.3.1.2, 9.3.1.3, Figures 9.3.1.1 and 9.3.1.2 illustrate the main differences in the possible failures modes of HAC and HAC CRFoS U.

Rebar strength: ΦV_{s R}

 $\Phi V_{s,R,x} > V_{ua}^{a}$

The tests follow AC232 testing guidelines. Refer to anchor channel theory for further clarification. Please refer table 2.3.4.3 for strength values.

Rebar: ΦV_{s,R,x}

Connection Anchor and Channel : ΦV_{max}

 $\Phi V_{sc,R,x} > V_{ua}^{a}$

The tests follow AC232 testing guidelines. Refer to anchor channel theory for further clarification. Please refer to table 2.3.4.3 for strength values.

Anchor and Channel Connection: ΦV_{sc,R,x}

Concrete breakout in perpendicular shear: ΦV

 $\Phi V_{cb,x} > V_{ua}^{a}$

Please refer to anchor channel theory for more information on this failure mode. The design methodology is the same as that of headed stud anchor channel. This check is compliant with ESR 3520.

Concrete edge breakout: ΦVcb,x

Figure 9.3.1.2 - Cast-in anchor channel with reinforcing bar anchors (HAC CRFoS U) loaded in tension.

- Concrete breakout in tension and pry-out failure modes were not observed in testing, and therefore, they are excluded from the possible failure modes of HAC CRFoS U. The verification of the adequacy of the pull-out strength of the rebar anchors is based on ACI 318. The design ensures the applied rebar forces do not exceed the bond stresses between the rebar and the
- concrete.

Force components on bar Resulting forces on concret

Table 9.3.1.1 — Comparison of Tension Failure modes of HAC and HAC CRFOSU

	Tension								
		:	Steel Failure Modes	6		Con	Concrete Failure Modes		
	Channel Bolt	Channel Lip	Bending of channel	Connection	Anchor	Concrete Breakout	Concrete Pullout	Concrete Blowout	
HAC		-			←]}•		⊷]}} •		
	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.3	ESR-3520 Sec. 4.1.3.2.4	ESR-3520 Sec. 4.1.3.2.5	
CRFoS U						N/A	*	N/A	
HAC	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	Hilti Method based on AC232 testing guidelines	Hilti Method based on AC232 testing guidelines	N/A	ACI 318-11 Ch. 12.2	N/A	

Table 9.3.1.3 — Comparison of Longitudinal shear Failure modes of HAC & HAC CRFOSU

		Longitudinal Shear						
		Steel Failu	ire Modes		Concrete Fa	ilure Modes		
	Channel Bolt	Channel Lip	Connection	Anchor	Concrete Breakout	Concrete Pryout		
НАС				+	<u>+</u> 72			
	ESR-3520 Sec. 4.1.3.4.2	ESR-3520 Sec. 4.1.3.4.2	ESR-3520 Sec. 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2	ESR-3520 Sec. 4.1.3.4.3	ESR-3520 Sec. 4.1.3.4.4		
CRFoS U				-	N/A Pryout: éV _{esx}			
HAC	ESR-3520 Sec. 4.1.3.4.2	ESR-3520 Sec. 4.1.3.4.2	Hilti Method based on AC232 testing guidelines	Hilti Method based on AC232 testing guidelines	ESR-3520 Sec. 4.1.3.4.3	N/A		

Table 9.3.1.2 — Comparison of Perpendicular shear Failure modes of HAC and HAC CRFOSU

	Perpendicular Shear								
	s	teel Failure Mode	s	Co	ncrete Failure Mo	des			
	Channel Bolt	Channel Lip	Connection	Anchor	Concrete Breakout	Concrete Pryout			
HAC	↑ 3								
	ESR-3520 Sec. 4.1.3.3.2	ESR-3520 Sec. 4.1.3.3.2	ESR-3520 Sec. 4.1.3.3.2	ESR-3520 Sec. 4.1.3.3.2	ESR-3520 Sec. 4.1.3.3.3	ESR-3520 Sec. 4.1.3.3.4			
HAC CRFoS U		4				N/A Pryout: eV _{exy}			
	ESR-3520 Sec. 4.1.3.3.2	ESR-3520 Sec. 4.1.3.3.2	Hilti Method based on AC232 testing guidelines	Hilti Method based on AC232 testing guidelines	ESR-3520 Sec. 4.1.3.4.3	N/A			

12. Instructions for Use

4. Design **Applications** Introduction

5. Base material 6. Loading 10. Design Software

9.3.2 — HAC CRFOS U DESIGN: FACE OF SLAB OUTSIDE CORNER WITH A SINGLE ANCHOR CHANNEL

3. HAC

90 Degree Corner

Tension breakout cone formation is precluded because of having rebars instead of headed studs. Therefore to determine the available concrete for the analysis depends on formation of projected areas due to the concrete breakout cone in shear.

The effect of the reduced side edge distance can also effect the pullout strength of rebar if the cover is so small that it yields the c_{L}/d_{L} value less than 2.5. The value of c_{h} is equal to c_{22} .

Please refer to the Figure 9.3.2.1.

Acute Angle Corner

Tension: Acute angle corners do not have the same amount of concrete throughout as 90 degree corners. The rebar can be bend having at least 12" in accordance to ACI-318 as shown in Figure 9.3.2.2. The pullout strength should be calculated by hand using 12" development length. The c, concrete cover is taken as minimum of the four s/2, c_{h1} , c_{h2} and c_{h3} dimensions. (s=spacing between rebars). Refer Figure 9.3.2.2 and Figure 9.3.2.3.

Shear: To determine the c₂ dimension while analyzing a acute corner, it is recommended to draw the projected area in perpendicular shear as shown in Figure 9.3.2.2. The darkened portion of the concrete is not utilized in the analysis, hence limiting to a shorter c_{22} dimension. This is achieved by projecting the intersection of the concrete plane back to other side of the corner. Please refer to Figure 9.3.2.2 and Figure 9.3.2.3 covering the perpendicular shear analysis at acute degree corner. Please refer section 9.2.2 for Longitudinal shear method of analysis for acute angle corner for detail analysis of face of slab.

Figure 9.3.2.1 - HAC CRFOS U - Single anchor channel - 90 degree Corner.

Figure 9.3.2.2 — HAC CRFOS U — Single anchor channel — Acute angle Corner — Plan View.

Figure 9.3.2.3 - HAC CRFOS U - Single anchor channel - Acute angle Corner - Section View.

Obtuse Angle Corner

Shear: Obtuse angle corners have a greater amount of concrete than in 90 degree corners. The determination of c₂₀ dimension for perpendicular shear analysis is conservatively assumed as shown in Figure 9.3.2.4. Please refer to Figure 9.3.2.4 covering the perpendicular shear analysis at obtuse degree corner. Please refer section 9.2.2 for analysis of anchor channel subjected to longitudinal shear for obtuse angle corner with single anchor channel on face of slab.

Tension: For Tension analysis refer section 9.3.1 pull out in tension. There will not be the concrete breakout cone development in tension. The cb concrete cover is taken as minimum of the four s/2, c_{h1} , c_{h2} and c_{h3} dimensions.(s=spacing between rebars). Refer Figure 9.3.2.4 and Figure 9.3.2.5.

Figure 9.3.2.4 — HAC CRFOS U — Single anchor channel — Obtuse angle Corner — Plan View.

Figure 9.3.2.5 — HAC CRFOS U — Single anchor channel — Obtuse angle Corner — Section View.

9.3 HAC CRFoS U De

9.3.3 — HAC CRFOS U DESIGN: FACE OF SLAB OUTSIDE CORNER WITH PAIR OF ANCHOR CHANNEL

3. HAC

Applications

4. Design

Introduction

2. HAC

Portfolio

1. Anchor

Channel Systems

5. Base material

Figure 9.3.3.1 - HAC CRFOS U - Anchor channels on both sides - 90 degree angle Corner - Plan View

90 Degree Corner

Hilti HAC CRFoS U has a one diameter kink to help facilitate installing the anchor channels as close possible to the corner. This helps the installation of t-bolts close to the corner and hence reduces the length of the bracket used. The anchor channel is pushed away from the corner edge so that the rebars do not intersect at the corner. Please refer to chapter 2 Table 2.2.5.3 for the minimum side edge distance of various CRFoS U channels.

By replacing the headed stud anchors with rebars, the concrete breakout in tension is precluded. The rebar transfers the loads to the concrete via interlock.

Figure 9.3.3.3 - HAC CRFOS U - Anchor channels on both sides - 90 degree angle Corner - Reduction factor.

Figure 9.3.3.2 - HAC CRFOS U - Anchor channels on both sides - 90 degree angle Corner - Section View.

Shear: PROFIS Anchor Channel has the "activate corner" option which gives us an opportunity to design the corner. The difference between the design of anchor channels at the corner is that when it comes to the concrete breakout check in perpendicular shear, the capacity is reduced by 20% because of overlapping of the concrete breakout failure planes in perpendicular shear as shown Figure 9.3.3.3. Not multiplying by the corner factor will result in unconservative results for the breakout capacity in perpendicular shear. Please refer Anchor channel theory for more information on concrete breakout in shear.

Please refer section 9.2.3 for detail method of analyzing perpendicular and longitudinal shear for a face of slab 90 degree angle corner with anchor channels on both sides. The section 9.2.3 describes method that includes the influence of the anchor channel on the other side of the corner.

Tension: The tension analysis will follow the section 9.3.1 in determining pullout capacity ΦN_{nn} . The c_b concrete cover is taken as minimum of the four s/2, c_{h1} , c_{h2} and c_{h3} dimensions. (s=spacing between rebars) Refer Figure 9.3.3.1 and Figure 9.3.3.2.

Acute Angle Corner

The difference between the behavior of headed stud anchor channel and anchor channel with rebar anchors is that having rebars precludes the concrete breakout cone in tension and pryout. The only determining factor of the side edge distance C₂₂ is the concrete breakout in shear.

Shear: In order to the determine c₋ dimension it is recommended to have a line drawn parallel to edge at a distance h_{axy} the intersection point of this line is projected back to the edge as illustrated in Figure 9.3.3.4. The shaded concrete region of the Figure 9.3.3.4 is neglected in analysis in order to take into account the effect of the acute angle corner. Model the 90 degree corner with c_{22} as the side edge distance to the closest anchor in the PROFIS Anchor Channel software. The concrete breakout strength in shear is reduced by 20% to take into account the utilization of concrete twice in shear following the simplified method of analysis. Please refer section 9.2.3 for detail method of analyzing perpendicular and longitudinal shear for a face of slab acute degree angle corner with anchor channels on both sides. The section 9.2.3 describes method that includes the influence of the anchor channel on the other side of the corner.

Tension: It is made sure that the available rebar length is 12" following the ACI provisions for minimum length in order to rely on rebar theory for transfer of tensile force. The tension analysis will follow the section 9.3.1 without having any reduction in anchorage tension pullout capacity ΦN_{a} because of the influence of the other anchor channel. The cb concrete cover is taken as minimum of the four s/2, c_{h1} , c_{h2} and c_{b3} dimensions.(s=spacing between rebars) Refer Figure 9.3.3.4 and Figure 9.3.3.5.

Figure 9.3.3.4 - HAC CRFOS U - Anchor channels on both sides - Acute angle Corner - Plan View.

Figure 9.3.3.5 - HAC CRFOS U - Anchor channels on both sides - Acute angle Corner - Section

1. Anchor 2. HAC Portfolio **Channel Systems**

3. HAC **Applications**

4. Design Introduction

5. Base material

6. Loading

9. Special Anchor 10. Design **Channel Design** Software

Obtuse Angle Corner

Figure 9.3.3.7 - HAC CRFOS U - Anchor channels on both sides - Obtuse angle Corner - Section View.

9.3.4 — HAC CRFOS U DESIGN: FACE OF SLAB INSIDE CORNER WITH PAIR OF ANCHOR CHANNEL

Inside corners where two anchor channels are present and are divided between the two channels, while analyzing the individual loaded simultaneously are outside the scope of AC232. Most of channels. For example if channel a is loaded more than channel the AC232 provisions can be applied to this type of application. b than side edge distance of 3/4(a+b) can be assumed for However, the influence of the adjacent anchor channel should channel a and side edge distance 1/4(a+b) can be assumed for be considered, as the concrete strength may be negatively channel b. Refer Figure 9.3.4.1. impacted.

Perpendicular Shear: This condition can be analyzed by fictitious edge between $c_{a2b} + c_{crv}$ assigning side edge concrete between channel a and b. The total distance of (a+b) can be

Figure 9.3.3.6 - HAC CRFOS U - Anchor channels on both sides - O btuse angle Corner - Plan View.

Shear: Obtuse angle corners with HAC CRFOS U channels: The side edge distance used in the analysis should be as shown in the Figure 9.3.3.6. Analysis is done using the design methodology of 90 degree corners. Conservatively, the concrete breakout strength in shear is reduced by 20% similar to 90 degree corners. Please refer the section for 90 degree corner. However, in reality corner reduction factor should be less 20% because of the availability of more concrete compared to 90 degree corners.

If the obtuse angle corner does not work by modeling it as a 90 degree corner, contact Hilti for further assistance in optimizing the solution.

Please refer section 9.2.3 for detail method of analyzing perpendicular and longitudinal shear for a face of slab obtuse degree angle corner with anchor channels on both sides. The section 9.2.3 describes method that includes the influence of the anchor channel on the other side of the corner.

Tension: The tension analysis will follow the section 9.3.1 no reduction in anchorage tension pullout capacity ΦN_m because of the influence of the other anchor channel. The cb concrete cover is taken as minimum of the four s/2, c_{h1} , c_{h2} and c_{h2} dimensions.(s=spacing between rebars) Refer Figure 9.3.3.6 and Figure 9.3.3.7.

Figure 9.3.4.1 - HAC CRFOS U - Inside Corner

Tension: The tension analysis will follow the section 9.3.1 without having any reduction in anchorage tension pullout capacity ΦN_{a} because of the influence of the other anchor channel.

1. Anchor **Channel Systems**

2. HAC Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material 6. Loading

9.3.5 — HAC CRFOS U DESIGN: COMPOSITE SLABS

The following failure modes needs to be modified in order to take account the effect of metal decks

Pullout strength in tension

For FOS anchor channel design on a metal deck, the cover on the rebar where the rebar goes on top of metal deck should be measured from center of rebar to the metal deck. The c, value is taken as minimum value of x_1 and x_2 in the development length equation. The pullout strength gets reduced due to the reduced cover if the ratio c_{h}/d_{h} is less than 2.5. Please refer to rebar theory chapter 8 and section 9.2.3 chapters for more information on this failure mode.

$$(\mathbf{f}_{y} =)\boldsymbol{\sigma}_{d} = \mathbf{l}_{d, \text{ prov}} \cdot \boldsymbol{\pi} \cdot d\boldsymbol{b} \cdot \frac{\mathbf{10}}{3} \cdot \boldsymbol{\lambda} \cdot \sqrt{f'c} \cdot \min\left(\frac{cd}{db}, 2.5\right) \cdot \frac{1}{\psi_{l} \cdot \psi_{l} \cdot \psi_{s}}$$
$$N_{P,R} = \frac{\boldsymbol{\pi} \cdot d^{2}s, R}{4} \cdot \boldsymbol{\sigma}_{d} = \mathbf{l}_{d, \text{ prov}} \cdot \boldsymbol{\pi} \cdot d\boldsymbol{b} \cdot \frac{\mathbf{10}}{3} \cdot \boldsymbol{\lambda} \cdot \sqrt{f'c} \cdot \min\left(\frac{cd}{db}, 2.5\right) \cdot \frac{1}{\psi_{l} \cdot \psi_{l} \cdot \boldsymbol{y}_{s}}$$

Concrete breakout strength in shear

The dimension y" effects concrete breakout strength in perpendicular shear. This will change the factor $\Psi_{\mu\nu}$.

The dimension h in the formula below for the $\Psi_{\mu\nu}$ factor should be taken as h as shown in Figure 9.3.5.1.

Please refer to anchor channel theory for more information on concrete breakout in shear.

$$h_{cr,V} = 2c_{al} + 2h_{ch}$$
$$\psi_{h,V} = \left(\frac{h}{h_{cr,V}}\right)^{\beta_{l}} \le 1.0$$

When there is a column conflict at the corner, the anchor

channel is analyzed using a height of the base material as x".

This dimension x" effects concrete breakout strength in perpendicular shear $\Psi_{\mu\nu}$.

The dimension h in the formula below for the $\Psi_{\mu\nu}$ factor should be taken as h=x".

Please refer to anchor channel theory for more information on concrete breakout in shear.

 $h_{cr,V} = 2c_{a1} + 2h_{ch}$

$$\psi_{\rm h,V} = \left(\frac{\rm h}{\rm h_{cr,V}}\right)^{\beta_1} \le 1.0$$

Figure 9.3.5.1 - HAC CRFOS U - FOS - Composite Slabs.

9.4 — HAC AND HAC-T DESIGN: POST TENSIONED SLABS

See best practices, section 11.5.3

9.3.6 — HAC CRFOS U DESIGN: DESIGN OF ANCHOR CHANNEL FOR OUTSIDE CORNER OF A CURB OR OUTSIDE CORNER WITH COLUMN CONFLICT

Please contact Hilti at US+CA.HAC@Hilti.com for additional information.

9.5 — HAC CRFOS U DESIGN: POST TENSIONED SLABS

See best practices, section 11.5.3

9.3.7 — HAC CRFOS U DESIGN: DESIGN OF FACE OF SLAB ANCHOR CHANNEL WITH COLUMN CONFLICT AT THE CORNER

Figure 9.3.6.1 - HAC CRFOS U - FOS - Column Conflict at Corner.

6. Loading **Design Code**

7. Anchor Channel 8. Reinforcing **Bar Anchorage**

9. Special Anchor 10. Design Channel Design Software

9.6 — HAC EDGE DESIGN 9.6.1 — HAC (T) EDGE, HAC (T) EDGE LITE AND HAC S (T) EDGE DESIGN: INTRODUCTION

3. HAC

Applications

2. HAC

Portfolio

Hilti Anchor Channel with the new rebar edge confinement plate (HAC EDGE or HAC EDGE Lite) is a solution for Curtain Wall applications that offers superior concrete edge breakout performance in shear. HAC EDGE changes the traditional concept of anchoring to concrete. Instead of relying on the low capacity of the concrete in tension, it takes advantage of the tensile strength of the reinforcement attached to the anchor channel. HAC EDGE optimizes the shear load transfer from the channel profile into the reinforcing bars and overcomes the challenges with traditional anchor channels with welded reinforcing bars.

1. Anchor

Channel Systems

HAC EDGE is a new anchoring system that brings value innovation. It copes with today's fast track construction demands and requirements of the curtain wall industry such as installation tolerance, high wind loads, thin concrete members, pockets, close edge distances, and lightweight concrete. In such adverse conditions, HAC EDGE provides more than 2 times the capacity of traditional top of slab anchor channels where the reinforcing bars are welded to the back of the channel and outperforms standard anchor channels without reinforcing bars by up to a factor of 5.

Code Compliance of HAC EDGE

4. Design

Introduction

HAC EDGE is a system consisting of a rebar edge confinement plate (EDGE plate) non-structurally attached to a Hilti Anchor Channel (HAC). The anchor channel itself is covered in the ESR-3520. Because the EDGE plate is not structurally connected to the anchor channel, the system is decoupled and the EDGE plate does not change the behavior of the anchor channel. Therefore, the design model and technical data can be taken from ESR-3520 for most of the failure modes.

5. Base material

The scope of the current version of AC232 (June 2017) is limited to anchor channels with round headed anchors or I-anchors. Anchor channels with reinforcing bars attached to the anchor channels are not explicitly covered in the criteria. However, the testing protocols of AC232 were used to determine the resistances of HAC in combination with the EDGE plate. The design provisions of AC232 are valid to design 19 out of the 20 failure modes of an anchor channel required per ESR-3520. Only the verification for concrete edge failure in shear is modified, based on rigorous in-house testing to benefit from the improved load-bearing behavior provided by the confinement plate with reinforcing bars. The anchorage length is designed in accordance with ACI 318.

Figure 9.6.1.2 - HAC EDGE or HAC EDGE Lite - Components

The Weakest Link in Top of Slab Applications

The design of cast-in anchor channels requires the verification of steel and concrete failure modes for tension, shear and combined tension and shear. An anchor channel is only as strong as its weakest link. For curtain wall applications, the weakest link in shear is typically concrete edge breakout failure. This failure mode is controlled by the geometrical dimensions and material characteristics of the concrete.

Standard Anchor Channels

The verification of concrete edge breakout of anchor channels consists of the basic concrete breakout strength of one anchor of the anchor channel multiplied by a series of modification factors that account for the anchor spacing, member thickness. corner effect, state of concrete (cracked or uncracked) and reinforcement in the concrete member.

The basic concrete breakout strength of one anchor without the influence of a corner, member thickness or adjacent anchors in unreinforced concrete is determined as follows:

Figure 9.6.1.3 - HAC - Headed Studs - Behavior of anchor channels loaded in shear (left). Shear load vs displacement curve (right).

11. Best **Practices** 12. Instructions for Use

14. Design Example

HAC EDGE or HAC EDGE Lite

 $V_{b} = \lambda . \alpha_{cb V} . \sqrt{f_{c}} . (C_{a1})^{\frac{4}{3}}$

- λ Modification for lightweight concrete All-lightweight concrete = 0.75 Sand-lightweight concrete = 0.85
- α_{chV} Factor to account for the influence of channel on concrete edge breakout strength (10.50, max.)
- f' Specified concrete compressive strength (psi) (8,500 psi, max)

Edge distance of anchor channel in direction 1 (in.) (edge Cal to center line of anchor)

According to the Figure 9.6.1.3, for standard anchor channels covered in ESR-3520 the shear loads acting on the fixture are transferred through the anchor channel into the concrete via the t-bolts and the anchor elements (1). The failure occurs in front of the channel profile (2). After reaching the ultimate shear load

the concrete in front of the channel is completely separated from the rest of the structure. The shear load decreases with

2. HAC 1. Anchor **Channel Systems** Portfolio

3. HAC **Applications**

4. Design Introduction

5. Base material 6. Loading

9. Special Anchor **Channel Design**

10. Design Software

In curtain wall applications, the design of the anchor channel typically takes place at one of the last stages of the building design. Oftentimes, the design of the anchorage comes as an afterthought. By the time the anchor channel is sized, the variables that can significantly influence the performance of the anchor channel have been defined. The edge distance is the variable that has the largest impact on concrete edge breakout failure. However, even this variable may have already been defined leaving designers with minimal options. Typically, the edge distance can only be varied in a very narrow band due to the size of the bracket.

Welding reinforcing bars to an anchor channel changes the behavior of the anchor channel in tension and combined tension and shear. When tension forces are applied to the anchor channel, the concrete above the reinforcing bars fails and reduce the concrete cone resistance of the anchor channel. Also, due to the large cracks in front of the anchor channel in case of shear loading, the interaction with concrete cone failure is negatively influenced. These effects are even more pronounced in lightweight concrete structures. Therefore, the negative effect of the welded reinforcing bars should be considered in the design of these types of anchor channels.

Overcoming the Limitations of the Concrete Edge Breakout Strenath

Anchor Channels with Welded Reinforcing Bars

To overcome the limitations of the relatively low concrete edge breakout strength close to an edge, often anchor channels with reinforcing bars structurally welded to the back of the channel are used.

In analogy to standard anchor channels, the shear loads are transferred into the concrete via the channel profile (1). The failure also occurs in front of the channel profile (2). However, compared to standard anchor channels the shear loads are redistributed to the reinforcing bars. The higher ultimate resistance of the system is reached only with increased deformations and large cracks in front of the channel (3).

load V

Shear

Anchor channel with anchors and welded reinforcing bar

Displacement **\delta**

AC

Figure 9.6.1.4 — Welded rebar channel — Behavior of anchor channels with reinforcing bars loaded in shear (left). Shear load vs displacement curve (right).

Welded Reba

Utilizing the basic principles of reinforced concrete structures has lead Hilti to develop a new anchor channel system that copes with the curtain wall market needs. Rather than relying on the relatively low tensile capacity of the concrete for the failure mode "concrete edge breakout", HAC EDGE brings superior concrete edge performance by optimizing the load transfer for small edge distances, thin concrete members, low concrete compressive strengths, and lightweight concrete.

The first loading stage of HAC EDGE is equal to the one of standard anchor channels and anchor channels with welded reinforcing bars (1). After shear loads are applied to the anchor channel, the loads are first transferred from the channel profile towards the free edge of the concrete. The EDGE plate which is held back by the welded reinforcing bars confines the edge, allowing for the formation of compression struts (2). The shear load is transferred back to the reinforcing bars. The ultimate resistance of the system is reached after the reinforcing bars are fully activated (3).

The EDGE plate is not structurally connected to the anchor channel. This allows decoupling of the shear and tension load transfer mechanism. The concrete cone resistance of the anchor channel can be conservatively calculated according to AC232.

For small edge distances HAC EDGE provides more than 2 times the capacity of traditional top of slab anchor channels where the reinforcing bars are welded to the back of the

Figure 9.6.1.5 - HAC EDGE Behavior of HAC EDGE loaded in shear (left). Shear load vs displacement curve (right).

12. Instructions for Use

13. Field Fixes

14. Design Example

channel. Moreover, depending on the geometry of the concrete member and location of the anchor channel, HAC EDGE can outperform standard anchor channels without reinforcing bars up to a factor of 5.

Additional Benefits of HAC EDGE

- In addition to the high concrete edge breakout in shear performance, HAC EDGE comes with the specified/ordered edge distance to reduce errors in placement, and provide a safer and quicker installation. This goes in hand with Hilti's mission of building a better future. HAC EDGE reduces the probability of installing the product at the wrong edge distance. The edge distance is the most sensitive variable that has the
- highest impact on the concrete edge breakout strength in shear.
- Moreover, the installation of the anchor channel is simplified as the product can easily be secured to the formwork by nailing or screwing the EDGE plate to it. Moreover, HAC EDGE brings overall material savings as it allows the use of smaller facade brackets. The superior concrete shear performance for small edge distances allows the curtain wall bracket to be concealed by the stool trim or gypsum wall, if they are at least 4"-5" away from the edge of the building. This eliminates the need of so-called pockets, bringing substantial savings

Anchor channel with anchors and rebar edge confinement plate (EDGE Plate)

9.6 HAC EDGE D
3. HAC Applications

4. Design Introduction

6. Loading 5. Base material

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

9. Special Anchor 10. Design **Channel Design** Software

9.6.2 — HAC (T) EDGE, HAC (T) EDGÈ LITE AND HAC S (T) **EDGE: DESIGN**

In this section an overview of the verifications is given.

All the actions on the anchors are calculated according to AC232. The action on the rebars are calculated with the model of AC232 with a modification of the influence length. A summary of the applied load distributions is given in Table 9.6.2.1.

In case of two elements close to an edge the actions on the anchors are calculated independently for the two channels resistances.

Following considerations are done for the verifications of the three introduced components:

- 1) HAC-50 and HAC-T50 with reduced embedment depth: no changes to the design is based on ESR3520 and AC232.
- 2) Lip strengthening element (Clip): in combination with the clip higher values of V_{slv} , V_{sav} and V_{scv} are provided. Seismic design is performed according to the ESR3520: the lip strengthening element is not considered in the seismic calculation nor for load acting towards the slab (wind pressure).
- 3) With the new Rebar Top of Slab front Plate (EDGE), the rebars and the anchor channel are structurally uncoupled: the connection between the two elements is weak and has no structural function.

For tension loads, the rebars are neglected and all the verifications are performed in the same way as for the standard HAC channels, according ESR3520. The splitting failure (considered in the concrete breakout verification) is not possible when the EDGE front plate is combined ($\Psi_{cn N}$ = 1.0) and the concrete is always considered as cracked (Ψ_{cN} = 1.0).

For perpendicular shear a new method for concrete edge failure and an additional reduction for the lip failure are introduced. Additionally, the verification of rebar pull-out and rebar steel strength are performed in the same way as for the CRFOS U. Moreover, two remarks are added in Profis, the first concerning the "concrete cone" for shear load and the second concerning the presence of cracks at the sides of the channel. Supplementary reinforcement for perpendicular or for longitudinal shear is not permitted in combination with the EDGE plate.

For longitudinal shear the rebars are neglected and the concrete failure is calculated according to ESR3520. This assumption is conservative since the capacity of unreinforced concrete is lower than that of the edge with the EDGE reinforcement.

All the verifications under combined loads are performed according to ESR3520.

If two anchor channels are placed close to a corner, all the steel verification remain the same. Since the two channels use the same concrete surface, some modification have to be done for all the concrete verifications in order to take the relative influence into account.

An adjustment to the ESR method for the calculation of concrete cone and concrete edge failure in case of two (or more) channels is described in Sections 9.2.7 to 9.2.17. For longitudinal shear the reinforcement bars are neglected and the ESR method is applied.

Conservative assumptions are done for the 3D load interaction.

Side-face blowout: 6N,

Concrete breakout: 6Net

Channel bolt: oN.

Channel lip: oN.

IMPORTANT! Failure analysis modes evaluated follow ACI 318-14, chapter 17. This DOES NOT include evaluating the base material (e.g. edge-of-slab) capacity to resist compressive forces generated by the fixture. The engineer must ALWAYS verify the base material (e.g. edge-of-slab) design is capable of resisting the applied loading. For additional information, please contact Hilti at US+CA.HAC@Hilti.com

Table 9.6.2.1 — Actions on the anchors.

Action	HAC-(T)50 with EDGE front Plate	HAC-(T)50 with EDGE front Plate + Clip	
Anchor tension	AC232	AC232	
Anchor shear perpendicular	AC232	AC232	
Anchor shear parallel	AC232	AC232	
Rebar tension	Mod. AC232	Mod. AC232	

1	1.	Be	es	t
P	ra	cti	Ce	s

12. Instructions for Use

13. Field Fixes

14. Design Example

2. HAC Portfolio

rete

Concrete breakout: ϕN_{cb}

4. Design Introduction

5. Base material 6. Loading

Shear ($\Phi V_{n,x}$)

Concrete

д

Concrete edge breakout: $\phi V_{cb,x}$

Pryout: $\phi V_{cp,x}$

Steel

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor **Channel Design**

10. Design Software

* No splitting possible in combination with the steel plate, concrete always cracked

PERPENDICULAR SHEAR								
	Steel Failu	Concrete Fai	lure Modes					
Channel bolt:	Channel Lip	Connection	Anchor	Concrete Breakout	Concrete Pryout			
ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	Hilti Method	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	Hilti Method	ESR-3520 Sec. 4.1.3.3.4			

Steel		Concrete
		t
		I.
chor: ϕN_{sa}	Anchor and channel connection: ϕN_{sc}	Pullout: $\phi N_{p,R}$

Tension (ΦN_{μ})

Bending of channel:
Ms.fex

An

3. HAC

Applications

Steel

Channel lip: $\phi V_{sl,y}$

nection: $\phi V_{sc,y}$

Anchor: $\phi V_{sa,y}$

Rebar: $\phi N_{s,R}$

Shear ($\Phi V_{n,v}$)

Rebar Pull-out: $\phi N_{p,R}$

Concrete edge breakout: $\phi V_{cb,y}$

Concrete

Anchor and channe

Channel bolt and channel lip connection: $\phi V_{sl,x}$

Anchor: $\phi V_{sa,x}$

8 118 Channel bolt: φV_{ss} / φV_{ss,M}

Figure 9.6.2.2 - HAC S (T) EDGE, - HAC S (T) EDGE (C).

IMPORTANT! Failure analysis modes evaluated follow ACI 318-14, chapter 17. This DOES NOT include evaluating the base material (e.g. edge-of-slab) capacity to resist compressive forces generated by the fixture. The engineer must ALWAYS verify the base material (e.g. edge-of-slab) design is capable of resisting the applied loading. For additional information, please contact Hilti at US+CA.HAC@Hilti.com

11. Best **Practices** **12. Instructions** for Use

HAC-(T) EDGE and HAC-(T) EDGE Lite

TENSION **Concrete Failure Modes** Concrete breakout : Pullout : Side-face Anchor: φN_{sa} φN_{pn} blow-out: φN_{cb} φN_{sb} ESR-3520* ESR-3520 ESR-3520 ESR-3520 Sec. 4.1.3.2.5 Sec. 4.1.3.2.2 Sec. 4.1.3.2.3 Sec. 4.1.3.2.4 Anchor reinf. Anchor reinf. steel anchorage ESR-3520 ESR-3520 sec 4.1.3.2.3 sec 4.1.3.2.3

 1. Anchor Channel Systems	2. HAC Portfolio	3. HAC Applications	4. Design Introduction	5. Base material	6. Loading	7. Anchor Channel Design Code	8. Reinforcing Bar Anchorage	9. Special Anchor Channel Design	10. Design Software

REBAR FAILURE MODES						
	Steel Failure Modes	5	Co	Concrete Failure Modes		
Rebar in tension	Rebar connection	Anchor reinf. steel	EDGE Rebar pull-out	SLS Concrete edge	Anchor reinf. anchorage	
		N/A	H		N/A	
Hilti Method (Rebar pull- out and Rebar connection are performed in the same way as for the FoS products.)	No (The rebar welding is specified such as to have an higher strength than the rebar itself)	Not permitted	Hilti Method based on ACI	Remark in Profis	Not permitted	

TENSION								
	\$	Steel Failure Mode	5		Co	oncrete Failure Mode	s	
Channel bolt : $\phi N_{_{SS}}$	Channel lip : фN _{si}	Bending of channel : φM _{s,flex}	Connection : $\phi N_{_{sc}}$	Anchor: φN _{sa}	Concrete breakout : $\varphi N_{_{Cb}}$	Pullout : $\phi N_{_{pn}}$	Side-face blow-out: ϕN_{sb}	
	<u>l</u>							
ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520* Sec. 4.1.3.2.3	ESR-3520 Sec. 4.1.3.2.4	ESR-3520 Sec. 4.1.3.2.5	
					Anchor reinf. steel	Anchor reinf. anchorage		
					ESR-3520 sec 4.1.3.2.3	ESR-3520 sec 4.1.3.2.3		

* No splitting possible in combination with the steel plate, concrete always cra	acked
ite opining people in combination with the clock plate, concrete analyce on	

	PERPENDICULAR SHEAR							
	Steel Failu	Concrete Fai	lure Modes					
Channel bolt:	Channel Lip	Connection	Anchor	Concrete Breakout	Concrete Pryout			
ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	Hilti Method**	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	Hilti Method	ESR-3520 Sec. 4.1.3.3.4			

**If the clip is selected $V_{_{sl,y}}, V_{_{sc,y}}$ are changed in clip direction, and only static

LONGITUDINAL SHEAR								
	Steel Failu	ıre Modes		Concrete Fa	ilure Modes			
Channel bolt:	Channel Lip	Connection	Anchor	Concrete Breakout	Concrete Pryout			
ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.4.3	ESR-3520 Sec. 4.1.3.4.4			
				Anchor reinf. steel	Anchor reinf. anchorage			
				Not permitted	Not permitted			

11. Best Practices 12. Instructions for Use

HAC-(T) S EDGE

	TENSION								
	Steel Failure Modes					Concrete Failure Modes			
Channel bolt : φN_{ss}	Channel lip : фN _{si}	Bending of channel : φM _{s,flex}	Connection : φN _{sc}	Anchor: φN _{sa}	Concrete breakout : $\varphi N_{_{Cb}}$	Pullout : ¢N _{pn}	Side-face blow-out: ¢N _{sb}		
	<u>.</u>								
ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520 Sec. 4.1.3.2.2	ESR-3520* Sec. 4.1.3.2.3	ESR-3520 Sec. 4.1.3.2.4	ESR-3520 Sec. 4.1.3.2.5		
					Anchor reinf. steel	Anchor reinf. anchorage			
					ESR-3520 sec 4.1.3.2.3	ESR-3520 sec 4.1.3.2.3			

* No splitting possible in combination with the steel plate, concrete always cracked

Channel lip: ΦN

 $\Phi N_{sl} > N_{ua}^{b}$

The capacity of channel lip is in accordance to ESR-3520 Sec. 4.1.3.2.2. Please refer to table 2.3.17 and 2.3.5 of chapter 02.

Connection Anchor and Channel :

ΦN_{sc}

 $\Phi N_{sc} > N_{aua}$

The capacity of connection is in accordance to ESR-3520 Sec. 4.1.3.2.2. Please refer to table 2.3.17 and 2.3.5 of chapter 02.

connection: ΦN

Anchor : ΦN

 $\Phi N_{sa} > N_{aua}$

The capacity of anchor is in accordance to ESR-3520 Sec. 4.1.3.2.2. Please refer to table 2.3.17 and 2.3.5 of chapter 02.

Anchor: ΦN_{a}

REBAR FAILURE MODES						
	Steel Failure Modes	5	Co	oncrete Failure Mod	es	
Rebar connection	Rebar in tension	Anchor reinf. steel	EDGE Rebar pull-out	SLS Concrete edge	Anchor reinf. anchorage	
		N/A	B		N/A	
No (The rebar welding is specified such as to have an higher strength than the rebar itself)	Hilti Method (Rebar pull- out and Rebar connection are performed in the same way as for the FoS products.)	Not permitted	Hilti Method based on ACI	Remark in Profis	Not permitted	

LONGITUDINAL SHEAR						
	Steel Failu	Concrete Fa	ilure Modes			
Channel bolt:	Channel Lip	nannel Lip Connection Anchor		Concrete Breakout	Concrete Pryout	
	8 <u>8</u>					
ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.4.3	ESR-3520 Sec. 4.1.3.4.4	
				Anchor reinf. steel	Anchor reinf. anchorage	
				Not permitted	Not permitted	

HAC-(T) C EDGE and HAC-(T) EDGE Lite

Bending strength of channel : ФМ_{s,flex}

 $\Phi M_{s,flex} \ge M_{u,flex}$

The capacity of anchor is in accordance to ESR-3520 Sec. 4.1.3.2.2. Please refer to table 2.3.17 and 2.3.5 of chapter 02.

Bending : ΦM_{s,flex}

Concrete breakout : ΦN_{cb}

 $\Phi N_{cb} > N_{aua}$

The concrete breakout capacity of anchor channel is in accordance to ESR-3520 Sec. 4.1.3.2.3. Please refer to table 2.2.7.1, 2.2.7.2, 2.2.7.3, 2.2.16.1, 2.2.16.2 and 2.2.16.3 of chapter 02 for parameters and section 7.3.2 of anchor channel theory chapter 07 for analysis.

 Ψ_{coN} = 1.0 if the EDGE (C) steel plate is activated.

Concrete breakout: ΦN

4. Design Applications Introduction

 $\Phi N_{ca.s} > N_{aua}$

ΦN

3. HAC

5. Base material

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design **Channel Design**

Software **Rebar Failure Mode**

	Steel Failure Modes	5	Concrete Failure Modes			
Rebar connection	Rebar in tension	Anchor reinf. steel	EDGE Rebar pull-out	SLS Concrete edge	Anchor reinf. anchorage	
		N/A			N/A	
No (The rebar welding is specified such as to have an higher strength than the rebar itself)	Hilti Method (Rebar pull- out and Rebar connection are performed in the same way as for the FoS products.)	Not permitted	Hilti Method based on ACI	Remark in Profis	Not permitted	

Channel lip : φV_{s1}

 $\phi V_{slv} > V^{b}_{ua}$

The capacity of channel lip is in accordance to ESR-3520 Sec. 4.1.3.2.2. Please refer to table 2.3.22 and 2.3.6 of chapter 02. Anchor channel casted into concrete in combination with the EDGE Plate with two bolts in different positions and with different spacing were tested under shear load. A failure for local bending of the channel lip was observed and the failure load was depending on the bolt spacing. According to AC232, for the chosen spacing of 75 mm and 100 mm, there should be no mutual influence of the two bolts on the lip failure load. The lower observed failure loads are probably caused by the disturbance into concrete introduced by the plate or from the crack which appears with a small edge distance. In order to cover this failure a reduction factor for the channel lip strength is proposed as $\psi_{s,sl}$. The reduction factor is similar to that for the nominal strength of the channel lip to take up tension loads of ESR 3520 [1] (eq. 5 in 4.1.3.2.2).

Channel lip : φV_{st}

Pullout: ΦN_{a}

Side-face blow-out: ΦN

The concrete pull out capacity is

in accordance to ESR-3520 Sec.

4.1.3.2.4. Please refer to table 2.2.7.1.

2.2.7.2, 2.2.7.3, 2.2.16.1, 2.2.16.2 and

2.2.16.3 of chapter 02 for parameters

and section 7.3.2 of anchor channel theory chapter 07 for analysis.

$\Phi N_{sh} > N_{aua}$

Pull out: ΦN

 $\Phi N_{pp} > N_{aua}$

The concrete side-face blow-out capacity is in accordance to ESR-3520 Sec. 4.1.3.2.5. Please refer to table 2.2.7.1, 2.2.7.2, 2.2.7.3, 2.2.16.1, 2.2.16.2 and 2.2.16.3 and table 2.2.14.1 of chapter 02 for parameters and section 7.2.2 of anchor channel theory chapter 07 for analysis.

$\Phi N_{ca} > N_{aua}$
The anchor reinforcement anchorage
capacity is in accordance to ESR-
3520 Sec. 4.1.3.2.3. Please refer
section 7.2.2 of anchor channel
theory chapter 07 for analysis.

6. Loading

≤ 0.5h_{ef}

Anchor reinforcement anchorage: ΦN

PERPENDICULAR SHEAR							
	Steel Failu	Concrete Fai	lure Modes				
Channel bolt:	Channel Lip	Connection	Anchor	Concrete Breakout	Concrete Pryout		
ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	Hilti Method**	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	Hilti Method	ESR-3520 Sec. 4.1.3.3.4		

**If the clip is selected $V_{slv'}$, V_{scv} are changed in clip direction, and only static

3520 Sec. 4.1.3.2.3. Please refer section 7.2.2 of anchor channel theory chapter 07 for analysis.

Anchor reinforcement anchorage:

Anchor reinforcement steel: ΦN

The anchor reinforcement steel

capacity is in accordance to ESR-

Anchor reinforcement steel:

ΦN....

296

11. Best **Practices** **12. Instructions** for Use

13. Field Fixes

14. Design Example

The value of V_{elv} is valid only if the center-to-center distance between the channel bolt under consideration and adjacent channel bolts, s_{bch} is at least $s_{chb.cr.V}$. If this requirement is not met then the value of V_{slv} must be reduced as follow:

$$V_{sl,y} = \Psi_{s,sl} \cdot V_{sl,y,technical \ data}$$
$$\Psi_{s,sl} = \frac{1}{1 + \sum_{i=2}^{n+1} \left[\left(1 - \frac{\mathbf{s}_{chb,i}}{\mathbf{s}_{chb,cr,V}} \right)^{1.5} \cdot \frac{V_{ua,j}^b}{V_{ua,a}^b} \right]^{1.5}}$$

$$s_{chb,cr,V} = s_{chb,cr,0} - 0.9c_{a1} \ge 3a$$

^s critical bolt spacing for shear load for the HAC-50.

where

$$V_{ua,j}^b; V_{ua,1}^b \rightarrow +same \ dir.$$

in case one bolt is loaded in the opposite direction no positive effect on the factor is considered

The bolt shear forces are considered only if acting in the same direction. If one bolt is loaded in the opposite direction no positive effect on the factor is considered.

2. HAC Portfolio

4. Design Introduction

5. Base material

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage

9. Special Anchor **Channel Design**

10. Design Software

 $s_{chb, crV}$ decreases linearly with the edge distance c_{a1} : the influence of the EDGE front plate on the lip strength becomes smaller with the edge distance and from a c_{a1} =200 mm it is assumed that there is no influence anymore on the lip strength. With $s_{chb,cr,0} = 240$ mm the critical spacing at $c_{a1} = 200$ mm becomes 3 times the bolt diameter d_s as specified in ESR3520.

Figure 9.6.2.2 - Series Zero - Bolt pair

Figure 9.6.2.3 - Bolts at one side

Figure 9.6.2.4 — Bolts in the midpoint.

With lip strengthening element (Clip)

If the clip is selected, $V_{sl,v}$ is increased to $V_{sl,v,clip}$ in direction of the clip according Hilti technical data. The reduction factor $\Psi_{s,s}$ is applied as above. In the opposite direction, the standard value of V_{s1v} and when specified the reduction factor $\Psi_{s_{s1}}$ are applied:

Verifications: $\begin{aligned} \phi \ V_{\rm sl,y,clip} \ &\geq \ V^{s}{}_{\rm ua,y} \\ \phi \ V_{\rm sl,y} &\geq \ V^{s}{}_{\rm ua,y} \end{aligned} \ \ ({\rm in \ clip \ direction}) \end{aligned}$

Connection Anchor and Channel : ϕV_{g}

 $\phi V_{sc,y} > V_{aua,y}$

3. HAC

Applications

Without Clip: The capacity of connection is in accordance to ESR-3520 Sec. 4.1.3.2.2 and according to Hilti technical data. Please refer to table 2.3.22 and 2.3.6 of chapter 02.

With lip strengthening element (Clip)

If the clip is selected, in direction of the clip $V_{_{sc,\nu}}$ is increased to $V_{_{sc,\gamma,\text{clip}}}$, according Hilti technical data. In the opposite direction, the standard value of V_{sov} are applied:

$$\begin{array}{l} \phi \ V_{\rm sc,y,clip} \ \geq \ V^a{}_{\rm ua,y \ y} \\ {\rm Verifications:} \\ \phi \ V_{\rm sc,y} \ \geq \ V^a{}_{\rm ua,y} \end{array}$$

Anchor : φV

 $\phi V_{sav} > V_{aua}$

The capacity of anchor is in accordance to ESR-3520 Sec. 4.1.3.2.2. Please refer to table 2.3.22 and 2.3.6 of chapter 02.

With lip strengthening element (Clip)

If the clip is selected, in direction of the clip $V_{sa,v}$ is increased to $V_{sa,v,clip}$, according Hilti technical data. In the opposite direction, the standard value of V_{scv} are applied:

Concrete pryout strength : φV

Verifications:

$$\phi V_{cp,y} > V_{aua}$$

The capacity of anchor is in accordance to ESR-3520 Sec. 4.1.3.3.4. Please refer to table 2.2.7.1, 2.2.7.2 and 2.2.7.3 of chapter 02 for parameters and section 7.4.2 of chapter 07 of anchor channel theory for analysis.

6. Loading

Connection Anchor and Channel: ϕV_{a}

Concrete breakout strength (shear perpendicular, Hilti method) : ΦV_{cb}, Without the EDGE front plate, with

and without Clip, the concrete edge verification is performed according to ESR3520. With edge plate following methodolgy is applied.

Verification: $\Phi V_{cb,v} > V_{aua,v}$

With

Concrete breakout strength: ΦV_{cb,y}

$$\mathbf{V}_{cb,y} = \mathbf{V}_{b} \cdot \boldsymbol{\psi}_{s,V} \cdot \boldsymbol{\psi}_{h,V} \cdot \boldsymbol{\psi}_{co,V} \cdot \boldsymbol{\psi}_{c,V}$$

V_b: is the basic concrete breakout strength for perpendicular shear of a single anchor in cracked concrete, in combination with the EDGE plate, lbf. (kN):

$$\mathbf{V}_{\mathbf{b}} = \lambda_{cb, RToS} \cdot k_{RToS} \cdot \mathbf{c}_{a1}^{x_1} \cdot \mathbf{f}_{c}^{x_2}$$

 $\lambda_{ch,BToS}$ modification factor for lightweight concrete for EDGE concrete edge breakout

k pros factor to account for the influence of plate size and rebar diameter on concrete edge breakout strength in shear, in case of the EDGE C the verification is the same this the only parameter which is varying (-) Refer Table 2.3.12.1 and Table 2.3.8.1 of chapter 02.

c_{a1} edge distance of anchor channel in direction 1

x, Exponent for the edge distance in the basic value of the concrete edge breakout strength, (-) Refer Table 2.3.12.1 and Table 2.3.8.1 of chapter 02

f' specified concrete compressive strength, psi (MPa)

x₂ Exponent for the concrete strength in the basic value of the concrete edge breakout, (-) Refer Table 2.3.12.1 and Table 2.3.8.1 of chapter 02

 $\Psi_{\rm ev}$ modification factor to account for influence of location and loading of neighboring anchors on concrete edge breakout strength for anchor channels loaded in shear (-). Ψ_{sy} takes the position of the load on the neighboring anchors within a distance of S_{av} into account. The ratio V_{ual}/V_{ual} the relative load and utilization is considered in reduction factor of capacity.

Figure 9.6.2.5 — Modification of anchor spacing: Ψ_{av} .

298

Anchor: φV_{sav}

Concrete pryout strength $\phi V_{cp,y}$

12. Instructions for Use

13. Field Fixes

14. Design Example

s, distance between the anchor under consideration and the adjacent anchors, in. (mm) $\leq s_{arv}$

$s_{crV} = \alpha_{1,V}(4c_{a1} + 2b_{ch}) in.(mm)$

 $\alpha_{1,v}$ Modification factor for the critical anchor spacing in combination with the EDGE plate refer Table 2.3.8.1 and Table 2.3.12.1

The $\alpha_{1,v}$ leads to smaller value of s_{crv} , which means that the relative influence on two anchors for shear load is smaller than on a standard channel. This is because the rebars take a large part of the shear load and the concrete failure is "limited" in a smaller influence area. Please note that the consideration of having rebars attached to the edge plate is reflected in the s expression by the reduction of the critical spacing by 0.6.

 $V_{aua,i}$ factored shear load of an influencing anchor, lbf (kN)

V_{aua1} factored shear load of the anchor under consideration, lbf (kN)

n number of anchors within a distance s_{crv} to both sides of the anchor under consideration.

 $\Psi_{\rm by}$ modification factor to account for influence of member thickness on concrete edge breakout strength for anchors channels loaded in shear [-]:

$$h_{cr,V} = 2c_{a1}$$
 in. (mm)

$$\psi_{\rm h,V} = \left(\frac{\rm h}{\rm h_{\rm cr,V}}\right)^{x_3} \le 1.0$$

Figure 9.6.2.6 - Modification of height $\Psi_{\mu\nu}$.

x₂ Exponent for the modification factor to account for influence of member thickness on concrete edge breakout strength for anchors channels loaded in shear Refer Table 2.3.12.1 and Table 2.3.8.1 of chapter 02.

 Ψ_{mv} modification factor for corner effects on concrete edge breakout strength for anchor channels loaded in shear [-]:

$$\psi_{\rm co,V} = \left(\frac{c_{a2}}{c_{\rm cr,V}}\right)^{x_4} \le 1.0$$
$$c_{\rm cr,V} = 2c_{a1} + b_{\rm ch}, \quad in. \quad (mm)$$

x, Exponent for the modification factor for corner effects on concrete edge breakout strength for anchor channels loaded in shear Refer Table 2.3.12.1 and Table 2.3.8.1 of chapter 02.

Figure 9.6.2.7 — Modification of corner effect: Ψ_{ouv}

9.6 HAC EDGE D

2. HAC Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material

6. Loading

If two corners are available, a $\Psi_{_{\rm co,V}}$ for second corner is calculated and multiplied by the first. For narrow members $(c_{a2,max} < c_{crv})$ with a thickness h <h $_{crv}$ the same prescriptions as in AC232 are adopted and the edge distance c_{a1} in the calculation of V_b shall not exceed the following value of c_{al red}:

$$c_{\text{a1,red}} = \max\left(\frac{c_{\text{a2, max}} - b_{\text{ch}}}{2}, \frac{h - 2h_{\text{ch}}}{2}\right)$$

 Ψ_{av} = 1.0 modification factor for cracked concrete, always 1.0

In combination with the EDGE front plate all the actions on the anchors (tension, perpendicular and longitudinal shear) are calculated with the method of AC232.

The tension load on the rebars is also calculated with the model of AC232, with a modification of ℓ_{in} , as specified below.

Figure 9.6.2.8 - Load Path.

 Rebar tensile forces (Hilti Method): The rebar tensile forces N_{ruai} are calculated with the bolt factored shear load $V_{\mu\nu\nu}^{b}$ with the same method, based on a triangular distribution, described in the previous paragraph. In this case the base of the triangle ℓ in is reduced as specified in eq. (2) and loads are also increased by the ratio (es / z + 1) to take the load eccentricity into account (see in Figure 9.6.2.10).

 $N^{r}_{uai} = k A_{i} V^{b}_{ua} ((e_{z} / z) + 1);$

Where:

300

A', ordinate at the position of the rebar i assuming a triangle with the unit height at the position of load V_{m} and the base length $2 \cdot \ell_{int}$ with ℓ_{int} determined in accordance with (Equation 9.6.2.1). Examples are provided in Figure 9.6.2.9.

Figure 9.6.2.9 - Example for the calculation of rebar forces in accordance with the triangular load distribution method for an anchor channel with four rebars. The influence length is assumed as l_{in} = 1.5s

Figure 9.6.2.10 — Anchor reinforcement to resist shear loads.

$k = \frac{1}{\sum A'_{r,i}}$	
$l_{in} = 4.93.I_y^{0.05}.s^{0.5} < s$	
$l_{in, r} = (0.2 + 0.004 c_{a1}) l_{in} \le l_{in}$	in

Equation 9.6.2.1

s = anchor spacing, in

 $V^{b}_{ua} = factored tension load on channel bolt, lb$

t = anchor plate thickness

 $e_c = dist \ between \ concrete \ top$

surface and anchor plate bottom surface z = 0.85.h'

$$h' = h - h_{ch} - \frac{d_b}{2} \le \min(2.h_{ef}, 2.c_{a1})$$

h =actual member depth

 $h_{cb} = height of anchor channel$

 h_{ef} = embedment depth of the anchor

under consideration

 $c_{a1} = edge \ dis \tan ce \ of \ the \ anchor$

under consideration $e_{s} = e_{c} + \frac{t}{2} + h_{ch} + \frac{d_{b}}{2} + 0.0394$ for EDGE, in

 $e_s = e_c + \frac{t}{2} + h_{ch} + \frac{3d_b}{2} + 0.0787$ for EDGE C, in

 $A'_{1} = \frac{0.25 \cdot s}{l_{in}} = \frac{1}{6}$ $A'_{2} = \frac{1.25 \cdot s}{l_{in}} = \frac{5}{6}$ $A'_{3} = \frac{0.75 \cdot s}{1} = \frac{1}{2}$ $k = \frac{1}{A_{1}' + A_{2}' + A_{3}'} = \frac{2}{3}$ $N_{ua,1}^{r} = \left(\frac{1}{6}\right) \cdot \left(\frac{2}{3}\right) \cdot V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) = \left(\frac{1}{9}\right) \cdot V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right)$ $N_{ua,2}^{r} = \left(\frac{5}{6}\right) \cdot \left(\frac{2}{3}\right) \cdot V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) = \left(\frac{5}{9}\right) \cdot V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right)$ $N_{ua,3}^{r} = \left(\frac{1}{2}\right) \cdot \left(\frac{2}{3}\right) \cdot V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) = \left(\frac{1}{3}\right) \cdot V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right)$

If several tension or shear loads are acting on the channel a linear superimposition of the rebar forces for all shear loads is assumed.

In case of forces acting toward the inside of the slab, rebars forces are added in a similar way as for the anchors. Negative resulting forces on the rebars are neglected.

EDGE Steel strength of rebar : Φ Ν_α

$\Phi N_{sB} > N^{b}_{Ua}$

The capacity of steel rebar Hilti Method is in accordance to ESR-3520 Sec. 4.1.3.3.3. Please refer to table 2.3.23.1 of chapter 02.

Rebar: ΦN_{a}

 $N_{\rm s,R} = \frac{\pi d^2}{\Lambda} f_y$ $f_{y} = no \min al \ yield \ strength \ of$

the EDGE reinf orcement $d = diameter \ of \ the \ EDGE$ reinf orcement $N^{r}_{ua} = diameter \ of \ the \ EDGE$ reinf orcement $\phi = 0.75$

EDGE pull-out strength of rebar : Φ Ν , ,

 $\Phi N_{p,R} > N_{rua}$

In general an verification acc. to ACI 318-11 is performed by comparing a development length with a provided length. Due to the fact that the provided length as well as the diameter of the rebar is fixed a possible (virtual) "anchorable" force (stress) in the rebar is "back"calculated. For the verification this "anchorable" force N_n will be compared with the acting force N_{rus} on the rebar.

Pullout: ΦN

11. Best **Practices** **12. Instructions** for Use

13. Field Fixes

14. Design Example

$$d_{a, \text{prov}} \geq l_{d} = \left(\frac{3}{40}, \frac{f_{y}}{\lambda \cdot \sqrt{f'_{c}}}, \frac{\psi_{t} \cdot \psi_{c} \cdot \psi_{s}}{\left(\frac{c_{d} + K_{tr}}{d_{b}}\right)}\right) d_{b} \geq 12in$$

 $f_y = yield \ strength \ of - reinf \ or cement \ [psi]$ $\lambda = 1.0$ for normal – weight concrete $\lambda = 0.75$ for all – lightweight concrete $f_c = concrete \ cylinder \ compressive \ strength \ [psi]$ $K_{ir} = 0 - no - transverse - re \inf or cement - is$

taken-int*o*-account

Figure 9.6.2.11 -Developement

 $\frac{C_b}{...} \le 2.5 - \text{influence of concrete cover}$ $c_{\rm b}$ = to be determined taking into account the rebar position and the member geometry

 $\Psi t = 1.3 - \text{where horizontal reinforcement is placed}$

such that more than 12 in. of fresh concrete is cast below the development length - > to be determined taking into account the rebar position and the member geometry $\Psi_t = 1.0$ for other situations $\Psi_{a} = 1.0$ for uncoated reinforcement $\Psi_s = 0.8$ for No.6 and smaller bars (db ≤ 0.75 in.) $\Psi_{c} = 1.0$ for No. 7 and larger bars (db \ge 0.875in.) db = reinforcement diameter [in.] $l_{d \text{ prov}} = l_{R} - c_{a1}$ provided length $\phi = 0.75$ reduction factor $\phi_{seismic} = 0.75$ additional reduction factor for seismic Anchorable force : $l_{d prov} = 12 in$ $(f_y =)\sigma_d = I_{d, \text{ prov}} \cdot \pi \cdot db \cdot \frac{10}{3} \cdot \lambda \cdot \sqrt{f'_c} \cdot \min\left(\frac{c_d}{db}, 2.5\right) \cdot \frac{1}{\sqrt{t} \cdot \sqrt{t} \cdot \sqrt{t}}$

Anchor reinforcement anchorage: ΦV

 $N_{P,R} = \frac{\pi . d^2_{s,R}}{4} . \sigma_d = l_{d, prov.} \pi . d_b . \frac{10}{3} . \lambda . \sqrt{f'_c} . \min\left(\frac{c_d}{d_b}, 2.5\right) . \frac{1}{10^{6} M_{e} M_{e}}$

 $\Phi V_{ca} > V_{aua}$

In combination with the EDGE front In combination with the EDGE front plate. it is not allowed to consider also the supplementary reinforcement.

Without the EDGE front plate, with and without lip strengthening element (clip), ESR-3520 applies

Not Permitted

Anchor reinforcement anchorage: ΦV

2. HAC Portfolio

4. Design Introduction

PROFIS An

3. HAC

Applications

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design Channel Design

Software

Concrete breakout in shear

"Reinforcing bars comprising part of the Hilti Anchor Channel (HAC) system are proportioned to meet the development length provisions of the code as they apply to cases where anchorage development for fully $f_{\rm v}$ is not required. The concrete member in which the anchor channel is installed shall be in conformance with the requirements of the code for reinforced concrete and designed for the load introduced by the anchor channel."

Remark for SLS crack width

The characteristic crack width at the side of the channel is calculated based on empirical equation.

Crack width: w

e options for the current project

Figure 9.6.2.13 - Test Setup 4 Bolts: LVDTs.

Figure 9.6.2.14 — Test Setup 2 Bolts: LVDTs.

	LONGITUDINAL SHEAR						
	Steel Fail	Concrete Fa	ilure Modes				
Channel bolt:	Channel Lip Connection Anchor		Concrete Breakout	Concrete Pryout			
		a da					
ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2	ESR-3520 Sec. 4.1.3.4.3	ESR-3520 Sec. 4.1.3.4.4		
				Anchor reinf. steel	Anchor reinf. anchorage		
				Not permitted	Not permitted		

 N_{serv}^{r} (KN) is the force on the rebar at the serviceability level and is obtained with the safety factor for serviceability:

$$N^{r}_{serv} = \frac{N^{r}_{ua}}{\gamma_{SLS}} \quad (KN)$$

 $N_{\mu\alpha}^{r}$ is the maximum of the factored shear load of the first and the last rebar (R1 and R4 in Figure 9.6.2.9)

 $\gamma_{\scriptscriptstyle SLS}$ reduces the shear loads which are defined for strength verification to a service level and should be selected by the user in Profis >Options >Project options>safety factors. The current "safety factor for 1st crack in SLS check" should be renamed in "Shear factor for serviceability crack width check" (Figure 9.6.2.12), γ_{SLS} will be assumed 1 as default.

Remark in Profis:

If the calculated $w_{\nu} < 0.3$ mm: Cracking of the concrete may occur at service load levels. The characteristic crack width is less than 0.3 mm (0.012 in.). This value is calculated based on experimental investigations on anchor channels loaded in shear in unreinforced concrete slabs.

If $w_{\nu} \ge 0.3$ mm: Cracking of the concrete may occur at service load levels. The characteristic crack width is x mm (x in.). This value is calculated based on experimental investigations on anchor channels loaded in shear in unreinforced concrete slabs. The crack widths are smaller in case of reinforcement in the slab. The data obtained with experimental program performed for the development and qualification of HAC EDGE.

11. Best **Practices** **12. Instructions** for Use

14. Design Example

Concrete breakout strength for parallel shear: The concrete

2. HAC Portfolio

4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

9. Special Anchor 10. Design **Channel Design** Software

breakout strength for parallel shear is calculated according ESR $\Phi V_{cp,x} > V_{aua,x}$ for both channels are verified independently and neglecting the EDGE front plate. The concrete utilization of both edges is then combined in conservative way as described in the next

3. HAC

Applications

Channel Lip strength: ΦV

 $\Phi V_{s,l,x} > V_{aua,x}$

paragraph.

This check is in accordance to ESR-3520 Sec. 4.1.3.3.2. 4.1.3.4.2

Please refer table 2.3.18.3 and 2.3.22.3 for strength values.

Channel bolt and channel lip connection: $\Phi V_{s,l,x}$

Anchor strength: ΦV

 $\Phi V_{sa,x} > V_{aua,x}$

This check is in accordance to ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2

Please refer table 2.3.18.1 and 2.3.10.1 for strength values.

Anchor reinforcement anchorage: ΦV

Connection Anchor and Channel : ΦV_{sc}

 $\Phi V_{scx} > V_{aux}$

This check is in accordance to ESR-3520 Sec. 4.1.3.3.2, 4.1.3.4.2

Please refer table 2.3.18.1 and 2.3.10.1 for strength values.

Anchor reinforcement anchorage: ΦV_{ca}

Concrete pryout strength for shear parallel: ΦV

Please refer to anchor channel theory for more information on this failure mode. The design methodology is same as of headed stud anchor channel. This check is compliant with ESR 3520 section 4.1.3.4.4. Refer Anchor channel theory Section 7.4.4

Anchor reinforcement anchorage: ΦV_{ca}

Concrete breakout strength for shear parallel: ΦV

 $\Phi V_{cb,x} > V_{aua,x}$

Please refer to anchor channel theory for more information on this failure mode. The design methodology is same as of headed stud anchor channel. This check is compliant with ESR 3520 section 4.1.3.4.3. Refer Anchor channel theory Section 7.4.4.

Anchor reinforcement anchorage: ΦV

Required verifications under combined tension and shear loading

If forces act in more than one direction the combination of loads has to be verified. Anchor channels subjected to combined axial and shear loads shall be designed to satisfy the following requirements by distinguishing between steel failure of the channel bolt, steel failure modes of the channel and concrete failure modes.

Steel failure of channel bolts under combined loads (ESR-3520)

$$B_{N+V,s} = \left(\frac{N^{s}_{ua}}{\phi N_{ss}}\right)^{2} + \left(\frac{\sqrt{\left[V^{s}_{ua, y}^{2} + V^{s}_{ua, x}^{2}\right]}}{\phi V_{ss}}\right) \le 1.0$$

$$B_{Ns} = \left(\frac{N^{s}_{ua}}{\phi N_{ss}}\right)^{2} \le 1.0 \quad \text{highest utlization under tension loading}$$

$$\beta_{V,s} = \left(\frac{\sqrt{\left[V^{s}_{ua, y}^{2} + V^{s}_{ua, x}^{2}\right]}}{\phi V s s}\right) \le 1.0 \quad \text{highest utilization under sh}$$

Steel failure modes of rebar channels under combined loads (ESR-3520)

a) For connection between anchor and channel

$$\beta_{N+V,ac} = \max\left(\frac{N_{ua}^{a}}{\phi N_{sa}}, \frac{N_{ua}^{a}}{\phi N_{sc}}\right)^{\alpha} + \max\left(\frac{V_{ua,y}^{a}}{\phi V_{sa,y}}, \frac{V_{ua,y}^{a}}{\phi V_{sc,y}}\right)^{\alpha} + \max\left(\frac{V_{ua,x}^{a}}{\phi V_{sa,x}}, \frac{V_{ua,x}^{a}}{\phi V_{sc,x}}\right)^{2} \le 1.0$$

$$\beta_{N,ac} = \max\left(\frac{N_{ua}^{a}}{\phi N_{sa}}, \frac{N_{ua}^{a}}{\phi N_{sc}}\right) \le 1.0 \quad \text{highest utilization under tension loading per rebar}$$

$$\rho_{N,ac} = \max\left(\frac{V_{ua,y}^{a}}{\phi N_{sa}}, \frac{V_{ua,y}^{a}}{\phi N_{sc}}\right) \le 1.0 \quad \text{highest utilization under tension loading per rebar}$$

 $\beta_{V,ac,y} = \max\left(\frac{\partial Q_{v,ac,y}}{\partial V_{sa,y}}, \frac{\partial Q_{v,ac,y}}{\partial V_{sc,y}}\right)$

$$\beta_{V,ac,x} = \max\left(\frac{V_{ua,x}^{a}}{\phi V_{sa,x}}, \frac{V_{ua,x}^{a}}{\phi V_{sc,x}}\right) \le 1.0 \quad \text{highest utlization unc}$$

 $\alpha = 2.0$ for rebar channels with max $(V_{sa,v}, V_{sc,v}) \le \min(N_{sa}, N_{sc})$ $\alpha = 1.0$ for rebar channels with max $(V_{sa,v}, V_{sc,v}) > \min(N_{sa}, N_{sc})$

values for V_{sav} and V_{sav} shall also be used

ng per channel bolt

hear loading per channel bolt

 $\leq 1.0\,$ highest utilization under shear loading (perpendicular) per rebar

der shear loading (perpendicular) per rebar

It is permitted to assume reduced values for V_{sav} and V_{sav} corresponding to the use of an exponent $\alpha = 2$. In this case the reduced

4. Design Introduction

3. HAC

Applications

5. Base material 6. Loading

b) At the point of load application

$$\beta_{N+V,lac} = \left(\frac{N_{ua}^s}{\phi N_{sl}}\right)^{\alpha} + \left(\frac{V_{ua,y}^s}{\phi V_{sl,y}}\right)^{\alpha} + \left(\frac{V_{ua,x}^s}{\phi V_{sl,x}}\right)^2 \le 1.0$$

$$\beta_{N+V,la,m-c} = \left(\frac{M_{u,flex}}{\phi M_{s,flex}}\right)^{\alpha} + \left(\frac{V_{ua,y}^s}{\phi V_{sl,y}}\right)^{\alpha} + \left(\frac{V_{ua,x}^s}{\phi V_{sl,x}}\right)^2 \le 1.0$$

$$\beta_{N,la,c} = \left(\frac{N^{s}_{ua}}{\phi N_{sl}}\right) \le 1.0 \quad \text{highest utilization under tension loading per per t-bolt}$$

$$\beta_{V,la,c,y} = \left(\frac{V^{s}_{ua,y}}{\phi V_{sl,y}}\right) \le 1.0 \quad \text{highest utilization under shear loading } \perp \text{ per t-bolt}$$

$$\beta_{V,la,c,x} = \left(\frac{V^{s}_{ua,x}}{\phi V_{sl,x}}\right) \le 1.0 \quad \text{highest utilization under shear loading parallel per t-bolt}$$

1. Anchor

 $\beta_{V,la,m} = \left(\frac{M_{u, flex}}{\rho M_{s, flex}}\right) \le 1.0$ highest utilization under tension loading per t-bolt

 $\alpha = 2.0$ for rebar channels with $V_{sly} \le N_{sl}$

 $\alpha = 1.0$ for rebar channels with $V_{sly} > N_{sly}$

It is permitted to assume reduced values for V_{slv} corresponding to the use of an exponent α = 2. In this case the reduced values for V_{sly} shall also be used.

Concrete failure modes of anchor channels under combined loads

A verification for each anchor is needed:

$$\beta_{N+V,c} = \left(\frac{N^a{}_{ua}}{\varphi N_{sc}}\right)^{\alpha} + \left(\frac{V^a{}_{ua,y}}{\varphi V_{nc,y}}\right)^{\alpha} + \left(\frac{V^a{}_{ua,x}}{\varphi V_{nc,x}}\right)^{\alpha} \le 1.0$$
$$\beta_{N,c} = \left(\frac{N^a{}_{ua}}{\varphi N_{sc}}\right) \le 1.0 \qquad \beta_{N,c} \text{ highest anchor utiliz}$$

 $\beta_{\scriptscriptstyle N.c}$ highest anchor utilization for tension loading between:

• blow out (N₋)

• anchor pull-out (N_{pp})

- concrete breakout (N_{ab})
- anchor reinforcement (if available N_{cas}, N_{ca})

$$\beta_{V,c,y} = \left(\frac{V^a_{ua,y}}{\varphi V_{nc,y}}\right) \le 1.0$$

 $\beta_{V,c,v}$ highest utilization under shear loading (perpendicular):

- EDGE rebar steel in tension (N_a)¹⁾
- pull-out of EDGE reinforcement (N_{-n})¹⁾
- pryout for perpendicular shear (V_{cov})
- concrete edge failure (V_{cb.v})

¹⁾ the rebar with higher tension load of the whole connection governs

$$\beta_{V,c,x} = \left(\frac{V^a_{ua,x}}{\varphi V_{nc,x}}\right) \le 1.0$$

1.0
$$\beta_{V,c,x}$$
 highest utilization under shear loading (parallel):

concrete breakout (V, ...)

• pryout for parallel shear (V_{enu})

 $\alpha = \frac{5}{2}$ for rebar channels without anchor reinforcement and in combination with the EDGE front Plate

 $\alpha = 1.0$ with anchor reinforcement to take up tension and parallel shear loads

9.6.3 — HAC (T) EDGE, HAC (T) EDGE LITE AND HAC S (T) EDGE DESIGN: IN METAL DECK APPLICATIONS

The capacity of anchor channel should be reduced because of the presence of a metal deck. The following failure modes should be modified:

• EDGE pull-out strength of rebar: In general an verification according to ACI 318-11 is performed by comparing a development length with a provided length. Due to the fact that the provided length as well as the diameter of the rebar is fixed a possible (virtual) "anchorage" force (stress) in the rebar is "back"-calculated. For the verification this N^r, on the rebar.

The concrete cover gets affected when the anchor channel is in a metal deck. This affect cannot be modelled in PROFIS. "anchorage" force $N_{n,P}$ will be compared with the acting force PROFIS anchor channel software takes the c, as the c, which is h_{ab} +0.5d_b. For the available product this x_4/d_b (c_b/d_b) value is greater than 2.5, hence the capacity is not reduced because of Please refer to the section: 9.6.2 of this chapter for the method the cover effect. Therefore check needs to be reevaluated by of calculating the forces at the rebar Nr..... measuring the c_{h_2} as seen in Figure 9.6.3.1 and Figure 9.6.3.2. The ratio $x_2/d_{\rm b}$ (c_b/d_b) is determined and if it is less than 2.5 then φN_{p.R} ≥ N^r_{us} the capacity needs to be reduced. If value of the ratio is $y=x_{a}/d_{a}$ (c_{μ}/d_{μ}) , then the capacity is reduced by the ratio of y/2.5. Refer Figure 9.6.3.1

$$(f_{y} =)\sigma_{d} = l_{d, prov} \cdot \pi . d_{b} . \frac{10}{3} \cdot \lambda . \sqrt{f'c} \cdot \min\left(\frac{c_{d}}{d_{b}}, 2.5\right) \cdot \frac{1}{\psi_{t} . \psi_{e} . \psi_{s}}$$
$$N_{P, R} = \frac{\pi . d^{2}_{s, R}}{4} \cdot \sigma_{d} = l_{d, prov} \cdot \pi . d_{b} \cdot \frac{10}{3} \cdot \lambda . \sqrt{f'c} \cdot \min\left(\frac{c_{d}}{d_{b}}, 2.5\right) \cdot \frac{1}{\psi_{t} . \psi_{e} . \psi_{s}}$$

f_u = yield strength of reinforcement [psi] λ =1.0 for normal-weight concrete

 λ =0.75 for all-lightweight concrete

 λ =0.75 for sand-lightweight concrete

- f_concrete cylinder compressive strength [psi]
- $K_{tr} = 0$ no transverse reinforcement is taken into account
- $c_{L} / d_{L} \le 2.5$ influence of concrete cover

The c_b cover on the rebar where the rebar goes on top of metal deck should be measured from center of rebar to the metal deck. The c_{μ} value is taken as minimum value of x_{μ} and x_{μ} in the development length equation. The pullout strength gets reduced due to the reduced cover if the ratio c_{μ}/d_{μ} is less than 2.5. Please refer to rebar theory and design of anchor channel design code chapters 7 and 8 for more information on this failure mode.

Concrete breakout strength in shear

Vs This dimension of height of substrate effects concrete breakout strength in perpendicular shear check. This will change the factor $\Psi_{\mu\nu\sigma}$ It is recommended to model the concrete thickness h as seen in the Figure 9.6.3.1.

The dimension h in the formula below for $\Psi_{\mu\nu}$ factor should be taken as h as shown in Figure 9.6.3.1.

Please refer to anchor channel design code for more information on concrete breakout in shear.

2. HAC 1. Anchor **Channel Systems** Portfolio

3. HAC 4. Design Applications Introduction

5. Base material

6. Loading

9. Special Anchor 10. Design Channel Design Software

Concrete breakout strength in tension:

An imaginary line is drawn to simulate the effect of metal deck by drawing the breakout cone in tension. It is recommended to limit the available concrete for tension to be $C_{a1,2}$, if $C_{a1,1}$ is more than C_{at a}. The following modification should be incorporated by modelling edge $C_{a1,2}$ as the edge or manually changing the reduction factor in the report, if profis does not allow modelling the edge because of minimum edge requirement. Reduction factor for edge is as seen below. Please refer to the section 7.2.3 of anchor channel theory for more information in regards to variable C_{crN} Refer Figure 9.6.3.2.

$$\psi_{\rm ed,N} = \left(\frac{\rm C'al}{\rm C_{\rm cr,N}}\right)^{0.5} \le 1.0$$

Figure 9.6.3.2 - HAC EDGE, HAC EDGE Lite and HAC S EDGE - Composite slab - Shear In.

9.6.4 — HAC (T) EDGE, HAC (T) EDGE LITE AND HAC S (T) EDGE DESIGN: TOP AND BOTTOM OF SLAB OUTSIDE CORNER SINGLE ANCHOR CHANNEL

90° corners

The concrete strengths in tension and shear of the anchor channel may be reduced (depending on how far the anchor channel is away from the corner) since the concrete cones may not be fully developed.

The design methodology is fully in accordance with the previous sub-chapter section 9.6.3 of Design of Anchor channel, only difference additional check described below.

Following concrete breakout in perpendicular shear is evaluated:

Concrete breakout strength — perpendicular shear, direction, y + accordance to Hilti method section 9.6.3 of Design of Anchor channel chapter

Concrete edge breakout strength - perpendicular shear, direction, x+ along longitudinal axis accordance to acc. to ESR-3520 section 4.1.3.3

It has been observed during testing of HAC (T) EDGE, HAC (T) EDGE Lite or HAC S (T) EDGE that concrete tends to break towards the side edge as seen in Figure 9.6.4.1, introducing the need to check the concrete breakout in perpendicular shear direction x+ along the longitudinal axis of the anchor channel. Having small side edge to the Concrete edge breakout strength - perpendicular shear, direction, x+ along longitudinal axis is checked and gets compared to the concrete breakout strength - perpendicular shear, direction, y +, which ever controls gets printed in the profis calculation report. The concrete shear strength in +y (perpendicular to channel axis) is not the controlling failure mode when anchor channel is installed at the corner because of the edge plate confinement.

Concrete edge breakout strength - perpendicular shear, direction, x+ along longitudinal axis:

Refer to the equation below

$$\begin{split} & \phi V_{cb,y} \geq V_{aa,y}^{a} \\ & V_{cb} = V_{b} \cdot \psi_{s,y} \cdot \psi_{coly} \cdot \psi_{co2,y} \cdot \psi_{c,y} \cdot \psi_{h,y} \cdot \psi_{paralle} \\ & V_{b} = \lambda \cdot \alpha_{ch} \cdot \sqrt{f'_{c}} \cdot c_{a1}^{\frac{4}{3}} \\ & \psi_{s,y} = \frac{1}{1 + \sum_{i=2}^{n+1} \left(1 - \frac{S_{i}}{S_{cr,y}} \right)^{1.5} \cdot \frac{V_{aa,i}^{a}}{V_{aa,1}^{a}}} \leq 1.0 \\ & s_{cr,y} = 4C_{a1} + 2b_{ch} \\ & \psi_{col,y} = \left(\frac{C_{a2,2}}{C_{cr,y}} \right)^{1.5} \leq 1.0 \\ & \psi_{co2,y} = \left(\frac{C_{a2,2}}{C_{cr,y}} \right)^{1.5} \leq 1.0 \\ & \psi_{co2,y} = \left(\frac{C_{a2,2}}{C_{cr,y}} \right)^{1.5} \leq 1.0 \\ & \psi_{h,y} = \left(\frac{h}{h_{cr,y}} \right)^{0.5} \leq 1.0 \\ & h_{cr,y} = 2C_{a1} + 2h_{ch} \\ & \psi_{h,y} = C_{a1} + 2h_{ch} \\ & \psi_{h,y} = -\frac{1}{2} \cdot 5 \\ \end{split}$$

Figure 9.6.4.1 - HAC (T) EDGE, HAC (T) EDGE Lite or HAC S (T) EDGE -Side breakout in perpendicular shear when Achor channel is installed at the corner

Figure 9.6.4.2 - TOS or BOS HAC EDGE single channel - Shear along perpendicular to axis y+.

Figure 9.6.4.3 - TOS or BOS HAC EDGE single channel at certain distance -Shear along longitudinal axis x+.

Acute and obtuse corners

Please refer section 9.2.7 for details on analyzing the obtuse and acute angle corner with single anchor HAC EDGE channel at the corner. Also refer 9.6.3 and 9.6.4 on details for analyzes and all the failure modes and interaction that needed to be taken into consideration.

3. HAC

Applications

9.6.5 — HAC (T) EDGE, HAC (T) EDGE LITE AND HAC S (T) EDGE DESIGN: TOP AND BOTTOM OF SLAB OUTSIDE CORNER WITH PAIR OF ANCHOR CHANNELS

Corner Rebar Top of Slab (EDGE C)

1. Anchor

Channel Systems

2. HAC

Portfolio

In order to install two EDGE front plates close to an edge some modifications to the geometry of the product are needed. Indeed, the rebar location of one EDGE Plate (EDGE C) needs to be lower, in order to avoid clashing with the rebars of the adjacnet corner channel. This is illustrated in Figure 9.6.5.1.

For this application, one element is a standard EDGE and the second is the so-called Corner Rebar Top of Slab (EDGE C) front plate.

The EDGE C front plate is 20 mm higher and has the rebar 14 mm deeper in order to cross those of the other EDGE element. The thickness of the plate is increased to 6 mm instead of 5, in order to resist the bending moment due to the larger lever arm. The other geometrical dimensions, as well as the position and number of the rebars remains the same as described in chapter 02.

The vertical distance of the rebar center point from the concrete surface is for the EDGE C: $e_r = h_{ch} + 3d/2 + 2$ [mm]

Refer Figure 9.6.5.1 for the description. This e_R will effect the magnitude of tension force that the rebars will experience as described below. Refer Figure 9.6.5.2 for the example of determining the rebar forces

It will not be possible to select a EDGE C front plate as standalone in Profis. A EDGE C will be automatically adopted when the corner is activated on the second edge.

lb

$$k = \frac{1}{\sum} A'_{r,i}$$

$$li_n = 4.93 . Iy^{0.05} . s^{0.5}$$

$$l_{m,r} = (0.2 + 0.004 c_{a1}) l_m \le l_{in} \text{ in}$$

$$s = anchor spacing, \text{ in}$$

$$V^{b}_{ua} = factored tension load on channel bolt,$$

$$t = anchor plate thickness$$

$$e_c = dist between concrete top$$

$$surface and anchor plate bottom surface$$

$$z = 0.85 . h'$$

$$h' = h - h_{ch} - \frac{d_b}{2} \le \min(2.h_{ef}, 2.c_{a1})$$

$$h = \text{actual member depth}$$

$$h_{ch} = height of anchor channel$$

$$h_{ef} = embedment depth of the anchor$$

under consideration

$$c_{a1} = edge \ dis \tan c \ of \ the anchor$$

under consideration

$$e_s = e_c + \frac{t}{2} + h_{ch} + \frac{3d_b}{2} + 0.0787 \ for \ EDGE C,$$

90°, Acute and obtuse corners

4. Design

Introduction

Please refer section 9.2.10 for details on analyzing the obtuse and acute angle corner with pair HAC (T) EDGE or HAC S (T) EDGE anchor channel at the outside corner. Also refer 9.6.3 and 9.6.4 on details for analyzes and all the failure modes and interaction that needed to be taken into consideration.

5. Base material

Figure 9.6.5.2 — Example for the calculation of rebar forces in accordance with the triangular load distribution method for an anchor channel with four rebars. The influence length is assumed as l in = 1.5s.

 $\begin{aligned} \mathbf{A}_{1}^{'} &= \frac{0.25 \cdot \mathbf{s}}{\mathbf{l}_{m}} = \frac{1}{6} \\ \mathbf{A}_{2}^{'} &= \frac{1.25 \cdot \mathbf{s}}{\mathbf{l}_{m}} = \frac{5}{6} \\ \mathbf{A}_{3}^{'} &= \frac{0.75 \cdot \mathbf{s}}{\mathbf{l}_{m}} = \frac{1}{2} \\ k &= \frac{1}{\mathbf{A}_{1}^{'} + \mathbf{A}_{2}^{'} + \mathbf{A}_{3}^{'}} = \frac{2}{3} \\ N_{ua,1}^{r} &= \left(\frac{1}{6}\right) \cdot \left(\frac{2}{3}\right) V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) = \left(\frac{1}{9}\right) V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) \\ N_{ua,2}^{r} &= \left(\frac{5}{6}\right) \cdot \left(\frac{2}{3}\right) V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) = \left(\frac{5}{9}\right) V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) \\ N_{ua,3}^{r} &= \left(\frac{1}{2}\right) \cdot \left(\frac{2}{3}\right) V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) = \left(\frac{1}{3}\right) V_{ua}^{b} \cdot \left(\frac{e_{s}}{z} + 1\right) \end{aligned}$

10. DESIGN SOFTWARE

9. Special Anchor

Channel Design

10. Design

Software,

7. Anchor Channel

Design Code

6. Loading

8. Reinforcing

Bar Anchorage

PROFIS Anchor Channel allows users to quickly and accurately model anchor channel system applications. Through a simple, user-friendly interface, the verification of 20 anchor channel failure modes and 5 interaction equations can be done in seconds.

PROFIS Anchor Channel allows users to design anchor channels with anchor reinforcement. Moreover, the so called anchor channels with "rebars" (HAC CRFoS U and HAC EDGE) are available. The software also allows users to design even the most complex applications such as seismic, corners, and applications in lightweight concrete and thin slabs.

2. HAC 1. Anchor **Channel Systems** Portfolio

3. HAC Applications

4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing **Design Code Bar Anchorage** 9. Special Anchor 10. Design **Channel Design** Software

PROFIS ANCHOR CHANNEL

The introduction of a design methodology for cast-in anchor channels brought significant benefits to the cast-in industry. Two major examples are the ability to optimize and confidently design an anchor channel system without relying on engineering judgment. On the other hand, it brought two major drawbacks; the design is highly complex and very time consuming.

Hand calculations for up to 25 failure modes, up to 5 interaction equations, different load combinations, varying t-bolt position along the anchor channel, bracket tolerance, substrate geometry, etc. becomes quite unpractical.

Moreover, designing via Excel spreadsheets or Mathcad sheets becomes risky and time consuming. Its programming complexity increases the probability of errors.

To cope with such drawbacks, Hilti developed PROFIS Anchor Channel software. It is design technology that allows users to guickly and accurately model anchor channel systems.

Through a simple, user-friendly interface, **PROFIS Anchor Channel designs anchor** fastenings for static and seismic applications in concrete, according to the most current building codes, approvals, and standards.

WELCOME TO THE NEW ERA — PROFIS ANCHOR CHANNEL

Innovate

- Portfolio of solutions for the most challenging applications.
- User-friendly interface to explore different design options.
- · State of the art calculations.
- No design boundaries.

Optimize

- Find the most cost-effective solution for your project.
- Productivity increase; all failure modes checks in real
- time at the click of a button. Explore different bracket
- geometries for an optimum fixture and anchor channel design.

Comply

- Design models based on ICC ESR-3520, ACI 318, and/or AC232.
- Anchor channels tested according to AC232.
- Ensure general welfare.
- No more engineering judgments backed up by your P.E. license.

10.1 PROFIS ANCHOR CHANNEL SOFTWARE AT A GLANCE

Hilti has continuously invested in PROFIS Anchor Channel over the last 8 years. It is an ever improving software for an ever changing market. PROFIS Anchor Channel is the simplest and safest way to design Hilti Anchor Channel Systems. Similar to the product, the software brings added value to the design community. The software is available for free and can be downloaded from Hilti's website, and link below:

https://www.hilti.com/content/hilti/W1/ US/en/engineering/software/profis/ profischannel.html

top of slab anchor channels with shear

11. Best **Practices**

Anchor channels in seismic design category C,D, E, or F

Load resolution at bolts and **Torsional moments**

Uti	lization (%)
	Tension 23 %
C	Shear 53 %
0	Tension / shear combined 48 %

Instantly and automatically utilization updates

Lightweight concrete

Detailed analysis report

11. Best Practices

12. Instructions for Use

0.4

•		A servecter)(o contente P	
		CLICK	
		-	243
		of creates Produce?	
		Back planation	
		Piederen & Applications	
		Particular Products	
ROFIS		Technical Date	
SORWARD		Considing & Report	
		Rutrige & Reviews	
Anchor channel			
neriarits			Q \$ 1
		A somecurry of conterts in	P
		The second se	12
	C	CLICK Patron & Applications	
	4	Pasat leasts 1 Pice at	
0 TK	lan i	Redaul Protocols	
C Anna	a bawline for	Technical Data	
		Consulting & Suggest	
		Relitige & Reviewe	
			0.0
	×	PRO CART IZI W CONTACT IN D	
ADDED TO CA	ART Sauther	restantist a contactos p	
channel	EERS		
BO TO SHOPPING CAR	T		
-	au au		
Ç	CLICK		
bern.		Quantity	
Price	80.00 / 0 Each	task -	11
		Add to favorities list	

1. Anchor Channel Systems	2. HAC Portfolio	3. HAC Applications	4. Design Introduction	5. Base material	6. Loading	7. Anchor Channel Design Code	8. Reinforcing Bar Anchorage	9. Special Anchor Channel Design	10. Design Software	
				/					· · · · · · · · · · · · · · · · · · ·	

Output Check out

Order confirmation

C Secure https://www.hilti.com/che	kout/order-confirmation						Q R
				SHOPPING CART [0] H	CONTACT US	Asses	
PRODUCTS / SERVICES	ENGINEERING THE DIFF	ERENCE / COMPANY	CAREERS				
OUR ORDER							
THANK YOU FOR YOUR SOFTWARE ORDER We will send you an email notification with a license is	ey shortly that will also include informatio	n and instructions on New to dow	veload the software.				
ontinue browsing on our homenage							
entrine bienenig en en nemepage							
to homepage >							
to homepage >	-						
to homepage >							
to homepage >							
s to hompage >							
s te homepage >							
e to hompage > e to hompage >	OFFERS AND EVEN	TT5					
	OFFERS AND EVEN	as					
	OFFERS AND EVEN	rts					

6 Check email and download PROFIS Anc

11.	Best
Pra	ctices

12. Instructions for Use

hor Chan	nel			
ox - Jesus.Barreda@hilti.com	- Outlook			œ
Move Rules O	MeNote Assign Unread/ Categorize Follow Policy - Read - Up -	P Browse Groups	Search People Address Book	
G Move	Tags	Groups	Find	
Hilti_Order_Info(Here's your Hilti softw	@hilti.com are activation for PROFIS ANCHOR C	CHANNEL		
Activation PR				
6				
ocument contains the ac	tivation key(s) for the Hilti software pro	duct(s) you just ord	ered.	
Service Team				
		10		
	Hilti, Outperform, Ou	tlast		
	Hitti Inc., 7250 Dallas Parkway, Suite Plano, TX	1000.		
	FIRM, TA	0024		
	Website: www.us.hilt	i.com		
	Customer Service (US) - 1-800-879	-8000		
	Website: www.ca.hilt	i.com		
	Customer Service (CA) - 1-800-363	-4458		
		1		
		1		
		1		
IS anthung DEOELS AN				
15 software - PROFIS An	CHOR CHANNEL	1		
it is a record of your activ	vation key(s).			
FIS Software user.				
ed, you only have to sub	mit the activation key in the pop-up wind	low		
OFIS Software and subn	nit Activation Key	install the		
lation process.	and then click on the downloaded file to	ansian the		
and provides	CLICK	1		
fis_anchorchannel		1		
		1		
, a registration pop-up with	indow will appear.			
and then click submit.				
		1		

10.2 Dov

load and Inst

	Activation Key	
	24F57-189AB-35416-9A27	B-81214
lion		
t		
anada) Corp	1-800-363-4458 www.hilti.ca	Page: 1(1)

5. Base material

6. Loading

9. Special Anchor 10. Design **Channel Design** Software

Install PROFIS Anchor Channel

Setup Wizard, click Next

Select your region (language)

Confirm and Next

Review terms and conditions

	MIS PROF	15 Anchor Chann
HILTI EN	PROFIS Anchor Channel D USER AGREEMENT	Í
(Agreement) by and betw (USA), or Hilti (Canada) C ('Software Provider') and ('Dustomer's acceptance of registration process for the by clicking the acceptance Software. Customer herewit complete and truthful infor pregistration process and po seudonyms. Software Pro- seudonyms. Software Pro- the registration ('Registere	verem Hilli, Inc. (for software distributed organization, software distributed you ('Customer') is effective as of this Software Customer has accepted this button prior to its first possibility mation about its ongawy and person urticularly, but not limited to, has no differ grants to customer - to the person differ grants to customer - to the person of Ustomer - to the person of Ustomer - to the person of Ustomer - to the person of Ustomer - to the person of Ustomer - to the person of Ustomer - to the	uted in the in Canada) the date of Within the Agreement to use the ave entered a within the ot used any on named in rding to the or Channel

Select Destination Folder

Install PROFIS Anchor Channel

10.3 PROFIS ANCHOR CHANNEL TUTORIAL

10.3.1 CREATE A NEW PROJECT IN PROFIS ANCHOR CHANNEL

Region

Select the region to reflect the Imperial or Metric system and display available products in your region.

Design Standard

The software selects the default design standard of the selected region. The design standard can be changed depending on project's requirements.

Choose a blank top or face of slab project, open an existing file, or open a saved template based on your most common conditions.

Select the appropriate design standard for your project.

10.3.2 PROFIS ANCHOR CHANNEL OVERVIEW

- **1** QUICK ACCESS TOOLBAR
- **2** RIBBON
- **6** GRAPHICS/MODEL WINDOW
- **4** ANCHOR CHANNEL AND T-BOLT SELECTION WINDOWS

12. Instructions for Use

14. Design Example

- **6** PRODUCT FILTER
- **6** REULTS WINDOWS
- **7** ERROR MESSAGES, WARNINGS WINDOW

10.3 Tutoria

5. Base material 6. Loading

10.3.2.1 QUICK ACCESS TOOLBAR

- f Design Report
- g Online Technical Library
- h PROFIS Rebar Online
- i PROFIS Anchor Software

-

Start window

c Open existing project

+ Now	Recent documents
INEW	
Open	
Save	
+ Save as •	

Options 🔣 Exit Options Options and pre-settings for PROFIS Options and pre-settings for PROPIS Anchor Channel can be selected, and customized e.g. program language, region, units, safety factors etc. ATTENTION: Any changes in pre-settings remain permanent until the next manual correction by the user. Parrie namber Fan namber E-mail address File location

General

- Region
- Allows changing the region without having to start a new project.

Company details

Specifier information can be added. This information will be displayed in the final report.

Workspace

- Change program language
- Change PROFIS Anchor Channel Scheme

Report options

Select report paper size of report- Select report language

Start window

Project options

Project details

Project information can be added. This information will be displayed in the final report.

Company details

Specifier information can be added. This information will be displayed in the final report.

Units

Select preferred units. The work space will be updated accordingly.

Safety factors

For ACI based, the only two relevant fields are "weighted average load factor" and "Factor for serviceability crack width check"

Weighted average load factor

- Only applicable when HAC EDGE is used. Software checks if cracking of the concrete occurs at service levels and used this factor to unfactor the shear force.
- This factor shall be equal to the shear load factor. For instance, if ASCE 7-05 is used, this factor shall be equal to 1.6. If ASCE 7-10 is used, this factor shall be equal to 1/0.6 = 1.667

Factor for serviceability crack width check

Select the required safety factor for serviceability crack width. Serviceability is typically checked using nominal strengths (1.0) at service loads. See section 9.6.2 for additional information.

Always check for updates

Hilti is continuously adding new features to the software. Keeping the software updated allows you to take advantage of all the features the software has to offer.

10.3.2.2 BASE MATERIAL TAB

Base material	Anchor plate Bolt layout	Steel profile	Loads Calcu	lation Res	sult View				
Cracked concrete *	4000	•	MA	*		Straight edge reinforcement		Periodic inspection	-
Lightweight concrete	Cylinder compressive strength	4,000 psi	4//~\	+ □→	Activate	Condition B Tension	Design of		
ALWAC *	Cube compressive strength	4,875 psi	data	*	corner	Condition B Shear	reinforcement		
Concrete	Base n	material		Edges	Corner of slab	Suppl. reinforcement	Anchor reinforcement	Inspection type	

Corner of Slab

Concrete

Uncracked concrete

If analysis indicates no cracking at service load levels, the use of uncracked concrete can be justified.

Cracked concrete

If analysis indicates cracking at service load levels.

All-lightweight concrete (ALWAC) $\lambda = 0.75$

San lightweight concrete (SLWC) λ = 0.85

See section 5.1.2 for additional information.

Supplementary reinforcement

Straight edge reinforcement	•
Condition B Tension	-
Condition B Shear	Ŧ
Suppl. reinforcement	

Base material

4000	*
Cylinder compressive strength	4,000 psi
Cube compressive strength	4,875 psi
Base ma	aterial

Select the concrete cylinder compressive strength of the substrate. Drop menu provides incremental of 1000 psi. For a specific cylinder compressive strength, click on "Customize" option and input the specific value.

4000	Customize	
2500	Cylinder compressive strength	4,500 psi
3000	Cube compressive strength	4.936 psi
4000	Base ma	terial
5000		
6000		
7000		
7000 8000		
7000 3000 3500		
7000 8000 8500 9000		
7000 8000 8500 9000 9500		
7000 8000 3500 9000 3500 10000		

- Activates pair of channels in a corner.
- Only symmetric corners are allows. For unsymmetrical corners, use the highest loads.
- Analysis assumes both corner channels are loaded simultaneously.

Face of slab corner

Straight edge reinforcement

No edge reinforcement or stirrups

Straight edge reinforcement

Edge reinforcement and stirrups

Edge reinforcement

When cracked concrete is selected, the existing reinforcement is taken into account for the $\Psi_{C,V}$ modification factor for the concrete breakout strength of an anchor channel under shear loads.

 $\Psi c.v\!=\!1$ for anchor channels in cracked concrete with no supplementary reinforcement

 $\Psi c.v\!=\!1.2\,$ for anchor channels in cracked concrete with edge reinforcement of a #4 bar (12.7mm) or greater size between the anchor channel and the edge.

 $\Psi_{c}v{=}1.4$ for anchor channels in cracked concrete containing edge reinforcement with a diameter of 1/2 inch (12.7mm) or greater (#4 bar or greater) between the anchor channel and the edge, and with the edge reinforcement enclosed within stirrups with a diameter of 1/2 inch (12.7mm) or greater (#4 rebar or greater) spaced in 4 inches (100mm) maximum.

When uncracked concrete is selected, the positive effect of supplementary reinforcement is not considered.

1. Anchor Channel Systems	2. HAC 3. HAC Portfolio Applications	4. Design Introduction 5. Base material 6. Loading	7. Anchor Channel Design Code8. Reinforcing Bar Anchorage9. Special Anchor Channel Design10. Design Software
Supplementary reinforcer	nent		Inspection Type
Straight edge reinforcement	Straight edge reinforcement	Straight edge reinforcement *	Periodic inspection *
Condition B Tension	- Condition B Tension	Condition B Tension	
Condition B Shear	Condition A Tension	Condition B Shear	
Suppl reinforcement	Condition B Tension	Condition A Shear	
Suppli reinforcement			

Shear - Condition A or Condition B Φ factor

Supplementary reinforcement acts to restrain

Tension - Condition A or Condition B Φ factor

Supplementary reinforcement acts to restrain the potential concrete breakout but is not designed to transfer the full design load from the anchor into the structural member. The presence of supplementary reinforcement has an impact on the Φ factor of the concrete failure modes.

Condition A: Applies where supplementary reinforcement is present, except for pull-out. For the supplementary reinforcement an explicit design is not required but the arrangement of the reinforcement should generally conform to that of the anchor reinforcement shown in fig. RD.5.2.9 in the ACI 318-11 Appendix D. Concrete breakout $\Phi = 0.75$ Concrete side-face blowout $\Phi = 0.75$

Condition B: Applies where supplementary reinforcement is not present. $\Phi = 0.70$ Pull-out Concrete breakout $\Phi = 0.70$ Concrete side-face blowout $\Phi = 0.70$

the potential concrete breakout but is not designed to transfer the full design load from the anchor into the structural member. The presence of supplementary reinforcement has an impact on the Φ factor of the concrete failure modes. Condition A: Applies where supplementary reinforcement is present, except for pryout. For the supplementary reinforcement an explicit design is not required but the arrangement of the reinforcement should generally conform to that of the anchor reinforcement shown in fig. RD.6.2.9(b) in the ACI318-11 Appendix D. Concrete edge breakout $\Phi = 0.75$

Condition B: Applies where supplementary reinforcement is not present. Concrete pryout $\Phi = 0.70$ Concrete edge breakout $\Phi = 0.70$

10.3.2.3 ANCHOR PLATE

Fastening group

Anchor reinforcement

Anchor reinforcement precluded concrete breakout. See sections 7.3 and 7.4 for additional information

14. Design Example

This tab only impacts the Φ factor for the shear steel strength of connection between channel lips and channel bolts V

Periodic inspection HBC-C-N $\rightarrow \Phi = 0.55$ HBC-T $\rightarrow \Phi = 0.65$

Continuous inspection HBC-C-N $\rightarrow \Phi = 0.65$ HBC-T $\rightarrow \Phi = 0.75$

In case of continuous inspection the value for V_{slx} for the size M12 can be taken for all channel sizes HAC-40F through HAC-70 F as V_{slx} = 2,021 lb (9.0 kN).

This feature adds another bracket to the anchor channel. Although the analysis assumes the brackets are loaded simultaneously, the configuration and loads can

in

Anchor reinforcement

Stand-off installation

Anchor plate thickness

É.

No stand-off

7

10.3.2.4 BOLT LAYOUT

Bolt layout

Asymmetric position of bracket and t-bolts

longitudinal forces.

	11. Best Practices	12. 1	nstructions for Use	13	. Field Fixes	14. Design Example
ora	cket thicknes	S				
o sta	and-off					
and	-off installation v	with clamp	ing			
and	-off installation v	with grouti	ng			
and	-off with bracket	support				
tar	nce:	0.591	in			

ance:	0.591 in
1:	1
ength	

Select number of t-bolts (8 maximum per bracket)

Channel filling with HIT-HY 100 allows to "lock" the t-bolts in position and transfer

Filling of the channel with HI-HY 100 is NOT needed to transfer longitudinal forces if HBC-C-N or HBC-T are used.

10.3 Tutorial

2. HAC Portfolio Channel Systems

4. Design Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code **Bar Anchorage**

10.3.2.5 STEEL PROFILE

1. Anchor

	Base m	aterial	Anchor plate	Bolt layout	Steel profile	Loa	ds Calcula	ation	Result
		Height:	0 in	Thickness:		0 in	X-direction:		0 in
None		Width:	0 in	Flange thickness		0 in	Y-direction:		0 in
-	n.d.						Angle:		0 °
Steel	profile			Profile size			Eccentrici	ty - Steel	profile

Steel profile

Steel profile allows adding a profile to the bracket. This is a aesthetics feature. It does not impact the design nor does it add load eccentricities.

Feature only available with a base plate.

3. HAC

Applications

None	1 IJ→ n.a. ·		Cylinder					
	None	<u></u>	Steel pr	Designation	height (mm) [incl	width (mm) [inch	thickness (mm) [i	flange thickness
1	Culinder			10	0.394	0.394	0	0
0	Cymraet			20	0.787	0.787	0	0
	Flat bar	-	1	30	1.181	1.181	0	0
			1	40	1.575	1.575	0	0
7	HD		,	50	1.969	1.969	0	0
1000		1.00		60	2.362	2.362	0	0
	I profile			70	2.756	2.756	0	0
				80	3.15	3.15	0	0
	IPB/HEB			90	3.543	3.543	0	0
	222.772.277			100	3.937	3.937	0	0
	IPBI/HEA			Customize				
īĽ,	IPBv/HEM							
T,	IPE							

10.3.2.6 LOADS

	Base material Anchor plate	Bolt lay	out Ste	eel profile	Loads Calculation	Result View	
Streng	th Design according to ACI 318-11	*		-lit	Tension:	Shear:	Tolerance: +/- ch. length *
		Input loads	Static design	Seismic Design	₽ D3.3.4.3 (b)	- D3.3.5.3 (a)	Custom:
						A DATA DATA DATA DATA DATA DATA DATA DA	

Steel profile

Strength Design according to ACI 318-11	- 📥
	Input
	loads

Strength Design according to ACI 318-11

Input loads

Allows the user to input the loads in a tabular format, rather than utilizing the workspace model. Applied loads shall be Strength Level (LRFD factor - design loads)

X
0 Ib
0 lb
0 lb
0 in-Ib
0 in-Ib
0 in-Ib

Static

Seismic

Select this option when designing per ACI 318-11 if anchor design included earthquake forces for attachment into structures assigned to Seismic Design Category C, D, E or F. Refer to the model code ACI 318-11 for specific seismic parameters.

See section 7.6 of this brochure for additional information

Tolerance

Tolerance: +/- ch. length Custom:

Toleran

e		

Tolerance:	+/- ch. length	~
Custom:	+/- 0 in	
	+/- 1 in	
Т	+/- 2 in	
	+/- s/2	ľ
	+/- ch. length	
	Customize	

utilization.

This field allows to select the left and right tolerance of the t-bolts along the anchor channel. PROFIS Anchor Channel looks for the t-bolt(s) position along the anchor channel that yields the highest utilization, unless selected otherwise.

Tolerance: +/- 0 in

Analysis based on the nominal t-bolt location.

Tolerance: +/- ch. Length

Analysis based on the t-bolt location along the channel that yields the highest

3. HAC Applications

4. Design Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design . Channel Design Software

Design report

Select report type; detailed or short report

Select t-bolt length

- Project details and company details will be printed in the report header.
- Select report options

Detailed report	*					
24 in	*					
2.4 in	*					ł
						1
						_
US						
English (United St	ates) -					
	10					
	• (8)					
that						
4.41					Der	Tableton -
					_	eronar III
	rs nglish (United St pol	rs - nglish (United Stated) - 1(2) pot	rs • Inglish (United States) • 1 0 pd7	rs • Inglish (United Starte) • 1 0 p07	rs - inglish (United Started) - 1 0 pd7 -	rs - nglah (United Started - 1)) pot -

Specification (PROFIS BIM/CAD Library)

8- A

Seath

Berlin and State

- Click on Insert

Click on Cast-in Anchors and Channels and select the desired anchor channel

				Letter and the	county in dealer)	And technol	
a Anthon and	Channells / Cast in Anchor Chan	unals - Case in another channels Demographics conductes	end sharings / Anchor th	ermel that day	advancenti HAC-70		
hor char	nnel (hot-dip galvani	zed) HAC-70					
es found: 3						Relativity during	
	Fatas vo	Description VA					Deta
N	421060	Anchor channel HAC-70 175/300 #	-				ø
N	421001	Anchor channel HAC-70 175/300 P					C.
>	424362	Anchor channel HAC-70 175400 P					ø
	hor char	Andres are Channel I Cast & Andre Cha hor channel (hot-dip galvani reads 3 Partice VA criste criste criste	Automation and Charters I Castle Junction Charters I Castle Junction (See Section Charters) Respective Looked hor channel (hold-dip galvanized) HAC-70 I Rest 8 Rest 8 Rest 9 Rest 9	Assessed and Channes I: Castle Action (Castle action to provide accessing interpretative constants on stopping / Action (th hor channel (hol-dip galvanized) HAC-70 Provel 2 Assess Action (Annum Action (2010)) Assess Action (2010) Assess Action (2	Contract and Charters I can be bedre Charters I can be active standing begreative contracts rule support / Arctire charters (bit dip) hor channel (hot-dip galvanized) HAC-70 Press 2 Partis, → assis assis assis assis assis assis assis assis assis assis assis assis assis assis before charters (bit dip) Arctire charters (bit dip) assis a	Automate and Outware 1 Castle and out device and a device perspective cateriated on support 2. Active channel (hid-dip galvaniced) (HAC-70 From a set Factor, for channel (hid-dip galvaniced) HAC-70 From a set Factor, for channel (hid-dip galvaniced) (HAC-70 From a set Factor, for channel (hid-dip galva	Looken and Oberen i Carle Judor Carle and or Carle and o

Selected the desired view and program where file is to be inserted. Open program where file is to be insert.

Download center (0) Disclaimer Country (language) USA (english) 431860 - Anchor channel HAC-70 175/300 F - 10 verse 20 version db Configuratio End cap left End cap right Open AutoCAD or program here file is to be inserted and then click on Insert

Drag figure to the selected program (i.e. AutoCAD)

Shuter		0		AutoCAU Me	Chantical 2014	Cramijider	0.		Cape a beaute	rd or phone	.m.s	than h	OK	dir 🕑 *		1
Content	Anteriore Max	Output	Courses	me formet	Writes Index 160	Large Silvers Des	agent Van	Instant	Ann An	. O						
	inter Datel	More - S Capy - S Sherich	C Rotate Moreer Scale Modify •	88 Array ¥ ∀- Trim + € ⊡ Rites + €	64 8 9 0 8 10 - 13	Nove to Anothe	e Layer •	A states	A Symbol		Eb Create 25 East 19 East Am Book +	tules •		Messare II		
and the second										1				al al desta		
						Specify insertio	n poet ar - r		114175							
on point	or [Basepoin	nt Scale	XYZRO	tate]:					_		_	_			-	

Online techr	ical library	Takes yo	ou to the only Hilti te	echnical library pag	е		— — F	Right click (hold it) a around the vertical a	and move the mouse	left (rotates clock	wi
Technical i	nformation							Rotate the view	w around the v	ertical axis	
	1. Anchor Channel Systems	2. HAC Portfolio	3. HAC Applications	4. Design Introduction	5. Base material	6. Loading	7. Anchor Channel Design Code	8. Reinforcing Bar Anchorage	9. Special Anchor Channel Design	10. Design Software	

10.3.2.8 VIEW

-	Base n	naterial	Anchor plate	Bolt lay	out Steel profile	Loads	Calculation	Result	View	
E E E	•	Q 100%	162% • Auto-zoom		Filter windows Results window	Base ma Geomet Channel	aterial geometry ry of part fastened I geometry	✓ Loads ✓ Group ✓ Chanr	os and bol nel anchor	Transparent view of base material t numbering numbering
Rotatio	on		3D-view	2D-view	Windows				Graphic	settings

Filter and Results windows

Technical information

- Rotate, zoom, or select a 2-D view
- Show or hide Filter and Results windows
- Show or hide various items in the graphics window
- Transparent view of base material can be selected

10.3.3 GRAPHICS/MODEL WINDOW

Substrate, bracket geometry and configuration can be adjusted in the workspace/model window

Zoom in and zoom out

Zooming in and zooming out can be easily achieved by scroll up (zoom in) or down (zoom out) using the scroll wheel of the mouse.

Rotate the view around the horizontal axis

Move the view along the horizontal axis

Left click (hold it) and move the mouse left and right. The model will move along the horizontal

Move the screen in and out

Left click (hold it) and move the mouse up and down. The model will zoom in and out

ise) and right (rotates counter-clockwise). The model will rotate

Right click (hold it) and move the mouse up or down. The model will rotate around the vertical axis

4. Design Introduction

3. HAC

Applications

10.3.4 ANCHOR CHANNEL AND BOLT SELECTOR WINDOW

Step 1: Anchor channel type

Select the desired anchor channel type

Top of slab applications Channels and bolts **→** ₽ × HAC Rebar HAC EDGE Lite Rebar HAC EDGE

Rebar HAC S EDGE

Step 2: Anchor channel size and profile type

Select the desired anchor size and profile type; smooth lips (HAC) or serrated lips (HAC-T)

*Anchor channels for top of slab applications

*Anchor channels for face of slab applications

Step 3: Anchor channel length

Select the desired anchor channel length. Standard anchor channel configurations (standard lengths with fixed number of anchors) are given in PROFIS Anchor Channel.

"User defined" allows users to input a custom channel length using the least possible number of anchors without exceeding the maximum allowable anchor spacing. Contact Hilti for custom configurations.

НАС
HAC-60 F
11.8 in
11.8 in
13.8 in
17.7 in
21.7 in
41.3 in
51.2 in
61 in
90.6 in
228.3 in
User defined

	٠
Rebar HAC S EDGE	
HAC-50 F	+

HAC-50 F
HAC-T50 F, Serrated channel lip

*Anchor channels for top of slab applications can be used in face of slab applications and vice-versa.

HAC-70 CRFoS U is the only anchor channel configuration that allows different number of anchors for the same anchor channel length.

The term after the length (i.e. + 3 indicates the number of rebars)

Step 4: Anchor channel embedment depth

Select the required anchor size and profile type; smooth lips (HAC) or serrated lips (HAC-T).

Two different effective embedment depths are offered for HAC-50 only. The 3.701 effective embedment depth allows HAC-50 to be used in a 4" slab.

Step 5: T-bolt type, steel grade, and steel grade

Select the required anchor size and profile type; smooth lips (HAC) or serrated lips (HAC-T).

Smooth channel lips

Serrated channel lips

10.3.5 PRODUCT FILTER

Step 6: T-bolt diameter

Select the required t-bolt diameter

Product filter simplifies the anchor channel system portfolio

10.3.6 RESULTS WINDOW

Results window provides real-time utilization

A Shear 4	15 %	
ť	Channel bolt w/o lever arm:	8%
4	Channel lip w/o lever arm - perpendicular sheat:	7%
4	Channel lip w/o lever arm - longitudinal shear:	N/A
Ť	Channel bolt with lever arm:	N/A
Ģ	Anchor - perpendicular shear:	8%
Ē	Anchor - longitudinal shear:	N/A
ģ	Connection anchor/channel - perpendicular shear	8%
	Connection anchor/channel - longitudinal shear:	N/A
,	Concrete pryout, perpendicular shear:	6%
-Ż	Concrete pryout, longitudinal shear:	N/A
Ŕ	Concrete edge breakout - perpendicular shear:	45 %
-i	Concrete edge breakout - longitudinal shear:	N/A
1	Anchor reinf steel, perpendicular shear:	N/A
B	Anchor reint anchorage, perpendicular shear:	N/A
	Anchor reinf steel, longitudinal sheat:	N/A
R	Anchor reinf anchorage, longitudinal shear:	N/A

- i ensis	n / snear combined 9	6 76
	Channel bolt:	8 %
	Connection between anchor and channet	26 %
	Point of load application - channel lip:	17%
	Point of load application - flexural moment and channel lip:	25 %
	Concerts strength:	02.8

10.3.7 ERROR MESSAGES, WARNINGS WINDOWS

Error messages, warnings windows provide information about applications where the configuration does not meet the minimum requirements (i.e. minimum edge distance, minimum member thickness, minimum t-bolt spacing) or configurations that are not recommended (i.e. unstable configuration, longitudinal loads without HBC-C-N, serrated channels or grouting of the anchor channel).

This window also provides fixes for errors.

rrc	r messages, warnings	₹ 4 ×
•	Base material thickness is too small (hmin in).	= 7.72
1	Anchor a1 is too close to the edge y- of the material (cmin = 2.9528 in).	base
1	Anchor a2 is too close to the edge y- of the material (cmin = 2.9528 in).	base
•	For shear loads acting on the direction of the channel the following configurations have to be used: • locking bolt for channels HAC-40 to HAC-70 and HAC-50 CRFoS U to HAC-70 CRFoS U channels, • HBC-T bolt for HAC-T 50 (CRFoS U) and HAC-T 70 (CRFoS U) channels, • channel filling with HIT-HY 100 for channels HAC-40 to HAC-70, HAC-40 CRFoS to HAC-70 CRFoS, HAC-50 CRFoS U to HAC-70 CRFoS U	↓
1	For seismic loads, please use a locking bo or fill the channel with HIT-HY100 adhesive. Click here to find solution.	lt

For seismic loads or shear loads actir please use:	ng on the direction of the ch	annel
Locking bolt for HAC and HAC CREoS U channels	HBC-C-N 8.8	F 🔻
	M16	•
HAC-T channels	HAC-T50 F	-
	HBC-T 8.8F	Ŧ
	M12	Ŧ
Channel filling with HIT-HY 100		
Note: filling the channel with HIT-HY anchor channels which have until thr fastening plates.	100 adhesive is only allowed ee anchors and one group o	for f
	OK Cancel	

3. HAC 4. Design **Applications** Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing **Design Code Bar Anchorage** 9. Special Anchor **Channel Design**

10. Design Software

11. BEST PRACTICES

1. Anchor

This chapters provides best practices for cast-in anchor channels. It provides some additional information for designers, reviewers, installers, and inspectors. The ultimate goal is to allow for the most model code-compliant, feasible solution, based on the project's schedule.

11.1 MODEL CODE COMPLIANCE

Introduction

Building codes are series of regulations, co-created by politicians and building professionals. Building codes govern the design, construction, repair or alteration and general maintenance of buildings. The main purpose of building codes are to protect public health, safety, and general welfare as they relate to the construction and occupancy of buildings and structures. The building code becomes law of a particular jurisdiction when formally enacted by the appropriate governmental or private authority.

Depending on the project, building codes may be enforced at the international, federal, state, and/or local levels. Municipalities can adopt building model codes set forth by the model code, the International Building Code (IBC).

The concrete chapter of the International Building Code, references ACI 318 Building Code Requirements for Structural Concrete, the standard for concrete design and construction. ACI 318-11 Appendix D and ACI 318-14 Ch. 17 provide design requirements for anchors in concrete used to transmit structural loads by means of tension, shear, or a combination of tension and shear between (a) connected structural elements; or (b) safety-related attachments and structural elements.

11.1.1 DESIGN OF SPECIALTY INSERTS

IBC 2012 1909

Anchorage to concrete - Strength Design

1909.1 Scope. The provisions of this section shall govern the 1905.1.10, provided they are within the scope of Appendix D. strength design of anchors installed in concrete for purposes The strength design of anchors that are not within the scope of of transmitting structural loads from one connected element to the other. Headed bolts, headed studs, and hook (J-or-L-) bolts Appendix D of ACI 318, and amended in Sections 1905.1.9 and cast in concrete and expansion anchors and undercut bolts 1905.1.10, shall be in accordance with an **approved procedure**. cast in concrete and expansion anchors and undercut anchors

Approved: Acceptable to the building official or authority having jurisdiction.

Building Official: The officer or other designated authority charged with the administration and enforcement of this code, or a duly authorized representative.

104.1 General. The building official is hereby authorized and directed to enforce the provisions of this code. The building official shall have the authority to render interpretations of this code and to adopt policies and procedures in order to clarify the application of its provisions. Such interpretations, policies and procedures shall be compliance with the intent and purpose of this code. Such policies and procedures shall not have the effect of waiving requirements specifically provided for in this code.

104.11 Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or methods of construction shall be approved where the building official finds that the proposed design is satisfactory and that the material, method or work offered is, for the purpose intended, at least the equivalent of that prescribed in this code in quality, strength, effectiveness, fire resistance, durability and safety.

104.11.1 Research reports. Supporting data, where necessary to assist in the approval of materials or assemblies not specifically provided for in this code, shall

installed in hardened concrete shall be designed in accordance with Appendix D of ACI 318 as modified by Section 1905.1.9 and

consist of valid research reports from approved sources.

104.11.2 Tests. Whenever there is insufficient evidence of compliance with the provisions of this code, or evidence that a material or method does not conform to the requirements of this code, or in order to substantiate claims for alternative materials or methods, the building official shall have the authority to require tests as evidence of compliance to be made at no expense to the jurisdiction. Test methods shall be as specified in this code or by other recognized test methods, the building official shall approve the testing procedures. Tests shall be performed by an approved agency. Reports of such tests shall be retained by the building official for the period required for retention of public records.

2. HAC 1. Anchor **Channel Systems** Portfolio

3. HAC **Applications**

4. Design Introduction

5. Base material 6. Loading 9. Special Anchor 10. Design **Channel Design** Software

Cast-in anchor channels systems are slotted connections consisting of a steel channel, anchor element, and matching t-bolts. Therefore, anchor channel systems are considered specialty inserts.

Specialty inserts are excluded from the Anchoring to Concrete provisions of ACI 318. Acceptance Criteria 232 (AC232) was develop to show anchor channels systems for recognition under the IBC. AC232 provides testing and design guidelines for cast-in anchor channel systems. Although, specialty inserts are not within the current scope of ACI 318, AC232 Section 3.0 Design Requirements provides recommended additions to the ACI 318 anchor to concrete provisions that permit the design of anchor channel systems as if they were included in AC 318.

AC232 removes the boundaries of manufacturers technical data and limitations of testing data. Additionally, it takes into consideration additional design parameters that have not been neglected in the past such as cracked concrete, supplementary reinforcement, anchor reinforcement, 95 percent fractile, member thickness, etc.

Anchor channel design in accordance to an ICC-ES Acceptance Criteria will help show compliance with the model code. It protects public health, safety, and general welfare. When the design is model code compliant reduces the risk of delays or job site shut downs due to noncompliant designs.

Figure 11.1.1.1 - Model code compliant anchor channel designs

11.1.2 ANCHOR CHANNELS OUTSIDE THE SCOPE OF AC232

Only anchor channels with rounded headed anchors or I anchors and straight deformed bars are covered by AC232. Therefore, only HAC can be shown compliant with an ESR. However, there are still applications that require the use of anchor channels not fully covered by AC232, such is the case of HAC CRFoS U and HAC EDGE.

For applications outside the scope of AC232, Hilti has developed design models based on applicable testing protocols and design provisions of AC232. For failure modes outside the scope of AC232 (i.e. pullout strength of a rebar), the principles of AC232 and ACI 318 are followed.

AC232 is a relatively new acceptance criteria. Seismic provisions were only added in 2015. The long term goal is to provide a work frame that covers all applications encountered in a project and anchor channels needed to meet the required design parameters,

11.2 HILTI ANCHOR CHANNEL PRICE INDEX

11.2.1 HAC PRICE INDEX OF STANDARD PORTFOLIO

The objective of the chart below is to guide designers the ability to select not only the most feasible anchor channel solution, but the anchor channel that makes the most sense for each specific project. The higher the channel is on the scale, the more expensive the channel is. The scale ranges from 0 to 1. Although this chart does not provide the actual cost of the product, the price difference ratio is consistent. Information may vary and therefore, is for preliminary selection purposes. Please consult your local account manager for pricing information.

Figure 11.2.1 a - Price index of HAC and HBC

11.2.2 HAC VS HAC-T PRICE INDEX

Figure 11.2.2 — Price index of HAC and HAC-T

11. Best Practices 12. Instructions for Use

4. Design **Applications** Introduction

6. Loading 5. Base material

11.2.3 ANCHOR CHANNEL SELECTION USING PRICE INDEX CHARTS -EXAMPLE

3. HAC

Step 1 **Original layout**

The plan view below illustrates the original anchor channel recommendations for the typical, corner zones, and jamb conditions of a building. Curtain wall façade is present on the south side of the building. Recommendations are as follows

- Typical zone: HAC-40 91/350 F with (2) HBC-C 8.8 F M12x60 @ 6" O.C.
- Corner Zone: HAC-50 106/300 F with (2) HBC-C 8.8 F M12x60 @ 6" O.C.
- Jamb: HAC-50 106/300 F with (2) HBC-C 8.8 F M12x60 @ 6" O.C.

Figure 11.2.3.1 Embed layout, plan view

Step 2 Check HAC index chart

Based on the price scale chart, HAC-50 106/300 F (unit value ≈ 0.24) is a more feasible solution than HAC-40 91/350 F (unit value ≈ 0.26).

Figure 11.2.3.2 Price index

Step 3 Check structural feasibility for the more feasible solution

Check structural suitability of HAC-50 106/300 F at typical conditions.

Additional feedback:

LA

It is always good practice to ensure the specified product will meet the project's schedule. For typical anchor channel lead times, see section 2.4.

Step 4 Check if the more feasible makes sense.

- HAC-40 91/350 F.
- of installation errors. Therefore, change HAC-40 91/350 F to HAC-50 106/300 F.
- potential embed layout complexities.

Step 5 **Original layout**

conditions.

Corner zone: HAC-50 106/300 F

Figure 11.2.3.3 Optimized embed layout, plan view

The use of a bigger channel profile does not always mean a more expensive solution. There are other factors such as

The use of a bigger channel profile only indicates a profile with higher steel strengths. There are other failure modes that

• HAC-50 106/300 F is structurally adequate at typical, corner zones, and jamb conditions. It is also a more feasible solution than

Using one channel for the entire south face of the building simplifies the anchor channel installation as it reduces the probability

Note: Sometimes, selecting for a more feasible solution for a specific condition may not be practical. Check if the savings justify the

Change original recommendations for the original typical conditions. Use HAC-50 106/300 F at the typical an corner zone

Typical: HAC-50 106/300 F

Corner zone: HAC-50 106/300 F

2. HAC Portfolio

4. Design Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing **Design Code**

9. Special Anchor 10. Design **Bar Anchorage Channel Design** Software

11.3 HAC DESIGN OPTIMIZATION

Introduction

For projects where thousands of conditions are covered by one anchor channel type, using a \$15 vs \$18 dollar solution could ultimately bring significant cost savings. This section provides work arounds to help designers optimizing the anchor channel selection without having to select a more expensive anchor channel. The guidelines or work-arounds discussed in the next section require minimum impact to the design and it is generally acceptable. Always evaluate the overall cost of each solution considering the entire requirements of the entire system.

3. HAC

Applications

The following recommendations are intended to be used when the anchor channel is over utilized up to 10%-15%, with minimum or no impact to the fixture and without change the substrate conditions (i.e. using stirrups, supplementary reinforcement, increasing edge distance, etc.) The logical option is always using a bigger channel (except when HAC-70 is the channel under consideration) and therefore, this option is never discussed in the next guidelines

General quidelines

- Increasing t-bolt spacing helps to distribute the load amongst the anchors more efficiently. When the channel is slightly overutilized, consider increasing bolt spacing to reduce the acting loads at the critical anchor, reducing the overall utilization in the most utilized anchors.
- · Depending on the design parameters and application type, utilizations exceeding the 100% utilization by 3% may be acceptable.
- If concrete interaction yields utilizations within 110% for static loads, try using ACI 318 interaction equations for concrete. This is only valid for concrete and for failure modes cover by ACI 318 or AC232.
- · When channel lip or anchor-channel connection exceeds the utilization, consider adding a bolt with smaller channel rather than increasing channel size
- Price difference between M12 and M16 bolts is minimum. Try to avoid combining different t-bolt sizes ease installation.

- Closer edge distances do not always mean higher utilizations, if the back-span or prying leg is increased. The concrete strength may be reduced but the acting loads at the t-bolts may be reduced by a larger value.
- Consider the HAC Price index, specially at the typical conditions.
- Brackets may be wide enough to allow increasing the t-bolt spacing and use a more feasible channel.
- Brackets may provide enough room to reposition the slotted hole in order to increase the edge distance or reduce the wind load eccentricities, without the need of creating a new die.
- Check structural drawings to verify if supplementary reinforcement (i.e. straight edge reinforcement or Condition A) can be assumed.

WORK-AROUND: SPREAD THE LOADS AMONGST THE ANCHORS IN A MORE EFFICIENT WAY.

11. Best

Increasing the bolt spacing is possible when the bracket allows (i.e. J-hook type bracket). Also, consider the cost difference between using a bigger channel size versus increasing the width of the bracket.

By increasing the t-bolt spacing, the loads are redistributed amongst the anchors in a more efficient way. Thus, reducing the

Figure 11.3.1.1 optimization of load distribution from t-bolts to anchors

12. Instructions

acting loads at the critical anchor. Figure 11.3.1.1 illustrates this concept. Left side of Figure 11.3.1.1 has a relatively small t-bolt spacing. Therefore, t-bolt 1 and t-bolt 2 transfer most of the loads to the center anchor. Right side of figure 11.3.1.1 has the same anchor configuration but with increased t-bolt spacing. As a result, the loads at the center anchor are significantly reduced.

14. Design

2. HAC 1. Anchor Channel Systems Portfolio

3. HAC 4. Design Applications Introduction

5. Base material

6. Loading Design Code

7. Anchor Channel 8. Reinforcing Bar Anchorage

9. Special Anchor 10. Design **Channel Design** Software

Example

As-is Design status: Not ok

Anchor channel: HAC-50 106/300 F Utilization: 107% Bolt spacing: 5.00" Anchor channel Price Index: 0.24

Solution option 1: use HAC CRFoS U Design status ok

Anchor channel: HAC-50 356/300 F CRFoS U UUtilization: 64% Bolt spacing: 5" Anchor channel Price index: 0.51

Solution option 2: use longer HAC with increased bolt spacing Design status: ok

Anchor channel: HAC-50 106/450 F Utilization: 100% Bolt spacing: 7.125" Anchor channel Price Index: 0.335

Conclusion:

Solution option 2 provides a price differential index of 0.175 (0.51-0.335). This is roughly 73% on HAC savings by just increasing the t-bolt spacing by 2.125"!

WORK-AROUND: ADD ANCHORS

If concrete strength does not control but the anchor-channel connection and anchor strength is limiting the design, consider using an anchor channel with more anchors. Refer to price index to asses if an anchor channel with more anchors or a bigger channel is more economical.

Note: adding more anchors may negatively impact the concrete breakout strength of the anchor under consideration. For HAC CRFoS U, there is no concrete breakout in tension and therefore, adding more anchors is always a viable solution.

WORK-AROUND: INCREASE T-BOLT SPACING WORK-AROUND: ADD A T-BOLT. ADD AN **OR REDUCE ANCHOR SPACING** ANCHOR OR INCREASE T-BOLT SPACING

Flexure of the anchor channel is another failure mode where the resistance is derived via testing and cannot be increased. However, the applied flexural forces can be reduced by increasing the t-bolt spacing or reducing the anchor spacing.

The applied bending moment at the channel is derived under the simplified model where the channel profile is treated as a simple supported beam, with a span equal to the anchor spacing.

See price index to determine if it is more feasible to use a bigger anchor channel or to add an anchor.

12. Instructions for Use

Channel lip, ΦN

The channel lip strength is a value derived via testing. The design strength of the channel lip may be reduced if the t-bolt spacing spaced closely is less than 2 times the width of the channel profile, (2b_{cb}) and are loaded simultaneously (in tension).

- One of the 5 interaction equations requires the verification of the channel lip in tension combined with the flexural strength of the channel profile. The applied bending moments can be reduced by reducing the anchor spacing.

The work around for applications where the channel lip strength is not adequate is adding a t-bolt or increasing the t-bolt spacing. This is generally acceptable at corner conditions. For typical conditions, adding a t-bolt may have the same cost as going to a bigger channel size. For other applications, the use of a bigger channel profile may be required.

Optimize fixture

REPOSITION SLOTTED HOLE TO INCREASE BACK-SPAN AND REDUCE WIN LOAD ECCENTRICITIES

Oftentimes, a minor modification to the location of the slotted hole, without requiring a new die may help saving thousands of dollars.

Nominal bracket and WL information

x1 = 2.5 in. $e_{_{WL}}$ = 2.5 in. Slotted hole allows for +/- 1" up and down tolerance

Additional information

c_{a1} = 3.5 in. WL = 3500 lb (factored) (only will load is applied, for illustration purposes) Concrete compressive strength = 4,000 psi

Assume (2) t-bolt spaced at 6" O.C.

For analysis purposes, the critical bracket position is down. Therefore, for analysis purposes, the x_1 value is reduced by 1 in. while the e_{wl} is increased by 1 in.

The above figure illustrates a screen shoot of the example in discussion, modeled in PROFIS Anchor Channel. Although the bracket in the model is not a "J" type bracket, the software assumes a rigid bracket.

Therefore, the key dimensions are the paying leg (backspan, x_1) and wind load eccentricity ($e_{WL,1}$). The bracket has a true hole, therefore, the bracket position is manually positioned assuming the worst position; bracket down.

In summary, the nominal dimensions need to be manually adjusted to account for the critical bracket position.

Nominal Dimensions	Bracket Down Dimensions
x ₁ = 2.5 in.	x ₁ = 1.5 in
e _{wL,1} = 2.5 in.	e _{wL,1} = 3.5 in.

HAC-60 148/300 F with (2) HBC-C 8.8F M16x60 yields a utilization of 100%. Concrete breakout in tension is the governing failure mode.

Optimized fixture: move the anchor channel and the slotted hole 1 in. down.

The figure below (left) shows the original configuration; the anchor channel has an edge distance (ca1) equal to 3.50 in. The right figure shows the new anchor channel location; the edge distance is equal to 4.50 in.

Note that the overall bracket geometry has not been changed. Moreover, the position of the "J" bracket does not change neither.

ORIGINAL BRACKET CONFIGURATION

Nominal Dimensions	Bracket Down Dimensions
x ₁ = 2.5 in.	x ₁ = 1.5 in
e _{wL,1} = 2.5 in.	e _{wL,1} = 3.5 in.

Edge distance, $c_{a1} = 3.50$ in.

HAC-40 91/300 F with (2) HBC-C 8.8F M16x60 yields a utilization of 94%. Connection anchor-channel is the governing failure mode.

OPTIMIZED BRACKET

Nominal Dimensions $x_2 = 3.5$ in. $e_{WL,2} = 1.5$ in. Bracket Down Dimensions $x_2 = 2.5$ in $e_{WL,2} = 2.5$ in.

Edge distance, $c_{a1} = 4.50$ in.

2. HAC Portfolio

4. Design **Applications** Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing **Design Code Bar Anchorage** 9. Special Anchor **Channel Design**

10. Design Software

11.4 CAST-IN ANCHOR CHANNEL LAYOUT

Introduction

AC232 brought major benefits to the design community. One of the major benefits is that it removed the limitations bounded by relaying on test data only. AC232 provides design guidelines for anchor channels. Having model code compliant design provisions ensures the levels of reliability of the system are met. Safety factors are generally not established via manufacturers but manufacturers follow the IBC.

3. HAC

The publication of AC232 allows to account for design provisions that were neglected in the past. Design considerations such as 5 percent fractile, cracked concrete, seismic detailing are common examples. As the industry continues to evolve, s.

11.4.1 ANCHOR CHANNEL LAYOUTS

Ideal layout:

The most cost effective practical layout is having one anchor channel type covering all typical intermediate applications and one anchor channel type covering the corner zones. A third anchor channel type is typically introduced at corner conditions. In an ideal world, this is the perfect layout.

HAC				
HAC EDGE C				5 22

The added benefit of HAC CRFoS U is that it can be used at intermediate applications and corners. Therefore, the anchor channel selection can be reduced to two different anchor channels.

Figure 12.4.1.2 Optimum anchor channel layout

HAC HAC CRFoS U or HAC EDGE HAC CRFoS U or HAC EDGE C

Figure 12.4.1.1 Optimum anchor channel layout

Composite slabs with lightweight concrete:

For applications where the substrate is thin (thinner at pocket The Hilti Anchor Channel Systems have been engineered zones) and lightweight concrete is used, an anchor channel keeping ease of installation at its root. It offers a gradual with rebars (HAC CRFoS U or HAC EDGE) is typically required increase in performance while maintaining one t-bolt type compatible with all HAC-40 to HAC-70 channel profiles. even at the typical intermediate conditions. For these type of projects, one anchor channel type suitable for the typical intermediate and corner zones simplifies the installation of the anchor channels on the jobsite.

Figure 11.4.1.3 Typical anchor channel layout for composite slabs

Non-traditional wind pressure distribution:

In some cases, the wind pressures acting at the facade may not allow for an optimum layout. These critically loaded conditions typically occur in less than 5% of the applications. Although introducing additional anchor channel will require additional coordination, these critically loaded areas may require customized solutions that using them throughout the entire strip will considerably increase the cost of the anchor channel.

Figure 11.4.1.4 Anchor channel layout for conditions with extreme wind pressures

Bring it all together:

HAC CRFoS U which are commonly used at corner zones in face of slab applications can also be used at the corners. This is one less channel type to worry about.

HAC EDGE comes with the right edge distance simplifying even further its installation while minimizing the probability of installing the product at the right edge distance.

Some layouts cannot be idealized and there are always conditions that may require unique-custom solutions. This section provides different layout and the fundamentals can be applied to your unique project.

11.5 SUBSTRATE CONSIDERATIONS

2. HAC

Portfolio

11.5.1 COMPOSITE SLABS

1. Anchor

Channel Systems

Composite slabs are one of the most common methods of steel frame floor construction; therefore, it is common substrate for anchor channels. Naturally, the use of anchor channels in composite slabs may bring additional challenges, especially for applications where anchor channel with rebar anchors or shear confinement plate is required.

3. HAC

Applications

4. Design

Introduction

5. Base material

6. Loading

Addressing the following potential conflicts before installation of the anchor channel system takes place may avoid issues, field fixes, and speed up the installation. Moreover, each condition can be evaluated based on actual conditions.

POTENTIAL CONFLICTS ARE AS FOLLOWS:

- Clashing of rebar with column
- Clashing of rebars with metal deck
- Corner conditions at corner columns
- If rebars extend into the deck, check adequacy of rebar cover.

Anchor channel in composite slabs; face of slab application

Anchor channel in composite slabs; top of slab application

11.5.2 ALL-LIGHTWEIGHT **CONCRETE VS** SANDLIGHTWEIGHT CONCRETE

7. Anchor Channel

Design Code

8. Reinforcing

Bar Anchorage

ACI 318 and AC232 provide a modification factor for lightweight concrete (λ). Light weight concrete is sub-classified into two types; all-lightweight concrete and sand-lightweight concrete. The modification factor for all-lightweight concrete is equal to 0.75 while the modification for sand-lightweight concrete is equal to 0.85.

9. Special Anchor

Channel Design

10. Design

Software

The use of lightweight concrete in composite slabs is quite common. Generally speaking, anchor channels are constrained by the strength of the concrete. Lightweight concrete is commonly specified for composite slabs. Hence, the concrete strength due to an anchor channel is constrained even further. It is always a good practice to verify the type of concrete specified in the project. On one hand, simply assuming sand-lightweight concrete can result in unconservative results. On the other hand, assuming all-lightweight concrete when sand-light weight concrete is present can yield to more expensive designs.

Chapter 5 (Base Material) provides additional information about all-lightweight concrete and sand-lightweight concrete. Determining what type of lightweight concrete use can present a challenge, as this information is not clearly specified all times.

ASTM concrete type	Aggregate grading specification	Concrete unit weight pc
Normal-weight	Fine: ASTM C33 Coarse: ASTM C33	145-155
Sand-lightweight	Fine: ASTM C33 Coarse: ASTM C330	105-115
All-lightweight	Fine: ASTM C330 Coarse: ASTM C330	85-110

Determination of lightweight concrete type

1) Check General Notes of project's structural drawings.

2) Check concrete specifications of the project.

3) Reach out to the structural engineer of records for confirmation.

If there is project where there no enough evidence to support the use of sand-lightweight concrete for design purposes of the cast-in anchor channel, always assume all-lightweight concrete, as this is always the most conservative choice.

2. HAC Portfolio 3. HAC 4. Design Applications Introduction

5. Base material 6. Loading

9. Special Anchor 10. Design Channel Design Software

11.5.3 POST-TENSIONED SLABS

Clashing between embeds and post-tensioned tendons are often overlooked. Clashing between post-tensioned tendons and anchor channels tends to be a common type of field issue. It is always a good practice to coordinate the curtain wall anchorage and posttensioned cables layout, in order to avoid last minute remediations.

Current model codes provide minimal guidance to account for the influence of post-tensioned cables on anchors. The use of cast-in anchor channels in post-tensioned slabs is ideal since compared to other anchoring technologies such as post-installed anchors, it does not require drilling. However, additional measurements need to be taken to ensure the concrete is not overstressed and the concrete capacity of the anchor is not overestimated.

Generally, if the live or dead end of the tendon does not induce additional stresses in the anchorage zone, the capacity of the anchor can be predicted based on applicable anchoring-toconcrete provisions. The anchorage zone of an anchor (concrete volume due to projected area) can be predicted by idealizing the failure planes in shear and tension.

Figure 11.5.3.1 — Face of slab configuration with live end of post-tensioned slab outside the anchorage zone.

Figure 11.5.3.2 — Top of slab configuration with live end of post-tensioned slab outside the anchorage zone.

If the live or dead end of a post-tensioned cable is located or induces additional stresses in the anchorage zone, additional measurements should be taken. Due to model code limitations, a wide range of possible configurations, different types of anchors, and the complexities of this topic in general, these types of conditions shall be assessed on a case-by-case basis and requires additional coordination between different parties such as Engineer of Record, Specialty Engineers (Curtain Wall Designer and Post-Tensioning Engineer), and Anchor Manufacturers. For additional support, please contact Hilti at US+CA.HAC@Hilti.com.

Figure 11.5.3.3 — Anchor channels installed near live end of post-tensioned cables. Contact Hilti for additional information.

11.5.4 UNCRACKED CONCRETE

Per ACI 318-14, anchors located in a region of a concrete member where analysis indicates no cracking at service load levels, the modification factors for uncracked concrete can be applied. Figure 11.5.4.1 illustrates compression zones in different concrete structures.

Cantilever slab

Continuous Slab

Compression zone

Figure 11.5.4.1 - Compression zones in different concrete structures

11.5.5 CONCRETE CURB

Although concrete curbs tend to not be the predominant condition, it is a typical condition encountered in buildings and presents additional challenges on it own such as reduced geometrical parameter and lower concrete compressive strengths. The following best practices can help to ease the design, approval process, and minimize field fixes.

- 1) Always verify the concrete compressive strength as it typically different from the slab or beam which is connected to.
- 2) Design of anchors is limited to the anchor design. Therefore, its design verifies the adequacy of the concrete at a local level; it ensures the concrete can take resist the applied loads. If a cold joint between the main structure and concrete curb is present, ensure there is proper load transfer between both structures. Additional reinforcement may be required.
- 3) For installation purposes of top of slab applications, it is recommended to leave exposed areas in front and behind the channel to ensure proper concrete compaction and inspection as air pockets tends to be a common field issue in this type of configurations.

Figure 11.5.5.1 — Installation of HAC in top of slab curbs.
2. HAC Portfolio

4. Design **Applications** Introduction

3. HAC

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing **Design Code Bar Anchorage** 9. Special Anchor 10. Design **Channel Design** Software

11.5.6 CONCRETE CONSOLIDATION

The combination of new construction practices, new technologies, and more sophisticated designs is allowing for the construction of buildings in record times. Spans get longer, columns get smaller, slabs get thinner, and lighter construction materials are used. As a result, the construction process has become more complex and best practices have evolved to solve the disputes of modern business. A common field issue encountered in building construction is the formation of air pockets (entrapped air) in the concrete at the anchorage zone.

Air pocket formation occurs due to improperly or no concrete consolidation. Repairing cured concrete with entrapped air is time-consuming, tedious, and can turn out to be guite expensive. Adopting best practices to ensure proper concrete consolidation is performed at the anchorage zone is one of the most effective ways to minimize field issues due to improper concrete consolidation. A couple of extra seconds at each connection point can pay dividends, avoid additional coordination and additional work to an already complex and fast-track work environment where the project's schedule leaves room for a minimal margin of error.

Proactivity goes a long way. Implementing best practices that ensure adequate concrete consolidation will ensure the anchorage will perform the way it was designed. During preconstruction meetings, emphasize the importance of adequate concrete consolidation at the anchorage zone, especially if the cast-in anchor is near a confined space or congested zone. Try it out in your next project!

Figure 11.5.6.1 — Pictures of Conditions with Improper Concrete Consolidation at the Anchorage Zone.

Concrete

Concrete is the combination of four basic components:

- Water
- Cement
- Sand (small aggregate)
- Rock (large aggregate).

When mixed together, hydration, or curing, occurs, where the cement paste acts as a glue binding all of the surrounding aggregates. When concrete is poured, it contains entrapped air. If the entrapped air is not removed and the concrete is hardened in this way, it will negatively impact the expected properties of the concrete. Moreover, it will create serviceability, esthetics, and other issues such as subsidence cracking, and placement lines (1).

Entrapped Air in Concrete

When concrete is first poured, entrapped air can occupy up to 20% of the concrete volume (1). The amount of entrapped air varies depending on the concrete's workability. As a rule of thumb, concrete compressive strength improves by about 5% for every 1% of air removed (3). Figure 11.5.6.2 illustrates the decrease in strength of the designed concrete compressive strength per percentage of entrapped air.

Figure 11.5.6.2 – Loss of Concrete Compressive Strength Through Increase in Entrapped Air (2).

Concrete Consolidation

Concrete consolidation is defined as the process of removing entrapped air from freshly placed concrete. Several methods and techniques are available, the choice depending mainly on the workability of the mixture, placing conditions, and degree of air removal desired. Some form of vibration is usually employed (1).

Purpose of Concrete Consolidation

Proper concrete consolidation helps avoid air pocket Although there are different ways to consolidate the concrete, formations, honey combs, and removes the entrapped air in the the most effective way to remove entrapped air is vibration. concrete. Adequate concrete consolidation helps ensure the Vibration consists of subjecting freshly placed concrete to rapid concrete will reach its designed properties as well as helping vibratory impulses which liquefy the mortar and significantly reduce the internal friction between aggregate particles (1). the concrete reach its designed strength. Moreover, adequate concrete consolidation helps enhance the bond of the concrete Figure 11.5.6.5 illustrates a construction member vibrating the with the reinforcing bars and increases the general durability concrete at the anchorage zone using a standard immersion of the concrete. Finally, it helps decrease the permeability and vibrator. helps minimize it's shrinkage and creep characteristics. Figure 11.5.6.4 provides pictures of jobsites with proper concrete consolidation at the anchorage zone.

Figure 11.5.6.4 — Pictures of Conditions with Proper Concrete Consolidation at the Anchorage Zone.

The Process of Concrete Consolidation

Figure 11.5.6.5 - Construction Member Vibrating the Concrete at the Anchorage Zone.

Consolidation via standard immersion vibrators is best described as consisting of two stages - the first comprising subsidence or slumping of the concrete, and the second a de-aeration (removal of entrapped air bubbles). The two stages may occur simultaneously, with the second stage underway near the vibrator before the first stage has been completed at greater distances (2). Figure 11.5.6.6 illustrates the two-stage process to best consolidate concrete. If in doubt, always err on the side of more vibration.

Per ACI 309R-05, the procedure for internal vibration shall be as follows (1):

- · Concrete should be deposited in layers compatible with the work being done.
- The maximum layer depth should be limited to 20".
- The depth of the layer should be nearly equal to the vibrator head length.
- The layer should be as level as possible so that the vibrator is not used to move the concrete laterally, as this could cause segregation.
- The vibrator should be systematically inserted vertically at a uniform spacing over the entire placement area.
- The distance between insertion should be approximately 1-1/2 times the radius of influence and should be such that the area visibly affected by the vibrator overlaps the adjacent just-vibrated area.

2. HAC Portfolio

4. Design Introduction

3. HAC

Applications

5. Base material 6. Loading 9. Special Anchor **Channel Design**

10. Design Software

Total Time for both stages of the process: 10 to 20 seconds Figure 11.5.6.6 -

MINIMIZING FIELD FIXES OF CAST-IN ANCHORS

Depending on the amount of entrapped air, the field fix for the anchorage may vary from a simple patch with high strength non-shrinkable grout, installing post-installed headed rebars, or re-pouring a large amount of concrete. The field fix becomes more cumbersome and costlier for areas where anchors are highly loaded and reinforcing bars are used.

To avoid/minimize the number of conditions with entrapped air at the anchorage zone, be proactive. During pre-construction meetings, discuss the following with the concrete contractor: a) Require concrete consolidation at each anchorage point (the GC will thank you later!). Add extra emphasis on heavily reinforced zones, congested areas, confined spaces, areas with minimum reach, and zones where the formwork prevents visibility. b) Share the best practices and make sure the field personnel know to consolidate the concrete.

References:

1) Guide for Consolidation of Concrete, ACI 309 R-05

- 2) Cement Concrete and Aggregates Australia 2006 Compaction of concrete (Australia) 1-7
- 3) DesigNSWn and Construction of Concrete Floors, George Garber. Elsevier Ltd, 2006.
- 4) The Why and how of consolidating concrete, by Bruce A. Suprenant

11.6 ANCHOR CHANNEL SPECIFICATIONS

Specifier Note: This specification is intended to address the use of cast-in anchor channel for safety-related applications, such as structural connections, earthquake bracing, guard rails, mechanical and electrical equipment support, piping and ductwork support and bracing, cladding, and façade connections, or rebar doweling.

PART 1 - GENERAL

1. SUMMARY

A. Supply of anchor channels used to connect construction members

Specifier Note: Revise paragraph below to suit project requirements. Add/delete section numbers and titles per project requirements and specifier's practice.

B. Related Sections:

1. Concrete	03000
2. Concrete Accessories	03150
3. Precast Concrete	03400
4. Masonry Accessories	04090
5. Stone	04400
6. Metal Fabrication	05500
7. Curtain Wall and Glazed Assemblies	08900
8. Tunnel Construction	31740

C. References

1. American Concrete Institute (ACI)

- 2. American Institute of Steel Construction (AISC)
- 3. American Society of Civil Engineers (ASCE)
- 4. American Society for Testing and Materials (ASTM)
- 5. Cement Association of Canada (CAC)
- 6. Canadian Institute of Steel Construction (CISC)
- 7. Canadian Society for Civil Engineering (CSCE)
- 8. Canadian Standards Association (CSA)
- 9. International Building Code (IBC)
- 10. European Technical Approval (ETA)
- 11. International Code Council Evaluation Service Report

2. SUBMITTALS

Specifier Note: Insert appropriate section for the project as referred to below for shop drawings or submittals.

- A. General: Submit in accordance with Conditions of the Contract and Division 1 Submittal Procedures Section. drawings
- 2. Shop Drawings:
- B. Placement Drawings: Submit drawings showing the anchor channel layout and locations required.
- - channel used to resist loading in three load directions

a. Tension load

1. Product Data: Submit size and strength capacity information for each anchor channel profile specified in the contract

C. Structural calculations: Submit manufacturer-provided technical manual and calculation software based on internationally recognized design provisions as referenced in section 1.01 to support the Project Engineer in designing the anchor channels.

1. Submit an evaluation report demonstrating compliance with the 2012 or later International Building Code for cast-in

2. HAC Channel Systems Portfolio

4. Design Introduction

5. Base material

6. Loading

7. Anchor Channel Design Code

8. Reinforcing 9. Special Anchor 10. Design Bar Anchorage Channel Design Software

- b. Shear load (perpendicular to the channel axis)
- c. Longitudinal load (parallel to the channel axis)

Samples: Representative length and diameters of each type anchor channel shown on the drawings.

Quality Assurance Submittals:

1. Anchor

ICC-ES Evaluation Report showing conformance with current applicable ICC AC232 Acceptance Criteria

3. HAC

Applications

Certificate of Compliance showing compliance of the anchor channel to manufacturer's published technical specifications Manufacturer's installation instructions

3. QUALITY AND ASSURANCE

- A. Manufacturer must have experience in anchoring technology.
- B. Manufacturer shall follow a documented quality assurance program and be ISO 9001 and ISO 14001 certified.
- C. Manufacturer's published anchor channel strengths to be confirmed by an independent third party testing agency.
- D. Certifications: Unless otherwise authorized by the Engineer, anchor channels shall have one of the following certifications: 1. ICC-ES Evaluation Report showing conformance with current applicable ICC AC232 Acceptance Criteria 2. Certificate of Compliance showing compliance of the anchor channel to manufacturer's published technical specifications
- 4. DELIVERY, STORAGE AND HANDLING
- A. Anchor channels and accessories must be packaged appropriately to help prevent loss or damage during transport
- B. All materials received on the jobsite must be stored in a secure and dry location prior to installation

PART 2 - PRODUCTS

1. MANUFACTURERS

- Cast-in Anchor Channels and accessories shall be manufactured by
- 1. Hilti Corp, and supplied in the US by Hilti, Inc., Plano, TX, phone (800) 879-6000; and in Canada by Hilti (Canada) Corp, Mississauga, Ontario, (800) 363-4458
- 2. Jordahl DKG and supplied in the US by Decon USA Inc. (707) 996-5954 and in Canada by Continental Decon Inc., (800) 363-3266
- 3. Halfen Anchoring Systems, Converse, TX, phone (800) 323-6896

2. MATERIALS

- A. Anchor channels shall consist of either cold formed V-form profile or hot rolled steel channel profiles with round steel anchors mechanically attached to the back of the channel. "L-shaped" anchors securely attached to the back of the channel with fillet welds are also acceptable. The cold formed profiles are made of carbon steel conforming to ASTM A283 Grade C with a minimum yield strength of 30,000psi. The hot rolled profiles conform to ASTM A1011 with a minimum yield strength of 33,000psi. The round anchors must conform to ASTM A108.
- B. The anchor channels shall be protected by a hot dipped galvanized finish, or be stainless steel. Hot dipped galvanizing shall be in accordance to ISO 1461 with minimum thickness of 45 mm or be in accordance with ASTM A123. Stainless steel materials shall conform to stainless steel A4 grade 50.
- C. T-bolts shall be used to fasten a metal or concrete member to the anchor channel. These bolts shall be designed to meet the manufacturer's published strengths. The T-bolts must show a mark on the screw indication proper engagement into the channel.
- D. Finishes:
- 1. Hot dipped galvanizing of anchor channels shall be in accordance to ISO 1461 with minimum thickness of 45 mm or conform to ASTM A123.
- 2. Hot dipped galvanized T-bolts shall be in accordance to ISO 1461 with minimum thickness of 45 mm or conform to ASTM A153.
- 3. Zinc electroplated T-bolts shall have a coating thickness ≥ 8mm or conform to ASTM B633 or EN ISO 4042, A3K.

- concrete from seeping into the channel.
- F. Anchor channel fabrication tolerances are ± 3mm for lengths of 300mm or less and ± 6mm for lengths >300mm.
- standards shown above.

3.01 INSTALLATION

- A. The manufacturer's instructions must be followed to install the anchor channels properly on the formwork. instructions
- setting mark must show proper T-Bolt engagement in the channel
- manufacturer and performed in accordance with its published instructions

3.02 REPAIR OF DEFECTIVE WORK

A. Installer shall protect anchor channel and accessories from damage.

E. End caps and a LDPE closed-cell foam filler with integrated tear-out strip shall be placed in the channel profile to help prevent

G. Anchor channels and components may be produced according to different international standards if they meet or exceed the

B. Installer shall affix anchor channels in required locations before concrete is poured. Concrete shall be applied in a continuous pour for each anchor channel, ensuring complete coverage with no voids or gaps, and flush with the outer face of the anchor channel. The appropriate T-bolt shall be used to connect the specified metal or concrete member to the anchor channel after the concrete is cured. The specified torque shall be applied to the T-bolt as listed in the manufacturer's installation

C. Only the correct type of T-bolts supplied by the anchor channel manufacturer may be used to fasten a metal or concrete member to the anchor channel. The T-bolts are designed to meet the strength limits published by the manufacturer. The

D. No alteration, such as cutting or bending, is permitted of anchor channel legs. Channel may be cut to size only if permitted by

n 10. Design Software

12. INSTRUCTIONS FOR USE

2. HAC

Portfolio

1. Anchor

Channel Systems

This chapter provides instructions for use for the different anchor channel systems. Instructions for may change over time. To verify if the published instructions for use are the latest, please visit our website.

3. HAC

Applications

4. Design

Introduction

5. Base material

12.1.1 INSTALLATION INSTRUCTIONS FOR HILTI ANCHOR CHANNELS — HAC AND HAC-T

12.1.2 INSTALLATION INSTRUCTIONS FOR HILTI ANCHOR CHANNELS — HAC EDGE LITE, HAC EDGE, HAC-T EDGE LITE, AND HAC-T EDGE

12.1.3 INSTALLATION INSTRUCTIONS FOR HILTI ANCHOR CHANNELS — HAC EDGE C AND HAC-T EDGE C

10. Design

Software

12.1.4 INSTALLATION INSTRUCTIONS FOR HILTI ANCHOR CHANNELS — HAC S EDGE AND HAC-T S EDGE

1. Anchor

Channel Systems

12.1.5 INSTALLATION INSTRUCTIONS FOR HILTI ANCHOR CHANNELS — HAC S EDGE C AND HAC-T S EDGE C

10. Design

Software

12.1.6 INSTALLATION INSTRUCTIONS FOR HILTI ANCHOR CHANNELS — HAC CRFOS U

3. HAC

Applications

1. Anchor

Channel Systems

2. HAC

Portfolio

12.1.7 INSTALLATION INSTRUCTIONS FOR HILTI ANCHOR CHANNELS — HAC CRFOS U

C and HAC-1 HAC EUGE and

12 Instructions for Use Anchor Channel

12.1.8 INSTALLATION INSTRUCTIONS FOR HILTI CHANNELS BOLTS — HBC-C

12.1.9 INSTALLATION INSTRUCTIONS FOR HILTI CHANNELS BOLTS — HBC-C-N

12.1.10 INSTALLATION INSTRUCTIONS FOR HILTI SERRATED CHANNELS BOLTS — HBC-T

3. HAC

Applications

2. HAC

Portfolio

1. Anchor

Channel Systems

12.1.11 INSTALLATION INSTRUCTIONS FOR HILTI SERRATED CHANNELS BOLTS — HBC-B

10. Design

Software

12.1.12 INSTALLATION INSTRUCTIONS FOR HILTI CHANNELS BOLTS (HBC-C) USED IN CONJUNCTION WITH HILTY HIT HY-100 **ÀDHESÍVE**

3. HAC

Applications

4. Design

Introduction

5. Base material

6. Loading

2. HAC

Portfolio

1. Anchor

Channel Systems

This chapters provides best practices for cast-in anchor channels. This chapter provides some additional information for designers, reviewers, installers, and inspectors. The ultimate goal is to allow for the most code-compliant, feasible solution, based on the project's schedule.

7. Anchor Channel 8. Reinforcing

Bar Anchorage

Design Code

9. Special Anchor

. Channel Design

10. Design

Software

Coming soon

4. Design Applications Introduction

5. Base material

6. Loading

9. Special Anchor Channel Design

10. Design Software

14. DESIGN **EXAMPLES**

1. Anchor

This chapter provides a step by step detail explanation of every single failure mode of an anchor channel with rounded head anchors.

3. HAC

14.1 DESIGN EXAMPLES

Figure 14.1.1 — Design example - Facade Connection

Given:

Floor - Floor height = 10.5' Mullion Spacing = 5' DL = 14 psf Wind Pressure (ASD) = 40psf Code = ASCE 7-10

Snap shot from structural notes

CON	ICRETE SHALL BE NORMAL WEIGHT AND SHALL OBTAIN 28 ENGTHS AS FOLLOWS:	DAY COMPRES
Α.	SLAB-ON-GRADE	3.500 P
B.	WALLS	6.000 F
C.	STRUCTURAL SLABS AND BEAMS	6.000 P
D.	CONCRETE NOT OTHERWISE NOTED	3.000 P
E.	PILE CAPS	4.000 P
F.	COLUMNS	SEE SHEET S-6
D	SEISMIC DESIGN DATA	
	RISK CATEGORY	1
	SEISMIC IMPORTANCE FACTOR	1.0
	SS	0.094a
	S1	0.048g
	SITE	CLASS D
	SDS	0.100g
	SD1	0.077g
	SEISMIC DESIGN CATEGORY	В
	DESIGN BASE SHEAR	1276 KIPS
	SEISMIC RESPONSE COEFFICIENT	0.021
	RESPONSE MODIFICATION FACTOR	4.0
	ANALYSIS PROCEDURE EQUIVALENT LATERAL FORCE	
	BASIC SEISMIC-FORCE-RESISTING SYSTEM IS ORDINARY	
	REINFORCED CONCRETE SHEAR WALLS	

Figure 14.1.2 - Design example - Structural notes

11. Best **Practices** **12. Instructions** for Use

Figure 14.1.3 - Design example - Bracket Plan View

SSIVE

Figure 14.1.4 — Design example – Bracket Section View

Seismic provision will not apply since the project is located in SDC B.

Concrete ----

f._= 6000psi

c_{a1}=5.00"

λ=1.0 (normal weight concrete)

HAC-50 106/350 F is used with (2) HBC-C 8.8F, M16x60

h_{of} = 4.173 in.

Length: 13.8 in., anchor spacing: 5.906 in., projection: 0.984 in., width: $b_{ch} = 1.650$ in., height: $h_{ch} = 1.220$ in.

Please refer to chapter 02 for properties of the channel.

2. HAC Portfolio Channel Systems

1. Anchor

4. Design Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage

Discussion

stress under the fixture (oc).

 $\overline{AE} \xrightarrow{\frown} \overline{(A_{T-bolts})(E_{T-bolts})}$

 $(F_{T-bolts})(L)$

PL .

33

 $\frac{\mathcal{E}_{c}}{2}$ \mathcal{E}_{s}

*E*_ =

 $\overline{x}^{-}\overline{(5-x)}$ $F_{T-bolts}.L$

 $\sigma_c L$

 E_{-}

 $E_{T-bolts}.A_{T-bolts}$

 $E_c x = E_{T-bolts} \cdot A_{T-bolts} \cdot (5-x)$

 $(E_c).(x)$

force is distributed equally on each T-bolt.

9. Special Anchor Channel Design

10. Design 11. Best Software **Practices** Calculations The application is statically indeterminate. Use $(0.487 \ in^2).(29000000 \ lb/in^2).(\sigma_c).(5-x)$ compatibility equations and statics equations to $F_{T-bolts}$ $(4351200 \ lb / in^2).(x)$ solve for the location of the neutral axis (x). Once x is known, the tension force on each T-bolt can $(3.246 \ in^2).(\sigma_c).(5-x)$ $F_{T-bolts} =$ be calculated. Using the compatibility equations, х define the tension force acting on both T-bolts (FT-bolts) in terms of the concrete compressive Sum the tension forces and moments $\sum F + \uparrow = 0$ $F_{T-bolts} + 882 \ lb - \frac{(1).(\sigma_c)}{(1)}$ $(3.246 \ in^2).(\sigma_c).(5-x)$ **E**s х $\sigma_c \cdot \left[\left[\frac{(1) \cdot (x) \cdot (10)}{2} \right] \right] - \sigma_c$ 5"-x $\sigma_{c} \cdot \left[\frac{(5) \cdot (x^{2}) + 3.246x - 1}{2} \right]$ γ is so small that $\tan(\gamma) = \frac{\varepsilon_c}{x} = \frac{\varepsilon_s}{(5-x)}$ x 882*x* $\sigma_c =$ $(5).(x^2) + 3.246x$ $(3.246 in^2).(\sigma_a)$ F_{T-bolt} х $(3.246). \left\lfloor \underline{(5).(x^2)} \right\rfloor$ $F_{T-holts}$ 14314.86-28 Compatility equations : assume L = "unity" $F_{T-bolts}$ $(5).(x^2) + 3.24$ $F_{T-bolts} = \frac{(A_{T-bolts}).(E_{T-bolts}).(\sigma_c).(5-x)}{(5-x)}$ $\sum M = 0$ Using statics equations, define the concrete stress under the fixture (oc) in terms of the (882). $2 + \frac{x}{3} + (3500).$ Icompressive ocation of the neutral axis (x). Solve for x via trial and error. Once x is known, (882). $2 + \frac{x}{3} + (3500).$ the values for σc and FT-bolts can be calculated. Once FT-bolts is known, the tension force on each T-bolt can be determined. The applied shear

After trial and error x=1.779993152175" the solution to Eqn3 leads to 0.000000221, which is approximately equal to zero. Substituting the value for x into equation 2 will lead to FT-bolts= 1700lbs. Tension force on each t-bolt = 1700lbs/2=850lbs. Shear Force per each t-bolt = Vy=3500lbs/2=1750lbs per t-bolt

Figure 14.1.7 - Design example - Section View - Force Resultant

Code	Discussion	Calculations
Step 1: Load Combinati	on and Bracket dimension	
ASCE 7-10	There load combination that is evaluated:	Wind Load:
2.3.2	1.2DL + WL/0.6	WL(ASD)=40psfx10.5'x5'=2100lbs
	Slab depth: 8"	WL(Strength level)=2100lbs/0.6=3500lbs
	Pocket height: 2"	DL(ASD)=14psfx10.5'x5'=735lbs
	Front edge distance : 5"	DL(Strength level)=1.2x735lbs=882lbs
	Side edge distance : 6"	Slab depth deducting pocket: 8"-2"=6"
	T-bolt spacing: 6"	Available tolerance along the channel length: (13.8"-(2x0.984")-6")/2=2.916"
	Bracket tolerance: 1.5" in/out	Bracket dimension in y-direction: 8.75"
	Worst position: Bracket out	Bracket dimension in x-direction: 1.5"

3. HAC

Applications

Figure 14.1.5 – Design example – Profis anchor channel - 3D front View

Figure 14.1.6 - Design example - Profis anchor channel - 3D Back View

9.843

Step 2: Determination of T-bolt Tension and shear forces	
Determine the tension loads on the T-bolts. Assume the fixture is rigid. PROFIS Anchor Channel assumes Ec = 30,000 Mpa (2) HBC-C 8.8F M16x60 are used.	$\begin{split} A_{\text{T-bolts}} &= (2)(\text{tensile stress area of T-bolt}) = (2)(157 \text{ mm}^2)[1\text{in}^2 / (25.4 \text{ mm})^2] = 0.487\text{in}^2 \\ E_{\text{T-bolts}} &= (\text{modulus of elasticity for T-bolt}) = 29,000,000 \text{ lb/in}^2 \\ E_{\text{concrete}} &= (\text{modulus of elasticity for concrete}) = 30,000 \text{ MPa} = 4,351,200 \text{ lb/in}^2 \end{split}$

$$\frac{(x).(x).(b)}{2} = 0$$

+882 - $\frac{(1).(\sigma_c).(x).(b)}{2} = 0$
 $\left[\frac{(3.246 \ in^2).(5-x)}{x}\right] = 882$
 $\frac{(6.23)}{x} = 882$
 $\frac{-16.23}{x} \rightarrow Eqn \ 1$
 $(.).(5-x)$

$$\frac{882x}{x^2) + 3.246x - 16.23} \left[.(5-x) \\ x \\ \frac{862.972x}{16x - 16.23} \right] \longrightarrow Eqn \ 2$$

$$1.5] - (F_{T-bolis}) \cdot \left[5 - \frac{x}{3} \right] = 0$$

$$1.5] - \left[\frac{14314.86 - 2862.972x}{(5) \cdot (x^2) + 3.246x - 16.23} \right] \cdot \left[5 - \frac{x}{3} \right] = 0 \longrightarrow Eqn \ 3$$

Figure 14.1.8 — Design example - Plan View

Code	Discussion	Calculations	Code	Discussion
ep 3: Determinat	ion of worst tolerance		Step 3: Determination	on of worst tolerance
	Please note that the t-bolt forces are applied all along the channel length and the forces at anchors are determined. Then the worst case utilization report will be printed out in profis anchor channel software. Therefore the bracket can be located any where along the available channel length. The anchor element forces are evaluated in this example at the worst location along the channel length.	The worst utilization is obtained at 2.896". The tolerance interval is -11.812" and 11.812" (13.8"-(2x0.984").	ESR-3520 Section 4.1.2.2	The T-bolt #1 tension force (850 lb) will have ar influence on each anchor element as shown below. The tension forces on anchor elements #1, #2 and #3 resulting from this influence will be defined as $N_{ua1,1}$, $N_{ua1,2}$ and $N_{ua1,3}$ respectively. The influence factor $A_{1,*x}$ corresponds to the influence on anchor element #x from T-bolt #1. The parameter "s" corresponds to the spacing between each anchor element. The parameter corresponds to the influence length for T-bolt #
		1.5 1.5 10 10		The T-bolt #2 tension force (850 lb) will have an influence on each anchor element as shown below. The tension forces on anchor elements #1, #2 and #3 resulting from this influence will be defined as $N_{un2,1}$, $N_{un2,2}$ and $N_{un2,3}$ respectivel The influence factor $A_{sx,2}$ corresponds to the influence on anchor element #x from T-bolt #2 The parameter "s" corresponds to the spacing between each anchor element. The parameter in corresponds to the influence length for T-bo #2. $\ell_{in} = 4.93 (l_y)^{0.05} \sqrt{s}$

Figure 14.1.11 — Design example – Anchor Tension Forces

× 6 0.984" 9.843" L0.984"

Figure 14.1.10 — Design example – Profis anchor channel - 3D Front View

11. Best Practices 12. Instructions for Use 14. Design Example

Calculations

a₃

 $N_{ua3} = N_{ua1,3} + N_{ua2,3}$

Step 3: Determination of V

Code

ESR-3520

4.1.2.2

Eq (2)

Eq (1)

1. Anchor 2. HAC Channel Systems Portfolio

3. HAC Applications

4. Design Introduction 5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design . Channel Design Software

Discussion	Calculations	Code	Discussion
i worst tolerance		Step 3: Determi	nation of worst tolerance
The highest loaded anchor element in tension does not always control the anchor channel design in tension. The highest utilization, defined by the parameter ($N_{ua,total} / \phi N_n$) controls the design. Therefore, the tension design strengths must be calculated for each anchor element and checked against the total factored tension load acting on that element. The most unfavorably loaded anchor element (highest utilization) controls the design in tension.	$\begin{array}{c c} A_{1,1} &= 1 \\ \hline (10.56 \text{ in } -5.906 \text{ in } +0.1 \text{ in}) & 10.56 \text{ in} \\ A_{1,1} &= 0.45 \\ \hline A_{1,2} &= 1 \\ \hline (10.56 \text{ in} -0.1 \text{ in}) & 10.56 \text{ in} \\ A_{1,2} &= 0.9905 \end{array}$	ESR-3520 4.1.2.2 Eq (2) Eq (1)	The highest loaded anchor element in tension does not always control the anchor channel design in tension. The highest utilization, defined by the parameter ($N_{ua,total} / \phi_{Nn}$) controls the design. Therefore, the tension design strengths must be calculated for each anchor element and checked against the total factored tension load acting on that element. The most unfavorably loaded anchor element (highest utilization) controls the design in tension.
The tension forces acting on each anchor element can be determined assuming a triangular force distribution.	$\frac{A_{1,3}}{(10.56 in - 0.1 in - 5.906 in)} = \frac{1}{10.56 in}$		The tension forces acting on each anchor element can be determined assuming a triangular force distribution.
The triangular force distribution assumes the tension force acting on each T-bolt (850 lb) has an influence on each of the anchor elements within a given distance (ℓ in) from the T-bolt.	$\begin{array}{r} (10.36 \text{ m}^{-1} - 0.1 \text{ m}^{-1} - 3.906 \text{ m}) & 10.36 \text{ m} \\ \text{A}_{1,3} &= 0.431 \\ \text{k}_{1} = \underline{\qquad 1 \qquad \qquad } \text{k}_{1} = 0.5342 \end{array}$		The triangular force distribution assumes the tension force acting on each T-bolt (850 lb) has an influence on each of the anchor elements within a given distance (ℓ in) from the T-bolt.
The resulting tension force on each anchor element $(N_{1, uax})$ from the tension force acting on T-bolt #1 will be proportionate by the factor $(A_{1, sx})$ to the distance of the anchor element with respect to the distance ℓ in. Note that the	$A_{1,1} + A_{1,2} + A_{1,3}$ $N_{ua1,1} = (k_1)(A_{1,1})(850 \ lb)$ $N_{ua1,1} = 204.4 \ lbs$		The resulting tension force on each anchor element ($N_{2,uax}$) from the tension force acting on T-bolt #1 will be proportionate by the factor ($A_{2,*x}$) to the distance of the anchor element with respect to the distance I in. Note that the
influence length (ℓ in) does not necessarily coincide with the channel length.	$N_{ua1,2} = (K_1)(A_{1,2})(850 \text{ ID})$ $N_{ua1,2} = 449.8/bs$		influence length (ℓ in) does not necessarily coincide with the channel length.
Even when a T-bolt is located directly over one anchor element, the T-bolt load is still distributed to all other anchor elements within the distance $\ell_{\rm in}$ from the T-bolt.	$N_{ua1,3} = (k_1)(A_{1,3})(850 \ lb)$ $N_{ua1,3} = 195.8 \ lbs$		Even when a T-bolt is located directly over one anchor element, the T-bolt load is still distributed to all other anchor elements within the distance $\ell_{\rm in}$ from the T-bolt.
	Check:		
	N _{ua1,1} + N _{ua1,2} + N _{ua1,3} =850lbs		
	ОК		

Figure 14.1.13 — Design example – effect of t-bolt 2 on anchors

11. Best Practices 12. Instructions for Use

Calculations

	A _{2,1} =	1
	0 <i>in</i>	10.56 <i>in</i>
	$A_{2,1} = 0$	
_	A _{2,2}	= _1
	(10.56 in - 5.906 in)	10.56 <i>in</i>
	A _{2,2} = 0.441	
	A _{2,3} =	= 1
	(10.56 <i>in</i>)	10.56 <i>in</i>
	A _{2,3} = 1	
	k ₁ =1	▶ k ₁ =0.6941
	A _{2,1} + A _{2,2} + A	2,3
	$N_{ua2,1}=(k_1)(A_{2,1})$)(850 <i>lb</i>)
	N _{ua2,1} = 0 <i>lbs</i>	
	N _{ua2,2} = (k ₁)(A _{2,2}))(850 <i>lb</i>)
	N _{ua2,2} = 260 <i>lbs</i>	
	N _{ua2,3} = (k ₁)(A _{2,3}))(850 <i>lb</i>)
	N _{ua2,3} = 590 <i>lbs</i>	
	Check:	
	N _{ua2,1} + N _{ua2,2} + N	I _{ua2,3} =850lbs
	ОК	

	1. Anchor 2. HAC Channel Systems Portfolio App	3. HAC 4. Design 5. Base material 6. Loading plications	7. Anchor Chann Design Code	nel 8. Reinforcing Bar Anchorage	9. Special An Channel Des
Code	Discussion	Calculations		Code	Discussion
Step 3: Determina	tion of worst tolerance			Step 3: Determine th	e shear forces acting
ESR-3520 4.1.2.2 Eq (2) Eq (1)	The total tension force acting on each anchor element ($N_{uax,tota}$) will be the sum of the T-bolt forces ($N_{1,uax} + N_{2,uax}$) acting on that element. As a check, the sum of the total tension forces acting on all of the anchor elements should equal the sum of the tension forces acting on all of the T-bolts.	$\begin{split} N_{ua1,1} &= 204.4 \ lbs \qquad N_{ua2,1} &= 0 \ lbs \\ N_{ua1,2} &= 449.8 \ lbs \qquad N_{ua2,2} &= 260 \ lbs \\ N_{ua1,3} &= 195.8 \ lbs \qquad N_{ua2,3} &= 590 \ lbs \\ N_{ua1,total} &= N_{ua,1,1} + N_{ua2,1} &= 204 \ lbs \\ N_{ua2,total} &= N_{ua,1,1} + N_{ua2,2} &= 710 \ lbs \end{split}$	_	ESR-3520 4.1.2.2 Eq (2) Eq (1)	The T-bolt #1 sheat influence on each below. The shear fi #1, #2 and #3 resu be defined as V _{ua1,1} The influence facto influence on ancho The parameter "s" between each anc

 $N_{ua3,total} = N_{ua,1,3} + N_{ua2,3} = 786$ lbs

Code	Discussion	Calculations
Step 4: Determine the f	lexural moment (M _{u,flex}) acting on the anchor char	nel.
ESR-3520 4.1.2.2 Eq (2) Eq (1)	$\begin{array}{c} M_{u,\text{flex}} \text{ is a bending moment.} \\ \text{Assume } M_{u,\text{flex}} \text{ occurs at the "point of load} \\ \text{application"} \rightarrow M_{u,\text{flex}} \text{ occurs at the location of the} \\ \text{T-bolt.} \\ \text{Assume the channel is a simply supported beam.} \\ \hline & \underbrace{5.806 \text{ in}} \\ \hline F_1 \\ \underbrace{5.906 \text{ in}} \\ F_2 \\ \underbrace{20 \text{ /bs}} \\ \underbrace{5.806 \text{ in}} \\ \underbrace{5.806 \text{ in}} \\ \underbrace{M_{u,\text{flex}}} \\ \end{array}$	$\begin{split} \Sigma F &: 850 \text{ lbs} - F_1 - F_2 = 0 \\ \Sigma M: \\ (850 \text{ lbs})(5.806 \text{ in}) - (F_2)(5.906 \text{ in}) = 0 \\ F_2 &= 835.61 \text{ lbs} \rightarrow F_1 = 14.39 \text{ lbs} \\ \Sigma M: (14.39 \text{ lbs})(5.806 \text{ in}) - M_{u,\text{flex}} = 0 \\ M_{u,\text{flex}} &= 83.6 \text{ in-lb} \end{split}$

e the s	hear forces acting on each anchor element.
	The T-bolt #1 shear force (1750 lb) will have an influence on each anchor element as shown below. The shear forces on anchor elements #1, #2 and #3 resulting from this influence will be defined as $V_{ua1,1}$, $V_{ua1,2}$ and $V_{ua1,3}$ respectively. The influence factor $A_{1,4x}$ corresponds to the influence on anchor element #x from T-bolt #1. The parameter "s" corresponds to the spacing between each anchor element. The parameter ℓ in corresponds to the influence length for T-bolt #1.
	The T-bolt #2 shear force (1750 lb) will have an influence on each anchor element as shown below. The shear forces on anchor elements #1, #2 and #3 resulting from this influence will be defined as $V_{ua2,1}$, $V_{ua2,2}$ and $V_{ua2,3}$ respectively. The influence factor $A_{x,2}$ corresponds to the influence on anchor element #x from T-bolt #2. The parameter "s" corresponds to the spacing between each anchor element. The parameter ℓ in corresponds to the influence length for T-bolt #2

or

Figure 14.1.15 — Design example – Anchor Shear forces

10. Design

Software

12. Instructions for Use

Calculations

Code

ESR-3520

4.1.2.2

Eq (2)

Eq (1)

1. Anchor Channel Systems

The highest loaded anchor element in shear does

not always control the anchor channel design

parameter (V_{ua.total} / ϕ_{Vn}) controls the design.

against the total factored shear load acting on that element. The most unfavorably loaded

in shear. The highest utilization, defined by the

Therefore, the shear design strengths must be calculated for each anchor element and checked

anchor element (highest utilization) controls the

The shear forces acting on each anchor element

can be determined assuming a triangular force

The triangular force distribution assumes the

given distance (ℓ in) from the T-bolt.

will be proportionate by the factor

coincide with the channel length.

 ℓ_{in} from the T-bolt.

shear force acting on each T-bolt (1750 lb) has an influence on each of the anchor elements within a

The resulting shear force on each anchor element $(V_{1, uax})$ from the shear force acting on T-bolt #1

 $(A_{1, \#x})$ to the distance of the anchor element

with respect to the distance ℓ in. Note that the influence length (ℓ in) does not necessarily

Even when a T-bolt is located directly over one anchor element, the T-bolt load is still distributed

to all other anchor elements within the distance

Discussion

Step 3: Determination of Tension forces on to anchor element.

design in shear.

distribution.

2. HAC 3. HAC Portfolio Applications

Calculations

4. Design Introduction 5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design Channel Design Software

culations	Code	Discussion	Calculations
	Step 3: Determin	ation of Tension forces on to anchor element.	
$\frac{A_{1,1}}{(10.56 in - 5.906 in + 0.1 in)} = \frac{1}{10.56 in}$ $\frac{A_{1,2}}{(10.56 in - 0.1 in)} = \frac{1}{10.56 in}$ $A_{1,2} = 0.9905$ $\frac{A_{1,3}}{(10.56 in - 0.1 in - 5.906 in)} = \frac{1}{10.56 in}$ $A_{1,3} = 0.431$ $k_{1} = \frac{1}{A_{1,1} + A_{1,2} + A_{1,3}}$ $V_{ua1,1} = (k_{1})(A_{1,1})(1750 lb)$ $V_{ua1,2} = 925.99 lbs$ $V_{ua1,3} = (k_{1})(A_{1,3})(1750 lb)$ $V_{ua1,3} = 403.15 lbs$ Check: $V_{ua1,1} + V_{ua1,2} + V_{ua1,3} = 850lbs$ OK	ESR-3520 4.1.2.2 Eq (2) Eq (1)	The highest loaded anchor element in shear does not always control the anchor channel design in shear. The highest utilization, defined by the parameter ($V_{u,n,total} / \varphi_{v,v}$) controls the design. Therefore, the shear design strengths must be calculated for each anchor element and checked against the total factored shear load acting on that element. The most unfavorably loaded anchor element (highest utilization) controls the design in shear. The shear forces acting on each anchor element can be determined assuming a triangular force distribution. The triangular force distribution assumes the shear force acting on each T-bolt (1750 lb) has an influence on each of the anchor elements within a given distance (ℓ in) from the T-bolt. The resulting shear force on each anchor element ($V_{2,ux}$) from the shear force acting on T-bolt #1 will be proportionate by the factor ($A_{2,*,v}$) to the distance of the anchor element with respect to the distance ℓ in. Note that the influence length (ℓ in) does not necessarily coincide with the channel length. Even when a T-bolt is located directly over one anchor element, the T-bolt load is still distributed to all other anchor elements within the distance lin from the T-bolt.	$\frac{A_{2,1}}{0 \text{ in }} = \frac{1}{10.56 \text{ in }}$ $A_{2,1} = 0$ $\frac{A_{2,2}}{10.56 \text{ in } -5.906 \text{ in }} = \frac{1}{10.56 \text{ in }}$ $A_{2,2} = 0.441$ $\frac{A_{2,3}}{10.56 \text{ in }} = \frac{1}{10.56 \text{ in }}$ $A_{2,3} = 1$ $k_{1} = \frac{1}{A_{2,1} + A_{2,2} + A_{2,3}} + k_{1} = 0.6941$ $V_{ua2,1} = (k_{1})(A_{2,1})(1750 \text{ lb})$ $V_{ua2,2} = (k_{1})(A_{2,2})(1750 \text{ lb})$ $V_{ua2,2} = (k_{1})(A_{2,3})(1750 \text{ lb})$ $V_{ua2,3} = 1214.67 \text{ lbs}$ Check: $V_{ua2,1} + V_{ua2,2} + V_{ua2,3} = 1750 \text{lbs}$ OK

11. Best **Practices** **12. Instructions** for Use

	0

2. HAC 1. Anchor annel Systems Portfolio

3. HAC Applications

4. Design Introduction 5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design . Channel Design Software

AC232 strength design provisions require calculation of nominal strengths corresponding to possible failure modes. Each nominal shear strength is multiplied by a strength reduction factor (Φ-factor) to obtain a design shear strength. The parameter "% utilization" corresponds to the ratio:

where "factored load" corresponds to the total factored load (N_{axx,total} or N_{T-boll}) and (V_{axx,total} or V_{T-boll}) acting on an anchor element in tension or shear respectively, and "design strength" corresponds to the calculated design strength for the failure mode being considered in tension or shear respectively, Utilizations less than 100% indicate the factored load is less than the design strength, while utilizations greater than 100% indicate the factored load exceeds the design strength. Therefore, the anchor channel design is considered acceptable if all of the utilizations are less than 100%, and the combined interaction checks using these utilizations are satisfied. When both tension and shear loads act on the anchor channel system, combined interaction checks must be made for both steel failure and concrete failure.

Code	ode Discussion		
Step 4: Steel strengt	n Anchor and connection between anchor and channel profile.		
ESR-3520 section 4.1.3.2.2	Anchor strength Tension (Anchor a3, Channel a) $\Phi N_{sa} \ge N_{ua}^{a}$ Nominal strength corresponding to the anchor element $\rightarrow N_{sa}$ Reference ESR-3520 Table 8-3. N_{sa} for the anchor element of an HAC-50F channel = 11240 lb Φ =0.75	$N_{ua3}^{a} = 786 \ lbs$ $\phi N_{sa} = 8430 \ lbs$ $\beta_{N,sa} : \frac{N_{ua3}^{a}}{\phi N_{sa}} \times 100 = 10\%$	Anchor: ϕN_{sa}
ESR-3520 section 4.1.3.3.2, 4.1.3.4.2	Anchor strength perpendicular shear (Anchor a3) $\Phi V_{say} \ge V^a_{uay}$ Nominal strength corresponding to the anchor element $\rightarrow V_{say}$ Reference ESR-3520 Table 8-5. V_{say} for the anchor element of an HAC-50F channel = 7865 lb Φ =0.75	$V_{ua3}^{a} = 1618 \ lbs$ $\phi V_{sa,y} = 5899 \ lbs$ $\beta_{N,sa} : \frac{V_{ua3}^{a}}{\phi V_{sa,y}} \times 100 = 28\%$	Anchor and channel connection: ϕV_{scy}
ESR-3520 section 4.1.3.2.2	Tension Strength of connection between anchor and channel (Anchor a3) $\Phi N_{sc} \ge N_{ua}^{a}$ Nominal strength corresponding to the anchor element $\rightarrow N_{sc}$ Reference ESR-3520 Table 8-3. N _{sc} for the anchor element of an HAC-50F channel = 7865 lb Φ =0.75	$N_{ua3}^{a} = 786 \ lbs$ $\phi N_{sc} = 5899 \ lbs$ $\beta_{N,sa} : \frac{N_{ua3}^{a}}{\phi N_{sc}} \times 100 = 14\%$	Anchor and channel connection: ϕN_{sc}
ESR-3520 section 4.1.3.3.2, 4.1.3.4.2	Strength of connection between anchor and channel — perpendicular shear (Anchor a3) $\Phi V_{scy} \ge V^{s}uay$ Nominal strength corresponding to the anchor element $\rightarrow V_{scy}$ Reference ESR-3520 Table 8-5. V_{scy} for the anchor element of an HAC-50F channel = 7865 lb Φ =0.75	$V_{ua3}^{a} = 1618 \ lbs$ $\phi V_{sc,y} = 5899 \ lbs$ $\beta_{N,sa} : \frac{V_{ua3}^{a}}{\phi V_{sc,y}} \times 100 = 28\%$	Anchor and channel connection: ϕV_{scy}

Code	Discussion	Calculations
Step 3:Determination	of Tension forces on to anchor element.	
ESR-3520 4.1.2.2 Eq (2) Eq (1)	The total shear force acting on each anchor element (Vuax,total) will be the sum of the T-bolt forces (V1,uax + V2,uax) acting on that element. As a check, the sum of the total shear forces acting on all of the anchor elements should equal the sum of the shear forces acting on all of the T-bolts.	$V_{ua1,1} = 420.86 \ lbs \ V_{ua2,1} = 0 \ lbs$ $V_{ua1,2} = 925.99 \ lbs \ V_{ua2,2} = 535.33 \ lbs$ $V_{ua1,3} = 403.15 \ lbs \ V_{ua2,3} = 1214.67 \ lbs$ $V_{ua1,total} = V_{ua,1,1} + V_{ua2,1} = 421 \ lbs$ $V_{ua2,total} = V_{ua,1,2} + V_{ua2,2} = 1461 \ lbs$ $V_{ua3,total} = V_{ua,1,3} + V_{ua2,3} = 1618 \ lbs$

Figure 14.1.18 — Design example – Anchor Shear forces

M_{u,flex} = 83.6 in-lb T-bolt forces

	Bolt	N ^ь _{ua} (lbs)	V ^ь _{ua} (Ibs)	V ^ь _{uax} (lbs)	V ^ь _{uay} (Ibs)
	1	850	1750	0	-1750
_	2	850	1750	0	-1750

T-bolt forces

Anchor element	N ^ь _{ua} (lbs)	V ^ь _{ua} (Ibs)	V ^ь _{uax} (lbs)	V ^ь _{uay} (Ibs)
a ₁	204	421	0	421
a ₂	710	1461	0	1461
a ₃	786	1618	0	1618

factored load (N_{ua} or V_{ua}) design strength (ϕN_n or ϕV_n)

le	Discussion	Calculations	Code	Discussion	Calculations
: Steel streng	th Anchor and connection between anchor and channel profile.		Step 5: Steel stre	ngth local flexure channel lip and flexure of channel	
3520 section .6	$ \begin{array}{l} \label{eq:combined tension and shear loads (Interaction) \\ \mbox{Anchor and connection between anchor and channel (Anchor a3) The interaction check for steel failure of the channel requires the ratio (factored load acting on the anchor element/anchor element or anchor-channel connection design strength) to be checked using Equation (44) in ESR-3520. V^a_{ua,x} = 0lbs \\ \mbox{max} \left(\frac{N^a_{ua}}{\phi N_{sa}}, \frac{N^a_{ua}}{\phi N_{sc}} \right)^a + \max \left(\frac{V^a_{ua,y}}{\phi V_{sc,y}}, \frac{V^a_{ua,y}}{\phi V_{sc,y}} \right)^a + \max \left(\frac{V^a_{ua,x}}{\phi V_{sc,x}}, \frac{V^a_{ua,x}}{\phi V_{sc,x}} \right)^2 \leq 1.0 \\ \mbox{Governing failure mode in tension is Connection anchor-channel.} \\ \mbox{$\beta_{Nsc} = \frac{N^a_{ua}}{\Phi N_{sc}}} \\ \mbox{Governing failure mode in shear is Anchor/connection - perpendicular shear.} \\ \mbox{$\beta_{Vsay} = \frac{V^a_{ua,y}}{\Phi N_{sc}}} \end{array} $	$\max \left(\frac{N_{ua}^{a}}{\phi N_{sa}}, \frac{N_{ua}^{a}}{\phi N_{sc}} \right)^{2.0}$ $\beta^{2}_{N,ac} = 0.01770$ $\max \left(\frac{V_{ua,y}^{a}}{\phi V_{sa,y}}, \frac{V_{ua,y}^{a}}{V_{sc,y}} \right)^{2.0}$ $\beta^{2}_{Vsa,y} = 0.07528$ $= 1.00000$ $0.01770 + 0.07528 \le 1.00000$ Utilization : 10%.	ESR-3520 section 4.1.3.2.2	$ \begin{array}{l} \label{eq:characteristic} Channel lip strength in tension: ESR-3520 Section 4.1.3.2.2 requires a check to made to determine if the clear distance between two T-bolts (s_{chb}) is > the parameter 2(b_{ch}), where bch corresponds to the channel width. Values for bch are given in Table 8-1 of ESR-3520. \\ If schb is < 2(b_{ch}), the value for N_{sl} given in ESR-3520 Table 8-3 must be reduced by the parameter calculated using Equation (5) in ESR- 3520. Calculate nominal tension strengths (N_n) nominal strength corresponding to local failure of channel lips \Phi N_{sl}, Reference ESR-3520 Table 8-1 and Table 8-3. \\ Check: s_{chb} > 2b_{ch} \qquad Reference ESR-3520 Section 4.1.3.2.2. \\ s_{chb} = clear distance between T-bolts \qquad Reference ESR-3520 \qquad Figure 8-5. \\ b_{ch} = channel width \qquad Reference ESR-3520 Table 8-1. \\ If s_{chb} is < 2b_{ch}, calculate the reduction factor \\ (0.5) \left(1 + \frac{s_{chb}}{2(b_{ch})}\right) \qquad and multiply N_{sl}, by this factor. \end{array}$	T-bolts are spaced at 6 in o.c. Each bolt has a diameter = 16 mm. s _{chb} = 6 in - (16 mm)(1 in/25.4 mm) = 5.37 in HAC-50F channel width (b_{ch}) = 1.65 in $\rightarrow 2(b_{ch})$ = 3.3 in 5.37 in > 3.3 in \rightarrow no reduction required. $N_{uu}^{b} = 850 \ lbs$ $\phi N_{sl} = 5899 \ lbs$ $\beta_{N,sa} : \frac{N_{ua}^{b}}{\phi N_{sl}} \times 100 = 15\%$
N _{as} Bo	t t t t t t t t t t t t t t t t t t t		ESR-3520 section 4.1.3.3.2, 4.1.3.4.2	$\begin{split} & N_{sl}, \text{ for an HAC-50F channel} = 7865 \text{ lb } \Phi = 0.75 \\ & \text{Reference ESR-3520 Table 8-3. } \Phi N_{sl} \geq N^{s}_{ua} \\ & \text{Strength for local flexure of channel lip perpendicular shear load w/o lever arm} \\ & \Phi V_{sly} \geq V^{a}_{uay} \\ & \text{Nominal strength corresponding of channel lip } V_{sly} \\ & \text{Reference ESR-3520 Table 8-5.} \\ & \alpha = 2 \text{ for anchor channels with } V_{sl,y} \leq N_{s,l} \\ & \alpha = 1 \text{ for anchor channels with } V_{sl,y} > N_{s,l} \\ & \text{It shall be permitted to assume reduced values for Vsl,y corresponding to the use of an exponent $\alpha = 2$. In this case the reduced value for Vsl,y shall also be used in Section 4.1.3.3.1a). \\ & V_{sly} \text{ for the anchor element of an HAC-50F channel} \\ & V_{sl,y} = 7868 \text{ lb for $\alpha = 2$} \\ & V_{sl,y} = 10,675 \text{ lb for $\alpha = 1$} \\ & \Phi = 0.75 \end{split}$	$V_{ua,y}^{b} = 1750 \ lbs$ $When \alpha = 2$ $\phi V_{sl,y} = 5899 \ lbs$ $\beta_{V,sl,y} : \frac{V_{ua,y}^{b}}{\phi V_{sl}} \times 100 = 30\%$ $When \alpha = 1$ $\phi V_{sl,y} = 8006 \ lbs$ $\beta_{V,sl,y} : \frac{V_{ua,y}^{b}}{\phi V_{sl}} \times 100 = 22\%$ Channel
N _{st} Lip)S V _{al} Lips	Vu	ESR-3520 section 4.1.3.2.2	Flexure of channel in tension: $\Phi M_{s,flex} \ge M_{u,flex}$ nominal strength corresponding to channel bending: $\Phi M_{s,flex}$ Reference ESR-3520 Table 8-3. $M_{s,flex}$ for an HAC-50F channel with an HBC-C T-bolt = 14,125 in-lb Φ =0.85 Note that the value for $M_{s,flex}$ corresponds to the type of T-bolt being used.	$M_{u,flex} = 83.6 \ in - lbs$ $\phi M_{s,flex} = 12006 \ lbs$ $\beta_{N,sa} : \frac{M_{u,flex}}{\phi M_{s,flex}} \times 100 = 1\%$

Code	Discussion	Calculations
Step 5: Steel streng	gth local flexure channel lip and flexure of channel	
ESR-3520 Section 4.1.3.2.2	$ \begin{array}{l} \mbox{Channel lip strength in tension: ESR-3520 Section 4.1.3.2.2 requires a check to made to determine if the clear distance between two T-bolts (s_{chb}) is > the parameter 2(b_{ch}), where bch corresponds to the channel width. Values for bch are given in Table 8-1 of ESR-3520. \\ \mbox{If schb is < 2(b_{ch}), the value for N_{al} given in ESR-3520 Table 8-3 must be reduced by the parameter calculated using Equation (5) in ESR-3520. Calculate nominal tension strengths (N_n) nominal strength corresponding to local failure of channel lips \Phi N_{al}, Reference ESR-3520 Table 8-1 and Table 8-3. \\ \mbox{Check:} \\ s_{chb} > 2b_{ch} \qquad Reference ESR-3520 Section 4.1.3.2.2. \\ s_{chb} = clear distance between T-bolts Reference ESR-3520 Table 8-1. \\ \mbox{If schb is < 2b}_{ch}, calculate the reduction factor \\ \mbox{(0.5)} \left[1 + \frac{s_{chb}}{2(b_{ch})}\right] and multiply N_{al}, by this factor. \\ \mbox{N}_{al}, for an HAC-50F channel = 7865 lb \Phi=0.75 \\ Reference ESR-3520 Table 8-3. \Phi N_{sl} > N_{sl} = N_{al}^{s} \\ \end{array}$	T-bolts are spaced at 6 in o.c. Each bolt has a diameter = 16 mm. $s_{ohb} = 6 \text{ in} - (16 \text{ mm})(1 \text{ in}/25.4 \text{ mm}) = 5.37 \text{ in}$ HAC-50F channel width $(b_{oh}) = 1.65 \text{ in} \rightarrow 2(b_{oh}) =$ 3.3 in 5.37 in > 3.3 in \rightarrow no reduction required. $N_{uu}^b = 850 \text{ lbs}$ $\phi N_{sl} = 5899 \text{ lbs}$ $\beta_{N,su} : \frac{N_{uu}^b}{\phi N_{sl}} \times 100 = 15\%$
:SR-3520 ;ection 4.1.3.3.2, l.1.3.4.2	Strength for local flexure of channel lip — perpendicular shear load w/o lever arm $\Phi V_{sly} \ge V_{uay}^a$ Nominal strength corresponding of channel lip $\rightarrow V_{sly}$ Reference ESR-3520 Table 8-5. $\alpha = 2$ for anchor channels with $V_{sl,y} \le N_{s,l}$ $\alpha = 1$ for anchor channels with $V_{sl,y} > N_{s,l}$ It shall be permitted to assume reduced values for VsI,y corresponding to the use of an exponent $\alpha = 2$. In this case the reduced value for VsI,y shall also be used in Section 4.1.3.3.1a). V_{sly} for the anchor element of an HAC-50F channel $V_{sl,y} = 7868$ lb for $\alpha = 2$ $V_{sl,y} = 10,675$ lb for $\alpha = 1$ $\Phi = 0.75$	$V_{ua,y}^{b} = 1750 \ lbs$ $When \ \alpha = 2$ $\phi V_{sl,y} = 5899 \ lbs$ $\beta_{V,sl,y} : \frac{V_{ua,y}^{b}}{\phi V_{sl}} \times 100 = 30\%$ $When \ \alpha = 1$ $\phi V_{sl,y} = 8006 \ lbs$ $F_{V,sl,y} : \frac{V_{ua,y}^{b}}{\phi V_{sl}} \times 100 = 22\%$ Channel lip: $\phi V_{sl,y}$
ESR-3520 section 4.1.3.2.2	Flexure of channel in tension: $\Phi M_{s,flex} \ge M_{u,flex}$ nominal strength corresponding to channel bending: $\Phi M_{s,flex}$ Reference ESR-3520 Table 8-3. $M_{s,flex}$ for an HAC-50F channel with an HBC-C T-bolt = 14,125 in-lb Φ =0.85 Note that the value for $M_{s,flex}$ corresponds to the type of T-bolt being used. HBC-C bolts are being used for this example.	$M_{u,flex} = 83.6 \text{ in } -lbs$ $\phi M_{s,flex} = 12006 \text{ lbs}$ $\beta_{N,sa} : \frac{M_{u,flex}}{\phi M_{s,flex}} \times 100 = 1\%$ Bending of channel: $\phi M_{s,flex}$

Steel strength = value of channelSteel strength = value of channel lip on Fischer data data field in the	ode	Discussion	Calculations	Code	Discussion	Calculations	
ESR-3520 section 4.1.3.6Combined tension and shear loads — flexure of channel lig (interaction these for stand lig in tension and shear and Flexure of channel lig (interaction these for stand lig in tension and shear and Flexure of channel lig (interaction these for stand lig in tension and shear and Flexure of channel lig (interaction these flexure of channel lig in tension and shear and Flexure of channel lig (interaction these flexure of channel lig interaction on the channel lig in tension and shear and Flexure of channel lig (interaction these flexure of channel lig in tension and shear and Flexure of channel lig (interaction the channel lig in tension and shear and Flexure of channel lig (interaction) the channel lig in tension and shear and Flexure of channel lig (interaction the channel lig in tension and shear and Flexure of channel lig (interaction) the channel lig in tension and shear and Flexure of channel lig (interaction) the channel lig in tension and shear and Flexure of channel lig (interaction) the channel lig in tension and shear and Flexure of channel lig (interaction) the	tep 5: Steel streng	th local flexure channel lip and flexure of channel		Step 6: Channel bolt	strength		
Point of load application — flexural moment and channel lip $\left(\frac{M_{u,flex}}{\phi M_{s,flex}}\right)^{\alpha} + \left(\frac{V_{bu,y}}{\phi V_{sl,y}}\right)^{\alpha} + \left(\frac{V_{bu,x}}{\phi V_{sl,y}}\right)^{\alpha} + \left(V_{$	SR-3520 setion 4.1.3.6	Combined tension and shear loads — flexure moment and channel lip (Interaction) Channel lip in tension and shear and Flexure of channel in tension. The interaction check for steel failure of the channel requires the ratio (factored load acting on the channel lip or Flexure of channel design strength) to be checked using Equation (45) and Equation (46) in ESR-3520. V ^b _{uax} =0lbs Point of load application - channel lip $\left(\frac{N_{ua}^b}{\phi N_{sl}}\right)^{\alpha} + \left(\frac{V_{ua,y}^b}{\phi V_{sl,y}}\right)^{\alpha} + \left(\frac{V_{ua,x}^b}{\phi V_{sl,x}}\right)^2 \le 1.0$	Point of load application — channel lip $\beta_{V,sl,y}^{2} = 0.02070$ $\beta_{V,sl,y}^{2} = 0.08801$ $\beta_{N,sl}^{2} + \beta_{V,sl,y}^{2} = 0.11$ Utilization: 11% Point of load application — flexural moment and channel lip $\beta_{N,s,flex} = 0.00654$ $\beta_{V,sl,y}^{4} = 0.21858$	ESR-3520 section 4.1.3.2.2	Channel bolt strength in tension: $\Phi N_{ss} \ge N_{ua}^{b}$ nominal strength corresponding to the T-bolt $\rightarrow N_{ss}$ Nominal tension steel strengths for T-bolts are given in ESR-3520 Table 8-7. N_{ss} for an M16 diameter HBC-C 8.8 F T-bolt = 28,235 lb Φ =0.65	$N_{ua}^{b} = 850 \text{ lbs}$ $\Phi N_{ss} 18353 \text{ lbs}$ $\beta_{N,ss} : \frac{N_{ua}^{b}}{\Phi N_{ss}} \times 100 = 5 \%$	Channel bolt: (M
exponent $\alpha = 2$. In this case the reduced value for V_{ij} shall also be used in Section		Point of load application — flexural moment and channel lip $\left(\frac{M_{u,flex}}{\phi M_{s,flex}}\right)^{\alpha} + \left(\frac{V_{ua,y}^{b}}{\phi V_{sl,y}}\right)^{\alpha} + \left(\frac{V_{ua,x}^{b}}{\phi V_{sl,x}}\right)^{2} \le 1.0$ $\alpha = 2 \text{ for anchor channels with } V_{sl,y} \le N_{s,l}$ It shall be permitted to assume reduced values for $V_{sl,y}$ corresponding to the use of an exponent $\alpha = 2$. In this case the reduced value for $V_{sl,y}$ shall also be used in Section	$\beta_{N,s,flex}^{(s,s)} + \beta'_{V,sly} = 0.23$ Utilization: 23%	ESR-3520 section 4.1.3.3.2, 4.1.3.4.2	Channel bolt strength – without lever arm, longitudinal shear included in shear: $\Phi V_{ss} \ge V_{ua}^{b}$ $V_{ua}^{b} = \sqrt{V_{ua,x}^{b}^{2} + V_{ua,y}^{b}^{2}}$ nominal strength corresponding to the T-bolt \rightarrow Vss Nominal tension steel strengths for T-bolts are given in ESR-3520 Table 8-7. Vss for an M16 diameter HBC-C 8.8 F T-bolt = 16940 lb Φ =0.60	$\begin{split} V^{b}_{ua,x} &= 1750 \text{ lbs} \\ V^{b}_{ua,y} &= 0 \text{ lbs} \\ V^{b}_{ua} &= 1750 \text{ lbs} \\ \Phi V_{ss} &= 10164 \text{ lbs} \\ \beta_{v,ss} &: \frac{V^{b}_{ua}}{\Phi V_{ss}} \times 100 = 18 \text{ \%} \end{split}$	Channel bolt: $\phi V_{ss} / \phi V_{as,M}$

Code	Discussion	Calculations	Code	Discussion	Calculations
tep 7: Concrete stre	ngth		Step 7: Concrete stren	ngth	
SR-3520 section .1.3.2.4 .Cl 318-14 Chapter 17	Pull-out strength Tension PROFIS Anchor Channel has determined that anchor element #3 controls for pullout in tension. Per ESR-3520 Section 4.1.3.2.4, nominal pullout strength (Npn) is calculated using ACI 318 anchoring-to-concrete provisions. This example is based on ACI 318-14 provisions: therefore, pullout calculations will be per ACI 318-14 Chapter 17. $(M)_{p_{2}} \approx N_{h_{2}}$ $N_{p_{2}} \approx N_{h_{2}}$ $N_{p_{2}} \approx N_{h_{2}}$ $N_{p_{2}} \approx N_{h_{2}}$ $N_{p_{3}} \approx S_{h_{2}} r_{c}$ ACI 318-14 Eq. (17.4.3.1) $N_{p} \approx S_{h_{2}} r_{c}$ ACI 318-14 Eq. (17.4.3.4) A_{2} for an HAC-50F anchor channel = 0.40 in2 ESR-3520 Table 8-1 A = 1 normal weight concrete Reference 1st of example $f_{c} = 6000 \text{ psi}$ Reference 1st of example $f_{c} = 6000 \text{ psi}$ ACI 318-14 17.4.3.6 Concrete $\frac{\Psi_{c,p}}{1.25}$ ACI 318-14 17.4.3.6 Φ factor: Considering cracked concrete $\Psi_{c,p} = 1.0$ Φ factor: Condition A ($\phi = 0.75$) is considered when = Supplementary reinforcement is present = Reinforcement does not need to be explicitly designed for the anchor channel = Arrangement should generally conform to anchor reinforcement = Development is not required Condition B ($\phi = 0.70$) is considered when = No supplementary reinforcement is present Assume Condition B $\phi = 0.70$ ϕ matrice for the supplementary reinforcement is present Assume Condition B $\phi = 0.70$	$F_{uas} = 736 \text{ lbs}$ $N_{uas} = 736 \text{ lbs}$ $N_{p} = (8) (0.40 \text{ in} 2) (6000 \text{ lb/in} 2) = 19,195 \text{ lb}$ $N_{pn} = (1.0) (1.0) (19,195 \text{ lb}) = 19195 \text{ lb}$ $\Phi N_{pn} = 13437 \text{ lbs}$ $\beta_{N,pn} : \frac{N_{uas}}{\Phi N_{pn}} \times 100 = 6\%$	ESR-3520 section 4.1.3.2.3 ACI 318-14 Chapter 17	Concrete breakout strength in Tension. PROFIS Anchor Channel has determined that anchor element #3 controls for concrete breakout in tension. Per ESR-3520 Section 4.1.3.2.3, nominal concrete breakout strength (N _{exb}) is calculated using ESR 3520 Equation (6). The value calculated for concrete breakout strength in tension (N _{ab}) is based on the location of the anchor element being considered or the concrete geometry. Therefore, the calculated value for N _b will be the same for each anchor element. $\Phi N_{co} \approx N_{a}^{c}$. Concrete breakout strength in tension (N _a) is not dependent on the anchor element being considered or the concrete geometry. Therefore, the calculated value for N _b will be the same for each anchor element. $\Phi N_{co} \approx N_{a}^{c}$. ESR-3520 Equation $N_{b}^{c} = basic concrete breakout strength in tension \Psi_{a,N}^{c} = modification factor for anchor spacing \Psi_{a,N}^{c} = modification factor for corner effects \Psi_{co,N}^{c} = modification factor for corner effects \Psi_{co,N}^{c} = modification factor for corner effects \Psi_{co,N}^{c} = modification factor for splittingNominal concrete breakout strength in tension for Anchor Element #3N_{h,2} = 24 \cdot \lambda \cdot a_{h,N} \cdot \sqrt{f_{c}} \cdot h_{a}^{t3}Calculate the basic concrete breakout strength in tension (Nb,0). ESR-3520 Equation the concrete breakout strength in tension (Nb,0). ESR-3520 Equation the concrete breakout capacity in tension. The value 7.1 is a constant. ESR-3520 Table 4.a_{h,N} = \left(\frac{A_{h,Q}}{7.1}\right)^{4.5} \le 1.0 ESR-3520 Equation the sample.Calculate the modification factor for anchor influence (\Psi_{a,N,3}). We are the concrete breakout capacity in tension. The value f_{a,m} is a factor that is used to account for the influence of the channel size. The \Psi_{a,m} value given for an HAC-50F channel will be used for in this example.Calculate the modification factor for anchor influence (\Psi_{a,N,3}). We say \frac{1}{N_{a,N,N}} = \frac{1}{1 + \sum_{a=1}^{a+1} \left[\left(1 - \frac{1}{N_{a,N}} \right)^{a+1} \cdot \frac{N_{a,N}}{N_{a,N}} \right] ESR-3520 Eq$	ete ete (6) $V_{aus3} = 786 \text{ lbs}$ $\alpha_{ch,N} = \left(\frac{4.173}{7.1}\right)^{0.15} = 0.923. < 1$ $N_{b,3} = 24 \cdot 1 \cdot 0.923 \cdot \sqrt{60000} \cdot (4.173)^{1.5} = 14634$ (7) ple ple 3-1 (8) el h h _{cf} (10) 3-3

2. HAC Portfolio Applications

3. HAC

4. Design Introduction

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 9. Special Anchor 10. Design . Channel Design Software

Code	Discussion	Calculations		W wa =
Step 7: Concrete stren	gth	-		$1 + \sum \left \left(1 - \frac{5.906 \text{ in}}{16.980 \text{ in}} \right)^{1.5} \right $
ESR-3520 section 4.1.3.2.3 ACI 318-14 Chapter 17	Concrete breakout strength in Tension continued. This influence takes into consideration the loading on each anchor element as well as the distance (spacing) of these elements from anchor element #2. Reference ESR-3520 Equations (10) and (11) for more information on how to calculate $\psi_{s,N}$.			$\therefore \psi_{\rm s,N3} = 0.658$
	The parameter $s_{er,N}$ corresponds to the maximum distance that is assumed with respect to the influence of an anchor element on the anchor element being		Code	Discussion
	considered. Any anchor elements that are within $s_{r,N}$ from the anchor element being considered are assumed to have an influence on that anchor element.	Concrete breakout: ∳N _{ce} Concrete breakout: ΦN _{cb}	Step 7: Concrete stren	ıgth
	The calculated value for $s_{cr,N}$ will be the same for each anchor element; however, the number of anchor elements within the distance $s_{cr,N}$ from the anchor element being considered may not always be the same. Reference ESR-3520 Equation (11) for more information on how to calculate $s_{cr,N}$. $s_1 = spacing between each anchor element = 5.91 in$ $s_{xx,1} = distance of each influencing anchor element from anchor element #3 s_{1,3} = distance from anchor element #1 to anchor element #3 = 11.812 ins_{cr,N} = distance from anchor element #2 to anchor element #3 = 5.906 ins_{cr,N} = critical anchor spacing for tension loading (h_{ef} = 4.173 in)s_{cr,N} = 2\left(2.8 - \frac{1.3h_{ef}}{7.1}\right)h_{ef} \ge 3h_{ef} ESR-3520 Equation (11)The parameter \psis,N is a modification factor that is used to account for the influence of adjacent anchor element \#1 = 204 lbN^a_{ua,2} = tension load on anchor element \#2 = 710 lbN^a_{ua,3} = tension load on anchor element \#3 = 786 lb$	$s_{cr,N} = 2\left(2.8 - \frac{1.3(4.173in)}{7.1}\right) 4.173in$ = 16.980in $3h_{ef} = 3(4.173in) = 12.519in$ $s_{cr,N} = 16.980in \ge 12.519in$ influence of anchor element #1 on anchor element #3: $\left(1 - \frac{11.812in}{16.980in}\right)^{15} \frac{204lbs}{786lbs}$ = 0.0436 influence of anchor element #2 on anchor element #3: $\left(1 - \frac{5.906in}{16.980in}\right)^{15} \frac{710lbs}{786lbs}$ = 0.4758	ESR-3520 section 4.1.3.2.3 ACI 318-14 Chapter 17	$\begin{array}{l} \label{eq:constraint} \begin{array}{ c c } Concrete breakout strength in Tension continued\\ Calculate the modification factor for edge influence (u The parameters c_{a1} and c_{a2} correspond to the distance element being considered to a fixed edge. c_{a1} is measured channel longitudinal axis, and is considered when calfor edge influence (\Psi_{ed,N}).\\ c_{a1} \ldots \qquad edge distance of the anchor channel c_{cr,N} \ldots \qquad critical edge distance for tension loading \\ \psi_{ed,N} = \left(\frac{c_{a1}}{c_{cr,N}}\right)^{0.5} \leq 1.0\\ c_{cr,N} = 0.5s_{cr,N} \geq 1.5h_{ef}\\ s_{cr,N} = 2\left(2.8 - \frac{1.3h_{ef}}{7.1}\right)h_{ef} \geq 3h_{ef} \end{array}$
		$\psi_{s, N, 3} = 0.658$		

Figure 14.1.20-a – Design example – C_{cr.N}

Figure 14.1.20-b — Design example – $C_{r,N}$

2. HAC Portfolio 3. HAC Applications 4. Design Introduction

5. Base material 6. Loading

7. Anchor Channel 8. Reinforcing 9. Special Anchor Design Code Bar Anchorage Channel Design

10. Design Software

Concrete strength
Concrete breakout strength in Tension continued Nominal concrete breakout strength in tension for anchor element #3 $\Phi N_{cb} \ge N_{ua}^{a}$ $N_{cb} = N_{b} \cdot \psi_{s,N} \cdot \psi_{ed,N} \cdot \psi_{cp,N} \cdot \psi_{c,N}$ ESR-3520 Equation (6) The calculated value for $N_{eb,3}$ will be multiplied by a strength reduction factor (φ -factor) to give a design strength ($\varphi_{Neb,3}$). Design strengths for this example are summarized in the table on this page titled Summary for Concrete Breakout in Tension. The calculated $\varphi_{Neb,3}$ value for anchor element #3 will be checked against the factored load acting on anchor element #3 ($N_{aua,3}$) to obtain the % utilization ($N_{aua,3} / \varphi_{Neb,3}$). The anchor element with the highest % utilization will control the design with respect to concrete breakout failure in tension. φ -factors for concrete breakout in tension are given in ESR-3520 Table 8-4. Φ factor: Condition A ($\Phi = 0.75$) is considered when \circ Supplementary reinforcement is present \circ Arrangement should generally conform to anchor reinforcement \circ Development is not required Condition B ($\Phi = 0.70$) is considered when \circ No Supplementary reinforcement is present Assume Condition B $\Phi = 0.70$ The concrete breakout calculations (φ_{Neb}) were influenced by the anchor location and the concrete geometry via the modification factors $\psi_{s,N''} \psi_{ed,N}$ and $\psi_{co,N}$

Uncracked concrete with no supplementary reinforcement	$\Psi_{cp,N}$
if $c_{a,min} \ge c_{ac}$	1
if c _{amin} < c _{ac}	$\psi_{\text{cp,N}} = MAX \left\{ \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}} \right) ; \left(\frac{c_{\text{cr,N}}}{c_{\text{ac}}} \right) \right\}$
Uncracked concrete with supplementary reinforcement	1
Cracked concrete	1

12. Instructions for Use

2. HAC 3. HAC Portfolio Applications

4. Design Introduction

5. Base material 6. Loading 7. Anchor Channel 8. Reinforcing Bar Anchorage Design Code

9. Special Anchor 10. Design . Channel Design Software

Code	Discussion	Calculations	Code		Discussion
Step 7: Concrete strength			Step 7: 0	Concrete strengt	th
ESR-3520 Section 4.1.3.3.4. ACI 318-14 Chapter 17	Concrete pryout strength - perpendicular shear (Anchor a3) The ICC-ES Acceptance Criteria AC232 includes amendments to the ACI 318 anchoring to concrete provisions. These amendments are given in Section 3.1 Strength Design - Amendments to ACI 318. Part D.6.3 (ACI 318-11) and Section 17.5.3.2 (ACI 318-14) of these amendments requires the factor $\psi_{w,k}$ to be modified when calculating concrete pryout strength in shear. All of the parameters used to calculate $\psi_{w,k}$ in tension are used except the parameter (N_{max}). N_{max}). The shear loads acting on the anchor elements are substituted for the tension loads such that (V_{amax} / V_{amax}) is used instead of (N_{amax} / N_{amax}). These provisions for calculating concrete pryout strength are also given in ESR-3520 Section 4.1.3.3.4. $V_{exy,3} = K_{ex}N_{ex,3}$ ($\Psi_{ex,N3} + \Psi_{ex,N3} + \Psi_{ex,N4} = 0$ (ESR-3520 Equation (41) $K_{ama} = N_{a3} + \Psi_{ax,N3} + \Psi_{ax,N3} + \Psi_{ax,N3} + \Psi_{ax,N4} = 0$ (ESR-3520 Equation (6) $s_{i,1}$ = spacing between each anchor element = 5.91 in $s_{i,2}$ = distance of each influencing anchor element from anchor element #3 $s_{i,3}$ = distance from anchor element #1 to anchor element #3 = 11.812 in $s_{i,3}$ = distance from anchor element #1 to anchor element #3 = 5.096 in $s_{ax,n}$ = $2\left(2.8 - \frac{1.38_{12}}{7.1}\right)k_{y} \ge 3k_{y'}$ (ESR-3520 Equation (10) The parameter $\psi_{x,k}$ is a modification factor that is used to account for the influence of adjacent anchor element #1=421 lb Ψ_{max} = tension load on anchor element #3 = 1618 lb The calculated value for $V_{ax,x}$ will be multiplied by a strength reduction factor (φ -factor) to give a design strength ($\psi_{x,x}$). The anchor element #3 (Willization will control the design with respect to concrete pryout failure in shear.	Pryout: Ψ_{my} Pryout: Ψ_{Neyy} Pryout: Φ_{Neyy} $s_{ar,N} = 16.98 in$ refer to concrete breakout tension influence of anchor element #1 on anchor element #3: $\left(1 - \frac{11.812in}{16.980in}\right)^{1.5} \frac{421lbs}{1618lbs}$ = 0.0437 influence of anchor element #2 on anchor element #3: $\left(1 - \frac{5.906in}{16.980in}\right)^{1.5} \frac{1461lbs}{1618lbs}$ = 0.767 $\psi_{n,N,3} = \frac{1}{1+(0.0437+0.4756)} = 0.658$ $c_{ar,N} = 0.5s_{ar,N} = (0.50)16.98in$ $c_{ar,N} = 8.49in$ $\Psi_{ed,N} = \left(\frac{5.0in}{8.49in}\right)^{0.5} < 1.0$ $\therefore \Psi_{ed,N} = 0.767$ $c_{a2}(x_3) = 6.00 in + 0.984 in$ $c_{a2}(x_3) = 6.984 in$ $c_{a2}(x_3) = 6.984 in$ $\psi_{co,N,3} = \left(\frac{6.984in}{8.49in}\right)^{0.5} < 1.0$ $\therefore \Psi_{co,N,3} = 0.907$ $\Psi_{a,N} = 0.658$ $\Psi_{ed,N} = 0.767$ $\psi_{co,N} = 1.0$ $\Psi_{co,N} = 1.0$ $\Psi_{co,N} = 1.0$ $W_{co,N} = 1.691bs$ $k_{cp} = 2$ $V_{cp,Y,3} = k_{cp}xNcb, 3$ $V_{cp,Y,3} = 2s78lbs$ $V_{a_{M},3} = \left(\frac{1618}{9378}\right)x100\% = 18\%$	ESR-352 41.3.33 ACI 318-	20 section 3 -14 Chapter 17 4.1.21 — Design e	Concrete breakout strength in perpendicular sheat $\Phi V_{cb} \ge V_{aus}^{a}$ $V_{cb,3} = V_{b,3} \cdot \Psi_{av,3} \cdot \Psi_{cot,N,3} \cdot \Psi_{co2N,3} \cdot \Psi_{h,N,3} \cdot \Psi_{c,N,3}$ $V_{b} = Basic concrete breakout strength in shear \Psi_{av}^{av} = Modification factor for corner effects\Psi_{av}^{av} = Modification factor for concrete thicknessCalculate the basic concrete breakout strength inV_{b} = \lambda \cdot \alpha_{ch,V} \cdot \sqrt{f_{c}} \cdot (c_{a1})^{V_{c}}\lambda Modification for lightweight concreteLightweight concrete = 0.75Sand-Lightweight concrete = 0.85\alpha_{ch,V} Influence factor for channel size (10.50,f_{c}^{a} Concrete compressive strength (psi) (8)c_{at} Perpendicular edge distance (in.) (edger_{v} \bigvee_{h,V} \bigvee_{h,V}example – reduction factors of V_{cb}$

12. Instructions for Use

	Calculations
r for anchor element #3	■
ESR-3520 Equation (30)	Concrete edge breakout: 4V _{cb,y}
	Concrete edge breakout: $\Phi V_{cb,y}$
ncrete	
shear (V _{b,3}).	$V_b = (1.0)(10.50)\sqrt{6,000psi} \cdot (5.0in)^{t/s}$ ∴ $V_b = 6,954lbs$
ESR-3520 Equation (31)	
max.)	
,500 psi, max)	
to center line of channel)	

2. HAC Portfolio

4. Design Applications Introduction

3. HAC

5. Base material

6. Loading

7. Anchor Channel 8. Reinforcing Design Code Bar Anchorage 10. Design Software

Code	Discussion	Calculations		$\psi_{s,v,3} = -$
Step 7: Concrete streng	gth			$1 + \sum_{n=1}^{\infty} \left[\left(1 - \frac{11.812 \text{ in}}{23.30 \text{ in}} \right)^{13} \cdot \frac{2}{10} \right]^{13}$
ESR-3520 Section 4.1.3.3.4. ACI 318-14 Chapter 17	Concrete breakout strength in perpendicular shear for anchor element #3 continued The value calculated for concrete breakout strength in shear (V_{cb}) is based on the location of the anchor element being considered. The basic concrete breakout strength in shear (V.) is not dependent on the anchor element being considered, but it	Ę	Code	$\therefore \psi_{s,v,3} = 0.598$ Discussion
	is dependent on the concrete geometry via the parameter c_{a1} . However, the calculated value for V_{b} will be the same for each anchor element if the c_{a1} value is the same for each element. The parameter $\psi_{a}V$ will be dependent on the anchor element being considered and the concrete geometry. Reference ESR-3520 Equation (32) for more information on how to calculate $\psi_{a,v}$. The parameter s_{cv} corresponds to the maximum distance that is assumed with respect to the influence of an anchor element on the anchor element being considered are assumed to have an influence on that anchor element. The calculated value for s_{cv} will be the same for each anchor elements within the c_{a1} value is the same for each element; however, the number of anchor elements within the distance s_{cv} from the anchor element being considered may not always be the same. Reference ESR-3520 Equation (33) for more information on how to calculate s_{cv} . Calculate the modification factor for anchor influence ($\psi_{a,v,3}$). ESR-3520 Equation (32) $\psi_{xv,3} = \frac{1}{1 + \sum_{i=1}^{k+1} \left[\left(1 - \frac{s_i}{s_{av}} \right)^{15} \cdot \frac{V_{aa}^{ia}}{V_{aa}^{ia}} \right]$ $s_{i} = spacing between each anchor element = 5.91 in s_{xc,1} = distance of each influencing anchor element from anchor element #3 s_{1,3} = distance form anchor element #1 to anchor element #3 = 11.82 in s_{c,3} = distance form anchor element #1 to anchor element #3 = 5.91 in s_{cv,v} = critical anchor spacing for shear loading c_{a1} = 4.50 in b_{cn} = 1.65 in (reference ESR-3520 Table 8-1)s_{cv,v} = 4_{ca1} + 2b_{ch} ESR-3520 Equation (33)V_{aua,1} = shear load on anchor element #1 = 422 lb V_{aua,3} = shear load on anchor element #2 = 1464 lb V_{aua,3} = shear load on anchor element #3 = 1615 lb$	Concrete edge breakout: Ψ_{day} Concrete edge breakout: ΦV_{oby} $s_{cr,N} = 4 \times 5 \text{ in } + 2 \times 1.65 \text{ in}$ $s_{cr,N} = 23.3 \text{ in}$ influence of anchor element #1 on anchor element #3: $\left(1 - \frac{11.812in}{23.30in}\right)^{1.5} \frac{421lbs}{1618lbs}$ = 0.0901 influence of anchor element #2 on anchor element #3: $\left(1 - \frac{5.906in}{23.3in}\right)^{1.5} \frac{1461lbs}{1618lbs}$ = 0.582 $\psi_{s,V,3} = \frac{1}{1 + (0.0901 + 0.582)}$ $\psi_{s,V,3} = 0.598$	Step 7: Concrete st ESR-3520 section 4.1.3.3 ACI 318-14 Chapter	Image: system in the perpendicular shear for anchor element #3 continued Image: system in the perpendicular shear for anchor element #3 continued Calculate the modification factor for corner influence (if $\psi_{co,V} = \left(\frac{c_{a2}}{c_{c,V}}\right)^{0.5} \le 1.0$ $\psi_{co,V} = \left(0.5 \cdot s_{ci,V} = 2c_{a1} + b_{ch}\right)$ c_{a2} corner distance of the anchor under consideration $c_{ci,V}$ critical edge distance for anchor channel for sheet in the parameters c_{a1} and c_{a2} correspond to the distance element being considered to a fixed edge. c_{a2} is measu channel longitudinal axis, and is considered when calculating element #3. It is important to note that value considered with respect to the relevant edge distances for anchor element #3. It is important to note that value considered with respect to the relevant edge distances for each c_{a2} value, and the product of these $\psi_{co,V}$ values in the value for c_{a2} . Any c_{a2} value is less than for each c_{a2} value, and the product of these $\psi_{co,V}$ values in the relevant edge distances for each c_{a2} value, and the product of these $\psi_{co,V}$ values in the relevant edge distances in the relevant edge distances in the relevant edge distances for each c_{a2} value, and the product of these $\psi_{co,V}$ values in the relevant edge distances in the value for c_{a2} . And c_{a2} value is less than for each c_{a2} value, and the product of these $\psi_{co,V}$ values in the relevant edge distances in the relevant ed

Figure 14.1.23 — Design example – corner reduction factor of $\psi_{_{cr,v}}$

Figure 14.1.22 — Design example – spacing reduction factor of $\psi_{s,\nu}$

in $c_{cr,V}$, $\psi_{co,V}$ will be calculated es will be used to calculate the

Figure 14.1.24 — Design example – height reduction factor h_{cr.v}

 Cracked concrete with edge reinforcement (#4 at 4" O.C.

Uncracked Concrete

Anchor channels located in a region of a concrete no cracking at service load levels. $\psi_{c,v}=1.4$

Note: in order to activate the reinforcement, concre uncracked concrete is assumed, supplementary re factor.

Concrete is typically assumed to be cracked under If cracked concrete conditions are assumed, an incomodification factor $\psi_{\rm cv}$ if supplementary edge reint concrete conditions are assumed, an increase in V modification factor $\psi_{\rm cv}$. Reference ESR-3520 Sect

12. Instructions for Use

13. Field Fixes

	Calculations
r for anchor element #3 continued	→
acked concrete ($\psi_{c,V,3}$). ary reinforcement $\rightarrow \psi_{c,V,3} = 1.0$, and supplementary edge .3.3.3 is used, $\psi_{c,V,3}$ can be increased	Concrete edge breakout: ψV _{cb,y} Concrete edge breakout: ΦV _{cb,y}
min.)	If uncracked concrete conditions are assumed, $\psi_{c,V,3}$ = 1.4.
min.) and stirrups (#4 min.) spaced	
member where analysis indicates	
ete has to crack. Therefore, if einforcement does not impact this	
er normal service load conditions. crease in V_{cby} is permitted via the forcement is used. If uncracked V_{cby} is likewise permitted via the tion 4.1.3.3.3 for more information.	

3. HAC 2. HAC Portfolio Applications 4. Design Introduction

5. Base material 6. Loading

7. Anchor Channel 8. Reinforcing 9. Special Anchor Design Code Bar Anchorage Channel Design 10. Design

Software

Code	Discussion	Calculations
Step 7: Concrete stren	gth	
ESR-3520 section 4.1.3.3.3 ACI 318-14 Chapter 17	Concrete breakout strength in perpendicular shear for anchor element #3 continued Nominal concrete breakout strength in tension for anchor element #3 ESR-3520 Equation (6) The calculated value for V _{en3} will be multiplied by a strength reduction factor (φ-factor) to give a design strength (ϕV_{en3}). Design strengths for this example are summarized in the table on this page titled Summary for Concrete Breakout in Tension. The calculated ϕV_{en3} value for anchor element #3 will be checked against the factored load acting on anchor element #3 ($V_{aux,3}$) to obtain the % utilization ($V_{aux,3} / \phi V_{cb3}$). The anchor element with the highest % utilization will control the design with respect to concrete breakout failure in tension. ϕ -factors for concrete breakout in tension are given in ESR-3520 Table 8-4. I factor: ACI 318-14: 17.3.3 Strength reduction factor ϕ for anchors in concrete shall be as follows when the load combinations of 5.3 are used: (c) Anchor governed by concrete breakout, side-face, blowout, pullout, or pryout strength Condition A • Supplementary reinforcement is present • Reinforcement does not need to be explicitly designed for the anchor channel • Should generally conform to reinforcement shown in Fig. R17.4.2.9 and R17.5.2.9b • Full development is not required	$\begin{aligned} & \bigvee_{cb,3} = \bigvee_{b,3} \cdot \bigvee_{s,V,3} \cdot \bigvee_{co1,V,3} \cdot \bigvee_{co2,V,3} \cdot \bigvee_{h,V,3} \cdot \bigvee_{c,V,3} \\ & \bigvee_{cb,3} = O54lbs \\ & \psi_{s,v} = 0.598 \\ & \psi_{co1,v} = 0.774 \\ & \psi_{co2,v} = 1.0 \\ & \psi_{c,v} = 1.2 \\ & \psi_{h,v} = 0.694 \\ & V_{cb,y,3} = 2681 \ lbs \\ & Condition B \\ & \varphi = 0.7 \\ & \varphi V_{cb,y,3} = 1876lbs \\ & \nabla^a_{ua,3} = 1618lbs \\ & \beta_{cb,3} = \left(\frac{1618}{1876}\right)x100 \\ & \beta_{cb,v,3} = 87\% \end{aligned}$
	Rebar not needed for anchor reinforcement V_{inx1} V_{inx2} V_{inx3} Rebar can get closer to HAC to meet 4d _s d_{a} $d_{a} \ge 4d_{a}$ (anchor reinforcement not effective if 4d _a is not met) $d_{a} \le 6$ in. (152 mm)	
	Condition B No supplementary reinforcement	

Code	Discussion	
Step 7: Concrete strength		
ESR-3520 section 4.1.3.2.2	Concrete failure modes of anchor channels under G ESR 3520 section 4.1.3.6.3 b) If $N_{ua}^{o} < 0.2 \phi N_{nc}$ the permitted $:\left(\frac{V_{ua,y}^{a}}{\phi V_{nc,y}}\right) + \left(\frac{V_{ua,x}^{a}}{\phi V_{nc,x}}\right) \le 1.0$	

In the US: Hilti, Inc. (U.S.) 7250 Dallas Parkway, Suite 1000, Dallas, TX 75024 Customer Service: 1-800-879-8000 en español: 1-800-879-5000 Fax: 1-800-879-7000

www.hilti.com

In Canada:

Hilti (Canada) Corporation 2360 Meadowpine Blvd. Mississauga, Ontario, L5N 6S2 Customer Service: 1-800-363-4458 Fax: 1-800-363-4459

www.hilti.ca

Hilti is an equal opportunity employer. Hilti is a registered trademark of Hilti, Corp. ©Copyright 2019 by Hilti, Inc. (U.S.) 02/19 • DBS

The data contained in this literature was current as of the date of publication. Updates and changes may be made based on later testing. If verification is needed that the data is still current, please contact the Hilti Technical Support Specialists at 1-800-879-8000. All published load values contained in this literature represent the results of testing by Hilti or test organizations. Local base materials were used. Because of variations in materials, on-site testing is necessary to determine performance at any specific site. Printed in the United States.