

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

ICC-ES Evaluation Report ESR-3574

Reissued August 2022 Revised March 2023

This report is subject to renewal August 2024.

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-HY 100 ADHESIVE ANCHORING SYSTEM IN CRACKED AND UNCRACKED CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2021, 2018, and 2015 International Building Code® (IBC)
- 2021, 2018, and 2015 International Residential Code[®] (IRC)

For evaluation for compliance with codes adopted by the Los Angeles Department of Building and Safety (LADBS), see <u>ESR-3574 LABC and LARC Supplement</u>.

Property evaluated:

Structural

2.0 USES

Adhesive anchors installed using the Hilti HIT-HY 100 Adhesive Anchoring System are used to resist static, wind, or earthquake (Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight and lightweight concrete having a specified compressive strength, f_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The anchor system complies with anchors as described in Section 1901.3 of the IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

3.0 DESCRIPTION

3.1 General:

The Hilti HIT-HY 100 Adhesive Anchoring System is comprised of the following components:

- Hilti HIT-HY 100 adhesive packaged in foil packs.
- Adhesive mixing and dispensing equipment.
- Hole cleaning equipment.
- A steel anchoring element.

The Hilti HIT-HY 100 Adhesive Anchoring System may be used with continuously threaded rod, Hilti HIS-N and HIS-RN internally-threaded inserts or deformed reinforcing bar. The primary components of the Hilti Adhesive Anchoring System are shown in Figure 3 of this report.

The manufacturer's printed installation instructions (MPII), as included with each adhesive unit package, are shown in Figure 4 of this report.

3.2 Materials:

3.2.1 Hilti HIT-HY 100 Adhesive: Hilti HIT-HY 100 Adhesive is an injectable hybrid adhesive combining urethane methacrylate resin, hardener, cement and water. The resin and cement are kept separate from the hardener and water by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-HY 100 is available in 11.1-ounce (330 ml) and 16.9-ounce (500 ml) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to unopened foil packs that are stored in accordance with the manufacturer's printed installation instructions (MPII), as illustrated in Figure 4 of this report.

3.2.2 Hole Cleaning Equipment:

3.2.2.1 Standard Hole Cleaning Equipment: Hole cleaning equipment comprised of steel wire brushes and air nozzles is illustrated in Figure 4 of this report.

3.2.2.2 Hilti Safe-Set™ System: For the elements described in Section 3.2.4, the Hilti TE-CD and TE-YD hollow carbide drill bit with a carbide drilling head conforming to ANSI B212.15 must be used. When used in conjunction with a Hilti vacuum with a minimum value for the maximum volumetric flow rate of 129 CFM (61 ℓ/s), the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole.

3.2.3 Dispensers: Hilti HIT-HY 100 must be dispensed with manual dispensers or electric dispensers provided by Hilti

3.2.4 Anchor Elements:

3.2.4.1 Threaded Steel Rods: The threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in Tables 6 and 11 of this report. Steel design information for common grades of threaded rod and associated nuts are provided in Tables 2 and 4, and instructions for use are shown in Figure 4. Carbon steel threaded rods must be furnished 0.0002-inch-thick (0.005 mm) zinc electroplate coating in accordance with ASTM B633 SC 1; or must be hot-dipped galvanized in accordance with ASTM A153, Class C or D. Threaded rods must be straight and free of indentations or other defects along their length. The ends may be stamped with identifying marks and the embedded end may be blunt cut or cut on the bias (chisel point).

3.2.4.2 Steel Reinforcing Bars: Steel reinforcing bars are deformed reinforcing bars as described in Table 5 of this report. Table 7, Table 11 and Table 15, along with the instructions for use shown in Figure 4 of this report, summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil, and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent installation except as set ACI 318-19 26.6.3.2(b) or ACI 318-14 26.6.3.1(b), as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.2.4.3 HIS-N and HIS-RN Inserts: Hilti HIS-N and HIS-RN inserts have a profile on the external surface and are internally threaded. Tensile properties for HIS-N and HIS-RN inserts are provided in Table 3 of this report. The inserts are available in diameters as shown in Table 18, and the instructions for use are shown in Figure 4 of this report. HIS-N inserts are produced from carbon steel and furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC 1. The stainless steel HIS-RN inserts are fabricated from X5CrNiMo17122 K700 steel complying with DIN 17440 (EN 10088). Specifications for common bolt types that may be used in conjunction with HIS-N and HIS-RN inserts are provided in Table 4. Bolt grade and material type (carbon, stainless) must be matched to the insert. Strength reduction factors, ϕ , corresponding to brittle steel elements must be used for HIS-N and HIS-RN inserts.

3.2.4.4 Ductility: In accordance with ACI 318-19 and ACI 318-14 2.3, in order for a steel element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at 30 percent. Steel elements with a tested elongation of less than 14 percent or a reduction of area less than 30 percent, or both, are considered brittle. Values for various steel materials are provided in Tables 2 through 5 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.

3.3 Concrete:

Normal-weight and lightweight concrete must comply with Sections 1903 and 1905 of the IBC. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Strength Design:

4.1.1 General: The design strength of anchors under the 2021 IBC, as well as the 2021 IRC, must be determined in accordance with ACI 318-19 and this report. The design strength of anchors under the 2018 and 2015 IBC, as well as the 2018 and 2015 IRC, must be determined in accordance with ACI 318-14 and this report.

Design parameters are based on ACI 318-19 for use with the 2021 IBC and ACI 318-14 for use with the 2018 and 2015 IBC unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318-19 17.5.1.2 or ACI 318-14 17.3.1, as applicable, except as required in ACI 318-19 17.10 or ACI 318-14 17.2.3, as applicable.

Design parameters are provided in Table 6 through Table 20. Strength reduction factors, ϕ , as given in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.1 of the 2021 IBC (Section 1605.2 of the 2018 and 2015 IBC) or ACI 318-19 and ACI 318-14 5.3, as applicable.

4.1.2 Static Steel Strength in Tension: The nominal static steel strength of a single anchor in tension, N_{Sd} , in accordance with ACI 318-19 17.6.1.2 or ACI 318-14 17.4.1.2, as applicable, and the associated strength reduction factors, ϕ , in accordance with ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are provided in the tables outlined in Table 1 for the corresponding anchor steel.

4.1.3 Static Concrete Breakout Strength in Tension: The nominal static concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-19 17.6.2 or ACI 318-14 17.4.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-19 17.6.2.2 or ACI 318-14 17.4.2.2, as applicable, using the values of $k_{c,cr}$ and $k_{c,uncr}$ as described in this report. Where analysis indicates no cracking in accordance with ACI 318-19 17.6.2.5 or ACI 318-14 17.4.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N}$ = 1.0. See Table 1. For anchors in lightweight concrete, see ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1 or ACI 318-14 17.2.7, as applicable. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-19 17.6.5 or ACI 318-14 17.4.5, as applicable. Bond strength values are a function of the concrete compressive strength, the concrete temperature range, and the installation conditions (dry or water-saturated concrete). The resulting characteristic bond strength shall be multiplied by the associated strength reduction factor ϕ_{nn} as follows:

CONCRETE TYPE	PERMISSIBLE INSTALLATION CONDITIONS	BOND STRENGTH	ASSOCIATED STRENGTH REDUCTION FACTOR
Uncracked	Dry	Tk,uncr	фа
Onordonod	Water-saturated	Tk,uncr	φws
Cracked	Dry	Tk,cr	$\phi_{ m d}$
Cracked	Water-saturated	Tk,cr	φws

Figure 2 of this report presents a bond strength design selection flowchart. Strength reduction factors for determination of the bond strength are given in the tables outlined in Table 1 of this report. Adjustments to the bond strength may also be taken for increased concrete compressive strength as noted in the footnotes to the corresponding tables.

- **4.1.5 Static Steel Strength in Shear:** The nominal static steel strength of a single anchor in shear as governed by the steel, $V_{\rm Sd}$, in accordance with ACI 318-19 17.7.1.2 or ACI 318-14 17.5.1.2, as applicable, and strength reduction factor, ϕ , in accordance with ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are given in the tables outlined in Table 1 of this report for the corresponding anchor steel.
- **4.1.6 Static Concrete Breakout Strength in Shear:** The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-19 17.7.2 or ACI 318-14 17.5.2, as applicable, based on information given in the tables outlined in Table 1 of this report for the corresponding anchor steel.

The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-19 17.7.2.2 or ACI 318-14 17.5.2.2, as applicable, using the values of d given in the tables outlined in Table 1 for the corresponding anchor steel in lieu of d_a . In addition, h_{ef} must be substituted for ℓ_e . In no case must ℓ_e exceed 8d. The value of f'_c must be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1 or ACI 318-14 17.2.7, as applicable.

- **4.1.7 Static Concrete Pryout Strength in Shear:** The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , shall be calculated in accordance with ACI 318-19 17.7.3 or ACI 318-14 17.5.3, as applicable.
- **4.1.8 Interaction of Tensile and Shear Forces:** For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 17.8 or ACI 318-14 17.6, as applicable.
- **4.1.9 Minimum Member Thickness,** h_{min} , **Anchor Spacing,** s_{min} , and Edge Distance, c_{min} : In lieu of ACI 318-19 17.9.2 or ACI 318-14 17.7.1 and 17.7.3, as applicable, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. The minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-19 17.9.3 or ACI 318-14 17.7.4, as applicable, applies.

For the edge distance c_{ai} and anchor spacing s_{ai} , the maximum torque, T_{max} , shall comply with the following requirements:

REDUCED INSTALLATION TORQUE $T_{max,red}$ FOR EDGE DISTANCES $c_{ai} < (5 \times d_a)$					
EDGE DISTANCE,	MINIMUM ANCHOR	MAXIMUM			
Cai	SPACING, sai	TORQUE, T _{max,red}			
1.75 in. (45 mm) ≤ c _{ai}	5 x d _a ≤ s _{ai} < 16 in.	0.3 x T _{max}			
< 5 x d _a	s _{ai} ≥ 16 in. (406 mm)	0.5 x T _{max}			

4.1.10 Critical Edge Distance c_{ac} and $\psi_{cp,Na}$: The modification factor, $\psi_{cp,Na}$, must be determined in accordance with ACI 318-19 17.6.5.5 or ACI 318-14 17.4.5.5, as applicable, except as noted below:

For all cases where c_{Na}/c_{ac} <1.0, $\psi_{cp,Na}$ determined from ACI 318-19 Eq. 17.6.5.5.1b or ACI 318-14 Eq. 17.4.5.5b, as applicable, need not be taken less than c_{Na}/c_{ac} . For all other cases, $\psi_{cp,Na}$ shall be taken as 1.0.

The critical edge distance, c_{ac} , must be calculated according to Eq. 17.6.5.5.1c for ACI 318-19 or Eq. 17.4.5.5c for ACI 318-14 in lieu of ACI 318-19 17.9.5 or ACI 318-14 17.7.6, as applicable.

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k,uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$

(Eq. 17.6.5.5.1c for ACI 318-19 or Eq. 17.4.5.5c for ACI 318-14)

where

$$\left[\frac{h}{h_{ef}}\right]$$
 need not be taken as larger than 2.4; and

 $au_{k,uncr}$ is the characteristic bond strength in uncracked concrete, h is the member thickness, and hef is the embedment depth.

 $au_{k,\mathit{uncr}}$ need not be taken as larger than:

$$\tau_{kuncr} = \frac{k_{uncr} \sqrt{h_{ef} f_c}}{\pi \cdot d_r}$$
 Eq. (4-1)

4.1.11 Design Strength in Seismic Design Categories C, D, E, and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchors must be designed in accordance with ACI 318-19 17.10 or ACI 318-14 17.2.3, as applicable, except as described below:

Modifications to ACI 318-19 17.10 or ACI 318-14 17.2.3 shall be applied under Section 1905.1.8 of the IBC. The nominal steel shear strength, V_{sa} , must be adjusted by αv_{seis} as given in the tables summarized in Table 1 for the anchor element types included in this report. For tension, the nominal pullout strength $N_{p,cr}$ or bond strength $\tau_{k,cr}$ must be adjusted by $\alpha_{N,seis}$. See Tables 9, 10, 13, 14, 17, and 20.

4.2 Installation:

Installation parameters are illustrated in Figure 1 of this report. Installation must be in accordance with ACI 318-19 26.7.2 or ACI 318-14 17.8.1 and 17.8.2, as applicable. Anchor locations must comply with this report and the plans and specifications approved by the code official. Installation of the Hilti HIT-HY 100 Adhesive Anchor System must conform to the manufacturer's printed installation instructions (MPII) included in each unit package as provided in Figure 4 of this report.

4.3 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the IBC and this report. The special inspector must be on the jobsite initially during anchor installation to verify anchor type, anchor dimensions, adhesive identification and expiration date, concrete type, concrete compressive strength, hole dimensions, hole cleaning procedures, anchor spacing, edge distances, concrete thickness, anchor embedment, tightening torque and adherence to the manufacturer's printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor by construction personnel on-site. Subsequent installations of the same anchor type and size by the same construction personnel shall be permitted to be performed in the absence of the special inspector. Any change in the anchor product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector shall make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318-19 26.13.3.2(e) and 26.7.1(j) or ACI 318-14 17.8.2.4, 26.7.1(h), and 26.13.3.2(c), as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706, or 1707 must be observed, where applicable.

5.0 CONDITIONS OF USE

The Hilti HIT-HY 100 Adhesive Anchoring System described in this report complies with or is a suitable alternative to what is specified in those codes listed in Section 1.0 of this report, subject to the following conditions:

- 5.1 The Hilti HIT-HY 100 Adhesive Anchoring System must be installed in accordance with the manufacturer's printed installation instructions as included in the adhesive packaging and illustrated in Figure 4 of this report.
- **5.2** Anchors must be installed in cracked and uncracked normal-weight and lightweight concrete having a specified compressive strength f'_c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).
- **5.3** The values of f'_c used for calculation purposes must not exceed 8,000 psi (55 MPa).
- 5.4 The concrete shall have attained its minimum design strength prior to installation of the adhesive anchors.
- 5.5 Anchors must be installed in concrete base materials in holes predrilled in accordance with the instructions provided in Figure 4 of this report.
- 5.6 Loads applied to the anchors must be adjusted in accordance with Section 1605.1 of the 2021 IBC (Section 1605.2 of the 2018 and 2015 IBC) for strength design.
- 5.7 Hilti HIT-HY 100 adhesive anchors are recognized for use to resist short- and long-term loads, including wind and earthquake, subject to the conditions of this report.
- 5.8 In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report.
- 5.9 Hilti HIT-HY 100 adhesive anchors are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.
- **5.10** Strength design values must be established in accordance with Section 4.1 of this report.
- 5.11 Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values given in this report.
- 5.12 Prior to anchor installation, calculations and details demonstrating compliance with this report shall be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- 5.13 Anchors are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, the Hilti HIT-HY 100 Adhesive Anchoring System is permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors are used to resist wind or seismic forces only.
 - Anchors that support gravity load—bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for

- resistance to fire exposure in accordance with recognized standards.
- Anchors are used to support nonstructural elements.
- 5.14 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- 5.15 Use of zinc-plated carbon steel threaded rods, zinc-plated HIS-N inserts, or steel reinforcing bars is limited to dry, interior locations.
- 5.16 Use of hot-dipped galvanized carbon steel or stainless steel rods, or stainless steel HIS-RN inserts, is permitted for exterior exposure or damp environments.
- 5.17 Steel anchoring materials in contact with preservative-treated and fire-retardant treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- 5.18 Periodic special inspection must be provided in accordance with Section 4.3 of this report. Continuous special inspection for anchors installated in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.3 of this report.
- 5.19 Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program in accordance with ACI 318-19 26.7.2(e) or ACI 318-14 17.8.2.2 or 17.8.2.3, as applicable.
- 5.20 Hilti HIT-HY 100 adhesive anchors may be used to resist tension and shear forces in floor, wall, and overhead installations only if installation is into concrete with a temperature between 14°F and 104°F (-10°C and 40°C) for threaded rods, rebar, and Hilti HIS-(R)N inserts. Overhead installations for hole diameters larger than ⁷/₁₆-inch or 10mm require the use of piston plugs (HIT-SZ) during injection to the back of the hole. 7/16-inch and 10mm diameter holes may be injected directly to the back of the hole with the use of extension tubing on the end of the nozzle. The anchor or post-installed reinforcing bars must be supported until fully cured (i.e., with Hilti HIT-OHW wedges, or other suitable means). Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance. Installations in concrete temperatures below 41°F require the adhesive to be conditioned to a minimum temperature of 41°F.
- 5.21 Anchors when installed at temperatures below 40°F shall not be used for applications where the concrete temperature can rise from 40°F (or less) to 80°F (or higher) within a 12-hour period. Such applications may include but are not limited to anchorage of building facade systems and other applications subject to direct sun exposure. See MPII in Figure 4 for additional temperature requirements.
- 5.22 Hilti HIT-HY 100 adhesive is manufactured by Hilti GmbH, Kaufering, Germany, under a quality control program with inspections by ICC-ES.
- 5.23 Hilti HIS-N and HIS-RN inserts are manufactured by Hilti (China) Ltd., Guangdong, China, under a qualitycontrol program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete Elements (AC308), dated October 2022 (editorially revised February 2021), which incorporates requirements in ACI 355.4 (-19 and -11) including but not limited to tests under freeze-thaw conditions (Table 3.2, Test series 6).

7.0 IDENTIFICATION

- 7.1 The ICC-ES mark of conformity, electronic labeling, or the evaluation report number (ICC-ES ESR-3574) along with the name, registered trademark, or registered logo of the report holder must be included in the product label.
- 7.2 In addition, the adhesives are identified by packaging labeled with the manufacturer's name (Hilti, Inc.) and address, anchor name and anchor size.

- 7.3 In addition, the HIS-N and HIS-RN inserts are identified by packaging labeled with the manufacturer's name (Hilti, Inc.) and address and anchor name.
- 7.4 Threaded rods, nuts, washers, bolts, cap screws, and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications as set forth in Tables 2 through 5.
- **7.5** The report holder's contact information is the following:

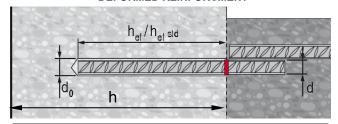
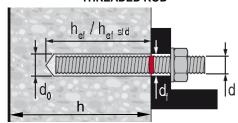

HILTI, INC. 7250 DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024 (800) 879-8000 www.hilti.com

TABLE 1—DESIGN TABLE INDEX

Davis T		Fract	ional	Me	tric		
Design Ta	able	Table	Page	Table	Page		
Standard Threaded Rod	Steel Strength - N _{sa} , V _{sa}	6	10	11	15		
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cpg} , V_{cpg}	8	12	12	16		
	Bond Strength - Na, Nag	9	13	13	17		
Hilti HIS-N and HIS-RN Internally Threaded Insert	Steel Strength - N _{sa} , V _{sa}	18	21	18	21		
ARRESTER STORY (1997)	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cpg} , V_{cpg}	19	22	19	22		
	Bond Strength - Na, Nag	20	23	20	23		

Design Table			Fractional		EU Metric		Canadian	
			Page	Table	Page	Table	Page	
Steel Reinforcing Bars	Steel Strength - N _{sa} , V _{sa}	7	11	11	15	15	19	
रिक्षी को तो को के कि की की की	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg} , V_{cpg}	8	12	12	16	16	19	
	Bond Strength - Na, Nag	10	14	14	18	17	20	

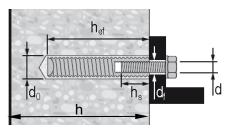
DEFORMED REINFORCMENT



US REBAR							
ממממממט	Ød₀	h _{ef} std	h _{ef}				
d	[inch]	[inch]	[inch]				
#3	1/2	33/8	23/871/2				
#4	5/8	4 1/2	23/410				
#5	3/4	5 ⁵ / ₈	31/8121/2				
#6	7/8	63/4	31/215				
#7	1	7 7/8	31/2171/2				
#8	1 1/8	9	420				
#9	1 3/8	101/8	41/2221/2				
# 10	1 1/2	11 1/4	525				

CANADIAN REBAR							
ממממממ	Ø d ₀	h _{ef} std	h _{ef}				
10 M	[inch] 9/16	[mm] 115	[mm] 70226				
15 M	3/4	145	80320				
20 M	1	200	90390				
25 M	1 1/4	230	101504				
30 M	1 1/2	260	120598				

EUROPEAN REBAR							
ударарада Ø d [mm]	Ø d ₀ [mm]	h _{ef std} [mm]	h _{ef} [mm]				
8	12	80	60160				
10	14	90	60200				
12	16	110	70240				
14	18	125	75280				
16	20	125	80320				
20	25	170	90400				
25	32	210	100500				
28	35	270	112560				
32	40	300	128640				


THREADED ROD

FRACTIONAL THREADED ROD								
Ø d [inch]	Ød₀ [inch]	h _{ef} std [inch]	h _{ef} [inch]	T _{max} [ft-lb]	T _{max} [Nm]			
3/8	7/16	33/8	23/8 71/2	15	20			
1/2	9/16	41/2	23/410	30	41			
5/8	3/4	55/8	31/8121/2	60	81			
3/4	7/8	63/4	31/2 15	100	136			
7/8	1	7 7/8	31/2171/2	125	169			
1	1 1/8	9	420	150	203			
1 1/4	13/8	111/4	5 25	200	271			

METRIC THREADED ROD							
Ø d [mm]	Ø d₀ [mm]	h _{ef std} [mm]	h _{ef} [mm]	T _{max} [Nm]			
M8	10	80	60160	10			
M10	12	90	60200	20			
M12	14	110	70240	40			
M16	18	125	80320	80			
M20	22	170	90400	150			
M24	28	210	96480	200			
M27	30	240	108540	270			
M30	35	270	120600	300			

HILTI HIS-N AND HIS-RN THREADED INSERTS

FRA	FRACTIONAL HILTI HIS-N AND HIS-RN THREADED INSERTS								
Ø d [inch]	Ød₀ [inch]	h _{ef} [inch]	Ø d _f [inch]	h _s [inch]	T _{max} [ft-lb]	T _{max} [Nm]			
3/8	11/16	4 3/8	7/16	3/815/16	15	20			
1/2	7/8	5	9/16	1/213/16	30	41			
5/8	1 1/8	63/4	11/16	5/81 1/2	60	81			
3/4	1 1/4	81/8	13/16	3/41 7/8	100	136			

METRIC HILTI HIS-N AND HIS-RN THREADED INSERTS								
Ø d [mm]	Ød₀[mm]	h _{ef} [mm]	Ød _i [mm]	h _s [mm]	T _{max} [Nm]			
M8	14	90	9	820	10			
M10	18	110	12	1025	20			
M12	22	125	14	1230	40			
M16	28	170	18	1640	80			
M20	32	205	22	2050	150			

FIGURE 1—INSTALLATION PARAMETERS

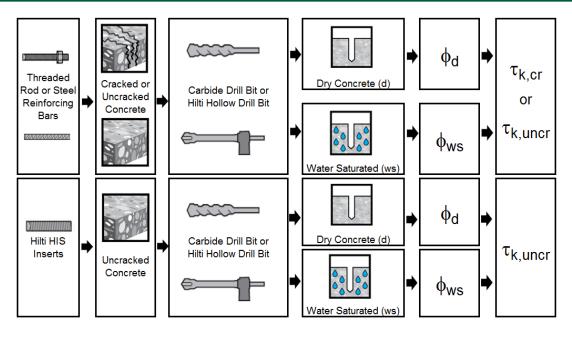


FIGURE 2—FLOWCHART FOR ESTABLISHMENT OF DESIGN BOND STRENGTH

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

1990000	EADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, f_{ya}	f _{uta} /f _{ya}	Elongation, min. percent ⁸	Reduction of Area, min. percent	Specification for nuts ⁹
	ASTM A193 ² Grade B7 ≤ 2 ¹ / ₂ in. (≤ 64 mm)	psi (MPa)	125,000 (862)	105,000 (724)	1.19	16	50	ASTM A563 Grade DH
	ASTM F568M ³ Class 5.8 M5 (¹ / ₄ in.) to M24 (1 in.) (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	ASTM A563 Grade DH ¹⁰ DIN 934 (8-A2K)
STEEL	ASTM F1554, Grade 36 ⁷	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40	ASTM A194 or ASTM A563
CARBON	ASTM F1554, Grade 55 ⁷	psi (MPa)	75,000 (517)	55,000 (379)	1.36	21	30	ASTM A194 or ASTM A563
CAR	ASTM F1554, Grade 105 ⁷	psi (MPa)	125,000 (862)	105,000 (724)	1.19	15	45	ASTM A194 or ASTM A563
	ISO 898-1 ⁴ Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	DIN 934 Grade 6
	ISO 898-1 ⁴ Class 8.8	MPa (psi)	800 (116,000)	640 (92,800)	1.25	12	52	DIN 934 Grade 8
	ASTM F593 ⁵ CW1 (316) 1/ ₄ -in. to ⁵ / ₈ -in.	psi (MPa)	100,000 (689)	65,000 (448)	1.54	20	-	ASTM F594
STEEL	ASTM F593 ⁵ CW2 (316) ³ / ₄ -in. to 1 ¹ / ₂ -in.	psi (MPa)	85,000 (586)	45,000 (310)	1.89	25	-	ASTM F594
	ASTM A193 Grade 8(M), Class 1 ² - 1 ¼-in.	psi (MPa)	75,000 (517)	30,000 (207)	2.50	30	50	ASTM F594
STAINLESS	ISO 3506-1 ⁶ A4-70 M8 – M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	-	ISO 4032
	ISO 3506-1 ⁶ A4-50 M27 – M30	MPa (psi)	500 (72,500)	210 (30,450)	2.38	40	-	ISO 4032

¹ Hilti HIT-HY 100 adhesive may be used in conjunction with all grades of continuously threaded carbon or stainless steel rod (all-thread) that comply with the code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

² Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

³ Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners

⁴ Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs

⁵ Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

⁶ Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs

⁷ Standard Specification for Anchor Bolts, Steel, 36,55, and 105-ksi Yield Strength

Based on 2-in. (50 mm) gauge length except for A193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

¹⁰ Nuts for fractional rods

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF FRACTIONAL AND METRIC HIS-N AND HIS-RN INSERTS

HILTI HIS-N AND HIS-RN INSERTS		Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, f_{ya}
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN 1561	psi	71,050	59,450
9SMnPb28K ³ / ₈ -in. and M8 to M10	(MPa)	(490)	(410)
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN 1561	psi	66,700	54,375
9SMnPb28K ¹ / ₂ to ³ / ₄ -in. and M12 to M20	(MPa)	(460)	(375)
Stainless Steel	psi	101,500	50,750
EN 10088-3 X5CrNiMo 17-12-2	(MPa)	(700)	(350)

TABLE 4—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH HIS-N AND HIS-RN INSERTS^{1,2}

BOLT, CAP SCREW OR STUD SPECIFICATION		Minimum specified ultimate strength f _{uta}	Minimum specified yield strength 0.2 percent offset f_{ya}	f _{uta} /f _{ya}	Elongation, min.	Reduction of Area, min.	Specification for nuts ⁶
SAE J429 ³ Grade 5	psi	120,000	92,000	1.30	14	35	SAE J995
	(MPa)	(828)	(634)				57 NE 0000
ASTM A325 ⁴ ¹ / ₂ to 1-in.	psi	120,000	92,000	1.30	14	35	A563 C, C3, D, DH, DH3
7.6 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(MPa)	(828)	(634)	1.00	14		Heavy Hex
ASTM A193 ⁵ Grade B8M (AISI	psi	110,000	95,000	1.16	15	45	ASTM F594 ⁷
316) for use with HIS-RN	(MPa)	(759)	(655)	1.10	15	45	A3 1W F394
ASTM A193 ⁵ Grade B8T (AISI	psi	125,000	100,000	1.25	12	35	ASTM F594 ⁷
321) for use with HIS-RN	(MPa)	(862)	(690)	1.23	12	33	A3 1 W F 394

¹ Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel HIS-N inserts. ² Only stainless steel bolts, cap screws or studs must be used with HIS-RN inserts.

TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING BAR SPECIFICATION		Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, f_{ya}
ASTM A615 ¹ Gr. 60	psi	80,000	60,000
ASTM A015 GL 00	(MPa)	(550)	(414)
ASTM A615 ¹ Gr. 40	psi	60,000	40,000
ASTM A615° Gr. 40	(MPa)	(414)	(276)
ASTM A706 ² Gr. 60	psi	80,000	60,000
ASTM A706° Gr. 60	(MPa)	(550)	(414)
DIN 488 ³ BSt 500	MPa	550	500
DIN 488° BSt 500	(psi)	(79,750)	(72,500)
CAN/CSA-G30.18 ⁴ Gr. 400	MPa	540	400
CAN/CSA-G30.18° Gr. 400	(psi)	(78,300)	(58,000)

¹ Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

³ Mechanical and Material Requirements for Externally Threaded Fasteners

⁴ Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

⁵ Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

⁶ Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud.

7 Nuts for stainless steel studs must be of the same alloy group as the specified bolt, cap screw, or stud.

² Standard Specification for Low Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

³ Reinforcing steel; reinforcing steel bars; dimensions and masses

⁴ Billet-Steel Bars for Concrete Reinforcement

Fractional Threaded Rod

Steel Strength

TABLE 6—STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

DESIGN INFORMATION Symbol Units Nominal rod diameter (in.) ¹										
DESIGN	INFORMATION	Symbol	Units	³ / ₈	1/2	5/8	3/4	⁷ / ₈	1	1 ¹ / ₄
Rod O.D		d	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
	··		(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
Rod effe	ective cross-sectional area	Ase	in. ²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691
	T		(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)
		N _{sa}	lb (kN)	5,620	10,290	16,385	24,250	33,470	43,910	70,260
. ∞	Nominal strength as governed by steel strength		(kN)	(25.0) 3,370	(45.8) 6,175	(72.9) 9,830	(107.9) 14,550	(148.9) 20,085	(195.3) 26,345	(312.5) 42,155
398- s 5.	Strongth	V _{sa}	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)
ISO 898-1 Class 5.8	Reduction for seismic shear	αv,seis	(KIV)	(13.0)	(27.0)	(40.7)	0.70	(03.3)	(117.2)	(107.3)
<u>o</u> 0	Strength reduction factor for tension ²	φ	_				0.65			
	Strength reduction factor for shear ²	φ	_				0.60			
	3		lb	9,685	17,735	28,250	41,810	57,710	75,710	121,135
37	Nominal strength as governed by steel	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
33 E	strength	.,	lb	5,810	10,640	16,950	25,085	34,625	45,425	72,680
A18		V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM A193 B7	Reduction for seismic shear	αv,seis	-				0.70			
AS	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ²	φ	-				0.65			
		Nsa	lb	-	8,230	13,110	19,400	26,780	35,130	56,210
74	Nominal strength as governed by steel	IVsa	(kN)	-	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)
.155 36	strength	V _{sa}	lb	-	4,940	7,865	11,640	16,070	21,080	33,725
ASTM F1554 Gr. 36		▼ Sa	(kN)	-	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)	(150.0)
\ST	Reduction factor, seismic shear	αν,seis	-				0.60			
•	Strength reduction factor ϕ for tension ²	φ	-				0.75			
	Strength reduction factor ϕ for shear ²	φ	-				0.65			
		N _{sa}	lb "…"	-	10,645	16,950	25,090	34,630	45,430	72,685
54	Nominal strength as governed by steel strength		(kN)	-	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
F15 55		V _{sa}	lb (LN)	-	6,385	10,170	15,055	20,780	27,260	43,610
ASTM F1554 Gr. 55	Reduction factor, seismic shear		(kN) -	-	(28.4)	(45.2)	(67.0) 0.70	(92.4)	(121.3)	(194.0)
AS.	Strength reduction factor ϕ for tension ²	αν,seis φ	-				0.75			
	Strength reduction factor ϕ for shear ²	φ	-				0.65			
	Otterigit reduction factor ϕ for shear	Ψ	lb	_	17,740	28,250	41,815	57,715	75,715	121,135
	Nominal strength as governed by steel	N _{sa}	(kN)	_	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
554 5	strength		lb	_	10,645	16,950	25,090	34,630	45,430	72,680
TM F15		V _{sa}	(kN)	_	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM F1554 Gr. 105	Reduction factor, seismic shear	αv,seis	-		, ,	(- /	0.70	(/	(- /	()
¥	Strength reduction factor ϕ for tension ²	φ	-				0.75			
	Strength reduction factor ϕ for shear ²	φ	-				0.65			
		.,	lb	7,750	14,190	22,600	28,430	39,245	51,485	-
. ۵	Nominal strength as governed by steel	N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	-
ASTM F593, CW Stainless	strength	1/	lb	4,650	8,515	13,560	17,060	23,545	30,890	-
M F Stair		V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	-
ST W 8	Reduction factor, seismic shear	αν,seis	-			0	.70			
∢ O	Strength reduction factor for tension ²	ϕ	-			0	.65			
	Strength reduction factor for shear ²	ϕ	-			0	.60			
		`N _{sa}	lb				-			55,240
(S)	Nominal strength as governed by steel	1 428	(kN)				-			(245.7)
r. 8(Iles:	strength	V _{sa}	lb				-			33,145
; air tair		- 50	(kN)				-			(147.4)
193 1 S	Reduction factor, seismic shear	$lpha_{ m v,seis}$	-				-			0.6
M A ass	Strength reduction factor ϕ for tension ²	φ	-				-			0.75
ASTM A193, Gr. 8(M), Class 1 Stainless	Strength reduction factor ϕ for shear 2	φ	-				-			0.65

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf

¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b) or ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.

² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14

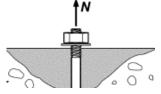
^{17.3.3,} as applicable, are met.

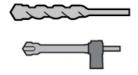
Fractional Reinforcing Bars

Steel Strength

TABLE 7—STEEL DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS

DEGLO	N INFORMATION	0	11.26			Nomina	al Reinforcii	ng bar size ((Rebar) ¹		
DESIG	IN INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
			in.	3/8	1/2	⁵ / ₈	3/4	7/8	1	1.128	1.270
Nomina	al bar diameter	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.7)	(32.3)
Dar off	ective cross-sectional area	4	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27
bar en	ective cross-sectional area	Ase	(mm ²)	(71)	(129)	(199)	(284)	(387)	(510)	(645)	(819)
		N _{sa}	lb	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200
	Nominal strength as governed by steel	IVsa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.9)	(266.9)	(339.0)
615 40	strength	V _{sa}	lb	3,960	7,200	11,160	15,840	21,600	28,440	36,000	45,720
ASTM A615 Grade 40		v sa	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(160.1)	(203.4)
AST	Reduction for seismic shear	αv,seis	-				0.	70			
•	Strength reduction factor ϕ for tension ²	φ	-				0.	65			_
	Strength reduction factor ϕ for shear ²	φ	-				0.	60			
		M	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600
	Nominal strength as governed by steel	N _{sa}	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(451.9)
615 60	strength	V _{sa}	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960
ASTM A615 Grade 60		V sa	(kN)	(23.5)	(42.7)	(66.2)	(93.9)	(128.1)	(168.7)	(213.5)	(271.2)
AST	Reduction for seismic shear	$lpha_{ m v,seis}$	-				0.	70			
•	Strength reduction factor ϕ for tension ²	φ	-				0.	65			
	Strength reduction factor ϕ for shear ²	φ	-				0.	60			
		N/	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600
	Nominal strength as governed by steel	N _{sa}	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(452.0)
706	strength	1/	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960
STM A70 Grade 60		V _{sa}	(kN)	(23.5)	(42.7)	(66.2)	(94.0)	(128.1)	(168.7)	(213.5)	(271.2)
ASTM A706 Grade 60	Reduction for seismic shear	$lpha_{v,seis}$	-				0.	70			
	Strength reduction factor ϕ for tension ²	φ					0.	75			
	Strength reduction factor ϕ for shear ²	φ					0.	65			
	,	φ		4 0.6	2007 :	- 1 N - 0 2		65			


For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf


¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b) or ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.

² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14

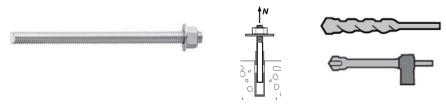
^{17.3.3,} as applicable, are met.

Fractional Threaded Rod and **Reinforcing Bars**

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1


				Ne	ominal rod	diameter (in.) / Reinfoi	rcing bar s	ize	
DESIGN INFORMATION	Symbol	Units	³ / ₈ or #3	¹ / ₂ or #4	⁵ / ₈ or #5	³/ ₄ or #6	⁷ / ₈ or #7	1 or #8	#9	1 ¹ / ₄ or #10
Effectiveness factor for	le.	in-lb				2	24			
uncracked concrete	K _{c,uncr}	(SI)				(10)			
Effectiveness factor for cracked	k	in-lb					17			
concrete	k _{c,cr}	(SI)				(7)			
Minimum Embedment	h	in.	2 ³ / ₈	23/4	3 ¹ / ₈	31/2	31/2	4	41/2	5
Minimum Empeament	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
Maximum Embedment	b	in.	71/2	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
Maximum Embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
Min analon an arian4		in.	1 ⁷ / ₈	21/2	3 ¹ / ₈	33/4	43/8	5	5 ⁵ / ₈	61/4
Min. anchor spacing ⁴	Smin	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Min. edge distance ⁴	Cmin	-	5d; or se	ee Section 4	1.1.9 of this r	eport for d	esign with re	duced minir	num edge	distances
Minimum concrete thickness	h _{min}	in. (mm)		· 1 ¹ / ₄ + 30)			h _{ef} +	2d ₀ ⁽³⁾		
Critical edge distance – splitting (for uncracked concrete)	Cac	-	(Hef	. 30)	See	Section 4.1	.10 of this re	port.		
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-				0	.65			
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ² $\phi = 0.70$										

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ For additional setting information, see installation instructions in Figure 4.

² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met. ${}^{3}d_{0}$ = hole diameter.

⁴ For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

Fractional Threaded Rod

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1,3

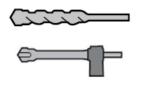
	D E	CICN INCORMATION					Nomin	al rod diame				
	DE	SIGN INFORMATION	Symbol	Units	³ / ₈	1/2	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₄	
Mi	nimu	m anchor embedment depth	h	in.	23/8	23/4	31/8	31/2	31/2	4	5	
	IIIIIu	in anchor embedment depth	h _{ef,min}	(mm)	(60)	(70)	(80)	(89)	(89)	(102)	(127)	
Ma	vimi	ım anchor embedment depth	h _{ef.max}	in.	71/2	10	12 ¹ / ₂	15	17 ¹ / ₂	20	25	
ivia	AIIIIC	an anchor embedment depth	I let,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)	
		Characteristic bond strength	_	psi	1,490	1,490	1,490	1,490	1,390	1,270	1,030	
	Α	in uncracked concrete	Tk,uncr	(MPa)	(10.3)	(10.3)	(10.3)	(10.3)	(9.6)	(8.9)	(7.1)	
		Characteristic bond strength	T _{k,cr}	psi	615	670	725	775	780	790	-	
ge ²		in cracked concrete	r,cr	(MPa)	(4.2)	(4.6)	(5.0)	(5.3)	(5.4)	(5.4)	-	
Temperature Range ²		Characteristic bond strength	Tk,uncr	psi	1,450	1,450	1,450	1,385	1,275	1,170	950	
_e	В	in uncracked concrete	tk,uncr	(MPa)	(10.0)	(10.0)	(10.0)	(9.5)	(8.8)	(8.1)	(6.5)	
əratı		Characteristic bond strength	T _{k.cr}	psi	565	620	665	715	720	725	-	
шb		in cracked concrete	PR,CI	(MPa)	(3.9)	(4.3)	(4.6)	(4.9)	(5.0)	(5.0)	-	
Te		Characteristic bond strength	Tk.uncr	psi	1,250	1,250	1,165	1080	995	910	740	
	С	in uncracked concrete	tk,uncr	(MPa)	(8.6)	(8.6)	(8.0)	(7.4)	(6.9)	(6.3)	(5.1)	
		Characteristic bond strength	T _{k,cr}	psi	440	480	520	555	560	565	-	
		in cracked concrete	r,cr	(MPa)	(3.0)	(3.3)	(3.5)	(3.8)	(3.9)	(3.9)	-	
			Anchor	_				1			2	
υ,	- "	Dry concrete	Category					•			_	
Permissible	Conditions		ϕ_{d}	-			0	.65			0.55	
ermi	Sond		Anchor					0				
Δ -	= 0	Water-saturated concrete	Category	-				2				
			φws.	-				0.55				
Redu	ctior	n for seismic tension	α _{N,seis}	-	1.00							

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

² Temperature range A: Maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C).


Temperature range C: Maximum short term temperature = 210°F (99°C), maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³ Hilti Hollow Drill Bit hole drilling not permitted for ¹/₂-inch threaded rod.

Fractional Reinforcing Bars

Bond Strength

Carbide Bit or Hilti **Hollow Carbide Bit**

TABLE 10—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1

	-	ECION INFORMATION	Oh al	11			Nomin	al Reinforcii	ng bar size (Rebar)		
	וט	ESIGN INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minin	aum	anchor embedment depth	h	in.	23/8	23/4	31/8	31/2	31/2	4	41/2	5
IVIIIIIII	num	anchor embedment depth	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
Movi	mum	anchor embedment depth	h	in.	71/2	10	12 ¹ / ₂	15	171/2	20	221/2	25
IVIAXII	Hulli	ranction embedinent deptir	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
		Characteristic bond strength	_	psi	1,275	1,265	1,253	1,240	1,230	1,220	1,150	1,030
	Α	in uncracked concrete	Tk,uncr	(MPa)	(8.8)	(8.7)	(8.6)	(8.5)	(8.5)	(8.4)	(7.9)	(7.1)
	A	Characteristic bond strength	_	psi	610	670	725	775	780	790	795	805
6 ₂	in cracked concrete		Tk,cr	(MPa)	(4.2)	(4.6)	(5.0)	(5.3)	(5.4)	(5.4)	(5.5)	(5.5)
ang		Characteristic bond strength	_	psi	1,175	1,165	1,155	1,140	1,130	1,120	1,055	950
<u>e</u>	_D	in uncracked concrete	T _{k,uncr}	(MPa)	(8.1)	(8.0)	(8.0)	(7.9)	(7.8)	(7.7)	(7.3)	(6.6)
ratn	erature R	Characteristic bond strength		psi	565	615	665	715	720	725	730	740
mpe		in cracked concrete	Tk,cr	(MPa)	(3.9)	(4.3)	(4.6)	(4.9)	(5.0)	(5.0)	(5.0)	(5.1)
Те		Characteristic bond strength	_	psi	915	905	900	890	880	873	825	740
	С	in uncracked concrete	Tk,uncr	(MPa)	(6.3)	(6.2)	(6.2)	(6.1)	(6.1)	(6.0)	(5.7)	(5.1)
		Characteristic bond strength		psi	430	475	510	545	550	555	560	565
		in cracked concrete	Tk,cr	(MPa)	(3.0)	(3.2)	(3.5)	(3.7)	(3.8)	(3.8)	(3.9)	(3.9)
Φ -	- "		Anchor									^
ssibl	onditions	Dry concrete & Water-	Category	-				1				2
Permissible	Cond	saturated concrete	φ _d & φ _{ws}	-			0.	65			0.	55
Redu	ctior	n for seismic tension	α _{N,seis}	-				1.	00		•	

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C). Temperature range C: Maximum short term temperature = 210°F (99°C), maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

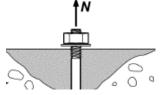
Metric Threaded Rod and EU Metric **Reinforcing Bars**

Steel Strength

TABLE 11—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS

	TABLE 11—STEEL DESIG	T IIII OIK	IIIA I I O	T OK INL		<u> </u>		rod diame			IO DAILO				
DESIG	N INFORMATION	Symbol	Units	8	10	12	1		20	24	27	30			
			mm	8	10	12	1	6	20	24	27	30			
Rod O	utside Diameter	d	(in.)	(0.31)	(0.39)	(0.47	') (0. 6	63) (0	0.79)	(0.94)	(1.06)	(1.18)			
			mm ²	36.6	58.0	84.3	15	57	245	353	459	561			
Rod ef	fective cross-sectional area	A_{se}	(in. ²)	(0.057)	(0.090)	(0.13	1) (0.2	43) (0	.380)	(0.547)	(0.711)	(0.870)			
		A./	kN	18.3	29.0	42.0	78	.5 1	22.5	176.5	229.5	280.5			
	Nominal strength as governed by steel	N _{sa}	(lb)	(4,115)	(6,519)	(9,47	6) (17,6	647) (27	7,539)	(39,679)	(51,594)	(63,059)			
3-7	strength	1/	kN	11.0	17.4	25.5	5 47	.0 7	73.5	106.0	137.5	168.5			
SO 898-1 Class 5.8		V _{sa}	(lb)	(2,473)	(2,473) (3,912) (5,685) (10,588) (16,523) (23,807) (30,956)							(37,835)			
ISO Cla	Reduction for seismic shear	αv,seis	-	0.70											
	Strength reduction factor for tension ²	φ	-	0.65											
	Strength reduction factor for shear ²	φ	-					0.60							
		.,	kN	29.3	46.5	67.5	125	5.5 1	96.0	282.5	367.0	449.0			
	Nominal strength as governed by steel	N _{sa}	(lb)	(6,580)	(10,431	(15,16	(28,2	236) (44	4,063)	(63,486)	(82,550)	(100,894)			
~ ×	strength	17	kN	17.6	27.8	40.5	40.5 75.5		17.5	169.5	220.5	269.5			
SO 898-1 Class 8.8		V _{sa}	(lb)	(3,957)			942) (26	(26,438) (38,092) (49,530)			(60,537)				
SS Cla	Reduction for seismic shear	αv,seis	-		0.70										
	Strength reduction factor for tension ²	φ	-		0.65										
	Strength reduction factor for shear ²	φ	-		0.60										
		.,	kN	25.6	40.6	59.0	109	9.9 1	71.5	247.1	183.1	223.8			
SS	Nominal strength as governed by steel	N _{sa}	(lb)	(5,760)	(9,127)	(13,26	(24,7	706) (38	3,555)	(55,550)	(41,135)	(50,335)			
Cla ess³	strength	17	kN	15.4	24.4	35.4	65	.9 1	02.9	148.3	109.9	134.3			
506-1 Clas Stainless ³		V _{sa}	(lb)	(3,462)	(5,485)	(7,96	0) (14,8	324) (23	3,133)	(33,330)	(24,680)	(30,200)			
ISO 3506-1 Class A4 Stainless ³	Reduction for seismic shear	αv,seis	-					0.70							
180	Strength reduction factor for tension ²	φ	-					0.65							
	Strength reduction factor for shear ²	φ	-					0.60							
DESIG	N INFORMATION	Symbol	Units				Rein	forcing ba	ır size						
DESIG	N INFORMATION	Syllibol	Ullits	8	10	12	14	16	20	25	28	32			
Nomin:	al bar diameter	d	mm	8.0	10.0	12.0	14.0	16.0	20.0	25.0	28.0	32.0			
	ai bai diametei	u	(in.)	(0.315)	(0.394)	(0.472)	(0.551)	(0.630)	(0.787)	(0.984)	(1.102)	(1.260)			
Bar eff	ective cross-sectional area	Ase	mm ²	50.3	78.5	113.1	153.9	201.1	314.2	490.9	615.8	804.2			
Dai Cil	ective cross-sectional area	Ase	(in.²)	(0.078)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.247)			
0	0		kN	27.6	43.0	62.0	84.5	110.5	173.0	270.0	338.5	442.5			
DIN 488 BSt 550/500	Nominal strength as governed by steel	N _{sa}	(lb)	(6,215)	(9,711)	(13,984)	(19,034)	(24,860)	(38,844) (60,694	(76,135)	(99,441)			
: 550	strength	V_{sa}	kN	16.6	26.0	37.5	51.0	66.5	103.0	162.0	203.0	265.5			
BSt		- 30	(lb)	(3,730)	(5,827)	(8,390)	(11,420)	(14,916)	(23,307) (36,416	(45,681)	(59,665)			
488	Reduction for seismic shear	αv,seis	-					0.70							
NO	Strength reduction factor for tension ²	φ	-	- 0.65											
	Strength reduction factor for shear ²	ϕ	-					0.60							

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq (17.6.1.2) and Eq. (17.7.1.2.b)

or ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.

2 The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

3 A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

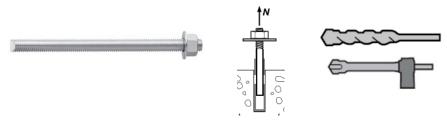
Metric Threaded Rod and EU Metric **Reinforcing Bars**

Concrete Breakout Strength

Carbide Bit Bit or Hilti Hollow Carbide Bit

TABLE 12—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1

Nominal rod diameter (mm)											
DESIGN INFORMATION	Symbol	Units	8	10	12		16	20	24	27	30
		mm	60	60	70		30	90	96	108	120
Minimum Embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8) (3	3.1)	(3.5)	(3.8)	(4.3)	(4.7)
	,	mm	160	200	240) 3	20	400	480	540	600
Maximum Embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4) (1	2.6)	(15.7)	(18.9)	(21.3)	(23.6)
Min	_	mm	40	50	60		30	100	120	135	150
Min. anchor spacing ⁴	S _{min}	(in.)	(1.6)	(2.0)	(2.4) (3	3.2)	(3.9)	(4.7)	(5.3)	(5.9)
Min. edge distance ⁴	Cmin	-	50	d; or see Se	ction 4.1.9	of this repo	rt for des	ign with red	uced minimu	m edge distan	ces
Minimum and Abiatum		mm	he	f + 30				<i>L</i> .	2d _o ⁽³⁾		
Minimum concrete thickness	h _{min}	(in.)	(h _{ef}	+ 1 ¹ / ₄)				∏ef +	200(9)		
DESIGN INFORMATION	Cumbal	Unito				Reir	nforcing	j bar size			
DESIGN INFORMATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Minimum Embedment	h	mm	60	60	70	75	80	90	100	112	128
Willimum Embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.0)	(3.1) (3.5	5) (3.9)	(4.4)	(5.0)
Maximum Embedment	h.	mm	160	200	240	280	320	40	500	560	640
	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(11.0)	(12.6	6) (15.	7) (19.7) (22.0)	(25.2)
Min. anchor spacing ⁴	e .	mm	40	50	60	80	100	12	135	140	160
	S _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9) (4.7	(5.3)	(5.5)	(6.3)
Min. edge distance ⁴	C _{min}	-	50	d; or see Se	ction 4.1.9	of this repo	rt for des	ign with red	uced minimu	m edge distan	ces
No. 1		mm	h _{ef} -	+ 30					(3)		
Minimum concrete thickness	h _{min}	(in.)	(h _{ef} +	11/4)				h _{ef} + 2	(a ₀ (9)		
Critical edge distance – splitting (for uncracked concrete)	Cac	-				See Sec	tion 4.1.1	0 of this rep	ort.		
Effectiveness factor for uncracked		SI					10				
concrete	k _{c,uncr}	(in-lb)					(24)			
Effectiveness factor for cracked		SI					7.1				
concrete	K c,cr	(in-lb)					(17)			
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-					0.68	5			
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-					0.70)			


For **SI**: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

¹ For additional setting information, see installation instructions in Figure 4.

² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

³ d₀ = drill bit diameter.

⁴ For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

Metric Threaded Rod

Bond Strength

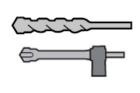
Carbide Bit or Hilti **Hollow Carbide Bit**

TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1,3

		FOICH INFORMATION	Ob. a.l.	Haita			N	ominal rod o	liameter (mr	n)		
	DE	ESIGN INFORMATION	Symbol	Units	8	10	12	16	20	24	27	30
Min	imuu	m anchor embedment depth	h	mm	60	60	70	80	90	96	108	120
IVIII	iiiiui	in anchor embedment depth	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
Max	/imu	ım anchor embedment depth	h.	mm	160	200	240	320	400	480	540	600
IVIA	Millu	ini anchor embedment deptir	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.3)	(23.6)
		Characteristic bond strength	_	MPa	10.2	10.2	10.2	10.2	10.1	9.1	8.3	7.6
	Α	in uncracked concrete	Tk,uncr	(psi)	(1,490)	(1,490)	(1,490)	(1,490)	(1,470)	(1,320)	(1,210)	(1,095)
	^	Characteristic bond strength	_	MPa	-	4.3	4.5	4.9	5.3	5.4	-	-
ge		in cracked concrete	lk,cr	(psi)	-	(620)	(650)	(715)	(770)	(780)	-	-
Range²		Characteristic bond strength	_	MPa	10.0	10.0	10.0	10.0	9.3	8.4	7.7	7.0
<u>_</u>	В	in uncracked concrete	Tk,cr Tk,uncr Tk,cr Tk,cr	(psi)	(1,450)	(1,450)	(1,450)	(1,450)	(1,355)	(1,215)	(1,115)	(1,010)
Temperature		Characteristic bond strength		MPa	-	3.9	4.1	4.5	4.9	4.9	-	-
upe		in cracked concrete		(psi)	-	(570)	(600)	(660)	(710)	(715)	-	-
Ter		Characteristic bond strength	_	MPa	8.8	8.8	8.8	8.0	7.3	6.6	6.0	5.4
	С	in uncracked concrete	7k,uncr	(psi)	(1,270)	(1,270)	(1,270)	(1,165)	(1,055)	(950)	(865)	(785)
	-	Characteristic bond strength	_	MPa	-	3.1	3.2	3.5	3.8	3.8	-	-
		in cracked concrete	Tk,cr	(psi)	-	(440)	(465)	(515)	(550)	(560)	-	-
ion			Anchor									•
allat		Dry concrete	Category	-				1				2
Insta	Conditions		φ _d	-				0.65				0.55
ble	ondi		Anchor									
issi	Water-saturated concrete		Category	-				2	2			
erm	Dry concrete Ouditions Water-saturated concrete A Ca Ca Ca Ca Ca Ca Ca Ca Ca			_				0	E E			
					0.55							
Reduc	tion	for seismic tension	lphaN,seis	-			1.	00			N	I/A

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.


² Temperature range A: Maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C). Temperature range C: Maximum short term temperature = 210°F (99°C), maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³ Hilti Hollow Drill Bit not permitted for 10 mm and 12 mm threaded rod.

EU Reinforcing Bars

Bond Strength

Carbide Bit or Hilti **Hollow Carbide Bit**

TABLE 14—BOND STRENGTH DESIGN INFORMATION FOR EU REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1,3}

	-	FOICH INFORMATION	Ob-s-l	11:4			No	minal Rein	forcing ba	r size (Reb	oar)		
	DE	ESIGN INFORMATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Minima		anchor embedment depth	6	mm	60	60	70	75	80	90	100	112	128
MILLILLI	ım a	anchor embedment depth	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.0)	(3.1)	(3.5)	(3.9)	(4.4)	(5.0)
Mavim	um 4	anchor embedment depth	h .	mm	160	200	240	280	320	400	500	560	640
IVIAXIIII	um	anchor embedment depth	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(25.2)
		Characteristic bond strength	_	MPa	6.2	6.3	6.4	6.5	6.6	6.7	7.0	7.1	7.0
	A	in uncracked concrete	T _{k,uncr}	(psi)	(900)	(915)	(925)	(940)	(950)	(975)	(1010)	(1025)	(1020)
	^	Characteristic bond strength	_	MPa	-	4.3	4.5	4.7	4.9	5.3	5.4	5.5	5.5
Range²		in cracked concrete	$ au_{k,cr}$	(psi)	-	(620)	(650)	(680)	(715)	(770)	(785)	(795)	(800)
₹an		Characteristic bond strength	_	MPa	5.7	5.8	5.9	6.0	6.0	6.2	6.4	6.5	6.5
Temperature Ra	ь	in uncracked concrete	Tk,uncr	(psi)	(830)	(840)	(855)	(865)	(875)	(900)	(930)	(945)	(940)
	Characteristic bond strength	_	MPa	-	3.9	4.1	4.3	4.5	4.9	5.0	5.0	5.1	
npe		Characteristic bond strength in cracked concrete	Tk,cr	(psi)	-	(570)	(600)	(630)	(660)	(710)	(725)	(730)	(740)
Ter		Characteristic bond strength	_	MPa	4.5	4.5	4.6	4.7	4.7	4.8	5.0	5.1	5.1
	С	in uncracked concrete	Tk,uncr	(psi)	(650)	(655)	(665)	(675)	(685)	(700)	(725)	(735)	(745)
		Characteristic bond strength	_	MPa	-	3.0	3.2	3.4	3.5	3.8	3.8	3.9	3.9
		in cracked concrete	Tk,cr	(psi)	-	(440)	(465)	(490)	(515)	(550)	(555)	(560)	(565)
a –	"		Anchor					4					
ssibl	tions	Dry concrete & Water-	Category	-				1				2	<u>′</u>
Permissible Installation	Conditions	saturated concrete	φ _d & φ _{ws}	-				0.65				0.8	55
Reduc	Luction for seismic tension		αN,seis	-					1.00				

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2,500)^{0.1} [For SI: (f_c / 17.2)^{0.1}]. See Section 4.1.4 of this report for bond strength determination.

² Temperature range A: Maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C).

Temperature range C: Maximum short term temperature = 210°F (99°C), maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

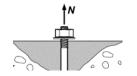
³ Hilti Hollow Drill Bit not permitted for 10 mm and 12 mm Rebar.

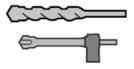
Canadian Reinforcing Bars

Steel Strength

TABLE 15—STEEL DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS¹

DE0	ION INFORMATION	Symbol	1114			Bar size				
DES	DESIGN INFORMATION		Units	10 M	15 M	20 M	25 M	30 M		
Nam	lominal bar diameter		mm	11.3	16.0	19.5	25.2	29.9		
NOII	lominal bar diameter		(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)		
Don	effective group agational area	Ase	mm²	100.3	201.1	298.6	498.8	702.2		
Dai (Bar effective cross-sectional area		(in.²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)		
		N _{sa}	kN	54.0	108.5	161.5	270.0	380.0		
	Nominal strength as governed by steel	IVsa	(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)		
G30	strength	V_{sa}	kN	32.5	65.0	96.8	161.6	227.5		
SA G		V sa	(lb)	(7,305)	(14,645)	(21,755)	(36,330)	(51,145)		
CS	Reduction for seismic shear	αv,seis	-			0.70				
	Strength reduction factor for tension ²	φ	-			0.65				
	Strength reduction factor for shear ²	φ	-	0.60						


For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


¹ Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b) or ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.

² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14

^{17.3.3,} as applicable, are met.

Canadian Reinforcing Bars

Concrete Breakout Strength

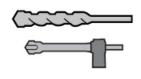
Carbide Bit or Hilti Hollow Carbide Bit

TABLE 16—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1

DEGICAL INFORMATION	0	11.26			Bar size				
DESIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M		
	1-	SI			10				
Effectiveness factor for uncracked concrete	K c,uncr	(in-lb)			(24)				
	1-	SI			7.1				
Effectiveness factor for cracked concrete	K _{c,cr}	(in-lb)			(24)				
Minimum Embedment	6	mm	70	80	90	101	120		
Minimum Embedment	h _{ef,min}	(in.)	(2.8)	(3.1)	(3.5)	(4.0)	(4.7)		
Maximum Embedment	b	mm	226	320	390	504	598		
Maximum Embedment	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)		
Min bananain 3	_	mm	57	80	98	126	150		
Min. bar spacing ³	Smin	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)		
Main advantishansa 3	_	mm	5d; or see Section 4.1.9 of this report for design with reduced minimum edge distances						
Min. edge distance ³	Cmin	(in.)	5d; or see Secti	reduced minimur	n edge distances				
Minimum concrete thickness	h _{min}	mm	h _{ef} + 30		h _{ef} + :	2d _o ⁽⁴⁾			
		(in.)	$(h_{ef} + 1^1/_4)$						
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-	See Section 4.1.10 of this report.						
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-	0.65						
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-			0.70				

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Additional setting information is described in Figure 4, Manufacturers Printed Installation Instructions (MPII).


² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

³ For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

 $^{^4}$ d_0 = hole diameter.

Canadian Reinforcing Bars

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 17—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1

	-014	ON INFORMATION	Comple al	l luita			Bar Size		
DI	ESIC	GN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
Mini	mur	n anchor embedment	h	mm	70	80	90	101	120
	depth Maximum anchor embedment		h _{ef,min}	(in.)	(2.8)	(3.1)	(3.5)	(4.0)	(4.7)
Max	imuı	m anchor embedment	h -	mm	226	320	390	504	598
		depth	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)
		Characteristic bond		MPa	8.8	8.7	8.6	8.4	7.6
		strength in uncracked concrete	Tk,uncr	(psi)	(1,275)	(1,255)	(1,240)	(1,220)	(1,095)
	Α	Characteristic bond		MPa	4.3	5.0	5.4	5.4	5.5
\mathbf{e}^2		strength in cracked concrete	Tk,cr	(psi)	(625)	(725)	(775)	(790)	(800)
ang	Temperature Range²	Characteristic bond		MPa	8.1	8.0	7.9	7.7	7.0
ē R		strength	$ au_{k,uncr}$	(psi)	(1,175)	(1,155)	(1,140)	(1,120)	(1,010)
eratu	В	Characteristic bond	Tk or	MPa	4.0	4.6	4.9	5.0	5.1
e e mbe		strength in cracked concrete	Tk,cr	(psi)	(575)	(665)	(715)	(725)	(735)
ř		Characteristic bond		MPa	6.3	6.2	6.1	6.0	5.4
		strength	Tk,uncr	(psi)	(915)	(900)	(885)	(875)	(785)
	С	Characteristic bond		MPa	3.0	3.5	3.8	3.8	3.9
		strength in cracked concrete	$ au_{k,cr}$	(psi)	(440)	(510)	(545)	(555)	(560)
ē c	2		Anchor	_		1			2
ssib Iatio	ition	Dry concrete & Water-	Category	-		'			2
Permissible Installation	Conditions	saturated concrete	φα & φωs	1		0.6	65		0.55
Reduc	ction	n for seismic tension	αn,seis	-			1.00		

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(F_c/2,500)^{0.1}$ [For SI: $(F_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

of this report for bond strength determination.

2 Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Temperature range C: Maximum short term temperature = 210°F (99°C), Maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³ Hilti Hollow Drill Bit not permitted for 10M Rebar.

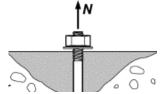
Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

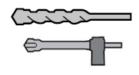
Steel Strength

TABLE 18—STEEL DESIGN INFORMATION FOR FRACTIONAL AND METRIC HIS-N AND HIS-RN THREADED INSERTS¹

DESIG	N INFORMATION	Symbol	Units	Nomina	-	Screw Dactional	iameter	Units	No	ominal Bo	lt/Cap Scr mm) Metri		ter
				³ / ₈	1/2	⁵ / ₈	3/4		8	10	12	16	20
		_	in.	0.65	0.81	1.00	1.09	mm	12.5	16.5	20.5	25.4	27.6
HIS INS	ert O.D.	D	(mm)	(16.5)	(20.5)	(25.4)	(27.6)	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
LIIC inc	ort longth		in.	4.33	4.92	6.69	8.07	mm	90	110	125	170	205
HIS IIIS	ert length	'	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.54)	(4.33)	(4.92)	(6.69)	(8.07)
	ective cross-	Ase	in. ²	0.0775	0.1419	0.2260	0.3345	mm ²	36.6	58	84.3	157	245
section		1.00	(mm ²)	(50)	(92)	(146)	(216)	(in. ²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)
section	ert effective cross- al area	Ainsert	in.² (mm²)	0.178 (115)	0.243 (157)	0.404 (260)	0.410 (265)	mm ² (in. ²)	51.5 (0.080)	108 (0.167)	169.1 (0.262)	256.1 (0.397)	237.6 (0.368)
			lb	9,690	17,740	28,250	41,815	kN	-	-	-	-	-
B7	Nominal steel strength – ASTM	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(lb)	-	_	-	-	-
	A193 B7³ bolt/cap		lb	5,815	10,645	16,950	25,090	kN	-	-	-	-	-
ASTM A193	screw	V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(lb)	-	_	-	-	-
STN	Nominal steel		lb	12,650	16,195	26,925	27,360	kN	-	-	-	-	-
∢	strength – HIS-N insert	Nsa	(kN)	(56.3)	(72.0)	(119.8)	(121.7)	(lb)	-	-	-	-	-
	Naminal stant		lb	8,525	15,610	24,860	36,795	kN	-	-	-	-	-
193 M SS		N _{sa}	(kN)	(37.9)	(69.4)	(110.6)	(163.7)	(lb)	-	-	-	-	-
	strength – ASTM A193 Grade B8M SS bolt/cap screw	.,	lb	5,115	9,365	14,915	22,075	kN	-	-	-	-	-
e B8		V _{sa}	(kN)	(22.8)	(41.7)	(66.3)	(98.2)	(lb)	-	-	-	-	-
ASTN Grade	Nominal steel		lb	17,165	23,430	38,955	39,535	kN	-	-	-	-	-
	strength – HIS-RN insert	N _{sa}	(kN)	(76.3)	(104.2)	(173.3)	(175.9)	(lb)	-	-	-	-	-
	Nominal steel	N _{sa}	lb	-	-	-	-	kN	29.3	46.4	67.4	125.6	196.0
	strength – ISO 898-		(kN)	-	-	-	-	(lb)	(6,580)	(10,430)	(15,160)	(28,235)	(44,065)
98-1 8.8	1 Class 8.8 bolt/cap screw		lb	-	-	-	-	kN	17.6	27.8	40.5	75.4	117.6
ISO 898-1 Class 8.8	Screw	V_{sa}	(kN)	-	-	-	-	(lb)	(3,950)	(6,260)	(9,100)	(16,940)	(26,440)
<u>s</u> 0	Nominal steel		lb	-	-	-	-	kN	25.0	53.0	78.0	118.0	110.0
	strength – HIS-N insert	N _{sa}	(kN)	-	-	-	-	(lb)	(5,669)	(11,894)	(17,488)	(26,483)	(24,573)
	Nominal steel	۸,	lb	-	-	-	-	kN	25.5	40.5	59.0	110.0	171.5
Class	strength – ISO	N _{sa}	(kN)	-	-	-	-	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)
:≣	3506-1 Class A4-70 Stainless bolt/cap		lb	-	-	-	-	kN	15.5	24.5	35.5	66.0	103.0
506- 5 Sta	screw	V _{sa}	(kN)	-	-	-	-	(lb)	(3,456)	(5,476)	(7,960)	(14,824)	(23,133)
SO 3506-1 Clas A4-70 Stainless	Nominal steel		lb	-	-	-	-	kN	36.0	75.5	118.5	179.5	166.5
<u>ō</u> ∢	strength – HIS-RN insert	N _{sa}	(kN)	-	-	-	-	(lb)	(8,099)	(16,991)	(26,612)	(40,300)	(37,394)
Strengt for tens	h reduction factor ion ²	φ	-		0.	65		-			0.65		
Strengt for shea	h reduction factor ar ²	φ	-		0.	60		-			0.60		

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.


¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b) or ACI 318-14 Eq. (17.4.1.2) and Eq. (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.


² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14

^{17.3.3,} as applicable, are met.

³ For the calculation of the design steel strength in tension and shear for the bolt or screw, the φ factor for ductile steel failure according to ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, can be used.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 19—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT1

DESIGN INFORMATION	Symbol	Units	Nomir	nal Bolt/Cap (in.) Fra	o Screw Di actional	ameter	Units	Nominal Bolt/Cap Screw Diamete (mm) Metric			er	
	·		3/8	1/2	5/8	3/4		8	10	12	16	20
Effectiveness factor for	1.	in-lb		2	4		SI			10		
uncracked concrete	K _{c,uncr}	(SI)	(10)			(in-lb)	(24)					
Effective ambadment death	6	in.	43/8	5	63/4	81/8	mm	90	110	125	170	205
Effective embedment depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
Min	_	in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140
Min. anchor spacing ³	Smin	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)
Min ada distant	_	in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140
Min. edge distance ³	C _{min}	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)
		in.	5.9	6.7	9.1	10.6	mm	120	150	170	230	270
Minimum concrete thickness	h _{min}	(mm)	(150)	(170)	(230)	(270)	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-	See	Section 4.1	.10 of this r	eport	-		See Section	on 4.1.10 of	this report	
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-		0.65			-	0.65				
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-		0.	70		-	0.70				

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

Additional setting information is described in Figure 4, Manufacturers Printed Installation Instructions (MPII).
 The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used, and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

³ For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

TABLE 20—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1

DES	ign	INFORMATION	Symbol	Units	Nomina	l Bolt/Cap (in.) Fra	Screw [actional	Diameter	Units	No		t/Cap Scr nm) Metr	ew Diame	eter
					³ / ₈	1/2	⁵ / ₈	3/4		8	10	12	16	20
Effo	Effective embedment depth		h _{ef}	in.	43/8	5	63/4	81/8	mm	90	110	125	170	205
Ellective embedment depth		Hef	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)	
HIS Insert O.D.		D	in.	0.65	0.81	1.00	1.09	mm	12.5	16.5	20.5	25.4	27.6	
		<i>D</i>	(mm)	(16.5)	(20.5)	(25.4)	(27.6)	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)	
	Α	Characteristic	_	psi	1,375	1,270	1,100	1,030	MPa	9.5	9.5	8.8	7.6	7.1
nge ²	bond strength		Tk,uncr	(MPa)	(9.5)	(8.8)	(7.6)	(7.1)	(psi)	(1,375)	(1,375)	(1,270)	(1,100)	(1,030)
re ra	© Characteristic		Tk,uncr	psi	1,270	1,170	1,015	945	MPa	8.8	8.8	8.1	7.0	6.5
Temperature	bond strength			(MPa)	(8.8)	(8.1)	(7.0)	(6.5)	(psi)	(1,270)	(1,270)	(1,170)	(1,015)	(945)
Temp	C Characteristic		_	psi	990	910	790	740	MPa	6.8	6.8	6.3	5.4	5.1
	bond strength		Tk,uncr	(MPa)	(6.8)	(6.3)	(5.4)	(5.1)	(psi)	(990)	(990)	(910)	(790)	(740)
	ions	Dry concrete	Anchor Category	-		1		2	-		1	1		2
ssible	condi		φa	-		0.65		0.55	-		0.0	65		0.55
Permi	Permissible installation conditions Mater saturated concrete		Anchor Category	-		2	2		-			2		
	insta	concrete	φ ws			0.	55		-			0.55		

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

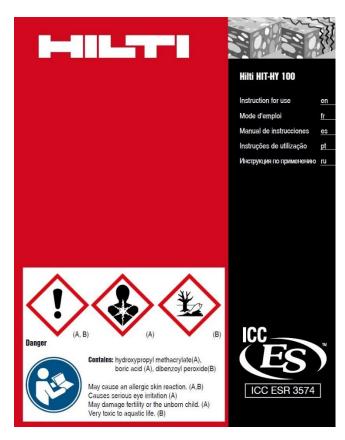
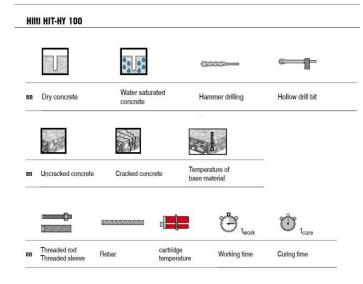

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

FIGURE 3—HILTI HIT-HY 100 ANCHORING SYSTEM AND ANCHOR ELEMENTS

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.


² Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Temperature range C: Maximum short term temperature = 210°F (99°C), Maximum long term temperature = 162°F (72°C).

	HAS HIT-V	HIS-N	Rebar	HIT-RB	HIT-SZ	HIT-DL	HIT-OHC
d ₀ [inch]		d [inch]		[inch]	[inch]	[inch]	Art. No.
7/16	3/8	-	-	7/16	-	-	
1/2	-	-	#3	1/2	1/2	1/2	
9/16	1/2	-	10M	9/16	9/16	9/16	387551
5/8	-	-	#4	5/8	5/8	9/16	307331
11/16	-	3/8	_	11/16	11/16	11/16	
3/4	5/8	-	15M #5	3/4	3/4	3/4	
7/8	3/4	1/2	#6	7/8	7/8	7/8	
1	7/8	-	20M #7	1	1	1	
1 1/8	1	5/8	#8	1 1/8	1 1/8	1	387552
1 1/4	-	3/4	25M	1 1/4	1 1/4	1	30/332
1 3/8	1 1/4	-	#9	13/8	1 3/8	13/8	
1 1/2	-	-	30M #10	1 1/2	1 1/2	13/8	

HIT-RE-M ───────		HIT-OHW
Art. No.	D Ø	Art. No.
337111	HDM 330, HDM 500 HDE 500-A22	387550

	h _{ef}		R		
d ₀ [inch]	[inch]	Art. No. 60579	Art. No. 381215		
7/16"3/4"	2 3/8" 10d	~	-	-	-
7/ ₁₆ "1 ½"	23/8"20"	-	~	-	≥ 6 bar/90 psi
1 1/4"1 1/2"	4" 25"	-	-	V	≥ 140 m³/h / ≥ 82 CFM

			Hilti HIT-HY 100	
		HT-HY 100		
88		HIT-V, HAS		
[°C]	[°F]	t _{work}	t _{cure}	
-105	1422	3 h	12 h	
-40	2331	40 min	4 h	
15	3240	20 min	2 h	
610	4150	8 min	60 min	
1120	5168	5 min	30 min	
2130	6986	3 min	30 min	
3140	87104	2 min	30 min	

Ø H	H	HIS-N	Rebar	HIT-RB	HIT-SZ	HIT-DL	HIT-OHC
d ₀ [mm]		d [mm]		[mm]	[mm]		Art. No.
10	8	-	-	10	-	-	
12	10	-	8	12	12	12	
14	12	8	10	14	14	14	387551
16	-	-	12	16	16	16	307331
18	16	10	14	18	18	18	
20	-	-	16	20	20	20	
22	20	12	18	22	22	20	
25	-	-	20	25	25	25	
28	24	16	22	28	28	25	
30	27	-	-	30	30	25	007550
32	_	20	24/25	32	32	32	387552
35	30	-	26/28	35	35	32	
37	-	-	30	37	37	32	
40	_	-	32	40	40	32	
HIT-DL: h _{ef} >	250 mm	HIT-RB: h	n _{ef} > 20d				

HIT-RE-M		HIT-OHW
Art. No.		Art. No.
337111	HDM 330 / 500 HDE 500-A18	387550

• • • • • • • • • • • • • • • • • • •	h _{ef}		R		
d ₀ [mm]	[mm]	Art. No. 60579	Art. No. 381215		
1020	6010d	~	-	-	-
1032	60500	-	~	-	≥ 6 bar/90 psi
3540	100640	-	-	~	≥ 140 m³/h

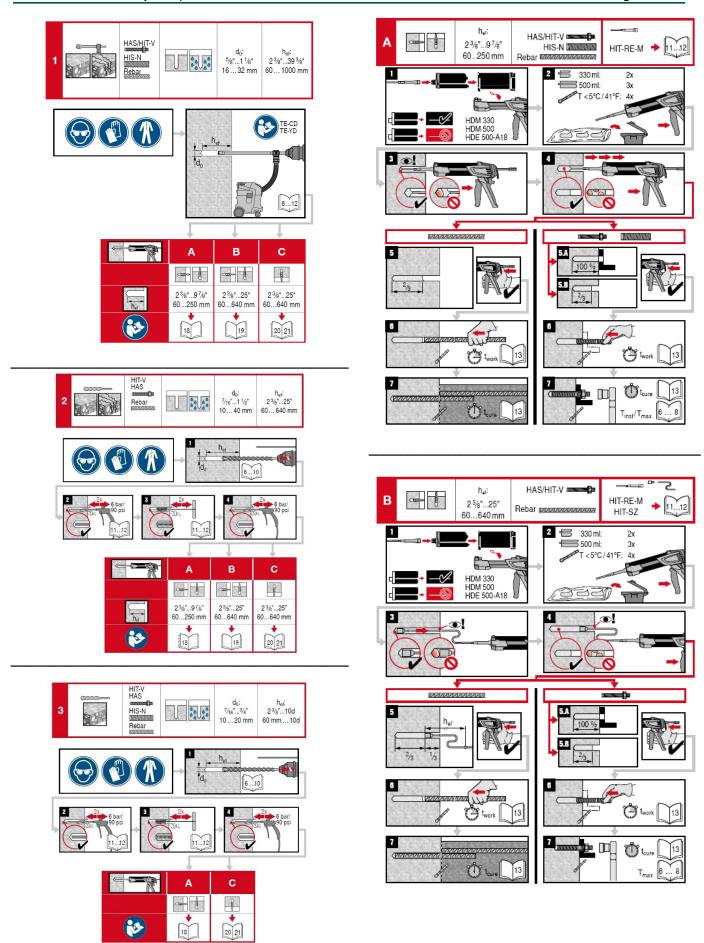
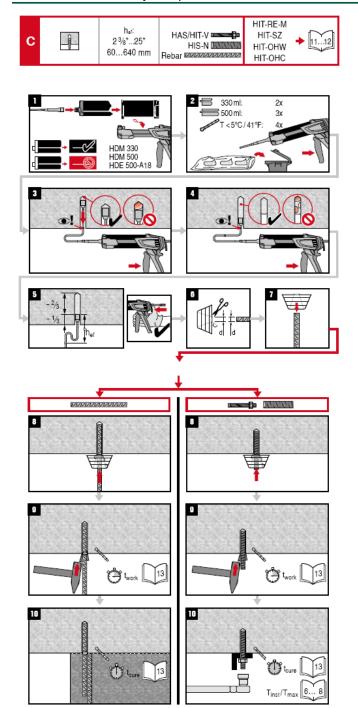



FIGURE 4—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

HIII HIT-HY 100

Adhesive anchoring system for rebar and anchor fastenings in concrete.

Safety Instructions:

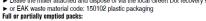
Contains: Hydroxypropyl methacrylate(A), boric acid (A), dibenzoyl peroxide(B)

H317 May cause an allergic skin reaction. (A,B) Causes serious eye irritation (A)
May damage fertility or the unborn child. (A) H319 H360 H400 Very toxic to aquatic life. (B)

P262 Do not get in eyes, on skin, or on clothing.

Wear protective gloves/protective clothing/eye protection/face protection. IF ON SKIN: Wash with plenty of soap and water. P280 P302+P352

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.


If skin irritation or rash occurs: Get medical advice/attention.

P337+P313 If eye irritation persists: Get medical advice/attention.

Disposal considerations

Empty packs:

ve the mixer attached and dispose of via the local Green Dot recovery system

Must be disposed of as special waste in accordance with official regulations.

 EAK waste material code: 08 04 09* waste adhesives and sealants containing organic solvents or other dangerous substances

or EAK waste material code: 20 01 27* paint, inks, adhesives and resins containing dangerous substances.

ent: 330 ml / 11.1 fl.oz. 500 ml / 16.9 fl. oz **Weight**: 575g / 20,3oz 880g / 31,0oz

Warranty: Refer to standard Hilti terms and conditions of sale for warranty information.

Failure to observe these installation instructions, use of non-Hilti anchors, poor or questionable base material conditions, or unique applications may affect the reliability or performance of the fastenings.

Product Information

- Always keep these instructions together with the product even when given to other persons.
- Review the MSDS before use.
- Check expiration date: See imprint on foil pack manifold (month/year). Do not use expired product.
 Foil pack temperature during usage: 0 °C to 40 °C / 32 °F to 104 °F.
 Base material temperature at time of installation: between -10 °C and 40 °C / 14 °F and 104 °F.
- Conditions for transport and storage: Keep in a cool, dry and dark place between 5 °C and 25 °C / 41 °F and 77 °F.
 For any application not covered by this document / beyond values specified, please contact Hilti.
- Partly used foil packs must remain in the cassette and has to be used within 4 weeks. Leave the mixer attached on the foil pack manifold and store within the cassette under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of anchor adhesive.

A NOTICE

▲ Improper handling may cause mortar splashes.

- Always wear eye protection, gloves and protective clothes during installation.

 Never start dispensing without a mixer properly screwed on.

 Attach a new mixer prior to dispensing a new foil pack (ensure snug fit).

 Use only the type of mixer (HIT-RE-M) supplied with the adhesive. Do not modify the mixer in any
- way. Never use damaged foil packs and/or damaged or unclean foil pack holders (cassettes).

- ▲ Poor load values / potential failure of fastening points due to inadequate borehole cleaning.

 Holes should be drilled with a rotary hammer drill, using drill bits that comply with ANSI B212.15-1984.
- The boreholes must be free of debris, dust, water, ice, oil, grease and other contaminants prior to
- For blowing out the borehole blow out with oil free air until return air stream is free of noticeable
- For brushing the borehole only use specified wire brush. The brush must resist insertion into the borehole if not the brush is too small and must be replaced.
- Before inserting anchor/rebar into borehole, mark and set anchor/rebar to the required embedment
- Anchor rods/rebar shall be free of dirt, grease, oil, and other contaminants

- ▲ Ensure that boreholes are filled from the back of the borehole without forming air voids.

 The annular gap between the anchor/rebar and the borehole shall be filled completely with no gaps.

 If necessary use the accessories / extensions to reach the back of the borehole.

 For overhead applications use the overhead accessories HIT-SZ and take special care when
- inserting the fastening element. Excess adhesive may be forced out of the borehole. Make sure that no mortar drips onto the installer.

$\pmb{\Delta}$ Not adhering to these setting instructions can result in failure of fastening points!

ICC-ES Evaluation Report

ESR-3574 LABC and LARC Supplement

Reissued August 2022 Revised March 2023 This report is subject to renewal August 2024.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-HY 100 ADHESIVE ANCHORING SYSTEM IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT HY 100 Adhesive Anchoring System for cracked and uncracked concrete, described in ICC-ES evaluation report <u>ESR-3574</u>, has also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Hilti HIT-HY 100 Adhesive Anchoring System for cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report <u>ESR-3574</u>, complies with LABC Chapter 19, and LARC, and is subjected to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Hilti HIT HY 100 Adhesive Anchoring System described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report <u>ESR-3574</u>.
- The design, installation, conditions of use and labeling of the Hilti HIT-HY 100 Adhesive Anchoring System are in accordance with the 2018 *International Building Code*® (IBC) provisions noted in the evaluation report ESR-3574.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the evaluation report and tables are for the connection of the adhesive
 anchors to the concrete. The connection between the adhesive anchors and the connected members shall be checked for
 capacity (which may govern).
- For use in wall anchorage assemblies to flexible diaphragm, anchors shall be designed per the requirements of City of Los Angeles Information Bulletin P/BC 2020-071.

This supplement expires concurrently with the report, reissued August 2022 and revised March 2023.

ICC-ES Evaluation Report

ESR-3574 FBC Supplement

Reissued August 2022 Revised March 2023 This report is subject to renewal August 2024.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-HY 100 ADHESIVE ANCHORING SYSTEM IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-HY 100 Adhesive Anchor System in Uncracked Concrete, described in ICC-ES evaluation report ESR-3574, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2020 Florida Building Code—Building
- 2020 Florida Building Code—Residential

2.0 CONCLUSIONS

The Hilti HIT-HY 100 Adhesive Anchor System in Uncracked Concrete, described in Sections 2.0 through 7.0 of the ICC-ES evaluation report ESR-3574, complies with the *Florida Building Code—Building* and the *Florida Building Code—Residential*, provided the design requirements are determined in accordance with the *Florida Building Code—Building* or the *Florida Building Code—Building* or the *Florida Building Code—Building Code—Build*

Use of the Hilti HIT-HY 100 Adhesive Anchor System in Cracked and Uncracked Concrete has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Residential* with the following condition.

a) For anchorage of wood members, the connection subject to uplift, must be designed for no less than 700 pounds (3114 N)

For products falling under Florida Rule 61G20-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued August 2022 and revised March 2023.

