

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 21.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines.

US&CA: https://submittals.us.hilti.com/PTGVol2/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or <u>HNATechnicalServices@hilti.com</u>

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.3.1 HDA UNDERCUT ANCHORS PRODUCT DESCRIPTION

HDA undercut anchors

Anchor system Features and benefits Undercut segments provide cast-in-place HDA-P undercut anchor HDA-T undercut anchor like performance with limited expansion pre-set type through-set type stresses Self-undercutting wedges provide an easy, fast and reliable anchor installation Excellent performance in cracked concrete Suitable for dynamic loads including seismic, fatigue and shock. See Anchor Selector Guide Undercut keying load transfer allows for reduced edge distances and anchor spacings Through-set style provides increased shear capacity Fully removable Type 316 stainless steel for corrosive environments Sherardized zinc coating has equivalent corrosion resistance to hot-dip galvanization ACI 349-01 Nuclear Design Guide is available. Call Hilti Technical Support

Uncracked concrete

Cracked concrete

Seismic design categories A-F

Profis anchor design software

Approvals/Listings	
ICC-ES (International Code Council)	ESR-1546 in concrete per ACI 318-Ch. 17 / ACI 355.2/ ICC-ES AC193
European Technical Approval	ETA-99/0009, ETA-99/0016
City of Los Angeles	Research Report No. 25939
Nuclear Quality Assurance	Qualified under NQA-1 Nuclear Quality Program

MATERIAL SPECIFICATIONS

HDA-P and HDA-T carbon steel with electroplated zinc

Cone bolts meet strength requirements of ISO 898, class 8.8. Minimum yield strength is 92.8 ksi (640 MPa) and minimum tensile strength is 116 ksi (800 MPa).

Sleeve for the M10 and M12 has a minimum tensile strength of 123 ksi (850 MPa).

Sleeve for the M16 has a minimum tensile strength of 101.5 ksi (700 MPa).

Sleeve for the M20 has a minimum tensile strength of 79.8 ksi (550 MPa).

The nut and washer are carbon steel.

All carbon steel components have a minimum 5 µm zinc plating thickness.

HDA-PR and **HDA-TR** stainless steel

Cone bolts have a minimum yield strength is 87 ksi (600 MPa) and minimum tensile strength is 116 ksi (800 MPa).

Sleeve for the M10 and M12 has a minimum tensile strength of 123 ksi (850 MPa).

Sleeve for the M16 has a minimum tensile strength of 101.5 ksi (700 MPa).

Nut conforms to DIN 934, grade A4-80.

HDA-PF and HDA-TF carbon steel with sherardized heavy zinc plating

Cone bolts meet strength requirements of ISO 898, class 8.8. Minimum yield strength is 92.8 ksi (640 MPa) and minimum tensile strength is 116 ksi (800 MPa).

Sleeve for the M10 and M12 has a minimum tensile strength of 123 ksi (850 MPa).

Sleeve for the M16 has a minimum tensile strength of 101.5 ksi (700 MPa).

Nuts and washers are carbon steel.

All carbon steel components have an average zinc plating thickness of 53 µm in accordance with ASTM A153.

Anchor nomenclature

INSTALLATION PARAMETERS

Figure 1 — Hilti HDA specifications

Hilti design anchor P pre-set before baseplate T through-set after/through baseplate Blank carbon steel zinc plated F carbon steel sherardized R 316 stainless steel h_o| h h_o h_e he Metric Thread diameter (mm) HDA-PF M12 x 125 / 50 Minimum embedment of undercut HDA-T HDA-P Maximum fixture thickness

Table 1 — Hilti HDA specifications

<u> </u>						
				Nominal and	hor diameter	
Setting information	Symbol	Units	M10	M12	M16	M20
Cone bolt thread diameter	d _o	mm	10	12	16	20
Nominal bit diameter ¹	d _{bit}	mm	20	22	30	37
Effective minimum embedment		mm	100	125	190	250
Effective minimum embedment	h _{ef}	(in.)	(3.9)	(4.9)	(7.5)	(9.8)
Hole depth	h	mm	107	135	203	266
noie deptir	h _o	(in.)	(4.2)	(5.3)	(8.0)	(10.5)
Max.fixture thickness, HDA-P	t _{fix}			See Sect	tion 3.3.1	
Fixture hale diameter HDA B		mm	12	14	18	22
Fixture hole diameter, HDA-P	d _h	(in.)	(1/2)	(9/16)	(3/4)	(7/8)
Max.fixture thickness, HDA-T	t _{fix}			See T	able 5	
Fixture hole diameter, HDA-T		mm	21	23	32	40
Fixture note diameter, HDA-1	d _h	(in.)	(7/8)	(15/16)	(1-1/4)	(1-9/16)
Length of anchor	l			See Sect	tion 3.3.1	
Minimum concrete member thickness ²	h	in.	7-1/8	7-1/2	10-5/8 ³	13-3/4
willimum concrete member thickness	h _{min}	(mm)	(180)	(200)	(270)	(350)
Installation torque	_	ft-lb	37	59	89	221
Installation torque	inst	(Nm)	(50)	(80)	(120)	(300)
Wrench size		mm	17	19	24	30

HDA must be installed with the specified Hilti hammer drill and Hilti metric stop bit. See section 3.3.1.5.

² Minimum concrete thickness for HDA-P. For HDA-T, additional thickness needed to account for thin fixture which will increase effective embedment.

When setting the anchor with TE 70, h_{min} ≥ 300mm (11.8 in) for HDA M16.

DESIGN INFORMATION IN CONCRETE PER ACI 318

ACI 318 Chapter 17 design

The load values contained in this section are Hilti Simplified Design Tables. The load tables in this section were developed using the Strength Design parameters and variables of ESR-1546 and the equations within ACI 318 Chapter 17. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.8. Data tables from ESR-1546 are not contained in this section, but can be found at www.icc-es.org or at www.hilti.com.

Table 2 — Hilti HDA-P and HDA-T carbon and stainless steel design strength with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

Nominal	Effective		Tensio	n - фN _п		Shear - φV _n				
anchor diameter	embed. mm (in.)	f' c = 2,500 psi lb (kN)	f' c = 3,000 psi lb (kN)	f' c = 4,000 psi lb (kN)"	f' c = 6,000 psi lb (kN)	f' c = 2,500 psi lb (kN)	f' c = 3,000 psi lb (kN)	f' c = 4,000 psi lb (kN)	f' c = 6,000 psi lb (kN)	
M10	100	7,615	8,345	9,635	11,800	16,405	17,970	20,750	25,415	
IVITO	(3.9)	(33.9)	(37.1)	(42.9)	(52.5)	(73.0)	(79.9)	(92.3)	(113.1)	
M12	125	10,645	11,660	13,465	16,490	22,925	25,115	29,000	35,515	
IVI I Z	(4.9)	(47.4)	(51.9)	(59.9)	(73.4)	(102.0)	(111.7)	(129.0)	(158.0)	
M16	190	19,945	21,850	25,230	30,900	42,965	47,065	54,345	66,560	
IVITO	(7.5)	(88.7)	(97.2)	(112.2)	(137.4)	(191.1)	(209.4)	(241.7)	(296.1)	
MOO	250	30,105	32,980	38,080	46,640	64,845	71,035	82,025	100,460	
M20	(9.8)	(133.9)	(146.7)	(169.4)	(207.5)	(288.4)	(316.0)	(364.9)	(446.9)	

Table 3 — Hilti HDA-P and HDA-T carbon and stainless steel design strength with concrete/pullout failure in cracked concrete^{1,2,3,4,5}

Nominal	Effective		Tensio	n - фN _n		Shear - φV _n				
anchor diameter		f' _c = 2,500 psi lb (kN)	f' c = 3,000 psi lb (kN)	f' c = 4,000 psi lb (kN)"	f' c = 6,000 psi lb (kN)	f' _c = 2,500 psi lb (kN)	f' c = 3,000 psi lb (kN)	f' c = 4,000 psi lb (kN)	f' c = 6,000 psi lb (kN)	
M10	100	5,845	6,405	7,395	9,055	13,125	14,375	16,600	20,330	
IVITO	(3.9)	(26.0)	(28.5)	(32.9)	(40.3)	(58.4)	(63.9)	(73.8)	(90.4)	
M12	125	7,305	8,005	9,240	11,320	18,340	20,090	23,200	28,415	
IVI I Z	(4.9)	(32.5)	(35.6)	(41.1)	(50.4)	(81.6)	(89.4)	(103.2)	(126.4)	
NATO	190	14,615	16,005	18,485	22,640	34,370	37,650	43,475	53,245	
M16	(7.5)	(65.0)	(71.2)	(82.2)	(100.7)	(152.9)	(167.5)	(193.4)	(236.8)	
M00	250	21,920	24,010	27,725	33,955	51,875	56,830	65,620	80,365	
M20	(9.8)	(97.5)	(106.8)	(123.3)	(151.0)	(230.8)	(252.8)	(291.9)	(357.5)	

¹ See section 3.1.8 to convert design strength value to ASD value.

² Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

³ Apply spacing, edge distance, and concrete thickness factors in tables 6 to 9 as necessary. Compare to the steel values in tables 4 and 5. The lesser of the values is to be used for the design.

Tabular values are for normal-weight concrete only. For sand-lightweight multiply the design loads by $\lambda_a = 0.68$.

⁵ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension only by $\alpha_{N,seis} = 0.75$. No reduction needed for seismic shear. See section 3.1.8 for additional information on seismic applications.

Table 4 — Steel strength for Hilti HDA-P carbon steel and stainless steel anchors 1,2

	HDA-	P carbon steel and	chors	HDA-P	R stainless steel a	nchors
Nominal anchor diameter	Tensile φN _{sa} ³ lb (kN)	Shear ϕV_{sa}^{-4} lb (kN)	Seismic shear $\phi V_{_{\mathrm{sa,eq}}}{}^{5}$ lb (kN)	Tensile φN _{sa} ³ lb (kN)	Shear φV _{sa} ⁴ Ib (kN)	Seismic shear $\phi V_{sa,eq}^{5}$ Ib (kN)
M10	7,830	3,260	2,920	7,830	3,945	3,655
IVITO	(34.8)	(14.5)	(13.0)	(34.8)	(17.5)	(16.3)
M12	11,395	4,735	4,235	11,395	5,845	5,260
IVITZ	(50.7)	(21.1)	(18.8)	(50.7)	(26.0)	(23.4)
M16	21,140	8,810	7,890	21,140	10,960	9,790
IVI I O	(94.0)	(39.2)	(35.1)	(94.0)	(48.8)	(43.5)
Man	33,060	13,500	12,130	2/0	2/0	2/0
M20	(147.1)	(60.1)	(54.0)	n/a	n/a	n/a

¹ See section 3.1.8 to convert design strength value to ASD value.

Table 5 — Steel strength for Hilti HDA-T carbon steel and stainless steel anchors 1,2

		HDA-	-T carbon steel an	chors	HDA-T	R stainless steel a	ınchors
Nominal anchor diameter	Thickness of fastened parts t _{fix} in. (mm)	Tensile φN _{sa} ³ lb (kN)	Shear ϕV_{sa}^{-4} lb (kN)	Seismic shear $\phi V_{sa,eq}^{5}$ lb (kN)	Tensile φN _{sa} ³ lb (kN)	Shear ϕV_{sa}^{-4} lb (kN)	Seismic shear $\phi V_{sa,eq}^{5}$ Ib (kN)
M10	5/8 ≤ t _{fix} < 13/16	7,830	9,060	8,185	7,830	10,080	9,060
IVITO	$(15 \le t_{fix} \le 20)$	(34.8)	(40.3)	(36.4)	(34.8)	(44.8)	(40.3)
	5/8 ≤ t _{fix} < 13/16		10,815	9,790		13,155	11,690
M12	(15 ≤ t _{fix} < 20)	11,395	(48.1)	(43.5)	11,395	(58.5)	(52.0)
IVI I Z	13/16 ≤ t _{fix} < 2	(50.7)	12,130	10,815	(50.7)	14,465	13,005
	$(20 \le t_{fix} \le 50)$		(54.0)	(48.1)		(64.3)	(57.8)
	13/16 ≤ t _{fix} < 1		19,875	17,825		23,235	20,900
	(20 ≤ t _{fix} < 25)		(88.4)	(79.3)		(103.4)	(93.0)
	1 ≤ t _{fix} < 1-3/16		22,505	20,315		24,550	22,065
M4.0	(25 ≤ t _{fix} < 30)	21,140	(100.1)	(90.4)	21,140	(109.2)	(98.1)
M16	$1-3/16 \le t_{fix} \le 1-3/8$	(94.0)	24,845	22,355	(94.0)	25,715	23,090
	(30 ≤ t _{fix} < 35)		(110.5)	(99.4)		(114.4)	(102.7)
	1-3/8 < t _{fix} < 2-3/8		26,885	24,110		26,595	23,965
	$(35 \le t_{fix} \le 60)$		(119.6)	(107.2)		(118.3)	(106.6)
	1 ≤ t _{fix} < 1-9/16		29,370	26,450			
	(25 ≤ t _{fix} < 40)		(130.6)	(117.7)			
1400	$1-9/16 \le t_{fix} < 2-1/8$	33,060	33,025	29,665		. 1	
M20	(40 ≤ t _{fix} < 55)	(147.1)	(146.9)	(132.0)	n/a	n/a	n/a
	2-1/8 ≤ t _{fix} < 4		35,510	32,005			
	(55 ≤ t _{fix} ≤ 100)		(158.0)	(142.4)			

¹ See section 3.1.8 to convert design strength value to ASD value.

² Hilti HDA-P Carbon and Stainless steel anchors are to be considered ductile steel elements.

³ Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318 Chapter 17.

⁴ Shear values determined by static shear tests with $\phi V_{sa} \le \phi \ 0.60 \ A_{se,V} f_{uta}$ as noted in ACI 318 Chapter 17.

⁵ Seismic shear values determined by seismic shear tests with φV_{sa.eq} ≤ φ 0.60 A_{sa.V} f_{uta} as noted in ACI 318 Chapter 17. See section 3.1.8 for additional information on seismic applications.

² Hilti HDA-T Carbon and Stainless steel anchors are to be considered ductile steel elements.

³ Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318 Chapter 17

⁴ Shear values determined by static shear tests with $\phi V_{sa} \le \phi 0.60 A_{so,V} f_{ota}$ as noted in ACI 318 Chapter 17

⁵ Seismic shear values determined by seismic shear tests with \$\psi\$V\$_{sa,eq} \$\leq\$ \$\phi\$ 0.60 A_{se,V} f_{uta} as noted in ACI 318 Chapter 17 See section 3.1.8 for additional information on seismic applications.

Table 6 — Load adjustment factors for M10 and M12 Hilti HDA-P and HDA-T carbon and stainless steel anchors in uncracked concrete^{1,2}

									Е	dge distar	nce in shea	ır		
HDA	10 and M A-P and H	DA-T	Spacing in ter	nsion	Edge d	tension	Spacing in sh	iear³	⊥ towa		from	_	Conc. th	n shear4
uncr	acked cor	ncrete	f	AN	j ₁	RN	$f_{\underline{f}}$	AV	f	RV	f	RV	f_{\parallel}	HV
Nor	minal dian	neter	M10	M12	M10	M12	M10	M12	M10	M12	M10	M12	M10	M12
	ctive	mm	100	125	100	125	100	125	100	125	100	125	100	125
embed	ment h _{ef}	(in.)	(3.94)	(4.92)	(3.94)	(4.92)	(3.94)	(4.92)	(3.94)	(4.92)	(3.94)	(4.92)	(3.94)	(4.92)
	3-1/8	(79)	n/a	n/a	0.66	n/a	n/a	n/a	0.14	n/a	0.28	n/a	n/a	n/a
	3-1/2	(89)	n/a	n/a	0.70	n/a	n/a	n/a	0.17	n/a	0.33	n/a	n/a	n/a
	4	(102)	0.67	n/a	0.76	0.66	0.56	n/a	0.20	0.15	0.40	0.31	n/a	n/a
-	4-1/2	(114)	0.69	n/a	0.82	0.71	0.56	n/a	0.24	0.18	0.48	0.37	n/a	n/a
concrete	5	(127)	0.71	0.67	0.88	0.76	0.57	0.56	0.28	0.22	0.56	0.43	n/a	n/a
ГĊ	6	(152)	0.75	0.70	1.00	0.86	0.59	0.57	0.37	0.28	0.74	0.57	n/a	n/a
8	7	(178)	0.80	0.74		0.96	0.60	0.58	0.47	0.36	0.93	0.71	n/a	n/a
(mm)	7-1/8	(181)	0.80	0.74		0.97	0.60	0.59	0.48	0.37	0.96	0.73	0.64	n/a
್ಲಿ E	7-1/2	(191)	0.82	0.75		1.00	0.61	0.59	0.52	0.40	1.00	0.79	0.66	n/a
<u>.</u> اج	8	(203)	0.84	0.77			0.61	0.60	0.57	0.44		0.87	0.68	0.62
star) -	9	(229)	0.88	0.80			0.63	0.61	0.68	0.52		1.00	0.72	0.66
sig S	10	(254)	0.92	0.84			0.64	0.62	0.80	0.61			0.76	0.69
s) / edge distance (c_a) thickness (h) - in. (mm	11	(279)	0.97	0.87			0.66	0.63	0.92	0.70			0.79	0.73
òż	12	(305)	1.00	0.91			0.67	0.64	1.00	0.80			0.83	0.76
(S)	14	(356)		0.97			0.70	0.67		1.00			0.90	0.82
<u>و</u>	16	(406)		1.00			0.73	0.69					0.96	0.88
acir	18	(457)					0.76	0.72					1.00	0.93
Spacing (s) th	20	(508)					0.79	0.74						0.98
	24	(610)					0.84	0.79						1.00
	30	(762)					0.93	0.86						
	36	(914)					1.00	0.93						
	42	(1067)						1.00						

Table 7 — Load adjustment factors for M10 and M12 Hilti HDA-P and HDA-T carbon and stainless steel anchors in cracked concrete^{1,2}

									Е	Edge distar	nce in shea	ır		
HDA	110 and M A-P and H cked cond	DA-T	Spacing in term f_j		Edge d factor in $f_{\scriptscriptstyle\parallel}$			g factor lear³ ^{av}	⊥ towa		from	d away edge	Conc. the factor in f_1	n shear4
Nor	minal dian	neter	M10	M12	M10	M12	M10	M12	M10	M12	M10	M12	M10	M12
	Effective mm embedment h _{ef} (in.)		100 (3.94)	125 (4.92)	100 (3.94)	125 (4.92)	100 (3.94)	125 (4.92)	100 (3.94)	125 (4.92)	100 (3.94)	125 (4.92)	100 (3.94)	125 (4.92)
	3-1/8	(79)	n/a	n/a	0.66	n/a	n/a	n/a	0.12	n/a	0.25	n/a	n/a	n/a
	3-1/2	(89)	n/a	n/a	0.70	n/a	n/a	n/a	0.15	n/a	0.29	n/a	n/a	n/a
	4	(102)	0.67	n/a	0.76	0.66	0.55	n/a	0.18	0.14	0.36	0.27	n/a	n/a
	4-1/2	(114)	0.69	n/a	0.82	0.71	0.56	n/a	0.21	0.16	0.43	0.33	n/a	n/a
ţe	5	(127)	0.71	0.67	0.88	0.76	0.57	0.56	0.25	0.19	0.50	0.38	n/a	n/a
concrete	6	(152)	0.75	0.70	1.00	0.86	0.58	0.57	0.33	0.25	0.66	0.50	n/a	n/a
Ğ	7	(178)	0.80	0.74		0.96	0.59	0.58	0.42	0.32	0.83	0.64	n/a	n/a
<u> </u>	7-1/8	(181)	0.80	0.74		0.97	0.59	0.58	0.43	0.33	0.86	0.65	0.62	n/a
(c _a)	7-1/2	(191)	0.82	0.75		1.00	0.60	0.58	0.46	0.35	0.92	0.71	0.63	n/a
. Ge	8	(203)	0.84	0.77			0.61	0.59	0.51	0.39	1.00	0.78	0.65	0.60
edge distance (c_a) / ;kness (h) - in. (mm)	9	(229)	0.88	0.80			0.62	0.60	0.61	0.46		0.93	0.69	0.63
s) / edge dist thickness (h)	10	(254)	0.92	0.84			0.63	0.61	0.71	0.54		1.00	0.73	0.67
ge (11	(279)	0.97	0.87			0.65	0.62	0.82	0.63			0.76	0.70
kn ed	12	(305)	1.00	0.91			0.66	0.63	0.94	0.71			0.80	0.73
<u> </u>	14	(356)		0.97			0.69	0.66	1.00	0.90			0.86	0.79
Spacing (s) th	16	(406)		1.00			0.71	0.68		1.00			0.92	0.84
Ë	18	(457)					0.74	0.70					0.98	0.89
pa	20	(508)					0.77	0.72					1.00	0.94
S	24	(610)					0.82	0.77						1.00
	30	(762)					0.90	0.83						
	36	(914)					0.98	0.90						
	42	(1067)					1.00	0.97						
	> 48	(1219)						1.00						

Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use PROFIS Engineering or perform anchor calculation using design equations from ACI 318 Chapter 17.

Spacing factor reduction in shear, f_{AN} assumes an influence of a nearby edge. If no edge exists, then $f_{AN} = f_{AN}$

Concrete thickness reduction f actor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

Table 8 — Load adjustment factors for M16 and M20 Hilti HDA-P and HDA-T carbon and stainless steel anchors in uncracked concrete^{1,2}

									E	Edge distar	nce in shea	ır		
HDA	I16 and M A-P and H acked cor	DA-T	Spacing in term f_{j}		factor in	istance tension	Spacing in sh		,	rd edge	from	d away edge	factor in	nickness n shear ⁴
Nor	minal dian	neter	M16	M20	M16	M20	M16	M20	M16	M20	M16	M20	M16	M20
Effe	ective	mm	190	250	190	250	190	250	190	250	190	250	190	250
embed	lment h _{ef}	(in.)	(7.48)	(9.84)	(7.48)	(9.84)	(7.48)	(9.84)	(7.48)	(9.84)	(7.48)	(9.84)	(7.48)	(9.84)
	6	(152)	n/a	n/a	0.66	n/a	n/a	n/a	0.15	n/a	0.30	n/a	n/a	n/a
_	7	(178)	n/a	n/a	0.72	n/a	n/a	n/a	0.19	n/a	0.38	n/a	n/a	n/a
concrete	7-1/8	(181)	n/a	n/a	0.73	n/a	n/a	n/a	0.20	n/a	0.39	n/a	n/a	n/a
JG JG	7-1/2	(191)	0.67	n/a	0.75	n/a	0.56	n/a	0.21	n/a	0.42	n/a	n/a	n/a
8	8	(203)	0.68	n/a	0.78	0.66	0.56	n/a	0.23	0.15	0.46	0.31	n/a	n/a
(C _a) / (mm)	9	(229)	0.70	n/a	0.85	0.71	0.57	n/a	0.28	0.18	0.55	0.37	n/a	n/a
("a")	10	(254)	0.72	0.67	0.91	0.76	0.58	0.56	0.32	0.22	0.65	0.43	n/a	n/a
distance s (h) - in. (11	(279)	0.75	0.69	0.98	0.81	0.59	0.57	0.37	0.25	0.75	0.50	0.59	n/a
stai (r	12	(305)	0.77	0.70	1.00	0.86	0.59	0.57	0.43	0.28	0.85	0.57	0.61	n/a
dis S (F	14	(356)	0.81	0.74		0.96	0.61	0.58	0.54	0.36	1.00	0.71	0.66	0.58
edge	16	(406)	0.86	0.77		1.00	0.63	0.60	0.66	0.44		0.87	0.71	0.62
s) / edge dist thickness (h)	18	(457)	0.90	0.80			0.64	0.61	0.78	0.52		1.00	0.75	0.66
(S) thi	20	(508)	0.95	0.84			0.66	0.62	0.92	0.61			0.79	0.69
ρ	24	(610)	1.00	0.91			0.69	0.64	1.00	0.80			0.87	0.76
Spacing	30	(762)		1.00			0.74	0.68		1.00			0.97	0.85
Sp	36	(914)					0.78	0.72					1.00	0.93
	42	(1067)					0.83	0.75						1.00
	> 48	(1219)	·				0.88	0.79						

Table 9 — Load adjustment factors for M16 and M20 Hilti HDA-P and HDA-T carbon and stainless steel anchors in cracked concrete^{1,2}

									E	Edge distar	nce in shea	ır		
HDA	I16 and M A-P and H	DA-T	Spacing in ter	g factor nsion		istance tension	Spacing in sh	g factor lear³	⊥ towa	rd edge		d away edge		nickness n shear 4
cra	cked cond	crete	j,	AN	f_{\parallel}	RN	j,	AV	f_{\parallel}	RV	f_{\parallel}	RV	f	HV
Nor	minal dian	neter	M16	M20	M16	M20	M16	M20	M16	M20	M16	M20	M16	M20
	ective	mm	190	250	190	250	190	250	190	250	190	250	190	250
embed	lment h _{ef}	(in.)	(7.48)	(9.84)	(7.48)	(9.84)	(7.48)	(9.84)	(7.48)	(9.84)	(7.48)	(9.84)	(7.48)	(9.84)
	6	(152)	n/a	n/a	0.66	n/a	n/a	n/a	0.13	n/a	0.27	n/a	n/a	n/a
_	7	(178)	n/a	n/a	0.72	n/a	n/a	n/a	0.17	n/a	0.34	n/a	n/a	n/a
concrete	7-1/8	(181)	n/a	n/a	0.73	n/a	n/a	n/a	0.17	n/a	0.35	n/a	n/a	n/a
υς	7-1/2	(191)	0.67	n/a	0.75	n/a	0.55	n/a	0.19	n/a	0.38	n/a	n/a	n/a
	8	(203)	0.68	n/a	0.78	0.66	0.56	n/a	0.21	0.14	0.41	0.27	n/a	n/a
$(c_a)/$	9	(229)	0.70	n/a	0.85	0.71	0.57	n/a	0.25	0.16	0.49	0.33	n/a	n/a
(C _a)	10	(254)	0.72	0.67	0.91	0.76	0.57	0.56	0.29	0.19	0.58	0.38	n/a	n/a
ე.⊑	11	(279)	0.75	0.69	0.98	0.81	0.58	0.56	0.33	0.22	0.67	0.44	0.57	n/a
distance s (h) - in. (12	(305)	0.77	0.70	1.00	0.86	0.59	0.57	0.38	0.25	0.76	0.50	0.59	n/a
di (F	14	(356)	0.81	0.74		0.96	0.60	0.58	0.48	0.32	0.96	0.64	0.64	0.56
s) / edge dist thickness (h)	16	(406)	0.86	0.77		1.00	0.62	0.59	0.59	0.39	1.00	0.78	0.68	0.60
A N	18	(457)	0.90	0.80			0.63	0.60	0.70	0.46		0.93	0.72	0.63
	20	(508)	0.95	0.84			0.65	0.61	0.82	0.54		1.00	0.76	0.67
Б	24	(610)	1.00	0.91			0.68	0.63	1.00	0.71			0.84	0.73
Spacing (30	(762)		1.00			0.72	0.67		1.00			0.94	0.82
Spi	36	(914)					0.76	0.70					1.00	0.89
	42	(1067)					0.81	0.73						0.97
	> 48	(1219)					0.85	0.77						1.00

¹ Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use PROFIS Engineering or perform anchor calculation using design equations from ACI 318 Chapter 17.

³ Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{\text{AV}} = f_{\text{AN}}$.

Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then $f_{HV} = 1.0$.

DESIGN INFORMATION IN CONCRETE PER ACI 318

Limit State Design of anchors is described in the provisions of CSA A23.3 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. This section contains the Limit State Design tables with unfactored characteristic loads that are based on the published loads in ICC Evaluation Services ESR-1546. These tables are followed by factored resistance tables. The factored resistance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACI 318 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.com.

Table 10 — Steel resistance for Hilti HDA-P carbon steel and stainless steel anchors^{1,2}

	HDA-	P carbon steel an	chors	HDA-P	R stainless steel a	nchors
Nominal	Tensile ³	Shear⁴	Seismic shear ⁵	Tensile ³	Shear⁴	Seismic shear ⁵
anchor	N_{sar}	V _{sar}	V _{sar,eq}	N_{sar}	V _{sar}	V _{sar,eq}
diameter	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
M10	7,100	3,195	2,865	7,100	3,870	3,585
WITO	(31.6)	(14.2)	(12.7)	(31.6)	(17.2)	(15.9)
M12	10,335	4,645	4,155	10,335	5,730	5,160
IVITZ	(46.0)	(20.7)	(18.5)	(46.0)	(25.5)	(23.0)
M16	19,170	8,640	7,740	19,170	10,750	9,600
IVITO	(85.3)	(38.4)	(34.4)	(85.3)	(47.8)	(42.7)
M20	29,975	13,240	11,895	n/o	2/0	2/2
IVIZU	(133.3)	(58.9)	(52.9)	n/a	n/a	n/a

¹ See section 3.1.8 to convert design strength value to ASD value.

Table 11 — Steel resistance for Hilti HDA-T carbon steel and stainless steel anchors^{1,2}

	Thickness of	HDA	-T carbon steel ar	chors	HDA-T	R stainless steel	anchors
Nominal	fastened parts	Tensile ³	Shear ⁴	Seismic shear ⁵	Tensile ³	Shear ⁴	Seismic shear ⁵
anchor diameter	t _{fix} in. (mm)	N lb (kN)	V lb (kN)	V lb (kN)	N lb (kN)	V lb (kN)	V lb (kN)
M10	$5/8 \le t_{fix} < 13/16$	7,100	8,885	8,025	7,100	9,890	8,885
WITO	(15 ≤ t _{fix} ≤ 20)	(31.6)	(39.5)	(35.7)	(31.6)	(44.0)	(39.5)
	$5/8 \le t_{fix} < 13/16$		10,605	9,600		12,900	11,465
M12	(15 ≤ t _{fix} < 20)	10,335	(47.2)	(42.7)	10,335	(57.4)	(51.0)
IVI I Z	13/16 ≤ t _{fix} < 2	(46.0)	11,895	10,605	(46.0)	14,190	12,755
	(20 ≤ t _{fix} ≤ 50)		(52.9)	(47.2)		(63.1)	(56.7)
	13/16 ≤ tfix < 1		19,490	17,485		22,785	20,495
	(20 ≤ t _{fix} < 25)		(86.7)	(77.8)		(101.4)	(91.2)
	1 ≤ t _{fix} < 1-3/16		22,070	19,920		24,080	21,640
M16	$(25 \le t_{fix} < 30)$	19,170	(98.2)	(88.6)	19,170	(107.1)	(96.3)
IVITO	$1-3/16 \le t_{fix} \le 1-3/8$	(85.3)	24,365	21,925	(85.3)	25,225	22,645
	(30 ≤ t _{fix} < 35)		(108.4)	(97.5)		(112.2)	(100.7)
	1-3/8 < t _{fix} < 2-3/8		26,370	23,650		26,085	23,505
	(35 ≤ t _{fix} ≤ 60)		(117.3)	(105.2)		(116.0)	(104.6)
	1 ≤ t _{fix} < 1-9/16		28,805	25,940			
	$(25 \le t_{fix} < 40)$		(128.1)	(115.4)			
N400	1-9/16 ≤ t _{fix} < 2-1/8	29,975	32,390	29,090	NI/A	NI/A	NI/A
M20	$(40 \le t_{fix} < 55)$	(133.3)	(144.1)	(129.4)	N/A	N/A	N/A
	2-1/8 ≤ t _{fix} < 4		34,825	31,385			
	(55 ≤ t _{fix} ≤ 100)		(154.9)	(139.6)			

¹ See section 3.1.8 to convert design strength value to ASD value.

² Hilti HDA-P/-PR anchors are to be considered ductile steel elements.

³ Tensile $N_{sar} = A_{se,N} \varphi_s f_{uta} R$ as noted in CSA A23.3 Annex D.

⁴ Shear determined by static shear tests with $V_{sar} < A_{se,V} \phi_s 0.6 f_{uta} R$ as noted in CSA A23.3, Annex D.

Seismic shear values determined by seismic shear tests with V_{saceq} < A_{se,V} φ_s 0.6 f_{uta} R as noted in CSA A23.3, Annex D. See Section 3.1.8 for additional information on seismic applications.

² Hilti T/-TR anchors are to be considered ductile steel elements.

³ Tensile N_{sar} = $A_{so,N} \varphi_s f_{uta} R$ as noted in CSA A23.3, Annex D.

Shear determined by static shear tests with $V_{sar} < A_{se,V} \phi_s 0.6 f_{uta} R$ as noted in CSA A23.3, Annex D.

Seismic shear values determined by seismic shear tests with $V_{\text{saxeq}} < A_{\text{se,V}} \phi_s 0.6 \, f_{\text{uta}} \, R$ as noted in CSA A23.3, Annex D. See Section 3.1.8 for additional information on seismic applications.

Table 12 — Hilti HDA carbon and stainless steel design information in accordance with CSA A23.31

			Nominal anchor diameter							D-f
Design parameter	Symbol	Units	М	110	M	112	N	116	M20	Ref A23.3
			HDA	HDA-R	HDA	HDA-R	HDA	HDA-R	HDA	7.20.0
Anchor O.D.	-	mm	-	19		21		29		
Aliciloi G.B.	d _a	(in)	(0.	.75)	(0	.83)	(1	.14)	(1.38)	
Effective minimum embedment ²	h _{ef}	mm	1	00	1	25	1	90	250	
		(in)	(3.	.94)	(4	.92)	(7	.48)	(9.84)	
Min. concrete thickness	h _{min}	-						f ESR-1546		
Critical edge distance	C _{ac}	-				section 4.1.				
Min. edge distance	C _{min}	mm		30		00		50	200	
	"""	(in)		.15)	•	.94)	`	.91)	(7.87)	
Min. anchor spacing	S _{min}	mm		00		25		90	250	
		(in)	(3.	.94)	(4	.92)	(7	.48)	(9.84)	
Min. specified yield strength	f _{ya}	psi				92,800				
	,	(N/mm²)				(640)				
Min. specified ult. strength	f _{uta}	psi (N) (respect)				116,000				
		(N/mm²) in²	0.1	(800) 0.090 0.131 0.243				0.000		
Effective tensile stress area	A _{se,N}								0.380	
Steel embed, material resistance factor for		(mm²)	(5)	8.1)	(8	4.5)	[(18	56.8)	(245.2)	
reinforcement	Фѕ	-	0.85					8.4.3		
Resistance modification factor for tension, stee							D. F. O.			
failure modes ³	R	-				0.80				D.5.3
Resistance modification factor for shear, steel failure modes ³	R	-				0.75				D.5.3
Factored steel resistance in tension	N _{sar}	-		S	ee tables	10 and 11 o	f this section	on		D.6.1.2
Factored steel resistance in shear	V _{sar}	-		S	ee tables	10 and 11 o	f this section	on		D.7.1.2
Factored steel resistance in shear, seismic	V _{sar,eq}	-		S	ee tables	10 and 11 o	f this section	on		
Coeff. for factored concrete breakout resistance, uncracked concrete	k _{c,uncr}	-				12.5				D.6.2.2
Coeff. for factored concrete breakout resistance, cracked concrete	k _{c,cr}	-				10				D.6.2.2
Modification factor for anchor resistance, tension, uncracked concrete ⁴	Ψ _{c,N}	-				1.0				D.6.2.6
Anchor category	-	-				1				D.5.3 (c)
Concrete material resistance factor	Фс	-	0.65					8.4.2		
Resistance modification factor for tension and shear, concrete failure modes, Condition B ⁵	R	-				1.00				D.5.3 (c)
Factored pullout resistance in 20 MPa uncracked concrete ⁶	N _{pr,uncr}	lb (kN)				N/A				D.6.3.2
		(KIN)	6	295	7	870	15	,745	23,615	
Factored pullout resistance in 20 MPa cracked concrete ⁶	N _{pr,cr}	(kN)	· ·	295 8.0)	· ·	5.0)		0.0)	(105.0)	D.6.3.2

¹ Design information in this table is taken from ICC-ES ESR-1546, dated March 2020 and converted for use with CSA A23.3 Annex D.

² See figure 1 of this section.

³ The HDA is considered a ductile steel element as defined by CSA A23,3 Annex D section D.2.

⁴ For all design cases, $\psi_{c,n}$ = 1.0. The appropriate coefficient for breakout resistance for cracked concrete ($k_{c,ol}$) or uncracked concrete ($k_{c,uno}$) must be used.

⁵ For use with the load combinations of CSA A23.3 Chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

⁶ For all design cases, ψ_{e P} = 1.0. NA (not applicable) denotes that this value does not control for design. See section 4.1.4 of ESR-1546 for additional information.

Table 13 — Hilti HDA-P and HDA-T carbon and stainless steel factored resistance with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

			Tensid	on - N _r		Shear - V _r						
Nominal anchor diameter	Effective embed. mm (in.)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) Ib (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) Ib (kN)	f' = 20 MPa (2,900 psi) Ib (kN)	f' c = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) Ib (kN)	f' = 40 MPa (5,800 psi) Ib (kN)			
M10	100	8,170	9,135	10,005	11,550	16,335	18,265	20,010	23,105			
IVITO	(3.94)	(36.3)	(40.6)	(44.5)	(51.4)	(72.7)	(81.3)	(89.0)	(102.8)			
M12	125	11,415	12,765	13,980	16,145	22,830	25,525	27,965	32,290			
IVITZ	(4.92)	(50.8)	(56.8)	(62.2)	(71.8)	(101.6)	(113.6)	(124.4)	(143.6)			
M16	190	21,395	23,920	26,200	30,255	42,785	47,840	52,405	60,510			
IVITO	(7.48)	(95.2)	(106.4)	(116.6)	(134.6)	(190.3)	(212.8)	(233.1)	(269.2)			
M20	250	32,290	36,100	39,545	45,665	64,580	72,200	79,095	91,330			
IVIZU	(9.84)	(143.6)	(160.6)	(175.9)	(203.1)	(287.3)	(321.2)	(351.8)	(406.3)			

Table 14 — Hilti HDA-P and HDA-T carbon and stainless steel factored resistance with concrete/pullout failure in cracked concrete^{1,2,3,4,5}

			Tensio	on - N _r		Shear - V _r					
Nominal anchor diameter	Effective embed. mm (in.)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) Ib (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) Ib (kN)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) Ib (kN)		
M10	100	6,295	7,040	7,710	8,905	13,070	14,615	16,005	18,485		
IVITO	(3.94)	(28.0)	(31.3)	(34.3)	(39.6)	(58.1)	(65.0)	(71.2)	(82.2)		
M12	125	7,870	8,800	9,640	11,130	18,265	20,420	22,370	25,830		
IVIIZ	(4.92)	(35.0)	(39.1)	(42.9)	(49.5)	(81.3)	(90.8)	(99.5)	(114.9)		
M16	190	15,745	17,600	19,280	22,265	34,230	38,270	41,925	48,410		
IVITO	(7.48)	(70.0)	(78.3)	(85.8)	(99.0)	(152.3)	(170.2)	(186.5)	(215.3)		
M20	250	23,615	26,400	28,920	33,395	51,665	57,760	63,275	73,065		
M20	(9.84)	(105.0)	(117.4)	(128.6)	(148.5)	(229.8)	(256.9)	(281.5)	(325.0)		

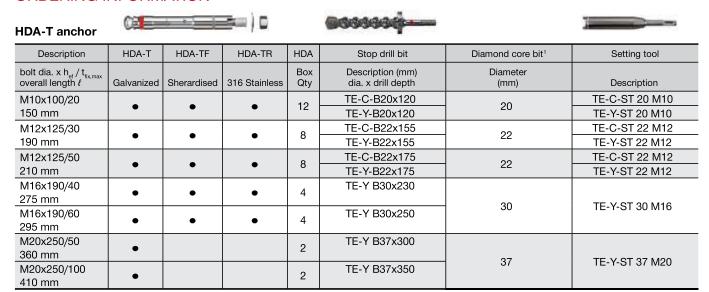
See section 3.1.8 to convert design strength value to ASD value.

² Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

³ Apply spacing, edge distance, and concrete thickness factors in tables 6 to 9 as necessary. Compare to the steel values in tables 10 and 11. The lesser of the values is to be used for the design.

⁴ Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, λ_a = 0.68; for all-lightweight, λ_a = 0.60

Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension only by $\alpha_{N,seis} = 0.75$. No reduction needed for seismic shear. See section 3.1.8 for additional information on seismic applications.


INSTALLATION AND REMOVAL INSTRUCTIONS

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance.

HDA Undercut Anchors are fully removable. The removal process strips the anchor threads to prevent reuse of anchors for safety purposes.

Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in IFU.

ORDERING INFORMATION

¹ The drilling depth with the diamond core bit must not exceed 2/3 of the specified minimum drill hole depth. The last 1/3 of the drill hole depth must be completed with the specified hammer drill and stop drill bit. Always consult the engineer of record before cutting rebar.

Description	HDA-P	HDA-PF	HDA-PR	HDA	Stop drill bit	Diamond core bit ¹	Setting tool
bolt dia. x h _{ef} / t _{fix,max}				Box	Description (mm)	Diameter	
overall length ℓ	Galvanized	Sherardised	316 Stainless	Qty	dia. x drill depth	(mm)	Description
M10x100/20				12	TE-C B20x100	20	TE-C-ST 20 M10
150 mm		•	•	12	TE-Y B20x100	20	TE-Y-ST 20 M10
M12x125/30			• 8		TE-C B22x125	22	TE-C-ST 22 M12
190 mm		•	•	0	TE-Y B22x125	22	TE-Y-ST 22 M12
M12x125/50				8	TE-C-B22x125	22	TE-C-ST 22 M12
210 mm		•	•	0	TE-Y-B22x125	22	TE-Y-ST 22 M12
M16x190/40				4			
275 mm	_			4	TE-Y B30x190	30	TE-Y-ST 30 M16
M16x190/60				4	TE-1 B30X190	30	1E-1-31 30 W10
295 mm				4			
M20x250/50				2			
360 mm					TE-Y B37x250	37	TE-Y-ST 37 M20
M20x250/100				2	1L-1 D37X230	01	1L-1-01 37 W20
410 mm	•			2			

¹ The drilling depth with the diamond core bit must not exceed 2/3 of the specified minimum drill hole depth. The last 1/3 of the drill hole depth must be completed with the specified hammer drill and stop drill bit. Always consult the engineer of record before cutting rebar.

Removal tool with adapter

Description	Qty/pkg	anchor sizes	
TE-C-HDA-RT 20-M10	1	HDA M10	
TE-C-HDA-RT 22-M12	1	HDA M12	
TE-C-HDA-RT 30-M16	1	HDA M16	
TE-C-HDA-RT 37-M20	1	HDA M20	

HAMMER DRILLS REQUIRED FOR SETTING HDA ANCHORS

HDA carbon steel - zinc plated

Anchor	Hilti hammer drill ¹								
C IIIII	TE 25 (1st gear)	TE 36-A	TE 40/ 40-AVR	TE 56/ 56-ATC	TE 60- ATC	TE 70 ² / 70-ATC	TE 75	TE-76/ 76-ATC	TE 80-ATC
				С	onnection er	nd			
		TE-C				TE	-Y		
HDA-P M10x100/20	•	•	•	•	•				
HDA-T M10x100/20	•	•	•	•	•				
HDA-P M12x125/30	•	•	•	•	•				
HDA-T M12x125/30	•	•	•	•	•				
HDA-P M12x125/50	•	•	•	•	•				
HDA-T M12x125/50	•	•	•	•	•				
HDA-P M16x190/40						•	•	•	•
HDA-T M16x190/40						•	•	•	•
HDA-P M16x190/60						•	•	•	•
HDA-T M16x190/60						•	•	•	•
HDA-P M20x250/50						•		•	•
HDA-T M20x250/50						•		•	•
HDA-P M20x250/100						•		•	•
HDA-T M20x250/100						•		•	•

HDA-R stainless steel

Anchor		Hilti hammer drill ¹									
	TE 25	TE 00 A	TE 40/	TE 56/	TE 60-	TE 702/	TE 75	TE-76/	TE 00 ATO		
	(1st gear)	TE 36-A	40-AVR	56-ATC	ATC	70-ATC	TE 75	76-ATC	TE 80-ATC		
		connection end									
		TE-C				TE	-Y				
HDA-PR M10x100/20	•	•	•								
HDA-TR M10x100/20	•	•	•	•	•						
HDA-PR M12x125/30	•	•	•	•	•						
HDA-TR M12x125/30	•	•	•	•	•						
HDA-PR M12x125/50	•	•	•	•	•						
HDA-TR M12x125/50	•	•	•	•	•						
HDA-PR M16x190/40						•	•	•	•		
HDA-PR M16x190/60						•	•	•	•		
HDA-PR M16x190/60		·				•	•	•	•		
HDA-TR M16x190/60						•	•	•	•		

HDA-F carbon steel — sherardized (heavy-duty galvanization)

Anchor	Hilti hammer drill¹								
	TE 25 (1st gear)	TE 36-A	TE 40/ 40-AVR	TE 56/ 56-ATC	TE 60- ATC	TE 70 ² / 70-ATC	TE 75	TE-76/ 76-ATC	TE 80-ATC
				C	onnection er	nd			
		TE-C				TE	-Y		
HDA-PFM10x100/20		•	•		•				
HDA-TF M10x100/20		•	•		•				
HDA-PF M12x125/30		•	•		•				
HDA-TF M12x125/30		•	•		•				
HDA-PF M12x125/50		•	•		•				
HDA-TF M12x125/50		•	•		•				
HDA-PF M16x190/40						•	•	•	•
HDA-TF M16x190/40						•	•	•	•
HDA-PF M16x190/60						•	•	•	•
HDA-TF M16x190/60						•	•	•	•

 $^{{\}it 1} \quad {\it To ensure IBC compliance, reference ESR-1546 or contact Hilti Technical Support.}$

² Increase h_{min} when setting the HDA M16 with the TE 70. See Table 1 of this section, or ESR-1546 Table 3A and 3B.