The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 19.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines. US\&CA: https://submittals.us.hilti.com/PTGVol2/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am -6:00pm CST. US: 877-749-6337 or HNATechnicalServices@hilti.com CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.2.2 HIT-HY 200 ADHESIVE ANCHORING SYSTEM
 PRODUCT DESCRIPTION

HIT-HY 200 with HIT-Z rods, Threaded Rod, Rebar, and HIS-N/RN Inserts

Uncracked concrete

Cracked concrete

Grout-filled concrete masonry

Seismic Design Categories A-F

Diamond cored holes for Cracked and Uncracked Concrete

Hollow Drill Bit

Profis Anchor design software

Approvals/Listings	
	ESR-3187 in concrete per ACI 318-14 Ch. 17 / ACI 355.2/ ICC-ES AC308 ICC-ES (International Code Council) ESR-3963 in grout-filled CMU per ICC-ES AC58 ELC-3187 in concrete per CSA A23.3-14 / ACI 355.2
NSF/ANSI Std 61	Certification for use in potable water
European Technical Approval	ETA-11/0492, ETA-11/0493 ETA-12/0006, ETA-12/0028 ETA-12/0083, ETA-12/0084
City of Los Angeles	City of Los Angeles 2017 LABC Supplement (within ESR-3187 for Concrete) Research Report No. 26077 for Masonry
Florida Building Code	2017 Florida Building Code Supplement (within ESR-3187)
U.S. Green Building Council	LEED® Credit 4.1-Low Emitting Materials
Department of Transportation	Contact Hilti for various states

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.2.2 HILTI HIT-HY 200 Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458

MATERIAL SPECIFICATIONS

For material specifications for anchor rods and inserts, please refer to section 3.2.8.

DESIGN DATA IN CONCRETE PER ACI 318

ACI 318-14 Chapter 17 design

The load values contained in this section are Hilti Simplified Design Tables. The load tables in this section were developed using the Strength Design parameters and variables of ESR-3187 and the equations within ACI 318-14 Chapter 17. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.8. Data tables from ESR-3187 are not contained in this section, but can be found at www.icc-es.org or at www.hilti.com.

HIT-HY 200 adhesive with HIT-Z and HIT-Z-R anchor rods

Figure 1 - Hilti HIT-Z and HIT-Z-R installation conditions
(

1 Anchor may be installed in a hole drilled with a carbide-tipped bit without cleaning the drilling dust from the hole. Temperature must be $41^{\circ} \mathrm{F}$ or higher. Drilling dust must be removed from the hole if the temperature is below $41^{\circ} \mathrm{F}$. See Manufacturer's Published Installation Instructions (MPII).
2 When temperatures are below 41° F, TE-CD or TE-YD Hollow Drill Bits used with a Hilti vacuum cleaner are viable methods for removing drilling dust from the hole.
3 Holes drilled by diamond coring require cleaning with a wire brush, a water hose and compressed air. See MPII.

Table 1 - Specifications for Hilti HIT-Z and HIT-Z-R installed with Hilti HIT-HY 200 adhesive

Setting information		Symbol	Units	Nominal anchor diameter				
		3/8		1/2	5/8	3/4		
Nominal bit diameter			d。	in.	7/16	9/16	3/4	7/8
Effective embedment	minimum	$\mathrm{h}_{\text {ef, min }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \end{gathered}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	
	maximum	$\mathrm{h}_{\mathrm{ef,} \mathrm{max}}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} 6 \\ (152) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (190) \end{aligned}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	
Diameter of fixture hole	through-set	5	in.	1/2	5/8	13/16 ${ }^{1}$	15/16 ${ }^{1}$	
	preset	86	in.	7/16	9/16	11/16	13/16	
Installation torque		$\mathrm{T}_{\text {inst }}$	$\begin{aligned} & \mathrm{ft}-\mathrm{lb} \\ & (\mathrm{Nm}) \end{aligned}$	$\begin{aligned} & 15 \\ & (20) \end{aligned}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{gathered} 60 \\ (80) \end{gathered}$	$\begin{gathered} 110 \\ (150) \end{gathered}$	

[^0]Figure 2 - Hilti HIT-Z and HIT-Z-R specfications

Figure 3 Installation with (2) washers

Table 2 - Hilti HIT-Z and HIT-Z-R anchor rod length and thread dimension

Size	Anchor length		$\begin{aligned} & \ell_{\text {helix }} \\ & \text { Helix length } \end{aligned}$		Smooth shank length		Total thread length		Usable thread length		HIT-Z Length Code
	in.	(mm)									
$3 / 8 \times 3-3 / 8$	3-3/8	(111)	2-1/4	(57)	5/16	(8)	1-13/16	(46)	1-5/16	(33)	D
$3 / 8 \times 4-3 / 8$	4-3/8	(111)	2-1/4	(57)	5/16	(8)	1-13/16	(46)	1-5/16	(33)	F
$3 / 8 \times 5-1 / 8$	5-1/8	(130)	2-1/4	(57)	5/16	(8)	2-9/16	(65)	2-1/16	(52)	H
$3 / 8 \times 6-3 / 8$	6-3/8	(162)	2-1/4	(57)	5/16	(8)	3-13/16	(97)	3-5/16	(84)	J
1/2 $2 \times 4-1 / 2$	4-1/2	(114)	2-1/2	(63)	5/16	(8)	1-11/16	(43)	1	(26)	F
1/2 $\times 6-1 / 2$	6-1/2	(165)	2-1/2	(63)	5/16	(8)	3-11/16	(94)	3-1/16	(77)	J
1/2 $\times 7-3 / 4$	7-3/4	(197)	2-1/2	(63)	5/16	(8)	4-15/16	(126)	4-5/16	(109)	M
$5 / 8 \times 6$	6	(152)	3-5/8	(92)	7/16	(11)	1-15/16	(49)	1-1/8	(28)	1
$5 / 8 \times 8$	8	(203)	3-5/8	(92)	7/16	(11)	3-15/16	(100)	3-1/8	(79)	M
$5 / 8 \times 9-1 / 2$	9-1/2	(241)	3-5/8	(92)	1-15/16	(49)	3-15/16	(100)	3-1/8	(79)	P
$3 / 4 \times 6-1 / 2$	6-1/2	(165)	4	(102)	5/16	(8)	2	(51)	1	(26)	K
$3 / 4 \times 8-1 / 2$	8-1/2	(216)	4	(102)	7/16	(12)	4	(102)	3-1/16	(77)	N
$3 / 4 \times 9-3 / 4$	9-3/4	(248)	4	(102)	1-11/16	(44)	4	(102)	3-1/16	(77)	Q

Figure 4 - Hilti HIT-Z and HIT-Z-R anchor rod length and thread dimension

Table 3 - Hilti HIT-HY 200 design strength with concrete/pullout failure for Hilti HIT-Z(-R) rods in uncracked concrete ${ }^{1,2,3,4,5,6,6,7,8,9,10}$

Nominal anchor diameter in.	Effective embed. in. (mm)	Tension - $\Phi \mathrm{N}_{\mathrm{n}}$				Shear - $\Phi \mathrm{V}_{\mathrm{n}}$			
		$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{aligned} & 2,855 \\ & (12.7) \end{aligned}$	$\begin{aligned} & \hline 3,125 \\ & (13.9) \end{aligned}$	$\begin{aligned} & \hline 3,610 \\ & (16.1) \end{aligned}$	$\begin{aligned} & 4,425 \\ & (19.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,075 \\ & (13.7) \end{aligned}$	$\begin{aligned} & \hline 3,370 \\ & (15.0) \end{aligned}$	$\begin{aligned} & \hline 3,890 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 4,765 \\ & (21.2) \\ & \hline \end{aligned}$
	$\begin{gathered} 3-3 / 8 \\ (86) \end{gathered}$	$\begin{aligned} & 4,835 \\ & (21.5) \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \end{aligned}$	$\begin{gathered} 10,415 \\ (46.3) \end{gathered}$	$\begin{gathered} 11,410 \\ (50.8) \end{gathered}$	$\begin{gathered} 13,175 \\ (58.6) \end{gathered}$	$\begin{gathered} 16,135 \\ (71.8) \end{gathered}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,170 \\ (23.0) \\ \hline \end{array}$	$\begin{array}{r} 5,170 \\ (23.0) \\ \hline \end{array}$	$\begin{aligned} & 5,170 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{gathered} 16,035 \\ (71.3) \\ \hline \end{gathered}$	$\begin{gathered} 17,570 \\ (78.2) \end{gathered}$	$\begin{gathered} 20,285 \\ (90.2) \\ \hline \end{gathered}$	$\begin{aligned} & 24,845 \\ & (110.5) \end{aligned}$
1/2	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 3,555 \\ & (15.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,895 \\ & (17.3) \\ & \hline \end{aligned}$	$\begin{array}{r} 4,500 \\ (20.0) \\ \hline \end{array}$	$\begin{array}{r} 5,510 \\ (24.5) \\ \hline \end{array}$	$\begin{array}{r} 7,660 \\ (34.1) \\ \hline \end{array}$	$\begin{aligned} & 8,395 \\ & (37.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,690 \\ & (43.1) \\ & \hline \end{aligned}$	$\begin{gathered} 11,870 \\ (52.8) \\ \hline \end{gathered}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,445 \\ & (33.1) \end{aligned}$	$\begin{aligned} & 7,615 \\ & (33.9) \end{aligned}$	$\begin{aligned} & 7,615 \\ & (33.9) \end{aligned}$	$\begin{aligned} & 7,615 \\ & (33.9) \end{aligned}$	$\begin{gathered} 16,035 \\ (71.3) \end{gathered}$	$\begin{gathered} 17,570 \\ (78.2) \end{gathered}$	$\begin{gathered} 20,285 \\ (90.2) \\ \hline \end{gathered}$	$\begin{aligned} & 24,845 \\ & (110.5) \\ & \hline \end{aligned}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{array}{r} 7,615 \\ (33.9) \\ \hline \end{array}$	$\begin{array}{r} 7,615 \\ (33.9) \\ \hline \end{array}$	$\begin{array}{r} 7,615 \\ (33.9) \end{array}$	$\begin{array}{r} 7,615 \\ (33.9) \end{array}$	$\begin{aligned} & 24,690 \\ & (109.8) \\ & \hline \end{aligned}$	$\begin{array}{r} 27,045 \\ (120.3) \\ \hline \end{array}$	$\begin{aligned} & 31,230 \\ & (138.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 38,250 \\ & (170.1) \\ & \hline \end{aligned}$
5/8	$\begin{gathered} \hline 3-3 / 4 \\ (95) \end{gathered}$	$\begin{aligned} & \hline 5,665 \\ & (25.2) \end{aligned}$	$\begin{aligned} & \hline 6,205 \\ & (27.6) \end{aligned}$	$\begin{aligned} & 7,165 \\ & (31.9) \end{aligned}$	$\begin{aligned} & \hline 8,775 \\ & (39.0) \\ & \hline \end{aligned}$	$\begin{gathered} 12,200 \\ (54.3) \\ \hline \end{gathered}$	$\begin{gathered} 13,365 \\ (59.5) \\ \hline \end{gathered}$	$\begin{gathered} 15,430 \\ (68.6) \\ \hline \end{gathered}$	$\begin{gathered} 18,900 \\ (84.1) \\ \hline \end{gathered}$
	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{gathered} 10,405 \\ (46.3) \end{gathered}$	$\begin{gathered} 11,400 \\ (50.7) \end{gathered}$	$\begin{gathered} 13,165 \\ (58.6) \end{gathered}$	$\begin{gathered} 13,905 \\ (61.9) \end{gathered}$	$\begin{gathered} 22,415 \\ (99.7) \end{gathered}$	$\begin{aligned} & 24,550 \\ & (109.2) \end{aligned}$	$\begin{aligned} & 28,350 \\ & (126.1) \end{aligned}$	$\begin{aligned} & 34,720 \\ & (154.4) \end{aligned}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} 13,905 \\ (61.9) \end{gathered}$	$\begin{aligned} & 34,505 \\ & (153.5) \end{aligned}$	$\begin{aligned} & 37,800 \\ & (168.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 43,650 \\ & (194.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 53,455 \\ & (237.8) \\ & \hline \end{aligned}$			
3/4	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6,240 \\ & (27.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,835 \\ & (30.4) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,895 \\ (35.1) \\ \hline \end{array}$	$\begin{aligned} & 9,665 \\ & (43.0) \\ & \hline \end{aligned}$	$\begin{gathered} 13,440 \\ (59.8) \\ \hline \end{gathered}$	$\begin{gathered} 14,725 \\ (65.5) \\ \hline \end{gathered}$	$\begin{gathered} 17,000 \\ (75.6) \\ \hline \end{gathered}$	$\begin{gathered} 20,820 \\ (92.6) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 13,680 \\ (60.9) \\ \hline \end{gathered}$	$\begin{gathered} 14,985 \\ (66.7) \\ \hline \end{gathered}$	$\begin{gathered} 17,305 \\ (77.0) \\ \hline \end{gathered}$	$\begin{gathered} 18,500 \\ (82.3) \\ \hline \end{gathered}$	$\begin{aligned} & 29,460 \\ & (131.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,275 \\ & (143.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 37,265 \\ & (165.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,645 \\ & (203.0) \\ & \hline \end{aligned}$
	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{aligned} & 18,500 \\ & (82.3) \\ & \hline \end{aligned}$	$\begin{gathered} 18,500 \\ (82.3) \\ \hline \end{gathered}$	$\begin{gathered} 18,500 \\ (82.3) \\ \hline \end{gathered}$	$\begin{gathered} 18,500 \\ (82.3) \\ \hline \end{gathered}$	$\begin{aligned} & 41,635 \\ & (185.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,605 \\ & (202.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 52,660 \\ & (234.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 64,500 \\ & (286.9) \\ & \hline \end{aligned}$

Table 4 - Hilti HIT-HY 200 design strength with concrete/pullout failure for Hilti HIT-Z(-R) rods in cracked concrete ${ }^{1,2,3,4,5,6,7,7,8,10}$

Nominal anchor diameter in.	Effective embed. in. (mm)	Tension - $\Phi \mathrm{N}_{\mathrm{n}}$				Shear - $\Phi \mathrm{V}_{\mathrm{n}}$			
		$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$\begin{gathered} 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 2,020 \\ (9.0) \end{gathered}$	$\begin{gathered} 2,215 \\ (9.9) \end{gathered}$	$\begin{aligned} & 2,560 \\ & (11.4) \end{aligned}$	$\begin{aligned} & 3,135 \\ & (13.9) \end{aligned}$	$\begin{gathered} 2,180 \\ (9.7) \end{gathered}$	$\begin{aligned} & 2,385 \\ & (10.6) \end{aligned}$	$\begin{aligned} & 2,755 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 3,375 \\ & (15.0) \end{aligned}$
	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 3,425 \\ & (15.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,755 \\ & (16.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,335 \\ & (19.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,380 \\ (32.8) \\ \hline \end{array}$	$\begin{aligned} & 8,085 \\ & (36.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,335 \\ & (41.5) \\ & \hline \end{aligned}$	$\begin{gathered} 11,430 \\ (50.8) \\ \hline \end{gathered}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,170 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{gathered} 11,360 \\ (50.5) \\ \hline \end{gathered}$	$\begin{gathered} 12,445 \\ (55.4) \\ \hline \end{gathered}$	$\begin{gathered} 14,370 \\ (63.9) \\ \hline \end{gathered}$	$\begin{gathered} 17,600 \\ (78.3) \\ \hline \end{gathered}$
1/2	$\begin{gathered} 2-3 / 4 \\ (70) \end{gathered}$	$\begin{aligned} & 2,520 \\ & (11.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,760 \\ & (12.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,185 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 3,905 \\ & (17.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,425 \\ & (24.1) \end{aligned}$	$\begin{aligned} & 5,945 \\ & (26.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,865 \\ & (30.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,405 \\ & (37.4) \\ & \hline \end{aligned}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,275 \\ & (23.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,780 \\ (25.7) \\ \hline \end{array}$	$\begin{aligned} & 6,670 \\ & (29.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,110 \\ (31.6) \\ \hline \end{array}$	$\begin{gathered} 11,360 \\ (50.5) \\ \hline \end{gathered}$	$\begin{gathered} 12,445 \\ (55.4) \\ \hline \end{gathered}$	$\begin{gathered} 14,370 \\ (63.9) \\ \hline \end{gathered}$	$\begin{gathered} 17,600 \\ (78.3) \\ \hline \end{gathered}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{aligned} & 7,110 \\ & (31.6) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,110 \\ (31.6) \end{array}$	$\begin{array}{r} 7,110 \\ (31.6) \\ \hline \end{array}$	$\begin{aligned} & 7,110 \\ & (31.6) \\ & \hline \end{aligned}$	$\begin{gathered} 17,490 \\ (77.8) \\ \hline \end{gathered}$	$\begin{gathered} 19,160 \\ (85.2) \\ \hline \end{gathered}$	$\begin{gathered} 22,120 \\ (98.4) \end{gathered}$	$\begin{aligned} & 27,095 \\ & (120.5) \\ & \hline \end{aligned}$
5/8	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 4,010 \\ & (17.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,395 \\ & (19.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,075 \\ & (22.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,215 \\ & (27.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,640 \\ & (38.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,465 \\ & (42.1) \\ & \hline \end{aligned}$	$\begin{gathered} 10,930 \\ (48.6) \\ \hline \end{gathered}$	$\begin{gathered} 13,390 \\ (59.6) \\ \hline \end{gathered}$
	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,370 \\ (32.8) \\ \hline \end{array}$	$\begin{array}{r} 8,075 \\ (35.9) \\ \hline \end{array}$	$\begin{aligned} & 9,325 \\ & (41.5) \\ & \hline \end{aligned}$	$\begin{gathered} 11,420 \\ (50.8) \\ \hline \end{gathered}$	$\begin{gathered} 15,875 \\ (70.6) \\ \hline \end{gathered}$	$\begin{gathered} 17,390 \\ (77.4) \\ \hline \end{gathered}$	$\begin{gathered} 20,080 \\ (89.3) \\ \hline \end{gathered}$	$\begin{aligned} & 24,595 \\ & (109.4) \\ & \hline \end{aligned}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} 11,350 \\ (50.5) \end{gathered}$	$\begin{array}{r} 12,430 \\ (55.3) \\ \hline \end{array}$	$\begin{gathered} 13,905 \\ (61.9) \\ \hline \end{gathered}$	$\begin{gathered} 13,905 \\ (61.9) \\ \hline \end{gathered}$	$\begin{array}{r} 24,440 \\ (108.7) \\ \hline \end{array}$	$\begin{aligned} & 26,775 \\ & (119.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 30,915 \\ & (137.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,865 \\ & (168.4) \\ & \hline \end{aligned}$
3/4	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & 4,420 \\ & (19.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,840 \\ & (21.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,590 \\ & (24.9) \end{aligned}$	$\begin{aligned} & \hline 6,845 \\ & (30.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,520 \\ & (42.3) \end{aligned}$	$\begin{gathered} 10,430 \\ (46.4) \end{gathered}$	$\begin{gathered} 12,040 \\ (53.6) \\ \hline \end{gathered}$	$\begin{gathered} 14,750 \\ (65.6) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,690 \\ & (43.1) \end{aligned}$	$\begin{gathered} 10,615 \\ (47.2) \end{gathered}$	$\begin{aligned} & 12,255 \\ & (54.5) \end{aligned}$	$\begin{gathered} 15,010 \\ (66.8) \end{gathered}$	$\begin{gathered} 20,870 \\ (92.8) \\ \hline \end{gathered}$	$\begin{aligned} & 22,860 \\ & (101.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,395 \\ & (117.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,330 \\ & (143.8) \end{aligned}$
	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 13,690 \\ (60.9) \end{gathered}$	$\begin{gathered} 15,000 \\ (66.7) \end{gathered}$	$\begin{gathered} 17,320 \\ (77.0) \\ \hline \end{gathered}$	$\begin{gathered} 18,155 \\ (80.8) \end{gathered}$	$\begin{aligned} & 29,490 \\ & (131.2) \end{aligned}$	$\begin{aligned} & 32,305 \\ & (143.7) \end{aligned}$	$\begin{aligned} & 37,300 \\ & (165.9) \end{aligned}$	$\begin{aligned} & 45,685 \\ & (203.2) \end{aligned}$

1 Section 3.1.8 for explanation on development of load values.
2 See Section 3.1.8 to convert design strength value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables 10-17 as necessary to the above values. Compare to the steel values in table 5 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 1.0 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.90 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry and water saturated concrete conditions.
7 Tabular values are for short-term loads only. For sustained loads, see section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by λ_{a} as follows: For sand-lightweight, $\lambda_{a}=0.51$. For all-lightweight, $\lambda_{a}=0.45$.
9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension only by the following reduction factors:
$3 / 8$-in diameter $-\alpha_{N, \text { seis }}=0.705$
$1 / 2$-in to $3 / 4$-in diameter $-\alpha_{\text {N.seis }}=0.75$
See Section 3.1.8 for additional information on seismic applications.
10 Diamond core drilling with Hilti HIT-Z(-R) rods is permitted with no reduction in published data above.

Table 5 - Steel design strength for Hilti HIT-Z and HIT-Z-R rods ${ }^{1,2}$

Nominal anchor diameter in.	ACI 318-14 Chapter 17 Based Design					
	HIT-Z carbon steel rod			HIT-Z-R stainless steel rod		
	$\begin{gathered} \text { Tensile }^{3} \\ \phi \mathrm{~N}_{\mathrm{sa}} \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	Shear ${ }^{4}$ $\phi V_{\text {sa }}$ $\mathrm{lb}(\mathrm{kN})$	Seismic Shear ${ }^{5}$ $\phi V_{\text {sa,eq }}$ lb (kN)	Tensile ${ }^{3}$ $\phi N_{\text {sa }}$ lb (kN)	$\begin{gathered} \text { Shear }^{4} \\ \phi V_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{5}$ $\phi \mathrm{V}_{\text {sa,eq }}$ lb (kN)
3/8	$\begin{aligned} & \hline 4,750 \\ & (21.1) \\ & \hline \end{aligned}$	$\begin{gathered} 1,930 \\ (8.6) \\ \hline \end{gathered}$	$\begin{gathered} 1,930 \\ (8.6) \\ \hline \end{gathered}$	$\begin{aligned} & 4,750 \\ & (21.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,630 \\ & (11.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,630 \\ & (11.7) \\ & \hline \end{aligned}$
1/2	$\begin{aligned} & 8,695 \\ & (38.7) \end{aligned}$	$\begin{aligned} & 3,530 \\ & (15.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,295 \\ & (10.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,695 \\ & (38.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,815 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 3,610 \\ & (16.1) \end{aligned}$
5/8	$\begin{gathered} 13,850 \\ (61.6) \\ \hline \end{gathered}$	$\begin{aligned} & 5,625 \\ & (25.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,655 \\ & (16.3) \end{aligned}$	$\begin{aligned} & 13,850 \\ & (61.6) \end{aligned}$	$\begin{aligned} & \hline 7,670 \\ & (34.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,985 \\ & (22.2) \end{aligned}$
3/4	$\begin{gathered} 20,455 \\ (91.0) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8,310 \\ & (37.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,400 \\ (24.0) \\ \hline \end{array}$	$\begin{array}{r} 20,455 \\ (91.0) \\ \hline \end{array}$	$\begin{gathered} 11,330 \\ (50.4) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7,365 \\ & (32.8) \\ & \hline \end{aligned}$

1 See section 3.1.8 to convert design strength value to ASD value.
2 HIT-Z and HIT-Z-R rods are to be considered brittle steel elements.
3 Tensile $=\phi \mathrm{A}_{\text {se, } \mathrm{N}} \mathrm{f}_{\mathrm{uta}}$ as noted in ACl 318-14 Chapter 17.
4 Shear values determined by static shear tests with $\phi \mathrm{V}_{\text {sa }} \leq \phi 0.60 \mathrm{~A}_{\text {se, } \mathrm{V}} \mathrm{f}_{\mathrm{uta}}$ as noted in ACl 318-14 Chapter 17.
5 Seismic Shear $=\alpha_{\mathrm{v}, \text { seis }} \Phi_{\mathrm{vsa}}$: Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.

Hilti HIT-Z(-R) rod permissible combinations of edge distance, anchor spacing, and concrete thickness

The Hilti HIT-Z and HIT-Z-R anchor rods produce higher expansion forces in the concrete slab when the installation torque is applied. This means that the anchor must be installed with larger edge distances and spacing when compared to standard threaded rod, to minimize the likelihood that the concrete slab will split during installation.

The permissible edge distance is based on the concrete condition (cracked or uncracked), the concrete thickness, and anchor spacing if designing for anchor groups. The permissible concrete thickness is dependent on whether or not the drill dust is removed during the anchor installation process.

Step 1: Check concrete thickness

When using Hilti HIT-Z and HIT-Z-R anchor rods, drilling dust does not need to be removed for optimum capacity when base material temperatures are greater than $41^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right)$ and a hammer drill with a carbide tipped drill bit is used. However, concrete thickness can be reduced if the drilling dust is removed. The figure below shows both drilled hole conditions. Drilled hole condition 1 illustrates the hole depth and concrete thickness when drilling dust is left in the hole. Drilled hole condition 2 illustrates the corresponding reduction when drill dust is removed by using compressed air, Hilti TE-CD or TE-YD Hollow Drill Bits with a Hilti vacuum.

Refer to tables 6 to 9 in this section for the minimum concrete thicknesses associated with the Hilti HIT-Z(-R) rods based on diameter and drilled hole condition.

Step 2: Check edge distance and anchor spacing

Tables 6 to 9 in this section show the minimum edge distance and anchor spacing based on a specific concrete thickness and whether or not the design is for cracked or uncracked concrete. There are two cases of edge distance and anchor spacing combinations for each embedment and concrete condition (cracked or uncracked). Case $\mathbf{1}$ is the minimum edge distance needed for one anchor or for two anchors with large anchor spacing. Case 2 is the minimum anchor spacing that can be used, but the edge distance is increased to help prevent splitting. Linear interpolation can be used between Case 1 and Case 2 for any specific concrete thickness and concrete condition. See the following figure and calculation which can be used to determine specific edge distance and anchor spacing combinations.

Table 6 - Minimum edge distance, spacing, and concrete thickness for 3/8-in. diameter Hilti HIT-Z and HIT-Z-R rods ${ }^{1}$

Nominal anchor diameter		d	in.	3/8								
Effective embedment		$\mathrm{h}_{\text {ef }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$2-3 / 8$ (60)			3-3/8 (86)			$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$		
Drilled hole condition		-	-	2^{2}	1 or 2		2^{2}	1 or 2		2^{2}	1 or 2	
Minimum concrete thickness		h	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \hline 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-5 / 8 \\ & (117) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5-3 / 4 \\ & (146) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-5 / 8 \\ & (117) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-3 / 8 \\ & (162) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5-3 / 4 \\ & (146) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-3 / 8 \\ & (187) \\ & \hline \end{aligned}$
	Minimum edge and spacing Case 1	$C_{\text {min,1 }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ (57) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ (57) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (51) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ (57) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,1 }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 9-1 / 8 \\ & (232) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-3 / 4 \\ & (197) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-1 / 8 \\ & (156) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-3 / 4 \\ & (197) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-1 / 2 \\ & (165) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-1 / 8 \\ & (156) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5-3 / 8 \\ & (137) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$
	Minimum edge and spacing Case 2	$\mathrm{C}_{\text {min,2 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-3 / 4 \\ & (121) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 4-3 / 4 \\ & (121) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-7 / 8 \\ (98) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 4 \\ (83) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,2 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$
Cracked concrete	Minimum edge and spacing Case 1	$C_{\text {min,1 }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2-1 / 8 \\ (54) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,1}}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \hline 6-3 / 8 \\ & (162) \end{aligned}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & \hline 4-1 / 4 \\ & (108) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{gathered} \hline 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{gathered} 2-5 / 8 \\ (67) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 4 \\ (83) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (51) \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$
	Minimum edge and spacing Case 2	$\mathrm{C}_{\text {min,2 }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3-5 / 8 \\ (92) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 8 \\ (54) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (51) \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,2 }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (48) \\ \hline \end{gathered}$

Table 7 - Minimum edge distance, spacing, and concrete thickness for 1/2-in. diameter Hilti HIT-Z and HIT-Z-R rods ${ }^{1}$

Nominal anchor diameter		d	in.					1/2				
Effective embedment		$\mathrm{h}_{\text {ef }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 2-3 / 4 \\ (70) \end{gathered}$			$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$			$\begin{gathered} 6 \\ (152) \end{gathered}$		
Drilled hole condition		-	-	2^{2}			2^{2}			2^{2}		
Minimum concrete thickness		h	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \hline 4 \\ (102) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (127) \end{gathered}$	$\begin{aligned} & \hline 7-1 / 8 \\ & (181) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5-3 / 4 \\ & (146) \end{aligned}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8-1 / 4 \\ & (210) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 4 \\ & (184) \end{aligned}$	$\begin{aligned} & \hline 8-1 / 4 \\ & (210) \end{aligned}$	$\begin{aligned} & \hline 9-3 / 4 \\ & (248) \end{aligned}$
	Minimum edge and spacing Case 1	$C_{\text {min,1 }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 5-1 / 8 \\ & (130) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-1 / 8 \\ & (105) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2-7 / 8 \\ (73) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-5 / 8 \\ (92) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (76) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-7 / 8 \\ (73) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,1 }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 14-7 / 8 \\ (378) \\ \hline \end{gathered}$	$\begin{gathered} 11-7 / 8 \\ (302) \\ \hline \end{gathered}$	$\begin{aligned} & 8-5 / 8 \\ & (219) \\ & \hline \end{aligned}$	$\begin{gathered} 10-1 / 4 \\ (260) \end{gathered}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-1 / 4 \\ & (184) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8-1 / 8 \\ & (206) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 4 \\ & (184) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ (127) \\ \hline \end{gathered}$
	Minimum edge and spacing Case 2	$\mathrm{C}_{\text {min,2 }}$	$\begin{aligned} & \hline \mathrm{in} . \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & (235) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 4 \\ & (184) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-7 / 8 \\ & (124) \\ & \hline \end{aligned}$	$\begin{aligned} & 6-1 / 4 \\ & (159) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-1 / 4 \\ & (133) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-1 / 8 \\ & (105) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-3 / 4 \\ & (121) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-1 / 8 \\ & (105) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,2 }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$
	Minimum edge and spacing Case 1	$C_{\text {min,1 }}$	$\begin{gathered} \hline \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \hline 3-5 / 8 \\ (92) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (76) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-5 / 8 \\ (67) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,1 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 10-7 / 8 \\ (276) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{aligned} & 7-3 / 8 \\ & (187) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$
	Minimum edge and spacing Case 2	$\mathrm{C}_{\text {min,2 }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 6-1 / 2 \\ & (165) \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 4 \\ (83) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 4 \\ & (108) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 4 \\ (83) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (64) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,2 }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$

1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2.
Linear interpoloation for a specific edge distance c , where $\mathrm{c}_{\text {min, }}<\mathrm{c}<\mathrm{c}_{\text {min }, 2}$, will determine the permissible spacing s as follows:

$$
\mathrm{s} \geq \mathrm{s}_{\text {min }, 2}+\frac{\left(\mathrm{s}_{\text {min }, 1}-\mathrm{s}_{\text {min }, 2}\right)}{\left(\mathrm{c}_{\text {min }, 1}-\mathrm{c}_{\text {min }, 2}\right)}\left(\mathrm{c}-\mathrm{c}_{\text {min }, 2}\right)
$$

[^1]Table 8 - Minimum edge distance, spacing, and concrete thickness for 5/8-in. diameter Hilti HIT-Z and HIT-Z-R rods ${ }^{1}$

Nominal anchor diameter		d	in.					5/8				
Effective embedment		$\mathrm{h}_{\text {ef }}$	in. (mm)	$\begin{gathered} 3-3 / 4 \\ (95) \end{gathered}$			$\begin{array}{r} 5-5 / 8 \\ (143) \end{array}$			$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$		
Drilled hole condition		-	-	2^{2}			2^{2}			2^{2}		
Minimum concrete thickness		h	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{array}{r} 7-3 / 4 \\ (197) \\ \hline \end{array}$	$\begin{aligned} & 9-3 / 8 \\ & (238) \end{aligned}$	$\begin{aligned} & 7-3 / 8 \\ & (187) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9-5 / 8 \\ & (244) \\ & \hline \end{aligned}$	$\begin{gathered} 10-1 / 2 \\ (267) \end{gathered}$	$\begin{aligned} & 9-1 / 4 \\ & (235) \\ & \hline \end{aligned}$	$\begin{gathered} 11-1 / 2 \\ (292) \\ \hline \end{gathered}$	$\begin{gathered} 12-1 / 4 \\ (311) \end{gathered}$
	Minimum edge and spacing Case 1	$C_{\text {min,1 }}$	$\begin{aligned} & \mathrm{in} . \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 6-1 / 4 \\ & (159) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 4-5 / 8 \\ & (117) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-5 / 8 \\ (92) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 4 \\ (83) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,1 }}$	$\begin{aligned} & \mathrm{in} . \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 18-3 / 8 \\ (467) \end{gathered}$	$\begin{gathered} 12-7 / 8 \\ (327) \\ \hline \end{gathered}$	$\begin{gathered} 10-5 / 8 \\ (270) \end{gathered}$	$\begin{gathered} 13-7 / 8 \\ (352) \\ \hline \end{gathered}$	$\begin{gathered} 10-3 / 8 \\ (264) \end{gathered}$	$\begin{aligned} & 9-3 / 4 \\ & (248) \\ & \hline \end{aligned}$	$\begin{gathered} 10-7 / 8 \\ (276) \\ \hline \end{gathered}$	$\begin{aligned} & 8-3 / 8 \\ & (213) \\ & \hline \end{aligned}$	$\begin{aligned} & 7-3 / 8 \\ & (187) \\ & \hline \end{aligned}$
	Minimum edge and spacing Case 2	$C_{\text {min,2 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 11-3 / 8 \\ (289) \\ \hline \end{gathered}$	$\begin{aligned} & 7-3 / 4 \\ & (197) \\ & \hline \end{aligned}$	$\begin{aligned} & 6-1 / 4 \\ & (159) \\ & \hline \end{aligned}$	$\begin{aligned} & 8-1 / 4 \\ & (210) \end{aligned}$	$\begin{aligned} & 6-1 / 8 \\ & (156) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & 6-3 / 8 \\ & (162) \end{aligned}$	$\begin{aligned} & 4-7 / 8 \\ & (124) \end{aligned}$	$\begin{aligned} & 4-5 / 8 \\ & (117) \\ & \hline \end{aligned}$
		$\mathrm{S}_{\text {min, } 2}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$
	Minimum edge and spacing Case 1	$C_{\text {min,1 }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 4-5 / 8 \\ & (117) \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,1 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 13-7 / 8 \\ (352) \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & 8-3 / 4 \\ & (222) \end{aligned}$	$\begin{gathered} 10-1 / 8 \\ (257) \end{gathered}$	$\begin{aligned} & 6-1 / 2 \\ & (165) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-3 / 8 \\ & (137) \end{aligned}$	$\begin{aligned} & 7-1 / 8 \\ & (181) \end{aligned}$	$\begin{gathered} 3-7 / 8 \\ (98) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$
	Minimum edge and spacing Case 2	$C_{\text {min,2 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 8-1 / 4 \\ & (210) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{aligned} & 5-7 / 8 \\ & (149) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-1 / 4 \\ & (108) \\ & \hline \end{aligned}$	$\begin{gathered} 3-7 / 8 \\ (98) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,2 }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$

Table 9 - Minimum edge distance, spacing, and concrete thickness for 3/4-in. diameter Hilti HIT-Z and HIT-Z-R rods ${ }^{1}$

Nominal anchor diameter		d	in.	3/4								
Effective embedment		$\mathrm{h}_{\text {ef }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$			$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$			$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$		
Drilled hole condition		-	-	2^{2}	1 or 2		2^{2}	1 or 2		2^{2}	1 or 2	
Minimum concrete thickness		h	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 5-3 / 4 \\ & (146) \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 11-1 / 2 \\ (292) \\ \hline \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10-3 / 4 \\ (273) \\ \hline \end{gathered}$	$\begin{gathered} 13-1 / 8 \\ (333) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10-1 / 4 \\ (260) \\ \hline \end{gathered}$	$\begin{gathered} 12-1 / 2 \\ (318) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14-1 / 2 \\ (368) \\ \hline \end{gathered}$
0 0	Minimum edge and spacing Case 1	$C_{\text {min,1 }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \hline 9-3 / 4 \\ & (248) \\ & \hline \end{aligned}$	$\begin{gathered} 7 \\ (178) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-5 / 8 \\ & (168) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-1 / 4 \\ & (133) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-1 / 4 \\ & (108) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,1}}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 28-3 / 4 \\ (730) \\ \hline \end{gathered}$	$\begin{gathered} 20-5 / 8 \\ (524) \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ (356) \\ \hline \end{gathered}$	$\begin{gathered} 19-3 / 8 \\ (492) \\ \hline \end{gathered}$	$\begin{gathered} 15-1 / 4 \\ (387) \\ \hline \end{gathered}$	$\begin{gathered} 12-5 / 8 \\ (321) \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 13-1 / 4 \\ (337) \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ (279) \\ \hline \end{gathered}$
	Minimum edge and spacing Case 2	$\mathrm{C}_{\text {min,2 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 18-1 / 8 \\ (460) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12-5 / 8 \\ (321) \\ \hline \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} 11-7 / 8 \\ (302) \\ \hline \end{gathered}$	$\begin{aligned} & 9-1 / 8 \\ & (232) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 4 \\ & (184) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9-5 / 8 \\ & (244) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-3 / 4 \\ & (197) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-1 / 2 \\ & (165) \\ & \hline \end{aligned}$
		$\mathrm{S}_{\text {min,2 }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$
00000000000	Minimum edge and spacing Case 1	$C_{\text {min,1 }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \hline 7-1 / 4 \\ & (184) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5-1 / 4 \\ & (133) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-1 / 8 \\ & (105) \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 8 \\ & (105) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$
		$\mathrm{S}_{\text {min,1 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 21-3 / 4 \\ (552) \\ \hline \end{gathered}$	$\begin{gathered} 15-1 / 2 \\ (394) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12-1 / 4 \\ (311) \\ \hline \end{gathered}$	$\begin{gathered} 14-1 / 2 \\ (368) \\ \hline \end{gathered}$	$\begin{gathered} 11-3 / 8 \\ (289) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 12-1 / 8 \\ (308) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8-3 / 4 \\ & (222) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-1 / 2 \\ & (165) \end{aligned}$
	Minimum edge and spacing Case 2	$\mathrm{C}_{\text {min,2 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 13-1 / 4 \\ (337) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 9-1 / 4 \\ & (235) \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{aligned} & 8-5 / 8 \\ & (219) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-5 / 8 \\ & (168) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-1 / 8 \\ & (130) \\ & \hline \end{aligned}$	$\begin{gathered} 7 \\ (178) \\ \hline \end{gathered}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$
		$\mathrm{S}_{\text {min,2 }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$

1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2.
Linear interpoloation for a specific edge distance c , where $\mathrm{c}_{\text {min,1 }}<\mathrm{c}<\mathrm{c}_{\text {min }, 2}$, will determine the permissible spacing s as follows:

$$
\mathrm{s} \geq \mathrm{s}_{\text {min }, 2}+\frac{\left(\mathrm{s}_{\text {min }, 1}-\mathrm{s}_{\text {min },}\right)}{\left(\mathrm{c}_{\text {min }, 1}-\mathrm{c}_{\text {min }, 2}\right)}\left(\mathrm{c}-\mathrm{c}_{\text {min }, 2}\right)
$$

2 For shaded cells, drilling dust must be removed from drilled hole to justify minimum concrete thickness.

Table 10 - Load adjustment factors for 3/8-in. diameter Hilti HIT-Z and HIT-Z-R rods in uncracked concrete ${ }^{1,2}$

3/8-in. HIT-Z(-R) uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{3}$ $f_{\text {AV }}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{4}$$f_{\mathrm{HV}}$					
			$\begin{gathered} \perp \\ \text { Toward edge } \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																		
Emb	ent $\mathrm{h}_{\text {ef }}$	in. (mm)				$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \\ \hline \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \\ \hline \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$
	1-7/8	(48)	0.63	0.59	0.57				n/a	n/a	0.21	0.57	0.53	0.52	n/a	n/a	0.05	n/a	n/a	0.10	n/a	n/a	n/a
E	2	(51)	0.64	0.60	0.57	n/a	0.25	0.21	0.57	0.53	0.52	n/a	0.09	0.06	n/a	0.17	0.11	n/a	n/a	n/a			
\pm	2-1/4	(57)	0.66	0.61	0.58	0.38	0.26	0.22	0.58	0.54	0.53	0.33	0.10	0.07	0.38	0.21	0.13	n/a	n/a	n/a			
-	3	(76)	0.71	0.65	0.61	0.46	0.30	0.25	0.61	0.55	0.54	0.51	0.16	0.10	0.51	0.32	0.21	n/a	n/a	n/a			
¢	4	(102)	0.78	0.70	0.65	0.59	0.36	0.29	0.64	0.57	0.55	0.79	0.24	0.16	0.79	0.44	0.29	0.76	n/a	n/a			
¢	4-5/8	(117)	0.82	0.73	0.67	0.69	0.40	0.31	0.66	0.58	0.56	0.98	0.30	0.20	0.98	0.49	0.31	0.81	0.55	n/a			
등	5	(127)	0.85	0.75	0.69	0.74	0.43	0.33	0.68	0.58	0.56	1.00	0.34	0.22	1.00	0.52	0.33	0.84	0.57	n/a			
$\stackrel{\text { ¢ }}{\ddagger}$	5-3/4	(146)	0.90	0.78	0.71	0.86	0.49	0.36	0.70	0.59	0.57	1.00	0.42	0.27	1.00	0.59	0.36	0.91	0.61	0.53			
$\stackrel{ \pm}{ \pm}$	6	(152)	0.92	0.80	0.72	0.89	0.51	0.38	0.71	0.60	0.57	1.00	0.45	0.29	1.00	0.62	0.38	0.92	0.63	0.54			
$\stackrel{\square}{0}$	7	(178)	0.99	0.85	0.76	1.00	0.60	0.43	0.75	0.61	0.59		0.57	0.37		0.72	0.43	1.00	0.68	0.58			
0	8	(203)	1.00	0.90	0.80		0.69	0.49	0.79	0.63	0.60		0.69	0.45		0.83	0.49	1.00	0.72	0.63			
$\stackrel{\square}{\circ}$	9	(229)	1.00	0.94	0.83		0.77	0.55	0.82	0.65	0.61		0.83	0.54		0.93	0.55		0.77	0.66			
$\stackrel{0}{0}_{0}$	10	(254)	1.00	0.99	0.87		0.86	0.61	0.86	0.66	0.62		0.97	0.63		1.00	0.63		0.81	0.70			
\bigcirc	11	(279)		1.00	0.91		0.94	0.67	0.89	0.68	0.63		1.00	0.72			0.72		0.85	0.73			
¢	12	(305)			0.94		1.00	0.73	0.93	0.70	0.65			0.83			0.83		0.88	0.77			
0	14	(356)			1.00			0.85	1.00	0.73	0.67			1.00			1.00		0.96	0.83			
蒠	16	(406)						0.98		0.76	0.70								1.00	0.88			
$\stackrel{\text { ® }}{ }$	18	(457)						1.00		0.79	0.72									0.94			
\cdots	24	(610)								0.89	0.79									1.00			
-	30	(762)								0.99	0.87												
O	36	(914)								1.00	0.94												
の	> 48	(1219)									1.00												

Table 11 - Load adjustment factors for 3/8-in. diameter Hilti HIT-Z and HIT-Z-R rods in cracked concrete ${ }^{1,2}$

3/8-in. HIT-Z(-R) cracked concrete			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{3}$ $f_{\text {AV }}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{4}$$f_{\mathrm{HV}}$					
			$\underset{\text { Toward edge }}{\stackrel{\perp}{f_{\mathrm{RV}}}}$	\|	To and away from edge $f_{\text {RV }}$																		
Emb	ent $\mathrm{h}_{\text {ef }}$	in. (mm)				$\begin{gathered} 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{array}{\|c} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 3-3 / 8 \\ (86) \\ \hline \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$
®	1-7/8		0.63	0.59	0.57				n/a	0.56	0.50	0.57	0.53	0.52	n/a	0.08	0.05	n/a	0.16	0.10	n/a	n/a	n/a
है	2	(51)	0.64	0.60	0.57	n/a	0.57	0.51	0.57	0.53	0.52	n/a	0.09	0.06	n/a	0.17	0.11	n/a	n/a	n/a			
.	2-1/4	(57)	0.66	0.61	0.58	0.73	0.60	0.53	0.58	0.54	0.53	0.34	0.10	0.07	0.67	0.21	0.14	n/a	n/a	n/a			
	3	(76)	0.71	0.65	0.61	0.88	0.70	0.60	0.61	0.55	0.54	0.52	0.16	0.10	0.88	0.32	0.21	n/a	n/a	n/a			
ç	4	(102)	0.78	0.70	0.65	1.00	0.84	0.70	0.64	0.57	0.55	0.80	0.25	0.16	1.00	0.49	0.32	0.76	n/a	n/a			
$\mathscr{\infty}$	4-5/8	(117)	0.82	0.73	0.67		0.93	0.76	0.67	0.58	0.56	0.99	0.31	0.20		0.61	0.40	0.81	0.55	n/a			
등	5	(127)	0.85	0.75	0.69		0.99	0.80	0.68	0.58	0.56	1.00	0.34	0.22		0.69	0.45	0.85	0.57	n/a			
$\stackrel{\text { ¢ }}{+}$	5-3/4	(146)	0.90	0.78	0.71		1.00	0.88	0.71	0.59	0.57		0.42	0.28		0.85	0.55	0.91	0.61	0.53			
$\stackrel{0}{0}$	6	(152)	0.92	0.80	0.72			0.91	0.71	0.60	0.57		0.45	0.29		0.91	0.59	0.93	0.63	0.54			
$\stackrel{\square}{0}$	7	(178)	0.99	0.85	0.76			1.00	0.75	0.61	0.59		0.57	0.37		1.00	0.74	1.00	0.68	0.59			
\bigcirc	8	(203)	1.00	0.90	0.80				0.79	0.63	0.60		0.70	0.45			0.91		0.72	0.63			
\pm	9	(229)		0.94	0.83				0.82	0.65	0.61		0.83	0.54			1.00		0.77	0.67			
$\frac{0}{0}$	10	(254)		0.99	0.87				0.86	0.66	0.62		0.97	0.63					0.81	0.70			
$\stackrel{\square}{0}$	11	(279)		1.00	0.91				0.89	0.68	0.64		1.00	0.73					0.85	0.74			
¢	12	(305)			0.94				0.93	0.70	0.65			0.83					0.89	0.77			
$\begin{aligned} & \overline{0} \\ & 0 \end{aligned}$	14	(356)			1.00				1.00	0.73	0.67			1.00					0.96	0.83			
8	16	(406)								0.76	0.70								1.00	0.89			
$\stackrel{\text { ® }}{ }$	18	(457)								0.79	0.72									0.94			
\%	24	(610)								0.89	0.79									1.00			
-	30	(762)								0.99	0.87												
O	36	(914)								1.00	0.94												
	>48	(1219)									1.00												

1 Linear interpolation not permitted.
2 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17 or CSA A23.3 Annex D.
3 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} h_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
4 Concrete thickness reduction factor in shear, f_{HV}, is applicable when edge distance, $\mathrm{c}<3^{*} h_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$ then $f_{\mathrm{HV}}=1.0$.
\square If a reduction factor value is in a shaded area, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with figure 6 and table 6 of this section to calculate permissible edge distance, spacing and concrete thickness combinations.

Table 12 - Load adjustment factors for 1/2-in. diameter Hilti HIT-Z and HIT-Z-R rods in uncracked concrete ${ }^{1,2}$

1/2-in. HIT-Z(-R) uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{3}$$f_{\mathrm{AV}}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{4}$$f_{\mathrm{HV}}$					
			Toward edgef_{RV}	\|	To and away from edge $f_{\text {RV }}$																		
Emb	ent $\mathrm{h}_{\text {ef }}$	in. (mm)				$2-3 / 4$ (70)	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \end{gathered}$	$\begin{array}{\|c\|} \hline 2-3 / 4 \\ (70) \\ \hline \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} 6 \\ (152) \end{gathered}$	2-3/4 (70)	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ (152) \end{gathered}$	$\begin{array}{\|c\|} \hline 2-3 / 4 \\ (70) \\ \hline \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ (152) \end{gathered}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} 6 \\ (152) \end{gathered}$
	2-1/2		0.65	0.59	0.57				n/a	0.23	0.20	0.55	0.53	0.53	n/a	0.09	0.06	n/a	0.18	0.12	n/a	n/a	n/a
$\bar{\xi}$	2-7/8		0.67	0.61	0.58	0.35	0.24	0.21	0.56	0.54	0.53	0.22	0.11	0.07	0.35	0.22	0.15	n/a	n/a	n/a			
है	3	(76)	0.68	0.61	0.58	0.36	0.25	0.21	0.56	0.54	0.53	0.23	0.12	0.08	0.36	0.24	0.15	n/a	n/a	n/a			
.	3-1/2	(89)	0.71	0.63	0.60	0.40	0.27	0.22	0.57	0.55	0.54	0.29	0.15	0.10	0.40	0.30	0.19	n/a	n/a	n/a			
E	4	(102)	0.74	0.65	0.61	0.44	0.29	0.24	0.58	0.55	0.54	0.36	0.18	0.12	0.44	0.33	0.24	0.58	n/a	n/a			
8	4-1/2	(114)	0.77	0.67	0.63	0.50	0.31	0.25	0.59	0.56	0.55	0.42	0.22	0.14	0.50	0.35	0.25	0.61	n/a	n/a			
	5	(127)	0.80	0.69	0.64	0.55	0.33	0.27	0.60	0.57	0.55	0.50	0.26	0.17	0.55	0.38	0.27	0.65	n/a	n/a			
.	5-1/2	(140)	0.83	0.70	0.65	0.61	0.35	0.28	0.62	0.57	0.56	0.57	0.30	0.19	0.61	0.40	0.28	0.68	n/a	n/a			
©	6	(152)	0.86	0.72	0.67	0.66	0.38	0.30	0.63	0.58	0.56	0.65	0.34	0.22	0.66	0.43	0.30	0.71	0.57	n/a			
-	7	(178)	0.92	0.76	0.69	0.77	0.43	0.33	0.65	0.59	0.57	0.82	0.42	0.28	0.82	0.49	0.33	0.77	0.61	n/a			
\bigcirc	7-1/4	(184)	0.94	0.77	0.70	0.80	0.44	0.34	0.65	0.60	0.57	0.87	0.45	0.29	0.87	0.50	0.34	0.78	0.62	0.54			
	8	(203)	0.98	0.80	0.72	0.88	0.49	0.36	0.67	0.61	0.58	1.00	0.52	0.34	1.00	0.56	0.36	0.82	0.66	0.57			
-0	9	(229)	1.00	0.83	0.75	0.99	0.55	0.40	0.69	0.62	0.59	1.00	0.62	0.40	1.00	0.63	0.40	0.87	0.70	0.60			
8	10	(254)	1.00	0.87	0.78	1.00	0.61	0.44	0.71	0.63	0.60	1.00	0.72	0.47	1.00	0.72	0.47	0.92	0.73	0.64			
¢	11	(279)	1.00	0.91	0.81		0.67	0.48	0.73	0.65	0.61		0.84	0.54		0.84	0.54	0.96	0.77	0.67			
\bigcirc	12	(305)	1.00	0.94	0.83		0.73	0.53	0.75	0.66	0.62		0.95	0.62		0.95	0.62	1.00	0.80	0.70			
8	14	(356)	1.00	1.00	0.89		0.85	0.62	0.79	0.69	0.64		1.00	0.78		1.00	0.78		0.87	0.75			
บ	16	(406)	1.00		0.94		0.98	0.70	0.83	0.72	0.66			0.95			0.95		0.93	0.80			
क	18	(457)			1.00		1.00	0.79	0.88	0.74	0.68			1.00			1.00		0.98	0.85			
O)	24	(610)						1.00	1.00	0.82	0.74								1.00	0.98			
-	30	(762)								0.90	0.80									1.00			
¢	36	(914)								0.98	0.86												
	> 48	(1219)								1.00	0.98												

Table 13 - Load adjustment factors for 1/2-in. diameter Hilti HIT-Z and HIT-Z-R rods in Cracked Concrete ${ }^{1,2}$

1/2-in. HIT-Z(-R) cracked concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{3}$$f_{\mathrm{AV}}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{4}$$f_{\mathrm{HV}}$					
			Toward edgef_{RV}	\|	To and away from edge $f_{\text {RV }}$																		
Emb	ment $h_{\text {ef }}$	$\begin{aligned} & \mathrm{in} . \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$				$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2-3 / 4 \\ (70) \\ \hline \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$
	2-1/2	(64)	0.65	0.59	0.57				0.71	0.56	0.50	0.55	0.53	0.53	0.18	0.09	0.06	0.35	0.18	0.12	n/a	n/a	n/a
$\bar{\xi}$	2-7/8	(73)	0.67	0.61	0.58	0.77	0.59	0.53	0.56	0.54	0.53	0.22	0.11	0.07	0.44	0.23	0.15	n/a	n/a	n/a			
है	3	(76)	0.68	0.61	0.58	0.79	0.60	0.53	0.56	0.54	0.53	0.23	0.12	0.08	0.47	0.24	0.16	n/a	n/a	n/a			
\pm	3-1/2	(89)	0.71	0.63	0.60	0.88	0.65	0.57	0.57	0.55	0.54	0.29	0.15	0.10	0.59	0.30	0.20	n/a	n/a	n/a			
E	4	(102)	0.74	0.65	0.61	0.98	0.70	0.60	0.58	0.55	0.54	0.36	0.18	0.12	0.72	0.37	0.24	0.58	n/a	n/a			
\%	4-1/2	(114)	0.77	0.67	0.63	1.00	0.75	0.64	0.59	0.56	0.55	0.43	0.22	0.14	0.86	0.44	0.29	0.62	n/a	n/a			
	5	(127)	0.80	0.69	0.64	1.00	0.80	0.67	0.61	0.57	0.55	0.50	0.26	0.17	1.00	0.52	0.34	0.65	n/a	n/a			
.	5-1/2	(140)	0.83	0.70	0.65	1.00	0.86	0.71	0.62	0.57	0.56	0.58	0.30	0.19	1.00	0.60	0.39	0.68	n/a	n/a			
。	6	(152)	0.86	0.72	0.67	1.00	0.91	0.75	0.63	0.58	0.56	0.66	0.34	0.22	1.00	0.68	0.44	0.71	0.57	n/a			
$\stackrel{0}{0}$	7	(178)	0.92	0.76	0.69	1.00	1.00	0.83	0.65	0.59	0.57	0.83	0.43	0.28	1.00	0.86	0.56	0.77	0.62	n/a			
\bigcirc	7-1/4	(184)	0.94	0.77	0.70			0.85	0.65	0.60	0.57	0.88	0.45	0.29		0.90	0.59	0.78	0.63	0.54			
\bigcirc	8	(203)	0.98	0.80	0.72			0.91	0.67	0.61	0.58	1.00	0.52	0.34		1.00	0.68	0.82	0.66	0.57			
O	9	(229)	1.00	0.83	0.75			1.00	0.69	0.62	0.59		0.62	0.41			0.81	0.87	0.70	0.60			
¢	10	(254)	1.00	0.87	0.78				0.71	0.64	0.60		0.73	0.47			0.95	0.92	0.74	0.64			
त్ర]	11	(279)	1.00	0.91	0.81				0.73	0.65	0.61		0.84	0.55			1.00	0.96	0.77	0.67			
\bigcirc	12	(305)		0.94	0.83				0.75	0.66	0.62		0.96	0.62				1.00	0.81	0.70			
8	14	(356)		1.00	0.89				0.79	0.69	0.64		1.00	0.79					0.87	0.75			
凹	16	(406)			0.94				0.84	0.72	0.66			0.96					0.93	0.81			
क	18	(457)			1.00				0.88	0.74	0.68			1.00					0.99	0.85			
O)	24	(610)							1.00	0.82	0.74								1.00	0.99			
-	30	(762)								0.91	0.80									1.00			
के	36	(914)								0.99	0.87												
	> 48	(1219)								1.00	0.99												

[^2]2 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17 or CSA A23.3 Annex D.
3 Spacing factor reduction in shear applicable when $c<3^{*} h_{\text {ef }} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
4 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.
\square If a reduction factor value is in a shaded area, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with figure 6 and table 7 of this section to calculate permissible edge distance, spacing and concrete thickness combinations.

Table 14 －Load adjustment factors for 5／8－in．diameter Hilti HIT－Z and HIT－Z－R rods in uncracked concrete ${ }^{1,2}$

5／8－in．HIT－Z（－R） uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{3}$ $f_{\text {AV }}$			Edge distance in shear						```Concrete thickness factor in shear4 f```					
			$\begin{gathered} \stackrel{\perp}{\text { Toward edge }} \\ f_{\mathrm{RV}} \end{gathered}$	｜｜To and away from edge $f_{\text {RV }}$																			
Emb	nt h	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$				$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3-3 / 4 \\ (95) \\ \hline \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3-3 / 4 \\ (95) \\ \hline \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3-3 / 4 \\ (95) \\ \hline \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 7-1 / 2 \\ (191) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 4 \\ (95) \\ \hline \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 7-1 / 2 \\ (191) \\ \hline \end{array}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$
	3－1／8	（79）	0.64	0.59	0.57				n／a	n／a	0.20	0.55	0.54	0.53	n／a	n／a	0.07	n／a	n／a	0.13	n／a	n／a	n／a
E	3－1／4	（83）	0.64	0.60	0.57	n／a	0.24	0.20	0.55	0.54	0.53	n／a	0.11	0.07	n／a	0.21	0.14	n／a	n／a	n／a			
E	3－3／4	（95）	0.67	0.61	0.58	0.34	0.25	0.21	0.56	0.54	0.53	0.23	0.13	0.09	0.34	0.27	0.17	n／a	n／a	n／a			
\cdots	4	（102）	0.68	0.62	0.59	0.36	0.26	0.22	0.57	0.55	0.53	0.25	0.15	0.10	0.36	0.29	0.19	n／a	n／a	n／a			
Ė	5	（127）	0.72	0.65	0.61	0.42	0.29	0.24	0.58	0.56	0.54	0.36	0.21	0.13	0.42	0.38	0.24	n／a	n／a	n／a			
\％	5－1／2	（140）	0.74	0.66	0.62	0.45	0.31	0.25	0.59	0.56	0.55	0.41	0.24	0.15	0.45	0.40	0.25	0.61	n／a	n／a			
O	6	（152）	0.77	0.68	0.63	0.49	0.33	0.26	0.60	0.57	0.55	0.47	0.27	0.18	0.49	0.42	0.26	0.63	n／a	n／a			
\pm	7	（178）	0.81	0.71	0.66	0.57	0.36	0.29	0.62	0.58	0.56	0.59	0.34	0.22	0.59	0.47	0.29	0.68	n／a	n／a			
$\stackrel{0}{0}$	7－3／8	（187）	0.83	0.72	0.66	0.60	0.38	0.30	0.62	0.59	0.56	0.64	0.37	0.24	0.64	0.49	0.30	0.70	0.58	n／a			
	8	（203）	0.86	0.74	0.68	0.65	0.40	0.31	0.63	0.59	0.57	0.72	0.41	0.27	0.72	0.52	0.31	0.73	0.61	n／a			
ర్రి	9	（229）	0.90	0.77	0.70	0.73	0.45	0.34	0.65	0.60	0.58	0.86	0.50	0.32	0.86	0.58	0.34	0.78	0.65	n／a			
－	9－1／4	（235）	0.91	0.77	0.71	0.76	0.46	0.35	0.65	0.61	0.58	0.89	0.52	0.34	0.89	0.59	0.35	0.79	0.65	0.57			
	10	（254）	0.94	0.80	0.72	0.82	0.50	0.37	0.67	0.62	0.59	1.00	0.58	0.38	1.00	0.64	0.38	0.82	0.68	0.59			
¢	11	（279）	0.99	0.83	0.74	0.90	0.55	0.39	0.68	0.63	0.60	1.00	0.67	0.43	1.00	0.70	0.43	0.86	0.71	0.62			
\％	12	（305）	1.00	0.86	0.77	0.98	0.60	0.43	0.70	0.64	0.60	1.00	0.76	0.50	1.00	0.77	0.50	0.90	0.75	0.65			
$\begin{aligned} & \bar{\circ} \\ & \mathbb{Q} \end{aligned}$	14	（356）	1.00	0.91	0.81	1.00	0.70	0.50	0.73	0.66	0.62		0.96	0.62		0.96	0.62	0.97	0.81	0.70			
毫	16	（406）	1.00	0.97	0.86		0.80	0.57	0.77	0.69	0.64		1.00	0.76		1.00	0.76	1.00	0.86	0.75			
$\stackrel{\square}{i}$	18	（457）	1.00	1.00	0.90		0.89	0.64	0.80	0.71	0.66			0.91			0.91		0.91	0.79			
$\frac{\sigma}{\sigma}$	24	（610）	1.00		1.00		1.00	0.86	0.90	0.78	0.71			1.00			1.00		1.00	0.91			
－	30	（762）						1.00	1.00	0.85	0.76									1.00			
$\stackrel{\widetilde{0}}{\infty}$	36	（914）								0.92	0.81												
	＞ 48	（1219）								1.00	0.92												

Table 15 －Load adjustment factors for 5／8－in．diameter Hilti HIT－Z and HIT－Z－R rods in cracked concrete ${ }^{1,2}$

5/8-in. HIT-Z(-R) cracked concrete			Spacing factor in tension $f_{\text {AN }}$			$\begin{aligned} & \text { Edge distance factor } \\ & \text { in tension } \\ & f_{\mathrm{RN}} \\ & \hline \end{aligned}$			Spacing factor in shear ${ }^{3}$$f_{\mathrm{AV}}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{4}$$f_{\mathrm{HV}}$					
			$\begin{gathered} \perp \\ \text { Toward edge } \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	｜｜To and away from edge $f_{\text {RV }}$																			
Emb	ent $\mathrm{h}_{\text {ef }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$				$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-3 / 4 \\ (95) \\ \hline \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{array}{\|c} \hline 3-3 / 4 \\ (95) \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-3 / 4 \\ (95) \\ \hline \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$
	3－1／8	（79）	0.64	0.59	0.57				0.67	0.56	0.50	0.55	0.54	0.53	0.18	0.10	0.07	0.35	0.20	0.13	n／a	n／a	n／a
E	3－1／4	（83）	0.64	0.60	0.57	0.69	0.56	0.51	0.55	0.54	0.53	0.19	0.11	0.07	0.38	0.22	0.14	n／a	n／a	n／a			
E	3－3／4	（95）	0.67	0.61	0.58	0.75	0.60	0.53	0.56	0.54	0.53	0.23	0.13	0.09	0.47	0.27	0.17	n／a	n／a	n／a			
	4	（102）	0.68	0.62	0.59	0.78	0.62	0.55	0.57	0.55	0.53	0.26	0.15	0.10	0.51	0.30	0.19	n／a	n／a	n／a			
今	5	（127）	0.72	0.65	0.61	0.91	0.70	0.60	0.58	0.56	0.54	0.36	0.21	0.13	0.72	0.41	0.27	n／a	n／a	n／a			
\％	5－1／2	（140）	0.74	0.66	0.62	0.98	0.74	0.63	0.59	0.56	0.55	0.41	0.24	0.15	0.83	0.48	0.31	0.61	n／a	n／a			
등	6	（152）	0.77	0.68	0.63	1.00	0.78	0.66	0.60	0.57	0.55	0.47	0.27	0.18	0.94	0.54	0.35	0.64	n／a	n／a			
衰	7	（178）	0.81	0.71	0.66	1.00	0.87	0.72	0.62	0.58	0.56	0.59	0.34	0.22	1.00	0.68	0.44	0.69	n／a	n／a			
$\stackrel{\text { ¢ }}{0}$	7－3／8	（187）	0.83	0.72	0.66	1.00	0.90	0.74	0.62	0.59	0.56	0.64	0.37	0.24	1.00	0.74	0.48	0.70	0.59	n／a			
O	8	（203）	0.86	0.74	0.68	1.00	0.96	0.78	0.63	0.59	0.57	0.73	0.42	0.27	1.00	0.84	0.54	0.73	0.61	n／a			
ర్రీ	9	（229）	0.90	0.77	0.70	1.00	1.00	0.85	0.65	0.60	0.58	0.87	0.50	0.32	1.00	1.00	0.65	0.78	0.65	n／a			
$\stackrel{\square}{0}$	9－1／4	（235）	0.91	0.77	0.71			0.86	0.66	0.61	0.58	0.90	0.52	0.34			0.68	0.79	0.66	0.57			
©	10	（254）	0.94	0.80	0.72			0.91	0.67	0.62	0.59	1.00	0.58	0.38			0.76	0.82	0.68	0.59			
ธ	11	（279）	0.99	0.83	0.74			0.98	0.69	0.63	0.60		0.67	0.44			0.88	0.86	0.72	0.62			
$\stackrel{0}{0}$	12	（305）	1.00	0.86	0.77			1.00	0.70	0.64	0.60		0.77	0.50			1.00	0.90	0.75	0.65			
$\stackrel{\rightharpoonup}{\mathrm{O}}$	14	（356）	1.00	0.91	0.81				0.74	0.66	0.62		0.97	0.63			1.00	0.97	0.81	0.70			
亭	16	（406）		0.97	0.86				0.77	0.69	0.64		1.00	0.77				1.00	0.86	0.75			
$\stackrel{\text { er }}{ }$	18	（457）		1.00	0.90				0.80	0.71	0.66			0.92					0.92	0.79			
$\frac{\sigma}{0}$	24	（610）			1.00				0.90	0.78	0.71			1.00					1.00	0.92			
－	30	（762）							1.00	0.85	0.76									1.00			
苋	36	（914）								0.92	0.81												
	>48	（1219）								1.00	0.92												

1 Linear interpolation not permitted．
2 When combining multiple load adjustment factors（e．g．for a four－anchor pattern in a corner with thin concrete member）the design can become very conservative．To optimize the design，use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17 or CSA A23．3 Annex D．
3 Spacing factor reduction in shear applicable when $c<3^{*} h_{e r} f_{A V}$ ，is applicable when edge distance，$c<3^{*} h_{\text {ef }}$ ．If $c \geq 3^{*} h_{e f}$ ，then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$ ．
4 Concrete thickness reduction factor in shear，f_{HV} ，is applicable when edge distance， $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$ ．If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$ ，then $f_{\mathrm{HV}}=1.0$ ．
\square If a reduction factor value is in a shaded area，this indicates that this specific edge distance may not be permitted with a certain spacing（or vice versa）．Check with figure 6 and table 8 of this section to calculate permissible edge distance，spacing and concrete thickness combinations．

Table 16 - Load adjustment factors for 3/4-in. diameter Hilti HIT-Z and HIT-Z-R rods in uncracked concrete ${ }^{1,2}$

3/4-in. HIT-Z(-R) uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{3}$$f_{\mathrm{AV}}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{4}$$f_{\mathrm{HV}}$					
			Toward edge $f_{\text {RV }}$	\|	To and away from edge $f_{\text {RV }}$																		
Emb	$\mathrm{nt}_{\mathrm{h}}^{\text {ef }}$	in. (mm)				$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} \hline 4 \\ (102) \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} \hline 4 \\ (102) \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} \hline 4 \\ (102) \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \end{aligned}$
	3-3/4	(95)	0.66	0.59	0.57				n/a	n/a	n/a	0.56	0.54	0.53	n/a								
है	4	(102)	0.67	0.60	0.58	n/a	n/a	0.21	0.57	0.54	0.53	n/a	n/a	0.08	n/a	n/a	0.17	n/a	n/a	n/a			
\pm	4-1/8	(105)	0.67	0.60	0.58	n/a	n/a	0.21	0.57	0.54	0.53	n/a	n/a	0.09	n/a	n/a	0.18	n/a	n/a	n/a			
	4-1/4	(108)	0.68	0.60	0.58	n/a	0.24	0.21	0.57	0.54	0.53	n/a	0.13	0.09	n/a	0.26	0.19	n/a	n/a	n/a			
E	5	(127)	0.71	0.62	0.60	0.39	0.26	0.23	0.58	0.55	0.54	0.35	0.17	0.12	0.39	0.32	0.23	n/a	n/a	n/a			
$\mathscr{\infty}$	5-3/4	(146)	0.74	0.64	0.61	0.44	0.28	0.24	0.59	0.56	0.55	0.43	0.21	0.15	0.44	0.34	0.24	0.61	n/a	n/a			
\bigcirc	6	(152)	0.75	0.65	0.62	0.45	0.28	0.24	0.60	0.56	0.55	0.45	0.22	0.16	0.45	0.35	0.24	0.63	n/a	n/a			
\pm	7	(178)	0.79	0.67	0.64	0.53	0.31	0.27	0.61	0.57	0.56	0.57	0.28	0.20	0.57	0.38	0.27	0.68	n/a	n/a			
$\stackrel{\text { ¢ }}{0}$	8	(203)	0.83	0.70	0.66	0.60	0.34	0.29	0.63	0.58	0.56	0.70	0.34	0.24	0.70	0.42	0.29	0.72	n/a	n/a			
C	8-1/2	(216)	0.85	0.71	0.67	0.64	0.36	0.30	0.64	0.59	0.57	0.77	0.37	0.26	0.77	0.44	0.30	0.75	0.59	n/a			
ò	9	(229)	0.88	0.72	0.68	0.68	0.37	0.31	0.65	0.59	0.57	0.83	0.40	0.29	0.83	0.45	0.31	0.77	0.60	n/a			
\pm	10	(254)	0.92	0.75	0.70	0.75	0.40	0.33	0.66	0.60	0.58	0.98	0.47	0.33	0.98	0.49	0.33	0.81	0.64	n/a			
0_{0}^{0}	10-1/4	(260)	0.93	0.75	0.70	0.77	0.41	0.34	0.67	0.60	0.58	1.00	0.49	0.35	1.00	0.50	0.35	0.82	0.64	0.57			
	11	(279)	0.96	0.77	0.72	0.83	0.44	0.35	0.68	0.61	0.59	1.00	0.55	0.39	1.00	0.55	0.39	0.85	0.67	0.59			
$\stackrel{\#}{\sim}$	12	(305)	1.00	0.80	0.74	0.90	0.48	0.38	0.70	0.62	0.60	1.00	0.62	0.44	1.00	0.62	0.44	0.89	0.70	0.62			
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	14	(356)	1.00	0.85	0.77	1.00	0.56	0.43	0.73	0.64	0.61	1.00	0.78	0.55	1.00	0.78	0.55	0.96	0.75	0.67			
윰	16	(406)	1.00	0.90	0.81	1.00	0.64	0.50	0.76	0.66	0.63	1.00	0.96	0.68	1.00	0.96	0.68	1.00	0.80	0.72			
$\stackrel{\square}{ \pm}$	18	(457)	1.00	0.94	0.85	1.00	0.72	0.56	0.80	0.68	0.64	1.00	1.00	0.81	1.00	1.00	0.81		0.85	0.76			
厄	24	(610)	1.00	1.00	0.97	1.00	0.97	0.75	0.89	0.74	0.69	1.00		1.00	1.00		1.00		0.99	0.88			
$\stackrel{\square}{\square}$	30	(762)	1.00		1.00		1.00	0.93	0.99	0.80	0.74								1.00	0.98			
$\stackrel{\widetilde{0}}{\infty}$	36	(914)						1.00	1.00	0.86	0.79									1.00			
	> 48	(1219)								0.99	0.89												

Table 17 - Load adjustment factors for 3/4-in. diameter Hilti HIT-Z and HIT-Z-R rods in cracked concrete ${ }^{1,2}$

3/4-in. HIT-Z(-R) cracked concrete			Spacing factor in tension$f_{A N}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{3}$$f_{\mathrm{AV}}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{4}$$f_{\mathrm{HV}}$					
			Toward edgef_{RV}	\|	To and away from edge f_{RV}																		
Emb	nt $h_{\text {ef }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$				$\begin{gathered} \hline 4 \\ (102) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 6-3 / 4 \\ (171) \end{array}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} \hline 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$
	3-3/4	(95)	0.66	0.59	0.57				n/a	0.56	0.51	0.56	0.54	0.53	n/a	0.11	0.08	n/a	0.22	0.16	n/a	n/a	n/a
E	4	(102)	0.67	0.60	0.58	n/a	0.57	0.52	0.57	0.54	0.53	n/a	0.12	0.09	n/a	0.24	0.17	n/a	n/a	n/a			
\pm	4-1/8	(105)	0.67	0.60	0.58	0.76	0.58	0.53	0.57	0.54	0.53	0.26	0.13	0.09	0.52	0.25	0.18	n/a	n/a	n/a			
	4-1/4	(108)	0.68	0.60	0.58	0.78	0.59	0.53	0.57	0.54	0.53	0.27	0.13	0.09	0.55	0.26	0.19	n/a	n/a	n/a			
¢	5	(127)	0.71	0.62	0.60	0.87	0.63	0.57	0.58	0.55	0.54	0.35	0.17	0.12	0.70	0.34	0.24	n/a	n/a	n/a			
8	5-3/4	(146)	0.74	0.64	0.61	0.97	0.68	0.61	0.59	0.56	0.55	0.43	0.21	0.15	0.86	0.42	0.29	0.62	n/a	n/a			
$\stackrel{\rightharpoonup}{5}$	6	(152)	0.75	0.65	0.62	1.00	0.70	0.62	0.60	0.56	0.55	0.46	0.22	0.16	0.92	0.44	0.31	0.63	n/a	n/a			
$\underset{\ddagger}{\circ}$	7	(178)	0.79	0.67	0.64	1.00	0.77	0.67	0.62	0.57	0.56	0.58	0.28	0.20	1.00	0.56	0.40	0.68	n/a	n/a			
$\stackrel{ \pm}{ \pm}$	8	(203)	0.83	0.70	0.66	1.00	0.84	0.72	0.63	0.58	0.56	0.70	0.34	0.24	1.00	0.68	0.48	0.73	n/a	n/a			
$\stackrel{\square}{0}$	8-1/2	(216)	0.85	0.71	0.67	1.00	0.88	0.75	0.64	0.59	0.57	0.77	0.37	0.26	1.00	0.75	0.53	0.75	0.59	n/a			
ò	9	(229)	0.88	0.72	0.68	1.00	0.91	0.78	0.65	0.59	0.57	0.84	0.41	0.29	1.00	0.82	0.58	0.77	0.61	n/a			
$\stackrel{\square}{*}$	10	(254)	0.92	0.75	0.70	1.00	0.99	0.83	0.67	0.60	0.58	0.99	0.48	0.34	1.00	0.95	0.68	0.81	0.64	n/a			
$\frac{0}{0}$	10-1/4	(260)	0.93	0.75	0.70	1.00	1.00	0.85	0.67	0.60	0.58	1.00	0.50	0.35	1.00	0.99	0.70	0.82	0.65	0.58			
C	11	(279)	0.96	0.77	0.72	1.00		0.89	0.68	0.61	0.59	1.00	0.55	0.39	1.00	1.00	0.78	0.85	0.67	0.60			
$\stackrel{\widetilde{(N}}{\stackrel{\omega}{\omega}}$	12	(305)	1.00	0.80	0.74	1.00		0.95	0.70	0.62	0.60	1.00	0.63	0.44	1.00		0.89	0.89	0.70	0.62			
$\begin{aligned} & 00 \\ & 0 \\ & 0 \end{aligned}$	14	(356)	1.00	0.85	0.77	1.00		1.00	0.73	0.64	0.61	1.00	0.79	0.56	1.00		1.00	0.96	0.76	0.67			
윤	16	(406)	1.00	0.90	0.81				0.76	0.66	0.63		0.97	0.68				1.00	0.81	0.72			
$\stackrel{\text { en }}{ }$	18	(457)	1.00	0.94	0.85				0.80	0.68	0.65		1.00	0.82					0.86	0.76			
$\frac{\sigma}{\infty}$	24	(610)	1.00	1.00	0.97				0.90	0.74	0.69			1.00					0.99	0.88			
.	30	(762)			1.00				1.00	0.81	0.74								1.00	0.98			
O	36	(914)							1.00	0.87	0.79									1.00			
	>48	(1219)								0.99	0.89												

1 Linear interpolation not permitted.
2 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17 or CSA A23.3 Annex D
3 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
4 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.
\square If a reduction factor value is in a shaded area, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with figure 6 and table 9 of this section to calculate permissible edge distance, spacing and concrete thickness combinations.

Hilti HIT-HY 200 adhesive with deformed reinforcing bars (rebar)

Figure 7 - Rebar installation conditions

		Uncracked concrete Cracked concrete		Dry concrete Water-saturated concrete			Hammer drilling with carbide tipped drill bit Hilti TE-CD or TE-YD Hollow Drill Bit

Figure 8 - Rebar installed with Hilti HIT-HY 200 adhesive

Table 18 - Specifications for rebar installed with Hilti HIT-HY 200 adhesive

Setting information		Symbol	Units	Rebar size								
		3		4	5	6	7	8	9	10		
Nominal bit diameter			do	in.	1/2	5/8	3/4	7/8	1	1-1/8	1-3/8	1-1/2
Effective embedment	minimum	$\mathrm{h}_{\text {ef, min }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2-3 / 8 \\ (60) \end{gathered}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \end{gathered}$	$\begin{gathered} 3-1 / 2 \\ (89) \end{gathered}$	$\begin{gathered} 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} 5 \\ (127) \end{gathered}$	
	maximum	$\mathrm{h}_{\text {ef, max }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 17-1 / 2 \\ (445) \\ \hline \end{array}$	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 22-1 / 2 \\ (572) \\ \hline \end{array}$	$\begin{gathered} 25 \\ (635) \\ \hline \end{gathered}$	
Minimum concrete member thickness		$\mathrm{h}_{\text {min }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{ef}}+1-1 / 4 \\ \left(\mathrm{~h}_{\mathrm{ef}}+30\right) \end{gathered}$		$\mathrm{h}_{\text {ef }}+2 \mathrm{~d}_{\text {。 }}$						
Minimum edge distance ${ }^{1}$		$\mathrm{C}_{\text {min }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$1-7 / 8$ (48)	$2-1 / 2$ (64)	$3-1 / 8$ (79)	$3-3 / 4$ (95)	$\begin{aligned} & 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{gathered} \hline 5 \\ (127) \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{gathered} \hline 6-1 / 4 \\ (159) \end{gathered}$	
Minimum anchor spacing		$\mathrm{S}_{\text {min }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$1-7 / 8$ (48)	$2-1 / 2$ (64)	$3-1 / 8$ (79)	$3-3 / 4$ (95)	$\begin{aligned} & \hline 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{gathered} \hline 5 \\ (127) \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6-1 / 4 \\ (159) \end{gathered}$	

1 Edge distance of $1-3 / 4$-inch $(44 \mathrm{~mm})$ is permitted provided the rebar remains un-torqued.
Note: The installation specifications in table 18 above and the data in tables 19 through 37 pertain to the use of Hilti HIT-HY 200 with rebar designed as a post-installed anchor using the provisions of $\mathrm{ACI} 318-14$ Chapter 17. For the use of Hilti HIT-HY 200 with rebar for typical development calculations according to $\mathrm{ACl} 318-14$ Chapter 25 (formerly $\mathrm{ACl} 318-11$ Chapter 12), refer to section 3.1 .14 for the design method and tables 89 through 93 at the end of this section.

Table 19 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for rebar in uncracked concrete $1,2,3,4,5,6,7,8,9$

Rebar size	Effective embedment in. (mm)	Tension - $\phi \mathrm{N}_{\mathrm{n}}$				Shear - $\phi \mathrm{V}_{\mathrm{n}}$			
		$\begin{gathered} \hline f_{\mathrm{c}}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \hline f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \hline f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \hline f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
\#3	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4,030 \\ & (17.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,105 \\ & (18.3) \end{aligned}$	$\begin{aligned} & 4,225 \\ & (18.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,400 \\ & (19.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,685 \\ & (38.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,845 \\ & (39.3) \end{aligned}$	$\begin{aligned} & 9,100 \\ & (40.5) \end{aligned}$	$\begin{aligned} & 9,480 \\ & (42.2) \end{aligned}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & 5,375 \\ & (23.9) \end{aligned}$	$\begin{aligned} & 5,475 \\ & (24.4) \end{aligned}$	$\begin{aligned} & 5,635 \\ & (25.1) \end{aligned}$	$\begin{aligned} & 5,865 \\ & (26.1) \end{aligned}$	$\begin{gathered} 11,580 \\ (51.5) \end{gathered}$	$\begin{gathered} 11,790 \\ (52.4) \end{gathered}$	$\begin{gathered} 12,135 \\ (54.0) \end{gathered}$	$\begin{gathered} 12,640 \\ (56.2) \end{gathered}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,960 \\ & (39.9) \end{aligned}$	$\begin{aligned} & 9,125 \\ & (40.6) \end{aligned}$	$\begin{aligned} & 9,390 \\ & (41.8) \end{aligned}$	$\begin{aligned} & 9,780 \\ & (43.5) \end{aligned}$	$\begin{aligned} & 19,295 \\ & (85.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 19,650 \\ & (87.4) \end{aligned}$	$\begin{gathered} 20,225 \\ (90.0) \\ \hline \end{gathered}$	$\begin{gathered} 21,065 \\ (93.7) \\ \hline \end{gathered}$
\#4	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,170 \\ & (31.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,300 \\ (32.5) \\ \hline \end{array}$	$\begin{array}{r} 7,510 \\ (33.4) \\ \hline \end{array}$	$\begin{aligned} & 7,825 \\ & (34.8) \\ & \hline \end{aligned}$	$\begin{gathered} 15,440 \\ (68.7) \end{gathered}$	$\begin{gathered} 15,720 \\ (69.9) \end{gathered}$	$\begin{gathered} 16,180 \\ (72.0) \\ \hline \end{gathered}$	$\begin{aligned} & 16,850 \\ & (75.0) \end{aligned}$
	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{aligned} & 9,555 \\ & (42.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,735 \\ & (43.3) \end{aligned}$	$\begin{gathered} 10,015 \\ (44.5) \end{gathered}$	$\begin{gathered} 10,430 \\ (46.4) \end{gathered}$	$\begin{gathered} \hline 20,585 \\ (91.6) \end{gathered}$	$\begin{gathered} 20,960 \\ (93.2) \end{gathered}$	$\begin{gathered} 21,575 \\ (96.0) \end{gathered}$	$\begin{gathered} 22,465 \\ (99.9) \end{gathered}$
	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{gathered} 15,930 \\ (70.9) \\ \hline \end{gathered}$	$\begin{gathered} 16,220 \\ (72.1) \end{gathered}$	$\begin{aligned} & 16,695 \\ & (74.3) \\ & \hline \end{aligned}$	$\begin{gathered} 17,385 \\ (77.3) \\ \hline \end{gathered}$	$\begin{aligned} & 34,305 \\ & (152.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,935 \\ & (155.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,955 \\ & (159.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 37,445 \\ & (166.6) \\ & \hline \end{aligned}$
\#5	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{gathered} 10,405 \\ (46.3) \end{gathered}$	$\begin{gathered} 11,400 \\ (50.7) \end{gathered}$	$\begin{gathered} 11,740 \\ (52.2) \end{gathered}$	$\begin{gathered} 12,225 \\ (54.4) \end{gathered}$	$\begin{gathered} 22,415 \\ (99.7) \end{gathered}$	$\begin{aligned} & 24,550 \\ & (109.2) \end{aligned}$	$\begin{aligned} & 25,280 \\ & (112.5) \end{aligned}$	$\begin{aligned} & 26,330 \\ & (117.1) \end{aligned}$
	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} 14,930 \\ (66.4) \end{gathered}$	$\begin{gathered} \hline 15,205 \\ (67.6) \end{gathered}$	$\begin{gathered} 15,650 \\ (69.6) \end{gathered}$	$\begin{gathered} 16,300 \\ (72.5) \end{gathered}$	$\begin{aligned} & 32,160 \\ & (143.1) \end{aligned}$	$\begin{aligned} & 32,755 \\ & (145.7) \end{aligned}$	$\begin{aligned} & 33,710 \\ & (149.9) \end{aligned}$	$\begin{aligned} & 35,105 \\ & (156.2) \end{aligned}$
	$\begin{gathered} 12-1 / 2 \\ (318) \end{gathered}$	$\begin{aligned} & 24,885 \\ & (110.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 25,345 \\ & (112.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,085 \\ & (116.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27,165 \\ & (120.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 53,605 \\ & (238.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 54,590 \\ & (242.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 56,185 \\ & (249.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 58,510 \\ & (260.3) \\ & \hline \end{aligned}$
\#6	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{gathered} 13,680 \\ (60.9) \end{gathered}$	$\begin{gathered} 14,985 \\ (66.7) \end{gathered}$	$\begin{aligned} & 16,905 \\ & (75.2) \end{aligned}$	$\begin{gathered} 17,600 \\ (78.3) \end{gathered}$	$\begin{aligned} & 29,460 \\ & (131.0) \end{aligned}$	$\begin{aligned} & 32,275 \\ & (143.6) \end{aligned}$	$\begin{aligned} & 36,405 \\ & (161.9) \end{aligned}$	$\begin{aligned} & 37,915 \\ & (168.7) \end{aligned}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 21,060 \\ (93.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21,900 \\ (97.4) \\ \hline \end{gathered}$	$\begin{aligned} & 22,535 \\ & (100.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 23,470 \\ & (104.4) \end{aligned}$	$\begin{aligned} & 45,360 \\ & (201.8) \end{aligned}$	$\begin{aligned} & 47,165 \\ & (209.8) \end{aligned}$	$\begin{aligned} & 48,540 \\ & (215.9) \end{aligned}$	$\begin{aligned} & 50,550 \\ & (224.9) \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 35,840 \\ & (159.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 36,495 \\ & (162.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 37,560 \\ & (167.1) \end{aligned}$	$\begin{aligned} & 39,115 \\ & (174.0) \end{aligned}$	$\begin{aligned} & 77,190 \\ & (343.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 78,610 \\ & (349.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 80,905 \\ & (359.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 84,250 \\ & (374.8) \end{aligned}$
\#7	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} 17,235 \\ (76.7) \end{gathered}$	$\begin{gathered} 18,885 \\ (84.0) \end{gathered}$	$\begin{gathered} 21,805 \\ (97.0) \end{gathered}$	$\begin{aligned} & 23,960 \\ & (106.6) \end{aligned}$	$\begin{aligned} & 37,125 \\ & (165.1) \end{aligned}$	$\begin{aligned} & 40,670 \\ & (180.9) \end{aligned}$	$\begin{aligned} & 46,960 \\ & (208.9) \end{aligned}$	$\begin{aligned} & 51,605 \\ & (229.5) \end{aligned}$
	$\begin{gathered} 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{aligned} & 26,540 \\ & (118.1) \end{aligned}$	$\begin{aligned} & 29,070 \\ & (129.3) \end{aligned}$	$\begin{aligned} & 30,675 \\ & (136.4) \end{aligned}$	$\begin{aligned} & 31,945 \\ & (142.1) \end{aligned}$	$\begin{aligned} & 57,160 \\ & (254.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 62,615 \\ & (278.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 66,070 \\ & (293.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 68,805 \\ & (306.1) \end{aligned}$
	$\begin{gathered} 17-1 / 2 \\ (445) \end{gathered}$	$\begin{aligned} & 48,780 \\ & (217.0) \end{aligned}$	$\begin{aligned} & 49,675 \\ & (221.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 51,125 \\ & (227.4) \end{aligned}$	$\begin{aligned} & 53,240 \\ & (236.8) \end{aligned}$	$\begin{aligned} & 105,065 \\ & (467.4) \end{aligned}$	$\begin{gathered} 106,995 \\ (475.9) \end{gathered}$	$\begin{gathered} 110,120 \\ (489.8) \end{gathered}$	$\begin{gathered} 114,675 \\ (510.1) \\ \hline \end{gathered}$
\#8	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 21,060 \\ (93.7) \\ \hline \end{gathered}$	$\begin{aligned} & 23,070 \\ & (102.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,640 \\ & (118.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,295 \\ & (139.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,360 \\ & (201.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,690 \\ & (221.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,375 \\ & (255.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 67,400 \\ & (299.8) \\ & \hline \end{aligned}$
	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{aligned} & 32,425 \\ & (144.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,520 \\ & (158.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 40,065 \\ & (178.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 41,725 \\ & (185.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 69,835 \\ & (310.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 76,500 \\ & (340.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 86,295 \\ & (383.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 89,870 \\ & (399.8) \\ & \hline \end{aligned}$
	$\begin{gathered} 20 \\ (508) \end{gathered}$	$\begin{aligned} & 63,710 \\ & (283.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 64,885 \\ & (288.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 66,775 \\ & (297.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 69,540 \\ & (309.3) \\ & \hline \end{aligned}$	$\begin{gathered} 137,225 \\ (610.4) \end{gathered}$	$\begin{gathered} 139,750 \\ (621.6) \end{gathered}$	$\begin{gathered} 143,830 \\ (639.8) \end{gathered}$	$\begin{gathered} 149,780 \\ (666.3) \end{gathered}$
\#9	$\begin{gathered} 10-1 / 8 \\ (257) \\ \hline \end{gathered}$	$\begin{aligned} & 25,130 \\ & (111.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27,530 \\ & (122.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31,785 \\ & (141.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38,930 \\ & (173.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 54,125 \\ & (240.8) \end{aligned}$	$\begin{aligned} & 59,290 \\ & (263.7) \end{aligned}$	$\begin{aligned} & 68,465 \\ & (304.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 83,850 \\ & (373.0) \\ & \hline \end{aligned}$
	$\begin{gathered} 13-1 / 2 \\ (343) \end{gathered}$	$\begin{aligned} & 38,690 \\ & (172.1) \end{aligned}$	$\begin{aligned} & 42,380 \\ & (188.5) \end{aligned}$	$\begin{aligned} & 48,940 \\ & (217.7) \end{aligned}$	$\begin{aligned} & 52,805 \\ & (234.9) \end{aligned}$	$\begin{aligned} & 83,330 \\ & (370.7) \end{aligned}$	$\begin{aligned} & 91,285 \\ & (406.1) \end{aligned}$	$\begin{gathered} 105,405 \\ (468.9) \end{gathered}$	$\begin{gathered} 113,740 \\ (505.9) \end{gathered}$
	$\begin{gathered} 22-1 / 2 \\ (572) \\ \hline \end{gathered}$	$\begin{aligned} & 80,635 \\ & (358.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 82,120 \\ & (365.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 84,515 \\ & (375.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 88,010 \\ & (391.5) \\ & \hline \end{aligned}$	$\begin{gathered} 173,675 \\ (772.5) \\ \hline \end{gathered}$	$\begin{gathered} 176,870 \\ (786.8) \end{gathered}$	$\begin{gathered} 182,035 \\ (809.7) \end{gathered}$	$\begin{gathered} 189,565 \\ (843.2) \end{gathered}$
\#10	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{aligned} & 29,430 \\ & (130.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32,240 \\ & (143.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,230 \\ & (165.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,595 \\ & (202.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 63,395 \\ & (282.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 69,445 \\ & (308.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80,185 \\ & (356.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 98,205 \\ & (436.8) \\ & \hline \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 45,315 \\ & (201.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,640 \\ & (220.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,320 \\ & (255.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 65,195 \\ & (290.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 97,600 \\ & (434.1) \\ & \hline \end{aligned}$	$\begin{gathered} 106,915 \\ (475.6) \end{gathered}$	$\begin{gathered} 123,455 \\ (549.2) \end{gathered}$	$\begin{gathered} 140,420 \\ (624.6) \end{gathered}$
	$\begin{gathered} 25 \\ (635) \end{gathered}$	$\begin{aligned} & 97,500 \\ & (433.7) \end{aligned}$	$\begin{aligned} & 101,380 \\ & (451.0) \\ & \hline \end{aligned}$	$\begin{gathered} 104,340 \\ (464.1) \end{gathered}$	$\begin{aligned} & 108,655 \\ & (483.3) \end{aligned}$	$\begin{gathered} 210,000 \\ (934.1) \\ \hline \end{gathered}$	$\begin{gathered} 218,360 \\ (971.3) \\ \hline \end{gathered}$	$\begin{gathered} 224,730 \\ (999.6) \end{gathered}$	$\begin{aligned} & 234,030 \\ & (1041.0) \end{aligned}$

1 See section 3.1.8 for explanation on development of load values.
2 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables 22-37 as necessary to the above values. Compare to the steel values in table 21 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B : Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85 .
7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_{a} as follows:
For sand-lightweight, $\lambda_{a}=0.51$. For all-lightweight, $\lambda_{a}=0.45$.
9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 20 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for rebar in cracked concrete ${ }^{1,2,3,4,5,6,6,7,8,9}$

Rebar size	Effective embedment in. (mm)	Tension - $\phi \mathrm{N}_{\mathrm{n}}$				Shear - $\phi \mathrm{V}_{\mathrm{n}}$			
		$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$
\#3	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 2,790 \\ & (12.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,845 \\ & (12.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,925 \\ & (13.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,045 \\ & (13.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,010 \\ & (26.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,120 \\ & (27.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,300 \\ & (28.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,560 \\ & (29.2) \\ & \hline \end{aligned}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,720 \\ & (16.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,790 \\ & (16.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,900 \\ & (17.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,060 \\ & (18.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,015 \\ & (35.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,165 \\ & (36.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,400 \\ & (37.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,750 \\ & (38.9) \\ & \hline \end{aligned}$
	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & 6,205 \\ & (27.6) \end{aligned}$	$\begin{aligned} & 6,315 \\ & (28.1) \end{aligned}$	$\begin{aligned} & 6,500 \\ & (28.9) \end{aligned}$	$\begin{aligned} & 6,770 \\ & (30.1) \end{aligned}$	$\begin{gathered} 13,360 \\ (59.4) \end{gathered}$	$\begin{gathered} 13,605 \\ (60.5) \end{gathered}$	$\begin{gathered} 14,005 \\ (62.3) \end{gathered}$	$\begin{gathered} 14,580 \\ (64.9) \end{gathered}$
\#4	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{r} 4,960 \\ (22.1) \\ \hline \end{array}$	$\begin{aligned} & 5,055 \\ & (22.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,200 \\ (23.1) \\ \hline \end{array}$	$\begin{aligned} & 5,415 \\ & (24.1) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10,690 \\ (47.6) \\ \hline \end{gathered}$	$\begin{gathered} 10,885 \\ (48.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11,200 \\ (49.8) \\ \hline \end{gathered}$	$\begin{gathered} 11,665 \\ (51.9) \\ \hline \end{gathered}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{array}{r} 6,615 \\ (29.4) \\ \hline \end{array}$	$\begin{aligned} & 6,740 \\ & (30.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,935 \\ & (30.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,220 \\ & (32.1) \\ & \hline \end{aligned}$	$\begin{gathered} 14,250 \\ (63.4) \\ \hline \end{gathered}$	$\begin{gathered} 14,510 \\ (64.5) \\ \hline \end{gathered}$	$\begin{gathered} 14,935 \\ (66.4) \\ \hline \end{gathered}$	$\begin{gathered} 15,555 \\ (69.2) \\ \hline \end{gathered}$
	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & 11,025 \\ & (49.0) \end{aligned}$	$\begin{gathered} \hline 11,230 \\ (50.0) \\ \hline \end{gathered}$	$\begin{gathered} 11,560 \\ (51.4) \end{gathered}$	$\begin{gathered} 12,035 \\ (53.5) \end{gathered}$	$\begin{aligned} & 23,750 \\ & (105.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 24,185 \\ & (107.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 24,895 \\ & (110.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 25,925 \\ & (115.3) \\ & \hline \end{aligned}$
\#5	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,370 \\ (32.8) \\ \hline \end{array}$	$\begin{aligned} & 7,970 \\ & (35.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,200 \\ & (36.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,540 \\ & (38.0) \\ & \hline \end{aligned}$	$\begin{gathered} 15,875 \\ (70.6) \\ \hline \end{gathered}$	$\begin{gathered} 17,165 \\ (76.4) \\ \hline \end{gathered}$	$\begin{gathered} 17,665 \\ (78.6) \\ \hline \end{gathered}$	$\begin{gathered} 18,395 \\ (81.8) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} 10,435 \\ (46.4) \end{gathered}$	$\begin{gathered} 10,625 \\ (47.3) \end{gathered}$	$\begin{gathered} 10,935 \\ (48.6) \end{gathered}$	$\begin{gathered} 11,390 \\ (50.7) \end{gathered}$	$\begin{aligned} & 22,470 \\ & (100.0) \end{aligned}$	$\begin{aligned} & 22,885 \\ & (101.8) \end{aligned}$	$\begin{aligned} & 23,555 \\ & (104.8) \end{aligned}$	$\begin{aligned} & 24,530 \\ & (109.1) \end{aligned}$
	$\begin{gathered} \hline 12-1 / 2 \\ (318) \end{gathered}$	$\begin{gathered} 17,390 \\ (77.4) \end{gathered}$	$\begin{gathered} 17,710 \\ (78.8) \end{gathered}$	$\begin{gathered} 18,225 \\ (81.1) \end{gathered}$	$\begin{gathered} 18,980 \\ (84.4) \end{gathered}$	$\begin{aligned} & \hline 37,455 \\ & (166.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 38,145 \\ & (169.7) \end{aligned}$	$\begin{aligned} & 39,255 \\ & (174.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 40,880 \\ & (181.8) \end{aligned}$
\#6	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,690 \\ & (43.1) \\ & \hline \end{aligned}$	$\begin{gathered} 10,615 \\ (47.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11,810 \\ (52.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12,300 \\ (54.7) \\ \hline \end{gathered}$	$\begin{gathered} 20,870 \\ (92.8) \\ \hline \end{gathered}$	$\begin{aligned} & 22,860 \\ & (101.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 25,440 \\ & (113.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,490 \\ & (117.8) \\ & \hline \end{aligned}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 14,920 \\ (66.4) \\ \hline \end{gathered}$	$\begin{gathered} 15,300 \\ (68.1) \end{gathered}$	$\begin{gathered} 15,745 \\ (70.0) \end{gathered}$	$\begin{gathered} 16,400 \\ (73.0) \end{gathered}$	$\begin{aligned} & 32,130 \\ & (142.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,955 \\ & (146.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 33,915 \\ & (150.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,320 \\ & (157.1) \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 25,040 \\ & (111.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 25,500 \\ & (113.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,245 \\ & (116.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,330 \\ & (121.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 53,935 \\ & (239.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 54,925 \\ & (244.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 56,530 \\ & (251.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 58,870 \\ & (261.9) \\ & \hline \end{aligned}$
\#7	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} 11,750 \\ (52.3) \end{gathered}$	$\begin{gathered} 11,965 \\ (53.2) \end{gathered}$	$\begin{gathered} 12,315 \\ (54.8) \end{gathered}$	$\begin{gathered} 12,825 \\ (57.0) \end{gathered}$	$\begin{aligned} & 25,305 \\ & (112.6) \end{aligned}$	$\begin{aligned} & 25,770 \\ & (114.6) \end{aligned}$	$\begin{aligned} & 26,525 \\ & (118.0) \end{aligned}$	$\begin{aligned} & 27,620 \\ & (122.9) \end{aligned}$
	$\begin{gathered} 10-1 / 2 \\ (267) \end{gathered}$	$\begin{gathered} 15,665 \\ (69.7) \end{gathered}$	$\begin{gathered} 15,955 \\ (71.0) \end{gathered}$	$\begin{gathered} 16,420 \\ (73.0) \\ \hline \end{gathered}$	$\begin{gathered} 17,100 \\ (76.1) \\ \hline \end{gathered}$	$\begin{aligned} & 33,740 \\ & (150.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,360 \\ & (152.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,365 \\ & (157.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 36,830 \\ & (163.8) \\ & \hline \end{aligned}$
	$\begin{gathered} 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{aligned} & 26,110 \\ & (116.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,590 \\ & (118.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,365 \\ & (121.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,500 \\ & (126.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 56,235 \\ & (250.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,270 \\ & (254.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 58,940 \\ & (262.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 61,380 \\ & (273.0) \\ & \hline \end{aligned}$
\#8	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 14,920 \\ (66.4) \\ \hline \end{gathered}$	$\begin{gathered} 15,720 \\ (69.9) \\ \hline \end{gathered}$	$\begin{gathered} 16,180 \\ (72.0) \\ \hline \end{gathered}$	$\begin{aligned} & 16,850 \\ & (75.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,130 \\ & (142.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 33,860 \\ & (150.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,850 \\ & (155.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 36,295 \\ & (161.4) \\ & \hline \end{aligned}$
	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} 20,585 \\ (91.6) \\ \hline \end{gathered}$	$\begin{gathered} 20,960 \\ (93.2) \\ \hline \end{gathered}$	$\begin{gathered} 21,575 \\ (96.0) \\ \hline \end{gathered}$	$\begin{gathered} 22,465 \\ (99.9) \\ \hline \end{gathered}$	$\begin{aligned} & 44,335 \\ & (197.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,150 \\ & (200.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 46,470 \\ & (206.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 48,390 \\ & (215.2) \\ & \hline \end{aligned}$
	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$	$\begin{aligned} & 34,305 \\ & (152.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,935 \\ & (155.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,955 \\ & (159.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 37,445 \\ & (166.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 73,890 \\ & (328.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 75,250 \\ & (334.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 77,445 \\ & (344.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 80,650 \\ & (358.7) \\ & \hline \end{aligned}$
\#9	$\begin{gathered} 10-1 / 8 \\ (257) \end{gathered}$	$\begin{array}{r} 17,800 \\ (79.2) \\ \hline \end{array}$	$\begin{array}{r} 19,500 \\ (86.7) \\ \hline \end{array}$	$\begin{array}{r} 20,720 \\ (92.2) \\ \hline \end{array}$	$\begin{array}{r} 21,580 \\ (96.0) \\ \hline \end{array}$	$\begin{aligned} & 38,340 \\ & (170.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 42,000 \\ & (186.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 44,635 \\ & (198.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 46,480 \\ & (206.8) \\ & \hline \end{aligned}$
	$\begin{gathered} 13-1 / 2 \\ (343) \\ \hline \end{gathered}$	$\begin{aligned} & 26,360 \\ & (117.3) \end{aligned}$	$\begin{aligned} & 26,845 \\ & (119.4) \end{aligned}$	$\begin{aligned} & 27,630 \\ & (122.9) \end{aligned}$	$\begin{aligned} & 28,775 \\ & (128.0) \end{aligned}$	$\begin{aligned} & 56,780 \\ & (252.6) \end{aligned}$	$\begin{aligned} & 57,825 \\ & (257.2) \end{aligned}$	$\begin{aligned} & 59,510 \\ & (264.7) \end{aligned}$	$\begin{aligned} & 61,975 \\ & (275.7) \end{aligned}$
	$\begin{gathered} 22-1 / 2 \\ (572) \\ \hline \end{gathered}$	$\begin{aligned} & 43,935 \\ & (195.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 44,745 \\ & (199.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 46,050 \\ & (204.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 47,955 \\ & (213.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 94,630 \\ & (420.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 96,370 \\ & (428.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 99,185 \\ & (441.2) \\ & \hline \end{aligned}$	$\begin{gathered} 103,290 \\ (459.5) \end{gathered}$
\#10	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 20,850 \\ (92.7) \\ \hline \end{gathered}$	$\begin{aligned} & 22,840 \\ & (101.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 25,585 \\ & (113.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,640 \\ & (118.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 44,905 \\ & (199.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,190 \\ & (218.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 55,105 \\ & (245.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,385 \\ & (255.3) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 32,095 \\ & (142.8) \end{aligned}$	$\begin{aligned} & 33,145 \\ & (147.4) \end{aligned}$	$\begin{aligned} & 34,110 \\ & (151.7) \end{aligned}$	$\begin{aligned} & 35,525 \\ & (158.0) \end{aligned}$	$\begin{aligned} & 69,135 \\ & (307.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 71,385 \\ & (317.5) \end{aligned}$	$\begin{aligned} & \hline 73,470 \\ & (326.8) \end{aligned}$	$\begin{aligned} & 76,510 \\ & (340.3) \end{aligned}$
	$\begin{gathered} 25 \\ (635) \\ \hline \end{gathered}$	$\begin{aligned} & 54,240 \\ & (241.3) \end{aligned}$	$\begin{aligned} & 55,240 \\ & (245.7) \end{aligned}$	$\begin{aligned} & 56,850 \\ & (252.9) \end{aligned}$	$\begin{aligned} & 59,205 \\ & (263.4) \end{aligned}$	$\begin{gathered} 116,830 \\ (519.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 118,980 \\ (529.2) \end{gathered}$	$122,450$ (544.7)	$\begin{gathered} 127,515 \\ (567.2) \\ \hline \end{gathered}$

1 See section 3.1.8 for explanation on development of load values.
2 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables 22-37 as necessary to the above values. Compare to the steel values in table 21 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength by 0.85 .
7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_{a} as follows:
For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For all-lightweight, $\lambda_{\mathrm{a}}=0.45$.
9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors:
$\# 3$ to $\# 6-\alpha_{\text {seis }}=0.60, \# 7-\alpha_{\text {seis }}=0.64, \# 8-\alpha_{\text {seis }}=0.68, \# 9-\alpha_{\text {seis }}=0.71, \# 10-\alpha_{\text {seis }}=0.75$
See section 3.1.8 for additional information on seismic applications.

Table 21 - Steel design strength for US rebar ${ }^{1,2}$

	ASTM A615 Grade $40{ }^{4}$			ASTM A615 Grade $60{ }^{4}$			ASTM A706 Grade $60{ }^{4}$		
Rebar size	$\begin{gathered} \text { Tensile }^{3} \\ \phi \mathrm{~N}_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { Shear }^{4} \\ \phi \mathrm{~V}_{\mathrm{sa}} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic ${ }^{5}$ Shear $\phi \mathrm{V}_{\text {sa }}$ lb (kN)	Tensile ${ }^{3}$ $\phi \mathrm{N}_{\text {sa }}$ lb (kN)	$\begin{gathered} \text { Shear }^{4} \\ \phi \mathrm{~V}_{\mathrm{sa}} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic ${ }^{5}$ Shear $\phi V_{\text {sae }}$ lb (kN)	$\begin{gathered} \text { Tensile }^{3} \\ \phi N_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Shear ${ }^{4}$ $\phi \mathrm{V}_{\text {sa }}$ $\mathrm{lb}(\mathrm{kN})$	Seismic ${ }^{5}$ Shear $\phi V_{\text {sa }}$ sa,ea lb (kN)
\#3	$\begin{array}{r} 4,290 \\ (19.1) \\ \hline \end{array}$	$\begin{aligned} & 2,375 \\ & (10.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,665 \\ & (7.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,435 \\ & (28.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,565 \\ & (15.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,495 \\ & (11.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 6,600 \\ (29.4) \\ \hline \end{array}$	$\begin{aligned} & 3,430 \\ & (15.3) \\ & \hline \end{aligned}$	$\begin{array}{r} 2,400 \\ (10.7) \\ \hline \end{array}$
\#4	$\begin{aligned} & 7,800 \\ & (34.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,320 \\ & (19.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,025 \\ & (13.4) \\ & \hline \end{aligned}$	$\begin{gathered} 11,700 \\ (52.0) \\ \hline \end{gathered}$	$\begin{aligned} & 6,480 \\ & (28.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,535 \\ & (20.2) \\ & \hline \end{aligned}$	$\begin{gathered} 12,000 \\ (53.4) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6,240 \\ & (27.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,370 \\ & (19.5) \\ & \hline \end{aligned}$
\#5	$\begin{gathered} \hline 12,090 \\ (53.8) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6,695 \\ & (29.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,685 \\ & (20.9) \\ & \hline \end{aligned}$	$\begin{gathered} 18,135 \\ (80.7) \\ \hline \end{gathered}$	$\begin{aligned} & 10,045 \\ & (44.7) \end{aligned}$	$\begin{aligned} & \hline 7,030 \\ & (31.3) \\ & \hline \end{aligned}$	$\begin{gathered} 18,600 \\ (82.7) \\ \hline \end{gathered}$	$\begin{aligned} & 9,670 \\ & (43.0) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 6,770 \\ (30.1) \\ \hline \end{array}$
\#6	$\begin{gathered} 17,160 \\ (76.3) \\ \hline \end{gathered}$	$\begin{aligned} & 9,505 \\ & (42.3) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 6,655 \\ (29.6) \\ \hline \end{array}$	$\begin{aligned} & 25,740 \\ & (114.5) \\ & \hline \end{aligned}$	$\begin{gathered} 14,255 \\ (63.4) \\ \hline \end{gathered}$	$\begin{aligned} & 9,980 \\ & (44.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,400 \\ & (117.4) \end{aligned}$	$\begin{gathered} 13,730 \\ (61.1) \end{gathered}$	$\begin{aligned} & \hline 9,610 \\ & (42.8) \\ & \hline \end{aligned}$
\#7	$\begin{aligned} & \hline 23,400 \\ & (104.1) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 12,960 \\ (57.6) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 9,070 \\ (40.3) \\ \hline \end{array}$	$\begin{aligned} & \hline 35,100 \\ & (156.1) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 19,440 \\ (86.5) \\ \hline \end{gathered}$	$\begin{aligned} & 13,610 \\ & (60.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36,000 \\ & (160.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 18,720 \\ & (83.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,105 \\ & (58.3) \\ & \hline \end{aligned}$
\#8	$\begin{aligned} & \hline 30,810 \\ & (137.0) \end{aligned}$	$\begin{gathered} 17,065 \\ (75.9) \end{gathered}$	$\begin{aligned} & 11,945 \\ & (53.1) \end{aligned}$	$\begin{aligned} & \hline 46,215 \\ & (205.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25,595 \\ & (113.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 17,915 \\ (79.7) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 47,400 \\ & (210.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24,650 \\ & (109.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 17,255 \\ & (76.7) \\ & \hline \end{aligned}$
\#9	$\begin{aligned} & \hline 39,000 \\ & (173.5) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 21,600 \\ (96.1) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 15,120 \\ & (67.3) \end{aligned}$	$\begin{aligned} & \hline 58,500 \\ & (260.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32,400 \\ & (144.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22,680 \\ & (100.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 60,000 \\ & (266.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31,200 \\ & (138.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 21,840 \\ & (97.2) \\ & \hline \end{aligned}$
\#10	$\begin{aligned} & \hline 49,530 \\ & (220.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27,430 \\ & (122.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 19,200 \\ & (85.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 74,295 \\ & (330.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41,150 \\ & (183.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,805 \\ & (128.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 76,200 \\ & (339.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39,625 \\ & (176.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27,740 \\ & (123.4) \\ & \hline \end{aligned}$

[^3]Table 22 －Load adjustment factors for \＃3 rebar in uncracked concrete ${ }^{1,2,3}$

\#3 uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			$\begin{gathered} \text { Edge distance factor } \\ \text { in tension } \\ f_{\mathrm{RN}} \\ \hline \end{gathered}$			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						$\begin{gathered} \text { Concrete thickness } \\ \text { factor in shear } \\ f_{\mathrm{HV}} \\ \hline \end{gathered}$					
			$\begin{gathered} \stackrel{\perp}{\text { Toward edge }} \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	｜｜To and away from edge $f_{\text {RV }}$																			
Embed	ment $\mathrm{h}_{\text {ef }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$				$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$
	1－3／4	（44）	n／a	n／a	n／a				0.31	0.23	0.13	n／a	n／a	n／a	0.08	0.06	0.04	0.17	0.13	0.08	n／a	n／a	n／a
	1－7／8	（48）	0.59	0.57	0.54	0.32	0.23	0.13	0.53	0.53	0.52	0.09	0.07	0.04	0.19	0.14	0.08	n／a	n／a	n／a			
है	2	（51）	0.60	0.57	0.54	0.33	0.24	0.14	0.54	0.53	0.52	0.10	0.08	0.05	0.21	0.16	0.09	n／a	n／a	n／a			
\pm	3	（76）	0.65	0.61	0.57	0.41	0.30	0.17	0.56	0.55	0.53	0.19	0.14	0.09	0.38	0.29	0.17	n／a	n／a	n／a			
E	4	（102）	0.70	0.65	0.59	0.49	0.36	0.21	0.57	0.56	0.54	0.29	0.22	0.13	0.50	0.41	0.26	n／a	n／a	n／a			
$\mathscr{\infty}$	4－5／8	（117）	0.73	0.67	0.60	0.55	0.40	0.23	0.59	0.57	0.55	0.36	0.27	0.16	0.56	0.45	0.33	0.58	n／a	n／a			
	5	（127）	0.75	0.69	0.61	0.59	0.43	0.25	0.59	0.58	0.55	0.41	0.31	0.18	0.60	0.47	0.34	0.61	n／a	n／a			
． 0	5－3／4	（146）	0.78	0.71	0.63	0.68	0.50	0.29	0.61	0.59	0.56	0.51	0.38	0.23	0.68	0.52	0.36	0.65	0.59	n／a			
。	6	（152）	0.80	0.72	0.63	0.71	0.52	0.30	0.61	0.59	0.56	0.54	0.40	0.24	0.71	0.53	0.37	0.66	0.60	n／a			
$\stackrel{\square}{0}$	7	（178）	0.85	0.76	0.66	0.83	0.61	0.35	0.63	0.61	0.58	0.68	0.51	0.31	0.83	0.61	0.41	0.72	0.65	n／a			
0	8	（203）	0.90	0.80	0.68	0.95	0.69	0.40	0.65	0.62	0.59	0.83	0.62	0.37	0.95	0.69	0.44	0.77	0.70	n／a			
\bigcirc	8－3／4	（222）	0.93	0.82	0.69	1.00	0.76	0.44	0.66	0.63	0.59	0.95	0.71	0.43	1.00	0.76	0.47	0.80	0.73	0.61			
－	9	（229）	0.94	0.83	0.70		0.78	0.45	0.67	0.64	0.60	0.99	0.74	0.45		0.78	0.48	0.81	0.74	0.62			
©	10	（254）	0.99	0.87	0.72		0.86	0.50	0.68	0.65	0.61	1.00	0.87	0.52		0.86	0.51	0.86	0.78	0.66			
T	11	（279）	1.00	0.91	0.74		0.95	0.55	0.70	0.67	0.62		1.00	0.60		0.95	0.55	0.90	0.82	0.69			
$\stackrel{\circ}{\circ}$	12	（305）		0.94	0.77		1.00	0.60	0.72	0.68	0.63			0.69		1.00	0.60	0.94	0.85	0.72			
\％	14	（356）		1.00	0.81			0.70	0.76	0.71	0.65			0.86			0.70	1.00	0.92	0.78			
$\stackrel{\text { ய }}{ }$	16	（406）			0.86			0.80	0.79	0.74	0.67			1.00			0.80		0.99	0.83			
©	18	（457）			0.90			0.90	0.83	0.77	0.69						0.90		1.00	0.88			
$\stackrel{\square}{\square}$	24	（610）			1.00			1.00	0.94	0.86	0.76						1.00			1.00			
\％	30	（762）							1.00	0.96	0.82												
	36	（914）								1.00	0.89												
	>48	（1219）									1.00												

Table 23 －Load adjustment factors for \＃3 rebar in cracked concrete ${ }^{1,2,3}$

cracked concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			$\stackrel{\perp}{\stackrel{\perp}{\text { Toward edge }}} \underset{f_{\mathrm{RV}}}{ }$	｜｜To and away from edge $f_{\text {RV }}$																			
Embed	ment $\mathrm{h}_{\text {ef }}$	in． （mm）				$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$
	1－3／4	（44）	n／a	n／a	n／a				0.54	0.49	0.43	n／a	n／a	n／a	0.09	0.07	0.04	0.18	0.13	0.08	n／a	n／a	n／a
E	1－7／8	（48）	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.10	0.07	0.04	0.19	0.15	0.09	n／a	n／a	n／a			
है	2	（51）	0.60	0.57	0.54	0.57	0.51	0.44	0.54	0.53	0.52	0.11	0.08	0.05	0.21	0.16	0.10	n／a	n／a	n／a			
$\stackrel{1}{5}$	3	（76）	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.20	0.15	0.09	0.39	0.29	0.18	n／a	n／a	n／a			
E	4	（102）	0.70	0.65	0.59	0.84	0.70	0.55	0.58	0.56	0.54	0.30	0.23	0.14	0.61	0.45	0.27	n／a	n／a	n／a			
0	4－5／8	（117）	0.73	0.67	0.60	0.93	0.76	0.58	0.59	0.57	0.55	0.38	0.28	0.17	0.75	0.56	0.34	0.59	n／a	n／a			
$\stackrel{\square}{+}$	5	（127）	0.75	0.69	0.61	0.99	0.80	0.60	0.59	0.58	0.56	0.42	0.32	0.19	0.85	0.63	0.38	0.61	n／a	n／a			
．	5－3／4	（146）	0.78	0.71	0.63	1.00	0.88	0.64	0.61	0.59	0.56	0.52	0.39	0.23	1.00	0.78	0.47	0.66	0.60	n／a			
\pm	6	（152）	0.80	0.72	0.63		0.91	0.66	0.61	0.59	0.57	0.56	0.42	0.25		0.83	0.50	0.67	0.61	n／a			
$\stackrel{\square}{0}$	7	（178）	0.85	0.76	0.66		1.00	0.72	0.63	0.61	0.58	0.70	0.53	0.32		1.00	0.63	0.73	0.66	n／a			
잉	8	（203）	0.90	0.80	0.68			0.78	0.65	0.62	0.59	0.86	0.64	0.39			0.77	0.78	0.70	n／a			
\bigcirc	8－3／4	（222）	0.93	0.82	0.69			0.83	0.66	0.64	0.60	0.98	0.73	0.44			0.83	0.81	0.74	0.62			
べ	9	（229）	0.94	0.83	0.70			0.85	0.67	0.64	0.60	1.00	0.77	0.46			0.85	0.82	0.75	0.63			
¢	10	（254）	0.99	0.87	0.72			0.91	0.69	0.66	0.61		0.90	0.54			0.91	0.87	0.79	0.66			
$\frac{\stackrel{\Gamma}{6}}{\omega}$	11	（279）	1.00	0.91	0.74			0.98	0.71	0.67	0.62		1.00	0.62			0.98	0.91	0.83	0.70			
关	12	（305）		0.94	0.77			1.00	0.73	0.69	0.63			0.71			1.00	0.95	0.86	0.73			
$\frac{\mathbb{O}}{\mathbf{D}}$	14	（356）		1.00	0.81				0.76	0.72	0.65			0.89				1.00	0.93	0.79			
\pm	16	（406）			0.86				0.80	0.75	0.68			1.00					1.00	0.84			
क	18	（457）			0.90				0.84	0.78	0.70									0.89			
응	24	（610）			1.00				0.95	0.87	0.76									1.00			
\％	30	（762）							1.00	0.97	0.83												
	36	（914）								1.00	0.90												
	＞ 48	（1219）									1.00												

[^4]2 Shaded area with reduced edge distance is permitted provided rebar has no installation torque．
3 When combining multiple load adjustment factors（e．g．for a four－anchor pattern in a corner with thin concrete member）the design can become very conservative．
To optimize the design，use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318－14 Chapter 17.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} . f_{\mathrm{AV}}$ ，is applicable when edge distance， $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$ ．If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$ ，then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$ ．
5 Concrete thickness reduction factor in shear，f_{Hv} ，is applicable when edge distance， $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$ ．If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$ ，then $f_{\mathrm{Hv}}=1.0$ ．

Table 24 - Load adjustment factors for \#4 rebar in uncracked concrete ${ }^{1,2,3}$

\#4 uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						$\begin{gathered} \text { Concrete thickness } \\ \text { factor in shear } \\ f_{\mathrm{HV}} \\ \hline \end{gathered}$					
			$\begin{gathered} \text { Toward edge } \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																		
Embed	ment $\mathrm{h}_{\text {ef }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \\ \hline \end{gathered}$				$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.27	0.20	0.12	n/a	n/a	n/a	0.06	0.04	0.02	0.11	0.08	0.05	n/a	n/a	n/a
	2-1/2	(64)	0.59	0.57	0.54	0.31	0.23	0.13	0.53	0.53	0.52	0.09	0.07	0.04	0.19	0.14	0.08	n/a	n/a	n/a			
है	3	(76)	0.61	0.58	0.55	0.34	0.25	0.14	0.54	0.53	0.52	0.12	0.09	0.06	0.25	0.19	0.11	n/a	n/a	n/a			
.	4	(102)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.19	0.14	0.09	0.38	0.29	0.17	n/a	n/a	n/a			
'-	5	(127)	0.69	0.64	0.58	0.46	0.33	0.20	0.57	0.56	0.54	0.27	0.20	0.12	0.47	0.38	0.24	n/a	n/a	n/a			
0	5-3/4	(146)	0.71	0.66	0.60	0.51	0.37	0.22	0.58	0.57	0.55	0.33	0.25	0.15	0.52	0.42	0.30	0.56	n/a	n/a			
-	6	(152)	0.72	0.67	0.60	0.52	0.38	0.22	0.58	0.57	0.55	0.35	0.26	0.16	0.53	0.43	0.31	0.58	n/a	n/a			
. 0	7	(178)	0.76	0.69	0.62	0.61	0.44	0.26	0.60	0.58	0.56	0.44	0.33	0.20	0.61	0.47	0.34	0.62	n/a	n/a			
©	7-1/4	(184)	0.77	0.70	0.62	0.63	0.46	0.27	0.60	0.58	0.56	0.46	0.35	0.21	0.63	0.49	0.35	0.63	0.57	n/a			
$\stackrel{\square}{0}$	8	(203)	0.80	0.72	0.63	0.69	0.51	0.30	0.61	0.59	0.56	0.54	0.40	0.24	0.69	0.52	0.37	0.66	0.60	n/a			
O	9	(229)	0.83	0.75	0.65	0.78	0.57	0.33	0.62	0.60	0.57	0.64	0.48	0.29	0.78	0.57	0.39	0.70	0.64	n/a			
0	10	(254)	0.87	0.78	0.67	0.86	0.63	0.37	0.64	0.61	0.58	0.75	0.56	0.34	0.86	0.63	0.42	0.74	0.67	n/a			
-	11-1/4	(286)	0.92	0.81	0.69	0.97	0.71	0.42	0.66	0.63	0.59	0.90	0.67	0.40	0.97	0.71	0.45	0.79	0.72	0.60			
O	12	(305)	0.94	0.83	0.70	1.00	0.76	0.45	0.67	0.64	0.60	0.99	0.74	0.45	1.00	0.76	0.47	0.81	0.74	0.62			
T	14	(356)	1.00	0.89	0.73		0.89	0.52	0.69	0.66	0.61	1.00	0.94	0.56		0.89	0.53	0.88	0.80	0.67			
\cdots	16	(406)		0.94	0.77		1.00	0.59	0.72	0.68	0.63		1.00	0.69		1.00	0.59	0.94	0.85	0.72			
8	18	(457)		1.00	0.80			0.67	0.75	0.70	0.65			0.82			0.67	1.00	0.91	0.76			
$\stackrel{\text { U }}{\sim}$	20	(508)			0.83			0.74	0.78	0.73	0.66			0.96			0.74		0.95	0.81			
©	22	(559)			0.87			0.82	0.80	0.75	0.68			1.00			0.82		1.00	0.84			
.	24	(610)			0.90			0.89	0.83	0.77	0.69						0.89			0.88			
\%	30	(762)			1.00			1.00	0.91	0.84	0.74						1.00			0.99			
	36	(914)							1.00	0.91	0.79									1.00			
	>48	(1219)								1.00	0.89												

Table 25 - Load adjustment factors for \#4 rebar in cracked concrete ${ }^{1,2,3}$

$\begin{gathered} \text { \#4 } \\ \text { cracked concrete } \end{gathered}$			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$			Edge distance in shear						```Concrete thickness factor in shear}\mp@subsup{}{}{5 f HV```					
			Toward edgef_{RV}	\|	To and away from edge f_{RV}																		
Emb	nt hef	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$				$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.49	0.45	0.41	n/a	n/a	n/a	0.06	0.04	0.03	0.11	0.09	0.05	n/a	n/a	n/a
¢	2-1/2	(64)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.10	0.07	0.04	0.19	0.15	0.09	n/a	n/a	n/a			
E¢	3	(76)	0.61	0.58	0.55	0.60	0.53	0.46	0.54	0.53	0.52	0.13	0.10	0.06	0.26	0.19	0.11	n/a	n/a	n/a			
\pm	4	(102)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.20	0.15	0.09	0.39	0.29	0.18	n/a	n/a	n/a			
$\stackrel{\sim}{*}$	5	(127)	0.69	0.64	0.58	0.80	0.67	0.53	0.57	0.56	0.54	0.27	0.21	0.12	0.55	0.41	0.25	n/a	n/a	n/a			
$\underset{\infty}{\circ}$	5-3/4	(146)	0.71	0.66	0.60	0.88	0.73	0.56	0.58	0.57	0.55	0.34	0.25	0.15	0.68	0.51	0.30	0.57	n/a	n/a			
$\stackrel{0}{0}$	6	(152)	0.72	0.67	0.60	0.91	0.75	0.57	0.58	0.57	0.55	0.36	0.27	0.16	0.72	0.54	0.32	0.58	n/a	n/a			
.	7	(178)	0.76	0.69	0.62	1.00	0.83	0.62	0.60	0.58	0.56	0.46	0.34	0.20	0.91	0.68	0.41	0.63	n/a	n/a			
$\underset{\underset{\sim}{\Psi}}{\substack{4}}$	7-1/4	(184)	0.77	0.70	0.62		0.85	0.63	0.60	0.58	0.56	0.48	0.36	0.22	0.96	0.72	0.43	0.64	0.58	n/a			
$\stackrel{\Psi}{0}$	8	(203)	0.80	0.72	0.63		0.91	0.66	0.61	0.59	0.57	0.56	0.42	0.25	1.00	0.83	0.50	0.67	0.61	n/a			
O	9	(229)	0.83	0.75	0.65		1.00	0.70	0.63	0.60	0.57	0.66	0.50	0.30		1.00	0.60	0.71	0.65	n / a			
\bigcirc	10	(254)	0.87	0.78	0.67			0.75	0.64	0.62	0.58	0.78	0.58	0.35			0.70	0.75	0.68	n/a			
-	11-1/4	(286)	0.92	0.81	0.69			0.81	0.66	0.63	0.59	0.93	0.70	0.42			0.81	0.80	0.72	0.61			
\pm	12	(305)	0.94	0.83	0.70			0.85	0.67	0.64	0.60	1.00	0.77	0.46			0.85	0.82	0.75	0.63			
¢	14	(356)	1.00	0.89	0.73			0.95	0.70	0.66	0.62		0.97	0.58			0.95	0.89	0.81	0.68			
$\stackrel{m}{0}$	16	(406)		0.94	0.77			1.00	0.73	0.69	0.63		1.00	0.71			1.00	0.95	0.86	0.73			
8	18	(457)		1.00	0.80				0.75	0.71	0.65			0.84				1.00	0.91	0.77			
$\stackrel{\text { U }}{ }$	20	(508)			0.83				0.78	0.73	0.67			0.99					0.96	0.81			
(3)	22	(559)			0.87				0.81	0.76	0.68			1.00					1.00	0.85			
-	24	(610)			0.90				0.84	0.78	0.70									0.89			
	30	(762)			1.00				0.92	0.85	0.75									1.00			
の	36	(914)							1.00	0.92	0.80												
	>48	(1219)								1.00	0.90												

[^5]2 Shaded area with reduced edge distance is permitted provided rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{\text {ef }} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} h_{\text {ef }}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{H} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 26 - Load adjustment factors for \#5 rebar in uncracked concrete ${ }^{1,2,3}$

\#5uncracked Concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			$\begin{gathered} \perp \\ \text { Toward edge } \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	\\| To and away from edgef_{RV}																			
Embed	ment $\mathrm{h}_{\text {ef }}$	in. (mm)				$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} \hline 12-1 / 2 \\ (318) \end{gathered}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{array}{\|c\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{array}{\|c\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 12-1 / 2 \\ (318) \end{gathered}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 12-1 / 2 \\ (318) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.25	0.18	0.11	n/a	n/a	n/a	0.04	0.03	0.02	0.08	0.06	0.04	n/a	n/a	n/a
	3-1/8	(79)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.10	0.07	0.04	0.20	0.14	0.08	n/a	n/a	n/a			
है	4	(102)	0.62	0.59	0.55	0.35	0.25	0.15	0.55	0.54	0.53	0.15	0.10	0.06	0.29	0.20	0.12	n/a	n/a	n/a			
¢	5	(127)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.21	0.14	0.09	0.41	0.29	0.17	n/a	n/a	n/a			
	6	(152)	0.68	0.63	0.58	0.44	0.32	0.19	0.57	0.55	0.54	0.27	0.19	0.11	0.45	0.38	0.23	n/a	n/a	n/a			
$\stackrel{1}{0}$	7	(178)	0.71	0.66	0.59	0.49	0.36	0.21	0.58	0.56	0.55	0.34	0.24	0.14	0.50	0.41	0.28	n/a	n/a	n/a			
	7-1/8	(181)	0.71	0.66	0.60	0.50	0.37	0.22	0.58	0.56	0.55	0.35	0.24	0.15	0.51	0.41	0.29	0.57	n/a	n/a			
.	8	(203)	0.74	0.68	0.61	0.55	0.40	0.24	0.59	0.57	0.55	0.41	0.29	0.17	0.56	0.44	0.33	0.61	n/a	n/a			
$\stackrel{+}{ \pm}$	9	(229)	0.77	0.70	0.62	0.62	0.46	0.27	0.60	0.58	0.56	0.50	0.35	0.21	0.62	0.48	0.35	0.65	0.57	n/a			
$\stackrel{\square}{0}$	10	(254)	0.80	0.72	0.63	0.69	0.51	0.30	0.62	0.59	0.56	0.58	0.40	0.24	0.69	0.52	0.37	0.68	0.60	n/a			
¢	11	(279)	0.83	0.74	0.65	0.76	0.56	0.33	0.63	0.60	0.57	0.67	0.47	0.28	0.76	0.56	0.39	0.71	0.63	n/a			
	12	(305)	0.86	0.77	0.66	0.83	0.61	0.36	0.64	0.61	0.58	0.76	0.53	0.32	0.83	0.61	0.41	0.75	0.66	n/a			
べ	14	(356)	0.91	0.81	0.69	0.96	0.71	0.41	0.66	0.63	0.59	0.96	0.67	0.40	0.96	0.71	0.45	0.81	0.71	0.60			
\pm	16	(406)	0.97	0.86	0.71	1.00	0.81	0.47	0.69	0.65	0.60	1.00	0.82	0.49	1.00	0.81	0.49	0.86	0.76	0.64			
त్ర	18	(457)	1.00	0.90	0.74		0.91	0.53	0.71	0.66	0.62		0.98	0.59		0.91	0.54	0.91	0.81	0.68			
$\stackrel{\square}{0}$	20	(508)		0.94	0.77		1.00	0.59	0.73	0.68	0.63		1.00	0.69		1.00	0.59	0.96	0.85	0.72			
8080	22	(559)		0.99	0.79			0.65	0.75	0.70	0.64			0.79			0.65	1.00	0.90	0.76			
$\stackrel{\text { U }}{ }$	24	(610)		1.00	0.82			0.71	0.78	0.72	0.66			0.90			0.71		0.94	0.79			
(0)	26	(660)			0.85			0.77	0.80	0.74	0.67			1.00			0.77		0.97	0.82			
.	28	(711)			0.87			0.83	0.82	0.76	0.68						0.83		1.00	0.85			
\%	30	(762)			0.90			0.89	0.85	0.77	0.69						0.89			0.88			
	36	(914)			0.98			1.00	0.92	0.83	0.73						1.00			0.97			
	> 48	(1219)			1.00				1.00	0.94	0.81									1.00			

Table 27 - Load adjustment factors for \#5 rebar in cracked concrete ${ }^{1,2,3}$

$\begin{gathered} \text { \#5 } \\ \text { cracked concrete } \end{gathered}$			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						$\begin{gathered} \text { Concrete thickness } \\ \text { factor in shear } \\ f_{\mathrm{HV}} \\ \hline \end{gathered}$					
			Toward edgef_{Rv}	\|	To and away from edge $f_{\text {RV }}$																		
Embed	ment $\mathrm{hef}_{\text {ef }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$				$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} 12-1 / 2 \\ (318) \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} 12-1 / 2 \\ (318) \end{gathered}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 12-1 / 2 \\ (318) \\ \hline \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{array}{\|c\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$
	1-3/4	(44)	n/a	n/a	n/a				0.46	0.43	0.40	n/a	n/a	n/a	0.04	0.03	0.02	0.09	0.06	0.04	n/a	n/a	n/a
$\bar{\xi}$	3-1/8	(79)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.10	0.07	0.04	0.20	0.14	0.09	n/a	n/a	n/a			
है	4	(102)	0.62	0.59	0.55	0.62	0.55	0.46	0.55	0.54	0.53	0.15	0.10	0.06	0.30	0.21	0.13	n/a	n/a	n/a			
$\underline{5}$	5	(127)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.21	0.15	0.09	0.41	0.29	0.18	n/a	n/a	n/a			
¢	6	(152)	0.68	0.63	0.58	0.78	0.66	0.53	0.57	0.56	0.54	0.27	0.19	0.12	0.54	0.38	0.23	n/a	n/a	n/a			
0	7	(178)	0.71	0.66	0.59	0.87	0.72	0.56	0.58	0.56	0.55	0.34	0.24	0.15	0.68	0.48	0.29	n/a	n/a	n/a			
-	7-1/8	(181)	0.71	0.66	0.60	0.88	0.73	0.56	0.58	0.57	0.55	0.35	0.25	0.15	0.70	0.50	0.30	0.58	n/a	n/a			
.	8	(203)	0.74	0.68	0.61	0.96	0.78	0.59	0.59	0.57	0.55	0.42	0.30	0.18	0.84	0.59	0.35	0.61	n/a	n/a			
$\stackrel{\sim}{0}$	9	(229)	0.77	0.70	0.62	1.00	0.85	0.62	0.60	0.58	0.56	0.50	0.35	0.21	1.00	0.71	0.42	0.65	0.58	n/a			
$\stackrel{0}{0}$	10	(254)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.57	0.58	0.41	0.25		0.83	0.50	0.68	0.61	n/a			
\bigcirc	11	(279)	0.83	0.74	0.65		0.98	0.69	0.63	0.60	0.57	0.67	0.48	0.29		0.95	0.57	0.72	0.64	n/a			
-	12	(305)	0.86	0.77	0.66		1.00	0.73	0.64	0.61	0.58	0.77	0.54	0.33		1.00	0.65	0.75	0.67	n/a			
-	14	(356)	0.91	0.81	0.69			0.81	0.66	0.63	0.59	0.97	0.68	0.41			0.81	0.81	0.72	0.61			
®	16	(406)	0.97	0.86	0.71			0.89	0.69	0.65	0.61	1.00	0.84	0.50			0.89	0.86	0.77	0.65			
\%	18	(457)	1.00	0.90	0.74			0.97	0.71	0.67	0.62		1.00	0.60			0.97	0.92	0.82	0.69			
\%	20	(508)		0.94	0.77			1.00	0.73	0.68	0.63			0.70			1.00	0.97	0.86	0.73			
8	22	(559)		0.99	0.79				0.76	0.70	0.64			0.81				1.00	0.90	0.76			
$\stackrel{\text { ய }}{ }$	24	(610)		1.00	0.82				0.78	0.72	0.66			0.92					0.94	0.79			
(5)	26	(660)			0.85				0.80	0.74	0.67			1.00					0.98	0.83			
안	28	(711)			0.87				0.83	0.76	0.68								1.00	0.86			
\%	30	(762)			0.90				0.85	0.78	0.70									0.89			
	36	(914)			0.98				0.92	0.83	0.74									0.97			
	> 48	(1219)			1.00				1.00	0.94	0.82									1.00			

1 Linear interpolation not permitted.
2 Shaded area with reduced edge distance is permitted provided rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{e f} f_{A V}$, is applicable when edge distance, $c<3^{*} h_{e f}$. If $c \geq 3^{*} h_{\text {ef }}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HV}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 28 - Load adjustment factors for \#6 rebar in uncracked concrete ${ }^{1,2,3}$

\#6 uncracked concrete			Spacing factor in tensionf_{AN}			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$			Edge distance in shear						$\begin{aligned} & \text { Concrete thickness } \\ & \text { factor in shear }{ }^{5} \\ & f_{\mathrm{HV}} \\ & \hline \end{aligned}$					
			Toward edgef_{RV}	\|	To and away from edge $f_{\text {RV }}$																		
Emb	$\mathrm{h}_{\text {ef }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$				$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.24	0.18	0.10	n/a	n/a	n/a	0.03	0.02	0.01	0.07	0.05	0.03	n/a	n/a	n/a
	3-3/4	(95)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a			
E	4	(102)	0.60	0.57	0.54	0.32	0.23	0.14	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.16	0.09	n/a	n/a	n/a			
E	5	(127)	0.62	0.59	0.56	0.35	0.26	0.15	0.55	0.54	0.53	0.17	0.11	0.06	0.33	0.22	0.13	n/a	n/a	n/a			
	6	(152)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.08	0.41	0.29	0.17	n/a	n/a	n/a			
Eิ	7	(178)	0.67	0.63	0.58	0.43	0.32	0.19	0.57	0.55	0.54	0.28	0.18	0.11	0.45	0.36	0.21	n/a	n/a	n/a			
\&	8	(203)	0.70	0.65	0.59	0.48	0.35	0.20	0.58	0.56	0.54	0.34	0.22	0.13	0.49	0.40	0.26	n/a	n/a	n/a			
\%	8-1/2	(216)	0.71	0.66	0.59	0.50	0.37	0.21	0.59	0.56	0.55	0.37	0.24	0.14	0.51	0.41	0.28	0.59	n/a	n/a			
-	9	(229)	0.72	0.67	0.60	0.52	0.38	0.22	0.59	0.57	0.55	0.40	0.26	0.15	0.53	0.43	0.31	0.60	n/a	n/a			
$\stackrel{ \pm}{0}$	10	(254)	0.75	0.69	0.61	0.57	0.42	0.25	0.60	0.58	0.55	0.47	0.31	0.18	0.57	0.46	0.33	0.64	n/a	n/a			
ᄃ	10-3/4	(273)	0.77	0.70	0.62	0.62	0.45	0.27	0.61	0.58	0.56	0.53	0.34	0.20	0.62	0.48	0.35	0.66	0.57	n/a			
\bigcirc	12	(305)	0.80	0.72	0.63	0.69	0.51	0.30	0.62	0.59	0.56	0.62	0.40	0.24	0.69	0.52	0.37	0.70	0.60	n/a			
\bigcirc	14	(356)	0.85	0.76	0.66	0.80	0.59	0.35	0.64	0.61	0.57	0.78	0.51	0.30	0.80	0.59	0.40	0.75	0.65	n/a			
0	16	(406)	0.90	0.80	0.68	0.92	0.67	0.39	0.66	0.62	0.59	0.96	0.62	0.37	0.92	0.67	0.43	0.80	0.70	n/a			
©	16-3/4	(425)	0.91	0.81	0.69	0.96	0.71	0.41	0.67	0.63	0.59	1.00	0.67	0.39	0.96	0.71	0.45	0.82	0.71	0.60			
$\frac{\pi}{50}$	18	(457)	0.94	0.83	0.70	1.00	0.76	0.44	0.68	0.64	0.60		0.74	0.44	1.00	0.76	0.47	0.85	0.74	0.62			
$\begin{aligned} & \bar{\circ} \\ & \mathrm{\delta} \end{aligned}$	20	(508)	0.99	0.87	0.72		0.84	0.49	0.70	0.65	0.61		0.87	0.51		0.84	0.51	0.90	0.78	0.65			
㐓	22	(559)	1.00	0.91	0.74		0.93	0.54	0.72	0.67	0.62		1.00	0.59		0.93	0.55	0.94	0.82	0.68			
$\underset{\infty}{\infty}$	24	(610)		0.94	0.77		1.00	0.59	0.74	0.68	0.63			0.67		1.00	0.59	0.99	0.85	0.72			
ఠ	26	(660)		0.98	0.79			0.64	0.76	0.70	0.64			0.76			0.64	1.00	0.89	0.74			
-	28	(711)		1.00	0.81			0.69	0.78	0.71	0.65			0.85			0.69		0.92	0.77			
©	30	(762)			0.83			0.74	0.80	0.73	0.66			0.94			0.74		0.95	0.80			
	36	(914)			0.90			0.89	0.86	0.77	0.69			1.00			0.89		1.00	0.88			
	> 48	(1219)			1.00			1.00	0.99	0.86	0.76						1.00			1.00			

Table 29 - Load adjustment factors for \#6 rebar in cracked concrete ${ }^{1,2,3}$

$\begin{gathered} \text { \#6 } \\ \text { cracked concrete } \end{gathered}$			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$					
			Toward edge $f_{\text {RV }}$	\\| To and away from edge f_{RV}																			
Embed	ment $\mathrm{h}_{\text {ef }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \\ \hline \end{gathered}$				$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$
$\begin{aligned} & \widehat{E} \\ & \stackrel{\xi}{\dot{E}} \end{aligned}$	1-3/4	(44)	n/a	n/a	n/a				0.44	0.42	0.39	n/a	n/a	n/a	0.03	0.02	0.01	0.07	0.05	0.03	n/a	n/a	n/a
	3-3/4	(95)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a			
	4	(102)	0.60	0.57	0.54	0.57	0.51	0.44	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.16	0.09	n/a	n/a	n/a			
	5	(127)	0.62	0.59	0.56	0.63	0.56	0.47	0.55	0.54	0.53	0.17	0.11	0.07	0.34	0.22	0.13	n/a	n/a	n/a			
	6	(152)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.22	0.14	0.09	0.44	0.29	0.17	n/a	n/a	n/a			
	7	(178)	0.67	0.63	0.58	0.77	0.65	0.52	0.57	0.55	0.54	0.28	0.18	0.11	0.56	0.36	0.22	n/a	n/a	n/a			
	8	(203)	0.70	0.65	0.59	0.84	0.70	0.55	0.58	0.56	0.54	0.34	0.22	0.13	0.68	0.44	0.26	n/a	n/a	n/a			
	8-1/2	(216)	0.71	0.66	0.59	0.88	0.72	0.56	0.59	0.56	0.55	0.37	0.24	0.14	0.75	0.49	0.29	0.59	n/a	n/a			
	9	(229)	0.72	0.67	0.60	0.91	0.75	0.57	0.59	0.57	0.55	0.41	0.26	0.16	0.82	0.53	0.32	0.61	n/a	n/a			
	10	(254)	0.75	0.69	0.61	0.99	0.80	0.60	0.60	0.58	0.55	0.48	0.31	0.18	0.95	0.62	0.37	0.64	n/a	n/a			
	10-3/4	(273)	0.77	0.70	0.62	1.00	0.84	0.62	0.61	0.58	0.56	0.53	0.35	0.21	1.00	0.69	0.41	0.66	0.57	n/a			
	12	(305)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.56	0.63	0.41	0.24		0.82	0.49	0.70	0.61	n/a			
	14	(356)	0.85	0.76	0.66		1.00	0.72	0.64	0.61	0.58	0.79	0.51	0.31		1.00	0.61	0.76	0.65	n/a			
	16	(406)	0.90	0.80	0.68			0.78	0.66	0.62	0.59	0.97	0.63	0.37			0.75	0.81	0.70	n/a			
	16-3/4	(425)	0.91	0.81	0.69			0.81	0.67	0.63	0.59	1.00	0.67	0.40			0.80	0.83	0.72	0.60			
	18	(457)	0.94	0.83	0.70			0.85	0.68	0.64	0.60		0.75	0.45			0.85	0.86	0.74	0.62			
	20	(508)	0.99	0.87	0.72			0.91	0.70	0.65	0.61		0.88	0.52			0.91	0.90	0.78	0.66			
	22	(559)	1.00	0.91	0.74			0.98	0.72	0.67	0.62		1.00	0.60			0.98	0.95	0.82	0.69			
	24	(610)		0.94	0.77			1.00	0.74	0.68	0.63			0.69			1.00	0.99	0.86	0.72			
	26	(660)		0.98	0.79				0.76	0.70	0.64			0.77				1.00	0.89	0.75			
	28	(711)		1.00	0.81				0.79	0.71	0.65			0.87					0.92	0.78			
	30	(762)			0.83				0.81	0.73	0.66			0.96					0.96	0.81			
	36	(914)			0.90				0.87	0.77	0.69			1.00					1.00	0.88			
	> 48	(1219)			1.00				0.99	0.87	0.76									1.00			

[^6]2 Shaded area with reduced edge distance is permitted provided rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} h_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 30 - Load adjustment factors for \#7 rebar in uncracked concrete ${ }^{1,2,3}$

\#7 uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$			Edge distance in shear						$\begin{aligned} & \text { Concrete thickness } \\ & \text { factor in shear }{ }^{5} \\ & f_{\mathrm{HV}} \\ & \hline \end{aligned}$					
			$\begin{gathered} \stackrel{\perp}{\text { Toward edge }} \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	\\| To and away from edge $f_{\text {RV }}$																			
Embed	ment $\mathrm{h}_{\text {ef }}$	in. (mm)				$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{gathered} 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 17-1 / 2 \\ (445) \\ \hline \end{array}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{gathered} 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 17-1 / 2 \\ (445) \end{array}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10-1 / 2 \\ (267) \\ \hline \end{array}$	$\begin{gathered} \hline 17-1 / 2 \\ (445) \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10-1 / 2 \\ (267) \\ \hline \end{array}$	$\begin{gathered} 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10-1 / 2 \\ (267) \\ \hline \end{array}$	$\begin{gathered} 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10-1 / 2 \\ (267) \\ \hline \end{array}$	$\begin{gathered} 17-1 / 2 \\ (445) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.23	0.17	0.10	n/a	n/a	n/a	0.03	0.02	0.01	0.05	0.04	0.02	n/a	n/a	n / a
	4-3/8	(111)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a			
E	5	(127)	0.61	0.58	0.55	0.33	0.24	0.14	0.54	0.53	0.52	0.13	0.09	0.05	0.27	0.17	0.09	n/a	n/a	n/a			
	6	(152)	0.63	0.60	0.56	0.36	0.26	0.15	0.55	0.54	0.53	0.17	0.11	0.06	0.35	0.23	0.12	n/a	n/a	n/a			
	7	(178)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.08	0.40	0.29	0.16	n/a	n/a	n/a			
E	8	(203)	0.67	0.63	0.58	0.43	0.31	0.18	0.57	0.55	0.53	0.27	0.17	0.09	0.44	0.35	0.19	n/a	n/a	n/a			
¢	9	(229)	0.69	0.64	0.59	0.46	0.34	0.20	0.58	0.56	0.54	0.32	0.21	0.11	0.47	0.39	0.23	n/a	n/a	n/a			
$\stackrel{7}{ }$	9-7/8	(251)	0.71	0.66	0.59	0.49	0.36	0.21	0.59	0.56	0.54	0.37	0.24	0.13	0.51	0.41	0.26	0.59	n/a	n/a			
\pm	10	(254)	0.71	0.66	0.60	0.50	0.37	0.22	0.59	0.57	0.54	0.38	0.24	0.13	0.51	0.41	0.27	0.59	n/a	n/a			
$\stackrel{\text { ¢ }}{0}$	11	(279)	0.73	0.67	0.60	0.54	0.40	0.23	0.60	0.57	0.55	0.43	0.28	0.15	0.55	0.44	0.31	0.62	n/a	n/a			
-	12	(305)	0.75	0.69	0.61	0.59	0.43	0.25	0.60	0.58	0.55	0.49	0.32	0.17	0.59	0.46	0.34	0.65	n/a	n/a			
\bigcirc	12-1/2	(318)	0.76	0.70	0.62	0.61	0.45	0.26	0.61	0.58	0.55	0.52	0.34	0.19	0.61	0.48	0.35	0.66	0.57	n/a			
-	14	(356)	0.80	0.72	0.63	0.69	0.50	0.30	0.62	0.59	0.56	0.62	0.40	0.22	0.69	0.52	0.37	0.70	0.60	n/a			
$\stackrel{0}{0}$	16	(406)	0.84	0.75	0.65	0.78	0.58	0.34	0.64	0.60	0.57	0.76	0.49	0.27	0.78	0.58	0.39	0.75	0.65	n/a			
$\stackrel{\square}{\text { ¢ }}$	18	(457)	0.88	0.79	0.67	0.88	0.65	0.38	0.66	0.62	0.58	0.91	0.59	0.32	0.88	0.65	0.42	0.79	0.68	n/a			
	19-1/2	(495)	0.91	0.81	0.69	0.96	0.70	0.41	0.67	0.63	0.58	1.00	0.66	0.36	0.96	0.70	0.45	0.82	0.71	0.58			
©	20	(508)	0.92	0.82	0.69	0.98	0.72	0.42	0.67	0.63	0.59		0.69	0.38	0.98	0.72	0.45	0.83	0.72	0.59			
파	22	(559)	0.97	0.85	0.71	1.00	0.79	0.46	0.69	0.64	0.60		0.80	0.43	1.00	0.79	0.48	0.87	0.76	0.62			
क	24	(610)	1.00	0.88	0.73		0.87	0.51	0.71	0.66	0.60		0.91	0.49		0.87	0.52	0.91	0.79	0.65			
0	26	(660)		0.91	0.75		0.94	0.55	0.73	0.67	0.61		1.00	0.56		0.94	0.55	0.95	0.82	0.67			
-	28	(711)		0.94	0.77		1.00	0.59	0.74	0.68	0.62			0.62		1.00	0.59	0.99	0.85	0.70			
¢	30	(762)		0.98	0.79			0.63	0.76	0.70	0.63			0.69			0.63	1.00	0.88	0.72			
	36	(914)		1.00	0.84			0.76	0.81	0.73	0.66			0.91			0.76		0.97	0.79			
	> 48	(1219)			0.96			1.00	0.92	0.81	0.71			1.00			1.00		1.00	0.91			

Table 31 - Load adjustment factors for \#7 rebar in cracked concrete ${ }^{1,2,3}$

\#7 cracked concrete			$\begin{gathered} \text { Spacing factor in } \\ \text { tension } \\ f_{A N} \\ \hline \end{gathered}$			```Edge distance factor in tension f```			$\begin{gathered} \text { Spacing factor in } \\ \text { shear } \\ f_{A V} \\ \hline \end{gathered}$			Edge distance in shear						```Concrete thickness factor in shear}\mp@subsup{}{}{5 f HV```					
			$\begin{gathered} \stackrel{\perp}{\text { Toward edge }} \\ f_{\mathrm{Rv}} \\ \hline \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																		
Emb	nt $\mathrm{hef}^{\text {ef }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$				$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 10-1 / 2 \\ (267) \\ \hline \end{array}$	$\begin{gathered} \hline 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 10-1 / 2 \\ (267) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 17-1 / 2 \\ (445) \\ \hline \end{array}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10-1 / 2 \\ (267) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 17-1 / 2 \\ (445) \\ \hline \end{array}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10-1 / 2 \\ (267) \\ \hline \end{array}$	$\begin{gathered} \hline 17-1 / 2 \\ (445) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.43	0.41	0.38	n/a	n/a	n/a	0.03	0.02	0.01	0.06	0.04	0.03	n/a	n/a	n/a
	4-3/8	(111)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.09	0.05	0.23	0.17	0.10	n/a	n/a	n/a			
E	5	(127)	0.61	0.58	0.55	0.59	0.52	0.45	0.54	0.54	0.53	0.14	0.10	0.06	0.28	0.21	0.13	n/a	n/a	n/a			
s	6	(152)	0.63	0.60	0.56	0.64	0.56	0.47	0.55	0.54	0.53	0.18	0.14	0.08	0.37	0.27	0.16	n/a	n/a	n/a			
,	7	(178)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.54	0.23	0.17	0.10	0.46	0.35	0.21	n/a	n/a	n/a			
Eิ	8	(203)	0.67	0.63	0.58	0.76	0.64	0.52	0.57	0.56	0.54	0.28	0.21	0.13	0.56	0.42	0.25	n/a	n/a	n/a			
¢	9	(229)	0.69	0.64	0.59	0.82	0.68	0.54	0.58	0.57	0.55	0.34	0.25	0.15	0.67	0.50	0.30	n/a	n/a	n/a			
$\stackrel{5}{0}$	9-7/8	(251)	0.71	0.66	0.59	0.87	0.72	0.56	0.59	0.57	0.55	0.39	0.29	0.17	0.77	0.58	0.35	0.59	n/a	n/a			
\ddagger	10	(254)	0.71	0.66	0.60	0.88	0.73	0.56	0.59	0.57	0.55	0.39	0.30	0.18	0.79	0.59	0.35	0.60	n/a	n/a			
$\stackrel{0}{0}$	11	(279)	0.73	0.67	0.60	0.95	0.77	0.59	0.60	0.58	0.56	0.45	0.34	0.20	0.91	0.68	0.41	0.63	n/a	n/a			
¢	12	(305)	0.75	0.69	0.61	1.00	0.82	0.61	0.61	0.59	0.56	0.52	0.39	0.23	1.00	0.78	0.47	0.66	n/a	n/a			
\bigcirc	12-1/2	(318)	0.76	0.70	0.62		0.84	0.62	0.61	0.59	0.57	0.55	0.41	0.25		0.83	0.50	0.67	0.61	n/a			
だ	14	(356)	0.80	0.72	0.63		0.91	0.66	0.63	0.60	0.57	0.65	0.49	0.29		0.91	0.59	0.71	0.64	n/a			
0	16	(406)	0.84	0.75	0.65		1.00	0.71	0.64	0.62	0.58	0.80	0.60	0.36		1.00	0.71	0.76	0.69	n/a			
ธ	18	(457)	0.88	0.79	0.67			0.76	0.66	0.63	0.59	0.95	0.71	0.43			0.76	0.80	0.73	n/a			
$\frac{\stackrel{\pi}{6}}{\stackrel{5}{0}}$	19-1/2	(495)	0.91	0.81	0.69			0.80	0.67	0.64	0.60	1.00	0.80	0.48			0.80	0.84	0.76	0.64			
¢	20	(508)	0.92	0.82	0.69			0.82	0.68	0.65	0.61		0.84	0.50			0.82	0.85	0.77	0.65			
-	22	(559)	0.97	0.85	0.71			0.87	0.70	0.66	0.62		0.96	0.58			0.87	0.89	0.81	0.68			
क	24	(610)	1.00	0.88	0.73			0.93	0.71	0.68	0.63		1.00	0.66			0.93	0.93	0.84	0.71			
\%	26	(660)		0.91	0.75			0.99	0.73	0.69	0.64			0.74			0.99	0.96	0.88	0.74			
-	28	(711)		0.94	0.77			1.00	0.75	0.71	0.65			0.83			1.00	1.00	0.91	0.77			
\%	30	(762)		0.98	0.79				0.77	0.72	0.66			0.92				1.00	0.94	0.79			
	36	(914)		1.00	0.84				0.82	0.77	0.69			1.00					1.00	0.87			
	>48	(1219)			0.96				0.93	0.85	0.75									1.00			

1 Linear interpolation not permitted.
2 Shaded area with reduced edge distance is permitted provided rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{e r} f_{A V}$, is applicable when edge distance, $c<3^{*} h_{\text {er }}$. If $c \geq 3^{*} h_{e f}$, then $f_{A V}=f_{A N}$.
5 Concrete thickness reduction factor in shear, f_{HW}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 32 - Load adjustment factors for \#8 rebar in uncracked concrete ${ }^{1,2,3}$

\#8 uncracked concrete			$\begin{gathered} \text { Spacing factor in } \\ \text { tension } \\ f_{A N} \\ \hline \end{gathered}$			\qquad Edge distance factor in tension $f_{\text {RN }}$			\qquad			Edge distance in shear						$\begin{aligned} & \text { Concrete thickness } \\ & \text { factor in shear }{ }^{5} \\ & f_{\mathrm{HV}} \\ & \hline \end{aligned}$					
			$\stackrel{\perp}{\text { Toward edge }}$$f_{\mathrm{RV}}$	\|	To and away from edge $f_{\text {RV }}$																		
Emb	$\mathrm{nt}_{\text {ef }}$	$\begin{gathered} \hline \text { in. } \\ (\mathrm{mm}) \end{gathered}$				$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} \hline 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (508) \end{gathered}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} \hline 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (508) \end{gathered}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.23	0.17	0.10	n/a	n/a	n/a	0.02	0.01	0.01	0.05	0.03	0.01	n/a	n/a	n/a
	5	(127)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.07	n/a	n/a	n/a			
\widehat{E}	6	(152)	0.61	0.58	0.55	0.33	0.25	0.14	0.55	0.53	0.52	0.14	0.09	0.05	0.29	0.19	0.09	n/a	n/a	n/a			
E	7	(178)	0.63	0.60	0.56	0.36	0.27	0.16	0.55	0.54	0.53	0.18	0.12	0.06	0.36	0.23	0.12	n/a	n/a	n/a			
	8	(203)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.07	0.40	0.29	0.15	n/a	n/a	n/a			
Ė	9	(229)	0.67	0.63	0.58	0.42	0.31	0.18	0.57	0.55	0.53	0.26	0.17	0.09	0.43	0.34	0.17	n/a	n/a	n/a			
$\mathscr{\infty}$	10	(254)	0.69	0.64	0.58	0.45	0.33	0.20	0.58	0.56	0.54	0.31	0.20	0.10	0.46	0.38	0.20	n/a	n/a	n/a			
흥	11	(279)	0.70	0.65	0.59	0.48	0.36	0.21	0.58	0.56	0.54	0.35	0.23	0.12	0.50	0.40	0.23	n/a	n/a	n/a			
\ddagger	11-1/4	(286)	0.71	0.66	0.59	0.49	0.36	0.21	0.59	0.56	0.54	0.37	0.24	0.12	0.50	0.41	0.24	0.58	n/a	n/a			
\%	12	(305)	0.72	0.67	0.60	0.52	0.38	0.22	0.59	0.57	0.54	0.40	0.26	0.13	0.53	0.43	0.27	0.60	n/a	n/a			
C	13	(330)	0.74	0.68	0.61	0.56	0.41	0.24	0.60	0.57	0.55	0.46	0.30	0.15	0.56	0.45	0.30	0.63	n/a	n/a			
ర్రీ	14	(356)	0.76	0.69	0.62	0.60	0.44	0.26	0.61	0.58	0.55	0.51	0.33	0.17	0.60	0.47	0.34	0.65	n/a	n/a			
$\stackrel{\text { cos}}{ }$	14-1/4	(362)	0.76	0.70	0.62	0.61	0.45	0.26	0.61	0.58	0.55	0.52	0.34	0.17	0.61	0.48	0.34	0.66	0.57	n/a			
$\%$	16	(406)	0.80	0.72	0.63	0.69	0.50	0.30	0.62	0.59	0.56	0.62	0.40	0.21	0.69	0.52	0.37	0.70	0.60	n/a			
厄్ర	18	(457)	0.83	0.75	0.65	0.77	0.57	0.33	0.64	0.60	0.57	0.74	0.48	0.25	0.77	0.57	0.39	0.74	0.64	n/a			
$\frac{\frac{\pi}{6}}{\frac{51}{0}}$	20	(508)	0.87	0.78	0.67	0.86	0.63	0.37	0.65	0.61	0.57	0.87	0.56	0.29	0.86	0.63	0.42	0.78	0.67	n/a			
$\begin{aligned} & \bar{\circ} \\ & \text { © } \end{aligned}$	22	(559)	0.91	0.81	0.68	0.94	0.69	0.41	0.67	0.63	0.58	1.00	0.65	0.33	0.94	0.69	0.44	0.82	0.71	n/a			
哥	22-1/4	(565)	0.91	0.81	0.69	0.95	0.70	0.41	0.67	0.63	0.58		0.66	0.34	0.95	0.70	0.45	0.82	0.71	0.57			
$\frac{w}{\infty}$	24	(610)	0.94	0.83	0.70	1.00	0.76	0.44	0.68	0.64	0.59		0.74	0.38	1.00	0.76	0.47	0.85	0.74	0.59			
$\frac{\sigma}{0}$	26	(660)	0.98	0.86	0.72		0.82	0.48	0.70	0.65	0.59		0.84	0.43		0.82	0.50	0.89	0.77	0.61			
-	28	(711)	1.00	0.89	0.73		0.88	0.52	0.71	0.66	0.60		0.94	0.48		0.88	0.53	0.92	0.80	0.64			
©	30	(762)		0.92	0.75		0.95	0.55	0.73	0.67	0.61		1.00	0.53		0.95	0.55	0.95	0.83	0.66			
	36	(914)		1.00	0.80		1.00	0.67	0.77	0.70	0.63			0.69		1.00	0.67	1.00	0.91	0.72			
	>48	(1219)			0.90			0.89	0.86	0.77	0.67			1.00			0.89		1.00	0.83			

Table 33 - Load adjustment factors for \#8 rebar in cracked concrete ${ }^{1,2,3}$

cracked concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$$f_{\mathrm{fV}}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$					
			Toward edge $f_{\text {RV }}$	\\| To and away from edge $f_{\text {RV }}$																			
Embed	ment $\mathrm{hef}_{\text {ef }}$	$\begin{gathered} \hline \text { in. } \\ (\mathrm{mm}) \end{gathered}$				$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$
$\underset{\substack{\hat{E} \\ \dot{E} \\ \hline}}{ }$	1-3/4	(44)	n/a	n/a	n/a				0.42	0.40	0.38	n/a	n/a	n/a	0.02	0.02	0.01	0.05	0.03	0.02	n/a	n/a	n/a
	5	(127)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.08	0.05	0.22	0.16	0.10	n/a	n/a	n/a			
	6	(152)	0.61	0.58	0.55	0.60	0.53	0.46	0.55	0.54	0.53	0.14	0.10	0.06	0.29	0.21	0.13	n/a	n/a	n/a			
	7	(178)	0.63	0.60	0.56	0.65	0.57	0.47	0.55	0.54	0.53	0.18	0.13	0.08	0.36	0.26	0.16	n/a	n/a	n/a			
	8	(203)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.54	0.22	0.16	0.10	0.44	0.32	0.19	n/a	n/a	n/a			
	9	(229)	0.67	0.63	0.58	0.75	0.64	0.51	0.57	0.56	0.54	0.26	0.19	0.12	0.53	0.38	0.23	n/a	n/a	n/a			
	10	(254)	0.69	0.64	0.58	0.80	0.67	0.53	0.58	0.56	0.54	0.31	0.22	0.13	0.62	0.45	0.27	n/a	n/a	n/a			
	11	(279)	0.70	0.65	0.59	0.86	0.71	0.55	0.58	0.57	0.55	0.36	0.26	0.16	0.72	0.52	0.31	n/a	n/a	n/a			
	11-1/4	(286)	0.71	0.66	0.59	0.87	0.72	0.56	0.59	0.57	0.55	0.37	0.27	0.16	0.74	0.54	0.32	0.59	n/a	n/a			
	12	(305)	0.72	0.67	0.60	0.91	0.75	0.57	0.59	0.57	0.55	0.41	0.30	0.18	0.82	0.59	0.35	0.61	n/a	n/a			
	13	(330)	0.74	0.68	0.61	0.97	0.79	0.59	0.60	0.58	0.56	0.46	0.33	0.20	0.92	0.67	0.40	0.63	n/a	n/a			
	14	(356)	0.76	0.69	0.62	1.00	0.83	0.62	0.61	0.59	0.56	0.51	0.37	0.22	1.00	0.74	0.45	0.65	n/a	n/a			
	14-1/4	(362)	0.76	0.70	0.62		0.84	0.62	0.61	0.59	0.56	0.53	0.38	0.23		0.76	0.46	0.66	0.59	n/a			
	16	(406)	0.80	0.72	0.63		0.91	0.66	0.62	0.60	0.57	0.63	0.45	0.27		0.91	0.55	0.70	0.63	n/a			
$\begin{aligned} & \stackrel{0}{\tilde{W}} \\ & \stackrel{W}{0} \end{aligned}$	18	(457)	0.83	0.75	0.65		1.00	0.70	0.64	0.61	0.58	0.75	0.54	0.33		1.00	0.65	0.74	0.67	n/a			
	20	(508)	0.87	0.78	0.67			0.75	0.65	0.62	0.59	0.88	0.64	0.38			0.75	0.78	0.70	n/a			
$\begin{aligned} & \mathbb{D} \\ & \stackrel{8}{\mathrm{D}} \end{aligned}$	22	(559)	0.91	0.81	0.68			0.80	0.67	0.64	0.60	1.00	0.73	0.44			0.80	0.82	0.74	n/a			
	22-1/4	(565)	0.91	0.81	0.69			0.80	0.67	0.64	0.60		0.75	0.45			0.80	0.82	0.74	0.62			
을 © © 0	24	(610)	0.94	0.83	0.70			0.85	0.68	0.65	0.61		0.84	0.50			0.85	0.86	0.77	0.65			
	26	(660)	0.98	0.86	0.72			0.90	0.70	0.66	0.61		0.94	0.57			0.90	0.89	0.80	0.68			
	28	(711)	1.00	0.89	0.73			0.95	0.71	0.67	0.62		1.00	0.63			0.95	0.92	0.83	0.70			
	30	(762)		0.92	0.75			1.00	0.73	0.68	0.63			0.70			1.00	0.96	0.86	0.73			
	36	(914)		1.00	0.80				0.77	0.72	0.66			0.92				1.00	0.94	0.79			
	> 48	(1219)			0.90				0.87	0.80	0.71			1.00					1.00	0.92			

[^7]2 Shaded area with reduced edge distance is permitted provided rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\text {eff }}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 34 - Load adjustment factors for \#9 rebar in uncracked concrete ${ }^{1,2,3}$

\#9 uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$					
			$\begin{gathered} \text { Toward edge } \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																		
Emb	nt hef	in. (mm)				$\begin{gathered} \hline 10-1 / 8 \\ (257) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 13-1 / 2 \\ (343) \\ \hline \end{array}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 10-1 / 8 \\ & (257) \end{aligned}$	$\begin{array}{\|l} \hline 13-1 / 2 \\ (343) \\ \hline \end{array}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \end{gathered}$	$\begin{array}{\|c\|} \hline 10-1 / 8 \\ (257) \\ \hline \end{array}$	$\begin{gathered} \hline 13-1 / 2 \\ (343) \\ \hline \end{gathered}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \end{gathered}$	$\begin{array}{\|c\|} \hline 10-1 / 8 \\ (257) \end{array}$	$\begin{gathered} \hline 13-1 / 2 \\ (343) \end{gathered}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \end{gathered}$	$\begin{array}{\|c\|} \hline 10-1 / 8 \\ (257) \\ \hline \end{array}$	$\begin{gathered} \hline 13-1 / 2 \\ (343) \\ \hline \end{gathered}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \end{gathered}$	$\begin{array}{\|c} \hline 10-1 / 8 \\ (257) \end{array}$	$\begin{gathered} \hline 13-1 / 2 \\ (343) \\ \hline \end{gathered}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.22	0.16	0.10	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.01	n/a	n/a	n/a
	5-5/8	(143)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a			
E	6	(152)	0.60	0.57	0.54	0.32	0.23	0.14	0.54	0.53	0.52	0.12	0.08	0.04	0.24	0.16	0.07	n/a	n/a	n/a			
	7	(178)	0.62	0.59	0.55	0.34	0.25	0.15	0.55	0.54	0.52	0.15	0.10	0.05	0.30	0.20	0.09	n/a	n/a	n/a			
	8	(203)	0.63	0.60	0.56	0.37	0.27	0.16	0.55	0.54	0.52	0.18	0.12	0.06	0.37	0.24	0.11	n/a	n/a	n/a			
E	9	(229)	0.65	0.61	0.57	0.40	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.07	0.41	0.29	0.14	n/a	n/a	n/a			
	10	(254)	0.66	0.62	0.57	0.42	0.31	0.18	0.57	0.55	0.53	0.26	0.17	0.08	0.44	0.33	0.16	n/a	n/a	n/a			
	11	(279)	0.68	0.64	0.58	0.45	0.33	0.19	0.57	0.56	0.53	0.30	0.19	0.09	0.46	0.38	0.19	n/a	n/a	n/a			
\pm	12	(305)	0.70	0.65	0.59	0.48	0.35	0.20	0.58	0.56	0.54	0.34	0.22	0.11	0.49	0.40	0.21	n/a	n/a	n/a			
$\stackrel{0}{0}$	12-7/8	(327)	0.71	0.66	0.60	0.51	0.37	0.22	0.59	0.57	0.54	0.38	0.24	0.12	0.52	0.42	0.23	0.59	n/a	n/a			
	13	(330)	0.71	0.66	0.60	0.51	0.37	0.22	0.59	0.57	0.54	0.38	0.25	0.12	0.52	0.42	0.24	0.59	n/a	n/a			
\bigcirc	14	(356)	0.73	0.67	0.60	0.54	0.39	0.23	0.59	0.57	0.54	0.43	0.28	0.13	0.55	0.44	0.27	0.61	n/a	n/a			
	16	(406)	0.76	0.70	0.62	0.62	0.45	0.26	0.61	0.58	0.55	0.52	0.34	0.16	0.62	0.48	0.33	0.66	n/a	n/a			
	16-1/4	(413)	0.77	0.70	0.62	0.63	0.46	0.27	0.61	0.58	0.55	0.53	0.35	0.17	0.63	0.48	0.33	0.66	0.57	n/a			
	18	(457)	0.80	0.72	0.63	0.69	0.51	0.30	0.62	0.59	0.56	0.62	0.40	0.19	0.69	0.52	0.37	0.70	0.60	n/a			
	20	(508)	0.83	0.75	0.65	0.77	0.56	0.33	0.63	0.60	0.56	0.73	0.47	0.23	0.77	0.56	0.39	0.73	0.64	n/a			
	22	(559)	0.86	0.77	0.66	0.85	0.62	0.36	0.65	0.61	0.57	0.84	0.55	0.26	0.85	0.62	0.41	0.77	0.67	n/a			
山	24	(610)	0.90	0.80	0.68	0.93	0.68	0.40	0.66	0.62	0.57	0.96	0.62	0.30	0.93	0.68	0.43	0.80	0.70	n/a			
(25-1/4	(641)	0.92	0.81	0.69	0.97	0.71	0.42	0.67	0.63	0.58	1.00	0.67	0.32	0.97	0.71	0.45	0.83	0.71	0.56			
O	26	(660)	0.93	0.82	0.69	1.00	0.73	0.43	0.68	0.63	0.58		0.70	0.34	1.00	0.73	0.46	0.84	0.73	0.57			
-	28	(711)	0.96	0.85	0.71		0.79	0.46	0.69	0.64	0.59		0.78	0.38		0.79	0.48	0.87	0.75	0.59			
क	30	(762)	0.99	0.87	0.72		0.84	0.49	0.70	0.65	0.59		0.87	0.42		0.84	0.51	0.90	0.78	0.61			
	36	(914)	1.00	0.94	0.77		1.00	0.59	0.74	0.68	0.61		1.00	0.55		1.00	0.59	0.99	0.85	0.67			
	>48	(1219)		1.00	0.86			0.79	0.82	0.74	0.65			0.84			0.79	1.00	0.99	0.77			

Table 35 - Load adjustment factors for \#9 rebar in cracked concrete ${ }^{1,2,3}$

cracked concrete			$\begin{gathered} \text { Spacing factor in } \\ \text { tension } \\ f_{A N} \\ \hline \end{gathered}$			\qquad			\qquad			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$					
			$\begin{gathered} \perp \perp \\ \text { Toward edge } \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																		
Emb	nt $\mathrm{hef}^{\text {ef }}$	$\begin{gathered} \hline \text { in. } \\ (\mathrm{mm}) \end{gathered}$				$\begin{array}{\|c} \hline 10-1 / 8 \\ (257) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 13-1 / 2 \\ (343) \\ \hline \end{array}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 10-1 / 8 \\ (257) \end{array}$	$\begin{aligned} & \hline 13-1 / 2 \\ & (343) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 22-1 / 2 \\ (572) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 10-1 / 8 \\ (257) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 13-1 / 2 \\ (343) \\ \hline \end{array}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10-1 / 8 \\ (257) \end{array}$	$\begin{gathered} \hline 13-1 / 2 \\ (343) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 22-1 / 2 \\ (572) \\ \hline \end{array}$	$\begin{gathered} \hline 10-1 / 8 \\ (257) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13-1 / 2 \\ (343) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 22-1 / 2 \\ (572) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10-1 / 8 \\ (257) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13-1 / 2 \\ (343) \\ \hline \end{array}$	$\begin{gathered} \hline 22-1 / 2 \\ (572) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.41	0.39	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.03	0.02	n/a	n/a	n/a
	5-5/8	(143)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.15	0.09	n/a	n/a	n/a			
E	6	(152)	0.60	0.57	0.54	0.57	0.51	0.44	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.16	0.10	n/a	n/a	n/a			
,	7	(178)	0.62	0.59	0.55	0.61	0.54	0.46	0.55	0.54	0.53	0.15	0.10	0.06	0.30	0.21	0.12	n/a	n/a	n/a			
	8	(203)	0.63	0.60	0.56	0.65	0.57	0.48	0.55	0.54	0.53	0.19	0.13	0.08	0.37	0.25	0.15	n/a	n/a	n/a			
Eิ	9	(229)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.22	0.15	0.09	0.44	0.30	0.18	n/a	n/a	n/a			
¢	10	(254)	0.66	0.62	0.57	0.74	0.63	0.51	0.57	0.55	0.54	0.26	0.18	0.11	0.52	0.35	0.21	n/a	n/a	n/a			
	11	(279)	0.68	0.64	0.58	0.79	0.67	0.53	0.57	0.56	0.54	0.30	0.20	0.12	0.60	0.40	0.24	n/a	n/a	n/a			
\pm	12	(305)	0.70	0.65	0.59	0.84	0.70	0.55	0.58	0.56	0.54	0.34	0.23	0.14	0.68	0.46	0.28	n/a	n/a	n/a			
$\stackrel{\otimes}{0}$	12-7/8	(327)	0.71	0.66	0.60	0.88	0.73	0.56	0.59	0.57	0.55	0.38	0.26	0.15	0.76	0.51	0.31	0.59	n/a	n/a			
c	13	(330)	0.71	0.66	0.60	0.89	0.73	0.56	0.59	0.57	0.55	0.39	0.26	0.16	0.77	0.52	0.31	0.59	n/a	n/a			
0	14	(356)	0.73	0.67	0.60	0.94	0.77	0.58	0.60	0.57	0.55	0.43	0.29	0.17	0.86	0.58	0.35	0.62	n/a	n/a			
$\stackrel{\text { ¢ }}{ }$	16	(406)	0.76	0.70	0.62	1.00	0.84	0.62	0.61	0.58	0.56	0.53	0.36	0.21	1.00	0.71	0.43	0.66	n/a	n/a			
$\stackrel{0}{0}$	16-1/4	(413)	0.77	0.70	0.62		0.85	0.63	0.61	0.58	0.56	0.54	0.36	0.22		0.73	0.44	0.66	0.58	n/a			
ᄃ్ర	18	(457)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.57	0.63	0.42	0.25		0.85	0.51	0.70	0.61	n/a			
$\stackrel{\omega}{0}$	20	(508)	0.83	0.75	0.65		0.99	0.70	0.64	0.60	0.57	0.73	0.50	0.30		0.99	0.60	0.74	0.65	n/a			
®	22	(559)	0.86	0.77	0.66		1.00	0.74	0.65	0.61	0.58	0.85	0.57	0.34		1.00	0.69	0.77	0.68	n/a			
山	24	(610)	0.90	0.80	0.68			0.78	0.66	0.63	0.59	0.97	0.65	0.39			0.78	0.81	0.71	n/a			
$\stackrel{\omega}{\infty}$	25-1/4	(641)	0.92	0.81	0.69			0.81	0.67	0.63	0.59	1.00	0.70	0.42			0.81	0.83	0.73	0.61			
O	26	(660)	0.93	0.82	0.69			0.82	0.68	0.64	0.60		0.74	0.44			0.82	0.84	0.74	0.62			
-	28	(711)	0.96	0.85	0.71			0.87	0.69	0.65	0.60		0.82	0.49			0.87	0.87	0.76	0.65			
©	30	(762)	0.99	0.87	0.72			0.91	0.70	0.66	0.61		0.91	0.55			0.91	0.90	0.79	0.67			
	36	(914)	1.00	0.94	0.77			1.00	0.74	0.69	0.63		1.00	0.72			1.00	0.99	0.87	0.73			
	>48	(1219)		1.00	0.86				0.83	0.75	0.68			1.00				1.00	1.00	0.84			

1 Linear interpolation not permitted.
2 Shaded area with reduced edge distance is permitted provided rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{e f} . f_{A V}$ is applicable when edge distance, $c<3^{*} h_{e f}$. If $c \geq 3^{*} h_{e f}$, then $f_{A V}=f_{A N}$.
5 Concrete thickness reduction factor in shear, f_{HV}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 36 - Load adjustment factors for \#10 rebar in uncracked concrete ${ }^{1,2,3}$

\#10 uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			Toward edgef_{RV}	\|	To and away from edgef_{RV}																		
Emb	nt hef	in. (mm)				$\begin{array}{\|c\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{gathered} 15 \\ (381) \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \end{gathered}$	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{gathered} \hline 15 \\ (381) \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \end{gathered}$	$\begin{gathered} \hline 11-1 / 4 \\ (286) \end{gathered}$	$\begin{gathered} 15 \\ (381) \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \end{gathered}$	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \end{gathered}$	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.22	0.16	0.09	n/a	n/a	n/a	0.02	0.01	0.00	0.03	0.02	0.01	n/a	n/a	n/a
	6-1/4	(159)	0.59	0.57	0.54	0.32	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a			
E	7	(178)	0.60	0.58	0.55	0.33	0.24	0.14	0.54	0.53	0.52	0.13	0.08	0.04	0.26	0.17	0.08	n/a	n/a	n/a			
\pm	8	(203)	0.62	0.59	0.55	0.36	0.25	0.15	0.55	0.54	0.52	0.16	0.10	0.05	0.31	0.20	0.10	n/a	n/a	n/a			
	9	(229)	0.63	0.60	0.56	0.38	0.27	0.16	0.55	0.54	0.52	0.19	0.12	0.06	0.38	0.24	0.11	n/a	n/a	n/a			
	10	(254)	0.65	0.61	0.57	0.40	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.07	0.42	0.29	0.13	n/a	n/a	n/a			
	11	(279)	0.66	0.62	0.57	0.43	0.31	0.18	0.57	0.55	0.53	0.25	0.16	0.08	0.44	0.33	0.15	n/a	n/a	n/a			
	12	(305)	0.68	0.63	0.58	0.45	0.32	0.19	0.57	0.55	0.53	0.29	0.19	0.09	0.47	0.38	0.17	n/a	n/a	n/a			
	13	(330)	0.69	0.64	0.59	0.48	0.34	0.20	0.58	0.56	0.54	0.33	0.21	0.10	0.49	0.39	0.20	n/a	n/a	n/a			
	14	(356)	0.71	0.66	0.59	0.51	0.36	0.21	0.59	0.56	0.54	0.36	0.24	0.11	0.52	0.41	0.22	n/a	n/a	n/a			
	14-1/4	(362)	0.71	0.66	0.60	0.51	0.37	0.22	0.59	0.56	0.54	0.37	0.24	0.11	0.53	0.41	0.23	0.59	n/a	n/a			
	15	(381)	0.72	0.67	0.60	0.54	0.38	0.22	0.59	0.57	0.54	0.40	0.26	0.12	0.55	0.43	0.24	0.60	n/a	n/a			
${ }^{\circ}$	16	(406)	0.74	0.68	0.61	0.57	0.40	0.24	0.60	0.57	0.54	0.45	0.29	0.13	0.57	0.44	0.27	0.62	n/a	n/a			
	17	(432)	0.75	0.69	0.61	0.60	0.43	0.25	0.60	0.58	0.55	0.49	0.32	0.15	0.60	0.46	0.29	0.64	n/a	n/a			
T	18	(457)	0.77	0.70	0.62	0.64	0.46	0.27	0.61	0.58	0.55	0.53	0.35	0.16	0.64	0.48	0.32	0.66	0.57	n/a			
-	20	(508)	0.80	0.72	0.63	0.71	0.51	0.30	0.62	0.59	0.55	0.62	0.40	0.19	0.71	0.52	0.37	0.70	0.60	n/a			
\%	22	(559)	0.83	0.74	0.65	0.78	0.56	0.33	0.63	0.60	0.56	0.72	0.47	0.22	0.78	0.56	0.39	0.73	0.63	n/a			
$\stackrel{\text { U }}{ }$	24	(610)	0.86	0.77	0.66	0.85	0.61	0.36	0.65	0.61	0.57	0.82	0.53	0.25	0.85	0.61	0.41	0.76	0.66	n/a			
©	26	(660)	0.89	0.79	0.67	0.92	0.66	0.39	0.66	0.62	0.57	0.92	0.60	0.28	0.92	0.66	0.43	0.79	0.69	n/a			
.	28	(711)	0.91	0.81	0.69	0.99	0.71	0.41	0.67	0.63	0.58	1.00	0.67	0.31	0.99	0.71	0.45	0.82	0.71	0.55			
\%	30	(762)	0.94	0.83	0.70	1.00	0.76	0.44	0.68	0.64	0.58		0.74	0.35	1.00	0.76	0.47	0.85	0.74	0.57			
	36	(914)	1.00	0.90	0.74		0.91	0.53	0.72	0.66	0.60		0.98	0.45		0.91	0.54	0.94	0.81	0.63			
	>48	(1219)		1.00	0.82		1.00	0.71	0.79	0.72	0.63		1.00	0.70		1.00	0.71	1.00	0.94	0.72			

Table 37 - Load adjustment factors for \#10 rebar in cracked concrete ${ }^{1,2,3}$

$\begin{gathered} \# 10 \\ \text { cracked concrete } \end{gathered}$			Spacing factor in tension $f_{\text {AN }}$			```Edge distance factor in tension f```			Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			Toward edge $f_{\text {RV }}$	\|	To and away from edge $f_{\text {RV }}$																		
Emb	nt $\mathrm{hef}^{\text {ef }}$	in. (mm)				$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \end{gathered}$	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ (635) \end{gathered}$	$\begin{gathered} 11-1 / 4 \\ (286) \end{gathered}$	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ (635) \end{gathered}$	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \end{gathered}$	$\begin{gathered} 25 \\ (635) \end{gathered}$	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (381) \end{gathered}$	$\begin{gathered} 25 \\ (635) \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.40	0.39	0.37	n/a	n/a	n/a	0.02	0.01	0.01	0.03	0.02	0.01	n/a	n/a	n/a
$\bar{\xi}$	6-1/4	(159)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a			
है	7	(178)	0.60	0.58	0.55	0.58	0.52	0.45	0.54	0.53	0.52	0.13	0.08	0.05	0.26	0.17	0.10	n/a	n/a	n/a			
\pm	8	(203)	0.62	0.59	0.55	0.62	0.55	0.46	0.55	0.54	0.53	0.16	0.10	0.06	0.32	0.21	0.12	n/a	n/a	n/a			
	9	(229)	0.63	0.60	0.56	0.66	0.57	0.48	0.55	0.54	0.53	0.19	0.12	0.07	0.38	0.25	0.15	n/a	n/a	n/a			
$\stackrel{\sim}{0}$	10	(254)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.22	0.14	0.09	0.44	0.29	0.17	n/a	n/a	n/a			
-	11	(279)	0.66	0.62	0.57	0.74	0.63	0.51	0.57	0.55	0.54	0.26	0.17	0.10	0.51	0.33	0.20	n/a	n/a	n/a			
.	12	(305)	0.68	0.63	0.58	0.78	0.66	0.53	0.57	0.55	0.54	0.29	0.19	0.11	0.58	0.38	0.22	n/a	n/a	n/a			
	13	(330)	0.69	0.64	0.59	0.82	0.69	0.54	0.58	0.56	0.54	0.33	0.21	0.13	0.66	0.43	0.25	n/a	n/a	n/a			
O	14	(356)	0.71	0.66	0.59	0.87	0.72	0.56	0.59	0.56	0.55	0.37	0.24	0.14	0.73	0.48	0.28	n/a	n/a	n/a			
5	14-1/4	(362)	0.71	0.66	0.60	0.88	0.73	0.56	0.59	0.57	0.55	0.38	0.25	0.15	0.75	0.49	0.29	0.59	n/a	n/a			
	15	(381)	0.72	0.67	0.60	0.91	0.75	0.57	0.59	0.57	0.55	0.41	0.26	0.16	0.82	0.53	0.31	0.61	n/a	n/a			
-	16	(406)	0.74	0.68	0.61	0.96	0.78	0.59	0.60	0.57	0.55	0.45	0.29	0.17	0.90	0.58	0.35	0.63	n/a	n/a			
©	17	(432)	0.75	0.69	0.61	1.00	0.81	0.61	0.60	0.58	0.55	0.49	0.32	0.19	0.98	0.64	0.38	0.64	n/a	n/a			
	18	(457)	0.77	0.70	0.62		0.85	0.62	0.61	0.58	0.56	0.54	0.35	0.21	1.00	0.70	0.41	0.66	0.57	n/a			
\bigcirc	20	(508)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.56	0.63	0.41	0.24		0.82	0.48	0.70	0.61	n/a			
O	22	(559)	0.83	0.74	0.65		0.98	0.69	0.63	0.60	0.57	0.72	0.47	0.28		0.94	0.56	0.73	0.63	n/a			
	24	(610)	0.86	0.77	0.66		1.00	0.73	0.65	0.61	0.58	0.82	0.54	0.32		1.00	0.63	0.77	0.66	n/a			
क	26	(660)	0.89	0.79	0.67			0.77	0.66	0.62	0.58	0.93	0.60	0.36			0.71	0.80	0.69	n/a			
.	28	(711)	0.91	0.81	0.69			0.81	0.67	0.63	0.59	1.00	0.68	0.40			0.80	0.83	0.72	0.60			
\%	30	(762)	0.94	0.83	0.70			0.85	0.68	0.64	0.60		0.75	0.44			0.85	0.86	0.74	0.62			
	36	(914)	1.00	0.90	0.74			0.97	0.72	0.66	0.62		0.98	0.58			0.97	0.94	0.81	0.68			
	> 48	(1219)		1.00	0.82			1.00	0.79	0.72	0.65		1.00	0.90			1.00	1.00	0.94	0.79			

[^8]2 Shaded area with reduced edge distance is permitted provided rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} h_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $\mathrm{c}<3^{*} h_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

HIT-HY 200 Adhesive with HAS Threaded Rod

Hilti HAS threaded rod

Figure 9 - Hilti HAS threaded rod installation conditions

		Uncracked concrete Cracked concrete		Dry concrete Water saturated concrete			Hammer drilling with carbide tipped drill bit Hilti TE-CD or TE-YD Hollow Drill Bit

Table 38 - Hilti HAS threaded rod specifications

Setting information		Symbol	Units	Nominal rod diameter, d							
		3/8		1/2	5/8	3/4	7/8	1	1-1/4		
Nominal bit diameter			d。	in.	7/16	9/16	3/4	7/8	1	1-1/8	1-3/8
Effective embedment	minimum	$\mathrm{h}_{\text {ef, min }}$	$\begin{array}{\|c\|} \hline \mathrm{in} . \\ (\mathrm{mm}) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 3-1 / 8 \\ (79) \end{array}$	$\begin{gathered} 3-1 / 2 \\ (89) \end{gathered}$	$\begin{gathered} \hline 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 4 \\ (102) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \end{array}$	
	maximum	$\mathrm{h}_{\text {et, max }}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{array}{\|l} \hline 7-1 / 2 \\ (191) \\ \hline \end{array}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 12-1 / 2 \\ (318) \end{array}$	$\begin{gathered} 15 \\ (381) \end{gathered}$	$\begin{array}{c\|} 17-1 / 2 \\ (445) \end{array}$	$\begin{gathered} 20 \\ (508) \end{gathered}$	$\begin{gathered} \hline 25 \\ (635) \\ \hline \end{gathered}$	
Diameter of fixture hole	through-set	\%	in.	1/2	5/8	13/16 ${ }^{1}$	15/161	1-1/8 ${ }^{1}$	1-1/4 ${ }^{1}$	1-1/2 ${ }^{1}$	
Diameter of fixture hole	preset	0	in.	7/16	9/16	11/16	13/16	15/16	1-1/8	1-3/8	
Installation torque		$\mathrm{T}_{\text {inst }}$	$\begin{array}{\|l\|} \hline \mathrm{ft}-\mathrm{lb} \\ \mathrm{Nm}) \\ \hline \end{array}$	$\begin{gathered} 15 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ (40) \\ \hline \end{gathered}$	$\begin{gathered} \hline 60 \\ (80) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 100 \\ (136) \end{array}$	$\begin{gathered} \hline 125 \\ (169) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 150 \\ (203) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 200 \\ (271) \\ \hline \end{array}$	
Minimum concrete thickness		$\mathrm{h}_{\text {min }}$	$\begin{array}{\|c\|} \hline \mathrm{in} . \\ (\mathrm{mm}) \\ \hline \end{array}$	$\begin{gathered} \mathrm{h}_{\mathrm{ef}}+1-1 / 4 \\ \left(\mathrm{~h}_{\mathrm{ef}}+30\right) \end{gathered}$		$\mathrm{h}_{\text {et }}+2 \mathrm{~d}_{\text {。 }}$					
Minimum edge distance		$\mathrm{C}_{\text {min }}$	$\begin{array}{\|c\|} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{array}$	$\begin{array}{\|c} \hline 1-3 / 4 \\ (45) \\ \hline \end{array}$	$\begin{gathered} 1-3 / 4 \\ (45) \\ \hline \end{gathered}$	$\begin{gathered} 2^{2} \\ (50)^{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 8^{2} \\ (55)^{2} \end{gathered}$	$\begin{gathered} 2-1 / 4^{2} \\ (60)^{2} \end{gathered}$	$\begin{array}{\|c} \hline 2-3 / 4^{2} \\ (70)^{2} \end{array}$	$\begin{array}{\|c} \hline 3-1 / 8^{2} \\ (80)^{2} \\ \hline \end{array}$	
Minimum anchor spacing		$\mathrm{S}_{\text {min }}$	$\begin{aligned} & \hline \mathrm{in} . \\ & (\mathrm{mm}) \end{aligned}$	$\begin{array}{\|c} \hline 1-7 / 8 \\ (48) \end{array}$	$\begin{gathered} 2-1 / 2 \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 4-3 / 4 \\ & (111) \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline 6-1 / 4 \\ (159) \\ \hline \end{array}$	

Figure 10 Hilti HAS threaded rods

Figure 11 Installation with (2) washers

1 Install using (2) washers. See Figure 11.
2 Edge distance of 1-3/4-inch (44mm) is permitted provided the installation torque is reduced to $0.30 \mathrm{~T}_{\text {inst }}$ for $5 \mathrm{~d}<\mathrm{s}<16-\mathrm{in}$. and to $0.5 \mathrm{~T}_{\text {inst }}$ for $\mathrm{s}>16-\mathrm{in}$.

Table 39 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for threaded rod in uncracked concrete ${ }^{1,2,3,4,5,6,7,7,8,9}$

Nominal anchor diameter in.	Effective embedment in. (mm)	Tension - $\Phi \mathrm{N}_{\mathrm{n}}$				Shear - $\Phi \mathrm{V}_{\mathrm{n}}$			
		$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$
3/8	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{aligned} & 2,855 \\ & (12.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,125 \\ & (13.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,610 \\ & (16.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,405 \\ & (19.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,075 \\ & (13.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,370 \\ & (15.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,890 \\ & (17.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,745 \\ & (21.1) \\ & \hline \end{aligned}$
	$\begin{gathered} 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{array}{r} 4,835 \\ (21.5) \\ \hline \end{array}$	$\begin{array}{r} 5,300 \\ (23.6) \\ \hline \end{array}$	$\begin{aligned} & 6,015 \\ & (26.8) \end{aligned}$	$\begin{aligned} & 6,260 \\ & (27.8) \\ & \hline \end{aligned}$	$\begin{gathered} 10,415 \\ (46.3) \\ \hline \end{gathered}$	$\begin{gathered} 11,410 \\ (50.8) \\ \hline \end{gathered}$	$\begin{array}{r} 12,950 \\ (57.6) \\ \hline \end{array}$	$\begin{gathered} 13,490 \\ (60.0) \\ \hline \end{gathered}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,445 \\ (33.1) \\ \hline \end{array}$	$\begin{aligned} & 7,790 \\ & (34.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 8,020 \\ (35.7) \\ \hline \end{array}$	$\begin{array}{r} 8,350 \\ (37.1) \\ \hline \end{array}$	$\begin{aligned} & 16,035 \\ & (71.3) \\ & \hline \end{aligned}$	$\begin{gathered} 16,780 \\ (74.6) \\ \hline \end{gathered}$	$\begin{aligned} & 17,270 \\ & (76.8) \\ & \hline \end{aligned}$	$\begin{gathered} 17,985 \\ (80.0) \\ \hline \end{gathered}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} 12,750 \\ (56.7) \\ \hline \end{gathered}$	$\begin{aligned} & 12,985 \\ & (57.8) \\ & \hline \end{aligned}$	$\begin{gathered} 13,365 \\ (59.5) \\ \hline \end{gathered}$	$\begin{gathered} 13,915 \\ (61.9) \\ \hline \end{gathered}$	$\begin{array}{r} 27,460 \\ (122.1) \\ \hline \end{array}$	$\begin{aligned} & 27,965 \\ & (124.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,785 \\ & (128.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,975 \\ & (133.3) \\ & \hline \end{aligned}$
1/2	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 3,555 \\ & (15.8) \end{aligned}$	$\begin{aligned} & 3,895 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 4,500 \\ & (20.0) \end{aligned}$	$\begin{aligned} & 5,510 \\ & (24.5) \end{aligned}$	$\begin{aligned} & \hline 7,660 \\ & (34.1) \end{aligned}$	$\begin{aligned} & 8,395 \\ & (37.3) \end{aligned}$	$\begin{aligned} & 9,690 \\ & (43.1) \end{aligned}$	$\begin{gathered} 11,870 \\ (52.8) \\ \hline \end{gathered}$
	$\begin{array}{r} 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{r} 7,445 \\ (33.1) \\ \hline \end{array}$	$\begin{aligned} & 8,155 \\ & (36.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,420 \\ & (41.9) \\ & \hline \end{aligned}$	$\begin{gathered} 11,135 \\ (49.5) \\ \hline \end{gathered}$	$\begin{gathered} 16,035 \\ (71.3) \\ \hline \end{gathered}$	$\begin{gathered} 17,570 \\ (78.2) \\ \hline \end{gathered}$	$\begin{gathered} 20,285 \\ (90.2) \\ \hline \end{gathered}$	$\begin{array}{r} 23,980 \\ (106.7) \\ \hline \end{array}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 11,465 \\ (51.0) \\ \hline \end{gathered}$	$\begin{array}{r} 12,560 \\ (55.9) \\ \hline \end{array}$	$\begin{gathered} 14,255 \\ (63.4) \\ \hline \end{gathered}$	$\begin{gathered} 14,845 \\ (66.0) \\ \hline \end{gathered}$	$\begin{aligned} & 24,690 \\ & (109.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,045 \\ & (120.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 30,700 \\ & (136.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,970 \\ & (142.2) \\ & \hline \end{aligned}$
	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & 22,665 \\ & (100.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 23,085 \\ & (102.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 23,755 \\ & (105.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 24,740 \\ & (110.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 48,820 \\ & (217.2) \end{aligned}$	$\begin{aligned} & 49,720 \\ & (221.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 51,170 \\ & (227.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 53,285 \\ & (237.0) \end{aligned}$
5/8	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{aligned} & 4,310 \\ & (19.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,720 \\ & (21.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,450 \\ & (24.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,675 \\ & (29.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,280 \\ & (41.3) \end{aligned}$	$\begin{gathered} 10,165 \\ (45.2) \\ \hline \end{gathered}$	$\begin{gathered} 11,740 \\ (52.2) \\ \hline \end{gathered}$	$\begin{array}{r} 14,380 \\ (64.0) \\ \hline \end{array}$
	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{gathered} 10,405 \\ (46.3) \\ \hline \end{gathered}$	$\begin{gathered} 11,400 \\ (50.7) \\ \hline \end{gathered}$	$\begin{gathered} 13,165 \\ (58.6) \\ \hline \end{gathered}$	$\begin{aligned} & 16,120 \\ & (71.7) \\ & \hline \end{aligned}$	$\begin{gathered} 22,415 \\ (99.7) \\ \hline \end{gathered}$	$\begin{aligned} & 24,550 \\ & (109.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,350 \\ & (126.1) \end{aligned}$	$\begin{aligned} & 34,720 \\ & (154.4) \\ & \hline \end{aligned}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} 16,020 \\ (71.3) \end{gathered}$	$\begin{gathered} 17,550 \\ (78.1) \\ \hline \end{gathered}$	$\begin{gathered} 20,265 \\ (90.1) \end{gathered}$	$\begin{aligned} & 23,195 \\ & (103.2) \end{aligned}$	$\begin{aligned} & 34,505 \\ & (153.5) \end{aligned}$	$\begin{aligned} & 37,800 \\ & (168.1) \end{aligned}$	$\begin{aligned} & 43,650 \\ & (194.2) \end{aligned}$	$\begin{aligned} & 49,955 \\ & (222.2) \end{aligned}$
	$\begin{gathered} 12-1 / 2 \\ (318) \\ \hline \end{gathered}$	$\begin{array}{r} 34,470 \\ (153.3) \\ \hline \end{array}$	$\begin{aligned} & 36,070 \\ & (160.4) \\ & \hline \end{aligned}$	$\begin{array}{r} 37,120 \\ (165.1) \\ \hline \end{array}$	$\begin{aligned} & 38,655 \\ & (171.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 74,245 \\ & (330.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 77,685 \\ & (345.6) \\ & \hline \end{aligned}$	$\begin{array}{r} 79,955 \\ (355.7) \\ \hline \end{array}$	$\begin{aligned} & 83,260 \\ & (370.4) \\ & \hline \end{aligned}$
3/4	$\begin{gathered} 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{aligned} & 5,105 \\ & (22.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,595 \\ & (24.9) \end{aligned}$	$\begin{aligned} & 6,460 \\ & (28.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,910 \\ & (35.2) \end{aligned}$	$\begin{gathered} 11,000 \\ (48.9) \\ \hline \end{gathered}$	$\begin{gathered} 12,050 \\ (53.6) \\ \hline \end{gathered}$	$\begin{array}{r} 13,915 \\ (61.9) \\ \hline \end{array}$	$\begin{gathered} 17,040 \\ (75.8) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 13,680 \\ (60.9) \\ \hline \end{gathered}$	$\begin{gathered} 14,985 \\ (66.7) \\ \hline \end{gathered}$	$\begin{gathered} 17,305 \\ (77.0) \\ \hline \end{gathered}$	$\begin{gathered} 21,190 \\ (94.3) \\ \hline \end{gathered}$	$\begin{aligned} & 29,460 \\ & (131.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32,275 \\ & (143.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 37,265 \\ & (165.8) \end{aligned}$	$\begin{aligned} & 45,645 \\ & (203.0) \\ & \hline \end{aligned}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 21,060 \\ (93.7) \\ \hline \end{gathered}$	$\begin{aligned} & 23,070 \\ & (102.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,640 \\ & (118.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 32,625 \\ (145.1) \\ \hline \end{array}$	$\begin{aligned} & 45,360 \\ & (201.8) \end{aligned}$	$\begin{aligned} & 49,690 \\ & (221.0) \end{aligned}$	$\begin{aligned} & 57,375 \\ & (255.2) \end{aligned}$	$\begin{aligned} & 70,270 \\ & (312.6) \\ & \hline \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 45,315 \\ & (201.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,640 \\ & (220.8) \end{aligned}$	$\begin{aligned} & 53,455 \\ & (237.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 55,665 \\ & (247.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 97,600 \\ & (434.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 106,915 \\ & (475.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 115,130 \\ & (512.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 119,895 \\ & (533.3) \\ & \hline \end{aligned}$
7/8	$\begin{gathered} 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{aligned} & 5,105 \\ & (22.7) \end{aligned}$	$\begin{aligned} & 5,595 \\ & (24.9) \end{aligned}$	$\begin{aligned} & 6,460 \\ & (28.7) \end{aligned}$	$\begin{aligned} & 7,910 \\ & (35.2) \end{aligned}$	$\begin{gathered} 11,000 \\ (48.9) \\ \hline \end{gathered}$	$\begin{gathered} 12,050 \\ (53.6) \\ \hline \end{gathered}$	$\begin{gathered} 13,915 \\ (61.9) \\ \hline \end{gathered}$	$\begin{gathered} 17,040 \\ (75.8) \\ \hline \end{gathered}$
	$\begin{aligned} & 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{gathered} 17,235 \\ (76.7) \\ \hline \end{gathered}$	$\begin{gathered} 18,885 \\ (84.0) \\ \hline \end{gathered}$	$\begin{gathered} 21,805 \\ (97.0) \\ \hline \end{gathered}$	$\begin{array}{r} 26,705 \\ (118.8) \\ \hline \end{array}$	$\begin{array}{r} 37,125 \\ (165.1) \\ \hline \end{array}$	$\begin{array}{r} 40,670 \\ (180.9) \\ \hline \end{array}$	$\begin{aligned} & 46,960 \\ & (208.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,515 \\ & (255.8) \\ & \hline \end{aligned}$
	$\begin{gathered} 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 26,540 \\ & (118.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 29,070 \\ (129.3) \\ \hline \end{array}$	$\begin{aligned} & \hline 33,570 \\ & (149.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 41,115 \\ & (182.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,160 \\ & (254.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 62,615 \\ & (278.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 72,300 \\ & (321.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 88,550 \\ & (393.9) \\ & \hline \end{aligned}$
	$\begin{gathered} 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{aligned} & 57,100 \\ & (254.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 62,550 \\ & (278.2) \end{aligned}$	$\begin{aligned} & 72,230 \\ & (321.3) \\ & \hline \end{aligned}$	$\begin{array}{r} 75,770 \\ (337.0) \\ \hline \end{array}$	$\begin{aligned} & 122,990 \\ & (547.1) \end{aligned}$	$\begin{aligned} & 134,730 \\ & (599.3) \end{aligned}$	$\begin{aligned} & 155,570 \\ & (692.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 163,190 \\ & (725.9) \\ & \hline \end{aligned}$
1	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & 6,240 \\ & (27.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,835 \\ & (30.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,895 \\ & (35.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,665 \\ & (43.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 13,440 \\ (59.8) \\ \hline \end{array}$	$\begin{gathered} 14,725 \\ (65.5) \\ \hline \end{gathered}$	$\begin{gathered} 17,000 \\ (75.6) \\ \hline \end{gathered}$	$\begin{gathered} 20,820 \\ (92.6) \\ \hline \end{gathered}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 21,060 \\ (93.7) \\ \hline \end{gathered}$	$\begin{aligned} & 23,070 \\ & (102.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,640 \\ & (118.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,625 \\ & (145.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,360 \\ & (201.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,690 \\ & (221.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,375 \\ & (255.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 70,270 \\ & (312.6) \\ & \hline \end{aligned}$
	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{aligned} & 32,425 \\ & (144.2) \end{aligned}$	$\begin{aligned} & 35,520 \\ & (158.0) \end{aligned}$	$\begin{aligned} & 41,015 \\ & (182.4) \end{aligned}$	$\begin{aligned} & 50,230 \\ & (223.4) \end{aligned}$	$\begin{aligned} & 69,835 \\ & (310.6) \end{aligned}$	$\begin{aligned} & 76,500 \\ & (340.3) \end{aligned}$	$\begin{aligned} & 88,335 \\ & (392.9) \end{aligned}$	$\begin{gathered} 108,190 \\ (481.3) \end{gathered}$
	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$	$\begin{array}{r} 69,765 \\ (310.3) \\ \hline \end{array}$	$\begin{aligned} & 76,425 \\ & (340.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 88,245 \\ & (392.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 98,960 \\ & (440.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 150,265 \\ & (668.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 164,605 \\ & (732.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 190,070 \\ & (845.5) \\ & \hline \end{aligned}$	$\begin{gathered} 213,150 \\ (948.1) \\ \hline \end{gathered}$
1-1/4	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8,720 \\ & (38.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,555 \\ & (42.5) \\ & \hline \end{aligned}$	$\begin{gathered} 11,030 \\ (49.1) \\ \hline \end{gathered}$	$\begin{gathered} 13,510 \\ (60.1) \\ \hline \end{gathered}$	$\begin{gathered} 18,785 \\ (83.6) \\ \hline \end{gathered}$	$\begin{gathered} 20,575 \\ (91.5) \\ \hline \end{gathered}$	$\begin{aligned} & 23,760 \\ & (105.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29,100 \\ & (129.4) \\ & \hline \end{aligned}$
	$\begin{gathered} 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{aligned} & 29,430 \\ & (130.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,240 \\ & (143.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,230 \\ & (165.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,595 \\ & (202.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 63,395 \\ & (282.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 69,445 \\ & (308.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80,185 \\ & (356.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 98,205 \\ & (436.8) \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 45,315 \\ & (201.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,640 \\ & (220.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,320 \\ & (255.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 70,200 \\ & (312.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 97,600 \\ & (434.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 106,915 \\ & (475.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 123,455 \\ & (549.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 151,200 \\ & (672.6) \\ & \hline \end{aligned}$
	$\begin{gathered} 25 \\ (635) \\ \hline \end{gathered}$	$\begin{aligned} & 97,500 \\ & (433.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 106,805 \\ & (475.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 123,330 \\ & (548.6) \\ & \hline \end{aligned}$	$\begin{gathered} 151,045 \\ (671.9) \\ \hline \end{gathered}$	$\begin{gathered} 210,000 \\ (934.1) \\ \hline \end{gathered}$	$\begin{aligned} & 230,045 \\ & (1023.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 265,630 \\ & (1181.6) \\ & \hline \end{aligned}$	$\begin{array}{r} 325,330 \\ (1447.1) \\ \hline \end{array}$

1 See section 3.1.8 for explanation on development of load values.
2 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables 42-55 as necessary to the above values. Compare to the steel values in table 41 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B : Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry and water saturated concrete conditions.
7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_{a} as follows:
For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For all-lightweight, $\lambda_{\mathrm{a}}=0.45$.
9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 40 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for threaded rod in cracked concrete ${ }^{1,2,3,4,5,6,7,8,9}$

Nominal anchor diameter in.	Effective embedment in. (mm)	Tension - $\Phi \mathrm{N}_{\mathrm{n}}$				Shear - $\Phi \mathrm{V}_{\mathrm{n}}$			
		$\begin{gathered} f_{\mathrm{c}}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$\begin{gathered} 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 1,900 \\ (8.5) \\ \hline \end{gathered}$	$\begin{gathered} 1,935 \\ (8.6) \\ \hline \end{gathered}$	$\begin{gathered} 1,990 \\ (8.9) \\ \hline \end{gathered}$	$\begin{gathered} 2,075 \\ (9.2) \\ \hline \end{gathered}$	$\begin{gathered} 2,045 \\ (9.1) \\ \hline \end{gathered}$	$\begin{gathered} 2,085 \\ (9.3) \\ \hline \end{gathered}$	$\begin{gathered} 2,145 \\ (9.5) \\ \hline \end{gathered}$	$\begin{gathered} 2,235 \\ (9.9) \\ \hline \end{gathered}$
	$\begin{gathered} 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 2,700 \\ & (12.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,750 \\ & (12.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,830 \\ & (12.6) \end{aligned}$	$\begin{aligned} & 2,950 \\ & (13.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,815 \\ (25.9) \\ \hline \end{array}$	$\begin{aligned} & 5,925 \\ & (26.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,095 \\ & (27.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,350 \\ & (28.2) \end{aligned}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{r} 3,600 \\ (16.0) \\ \hline \end{array}$	$\begin{aligned} & 3,665 \\ & (16.3) \end{aligned}$	$\begin{array}{r} 3,775 \\ (16.8) \end{array}$	$\begin{aligned} & 3,930 \\ & (17.5) \end{aligned}$	$\begin{array}{r} 7,755 \\ (34.5) \\ \hline \end{array}$	$\begin{array}{r} 7,900 \\ (35.1) \\ \hline \end{array}$	$\begin{array}{r} 8,130 \\ (36.2) \\ \hline \end{array}$	$\begin{aligned} & 8,465 \\ & (37.7) \end{aligned}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{r} 6,000 \\ (26.7) \\ \hline \end{array}$	$\begin{aligned} & 6,110 \\ & (27.2) \end{aligned}$	$\begin{aligned} & 6,290 \\ & (28.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,550 \\ & (29.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,925 \\ & (57.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,165 \\ & (58.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,550 \\ & (60.3) \\ & \hline \end{aligned}$	$\begin{array}{r} 14,110 \\ (62.8) \\ \hline \end{array}$
1/2	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 2,520 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 2,760 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 3,185 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 3,480 \\ & (15.5) \end{aligned}$	$\begin{aligned} & 5,425 \\ & (24.1) \end{aligned}$	$\begin{aligned} & 5,945 \\ & (26.4) \end{aligned}$	$\begin{aligned} & 6,865 \\ & (30.5) \end{aligned}$	$\begin{aligned} & \hline 7,490 \\ & (33.3) \\ & \hline \end{aligned}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,215 \\ & (23.2) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,310 \\ (23.6) \\ \hline \end{array}$	$\begin{array}{r} 5,465 \\ (24.3) \\ \hline \end{array}$	$\begin{aligned} & 5,690 \\ & (25.3) \\ & \hline \end{aligned}$	$\begin{gathered} 11,230 \\ (50.0) \\ \hline \end{gathered}$	$\begin{gathered} 11,440 \\ (50.9) \\ \hline \end{gathered}$	$\begin{gathered} 11,770 \\ (52.4) \\ \hline \end{gathered}$	$\begin{gathered} 12,260 \\ (54.5) \\ \hline \end{gathered}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{aligned} & 6,955 \\ & (30.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,080 \\ (31.5) \\ \hline \end{array}$	$\begin{array}{r} 7,290 \\ (32.4) \\ \hline \end{array}$	$\begin{array}{r} 7,590 \\ (33.8) \\ \hline \end{array}$	$\begin{gathered} 14,975 \\ (66.6) \\ \hline \end{gathered}$	$\begin{gathered} 15,250 \\ (67.8) \\ \hline \end{gathered}$	$\begin{aligned} & 15,695 \\ & (69.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 16,345 \\ & (72.7) \\ & \hline \end{aligned}$
	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{gathered} 11,590 \\ (51.6) \\ \hline \end{gathered}$	$\begin{gathered} 11,800 \\ (52.5) \\ \hline \end{gathered}$	$\begin{aligned} & 12,145 \\ & (54.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 12,650 \\ (56.3) \\ \hline \end{array}$	$\begin{array}{r} 24,960 \\ (111.0) \\ \hline \end{array}$	$\begin{aligned} & 25,420 \\ & (113.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 26,160 \\ (116.4) \\ \hline \end{array}$	$\begin{aligned} & 27,245 \\ & (121.2) \\ & \hline \end{aligned}$
5/8	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{aligned} & 3,050 \\ & (13.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,345 \\ & (14.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,860 \\ & (17.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,730 \\ & (21.0) \end{aligned}$	$\begin{aligned} & 6,575 \\ & (29.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,200 \\ & (32.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 8,315 \\ (37.0) \\ \hline \end{array}$	$\begin{aligned} & 10,185 \\ & (45.3) \\ & \hline \end{aligned}$
	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{array}{r} 7,370 \\ (32.8) \\ \hline \end{array}$	$\begin{aligned} & 8,075 \\ & (35.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,805 \\ & (39.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,170 \\ & (40.8) \\ & \hline \end{aligned}$	$\begin{gathered} 15,875 \\ (70.6) \\ \hline \end{gathered}$	$\begin{gathered} 17,390 \\ (77.4) \\ \hline \end{gathered}$	$\begin{gathered} 18,960 \\ (84.3) \\ \hline \end{gathered}$	$\begin{aligned} & 19,745 \\ & (87.8) \\ & \hline \end{aligned}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} 11,200 \\ (49.8) \\ \hline \end{gathered}$	$\begin{gathered} 11,405 \\ (50.7) \end{gathered}$	$\begin{aligned} & 11,740 \\ & (52.2) \end{aligned}$	$\begin{aligned} & 12,225 \\ & (54.4) \end{aligned}$	$\begin{aligned} & 24,120 \\ & (107.3) \end{aligned}$	$\begin{aligned} & 24,565 \\ & (109.3) \end{aligned}$	$\begin{aligned} & 25,280 \\ & (112.5) \end{aligned}$	$\begin{aligned} & 26,330 \\ & (117.1) \end{aligned}$
	$\begin{gathered} 12-1 / 2 \\ (318) \\ \hline \end{gathered}$	$\begin{gathered} 18,665 \\ (83.0) \\ \hline \end{gathered}$	$\begin{array}{r} 19,010 \\ (84.6) \\ \hline \end{array}$	$\begin{array}{r} 19,565 \\ (87.0) \\ \hline \end{array}$	$\begin{gathered} 20,375 \\ (90.6) \\ \hline \end{gathered}$	$\begin{aligned} & 40,205 \\ & (178.8) \\ & \hline \end{aligned}$	$\begin{array}{r} 40,940 \\ (182.1) \\ \hline \end{array}$	$\begin{array}{r} 42,135 \\ (187.4) \\ \hline \end{array}$	$\begin{array}{r} 43,880 \\ (195.2) \\ \hline \end{array}$
3/4	$\begin{gathered} 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{aligned} & 3,620 \\ & (16.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,965 \\ & (17.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,575 \\ & (20.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,605 \\ & (24.9) \end{aligned}$	$\begin{aligned} & 7,790 \\ & (34.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,535 \\ & (38.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,855 \\ & (43.8) \\ & \hline \end{aligned}$	$\begin{gathered} 12,070 \\ (53.7) \end{gathered}$
	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,690 \\ & (43.1) \end{aligned}$	$\begin{gathered} 10,615 \\ (47.2) \\ \hline \end{gathered}$	$\begin{aligned} & 12,255 \\ & (54.5) \\ & \hline \end{aligned}$	$\begin{gathered} 14,215 \\ (63.2) \\ \hline \end{gathered}$	$\begin{gathered} 20,870 \\ (92.8) \\ \hline \end{gathered}$	$\begin{aligned} & 22,860 \\ & (101.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,395 \\ & (117.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 30,620 \\ & (136.2) \\ & \hline \end{aligned}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 14,920 \\ (66.4) \\ \hline \end{gathered}$	$\begin{aligned} & 16,340 \\ & (72.7) \\ & \hline \end{aligned}$	$\begin{gathered} 18,205 \\ (81.0) \\ \hline \end{gathered}$	$\begin{aligned} & 18,955 \\ & (84.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,130 \\ & (142.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,195 \\ & (156.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 39,205 \\ & (174.4) \end{aligned}$	$\begin{aligned} & 40,830 \\ & (181.6) \\ & \hline \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{array}{r} 28,945 \\ (128.8) \\ \hline \end{array}$	$\begin{aligned} & 29,480 \\ & (131.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30,340 \\ & (135.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,595 \\ & (140.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 62,345 \\ & (277.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 63,490 \\ & (282.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 65,345 \\ & (290.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 68,050 \\ & (302.7) \\ & \hline \end{aligned}$
7/8	$\begin{gathered} 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{aligned} & 3,620 \\ & (16.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,965 \\ & (17.6) \end{aligned}$	$\begin{aligned} & 4,575 \\ & (20.4) \end{aligned}$	$\begin{aligned} & 5,605 \\ & (24.9) \end{aligned}$	$\begin{aligned} & \hline 7,790 \\ & (34.7) \end{aligned}$	$\begin{aligned} & 8,535 \\ & (38.0) \end{aligned}$	$\begin{aligned} & 9,855 \\ & (43.8) \end{aligned}$	$\begin{gathered} 12,070 \\ (53.7) \end{gathered}$
	$\begin{aligned} & 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{aligned} & 12,210 \\ & (54.3) \\ & \hline \end{aligned}$	$\begin{gathered} 13,375 \\ (59.5) \\ \hline \end{gathered}$	$\begin{gathered} 15,445 \\ (68.7) \\ \hline \end{gathered}$	$\begin{gathered} 18,915 \\ (84.1) \\ \hline \end{gathered}$	$\begin{aligned} & 26,300 \\ & (117.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,810 \\ & (128.2) \end{aligned}$	$\begin{aligned} & 33,265 \\ & (148.0) \end{aligned}$	$\begin{aligned} & 40,740 \\ & (181.2) \end{aligned}$
	$\begin{gathered} 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{array}{r} 18,800 \\ (83.6) \\ \hline \end{array}$	$\begin{array}{r} 20,590 \\ (91.6) \\ \hline \end{array}$	$\begin{array}{r} 23,780 \\ (105.8) \\ \hline \end{array}$	$\begin{array}{r} 26,415 \\ (117.5) \\ \hline \end{array}$	$\begin{aligned} & 40,490 \\ & (180.1) \end{aligned}$	$\begin{aligned} & 44,355 \\ & (197.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 51,215 \\ & (227.8) \\ & \hline \end{aligned}$	$\begin{array}{r} 56,895 \\ (253.1) \\ \hline \end{array}$
	$\begin{gathered} 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{aligned} & 40,335 \\ & (179.4) \end{aligned}$	$\begin{aligned} & 41,080 \\ & (182.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 42,280 \\ & (188.1) \end{aligned}$	$\begin{aligned} & 44,025 \\ & (195.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 86,880 \\ & (386.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 88,475 \\ & (393.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 91,060 \\ & (405.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 94,830 \\ & (421.8) \\ & \hline \end{aligned}$
1	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4,420 \\ & (19.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,840 \\ & (21.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,590 \\ & (24.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,845 \\ & (30.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,520 \\ & (42.3) \\ & \hline \end{aligned}$	$\begin{gathered} 10,430 \\ (46.4) \\ \hline \end{gathered}$	$\begin{aligned} & 12,040 \\ & (53.6) \\ & \hline \end{aligned}$	$\begin{gathered} 14,750 \\ (65.6) \\ \hline \end{gathered}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{gathered} 14,920 \\ (66.4) \\ \hline \end{gathered}$	$\begin{aligned} & 16,340 \\ & (72.7) \\ & \hline \end{aligned}$	$\begin{gathered} 18,870 \\ (83.9) \\ \hline \end{gathered}$	$\begin{aligned} & 23,110 \\ & (102.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,130 \\ & (142.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,195 \\ & (156.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 40,640 \\ & (180.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,775 \\ & (221.4) \\ & \hline \end{aligned}$
	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{aligned} & 22,965 \\ & (102.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25,160 \\ & (111.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,050 \\ & (129.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,440 \\ & (157.6) \end{aligned}$	$\begin{aligned} & 49,465 \\ & (220.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 54,190 \\ & (241.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 62,570 \\ & (278.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 76,330 \\ & (339.5) \\ & \hline \end{aligned}$
	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$	$\begin{aligned} & 49,415 \\ & (219.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 54,135 \\ & (240.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 56,720 \\ & (252.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 59,065 \\ & (262.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 106,435 \\ & (473.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 116,595 \\ & (518.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 122,160 \\ & (543.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 127,215 \\ & (565.9) \\ & \hline \end{aligned}$
1-1/4	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & 6,175 \\ & (27.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,765 \\ & (30.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,815 \\ & (34.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,570 \\ & (42.6) \\ & \hline \end{aligned}$	$\begin{gathered} 13,305 \\ (59.2) \\ \hline \end{gathered}$	$\begin{gathered} 14,575 \\ (64.8) \\ \hline \end{gathered}$	$\begin{gathered} 16,830 \\ (74.9) \\ \hline \end{gathered}$	$\begin{gathered} 20,610 \\ (91.7) \\ \hline \end{gathered}$
	$\begin{gathered} 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 20,850 \\ (92.7) \\ \hline \end{gathered}$	$\begin{aligned} & 22,840 \\ & (101.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,370 \\ & (117.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,295 \\ & (143.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 44,905 \\ & (199.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,190 \\ & (218.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 56,800 \\ & (252.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 69,565 \\ & (309.4) \\ & \hline \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 32,095 \\ & (142.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,160 \\ & (156.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 40,600 \\ & (180.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,725 \\ & (221.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 69,135 \\ & (307.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 75,730 \\ & (336.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 87,445 \\ & (389.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 107,100 \\ & (476.4) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 25 \\ (635) \\ \hline \end{gathered}$	$\begin{aligned} & 69,060 \\ & (307.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 75,655 \\ & (336.5) \end{aligned}$	$\begin{aligned} & 87,360 \\ & (388.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 96,120 \\ & (427.6) \\ & \hline \end{aligned}$	$\begin{gathered} 148,750 \\ (661.7) \\ \hline \end{gathered}$	$\begin{aligned} & 162,945 \\ & (724.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 188,155 \\ & (837.0) \\ & \hline \end{aligned}$	$\begin{gathered} 207,030 \\ (920.9) \\ \hline \end{gathered}$

1 See section 3.1.8 for explanation on development of load values.
2 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables $42-55$ as necessary to the above values. Compare to the steel values in table 41 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B : Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry and water saturated concrete conditions.
7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_{a} as follows: For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For all-lightweight, $\lambda_{\mathrm{a}}=0.45$.
9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: $3 / 8$-in diameter $-\alpha_{\text {seis }}=0.66$ $1 / 2$-in, $5 / 8$-in, and $1-1 / 4$-in diameter $-\alpha_{\text {seis }}=0.74$
$3 / 4-$ in and $7 / 8$-in diameter $-\alpha_{\text {seis }}=0.75$
1 -in diameter $-\alpha_{\text {seis }}=0.71$
See section 3.1.8 for additional information on seismic applications.

Table 41 - Steel design strength for Hilti HAS threaded rods for use with ACI 318-14 Chapter 17

	HAS-V-36 / HAS-V-36 HDG ASTM F1554 Gr. 55 ${ }^{4,5}$			HAS-E-55 / HAS-E-55 HDGASTM F1554 Gr. $55^{4,5,6}$			HAS-B-105 and HAS-B-105 HDG ASTM A193 B7 and ASTM F 1554 Gr. 105^{4}			HAS-R stainless steel ASTM F593 ($3 / 8$-in to $1-\mathrm{in})^{5}$ ASTM A193 (1-1/8-in to 2-in) ${ }^{4}$		
Nominal anchor diameter in.	Tensile $\Phi \mathrm{N}_{\mathrm{s}}$ lb (kN)	$\begin{gathered} \text { Shear }^{2} \\ \Phi V_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{3}$ $\Phi V_{\text {sa,eq }}$ lb (kN)	Tensile ${ }^{1}$ $\Phi \mathrm{N}_{\mathrm{sa}}$ lb (kN)	$\begin{gathered} \text { Shear² }^{2} \\ \Phi V_{\mathrm{sa}} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{3}$ $\Phi V_{\text {saea }}$ lb (kN)	Tensile ${ }^{1}$ $\Phi N_{\text {sa }}$ lb (kN)	$\begin{gathered} S h e a r^{2} \\ \Phi V_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{3}$ $\Phi V_{\text {sa,eq }}$ lb (kN)	Tensile ${ }^{1}$ $\Phi \mathrm{N}_{\mathrm{s}}$ lb (kN)	$\begin{gathered} S_{S e a r^{2}} \\ \Phi V_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{3}$ Φ V sa,eq lb (kN)
3/8	$\begin{aligned} & 3,370 \\ & (15.0) \end{aligned}$	$\begin{aligned} & \hline 1,750 \\ & (7.8) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,050 \\ (4.7) \end{gathered}$	$\begin{aligned} & 4,360 \\ & (19.4) \end{aligned}$	$\begin{aligned} & \hline 2,270 \\ & (10.1) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,590 \\ (7.1) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7,270 \\ & (32.3) \end{aligned}$	$\begin{aligned} & \hline 3,780 \\ & (16.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,645 \\ & (11.8) \end{aligned}$	$\begin{aligned} & 5,040 \\ & (22.4) \end{aligned}$	$\begin{aligned} & \hline 2,790 \\ & (12.4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,955 \\ (8.7) \\ \hline \end{gathered}$
1/2	$\begin{aligned} & 6,175 \\ & (27.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,210 \\ & (14.3) \end{aligned}$	$\begin{gathered} \hline 1,925 \\ (8.6) \end{gathered}$	$\begin{aligned} & 7,985 \\ & (35.5) \end{aligned}$	$\begin{aligned} & 4,150 \\ & (18.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,905 \\ & (12.9) \\ & \hline \end{aligned}$	$\begin{gathered} 13,305 \\ (59.2) \end{gathered}$	$\begin{aligned} & 6,920 \\ & (30.8) \end{aligned}$	$\begin{aligned} & 4,845 \\ & (21.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,225 \\ & (41.0) \end{aligned}$	$\begin{aligned} & 5,110 \\ & (22.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,575 \\ & (15.9) \\ & \hline \end{aligned}$
5/8	$\begin{aligned} & 9,835 \\ & (43.7) \end{aligned}$	$\begin{aligned} & 5,110 \\ & (22.7) \end{aligned}$	$\begin{aligned} & 3,065 \\ & (13.6) \end{aligned}$	$\begin{aligned} & \hline 12,715 \\ & (56.6) \end{aligned}$	$\begin{aligned} & 6,610 \\ & (29.4) \end{aligned}$	$\begin{aligned} & 4,625 \\ & (20.6) \end{aligned}$	$\begin{gathered} \hline 21,190 \\ (94.3) \end{gathered}$	$\begin{aligned} & 11,020 \\ & (49.0) \end{aligned}$	$\begin{aligned} & \hline 7,715 \\ & (34.3) \end{aligned}$	$\begin{gathered} 14,690 \\ (65.3) \end{gathered}$	$\begin{aligned} & 8,135 \\ & (36.2) \end{aligned}$	$\begin{aligned} & 5,695 \\ & (25.3) \end{aligned}$
3/4	$\begin{gathered} \hline 14,550 \\ (64.7) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7,565 \\ & (33.7) \end{aligned}$	$\begin{aligned} & 4,540 \\ & (20.2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 18,820 \\ (83.7) \end{gathered}$	$\begin{aligned} & \hline 9,785 \\ & (43.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,850 \\ & (30.5) \end{aligned}$	$\begin{aligned} & \hline 31,360 \\ & (139.5) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16,310 \\ (72.6) \\ \hline \end{gathered}$	$\begin{aligned} & 11,415 \\ & (50.8) \end{aligned}$	$\begin{gathered} \hline 18,485 \\ (82.2) \end{gathered}$	$\begin{gathered} \hline 10,235 \\ (45.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7,165 \\ & (31.9) \\ & \hline \end{aligned}$
7/8	$\begin{gathered} \hline 20,085 \\ (89.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10,445 \\ (46.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6,265 \\ & (27.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25,975 \\ & (115.5) \\ & \hline \end{aligned}$	$\begin{gathered} 13,505 \\ (60.1) \\ \hline \end{gathered}$	$\begin{aligned} & 9,455 \\ & (42.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43,285 \\ & (192.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22,510 \\ & (100.1) \\ & \hline \end{aligned}$	$\begin{gathered} 15,755 \\ (70.1) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 25,510 \\ & (113.5) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 14,125 \\ (62.8) \\ \hline \end{gathered}$	$\begin{aligned} & 9,890 \\ & (44.0) \\ & \hline \end{aligned}$
1	$\begin{aligned} & \hline 26,350 \\ & (117.2) \\ & \hline \end{aligned}$	$\begin{gathered} 13,700 \\ (60.9) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8,220 \\ & (36.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 34,075 \\ & (151.6) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 17,720 \\ (78.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12,405 \\ (55.2) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 56,785 \\ & (252.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29,530 \\ & (131.4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 20,670 \\ (91.9) \end{gathered}$	$\begin{aligned} & \hline 33,465 \\ & (148.9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 18,535 \\ (82.4) \\ \hline \end{gathered}$	$\begin{aligned} & 12,975 \\ & (57.7) \\ & \hline \end{aligned}$
1-1/4	$\begin{aligned} & \hline 42,160 \\ & (187.5) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 21,920 \\ (97.5) \\ \hline \end{gathered}$	$\begin{gathered} 13,150 \\ (58.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 54,515 \\ & (242.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28,345 \\ & (126.1) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 19,840 \\ (88.3) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 90,855 \\ & (404.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 47,245 \\ & (210.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33,070 \\ & (147.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41,430 \\ & (184.3) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 21,545 \\ (95.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12,925 \\ (57.5) \\ \hline \end{gathered}$

1 Tensile $=\phi \mathrm{A}_{\text {se, }} \mathrm{f}_{\text {uta }}$ as noted in ACI 318-14 17.4.1.2
2 Shear $=\phi 0.60 \mathrm{~A}_{\text {se, }} \mathrm{f}_{\text {uta }}$ as noted in $\mathrm{ACl} 318-14$ 17.5.1.2b.
3 Seismic Shear $=\alpha_{v, \text { seis }} \phi V_{\text {sa }}$: Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications.
4 HAS-V, HAS-E (3/8-in to $1-1 / 4-\mathrm{in}$), HAS-B, and HAS-R (Class $1 ; 1-1 / 4-\mathrm{in}$) threaded rods are considered ductile steel elements (including HDG rods).
5 HAS-R (CW1 and CW2; 3/8-in to $1-\mathrm{in}$) threaded rods are considered brittle steel elements.
6 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Table 42 - Load adjustment factors for 3/8-in. diameter threaded rods in uncracked concrete ${ }^{1,2,3}$

3/8-in. uncracked concrete			Spacing factor in tension\qquad $f_{A N}$				\qquad				Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$ f_{HV}							
			Toward edgef_{RV}	\|	To and away from edgef_{RV}																									
Emb	$\begin{aligned} & \text { oedment } \\ & h_{\text {ef }} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$					$\begin{array}{\|c} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 7-1 / 2 \\ (191) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \\ \hline \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \end{array}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{array}{\|l} \hline 7-1 / 2 \\ (191) \end{array}$	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \end{array} \right\rvert\,$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{array}{\|l\|} \hline 7-1 / 2 \\ (191) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \\ \hline \end{array}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.35	0.28	0.22	0.13	n/a	n/a	n/a	n/a	0.23	0.07	0.05	0.03	0.35	0.14	0.09	0.05	n/a	n/a	n/a	n/a
	1-7/8	(48)	0.58	0.58	0.57	0.54	0.36	0.29	0.22	0.13	0.57	0.53	0.52	0.52	0.25	0.08	0.05	0.03	0.36	0.16	0.10	0.06	n/a	n/a	n/a	n/a				
E	2	(51)	0.59	0.59	0.57	0.54	0.37	0.30	0.23	0.13	0.57	0.53	0.52	0.52	0.28	0.09	0.06	0.03	0.37	0.17	0.11	0.07	n/a	n/a	n/a	n/a				
	3	(76)	0.63	0.63	0.61	0.57	0.48	0.36	0.28	0.16	0.61	0.55	0.54	0.53	0.51	0.16	0.10	0.06	0.48	0.32	0.21	0.12	n/a	n/a	n/a	n/a				
	3-5/8	(92)	0.66	0.66	0.63	0.58	0.56	0.41	0.31	0.18	0.63	0.56	0.54	0.53	0.68	0.21	0.14	0.08	0.56	0.41	0.27	0.16	0.72	n/a	n/a	n/a				
E	4	(102)	0.68	0.68	0.65	0.59	0.62	0.44	0.33	0.19	0.64	0.57	0.55	0.53	0.79	0.24	0.16	0.09	0.62	0.44	0.32	0.19	0.75	n/a	n/a	n/a				
¢	4-5/8	(117)	0.71	0.71	0.67	0.60	0.71	0.49	0.36	0.21	0.66	0.58	0.56	0.54	0.98	0.30	0.20	0.12	0.71	0.49	0.36	0.21	0.81	0.55	n/a	n/a				
등	5	(127)	0.72	0.72	0.69	0.61	0.77	0.52	0.38	0.22	0.68	0.58	0.56	0.54	1.00	0.34	0.22	0.13	0.77	0.52	0.38	0.22	0.84	0.57	n/a	n/a				
\%	5-3/4	(146)	0.76	0.76	0.71	0.63	0.89	0.59	0.43	0.25	0.70	0.59	0.57	0.55		0.42	0.27	0.16	0.89	0.59	0.43	0.25	0.91	0.61	0.53	n/a				
$\stackrel{ \pm}{ \pm}$	6	(152)	0.77	0.77	0.72	0.63	0.93	0.62	0.45	0.26	0.71	0.60	0.57	0.55		0.45	0.29	0.17	0.93	0.62	0.45	0.26	0.92	0.63	0.54	n/a				
$\stackrel{\square}{0}$	7	(178)	0.81	0.81	0.76	0.66	1.00	0.72	0.53	0.30	0.75	0.61	0.59	0.56		0.57	0.37	0.21	1.00	0.72	0.53	0.30	1.00	0.68	0.58	n/a				
\bigcirc	8	(203)	0.86	0.86	0.80	0.68		0.82	0.60	0.35	0.79	0.63	0.60	0.57		0.69	0.45	0.26		0.82	0.60	0.35		0.72	0.63	n/a				
$\stackrel{\square}{\circ}$	8-3/4	(222)	0.89	0.89	0.82	0.69		0.90	0.66	0.38	0.81	0.64	0.61	0.57		0.79	0.51	0.30		0.90	0.66	0.38		0.76	0.65	0.55				
$\stackrel{0}{0}$	9	(229)	0.90	0.90	0.83	0.70		0.93	0.68	0.39	0.82	0.65	0.61	0.58		0.83	0.54	0.31		0.93	0.68	0.39		0.77	0.66	0.55				
-	10	(254)	0.95	0.95	0.87	0.72		1.00	0.75	0.43	0.86	0.66	0.62	0.59		0.97	0.63	0.37		1.00	0.75	0.43		0.81	0.70	0.58				
\bigcirc	11	(279)	0.99	0.99	0.91	0.74			0.83	0.48	0.89	0.68	0.63	0.59		1.00	0.72	0.42			0.83	0.48		0.85	0.73	0.61				
\triangle	12	(305)	1.00	1.00	0.94	0.77			0.90	0.52	0.93	0.70	0.65	0.60			0.83	0.48			0.90	0.52		0.88	0.77	0.64				
믈	14	(356)		1.00	1.00	0.81			1.00	0.61	1.00	0.73	0.67	0.62			1.00	0.61			1.00	0.61		0.96	0.83	0.69				
क	16	(406)				0.86				0.70		0.76	0.70	0.64				0.74				0.70		1.00	0.88	0.74				
O	18	(457)				0.90				0.78		0.79	0.72	0.65				0.89				0.78			0.94	0.78				
\%	24	(610)				1.00				1.00		0.89	0.79	0.70				1.00				1.00			1.00	0.91				
¢	30	(762)										0.99	0.87	0.76												1.00				
	36	(914)										1.00	0.94	0.81																
	>48	(1219)											1.00	0.91																

Table 43 - Load adjustment factors for $3 / 8$-in. diameter threaded rods in cracked concrete ${ }^{1,2,3}$

3/8-in. cracked concrete			Spacing factor in tension$f_{A N}$				Edge distance factor in tension $f_{\text {RN }}$				Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$ f_{HV}							
			Toward edgef_{Rv}	\|	To and away from edge $f_{\text {Rv }}$																									
Emb	dment $h_{\text {ef }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$					$\begin{gathered} \hline 2-3 / 8 \\ (60) \end{gathered}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \end{array}$	$\begin{array}{\|c\|} \hline 7-1 / 2 \\ (191) \end{array}$	$\begin{array}{c\|} \hline 2-3 / 8 \\ (60) \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \end{array}$	$\begin{gathered} 7-1 / 2 \\ (191) \end{gathered}$	$\begin{array}{c\|} \hline 2-3 / 8 \\ (60) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \end{array}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 2-3 / 8 \\ (60) \end{array}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \end{array}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{array}{\|l} 7-1 / 2 \\ (191) \end{array}$	$\begin{gathered} 2-3 / 8 \\ (60) \end{gathered}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \end{array}$	$\begin{array}{\|l} \hline 4-1 / 2 \\ (114) \end{array}$	$\begin{array}{\|l} 7-1 / 2 \\ (191) \end{array}$	$\begin{gathered} \hline 2-3 / 8 \\ (60) \end{gathered}$	$\begin{array}{\|c\|} \hline 3-3 / 8 \\ (86) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.52	0.52	0.49	0.43	n/a	n/a	n/a	n/a	0.25	0.09	0.07	0.04	0.49	0.18	0.14	0.08	n/a	n/a	n/a	n/a
	1-7/8	(48)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.57	0.54	0.53	0.52	0.27	0.10	0.08	0.05	0.54	0.20	0.15	0.09	n/a	n/a	n/a	n/a				
E	2	(51)	0.59	0.59	0.57	0.54	0.55	0.55	0.51	0.44	0.57	0.54	0.53	0.52	0.30	0.11	0.08	0.05	0.55	0.22	0.17	0.10	n/a	n/a	n/a	n/a				
	3	(76)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.61	0.56	0.55	0.53	0.55	0.20	0.15	0.09	0.66	0.41	0.30	0.18	n/a	n/a	n/a	n / a				
	3-5/8	(92)	0.66	0.66	0.63	0.58	0.74	0.74	0.66	0.53	0.64	0.57	0.56	0.54	0.73	0.27	0.20	0.12	0.74	0.54	0.40	0.24	0.74	n/a	n /a	n/a				
E	4	(102)	0.68	0.68	0.65	0.59	0.79	0.79	0.70	0.55	0.65	0.58	0.56	0.55	0.85	0.31	0.23	0.14	0.79	0.63	0.47	0.28	0.77	n/a	n/a	n/a				
¢	4-5/8	(117)	0.71	0.71	0.67	0.60	0.87	0.87	0.76	0.58	0.67	0.59	0.57	0.55	1.00	0.39	0.29	0.17	0.87	0.78	0.58	0.35	0.83	0.60	n/a	n/a				
등	5	(127)	0.72	0.72	0.69	0.61	0.92	0.92	0.80	0.60	0.69	0.60	0.58	0.56		0.44	0.33	0.20	0.92	0.87	0.66	0.39	0.86	0.62	n/a	n/a				
$\stackrel{\square}{\ddagger}$	5-3/4	(146)	0.76	0.76	0.71	0.63	1.00	1.00	0.88	0.64	0.71	0.61	0.59	0.56		0.54	0.40	0.24	1.00	1.00	0.81	0.49	0.93	0.66	0.60	n/a				
$\stackrel{\otimes}{\oplus}$	6	(152)	0.77	0.77	0.72	0.63			0.91	0.66	0.72	0.62	0.60	0.57		0.57	0.43	0.26			0.86	0.52	0.95	0.68	0.62	n/a				
C	7	(178)	0.81	0.81	0.76	0.66			1.00	0.72	0.76	0.63	0.61	0.58		0.72	0.54	0.33			1.00	0.65	1.00	0.73	0.67	n / a				
O	8	(203)	0.86	0.86	0.80	0.68				0.78	0.80	0.65	0.63	0.59		0.88	0.66	0.40				0.78		0.78	0.71	n/a				
\bigcirc	8-3/4	(222)	0.89	0.89	0.82	0.69				0.83	0.83	0.67	0.64	0.60		1.00	0.76	0.46				0.83		0.82	0.74	0.63				
$\stackrel{0}{0}$	9	(229)	0.90	0.90	0.83	0.70				0.85	0.84	0.67	0.64	0.60			0.79	0.47				0.85		0.83	0.76	0.64				
$\stackrel{0}{0}$	10	(254)	0.95	0.95	0.87	0.72				0.91	0.87	0.69	0.66	0.61			0.93	0.56				0.91		0.88	0.80	0.67				
$\stackrel{\square}{0}$	11	(279)	0.99	0.99	0.91	0.74				0.98	0.91	0.71	0.67	0.62			1.00	0.64				0.98		0.92	0.84	0.70				
$\stackrel{\square}{8}$	12	(305)	1.00	1.00	0.94	0.77				1.00	0.95	0.73	0.69	0.64				0.73				1.00		0.96	0.87	0.74				
¢	14	(356)			1.00	0.81					1.00	0.77	0.72	0.66				0.92						1.00	0.94	0.79				
¢	16	(406)				0.86						0.81	0.75	0.68				1.00							1.00	0.85				
O)	18	(457)				0.90						0.85	0.79	0.70												0.90				
-	24	(610)				1.00						0.96	0.88	0.77												1.00				
¢	30	(762)										1.00	0.98	0.84																
	36	(914)											1.00	0.91																
	>48	(1219)												1.00																

1 Linear interpolation not permitted
2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30 \mathrm{~T}_{\max }$ for $5 \mathrm{~d} \leq \mathrm{s} \leq 16$-in. and to $0.5 \mathrm{~T}_{\max }$ for $\mathrm{s}>16$-in.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{e f} f_{A V}$ is applicable when edge distance, $c<3^{*} h_{e f}$. If $c \geq 3^{*} h_{\text {ef }}$, then $f_{A V}=f_{A N}$
5 Concrete thickness reduction factor in shear, f_{HV}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{Hv}}=1.0$.

Table 44 －Load adjustment factors for $1 / 2$－in．diameter threaded rods in uncracked concrete ${ }^{1,2,3}$

1/2-in. uncracked concrete			Spacing factor in tensionf_{AN}				Edge distance factor in tension $f_{\text {RN }}$				Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$							
			Toward edgef_{Rv}	\｜To and away from edge $f_{\text {RV }}$																										
	edment $h_{\text {ef }}$	$\begin{array}{c\|} \hline \text { in. } \\ (\mathrm{mm}) \\ \hline \end{array}$					$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{array}{\|c\|} \hline 6 \\ (152) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 2-3 / 4 \\ (70) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ (152) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \end{array}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ (152) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2-3 / 4 \\ (70) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ (152) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2-3 / 4 \\ (70) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ (152) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2-3 / 4 \\ (70) \\ \hline \end{array}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} 6 \\ (152) \end{gathered}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$
	1－3／4	（44）	n／a	n／a	n／a	n／a					0.34	0.25	0.19	0.11	n／a	n／a	n／a	n／a	0.10	0.05	0.03	0.02	0.21	0.11	0.07	0.03	n／a	n／a	n／a	n／a
E	2－1／2	（64）	0.58	0.58	0.57	0.54	0.41	0.28	0.22	0.13	0.55	0.53	0.53	0.52	0.18	0.09	0.06	0.03	0.35	0.18	0.12	0.06	n／a	n／a	n／a	n／a				
c	3	（76）	0.60	0.60	0.58	0.55	0.46	0.30	0.24	0.14	0.56	0.54	0.53	0.52	0.23	0.12	0.08	0.04	0.46	0.24	0.15	0.08	n／a	n／a	n／a	n／a				
\pm	4	（102）	0.63	0.63	0.61	0.57	0.57	0.35	0.27	0.16	0.58	0.55	0.54	0.53	0.36	0.18	0.12	0.06	0.57	0.35	0.24	0.12	0.58	n／a	n／a	n／a				
ล̇	5	（127）	0.67	0.67	0.64	0.58	0.71	0.41	0.31	0.18	0.60	0.57	0.55	0.53	0.50	0.26	0.17	0.08	0.71	0.41	0.31	0.17	0.65	n／a	n／a	n／a				
0	5－3／4	（146）	0.69	0.69	0.66	0.60	0.81	0.45	0.34	0.20	0.62	0.58	0.56	0.54	0.61	0.32	0.21	0.10	0.81	0.45	0.34	0.20	0.69	0.56	n／a	n／a				
$\stackrel{\circ}{5}$	6	（152）	0.70	0.70	0.67	0.60	0.85	0.46	0.35	0.20	0.63	0.58	0.56	0.54	0.65	0.34	0.22	0.11	0.85	0.46	0.35	0.20	0.71	0.57	n／a	n／a				
．	7	（178）	0.74	0.74	0.69	0.62	0.96	0.53	0.39	0.23	0.65	0.59	0.57	0.54	0.82	0.42	0.28	0.14	0.96	0.53	0.39	0.23	0.77	0.61	n／a	n／a				
$\stackrel{5}{\ddagger}$	7－1／4	（184）	0.74	0.74	0.70	0.62	0.98	0.54	0.40	0.23	0.65	0.60	0.57	0.55	0.87	0.45	0.29	0.15	0.98	0.54	0.40	0.23	0.78	0.62	0.54	n／a				
－	8	（203）	0.77	0.77	0.72	0.63	1.00	0.60	0.44	0.26	0.67	0.61	0.58	0.55	1.00	0.52	0.34	0.17	1.00	0.60	0.44	0.26	0.82	0.66	0.57	n／a				
\bigcirc	9	（229）	0.80	0.80	0.75	0.65		0.68	0.50	0.29	0.69	0.62	0.59	0.56		0.62	0.40	0.20		0.68	0.50	0.29	0.87	0.70	0.60	n／a				
\bigcirc	10	（254）	0.84	0.84	0.78	0.67		0.75	0.55	0.32	0.71	0.63	0.60	0.56		0.72	0.47	0.24		0.75	0.55	0.32	0.92	0.73	0.64	n／a				
－	11－1／4	（286）	0.88	0.88	0.81	0.69		0.84	0.62	0.36	0.74	0.65	0.61	0.57		0.86	0.56	0.28		0.84	0.62	0.36	0.97	0.78	0.67	0.54				
©	12	（305）	0.90	0.90	0.83	0.70		0.90	0.66	0.39	0.75	0.66	0.62	0.58		0.95	0.62	0.31		0.90	0.66	0.39	1.00	0.80	0.70	0.55				
ก్ర్ర	14	（356）	0.97	0.97	0.89	0.73		1.00	0.77	0.45	0.79	0.69	0.64	0.59		1.00	0.78	0.39		1.00	0.77	0.45		0.87	0.75	0.60				
\bigcirc	16	（406）	1.00	1.00	0.94	0.77			0.88	0.52	0.83	0.72	0.66	0.60			0.95	0.48			0.88	0.52		0.93	0.80	0.64				
¢	18	（457）			1.00	0.80			0.99	0.58	0.88	0.74	0.68	0.62			1.00	0.58			0.99	0.58		0.98	0.85	0.68				
\pm	20	（508）				0.83			1.00	0.64	0.92	0.77	0.70	0.63				0.67			1.00	0.64		1.00	0.90	0.72				
©	22	（559）				0.87				0.71	0.96	0.80	0.72	0.64				0.78				0.71			0.94	0.75				
으증	24	（610）				0.90				0.77	1.00	0.82	0.74	0.65				0.89				0.77			0.98	0.78				
\％	30	（762）				1.00				0.97		0.90	0.80	0.69				1.00				0.97			1.00	0.88				
め	36	（914）								1.00		0.98	0.86	0.73								1.00				0.96				
	＞48	（1219）										1.00	0.98	0.81												1.00				

Table 45 －Load adjustment factors for $1 / 2-\mathrm{in}$ ．diameter threaded rods in cracked concrete ${ }^{1,2,3}$

1/2-in. cracked concrete			Spacing factor in tension\qquad								Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$ f_{HV}							
			Toward edgef_{RV}	$\begin{gathered} \text { ॥ To and away } \\ \text { from edge } \\ f_{\mathrm{Rv}} \\ \hline \end{gathered}$																										
Emb	edment $h_{\text {et }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$					$\begin{array}{cc} \hline 2-3 / 4 \\ (70) \end{array}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ (152) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{array}{\|c\|} \hline 6 \\ (152) \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \end{gathered}$	$\begin{array}{\|l\|} \hline 4-1 / 2 \\ (114) \end{array}$	$\begin{gathered} \hline 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \end{gathered}$	$\begin{array}{\|c\|} \hline 2-3 / 4 \\ (70) \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{array}{\|c\|} \hline 6 \\ \text { (152) } \end{array}$	$\begin{gathered} \hline 10 \\ (254) \end{gathered}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \end{gathered}$	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{array}{\|c} \hline 6 \\ (152) \\ \hline \end{array}$	$\begin{gathered} \hline 10 \\ (254) \end{gathered}$	$\begin{gathered} \hline 2-3 / 4 \\ (70) \end{gathered}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} \hline 6 \\ (152) \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$
	1－3／4	（44）	n／a	n／a	n／a	n／a					0.48	0.48	0.45	0.41	n／a	n／a	n／a	n／a	0.10	0.05	0.04	0.02	0.21	0.11	0.08	0.05	n／a	n／a	n／a	n／a
ε	2－1／2	（64）	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.55	0.53	0.53	0.52	0.18	0.09	0.07	0.04	0.35	0.19	0.14	0.08	n／a	n／a	n／a	n／a				
है	3	（76）	0.60	0.60	0.58	0.55	0.58	0.58	0.53	0.46	0.56	0.54	0.53	0.52	0.23	0.12	0.09	0.06	0.47	0.25	0.18	0.11	n／a	n／a	n／a	n／a				
\pm	4	（102）	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.58	0.55	0.55	0.53	0.36	0.19	0.14	0.09	0.66	0.38	0.28	0.17	0.58	n／a	n／a	n／a				
ล̇	5	（127）	0.67	0.67	0.64	0.58	0.76	0.76	0.67	0.53	0.61	0.57	0.56	0.54	0.50	0.26	0.20	0.12	0.76	0.53	0.40	0.24	0.65	n／a	n／a	n／a				
${ }_{0}$	5－3／4	（146）	0.69	0.69	0.66	0.60	0.83	0.83	0.73	0.56	0.62	0.58	0.57	0.55	0.62	0.33	0.24	0.15	0.83	0.65	0.49	0.29	0.70	0.56	n／a	n／a				
¢	6	（152）	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.63	0.58	0.57	0.55	0.66	0.35	0.26	0.16	0.85	0.70	0.52	0.31	0.71	0.57	n／a	n／a				
．	7	（178）	0.74	0.74	0.69	0.62	0.96	0.96	0.83	0.62	0.65	0.60	0.58	0.56	0.83	0.44	0.33	0.20	0.96	0.88	0.66	0.39	0.77	0.62	n／a	n／a				
。	7－1／4	（184）	0.74	0.74	0.70	0.62	0.98	0.98	0.85	0.63	0.65	0.60	0.58	0.56	0.88	0.46	0.35	0.21	0.98	0.92	0.69	0.42	0.78	0.63	0.57	n／a				
$\stackrel{\square}{0}$	8	（203）	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.67	0.61	0.59	0.56	1.00	0.54	0.40	0.24	1.00	1.00	0.80	0.48	0.82	0.66	0.60	n／a				
${ }_{0}$	9	（229）	0.80	0.80	0.75	0.65			1.00	0.70	0.69	0.62	0.60	0.57		0.64	0.48	0.29			0.96	0.58	0.87	0.70	0.64	n／a				
0	10	（254）	0.84	0.84	0.78	0.67				0.75	0.71	0.64	0.61	0.58		0.75	0.56	0.34			1.00	0.67	0.92	0.74	0.67	n／a				
へ®	11－1／4	（286）	0.88	0.88	0.81	0.69				0.81	0.74	0.65	0.63	0.59		0.89	0.67	0.40				0.80	0.97	0.79	0.71	0.60				
®	12	（305）	0.90	0.90	0.83	0.70				0.85	0.75	0.66	0.64	0.60		0.98	0.74	0.44				0.85	1.00	0.81	0.74	0.62				
\％	14	（356）	0.97	0.97	0.89	0.73				0.95	0.79	0.69	0.66	0.61		1.00	0.93	0.56				0.95		0.88	0.80	0.67				
$\stackrel{\square}{0}$	16	（406）	1.00	1.00	0.94	0.77				1.00	0.84	0.72	0.68	0.63			1.00	0.68				1.00		0.94	0.85	0.72				
$\stackrel{\otimes}{0}$	18	（457）			1.00	0.80					0.88	0.75	0.70	0.65				0.81						0.99	0.90	0.76				
$\stackrel{\text { U }}{ }$	20	（508）				0.83					0.92	0.77	0.73	0.66				0.95						1.00	0.95	0.80				
（10	22	（559）				0.87					0.96	0.80	0.75	0.68				1.00							1.00	0.84				
읃	24	（610）				0.90					1.00	0.83	0.77	0.69												0.88				
\％	30	（762）				1.00						0.91	0.84	0.74												0.98				
∞	36	（914）										0.99	0.91	0.79												1.00				
	＞48	（1219）										1.00	1.00	0.89																

1 Linear interpolation not permitted
2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30 \mathrm{~T}_{\max }$ for $5 \mathrm{~d} \leq \mathrm{s} \leq 16$－in．and to $0.5 \mathrm{~T}_{\max }$ for $\mathrm{s}>16$－in．
3 When combining multiple load adjustment factors（e．g．for a four－anchor pattern in a corner with thin concrete member）the design can become very conservative． To optimize the design，use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318－14 Chapter 17．
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance， $\mathrm{c}<3^{*} h_{\mathrm{ef}}$ ．If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$ ，then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$ ．
5 Concrete thickness reduction factor in shear，f_{HV} is applicable when edge distance， $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$ ．If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$ ，then $f_{\mathrm{Hv}}=1.0$ ．

Table 46 - Load adjustment factors for 5/8-in. diameter threaded rods in uncracked concrete ${ }^{1,2,3}$

5/8-in. uncracked concrete			Spacing factor in tension $f_{\text {AN }}$				Edge distance factor in tension $f_{\text {RN }}$				Spacing factor in shear ${ }^{4}$$f_{\mathrm{fV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$							
			Toward edge $f_{\text {RV }}$	\|	To and away from edge f_{RV}																									
	bedment h_{ef}	$\begin{gathered} \hline \mathrm{in} . \\ (\mathrm{mm}) \\ \hline \end{gathered}$					$\begin{array}{\|c\|} \hline 3-1 / 8 \\ (79) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 5-5 / 8 \\ (143) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 7-1 / 2 \\ (191) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 8 \\ (79) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 5-5 / 8 \\ (143) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7-1 / 2 \\ (191) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 8 \\ (79) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5-5 / 8 \\ (143) \\ \hline \end{array}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{array}{\|l\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 3-1 / 8 \\ (79) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5-5 / 8 \\ (143) \end{array}$	$\begin{array}{l\|} \hline 7-1 / 2 \\ (191) \end{array}$	$\begin{array}{\|l\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 8 \\ (79) \end{array}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & 12-1 / 2 \\ & (318) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-1 / 8 \\ (79) \end{array}$	$\begin{array}{\|l\|} \hline 5-5 / 8 \\ (143) \end{array}$	$\begin{array}{\|l\|} \hline 7-1 / 2 \\ (191) \end{array}$	$\begin{aligned} & \hline 12-1 / 2 \\ & (318) \\ & \hline \end{aligned}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.35	0.24	0.18	0.11	n/a	n/a	n/a	n/a	0.09	0.04	0.03	0.01	0.19	0.08	0.06	0.03	n/a	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	n/a	0.37	0.25	0.19	0.11	n/a	n/a	n/a	n/a	0.11	0.05	0.03	0.02	0.23	0.10	0.07	0.03	n/a	n/a	n/a	n/a				
	3-1/8	(79)	0.58	0.58	0.57	0.54	0.47	0.29	0.22	0.13	0.56	0.54	0.53	0.52	0.22	0.10	0.07	0.03	0.45	0.20	0.13	0.06	n/a	n/a	n/a	n/a				
E	4	(102)	0.61	0.61	0.59	0.55	0.56	0.32	0.24	0.14	0.58	0.55	0.53	0.52	0.32	0.15	0.10	0.04	0.56	0.29	0.19	0.09	n/a	n/a	n/a	n/a				
\pm	4-5/8	(117)	0.62	0.62	0.60	0.56	0.62	0.35	0.26	0.15	0.59	0.55	0.54	0.52	0.40	0.18	0.12	0.06	0.62	0.35	0.24	0.11	0.60	n/a	n/a	n/a				
ลิ	5	(127)	0.63	0.63	0.61	0.57	0.66	0.36	0.27	0.16	0.60	0.56	0.54	0.53	0.45	0.21	0.13	0.06	0.66	0.36	0.27	0.12	0.63	n/a	n/a	n/a				
,	6	(152)	0.66	0.66	0.63	0.58	0.74	0.41	0.30	0.18	0.62	0.57	0.55	0.53	0.59	0.27	0.18	0.08	0.74	0.41	0.30	0.16	0.69	n/a	n/a	n/a				
-	7	(178)	0.69	0.69	0.66	0.59	0.81	0.45	0.33	0.19	0.64	0.58	0.56	0.54	0.75	0.34	0.22	0.10	0.81	0.45	0.33	0.19	0.74	n/a	n/a	n/a				
. 0	7-1/8	(181)	0.69	0.69	0.66	0.60	0.82	0.46	0.34	0.20	0.64	0.58	0.56	0.54	0.77	0.35	0.23	0.11	0.82	0.46	0.34	0.20	0.75	0.57	n/a	n/a				
$\stackrel{\square}{\text { ¢ }}$	8	(203)	0.72	0.72	0.68	0.61	0.89	0.50	0.36	0.21	0.66	0.59	0.57	0.54	0.91	0.41	0.27	0.13	0.89	0.50	0.36	0.21	0.79	0.61	n/a	n/a				
O	9	(229)	0.74	0.74	0.70	0.62	0.98	0.56	0.40	0.23	0.68	0.60	0.58	0.55	1.00	0.50	0.32	0.15	0.98	0.56	0.40	0.23	0.84	0.65	0.56	n/a				
¢	10	(254)	0.77	0.77	0.72	0.63	1.00	0.62	0.44	0.26	0.70	0.62	0.59	0.55		0.58	0.38	0.18	1.00	0.62	0.44	0.26	0.89	0.68	0.59	n/a				
	11	(279)	0.80	0.80	0.74	0.65		0.68	0.48	0.28	0.72	0.63	0.60	0.56		0.67	0.43	0.20		0.68	0.48	0.28	0.93	0.71	0.62	n/a				
-	12	(305)	0.82	0.82	0.77	0.66		0.74	0.53	0.31	0.74	0.64	0.60	0.56		0.76	0.50	0.23		0.74	0.53	0.31	0.97	0.75	0.65	n/a				
$\stackrel{\text { O }}{ }$	14	(356)	0.88	0.88	0.81	0.69		0.86	0.62	0.36	0.77	0.66	0.62	0.57		0.96	0.62	0.29		0.86	0.62	0.36	1.00	0.81	0.70	0.54				
\%	16	(406)	0.93	0.93	0.86	0.71		0.99	0.70	0.41	0.81	0.69	0.64	0.58		1.00	0.76	0.35		0.99	0.70	0.41		0.86	0.75	0.58				
$\stackrel{\square}{0}$	18	(457)	0.99	0.99	0.90	0.74		1.00	0.79	0.46	0.85	0.71	0.66	0.59			0.91	0.42		1.00	0.79	0.46		0.91	0.79	0.61				
-	20	(508)	1.00	1.00	0.94	0.77			0.88	0.51	0.89	0.73	0.67	0.60			1.00	0.50			0.88	0.51		0.96	0.83	0.65				
$\stackrel{\text { U }}{ }$	22	(559)			0.99	0.79			0.97	0.57	0.93	0.75	0.69	0.61				0.57			0.97	0.57		1.00	0.87	0.68				
©	24	(610)			1.00	0.82			1.00	0.62	0.97	0.78	0.71	0.63				0.65			1.00	0.62			0.91	0.71				
$\stackrel{8}{\square}$	26	(660)				0.85				0.67	1.00	0.80	0.73	0.64				0.73				0.67			0.95	0.74				
\%	28	(711)				0.87				0.72		0.82	0.74	0.65				0.82				0.72			0.99	0.76				
∞	30	(762)				0.90				0.77		0.85	0.76	0.66				0.91				0.77			1.00	0.79				
	36	(914)				0.98				0.93		0.92	0.81	0.69				1.00				0.93				0.87				
	> 48	(1219)				1.00				1.00		1.00	0.92	0.75								1.00				1.00				

Table 47 - Load adjustment factors for 5/8-in. diameter threaded rods in cracked concrete ${ }^{1,2,3}$

5/8-in. cracked concrete			Spacing factor in tension $f_{\text {AN }}$				```Edge distance factor in tension f```				Spacing factor in shear ${ }^{4}$$f_{\mathrm{fV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$							
			Toward edgef_{RV}	$\begin{aligned} & \text { ॥ To and away } \\ & \text { from edge } \\ & f_{\mathrm{RV}} \\ & \hline \end{aligned}$																										
Emb	bedment $h_{\text {ef }}$	in. (mm)					$\begin{gathered} \hline 3-1 / 8 \\ (79) \end{gathered}$	$\begin{aligned} & 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & 12-1 / 2 \\ & (318) \end{aligned}$	$\begin{gathered} \hline 3-1 / 8 \\ (79) \end{gathered}$	$\begin{array}{\|l} \hline 5-5 / 8 \\ (143) \end{array}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & 12-1 / 2 \\ & (318) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-1 / 8 \\ (79) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5-5 / 8 \\ (143) \end{array}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & 12-1 / 2 \\ & (318) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-1 / 8 \\ (79) \\ \hline \end{array}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & 12-1 / 2 \\ & (318) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-1 / 8 \\ (79) \\ \hline \end{array}$	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \end{aligned}$	$\begin{array}{\|c\|} \hline 7-1 / 2 \\ (191) \end{array}$	$\begin{array}{\|l\|} \hline 12-1 / 2 \\ (318) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 3-1 / 8 \\ (79) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5-5 / 8 \\ (143) \end{array}$	$\begin{array}{\|c\|} \hline 7-1 / 2 \\ (191) \end{array}$	$\begin{aligned} & \hline 12-1 / 2 \\ & (318) \\ & \hline \end{aligned}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.45	0.45	0.43	0.40	n/a	n/a	n/a	n/a	0.09	0.04	0.03	0.02	0.19	0.09	0.06	0.03	n/a	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	n/a	0.46	0.46	0.44	0.41	n/a	n/a	n/a	n/a	0.11	0.05	0.03	0.02	0.23	0.10	0.07	0.04	n/a	n/a	n/a	n/a				
	3-1/8	(79)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.56	0.54	0.53	0.52	0.22	0.10	0.07	0.04	0.45	0.20	0.13	0.08	n/a	n/a	n/a	n/a				
Es	4	(102)	0.61	0.61	0.59	0.55	0.59	0.59	0.55	0.46	0.58	0.55	0.53	0.52	0.33	0.15	0.10	0.06	0.59	0.30	0.19	0.12	n/a	n/a	n/a	n/a				
¢	4-5/8	(117)	0.62	0.62	0.60	0.56	0.64	0.64	0.58	0.48	0.59	0.55	0.54	0.53	0.40	0.18	0.12	0.07	0.64	0.37	0.24	0.14	0.60	n/a	n/a	n/a				
ธ	5	(127)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.60	0.56	0.54	0.53	0.45	0.21	0.13	0.08	0.66	0.41	0.27	0.16	0.63	n/a	n/a	n/a				
0	6	(152)	0.66	0.66	0.63	0.58	0.74	0.74	0.66	0.53	0.62	0.57	0.55	0.54	0.60	0.27	0.18	0.11	0.74	0.54	0.35	0.21	0.69	n/a	n/a	n/a				
$\stackrel{ }{ }$	7	(178)	0.69	0.69	0.66	0.59	0.81	0.81	0.72	0.56	0.64	0.58	0.56	0.54	0.75	0.34	0.22	0.13	0.81	0.68	0.45	0.27	0.74	n/a	n/a	n/a				
.	7-1/8	(181)	0.69	0.69	0.66	0.60	0.82	0.82	0.73	0.56	0.64	0.58	0.56	0.54	0.77	0.35	0.23	0.14	0.82	0.70	0.46	0.27	0.75	0.58	n/a	n/a				
$\stackrel{+}{0}$	8	(203)	0.72	0.72	0.68	0.61	0.89	0.89	0.78	0.59	0.66	0.59	0.57	0.55	0.92	0.42	0.27	0.16	0.89	0.84	0.54	0.33	0.79	0.61	n/a	n/a				
-	9	(229)	0.74	0.74	0.70	0.62	0.98	0.98	0.85	0.62	0.68	0.60	0.58	0.56	1.00	0.50	0.32	0.19	0.98	0.98	0.65	0.39	0.84	0.65	0.56	n/a				
¢	10	(254)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.70	0.62	0.59	0.56		0.58	0.38	0.23	1.00	1.00	0.76	0.46	0.89	0.68	0.59	n/a				
0	11	(279)	0.80	0.80	0.74	0.65			0.98	0.69	0.72	0.63	0.60	0.57		0.67	0.44	0.26			0.88	0.53	0.93	0.72	0.62	n/a				
\bigcirc	12	(305)	0.82	0.82	0.77	0.66			1.00	0.73	0.74	0.64	0.60	0.57		0.77	0.50	0.30			1.00	0.60	0.97	0.75	0.65	n/a				
$\stackrel{\square}{0}$	14	(356)	0.88	0.88	0.81	0.69				0.81	0.78	0.66	0.62	0.59		0.97	0.63	0.38				0.76	1.00	0.81	0.70	0.59				
స్రు	16	(406)	0.93	0.93	0.86	0.71				0.89	0.82	0.69	0.64	0.60		1.00	0.77	0.46				0.89		0.86	0.75	0.63				
\bigcirc	18	(457)	0.99	0.99	0.90	0.74				0.97	0.85	0.71	0.66	0.61			0.92	0.55				0.97		0.92	0.79	0.67				
\%	20	(508)	1.00	1.00	0.94	0.77				1.00	0.89	0.73	0.67	0.62			1.00	0.64				1.00		0.97	0.84	0.71				
$\stackrel{\text { ® }}{ }$	22	(559)	1.00		0.99	0.79					0.93	0.76	0.69	0.64				0.74						1.00	0.88	0.74				
©	24	(610)	1.00		1.00	0.82					0.97	0.78	0.71	0.65				0.85							0.92	0.77				
-	26	(660)	1.00			0.85					1.00	0.80	0.73	0.66				0.96							0.95	0.80				
\%	28	(711)	1.00			0.87						0.83	0.74	0.67				1.00							0.99	0.83				
∞	30	(762)	1.00			0.90						0.85	0.76	0.69											1.00	0.86				
	36	(914)	1.00			0.98						0.92	0.81	0.72											1.00	0.95				
	> 48	(1219)	1.00			1.00						1.00	0.92	0.80												1.00				

1 Linear interpolation not permitted
2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30 \mathrm{~T}_{\max }$ for $5 \mathrm{~d} \leq \mathrm{s} \leq 16$-in. and to $0.5 \mathrm{~T}_{\max }$ for $\mathrm{s}>16$-in.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{\text {ef }} f_{A V}$ is applicable when edge distance, $c<3^{*} h_{\text {ef }}$. If $c \geq 3^{*} h_{\text {eff }}$ then $f_{A V}=f_{A N}$.
5 Concrete thickness reduction factor in shear, f_{H}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 48 - Load adjustment factors for $3 / 4$-in. diameter threaded rods in uncracked concrete ${ }^{1,2,3}$

3/4-in. uncracked concrete			Spacing factor in tension $f_{A N}$				Edge distance factor in tension $f_{\text {RN }}$				Spacing factor in shear ${ }^{4}$ $f_{A V}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$ f_{HV}							
			$\begin{gathered} \perp \\ \text { Toward edge } \\ f_{\mathrm{RV}} \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																									
	$\begin{gathered} \text { bedment }_{\substack{h_{\text {et }}}} \end{gathered}$	$\begin{gathered} \hline \text { in. } \\ (\mathrm{mm}) \\ \hline \end{gathered}$					$\begin{array}{\|c} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$2 \begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{array}{\|c\|} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 9 \\ (229) \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{array}{\|c} 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{gathered} \hline 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\left.\begin{array}{\|l\|} \hline 6-3 / 4 \\ (171) \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ \hline(229) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.35	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.17	0.07	0.05	0.02	n/a	n/a	n/a	n/a
	2-1/8	(54)	n/a	n/a	n/a	n/a	0.38	0.25	0.19	0.11	n/a	n/a	n/a	n/a	0.11	0.05	0.03	0.01	0.23	0.09	0.06	0.03	n/a	n/a	n/a	n/a				
	3-3/4	(95)	0.58	0.58	0.57	0.54	0.52	0.30	0.22	0.13	0.57	0.54	0.53	0.52	0.27	0.11	0.07	0.03	0.52	0.22	0.14	0.07	n/a	n/a	n/a	n/a				
हิ	4	(102)	0.59	0.59	0.57	0.54	0.54	0.31	0.23	0.13	0.57	0.54	0.53	0.52	0.29	0.12	0.08	0.04	0.54	0.24	0.16	0.07	n/a	n/a	n/a	n/a				
	5	(127)	0.61	0.61	0.59	0.56	0.60	0.34	0.25	0.14	0.59	0.55	0.54	0.52	0.41	0.17	0.11	0.05	0.60	0.33	0.22	0.10	n/a	n/a	n/a	n/a				
	5-1/4	(133)	0.62	0.62	0.60	0.56	0.62	0.35	0.25	0.15	0.60	0.55	0.54	0.52	0.44	0.18	0.12	0.05	0.62	0.35	0.23	0.11	0.62	n/a	n/a	n / a				
E		(152)	0.63	0.63	0.61	0.57	0.66	0.38	0.27	0.16	0.61	0.56	0.55	0.53	0.54	0.22	0.14	0.07	0.66	0.38	0.27	0.13	0.66	n/a	n/a	n/a				
	7	(178)	0.66	0.66	0.63	0.58	0.72	0.41	0.30	0.17	0.63	0.57	0.55	0.53	0.68	0.28	0.18	0.08	0.72	0.41	0.30	0.17	0.72	n/a	n/a	n/a				
.	8	(203)	0.68	0.68	0.65	0.59	0.79	0.45	0.32	0.19	0.65	0.58	0.56	0.54	0.83	0.34	0.22	0.10	0.79	0.45	0.32	0.19	0.77	n/a	n/a	n/a				
$\stackrel{\square}{5}$	8-1/2	(216)	0.69	0.69	0.66	0.59	0.82	0.47	0.34	0.20	0.66	0.59	0.56	0.54	0.91	0.37	0.24	0.11	0.82	0.47	0.34	0.20	0.79	0.59	n/a	n/a				
$\stackrel{\square}{0}$	-	(229)	0.70	0.70	0.67	0.60	0.85	0.49	0.35	0.20	0.67	0.59	0.57	0.54	0.99	0.40	0.26	0.12	0.85	0.49	0.35	0.20	0.81	0.60	n/a	n/a				
$\stackrel{\rightharpoonup}{5}$	10	(254)	0.72	0.72	0.69	0.61	0.92	0.53	0.38	0.22	0.68	0.60	0.58	0.55	1.00	0.47	0.31	0.14	0.92	0.53	0.38	0.22	0.86	0.64	n/a	n/a				
\bigcirc	10-3/4	(273)	0.74	0.74	0.70	0.62	0.97	0.57	0.40	0.23	0.70	0.61	0.58	0.55		0.53	0.34	0.16	0.97	0.57	0.40	0.23	0.89	0.66	0.57	n/a				
To	12	(305)	0.77	0.77	0.72	0.63	1.00	0.64	0.44	0.26	0.72	0.62	0.59	0.55		0.62	0.40	0.19	1.00	0.64	0.44	0.26	0.94	0.70	0.60	n/a				
\%	14	(356)	0.81	0.81	0.76	0.66		0.74	0.52	0.30	0.76	0.64	0.61	0.56		0.78	0.51	0.24		0.74	0.52	0.30	1.00	0.75	0.65	n/a				
-	16	(406)	0.86	0.86	0.80	0.68		0.85	0.59	0.34	0.79	0.66	0.62	0.57		0.96	0.62	0.29		0.85	0.59	0.34		0.80	0.70	n/a				
旁	16-3/4	(425)	0.88	0.88	0.81	0.69		0.89	0.62	0.36	0.81	0.67	0.63	0.58		1.00	0.67	0.31		0.89	0.62	0.36		0.82	0.71	0.55				
O	18	(457)	0.90	0.90	0.83	0.70		0.96	0.66	0.39	0.83	0.68	0.64	0.58			0.74	0.35		0.96	0.66	0.39		0.85	0.74	0.57				
$\stackrel{\square}{4}$	20	(508)	0.95	0.95	0.87	0.72		1.00	0.74	0.43	0.87	0.70	0.65	0.59			0.87	0.40		1.00	0.74	0.43		0.90	0.78	0.60				
	22	(559)	0.99	0.99	0.91	0.74			0.81	0.47	0.91	0.72	0.67	0.60			1.00	0.47			0.81	0.47		0.94	0.82	0.63				
	24	(610)	1.00	1.00	0.94	0.77			0.89	0.51	0.94	0.74	0.68	0.61				0.53			0.89	0.51		0.99	0.85	0.66				
-	26	(660)			0.98	0.79			0.96	0.56	0.98	0.76	0.70	0.62				0.60			0.96	0.56		1.0	0.89	0.69				
$\stackrel{\circ}{\circ}$	28	(711)			1.00	0.81			. 00	0.60	. 00	0.78	0.71	0.63				0.67			1.00	0.60			0.92	0.71				
	30	(762)				0.83				0.64		0.80	0.73	0.64				0.74				0.64			0.95	0.74				
	36	(914)				0.90				0.77		0.86	0.77	0.66				0.98				0.77			1.00	0.81				
	>48	(1219)				1.00				1.00		0.99	0.86	0.72				1.00				1.00			1.00	0.94				

Table 49 - Load adjustment factors for 3/4-in. diameter threaded rods in cracked concrete ${ }^{1,2,3}$

3/4-in. cracked concrete			Spacing factor in tension $f_{\text {AN }}$				Edge distance factor in tension $f_{\text {RN }}$				Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$ f_{HV}							
			Toward edge $f_{\text {RV }}$	\|	To and away from edge $f_{\text {RV }}$																									
	$\begin{aligned} & \text { oedment } \\ & h_{\text {ef }} \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline \text { in. } \\ (\mathrm{mm}) \end{array}$					$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{array}{\|c\|} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{array}{\|c} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{array}{\|c} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{array}{\|c} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6-3 / 4 \\ (171) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.43	0.43	0.42	0.39	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.17	0.07	0.05	0.02	n/a	n/a	n/a	n/a
	2-1/8	(54)	n/a	n/a	n/a	n/a	0.45	0.45	0.43	0.40	n/a	n/a	n/a	n/a	0.11	0.05	0.03	0.02	0.23	0.09	0.06	0.03	n/a	n/a	n/a	n/a				
	3-3/4	(95)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.57	0.54	0.53	0.52	0.27	0.11	0.07	0.04	0.54	0.22	0.14	0.08	n/a	n/a	n/a	n/a				
E	4	(102)	0.59	0.59	0.57	0.54	0.55	0.55	0.51	0.44	0.57	0.54	0.53	0.52	0.30	0.12	0.08	0.04	0.55	0.24	0.16	0.08	n/a	n/a	n/a	n/a				
	5	(127)	0.61	0.61	0.59	0.56	0.60	0.60	0.56	0.47	0.59	0.55	0.54	0.53	0.41	0.17	0.11	0.06	0.60	0.34	0.22	0.12	n/a	n/a	n/a	n/a				
	5-1/4	(133)	0.62	0.62	0.60	0.56	0.62	0.62	0.57	0.47	0.60	0.55	0.54	0.53	0.45	0.18	0.12	0.06	0.62	0.36	0.24	0.13	0.62	n/a	n/a	n/a				
Eิ	6	(152)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.61	0.56	0.55	0.53	0.54	0.22	0.14	0.08	0.66	0.44	0.29	0.15	0.67	n/a	n/a	n/a				
\%	7	(178)	0.66	0.66	0.63	0.58	0.72	0.72	0.65	0.52	0.63	0.57	0.55	0.54	0.69	0.28	0.18	0.10	0.72	0.56	0.36	0.19	0.72	n/a	n/a	n/a				
-	8	(203)	0.68	0.68	0.65	0.59	0.79	0.79	0.70	0.55	0.65	0.58	0.56	0.54	0.84	0.34	0.22	0.12	0.79	0.68	0.44	0.24	0.77	n/a	n/a	n/a				
-	8-1/2	(216)	0.69	0.69	0.66	0.59	0.82	0.82	0.72	0.56	0.66	0.59	0.56	0.54	0.92	0.37	0.24	0.13	0.82	0.75	0.49	0.26	0.79	0.59	n/a	n/a				
$\stackrel{ \pm}{0}$	9	(229)	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.67	0.59	0.57	0.55	1.00	0.41	0.26	0.14	0.85	0.82	0.53	0.28	0.82	0.61	n/a	n/a				
-	10	(254)	0.72	0.72	0.69	0.61	0.92	0.92	0.80	0.60	0.69	0.60	0.58	0.55		0.48	0.31	0.17	0.92	0.92	0.62	0.33	0.86	0.64	n/a	n/a				
\bigcirc	10-3/4	(273)	0.74	0.74	0.70	0.62	0.97	0.97	0.84	0.62	0.70	0.61	0.58	0.55		0.53	0.35	0.18	0.97	0.97	0.69	0.37	0.89	0.66	0.57	n/a				
	12	(305)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.72	0.62	0.59	0.56		0.63	0.41	0.22	1.00	1.00	0.82	0.44	0.94	0.70	0.61	n/a				
\bigcirc	14	(356)	0.81	0.81	0.76	0.66			1.00	0.72	0.76	0.64	0.61	0.57		0.79	0.51	0.27		1.00	1.00	0.55	1.00	0.76	0.65	n/a				
-	16	(406)	0.86	0.86	0.80	0.68				0.78	0.80	0.66	0.62	0.58		0.97	0.63	0.34				0.67		0.81	0.70	n/a				
$\stackrel{\sim}{6}$	16-3/4	(425)	0.88	0.88	0.81	0.69				0.81	0.81	0.67	0.63	0.58		1.00	0.67	0.36				0.72		0.83	0.72	0.58				
	18	(457)	0.90	0.90	0.83	0.70				0.85	0.83	0.68	0.64	0.59			0.75	0.40				0.80		0.86	0.74	0.60				
-	20	(508)	0.95	0.95	0.87	0.72				0.91	0.87	0.70	0.65	0.60			0.88	0.47				0.91		0.90	0.78	0.63				
	22	(559)	0.99	0.99	0.91	0.74				0.98	0.91	0.72	0.67	0.61			1.00	0.54				0.98		0.95	0.82	0.67				
-	24	(610)	1.00	1.00	0.94	0.77				1.00	0.94	0.74	0.68	0.62				0.62				1.00		0.99	0.86	0.69				
O	26	(660)			0.98	0.79					0.98	0.76	0.70	0.63				0.69						1.00	0.89	0.72				
¢	28	(711)			1.00	0.81					1.00	0.79	0.71	0.64				0.78							0.92	0.75				
	30	(762)				0.83						0.81	0.73	0.65				0.86							0.96	0.78				
	36	(914)				0.90						0.87	0.77	0.68				1.00							1.00	0.85				
	>48	(1219)				1.00						0.99	0.87	0.74												0.98				

[^9]2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30 \mathrm{~T}_{\max }$ for $5 \mathrm{~d} \leq \mathrm{s} \leq 16$-in. and to $0.5 \mathrm{~T}_{\max }$ for $\mathrm{s}>16$-in.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} h_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\text {ef }}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 50 - Load adjustment factors for 7/8-in. diameter threaded rods in uncracked concrete ${ }^{1,2,3}$

7/8-in. uncracked concrete			Spacing factor in tensionf_{AN}				Edge distance factor in tension f_{RN}				Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$							
			Toward edgef_{RV}	\|	To and away from edge f_{Rv}																									
	bedment h_{ef}	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$					$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\left[\begin{array}{l} 17-1 / 2 \\ (445) \end{array}\right.$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{aligned} & 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$	$\begin{gathered} 3-1 / 2 \\ (89) \end{gathered}$	$\begin{aligned} & 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\left\{\begin{array}{l} 17-1 / 2 \\ (445) \end{array}\right.$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.39	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.18	0.05	0.04	0.02	n/a	n/a	n/a	n/a
	2-1/4	(57)	n/a	n/a	n/a	n/a	0.43	0.25	0.19	0.11	n/a	n/a	n/a	n/a	0.13	0.04	0.03	0.01	0.26	0.08	0.05	0.02	n/a	n/a	n/a	n/a				
	4-3/8	(111)	0.58	0.58	0.57	0.54	0.54	0.31	0.23	0.13	0.58	0.54	0.53	0.52	0.35	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a				
ह	5	(127)	0.60	0.60	0.58	0.55	0.56	0.33	0.24	0.13	0.59	0.54	0.53	0.52	0.43	0.13	0.09	0.04	0.56	0.27	0.17	0.08	n/a	n/a	n/a	n/a				
	5-1/2	(140)	0.61	0.61	0.59	0.55	0.59	0.34	0.25	0.14	0.60	0.55	0.54	0.52	0.50	0.15	0.10	0.05	0.59	0.31	0.20	0.09	0.65	n/a	n/a	n/a				
	6	(152)	0.62	0.62	0.60	0.56	0.61	0.36	0.26	0.15	0.61	0.55	0.54	0.52	0.57	0.17	0.11	0.05	0.61	0.35	0.23	0.11	0.68	n/a	n/a	n/a				
E	7	(178)	0.63	0.63	0.61	0.57	0.66	0.39	0.28	0.16	0.63	0.56	0.55	0.53	0.71	0.22	0.14	0.07	0.66	0.39	0.28	0.13	0.73	n/a	n/a	n/a				
d	8	(203)	0.65	0.65	0.63	0.58	0.72	0.42	0.30	0.17	0.65	0.57	0.55	0.53	0.87	0.27	0.17	0.08	0.72	0.42	0.30	0.16	0.78	n/a	n/a	n/a				
	9	(229)	0.67	0.67	0.64	0.59	0.77	0.45	0.33	0.18	0.67	0.58	0.56	0.54	1.00	0.32	0.21	0.10	0.77	0.45	0.33	0.18	0.83	n/a	n/a	n/a				
$\stackrel{\text { ¢ }}{+}$	9-7/8	(251)	0.69	0.69	0.66	0.59	0.82	0.48	0.35	0.19	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.82	0.48	0.35	0.19	0.87	0.59	n/a	n/a				
$\stackrel{\otimes}{ \pm}$	10	(254)	0.69	0.69	0.66	0.60	0.82	0.49	0.35	0.20	0.69	0.59	0.57	0.54		0.38	0.24	0.11	0.82	0.49	0.35	0.20	0.87	0.59	n/a	n/a				
-	11	(279)	0.71	0.71	0.67	0.60	0.88	0.52	0.37	0.21	0.71	0.60	0.57	0.54		0.43	0.28	0.13	0.88	0.52	0.37	0.21	0.91	0.62	n/a	n/a				
O	12	(305)	0.73	0.73	0.69	0.61	0.94	0.56	0.40	0.22	0.73	0.60	0.58	0.55		0.49	0.32	0.15	0.94	0.56	0.40	0.22	0.95	0.65	n/a	n/a				
	12-1/2	(318)	0.74	0.74	0.70	0.62	0.97	0.59	0.41	0.23	0.74	0.61	0.58	0.55		0.52	0.34	0.16	0.97	0.59	0.41	0.23	0.97	0.66	0.57	n/a				
	14	(356)	0.77	0.77	0.72	0.63	1.00	0.66	0.46	0.26	0.77	0.62	0.59	0.55		0.62	0.40	0.19	1.00	0.66	0.46	0.26	1.00	0.70	0.60	n/a				
$\stackrel{0}{0}$	16	(406)	0.81	0.81	0.75	0.65		0.75	0.52	0.29	0.80	0.64	0.60	0.56		0.76	0.49	0.23	1.00	0.75	0.52	0.29		0.75	0.65	n/a				
$\stackrel{4}{0}$	18	(457)	0.85	0.85	0.79	0.67		0.84	0.59	0.33	0.84	0.66	0.62	0.57		0.91	0.59	0.27	1.00	0.84	0.59	0.33		0.79	0.68	n/a				
\pm	19-1/2	(495)	0.88	0.88	0.81	0.69		0.92	0.64	0.36	0.87	0.67	0.63	0.58		1.00	0.66	0.31	1.00	0.92	0.64	0.36		0.82	0.71	0.55				
ய	20	(508)	0.89	0.89	0.82	0.69		0.94	0.65	0.37	0.88	0.67	0.63	0.58			0.69	0.32	1.00	0.94	0.65	0.37		0.83	0.72	0.56				
	22	(559)	0.92	0.92	0.85	0.71		1.00	0.72	0.40	0.92	0.69	0.64	0.59			0.80	0.37		1.00	0.72	0.40		0.87	0.76	0.59				
8	24	(610)	0.96	0.96	0.88	0.73			0.78	0.44	0.96	0.71	0.66	0.59			0.91	0.42			0.78	0.44		0.91	0.79	0.61				
-	26	(660)	1.00	1.00	0.91	0.75			0.85	0.48	0.99	0.73	0.67	0.60			1.00	0.48			0.85	0.48		0.95	0.82	0.64				
¢	28	(711)			0.94	0.77			0.91	0.51	1.00	0.74	0.68	0.61				0.53			0.91	0.51		0.99	0.85	0.66				
	30	(762)			0.98	0.79			0.98	0.55		0.76	0.70	0.62				0.59			0.98	0.55		1.00	0.88	0.68				
	36	(914)			1.00	0.84			1.00	0.66		0.81	0.73	0.64				0.77			1.00	0.66			0.97	0.75				
	>48	(1219)				0.96				0.88		0.92	0.81	0.69				1.00				0.88			1.00	0.87				

Table 51 - Load adjustment factors for 7/8-in. diameter threaded rods in cracked concrete ${ }^{1,2,3}$

7/8-in. cracked concrete			Spacing factor in tension $f_{\text {AN }}$				```Edge distance factor in tension \(f_{\text {RN }}\)```				Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$ f_{HV}							
			Toward edge $f_{\text {RV }}$	$\begin{aligned} & \text { II To and away } \\ & \text { from edge } \\ & f_{\mathrm{RV}} \end{aligned}$																										
Emb	bedment $h_{\text {ef }}$	$\begin{gathered} \hline \text { in. } \\ (\mathrm{mm}) \end{gathered}$					$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\begin{array}{\|l\|} \hline 17-1 / 2 \\ (445) \\ \hline \end{array}$	$\begin{gathered} \hline 3-1 / 2 \\ (89) \end{gathered}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \end{array}$	$\begin{array}{\|l\|} \hline 10-1 / 2 \\ (267) \end{array}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$	$\begin{gathered} \hline 3-1 / 2 \\ (89) \end{gathered}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$	$\begin{gathered} \hline 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 10-1 / 2 \\ (267) \end{array}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$	$\begin{array}{c\|} \hline 3-1 / 2 \\ (89) \end{array}$	$\begin{aligned} & 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{array}{\|l\|} \hline 10-1 / 2 \\ (267) \end{array}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$	$\begin{array}{\|c\|} \hline 3-1 / 2 \\ (89) \end{array}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10-1 / 2 \\ (267) \end{array}$	$\begin{aligned} & 17-1 / 2 \\ & (445) \end{aligned}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.42	0.42	0.41	0.38	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.18	0.06	0.04	0.02	n/a	n/a	n/a	n/a
	2-1/4	(57)	n/a	n/a	n/a	n/a	0.44	0.44	0.42	0.39	n/a	n/a	n/a	n/a	0.13	0.04	0.03	0.01	0.26	0.08	0.05	0.03	n/a	n/a	n/a	n/a				
	4-3/8	(111)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.58	0.54	0.53	0.52	0.36	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a				
है	5	(127)	0.60	0.60	0.58	0.55	0.56	0.56	0.52	0.45	0.60	0.54	0.53	0.52	0.43	0.13	0.09	0.04	0.56	0.27	0.17	0.08	n/a	n/a	n/a	n/a				
	5-1/2	(140)	0.61	0.61	0.59	0.55	0.59	0.59	0.54	0.46	0.61	0.55	0.54	0.52	0.50	0.15	0.10	0.05	0.59	0.31	0.20	0.10	0.65	n/a	n/a	n/a				
	6	(152)	0.62	0.62	0.60	0.56	0.61	0.61	0.56	0.47	0.61	0.55	0.54	0.52	0.57	0.18	0.11	0.06	0.61	0.35	0.23	0.11	0.68	n/a	n/a	n/a				
E	7	(178)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.63	0.56	0.55	0.53	0.72	0.22	0.14	0.07	0.66	0.44	0.29	0.14	0.73	n/a	n/a	n/a				
$\stackrel{8}{0}$	8	(203)	0.65	0.65	0.63	0.58	0.72	0.72	0.64	0.52	0.65	0.57	0.55	0.53	0.88	0.27	0.18	0.09	0.72	0.54	0.35	0.17	0.78	n/a	n/a	n/a				
	9	(229)	0.67	0.67	0.64	0.59	0.77	0.77	0.68	0.54	0.67	0.58	0.56	0.54	1.00	0.32	0.21	0.10	0.77	0.65	0.42	0.20	0.83	n/a	n/a	n/a				
\%	9-7/8	(251)	0.69	0.69	0.66	0.59	0.82	0.82	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.12	0.82	0.74	0.48	0.23	0.87	0.59	n/a	n/a				
$\stackrel{\text { ¢ }}{ \pm}$	10	(254)	0.69	0.69	0.66	0.60	0.82	0.82	0.73	0.56	0.69	0.59	0.57	0.54		0.38	0.25	0.12	0.82	0.76	0.49	0.24	0.87	0.59	n/a	n/a				
$\stackrel{\square}{0}$	11	(279)	0.71	0.71	0.67	0.60	0.88	0.88	0.77	0.59	0.71	0.60	0.57	0.54		0.44	0.28	0.14	0.88	0.87	0.57	0.28	0.92	0.62	n/a	n/a				
¢	12	(305)	0.73	0.73	0.69	0.61	0.94	0.94	0.82	0.61	0.73	0.60	0.58	0.55		0.50	0.32	0.16	0.94	0.94	0.65	0.31	0.96	0.65	n/a	n/a				
\bigcirc	12-1/2	(318)	0.74	0.74	0.70	0.62	0.97	0.97	0.84	0.62	0.74	0.61	0.58	0.55		0.53	0.34	0.17	0.97	0.97	0.69	0.33	0.98	0.66	0.57	n/a				
-	14	(356)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.77	0.62	0.59	0.56		0.63	0.41	0.20	1.00	1.00	0.82	0.40	1.00	0.70	0.61	n/a				
\%	16	(406)	0.81	0.81	0.75	0.65			1.00	0.71	0.81	0.64	0.60	0.56		0.77	0.50	0.24			1.00	0.48		0.75	0.65	n/a				
$\stackrel{\square}{0}$	18	(457)	0.85	0.85	0.79	0.67				0.76	0.84	0.66	0.62	0.57		0.91	0.59	0.29				0.58		0.79	0.69	n/a				
$\stackrel{8}{8}$	19-1/2	(495)	0.88	0.88	0.81	0.69				0.80	0.87	0.67	0.63	0.58		1.00	0.67	0.32				0.65		0.82	0.71	0.56				
\%	20	(508)	0.89	0.89	0.82	0.69				0.82	0.88	0.67	0.63	0.58			0.70	0.34				0.67		0.84	0.72	0.57				
\checkmark	22	(559)	0.92	0.92	0.85	0.71				0.87	0.92	0.69	0.64	0.59			0.80	0.39				0.78		0.88	0.76	0.60				
\%	24	(610)	0.96	0.96	0.88	0.73				0.93	0.96	0.71	0.66	0.60			0.91	0.44				0.89		0.92	0.79	0.62				
-	26	(660)	1.00	1.00	0.91	0.75				0.99	1.00	0.73	0.67	0.61			1.00	0.50				0.99		0.95	0.82	0.65				
\%	28	(711)			0.94	0.77				1.00		0.74	0.68	0.61				0.56				1.00		0.99	0.86	0.67				
	30	(762)			0.98	0.79						0.76	0.70	0.62				0.62						1.00	0.89	0.70				
	36	(914)			1.00	0.84						0.81	0.74	0.65				0.81							0.97	0.76				
	> 48	(1219)				0.96						0.92	0.81	0.69				1.00							1.00	0.88				

1 Linear interpolation not permitted
2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30 \mathrm{~T}_{\max }$ for $5 \mathrm{~d} \leq \mathrm{s} \leq 16$-in. and to $0.5 \mathrm{~T}_{\max }$ for $\mathrm{s}>16$-in.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{e f} f_{A V}$ is applicable when edge distance, $c<3^{*} h_{e f}$. If $c \geq 3^{*} h_{\text {ef }}$, then $f_{A V}=f_{A N}$
5 Concrete thickness reduction factor in shear, f_{Hv}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 52 - Load adjustment factors for 1 -in. diameter threaded rods in uncracked concrete ${ }^{1,2,3}$

1-in. uncracked concrete			Spacing factor in tension $f_{A N}$				Edge distance factor in tension $f_{\text {RN }}$				Spacing factor in shear ${ }^{4}$ $f_{A V}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$ $f_{H V}$							
			$\begin{gathered} \perp \\ \text { Toward edge } \\ f_{\mathrm{RV}} \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																									
	bedment						4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20
																											(102)			(508)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.38	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.08	0.02	0.01	0.01	0.15	. 05	0.03	0.01	n/a	n/a	n/a	n / a				
	2-3/4	(70)	n/a	n/a	n/a	n/a	0.45	26	0.19	0.11	n/a	n/a	n/a	n/a	0.15	0.04	0.03	0.01	0.30	0.09	0.06	0.03	n/a	n/a	n/a	n/a				
	5	(127)	0.58	0.58	0.57	0.54	0.54	0.32	0.23	0.13	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	/a				
E		(152)	0.60	0.60	0.58	0.55	0.58	0.34	0.25	0.14	0.60	0.55	0.53	0.52	0.48	0.14	0.09	0.04	0.58	0.29	0.19	0.09	n/a	n/a	n/a	n/a				
	6-1/4	(159)	0.61	0.61	0.59	0.55	0.59	0.35	0.25	0.14	0.61	0.55	0.54	0.52	0.51	0.15	0.10	0.05	0.59	0.30	0.20	0.09	0.65	n/a	n/a	n/a				
	7	(178)	0.62	0.62	0.60	0.56	0.62	0.37	0.27	0.15	0.62	0.55	0.54	0.52	0.61	0.18	0.12	0.05	0.62	0.36	0.23	0.11	0.69	n/a	n/a	n / a				
Ė	8	(203)	0.63	0.63	0.61	0.57	0.66	0.40	0.29	0.16	0.64	0.56	0.55	0.53	0.74	0.22	0.14	0.07	0.66	0.40	0.29	0.13	0.74	n/a	n/a	n/a				
\%	9	(229)	0.65	0.6	0.63	0.58	0.71	0.43	0.31	0.17	0.65	0.57	0.55	0.53	0.89	0.26	0.17	0.08	0.71	0.43	0.31	0.16	0.78	n/a	n/a	/a				
	10	(254)	0.67	0.6	0.64	0.58	0.	0.46	0.33	. 18	0.6	0.58	0.56	0.53	1.00	0.31	0.20	0.09	0.76	0.46	0.33	0.18	0.83	n/a	n/a	n/a				
-	11	(279)	0.69	0.69	0.65	0.59	0.80	0.49	0.35	0.19	0.69	0.58	0.56	0.54		0.3	0.23	0.11	0.80	0.4	0.35	0.1	0.87	n/a	n/a	n/a				
$\stackrel{\square}{\circ}$	11-1/4	(286)	0.69	0.69	0.66	0.59	0.82	0.50	0.35	0.19	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.82	0.50	0.35	0.19	0.88	0.58	n/a	n/a				
	12	(305)	0.70	0.70	0.67	0.60	0.85	0.52	0.37	0.20	0.70	0.59	0.57	0.54		0.40	0.26	0.12	0.85	0.52	0.37	0.20	0.91	0.60	n/a	n/a				
\bigcirc	13	(330)	0.72	0.72	0.68	0.61	0.90	0.55	0.39	0.22	0.72	0.60	0.57	0.54		0.46	0.30	0.14	0.90	0.55	0.39	0.22	0.94	0.63	n/a	n/a				
	14	(356)	0.74	0.74	0.69	0.62	0.96	0.59	0.41	0.23	0.74	0.61	0.58	0.55		0.51	0.33	0.15	0.96	0.59	0.41	0.23	0.98	0.65	n/a	n/a				
$\stackrel{0}{0}$	14-1/4	(362)	0.74	0.74	0.70	0.62	0.97	0.60	0.42	0.23	0.74	0.61	0.58	0.55		0.52	0.34	0.16	0.97	0.60	0.42	0.23	0.99	0.66	0.57	n/a				
	16	(406)	0.77	0.77	0.72	0.63	1.00	. 67	0.47	0.26	0.77	0.62	0.59	0.55		0.62	0.40	0.19	1.00	0.67	0.47	0.26	. 0	0.70	0.60	n/a				
$\frac{95}{\frac{1}{6}}$	18	(457)	0.80	0.80	0.75	0.65		0.76	0.53	0.29	0.81	0.64	0.60	0.56		0.74	0.48	0.22		0.76	0.53	0.29		0.74	0.64	n/a				
	20	(508)	0.84	0.84	0.78	0.67		0.84	0.58	0.32	0.84	0.65	0.61	0.57		0.87	0.56	0.26		0.84	0.58	0.32		0.7	0.67	n/a				
안	22	(559)	0.87	0.87	0.81	0.68		0.93	0.64	0.35	0.88	0.67	0.63	0.58		1.00	0.65	0.30		0.93	0.64	0.35		0.8	0.71	n/a				
$\frac{\omega}{\sqrt{n}}$	22-1/4	(565)	0.87	0.87	0.81	0.69		0.94	0.65	0.36	0.88	0.67	0.63	0.58			0.66	0.31		0.94	0.65	0.36		0.82	0.71	0.55				
$\stackrel{\square}{0}$	24	(610)	0.90	0.90	0.83	0.70		1.00	0.70	0.39	0.91	0.68	0.64	0.58			0.74	0.35		1.00	0.70	0.39		0.85	0.74	0.57				
$\frac{8}{0}$	26	(660)	0.94	0.94	0.86	0.72			76	0.42	0.94	0.70	0.65	0.59			0.84	0.39			0.76	0.42		0.8	0.7	0.60				
io	28	(711)	0.97	0.97	0.89	0.73			0.82	0.45	0.98	0.71	0.66	0.60			0.94	0.43			0.82	0.45		0.9	0.80	0.62				
	30	(762)	1.00	1.00	0.92	0.75			0.88	0.48	1.00	0.73	0.67	0.60			1.00	0.48			0.88	0.48		0.95	0.83	0.64				
	36	(914)			1.00	0.80			1.00	0.58		0.77	0.70	0.62				0.63			1.00	0.58		1.00	0.91	0.70				
	>48	(1219)				0.90				0.77		0.86	0.77	0.66				0.98				0.77			1.00	0.81				

Table 53 - Load adjustment factors for 1-in. diameter threaded rods in cracked concrete ${ }^{1,2,3}$

1-in. cracked concrete			Spacing factor in tension $f_{\text {AN }}$				```Edge distance factor in tension \(f_{\text {RN }}\)```				Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$							
			$\begin{gathered} \stackrel{\perp}{\text { Toward edge }} \\ f_{\mathrm{Rv}} \\ \hline \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																									
	bedment $h_{\text {ef }}$	$\begin{array}{c\|} \hline \text { in. } \\ (\mathrm{mm}) \end{array}$					$\begin{array}{\|c\|} \hline 4 \\ (102) \end{array}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ (305) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \\ (508) \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ (102) \end{array}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ (305) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 20 \\ (508) \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ (102) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ (305) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 20 \\ (508) \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ (102) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ (305) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 20 \\ (508) \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ (102) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ (305) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \\ (508) \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ (102) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ (305) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 20 \\ (508) \\ \hline \end{array}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.41	0.41	0.40	0.38	n/a	n/a	n/a	n/a	0.08	0.02	0.01	0.01	0.15	0.05	0.03	0.01	n/a	n/a	n/a	n/a
	2-3/4	(70)	n/a	n/a	n/a	n/a	0.45	0.45	0.43	0.40	n/a	n/a	n/a	n/a	0.15	0.04	0.03	0.01	0.30	0.09	0.06	0.03	n/a	n/a	n/a	n/a				
	5	(127)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a				
E	6	(152)	0.60	0.60	0.58	0.55	0.58	0.58	0.53	0.46	0.60	0.55	0.53	0.52	0.49	0.14	0.09	0.04	0.58	0.29	0.19	0.09	n/a	n/a	n/a	n/a				
	6-1/4	(159)	0.61	0.61	0.59	0.55	0.59	0.59	0.54	0.46	0.61	0.55	0.54	0.52	0.52	0.15	0.10	0.05	0.59	0.31	0.20	0.09	0.66	n/a	n/a	n/a				
	7	(178)	0.62	0.62	0.60	0.56	0.62	0.62	0.57	0.47	0.62	0.55	0.54	0.52	0.61	0.18	0.12	0.05	0.62	0.36	0.24	0.11	0.69	n/a	n/a	n/a				
E	8	(203)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.64	0.56	0.55	0.53	0.75	0.22	0.14	0.07	0.66	0.44	0.29	0.13	0.74	n/a	n/a	n/a				
\%	9	(229)	0.65	0.65	0.63	0.58	0.71	0.71	0.64	0.51	0.65	0.57	0.55	0.53	0.89	0.26	0.17	0.08	0.71	0.53	0.34	0.16	0.79	n/a	n/a	n/a				
5	10	(254)	0.67	0.67	0.64	0.58	0.76	0.76	0.67	0.53	0.67	0.58	0.56	0.53	1.00	0.31	0.20	0.09	0.76	0.62	0.40	0.19	0.83	n/a	n/a	n/a				
-	11	(279)	0.69	0.69	0.65	0.59	0.80	0.80	0.71	0.55	0.69	0.58	0.56	0.54		0.36	0.23	0.11	0.80	0.72	0.46	0.22	0.87	n/a	n/a	n/a				
$\stackrel{\text { \% }}{ }$	11-1/4	(286)	0.69	0.69	0.66	0.59	0.82	0.82	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.82	0.74	0.48	0.22	0.88	0.59	n/a	n/a				
-	12	(305)	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.71	0.59	0.57	0.54		0.41	0.26	0.12	0.85	0.82	0.53	0.25	0.91	0.61	n/a	n/a				
\bigcirc	13	(330)	0.72	0.72	0.68	0.61	0.90	0.90	0.79	0.59	0.72	0.60	0.57	0.54		0.46	0.30	0.14	0.90	0.90	0.60	0.28	0.95	0.63	n/a	n/a				
	14	(356)	0.74	0.74	0.69	0.62	0.96	0.96	0.83	0.62	0.74	0.61	0.58	0.55		0.51	0.33	0.16	0.96	0.96	0.67	0.31	0.98	0.65	n/a	n/a				
\bigcirc	14-1/4	(362)	0.74	0.74	0.70	0.62	0.97	0.97	0.84	0.62	0.74	0.61	0.58	0.55		0.53	0.34	0.16	0.97	0.97	0.69	0.32	0.99	0.66	0.57	n/a				
O	16	(406)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.77	0.62	0.59	0.55		0.63	0.41	0.19	1.00	1.00	0.82	0.38	1.00	0.70	0.61	n/a				
$\stackrel{0}{\square}$	18	(457)	0.80	0.80	0.75	0.65			1.00	0.70	0.81	0.64	0.60	0.56		0.75	0.49	0.23			0.97	0.45		0.74	0.64	n/a				
$\stackrel{0}{0}$	20	(508)	0.84	0.84	0.78	0.67				0.75	0.84	0.65	0.61	0.57		0.88	0.57	0.26			1.00	0.53		0.78	0.68	n/a				
흢	22	(559)	0.87	0.87	0.81	0.68				0.80	0.88	0.67	0.63	0.58		1.00	0.66	0.31				0.61		0.82	0.71	n/a				
	22-1/4	(565)	0.87	0.87	0.81	0.69				0.80	0.88	0.67	0.63	0.58			0.67	0.31				0.62		0.82	0.71	0.55				
O	24	(610)	0.90	0.90	0.83	0.70				0.85	0.91	0.68	0.64	0.58			0.75	0.35				0.70		0.86	0.74	0.57				
-	26	(660)	0.94	0.94	0.86	0.72				0.90	0.95	0.70	0.65	0.59			0.84	0.39				0.78		0.89	0.77	0.60				
が	28	(711)	0.97	0.97	0.89	0.73				0.95	0.98	0.71	0.66	0.60			0.94	0.44				0.88		0.92	0.80	0.62				
	30	(762)	1.00	1.00	0.92	0.75				1.00	1.00	0.73	0.67	0.60			1.00	0.49				0.97		0.96	0.83	0.64				
	36	(914)			1.00	0.80						0.77	0.71	0.62				0.64				1.00		1.00	0.91	0.70				
	> 48	(1219)				0.90						0.87	0.77	0.66				0.98							1.00	0.81				

1 Linear interpolation not permitted
2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30 \mathrm{~T}_{\max }$ for $5 \mathrm{~d} \leq \mathrm{s} \leq 16$-in. and to $0.5 \mathrm{~T}_{\max }$ for $\mathrm{s}>16$-in.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HV}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 54 - Load adjustment factors for 1-1/4-in. diameter threaded rods in uncracked concrete ${ }^{1,2,3}$

1-1/4-in. uncracked concrete			Spacing factor in tension $f_{\text {AN }}$				Edge distance factor in tension f_{RN}				Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$							
			Toward edgef_{RV}	\\| To and away from edgef_{RV}																										
	bedment $h_{\text {ef }}$	$\begin{aligned} & \hline \mathrm{in} . \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$					$\begin{array}{\|c\|} \hline 5 \\ (127) \end{array}$	$\begin{array}{\|l} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \end{array}$	$\begin{array}{\|l\|l\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.37	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.05	0.02	0.01	0.00	0.11	0.03	0.02	0.01	n/a	n/a	n/a	n/a
	3-1/8	(79)	n/a	n/a	n/a	n/a	0.44	0.27	0.20	0.11	n/a	n/a	n/a	n/a	0.13	0.04	0.02	0.01	0.26	0.08	0.05	0.02	n/a	n/a	n/a	n/a				
E	6-1/4	(159)	0.58	0.58	0.57	0.54	0.54	0.33	0.24	0.13	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a				
	7	(178)	0.59	0.59	0.58	0.55	0.56	0.35	0.25	0.13	0.60	0.54	0.53	0.52	0.43	0.13	0.08	0.04	0.56	0.26	0.17	0.08	n/a	n/a	n/a	n/a				
	8	(203)	0.61	0.61	0.59	0.55	0.59	0.37	0.27	0.14	0.61	0.55	0.54	0.52	0.53	0.16	0.10	0.05	0.59	0.31	0.20	0.10	0.66	n/a	n/a	n/a				
E	9	(229)	0.62	0.62	0.60	0.56	0.63	0.39	0.28	0.15	0.62	0.55	0.54	0.52	0.63	0.19	0.12	0.06	0.63	0.38	0.24	0.11	0.70	n/a	n/a	n/a				
	10	(254)	0.63	0.63	0.61	0.57	0.66	0.41	0.30	0.16	0.64	0.56	0.55	0.53	0.74	0.22	0.14	0.07	0.66	0.41	0.29	0.13	0.74	n/a	n/a	n/a				
¢	11	(279)	0.65	0.65	0.62	0.57	0.70	0.44	0.32	0.17	0.65	0.57	0.55	0.53	0.86	0.25	0.16	0.08	0.70	0.44	0.32	0.15	0.78	n/a	n/a	n/a				
$\stackrel{\text { ¢ }}{+}$	12	(305)	0.66	0.66	0.63	0.58	0.74	0.46	0.33	0.18	0.66	0.57	0.55	0.53	0.98	0.29	0.19	0.09	0.74	0.46	0.33	0.17	0.81	n/a	n/a	n/a				
$\stackrel{\text { ¢ }}{\text { ¢ }}$	13	(330)	0.68	0.68	0.64	0.59	0.77	0.49	0.35	0.19	0.68	0.58	0.56	0.54	1.00	0.33	0.21	0.10	0.77	0.49	0.35	0.19	0.84	n/a	n/a	n/a				
-	14	(356)	0.69	0.69	0.66	0.59	0.81	0.52	0.37	0.20	0.69	0.59	0.56	0.54		0.36	0.24	0.11	0.81	0.52	0.37	0.20	0.87	0.58	n/a	n/a				
¢	14-1/4	(362)	0.69	0.69	0.66	0.60	0.82	0.52	0.37	0.20	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.82	0.52	0.37	0.20	0.88	0.59	n/a	n/a				
	15	(381)	0.70	0.70	0.67	0.60	0.85	0.54	0.39	0.20	0.70	0.59	0.57	0.54		0.40	0.26	0.12	0.85	0.54	0.39	0.20	0.91	0.60	n/a	n/a				
$\stackrel{1}{0}$	16	(406)	0.72	0.72	0.68	0.61	0.89	0.57	0.40	0.21	0.72	0.60	0.57	0.54		0.45	0.29	0.13	0.89	0.57	0.40	0.21	0.94	0.62	n/a	n/a				
-	17	(432)	0.73	0.73	0.69	0.61	0.93	0.60	0.42	0.22	0.73	0.60	0.58	0.55		0.49	0.32	0.15	0.93	0.60	0.42	0.22	0.96	0.64	n/a	n/a				
\%	18	(457)	0.74	0.74	0.70	0.62	0.98	0.63	0.44	0.23	0.75	0.61	0.58	0.55		0.53	0.35	0.16	0.98	0.63	0.44	0.23	0.99	0.66	0.57	n/a				
¢	20	(508)	0.77	0.77	0.72	0.63	1.00	0.70	0.49	0.26	0.77	0.62	0.59	0.55		0.62	0.40	0.19	1.00	0.70	0.49	0.26	1.00	0.70	0.60	n/a				
¢	22	(559)	0.80	0.80	0.74	0.65		0.77	0.54	0.28	0.80	0.63	0.60	0.56		0.72	0.47	0.22		0.77	0.54	0.28		0.73	0.63	n/a				
	24	(610)	0.82	0.82	0.77	0.66		0.84	0.59	0.31	0.83	0.65	0.61	0.57		0.82	0.53	0.25		0.84	0.59	0.31		0.76	0.66	n/a				
O	26	(660)	0.85	0.85	0.79	0.67		0.91	0.64	0.34	0.86	0.66	0.62	0.57		0.92	0.60	0.28		0.91	0.64	0.34		0.79	0.69	n/a				
-	28	(711)	0.88	0.88	0.81	0.69		0.98	0.68	0.36	0.88	0.67	0.63	0.58		1.00	0.67	0.31		0.98	0.68	0.36		0.82	0.71	0.55				
¢	30	(762)	0.90	0.90	0.83	0.70		1.00	0.73	0.39	0.91	0.68	0.64	0.58			0.74	0.35		1.00	0.73	0.39		0.85	0.74	0.57				
	36	(914)	0.99	0.99	0.90	0.74			0.88	0.47	0.99	0.72	0.66	0.60			0.98	0.45			0.88	0.47		0.94	0.81	0.63				
	>48	(1219)	1.00	1.00	1.00	0.82			1.00	0.62	1.00	0.79	0.72	0.63			1.00	0.70			1.00	0.62		1.00	0.94	0.72				

Table 55 - Load adjustment factors for 1-1/4-in. diameter threaded rods in cracked concrete ${ }^{1,2,3}$

1-1/4-in. cracked concrete			Spacing factor in tensionf_{AN}				```Edge distance factor in tension f```				Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$							
			Toward edgef_{RV}	$\begin{aligned} & \text { ॥ To and away } \\ & \text { from edge } \\ & f_{\mathrm{RV}} \\ & \hline \end{aligned}$																										
Emb	$\begin{aligned} & \text { bedment } \\ & h_{\text {ef }} \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline \text { in. } \\ (\mathrm{mm}) \end{array}$					$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \end{array}$	$\begin{gathered} \hline 15 \\ (381) \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \end{array}$	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{aligned} & \hline 11-1 / 4 \\ & (286) \end{aligned}$	$\begin{array}{\|c\|} \hline 15 \\ (381) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ (635) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \end{array}$	$\begin{array}{\|l\|} \hline 11-1 / 4 \\ (286) \\ \hline \end{array}$	$\begin{gathered} \hline 25 \\ (635) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a	n/a					0.40	0.40	0.39	0.37	n/a	n/a	n/a	n/a	0.05	0.02	0.01	0.00	0.11	0.03	0.02	0.01	n/a	n/a	n/a	n/a
	3-1/8	(79)	n/a	n/a	n/a	n/a	0.44	0.44	0.42	0.39	n/a	n/a	n/a	n/a	0.13	0.04	0.03	0.01	0.26	0.08	0.05	0.02	n/a	n/a	n/a	n/a				
E	6-1/4	(159)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a				
	7	(178)	0.59	0.59	0.58	0.55	0.56	0.56	0.52	0.45	0.60	0.54	0.53	0.52	0.44	0.13	0.08	0.04	0.56	0.26	0.17	0.08	n/a	n/a	n/a	n/a				
	8	(203)	0.61	0.61	0.59	0.55	0.59	0.59	0.55	0.46	0.61	0.55	0.54	0.52	0.54	0.16	0.10	0.05	0.59	0.32	0.21	0.10	0.66	n/a	n/a	n/a				
डิ	9	(229)	0.62	0.62	0.60	0.56	0.63	0.63	0.57	0.48	0.62	0.55	0.54	0.52	0.64	0.19	0.12	0.06	0.63	0.38	0.25	0.11	0.70	n/a	n/a	n/a				
\%	10	(254)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.64	0.56	0.55	0.53	0.75	0.22	0.14	0.07	0.66	0.44	0.29	0.13	0.74	n/a	n/a	n/a				
	11	(279)	0.65	0.65	0.62	0.57	0.70	0.70	0.63	0.51	0.65	0.57	0.55	0.53	0.86	0.26	0.17	0.08	0.70	0.51	0.33	0.15	0.78	n/a	n/a	n/a				
$\stackrel{\text { ¢ }}{+}$	12	(305)	0.66	0.66	0.63	0.58	0.74	0.74	0.66	0.53	0.66	0.57	0.55	0.53	0.98	0.29	0.19	0.09	0.74	0.58	0.38	0.18	0.81	n/a	n/a	n/a				
$\stackrel{\otimes}{\oplus}$	13	(330)	0.68	0.68	0.64	0.59	0.77	0.77	0.69	0.54	0.68	0.58	0.56	0.54	1.00	0.33	0.21	0.10	0.77	0.66	0.43	0.20	0.85	n/a	n/a	n/a				
$\stackrel{\square}{0}$	14	(356)	0.69	0.69	0.66	0.59	0.81	0.81	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.81	0.73	0.48	0.22	0.88	0.58	n/a	n/a				
O	14-1/4	(362)	0.69	0.69	0.66	0.60	0.82	0.82	0.73	0.56	0.70	0.59	0.57	0.54		0.38	0.25	0.11	0.82	0.75	0.49	0.23	0.89	0.59	n/a	n/a				
	15	(381)	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.71	0.59	0.57	0.54		0.41	0.26	0.12	0.85	0.82	0.53	0.25	0.91	0.61	n/a	n/a				
$\stackrel{0}{0}$	16	(406)	0.72	0.72	0.68	0.61	0.89	0.89	0.78	0.59	0.72	0.60	0.57	0.54		0.45	0.29	0.14	0.89	0.89	0.58	0.27	0.94	0.63	n/a	n/a				
$\stackrel{0}{0}$	17	(432)	0.73	0.73	0.69	0.61	0.93	0.93	0.81	0.61	0.73	0.60	0.58	0.55		0.49	0.32	0.15	0.93	0.93	0.64	0.30	0.97	0.64	n/a	n/a				
¢	18	(457)	0.74	0.74	0.70	0.62	0.98	0.98	0.85	0.62	0.75	0.61	0.58	0.55		0.54	0.35	0.16	0.98	0.98	0.70	0.32	0.99	0.66	0.57	n/a				
¢	20	(508)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.77	0.62	0.59	0.55		0.63	0.41	0.19	1.00	1.00	0.82	0.38	1.00	0.70	0.61	n/a				
¢	22	(559)	0.80	0.80	0.74	0.65			0.98	0.69	0.80	0.63	0.60	0.56		0.72	0.47	0.22			0.94	0.44		0.73	0.63	n/a				
	24	(610)	0.82	0.82	0.77	0.66			1.00	0.73	0.83	0.65	0.61	0.57		0.82	0.54	0.25			1.00	0.50		0.77	0.66	n/a				
O	26	(660)	0.85	0.85	0.79	0.67				0.77	0.86	0.66	0.62	0.57		0.93	0.60	0.28				0.56		0.80	0.69	n/a				
-	28	(711)	0.88	0.88	0.81	0.69				0.81	0.88	0.67	0.63	0.58		1.00	0.68	0.31				0.63		0.83	0.72	0.55				
¢ั	30	(762)	0.90	0.90	0.83	0.70				0.85	0.91	0.68	0.64	0.58			0.75	0.35				0.70		0.86	0.74	0.57				
	36	(914)	0.99	0.99	0.90	0.74				0.97	0.99	0.72	0.66	0.60			0.98	0.46				0.91		0.94	0.81	0.63				
	> 48	(1219)	1.00	1.00	1.00	0.82				1.00	1.00	0.79	0.72	0.63			1.00	0.70				1.00		1.00	0.94	0.73				

1 Linear interpolation not permitted
2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30 \mathrm{~T}_{\max }$ for $5 \mathrm{~d} \leq \mathrm{s} \leq 16$ - in. and to $0.5 \mathrm{~T}_{\max }$ for $\mathrm{s}>16$-in.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{e f} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} h_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$
5 Concrete thickness reduction factor in shear, f_{HV}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$ then $f_{\mathrm{HV}}=1.0$.

HIT-HY 200 with HIS-N Inserts

Figure 12 - Hilti HIS-N and HIS-RN internally threaded insert installation conditions

		Uncracked concrete Cracked concrete		Dry concrete Water saturated concrete			Hammer drilling with carbide tipped drill bit Hilti TE-CD or TE-YD Hollow Drill Bit

Table 56 - Hilti HIS-N and HIS-RN specifications

Setting information	Symbol	Units	Thread size			
			3/8-16 UNC	1/2-13 UNC	5/8-11 UNC	3/4-10 UNC
Outside diameter of insert		in.	0.65	0.81	1.00	1.09
Nominal bit diameter	d。	in.	11/16	7/8	1-1/8	1-1/4
Effective embedment	$\mathrm{hef}_{\text {f }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-3 / 8 \\ & (110) \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ (125) \\ \hline \end{gathered}$	$\begin{array}{r} 6-3 / 4 \\ (170) \\ \hline \end{array}$	$\begin{aligned} & 8-1 / 8 \\ & (205) \\ & \hline \end{aligned}$
Thread engagement $\begin{gathered}\text { minimum } \\ \text { maximum }\end{gathered}$	$\mathrm{h}_{\text {s }}$	$\begin{aligned} & \text { in. } \\ & \text { in. } \end{aligned}$	$\begin{gathered} \hline 3 / 8 \\ 15 / 16 \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ 1-3 / 16 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 8 \\ 1-1 / 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 4 \\ 1-7 / 8 \\ \hline \end{gathered}$
Installation torque	$\mathrm{T}_{\text {inst }}$	$\begin{aligned} & \hline \mathrm{ft}-\mathrm{lb} \\ & (\mathrm{Nm}) \\ & \hline \end{aligned}$	$\begin{gathered} 15 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ (40) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (81) \\ \hline \end{gathered}$	$\begin{gathered} \hline 100 \\ (136) \\ \hline \end{gathered}$
Minimum concrete thickness	$\mathrm{h}_{\text {min }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.9 \\ (150) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.7 \\ (170) \\ \hline \end{gathered}$	$\begin{gathered} 9.1 \\ (230) \\ \hline \end{gathered}$	$\begin{array}{r} 10.6 \\ (270) \\ \hline \end{array}$
Minimum edge distance	$\mathrm{c}_{\text {min }}$	$\begin{gathered} \text { in } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 4 \\ (83) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$
Minimum anchor spacing	$\mathrm{S}_{\text {min }}$	$\begin{gathered} \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3-1 / 4 \\ (83) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$

Figure 13 - Hilti HIS-N and HIS-RN specifications

Table 57 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete ${ }^{1,2,3,4,5,6,7,8,9}$

		Tension - $\Phi \mathrm{N}_{\mathrm{n}}$				Shear - $\Phi \mathrm{V}_{\mathrm{n}}$			
Thread size	Effective embedment in. (mm)	$\begin{gathered} f_{\mathrm{c}}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8-16 UNC	$\begin{aligned} & \hline 4-3 / 8 \\ & (111) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,10 \\ & (31.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,820 \\ & (34.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,030 \\ & (40.2) \\ & \hline \end{aligned}$	$\begin{gathered} 11,060 \\ (49.2) \\ \hline \end{gathered}$	$\begin{gathered} 15,375 \\ (68.4) \\ \hline \end{gathered}$	$\begin{gathered} 16,840 \\ (74.9) \\ \hline \end{gathered}$	$\begin{gathered} 19,445 \\ (86.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 23,815 \\ & (105.9) \\ & \hline \end{aligned}$
1/2-13 UNC	$\begin{gathered} \hline 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8,720 \\ & (38.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,555 \\ & (42.5) \\ & \hline \end{aligned}$	$\begin{gathered} 11,030 \\ (49.1) \\ \hline \end{gathered}$	$\begin{gathered} 13,510 \\ (60.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 18,785 \\ (83.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20,575 \\ (91.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 23,760 \\ & (105.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29,100 \\ & (129.4) \\ & \hline \end{aligned}$
5/8-11 UNC	$\begin{aligned} & 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 13,680 \\ (60.9) \\ \hline \end{gathered}$	$\begin{gathered} 14,985 \\ (66.7) \\ \hline \end{gathered}$	$\begin{gathered} 17,305 \\ (77.0) \\ \hline \end{gathered}$	$\begin{gathered} 21,190 \\ (94.3) \\ \hline \end{gathered}$	$\begin{aligned} & 29,460 \\ & (131.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,275 \\ & (143.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 37,265 \\ & (165.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,645 \\ & (203.0) \\ & \hline \end{aligned}$
3/4-10 UNC	$\begin{aligned} & \hline 8-1 / 8 \\ & (206) \\ & \hline \end{aligned}$	$\begin{gathered} 18,065 \\ (80.4) \\ \hline \end{gathered}$	$\begin{gathered} 19,790 \\ (88.0) \\ \hline \end{gathered}$	$\begin{aligned} & 22,850 \\ & (101.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,985 \\ & (124.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 38,910 \\ (173.1) \\ \hline \end{array}$	$\begin{aligned} & 42,620 \\ & (189.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,215 \\ & (218.9) \end{aligned}$	$\begin{aligned} & \hline 60,275 \\ & (268.1) \\ & \hline \end{aligned}$

Table 58 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete ${ }^{1,2,3,4,5,6,7,8,9}$

	Effective embedment in. (mm)	Tension - $\Phi \mathrm{N}_{\mathrm{n}}$				Shear - $\Phi V_{\text {n }}$			
Thread size		$\begin{gathered} f_{\mathrm{c}}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=2,500 \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=4,000 \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=6,000 \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8-16 UNC	$\begin{aligned} & \hline 4-3 / 8 \\ & (111) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,050 \\ & (22.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,335 \\ & (23.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,815 \\ & (25.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,570 \\ & (29.2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10,880 \\ (48.4) \\ \hline \end{gathered}$	$\begin{gathered} 11,495 \\ (51.1) \\ \hline \end{gathered}$	$\begin{gathered} 12,530 \\ (55.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14,150 \\ (62.9) \\ \hline \end{gathered}$
1/2-13 UNC	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & 6,175 \\ & (27.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,765 \\ & (30.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,815 \\ (34.8) \\ \hline \end{array}$	$\begin{aligned} & 9,570 \\ & (42.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,305 \\ & (59.2) \\ & \hline \end{aligned}$	$\begin{gathered} 14,575 \\ (64.8) \\ \hline \end{gathered}$	$\begin{gathered} 16,830 \\ (74.9) \\ \hline \end{gathered}$	$\begin{gathered} 20,610 \\ (91.7) \\ \hline \end{gathered}$
5/8-11 UNC	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{array}{r} 9,690 \\ (43.1) \\ \hline \end{array}$	$\begin{gathered} 10,615 \\ (47.2) \\ \hline \end{gathered}$	$\begin{gathered} 12,255 \\ (54.5) \\ \hline \end{gathered}$	$\begin{gathered} 15,010 \\ (66.8) \\ \hline \end{gathered}$	$\begin{gathered} 20,870 \\ (92.8) \\ \hline \end{gathered}$	$\begin{aligned} & 22,860 \\ & (101.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,395 \\ & (117.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,330 \\ & (143.8) \end{aligned}$
3/4-10 UNC	$\begin{aligned} & \hline 8-1 / 8 \\ & (206) \\ & \hline \end{aligned}$	$\begin{gathered} 12,795 \\ (56.9) \\ \hline \end{gathered}$	$\begin{gathered} 14,015 \\ (62.3) \\ \hline \end{gathered}$	$\begin{aligned} & 16,185 \\ & (72.0) \end{aligned}$	$\begin{gathered} 19,825 \\ (88.2) \end{gathered}$	$\begin{aligned} & \hline 27,560 \\ & (122.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 30,190 \\ & (134.3) \end{aligned}$	$\begin{aligned} & 34,860 \\ & (155.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 42,695 \\ & (189.9) \\ & \hline \end{aligned}$

1 See section 3.1.8 for explanation on development of load values.
2 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables 60-61 as necessary to the above values. Compare to the steel values in table 59 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B : Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 . Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85 .
7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by λ_{a} as follows: For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For all-lightweight, $\lambda_{\mathrm{a}}=0.45$.
9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by $\alpha_{\text {seis }}=0.69$.
See section 3.1.8 for additional information on seismic applications.
Table 59 - Steel design strength for steel bolt and cap screw for Hilti HIS-N and HIS-RN internally threaded inserts ${ }^{1,2,3}$

Thread size	ACI 318-14 Chapter 17 Based Design					
	ASTM A193 B7			ASTM A193 Grade B8M stainless steel		
	$\begin{gathered} \text { Tensile }^{4} \\ \phi \mathrm{~N}_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Shear }^{5} \\ \phi V_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	Seismic Shear ${ }^{6}$ $\phi \mathrm{V}$ $V_{\text {sa,eq }}$ $\mathrm{lb}(\mathrm{kN})$	$\begin{gathered} \text { Tensile }^{4} \\ \phi \mathrm{~N}_{\mathrm{sa}} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { Shear }^{5} \\ \phi \mathrm{~V}_{\text {sa }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{6}$ $\phi \mathrm{V}$ $V_{\text {sa,eq }}$ lb (kN)
3/8-16 UNC	$\begin{aligned} & 6,300 \\ & (28.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,490 \\ & (15.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,445 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 5,540 \\ & (24.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,070 \\ & (13.7) \end{aligned}$	$\begin{gathered} 2,150 \\ (9.6) \end{gathered}$
1/2-13 UNC	$\begin{gathered} \hline 11,530 \\ (51.3) \\ \hline \end{gathered}$	$\begin{aligned} & 6,385 \\ & (28.4) \end{aligned}$	$\begin{aligned} & 4,470 \\ & (19.9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10,145 \\ (45.1) \\ \hline \end{gathered}$	$\begin{aligned} & 5,620 \\ & (25.0) \end{aligned}$	$\begin{aligned} & \hline 3,935 \\ & (17.5) \\ & \hline \end{aligned}$
5/8-11 UNC	$\begin{gathered} 18,365 \\ (81.7) \\ \hline \end{gathered}$	$\begin{gathered} 10,170 \\ (45.2) \end{gathered}$	$\begin{aligned} & 7,120 \\ & (31.6) \end{aligned}$	$\begin{gathered} \hline 16,160 \\ (71.9) \\ \hline \end{gathered}$	$\begin{aligned} & 8,950 \\ & (39.8) \end{aligned}$	$\begin{aligned} & 6,265 \\ & (27.9) \end{aligned}$
3/4-10 UNC	$\begin{aligned} & \hline 27,180 \\ & (120.9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 15,055 \\ (67.0) \end{gathered}$	$\begin{aligned} & 10,540 \\ & (46.9) \end{aligned}$	$\begin{aligned} & 23,915 \\ & (106.4) \\ & \hline \end{aligned}$	$\begin{gathered} 13,245 \\ (58.9) \end{gathered}$	$\begin{aligned} & 9,270 \\ & (41.2) \end{aligned}$

1 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.
2 Hilti HIS-N and HIS-RN inserts with steel bolts are to be considered brittle steel elements.
3 Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.
4 Tensile $=\phi A_{\text {se, } \mathrm{N}} \mathrm{f}_{\text {uta }}$ as noted in ACI 318-14 Chapter 17.
5 Shear values determined by static shear tests with $\phi \mathrm{V}_{\text {sa }} \leq \phi 0.60 \mathrm{~A}_{\text {se, } \mathrm{V}} \mathrm{f}_{\mathrm{uta}}$ as noted in ACl 318-14 Chapter 17 .
6 Seismic Shear $=\alpha_{v, \text { seis }} \Phi_{\mathrm{vsa}}$: Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.

Table 60 - Load adjustment Factors for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete ${ }^{1,2,3}$

HIS-N and HIS-RN all diameters uncracked concrete			Spacing factor in tension $f_{\text {AN }}$				```Edge distance factor in tension f```				Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$				Edge distance in shear								Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$							
			Toward edge $f_{\text {RV }}$	\|	To and away from edge $f_{\text {RV }}$																									
Thre	ad Size	in.					3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4
	$\begin{aligned} & \text { pedment } \\ & h_{\text {ef }} \end{aligned}$	$\begin{gathered} \hline \text { in. } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 4-3 / 8 \\ (111) \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{array}{\|l\|} \hline 8-1 / 8 \\ (206) \\ \hline \end{array}$					$\begin{array}{\|l\|} \hline 4-3 / 8 \\ (111) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6-3 / 4 \\ (171) \end{array}$	$\begin{array}{\|l\|} \hline 8-1 / 8 \\ (206) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4-3 / 8 \\ (111) \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6-3 / 4 \\ (171) \\ \hline \end{array}$	$\begin{aligned} & 8-1 / 8 \\ & (206) \end{aligned}$	$\begin{array}{\|l\|} \hline 4-3 / 8 \\ (111) \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6-3 / 4 \\ (171) \\ \hline \end{array}$	$\begin{aligned} & 8-1 / 8 \\ & (206) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4-3 / 8 \\ (111) \end{array}$	$\begin{array}{\|c\|c\|} \hline 5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6-3 / 4 \\ (171) \end{array}$	$\begin{array}{\|l\|} \hline 8-1 / 8 \\ (206) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4-3 / 8 \\ (111) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5 \\ (127) \\ \hline \end{array}$	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & \hline 8-1 / 8 \\ & (206) \\ & \hline \end{aligned}$
	3-1/4	(83)	0.59	n/a	n/a	n/a	0.36	n/a	n/a	n/a	0.55	n/a	n/a	n/a	0.15	n/a	n/a	n/a	0.31	n/a	n/a	n/a	n/a	n/a	n/a	n / a				
E	4	(102)	0.61	0.59	n/a	n/a	0.41	0.40	n/a	n/a	0.56	0.55	n/a	n/a	0.21	0.19	n/a	n/a	0.41	0.38	n/a	n/a	n/a	n/a	n/a	n/a				
\pm	5	(127)	0.64	0.61	0.59	n/a	0.47	0.45	0.39	n/a	0.57	0.57	0.55	n/a	0.29	0.26	0.17	n/a	0.47	0.45	0.33	n/a	n/a	n/a	n/a	n/a				
ลิ	5-1/2	(140)	0.65	0.62	0.60	0.59	0.50	0.48	0.41	0.37	0.58	0.58	0.56	0.55	0.34	0.30	0.19	0.15	0.50	0.48	0.39	0.29	n/a	n/a	n/a	n/a				
\%	6	(152)	0.67	0.63	0.61	0.60	0.53	0.51	0.43	0.39	0.59	0.58	0.56	0.55	0.39	0.35	0.22	0.17	0.53	0.51	0.43	0.33	0.60	n/a	n/a	n/a				
등	7	(178)	0.69	0.66	0.63	0.62	0.61	0.57	0.48	0.42	0.60	0.60	0.57	0.56	0.49	0.43	0.28	0.21	0.61	0.57	0.48	0.42	0.64	0.62	n/a	n/a				
	8	(203)	0.72	0.68	0.64	0.63	0.70	0.65	0.52	0.45	0.62	0.61	0.58	0.57	0.60	0.53	0.34	0.26	0.70	0.65	0.52	0.45	0.69	0.66	n/a	n/a				
$\stackrel{\square}{0}$	9	(229)	0.75	0.70	0.66	0.65	0.78	0.73	0.57	0.49	0.63	0.62	0.59	0.58	0.71	0.63	0.40	0.31	0.78	0.73	0.57	0.49	0.73	0.70	n/a	n/a				
ర్ర	10	(254)	0.78	0.72	0.68	0.66	0.87	0.81	0.62	0.53	0.65	0.64	0.60	0.58	0.83	0.74	0.47	0.36	0.87	0.81	0.62	0.53	0.77	0.74	0.64	n/a				
	11	(279)	0.80	0.74	0.70	0.68	0.96	0.89	0.68	0.56	0.66	0.65	0.61	0.59	0.96	0.86	0.55	0.41	0.96	0.89	0.68	0.56	0.81	0.78	0.67	0.61				
0	12	(305)	0.83	0.77	0.72	0.70	1.00	0.97	0.74	0.60	0.68	0.66	0.62	0.60	1.00	0.98	0.62	0.47	1.00	0.97	0.74	0.60	0.84	0.81	0.70	0.64				
$\stackrel{\square}{6}$	14	(356)	0.89	0.81	0.75	0.73		1.00	0.86	0.70	0.71	0.69	0.64	0.62		1.00	0.78	0.59		1.00	0.86	0.70	0.91	0.87	0.75	0.69				
-	16	(406)	0.94	0.86	0.79	0.76			0.98	0.80	0.74	0.72	0.66	0.63			0.96	0.73			0.98	0.80	0.97	0.94	0.80	0.73				
山	18	(457)	1.00	0.90	0.82	0.80			1.00	0.90	0.77	0.75	0.68	0.65			1.00	0.87			1.00	0.90	1.00	0.99	0.85	0.78				
¢	24	(610)		1.00	0.93	0.90				1.00	0.85	0.83	0.74	0.70				1.00				1.00		1.00	0.99	0.90				
	30	(762)			1.00	0.99					0.94	0.91	0.80	0.75											1.00	1.00				
$\stackrel{\circ}{\circ}$	36	(914)				1.00					1.00	0.99	0.86	0.80												1.00				
	> 48	(1219)										1.00	0.99	0.90																

Table 61 - Load adjustment factors for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete ${ }^{1,2,3}$

HIS-N and HIS-RN all diameters cracked concrete			Spacing factor in tensionf_{AN}				Edge distance factor in tension $f_{\text {RN }}$				Spacing factor in shear ${ }^{4}$$f_{\mathrm{AV}}$				Edge distance in shear								$\begin{aligned} & \text { Concrete thickness } \\ & \text { factor in shear }{ }^{5} \\ & f_{\mathrm{HV}} \\ & \hline \end{aligned}$							
			$\begin{gathered} \text { Toward edge } \\ f_{\mathrm{Rv}} \end{gathered}$	\|	To and away from edge f_{RV}																									
Thread	ad Size	in.					3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4
	$\begin{aligned} & \text { edment } \\ & h_{\text {ef }} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & 8-1 / 8 \\ & (206) \end{aligned}$					$\begin{aligned} & 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{gathered} \hline 5 \\ (127) \end{gathered}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & 8-1 / 8 \\ & (206) \end{aligned}$	$\begin{aligned} & 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \end{array}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & 8-1 / 8 \\ & (206) \end{aligned}$	$\begin{aligned} & 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{gathered} 5 \\ (127) \end{gathered}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & 8-1 / 8 \\ & (206) \end{aligned}$	$\begin{aligned} & 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{array}{\|c\|} \hline 5 \\ (127) \end{array}$	$\begin{array}{\|l\|} \hline 6-3 / 4 \\ (171) \end{array}$	$\begin{aligned} & 8-1 / 8 \\ & (206) \end{aligned}$	$\begin{aligned} & 4-3 / 8 \\ & (111) \end{aligned}$	$\begin{gathered} 5 \\ (127) \end{gathered}$	$\begin{aligned} & 6-3 / 4 \\ & (171) \end{aligned}$	$\begin{aligned} & 8-1 / 8 \\ & (206) \end{aligned}$
	3-1/4	(83)	0.59	n/a	n/a	n/a	0.55	n/a	n/a	n/a	0.55	n/a	n/a	n/a	0.16	n/a	n/a	n/a	0.31	n/a										
E	4	(102)	0.61	0.59	n/a	n/a	0.60	0.55	n/a	n/a	0.56	0.55	n/a	n/a	0.21	0.19	n/a	n/a	0.43	0.38	n/a	n/a	n/a	n/a	n/a	n/a				
\pm	5	(127)	0.64	0.61	0.59	n/a	0.67	0.60	0.55	n/a	0.57	0.57	0.55	n/a	0.30	0.26	0.17	n/a	0.59	0.53	0.34	n/a	n/a	n/a	n/a	n/a				
ลิ	5-1/2	(140)	0.65	0.62	0.60	0.59	0.71	0.63	0.57	0.55	0.58	0.58	0.56	0.55	0.34	0.31	0.19	0.15	0.69	0.61	0.39	0.29	n/a	n/a	n/a	n/a				
\%	6	(152)	0.67	0.63	0.61	0.60	0.75	0.66	0.59	0.57	0.59	0.58	0.56	0.55	0.39	0.35	0.22	0.17	0.75	0.66	0.44	0.34	0.60	n/a	n/a	n/a				
5	7	(178)	0.69	0.66	0.63	0.62	0.83	0.72	0.64	0.61	0.60	0.60	0.57	0.56	0.49	0.44	0.28	0.21	0.83	0.72	0.56	0.42	0.64	0.62	n/a	n/a				
	8	(203)	0.72	0.68	0.64	0.63	0.91	0.78	0.69	0.66	0.62	0.61	0.58	0.57	0.60	0.54	0.34	0.26	0.91	0.78	0.68	0.52	0.69	0.66	n/a	n/a				
$\stackrel{\square}{0}$	9	(229)	0.75	0.70	0.66	0.65	1.00	0.85	0.74	0.70	0.63	0.62	0.59	0.58	0.72	0.64	0.41	0.31	1.00	0.85	0.74	0.62	0.73	0.70	n/a	n/a				
ర్ర	10	(254)	0.78	0.72	0.68	0.66		0.91	0.79	0.75	0.65	0.64	0.60	0.58	0.84	0.75	0.48	0.36		0.91	0.79	0.72	0.77	0.74	0.64	n/a				
	11	(279)	0.80	0.74	0.70	0.68		0.98	0.84	0.79	0.66	0.65	0.61	0.59	0.97	0.86	0.55	0.42		0.98	0.84	0.79	0.81	0.78	0.67	0.61				
$\stackrel{0}{0}$	12	(305)	0.83	0.77	0.72	0.70		1.00	0.89	0.84	0.68	0.66	0.62	0.60	1.00	0.98	0.63	0.48		1.00	0.89	0.84	0.84	0.81	0.70	0.64				
\%	14	(356)	0.89	0.81	0.75	0.73			1.00	0.94	0.71	0.69	0.64	0.62		1.00	0.79	0.60			1.00	0.94	0.91	0.88	0.76	0.69				
-	16	(406)	0.94	0.86	0.79	0.76				1.00	0.74	0.72	0.66	0.64			0.97	0.73				1.00	0.97	0.94	0.81	0.74				
山	18	(457)	1.00	0.90	0.82	0.80					0.77	0.75	0.68	0.65			1.00	0.87					1.00	0.99	0.86	0.78				
क	24	(610)		1.00	0.93	0.90					0.86	0.83	0.74	0.70				1.00						1.00	0.99	0.90				
\%	30	(762)			1.00	0.99					0.95	0.91	0.81	0.75											1.00	1.00				
$\stackrel{\pi}{0}$	36	(914)				1.00					1.00	0.99	0.87	0.80																
	> 48	(1219)										1.00	0.99	0.91																

[^10]2 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
3 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} h_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
4 Concrete thickness reduction factor in shear, f_{HW},

DESIGN DATA IN CONCRETE PER CSA A23.

CSA A23.3-14 Annex D design

Limit State Design of anchors is described in the provisions of CSA A23.3-14 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. This section contains the Limit State Design tables with unfactored characteristic loads that are based on the published loads in ICC Evaluation Services ESR-3187 and ELC-3187. These tables are followed by factored resistance tables. The factored resistance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACl 318-14 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3-14 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.com.

Table 62 - Steel factored resistance for Hilti HIT-Z and HIT-Z-R anchor rods ${ }^{1}$

Nominal anchor diameter in.	HIT-Z Carbon Steel Rod ${ }^{2}$			HIT-Z-R Stainless Steel Rod ${ }^{2}$		
	$\begin{gathered} \text { Tensile } N_{\text {sar }}{ }^{3} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { Shear } V_{\text {sar }}{ }^{4} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { Seismic } \\ \text { shear } \mathrm{V}_{\text {sar,eq }}{ }^{5} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { Tensile } N_{\text {sar }}{ }^{3} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { Shear } V_{\text {sar }}^{4} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{aligned} & \text { Seismic } \\ & \text { shear } \mathrm{V}_{\text {sar.,eq }}{ }^{5} \\ & \mathrm{lb}(\mathrm{KN})^{2} \end{aligned}$
3/8	$\begin{aligned} & 4,345 \\ & (19.3) \\ & \hline \end{aligned}$	$\begin{gathered} 1,775 \\ (7.9) \\ \hline \end{gathered}$	$\begin{gathered} 1,775 \\ (7.9) \end{gathered}$	$\begin{aligned} & 4,345 \\ & (19.3) \end{aligned}$	$\begin{aligned} & 2,420 \\ & (10.8) \end{aligned}$	$\begin{aligned} & 2,420 \\ & (10.8) \end{aligned}$
1/2	$\begin{aligned} & 7,960 \\ & (35.4) \end{aligned}$	$\begin{aligned} & 3,250 \\ & (14.5) \end{aligned}$	$\begin{gathered} 2,115 \\ (9.4) \\ \hline \end{gathered}$	$\begin{aligned} & 7,960 \\ & (35.4) \end{aligned}$	$\begin{aligned} & 4,435 \\ & (19.7) \end{aligned}$	$\begin{aligned} & 3,325 \\ & (14.8) \end{aligned}$
5/8	$\begin{gathered} 12,675 \\ (56.4) \end{gathered}$	$\begin{aligned} & 5,180 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,365 \\ & (15.0) \\ & \hline \end{aligned}$	$\begin{gathered} 12,675 \\ (56.4) \end{gathered}$	$\begin{array}{r} 7,065 \\ (31.4) \\ \hline \end{array}$	$\begin{array}{r} 4,590 \\ (20.4) \\ \hline \end{array}$
3/4	$\begin{gathered} 18,725 \\ (83.3) \end{gathered}$	$\begin{array}{r} 7,650 \\ (34.0) \\ \hline \end{array}$	$\begin{aligned} & 4,975 \\ & (22.1) \end{aligned}$	$\begin{gathered} 18,725 \\ (83.3) \end{gathered}$	$\begin{gathered} 10,435 \\ (46.4) \end{gathered}$	$\begin{aligned} & 6,785 \\ & (30.2) \end{aligned}$

[^11]
HIT-HY 200 Adhesive with Hilti HIT-Z anchor rods

Table 63 - Hilti HIT-HY 200 design information with Hilti HIT-Z and HIT-R-Z anchor rods in hammer drilled holes or diamond core drilled holes in accordance with CSA A23.3-14

Design parameter		Symbol	Units	Nominal rod diameter (in.)				Ref A23.3-14	
		3/8		1/2	5/8	3/4			
Nominal anchor diameter			d_{a}	mm	9.5	12.7	15.9	19.1	
Effective minimum embedment ${ }^{2}$		$\mathrm{h}_{\text {ef }}$	mm	60	70	95	102		
Effective maximum embedment ${ }^{2}$		$\mathrm{h}_{\text {ef }}$	mm	114	152	190	216		
Minimum concrete thickness ${ }^{3}$		$\mathrm{h}_{\text {min }}$	mm	See tables 6 to 9 of this section or table 8 of ESR-3187					
Critical edge distance		C_{ac}	-	See section 4.1.10.1 of ESR-3187					
Minimum edge distance ${ }^{4}$		$\mathrm{Cac}_{\text {a }}$	-	See tables 6 to 9 of this section or table 8 of ESR-3187					
Minimum anchor spacing ${ }^{4}$		$\mathrm{S}_{\text {min }}$	-						
Coeff. for factored concrete breakout resistance, uncracked concrete		$\mathrm{k}_{\mathrm{c}, \text { uncr }}{ }^{5}$	-	10				D.6.2.2	
Coeff. for factored concrete breakout resistance, cracked concrete		$\mathrm{k}_{\mathrm{c}, \mathrm{cr}}{ }^{5}$	-	7				D.6.2.2	
Concrete material resistance factor		$\phi_{\text {c }}$	-	0.65				8.4.2	
Resistance modification factor for tension and shear, concrete failure modes, Condition B ${ }^{4}$		$\mathrm{R}_{\text {conc }}$	-	1.00				D.5.3(c)	
	Characteristic pullout resistance in cracked concrete	$\mathrm{N}_{\mathrm{p}, \mathrm{cr}}$	$\begin{gathered} \hline \mathrm{lb} \\ (\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{aligned} & 7,952 \\ & (35.4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10,936 \\ (48.6) \end{gathered}$	$\begin{gathered} \hline 21,391 \\ (95.2) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 27,930 \\ & (124.2) \\ & \hline \end{aligned}$	D.6.3.1	
	Characteristic pullout resistance in uncracked concrete	$\mathrm{N}_{\mathrm{p}, \text { uncr }}$	$\begin{gathered} \hline \mathrm{lb} \\ (\mathrm{kN}) \end{gathered}$	$\begin{aligned} & 7,952 \\ & (35.4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 11,719 \\ (52.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21,391 \\ (95.2) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 28,460 \\ & (126.6) \\ & \hline \end{aligned}$	D.6.3.1	
	Characteristic pullout resistance in cracked concrete	$\mathrm{N}_{\mathrm{p}, \mathrm{cr}}$	lb (kN)	$\begin{aligned} & 7,952 \\ & (35.4) \end{aligned}$	$\begin{gathered} \hline 10,936 \\ (48.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21,391 \\ (95.2) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 27,930 \\ & (124.2) \\ & \hline \end{aligned}$	D.6.3.1	
	Characteristic pullout resistance in uncracked concrete	$\mathrm{N}_{\mathrm{p}, \text { uncr }}$	$\begin{gathered} \hline \mathrm{lb} \\ (\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{aligned} & 7,952 \\ & (35.4) \end{aligned}$	$\begin{gathered} 11,719 \\ (52.1) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 21,391 \\ (95.2) \\ \hline \end{array}$	$\begin{aligned} & 28,460 \\ & (126.6) \\ & \hline \end{aligned}$	D.6.3.1	
	Characteristic pullout resistance in cracked concrete	$\mathrm{N}_{\mathrm{p}, \mathrm{cr}}$	lb (kN)	$\begin{aligned} & 7,182 \\ & (31.9) \end{aligned}$	$\begin{aligned} & 9,877 \\ & (43.9) \end{aligned}$	$\begin{gathered} \hline 19,321 \\ (85.9) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 25,277 \\ & (112.4) \\ & \hline \end{aligned}$	D.6.3.1	
	Characteristic pullout resistance in uncracked concrete	$\mathrm{N}_{\mathrm{p}, \text { uncr }}$	lb (kN)	$\begin{aligned} & 7,182 \\ & (31.9) \\ & \hline \end{aligned}$	$\begin{gathered} 10,585 \\ (47.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 19,321 \\ (85.9) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 25,705 \\ & (114.3) \\ & \hline \end{aligned}$	D.6.3.1	
Reduction for seismic tension		$\alpha_{N, \text { seis }}$	-	0.94	1.0				
	Resistance modification factor tension and shear, pullout failure dry concrete	Anchor category	-	1				D.5.3 (c)	
		$\mathrm{R}_{\mathrm{dr},}$	-						
	Resistance modification factor tension and shear, pullout failure water-saturated concrete	Anchor category	-	1				D.5.3 (c)	
		$\mathrm{R}_{\text {ws }}$	-	1.00					

1 Design information in this table is taken from ICC-ES ESR-3187, dated April 2019, tables 8 and 10, and converted for use with CSA A23.3-14 Annex D.
2 See figure 2 of this section.
3 See figure 5 of this section.
4 See figure 6 of this section.
5 For all design cases, $\Psi_{c, N}=1.0$. The appropriate coefficient for breakout resistance for cracked concrete ($k_{c, c r}$) or uncracked concrete ($k_{c, u n c r}$) must be used.
6 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.
7 Temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
Temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
Temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$.
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Table 64 - Hilti HIT-HY 200 adhesive factored resistance with concrete/pullout failure for Hilti HIT-Z and HIT-Z-R anchor rods in uncracked concrete ${ }^{1,2,3,4,5,6,7,8,9,10}$

Nominal anchor diameter in.	Effective embedment in. (mm)	Tension - N_{r}				Shear - V_{r}			
		$\begin{gathered} \hline f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \hline f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \hline f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \hline f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \hline f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$
3/8	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3,060 \\ & (13.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,425 \\ & (15.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,750 \\ & (16.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,330 \\ & (19.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,060 \\ & (13.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,425 \\ & (15.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,750 \\ & (16.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,330 \\ & (19.3) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 5,175 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5,175 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,175 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5,175 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{gathered} 10,375 \\ (46.1) \end{gathered}$	$\begin{gathered} 11,600 \\ (51.6) \\ \hline \end{gathered}$	$\begin{gathered} 12,705 \\ (56.5) \end{gathered}$	$\begin{gathered} 14,670 \\ (65.3) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,175 \\ (23.0) \\ \hline \end{array}$	$\begin{array}{r} 5,175 \\ (23.0) \\ \hline \end{array}$	$\begin{aligned} & 5,175 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,175 \\ (23.0) \\ \hline \end{array}$	$\begin{aligned} & 15,970 \\ & (71.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 17,855 \\ & (79.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 19,560 \\ & (87.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 22,585 \\ & (100.5) \\ & \hline \end{aligned}$
1/2	$\begin{gathered} \hline 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3,815 \\ & (17.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,265 \\ & (19.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,670 \\ & (20.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5,395 \\ & (24.0) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 7,630 \\ (33.9) \\ \hline \end{array}$	$\begin{aligned} & \hline 8,530 \\ & (37.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,345 \\ & (41.6) \\ & \hline \end{aligned}$	$\begin{gathered} 10,790 \\ (48.0) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,615 \\ & (33.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,615 \\ (33.9) \\ \hline \end{array}$	$\begin{aligned} & 7,615 \\ & (33.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,615 \\ & (33.9) \\ & \hline \end{aligned}$	$\begin{gathered} 15,970 \\ (71.0) \\ \hline \end{gathered}$	$\begin{gathered} 17,855 \\ (79.4) \\ \hline \end{gathered}$	$\begin{gathered} 19,560 \\ (87.0) \\ \hline \end{gathered}$	$\begin{aligned} & 22,585 \\ & (100.5) \\ & \hline \end{aligned}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{array}{r} 7,615 \\ (33.9) \\ \hline \end{array}$	$\begin{array}{r} 7,615 \\ (33.9) \\ \hline \end{array}$	$\begin{aligned} & 7,615 \\ & (33.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,615 \\ (33.9) \\ \hline \end{array}$	$\begin{array}{r} 24,590 \\ (109.4) \\ \hline \end{array}$	$\begin{aligned} & 27,490 \\ & (122.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 30,115 \\ & (134.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,775 \\ & (154.7) \\ & \hline \end{aligned}$
5/8	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6,075 \\ & (27.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,790 \\ & (30.2) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,440 \\ (33.1) \\ \hline \end{array}$	$\begin{aligned} & 8,590 \\ & (38.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,150 \\ & (54.0) \\ & \hline \end{aligned}$	$\begin{gathered} 13,585 \\ (60.4) \\ \hline \end{gathered}$	$\begin{aligned} & 14,880 \\ & (66.2) \\ & \hline \end{aligned}$	$\begin{gathered} 17,185 \\ (76.4) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{gathered} 11,160 \\ (49.6) \\ \hline \end{gathered}$	$\begin{gathered} 12,480 \\ (55.5) \end{gathered}$	$\begin{gathered} 13,670 \\ (60.8) \\ \hline \end{gathered}$	$\begin{aligned} & 13,895 \\ & (61.8) \end{aligned}$	$\begin{gathered} 22,320 \\ (99.3) \\ \hline \end{gathered}$	$\begin{aligned} & 24,955 \\ & (111.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,335 \\ & (121.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,565 \\ & (140.4) \\ & \hline \end{aligned}$
	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,895 \\ & (61.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,895 \\ & (61.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,895 \\ & (61.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,895 \\ & (61.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,365 \\ & (152.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 38,420 \\ & (170.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 42,090 \\ & (187.2) \\ & \hline \end{aligned}$	$\begin{array}{r} 48,600 \\ (216.2) \\ \hline \end{array}$
3/4	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6,690 \\ & (29.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,480 \\ & (33.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,195 \\ & (36.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,465 \\ & (42.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,385 \\ & (59.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 14,965 \\ & (66.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 16,395 \\ & (72.9) \\ & \hline \end{aligned}$	$\begin{gathered} 18,930 \\ (84.2) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 14,670 \\ & (65.3) \\ & \hline \end{aligned}$	$\begin{gathered} 16,400 \\ (73.0) \\ \hline \end{gathered}$	$\begin{gathered} 17,970 \\ (79.9) \\ \hline \end{gathered}$	$\begin{aligned} & 18,500 \\ & (82.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,340 \\ & (130.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32,805 \\ & (145.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35,935 \\ & (159.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 41,495 \\ & (184.6) \\ & \hline \end{aligned}$
	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{aligned} & 18,500 \\ & (82.3) \end{aligned}$	$\begin{gathered} 18,500 \\ (82.3) \\ \hline \end{gathered}$	$\begin{aligned} & 18,500 \\ & (82.3) \end{aligned}$	$\begin{aligned} & 18,500 \\ & (82.3) \end{aligned}$	$\begin{aligned} & \hline 41,460 \\ & (184.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 46,355 \\ & (206.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 50,780 \\ & (225.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 58,635 \\ & (260.8) \\ & \hline \end{aligned}$

Table 65 - Hilti HIT-HY 200 adhesive factored resistance with concrete/pullout failure for Hilti HIT-Z and HIT-Z-R anchor rods in cracked concrete ${ }^{1,2,2,4,5,6,7,8,8,910}$

Nominal anchor diameter in.	Effective embedment in. (mm)	Tension - N_{r}				Shear - V ${ }_{\text {r }}$			
		$\begin{gathered} f_{\mathrm{c}}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{C}}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$\begin{gathered} 2-3 / 8 \\ (60) \end{gathered}$	$\begin{gathered} 2,145 \\ (9.5) \\ \hline \end{gathered}$	$\begin{aligned} & 2,395 \\ & (10.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,625 \\ & (11.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,030 \\ & (13.5) \\ & \hline \end{aligned}$	$\begin{gathered} 2,145 \\ (9.5) \end{gathered}$	$\begin{aligned} & 2,395 \\ & (10.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,625 \\ & (11.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,030 \\ & (13.5) \\ & \hline \end{aligned}$
	$\begin{gathered} 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3,630 \\ & (16.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,060 \\ & (18.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,445 \\ & (19.8) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,135 \\ (22.8) \\ \hline \end{array}$	$\begin{aligned} & \hline 7,260 \\ & (32.3) \end{aligned}$	$\begin{aligned} & \hline 8,120 \\ & (36.1) \end{aligned}$	$\begin{aligned} & \hline 8,895 \\ & (39.6) \end{aligned}$	$\begin{gathered} 10,270 \\ (45.7) \end{gathered}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,175 \\ & (23.0) \end{aligned}$	$\begin{gathered} 11,180 \\ (49.7) \\ \hline \end{gathered}$	$\begin{gathered} 12,500 \\ (55.6) \end{gathered}$	$\begin{gathered} 13,695 \\ (60.9) \end{gathered}$	$\begin{gathered} 15,810 \\ (70.3) \\ \hline \end{gathered}$			
1/2	$\begin{gathered} \hline 2-3 / 4 \\ (70) \end{gathered}$	$\begin{aligned} & \hline 2,670 \\ & (11.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,985 \\ & (13.3) \end{aligned}$	$\begin{aligned} & \hline 3,270 \\ & (14.5) \end{aligned}$	$\begin{aligned} & 3,775 \\ & (16.8) \end{aligned}$	$\begin{array}{r} 5,340 \\ (23.8) \end{array}$	$\begin{aligned} & 5,970 \\ & (26.6) \end{aligned}$	$\begin{array}{r} 6,540 \\ (29.1) \\ \hline \end{array}$	$\begin{array}{r} 7,555 \\ (33.6) \\ \hline \end{array}$
	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 5,590 \\ (24.9) \\ \hline \end{array}$	$\begin{aligned} & 6,250 \\ & (27.8) \\ & \hline \end{aligned}$	$\begin{array}{r} 6,845 \\ (30.5) \\ \hline \end{array}$	$\begin{array}{r} \hline 7,100 \\ (31.6) \\ \hline \end{array}$	$\begin{gathered} 11,180 \\ (49.7) \\ \hline \end{gathered}$	$\begin{gathered} 12,500 \\ (55.6) \\ \hline \end{gathered}$	$\begin{gathered} 13,695 \\ (60.9) \\ \hline \end{gathered}$	$\begin{gathered} 15,810 \\ (70.3) \\ \hline \end{gathered}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{aligned} & 7,100 \\ & (31.6) \end{aligned}$	$\begin{aligned} & 7,100 \\ & (31.6) \end{aligned}$	$\begin{aligned} & \hline 7,100 \\ & (31.6) \end{aligned}$	$\begin{aligned} & \hline 7,100 \\ & (31.6) \\ & \hline \end{aligned}$	$\begin{gathered} 17,215 \\ (76.6) \\ \hline \end{gathered}$	$\begin{gathered} 19,245 \\ (85.6) \end{gathered}$	$\begin{gathered} \hline 21,080 \\ (93.8) \end{gathered}$	$\begin{aligned} & 24,340 \\ & (108.3) \end{aligned}$
5/8	$\begin{gathered} \hline 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{aligned} & 4,250 \\ & (18.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,755 \\ & (21.1) \end{aligned}$	$\begin{array}{r} \hline 5,210 \\ (23.2) \\ \hline \end{array}$	$\begin{aligned} & 6,015 \\ & (26.8) \end{aligned}$	$\begin{aligned} & 8,505 \\ & (37.8) \end{aligned}$	$\begin{aligned} & 9,510 \\ & (42.3) \end{aligned}$	$\begin{gathered} 10,415 \\ (46.3) \\ \hline \end{gathered}$	$\begin{gathered} 12,030 \\ (53.5) \end{gathered}$
	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 7,810 \\ (34.8) \\ \hline \end{array}$	$\begin{aligned} & \hline 8,735 \\ & (38.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,570 \\ & (42.6) \\ & \hline \end{aligned}$	$\begin{gathered} 11,050 \\ (49.1) \\ \hline \end{gathered}$	$\begin{gathered} 15,625 \\ (69.5) \\ \hline \end{gathered}$	$\begin{gathered} 17,470 \\ (77.7) \\ \hline \end{gathered}$	$\begin{gathered} 19,135 \\ (85.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 22,095 \\ (98.3) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} 12,030 \\ (53.5) \end{gathered}$	$\begin{gathered} 13,445 \\ (59.8) \end{gathered}$	$\begin{gathered} 13,895 \\ (61.8) \end{gathered}$	$\begin{gathered} 13,895 \\ (61.8) \end{gathered}$	$\begin{aligned} & 24,055 \\ & (107.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26,895 \\ & (119.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,460 \\ & (131.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,020 \\ & (151.3) \\ & \hline \end{aligned}$
3/4	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{array}{r} 4,685 \\ (20.8) \\ \hline \end{array}$	$\begin{array}{r} \hline 5,240 \\ (23.3) \\ \hline \end{array}$	$\begin{aligned} & 5,740 \\ & (25.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 6,625 \\ (29.5) \\ \hline \end{array}$	$\begin{aligned} & \hline 9,370 \\ & (41.7) \\ & \hline \end{aligned}$	$\begin{gathered} 10,475 \\ (46.6) \end{gathered}$	$\begin{gathered} \hline 11,475 \\ (51.0) \end{gathered}$	$\begin{gathered} 13,250 \\ (58.9) \end{gathered}$
	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 10,270 \\ (45.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11,480 \\ (51.1) \\ \hline \end{gathered}$	$\begin{gathered} 12,575 \\ (55.9) \end{gathered}$	$\begin{gathered} 14,525 \\ (64.6) \\ \hline \end{gathered}$	$\begin{gathered} 20,540 \\ (91.4) \end{gathered}$	$\begin{aligned} & 22,965 \\ & (102.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 25,155 \\ (111.9) \\ \hline \end{array}$	$\begin{array}{r} 29,045 \\ (129.2) \\ \hline \end{array}$
	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 14,510 \\ (64.6) \\ \hline \end{gathered}$	$\begin{aligned} & 16,225 \\ & (72.2) \end{aligned}$	$\begin{gathered} 17,775 \\ (79.1) \\ \hline \end{gathered}$	$\begin{gathered} 18,150 \\ (80.7) \end{gathered}$	$\begin{aligned} & 29,025 \\ & (129.1) \end{aligned}$	$\begin{aligned} & 32,450 \\ & (144.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,545 \\ & (158.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 41,045 \\ & (182.6) \end{aligned}$

1 See Section 3.1.8 for explanation on development of load values.
2 See Section 3.1.8 to convert design strength value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables 10-17 as necessary to the above values. Compare to the steel values in table 62 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. For temperature range B : Max. short term temperature $=176^{\circ} \mathrm{F}$ $\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 1.00 . For temperature range C : Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.90 . Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry and water saturated concrete conditions.
7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by la as follows: For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For all-lightweight, $\lambda_{\mathrm{a}}=0.45$.
9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension only by the following reduction factors:
$3 / 8$-in diameter $-\alpha_{N, \text { seis }}=0.705 \quad 1 / 2$-in to $3 / 4$-in diameter $-\alpha_{N, \text { seis }}=0.75$
See section 3.1.8 for additional information on seismic applications.
10 Hilti HIT-Z(-R) rods may be installed in diamond cored holes with no reduction in published data above.

HIT-HY 200 Adhesive with Deformed Reinforcing Bars (Rebar)

Table 66 - Steel factored resistance for CA rebar ${ }^{1}$

Rebar size	CSA-G30.18 Grade 400²		
	Tensile N sar lb (kN)	Shear $V_{\text {sar }}{ }^{4}$ $\mathrm{lb}(\mathrm{kN})$	Seismic shear $\mathrm{V}_{\text {sar.eaq }}{ }^{5}$ $\mathrm{lb}(\mathrm{kN})$
	7,245	4,035	2,825
	(32.2)	(17.9)	(12.6)
15 M	14,525	8,090	5,665
	(64.6)	(36.0)	(25.2)
20 M	21,570	12,020	8,415
	(95.9)	(53.5)	(37.4)
25 M	36,025	20,070	14,050
	(160.2)	(89.3)	(62.5)
30 M	50,715	28,255	19,780
	(225.6)	(125.7)	(88.0)

1 See section 3.1.8 to convert design strength value to ASD value.
2 CSA-G30.18 Grade 400 rebar are considered ductile steel elements.
3 Tensile $=A_{\text {se, }} \Phi_{\mathrm{s}} f_{\text {uta }} R$ as noted in CSA A23.3-14 Annex D.
4 Shear $=A_{\text {se, }} \Phi_{\mathrm{s}} 0.60 \mathrm{f}_{\text {uta }} R$ as noted in CSA A23.3-14 Annex D.
5 Seismic Shear $=\alpha_{V \text { seis }} V_{\text {sar }}$: Reduction factor for seismic shear only. See CSA
A23.3-14 Annex D for additional information on seismic applications.
Table 67 - Specifications for CA rebar installed with Hilti HIT-HY 200 adhesive

Setting information		Symbol	Units	Rebar size					
		10M		15M	20M	25M	30M		
Nominal bit size			d。	in.	9/16	3/4	1	1-1/4	1-1/2
Effective embedment	minimum	$\mathrm{h}_{\text {ef, min }}$	mm	70	80	90	101	120	
	maximum	$\mathrm{h}_{\text {ef, max }}$	mm	226	320	390	504	598	
Minimum concrete member thickness		$\mathrm{h}_{\text {min }}$	mm	$\mathrm{h}_{\text {ef }}+30$	$\mathrm{hef}_{\text {ef }}+2 \mathrm{~d}_{\text {。 }}$				

Note: The installation specifications in table 67 above and the data in tables 66 through 80 pertain to the use of Hilti HIT-HY 200 with rebar designed as a post-installed anchor using the provisions of CSA A23.3-14 Annex D. For the use of Hilti HIT-HY 200 with rebar for typical development calculations according to CSA A23.3-14 Chapter 12, refer to section 3.1.8 for the design method and tables 94 through 98 at the end of this section.

Table 68 - Hilti HIT-HY 200 adhesive design information with CA rebar in hammer drilled holes in accordance with CSA A23.3-14 Annex D ${ }^{1}$

1 Design information in this table is taken from ELC-3187, dated April 2019, tables 16 and 17, for use with CSA A23.3-14 Annex D.
2 See figure 8 of this section.
3 Minimum edge distance may be reduced to 45 mm provided rebar remains untorqued. See ELC-3187 Installation Torque Subject to Edge Distance section.
4 For all design cases, $\Psi_{\mathrm{c}, \mathrm{N}}=1.0$. The appropriate coefficient for breakout resistance for cracked concrete ($\mathrm{k}_{\mathrm{c}, \mathrm{rr}}$) or uncracked concrete ($\mathrm{k}_{\mathrm{c}, \mathrm{uncr}}$) must be used.
5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.
6 Temperature range A: Max. short term temperature $\left.=130^{\circ} \mathrm{F} 55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
Temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
Temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$.
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
7 Bond strength values corresponding to concrete compressive strength $f_{c}{ }_{c}=2,500 \mathrm{psi}(17.2 \mathrm{MPa})$. For concrete compressive strength, f^{\prime}, between $2,500 \mathrm{psi}$ $(17.2 \mathrm{MPa})$ and $8,000 \mathrm{psi}(55.2 \mathrm{MPa})$, the tabulated characteristic bond strength may be increased by a factor of $\left(f_{c}^{\prime} / 2,500\right)^{0.1}\left[f o r ~ S I: ~\left(f_{c}{ }_{c} / 17.2\right)^{0.1]}\right.$.

Table 69 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for CA rebar in uncracked concrete ${ }^{1,2,3,4,5,6,7,8,9}$

Rebar size	Effective embedment in. (mm)	Tension - N_{r}				Shear - V ${ }_{r}$			
		$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
10M	$\begin{aligned} & \hline 4-1 / 2 \\ & (115) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,515 \\ & (29.0) \end{aligned}$	$\begin{aligned} & \hline 6,665 \\ & (29.6) \end{aligned}$	$\begin{aligned} & 6,785 \\ & (30.2) \end{aligned}$	$\begin{aligned} & 6,985 \\ & (31.1) \end{aligned}$	$\begin{gathered} 13,030 \\ (58.0) \end{gathered}$	$\begin{gathered} 13,325 \\ (59.3) \end{gathered}$	$\begin{gathered} 13,570 \\ (60.4) \end{gathered}$	$\begin{gathered} 13,965 \\ (62.1) \end{gathered}$
	$\begin{gathered} \hline 7-1 / 16 \\ (180) \end{gathered}$	$\begin{gathered} 10,200 \\ (45.4) \end{gathered}$	$\begin{gathered} 10,430 \\ (46.4) \end{gathered}$	$\begin{gathered} 10,620 \\ (47.2) \end{gathered}$	$\begin{gathered} 10,930 \\ (48.6) \end{gathered}$	$\begin{gathered} 20,395 \\ (90.7) \end{gathered}$	$\begin{gathered} 20,855 \\ (92.8) \end{gathered}$	$\begin{gathered} 21,240 \\ (94.5) \end{gathered}$	$\begin{gathered} 21,860 \\ (97.2) \end{gathered}$
	$\begin{aligned} & \hline 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$	$\begin{gathered} 12,805 \\ (57.0) \end{gathered}$	$\begin{gathered} 13,095 \\ (58.2) \end{gathered}$	$\begin{gathered} 13,335 \\ (59.3) \end{gathered}$	$\begin{gathered} 13,725 \\ (61.0) \end{gathered}$	$\begin{aligned} & 25,610 \\ & (113.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,185 \\ & (116.5) \end{aligned}$	$\begin{aligned} & 26,670 \\ & (118.6) \end{aligned}$	$\begin{aligned} & 27,450 \\ & (122.1) \end{aligned}$
15M	$\begin{gathered} \hline 5-11 / 16 \\ (145) \\ \hline \end{gathered}$	$\begin{gathered} 11,410 \\ (50.8) \end{gathered}$	$\begin{gathered} 11,895 \\ (52.9) \end{gathered}$	$\begin{gathered} 12,115 \\ (53.9) \end{gathered}$	$\begin{gathered} 12,465 \\ (55.5) \end{gathered}$	$\begin{aligned} & 22,820 \\ & (101.5) \end{aligned}$	$\begin{aligned} & 23,790 \\ & (105.8) \end{aligned}$	$\begin{aligned} & 24,230 \\ & (107.8) \end{aligned}$	$\begin{aligned} & 24,935 \\ & (110.9) \end{aligned}$
	$\begin{gathered} \hline 9-13 / 16 \\ (250) \end{gathered}$	$\begin{gathered} 20,055 \\ (89.2) \end{gathered}$	$\begin{gathered} 20,510 \\ (91.2) \end{gathered}$	$\begin{gathered} 20,885 \\ (92.9) \end{gathered}$	$\begin{gathered} 21,495 \\ (95.6) \end{gathered}$	$\begin{aligned} & 40,110 \\ & (178.4) \end{aligned}$	$\begin{aligned} & 41,015 \\ & (182.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 41,770 \\ & (185.8) \end{aligned}$	$\begin{aligned} & 42,990 \\ & (191.2) \end{aligned}$
	$\begin{gathered} 12-5 / 8 \\ (320) \end{gathered}$	$\begin{aligned} & 25,670 \\ & (114.2) \end{aligned}$	$\begin{aligned} & 26,250 \\ & (116.8) \end{aligned}$	$\begin{aligned} & 26,735 \\ & (118.9) \end{aligned}$	$\begin{aligned} & 27,515 \\ & (122.4) \end{aligned}$	$\begin{aligned} & 51,345 \\ & (228.4) \end{aligned}$	$\begin{aligned} & 52,500 \\ & (233.5) \end{aligned}$	$\begin{aligned} & 53,470 \\ & (237.8) \end{aligned}$	$\begin{aligned} & 55,030 \\ & (244.8) \end{aligned}$
20M	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} 18,485 \\ (82.2) \end{gathered}$	$\begin{gathered} 19,995 \\ (88.9) \end{gathered}$	$\begin{gathered} 20,365 \\ (90.6) \end{gathered}$	$\begin{gathered} 20,960 \\ (93.2) \end{gathered}$	$\begin{aligned} & 36,965 \\ & (164.4) \end{aligned}$	$\begin{aligned} & 39,990 \\ & (177.9) \end{aligned}$	$\begin{aligned} & 40,730 \\ & (181.2) \end{aligned}$	$\begin{aligned} & 41,915 \\ & (186.5) \end{aligned}$
	$\begin{gathered} 14 \\ (355) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 34,710 \\ & (154.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,495 \\ & (157.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36,145 \\ & (160.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,200 \\ & (165.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 69,420 \\ & (308.8) \end{aligned}$	$\begin{aligned} & 70,985 \\ & (315.8) \end{aligned}$	$\begin{aligned} & 72,290 \\ & (321.6) \end{aligned}$	$\begin{aligned} & 74,400 \\ & (331.0) \\ & \hline \end{aligned}$
	$\begin{gathered} 15-3 / 8 \\ (390) \end{gathered}$	$\begin{aligned} & 38,130 \\ & (169.6) \end{aligned}$	$\begin{aligned} & 38,990 \\ & (173.4) \end{aligned}$	$\begin{aligned} & 39,710 \\ & (176.6) \end{aligned}$	$\begin{aligned} & 40,870 \\ & (181.8) \end{aligned}$	$\begin{aligned} & \hline 76,265 \\ & (339.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 77,985 \\ & (346.9) \end{aligned}$	$\begin{aligned} & 79,420 \\ & (353.3) \end{aligned}$	$\begin{aligned} & 81,735 \\ & (363.6) \\ & \hline \end{aligned}$
25M	$\begin{gathered} 9-1 / 16 \\ (230) \end{gathered}$	$\begin{aligned} & 22,795 \\ & (101.4) \end{aligned}$	$\begin{aligned} & 25,485 \\ & (113.4) \end{aligned}$	$\begin{aligned} & 27,920 \\ & (124.2) \end{aligned}$	$\begin{aligned} & 31,145 \\ & (138.5) \end{aligned}$	$\begin{aligned} & 45,590 \\ & (202.8) \end{aligned}$	$\begin{aligned} & \hline 50,970 \\ & (226.7) \end{aligned}$	$\begin{aligned} & 55,835 \\ & (248.4) \end{aligned}$	$\begin{aligned} & 62,295 \\ & (277.1) \end{aligned}$
	$\begin{gathered} 15-15 / 16 \\ (405) \end{gathered}$	$\begin{aligned} & 51,175 \\ & (227.6) \end{aligned}$	$\begin{aligned} & 52,330 \\ & (232.8) \end{aligned}$	$\begin{aligned} & 53,290 \\ & (237.0) \end{aligned}$	$\begin{aligned} & 54,845 \\ & (244.0) \end{aligned}$	$\begin{gathered} 102,345 \\ (455.3) \end{gathered}$	$\begin{gathered} 104,655 \\ (465.5) \end{gathered}$	$\begin{gathered} 106,580 \\ (474.1) \end{gathered}$	$\begin{gathered} \hline 109,690 \\ (487.9) \end{gathered}$
	$\begin{gathered} \hline 19-13 / 16 \\ (504) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 63,680 \\ & (283.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 65,120 \\ & (289.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 66,315 \\ & (295.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68,255 \\ & (303.6) \\ & \hline \end{aligned}$	$\begin{gathered} 127,365 \\ (566.5) \\ \hline \end{gathered}$	$\begin{gathered} 130,240 \\ (579.3) \\ \hline \end{gathered}$	$\begin{gathered} 132,635 \\ (590.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 136,505 \\ (607.2) \\ \hline \end{gathered}$
30M	$\begin{gathered} \hline 10-1 / 4 \\ (260) \\ \hline \end{gathered}$	$\begin{aligned} & 27,395 \\ & (121.9) \end{aligned}$	$\begin{aligned} & \hline 30,630 \\ & (136.3) \end{aligned}$	$\begin{aligned} & \hline 33,555 \\ & (149.3) \end{aligned}$	$\begin{aligned} & \hline 38,745 \\ & (172.3) \end{aligned}$	$\begin{aligned} & \hline 54,795 \\ & (243.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 61,260 \\ & (272.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 67,110 \\ & (298.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 77,490 \\ & (344.7) \\ & \hline \end{aligned}$
	$\begin{gathered} 17-15 / 16 \\ (455) \end{gathered}$	$\begin{aligned} & 63,425 \\ & (282.1) \end{aligned}$	$\begin{aligned} & 69,750 \\ & (310.3) \end{aligned}$	$\begin{aligned} & 71,035 \\ & (316.0) \end{aligned}$	$\begin{aligned} & 73,110 \\ & (325.2) \end{aligned}$	$\begin{gathered} 126,850 \\ (564.3) \end{gathered}$	$\begin{gathered} 139,505 \\ (620.5) \end{gathered}$	$\begin{gathered} 142,070 \\ (632.0) \end{gathered}$	$\begin{gathered} 146,220 \\ (650.4) \end{gathered}$
	$\begin{gathered} \hline 23-9 / 16 \\ (598) \\ \hline \end{gathered}$	$\begin{aligned} & 89,650 \\ & (398.8) \end{aligned}$	$\begin{aligned} & \hline 91,675 \\ & (407.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 93,360 \\ & (415.3) \end{aligned}$	$\begin{aligned} & \hline 96,085 \\ & (427.4) \\ & \hline \end{aligned}$	$\begin{gathered} 179,305 \\ (797.6) \end{gathered}$	$\begin{gathered} 183,350 \\ (815.6) \end{gathered}$	$\begin{gathered} 186,725 \\ (830.6) \end{gathered}$	$\begin{gathered} 192,170 \\ (854.8) \end{gathered}$

1 See Section 3.1.8 for explanation on development of load values.
2 See Section 3.1.8 to convert design strength value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables $71-80$ as necessary to the above values. Compare to the steel values in table 66. The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. For temperature range B : Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 . For temperature range C : Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 . Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85 .
7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_{a} as follows:
For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For all-lightweight, $\lambda_{\mathrm{a}}=0.45$.
9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 70 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for CA rebar in cracked concrete ${ }^{1,2,3,4,5,6,7,8,9}$

Rebar size	Effective embedment in. (mm)	Tension - N_{r}				Shear - V_{r}			
		$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{(3,625 \mathrm{psi})}^{\prime}=25 \mathrm{MPa} \\ (\mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
10M	$\begin{aligned} & 4-1 / 2 \\ & (115) \end{aligned}$	$\begin{aligned} & 4,490 \\ & (20.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,590 \\ & (20.4) \end{aligned}$	$\begin{aligned} & 4,675 \\ & (20.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,810 \\ & (21.4) \end{aligned}$	$\begin{aligned} & \hline 8,980 \\ & (39.9) \end{aligned}$	$\begin{aligned} & 9,185 \\ & (40.8) \end{aligned}$	$\begin{aligned} & 9,350 \\ & (41.6) \end{aligned}$	$\begin{aligned} & 9,625 \\ & (42.8) \end{aligned}$
	$\begin{gathered} \hline 7-1 / 16 \\ (180) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7,030 \\ & (31.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,185 \\ & (32.0) \end{aligned}$	$\begin{aligned} & 7,320 \\ & (32.6) \end{aligned}$	$\begin{aligned} & \hline 7,530 \\ & (33.5) \end{aligned}$	$\begin{gathered} 14,055 \\ (62.5) \end{gathered}$	$\begin{gathered} \hline 14,375 \\ (63.9) \end{gathered}$	$\begin{gathered} \hline 14,635 \\ (65.1) \end{gathered}$	$\begin{gathered} \hline 15,065 \\ (67.0) \end{gathered}$
	$\begin{aligned} & \hline 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,825 \\ & (39.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,025 \\ & (40.1) \end{aligned}$	$\begin{aligned} & \hline 9,190 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 9,455 \\ & (42.1) \end{aligned}$	$\begin{gathered} \hline 17,650 \\ (78.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 18,045 \\ (80.3) \end{gathered}$	$\begin{gathered} \hline 18,380 \\ (81.7) \\ \hline \end{gathered}$	$\begin{gathered} 18,915 \\ (84.1) \\ \hline \end{gathered}$
15M	$\begin{gathered} \hline 5-11 / 16 \\ (145) \end{gathered}$	$\begin{aligned} & \hline 7,985 \\ & (35.5) \end{aligned}$	$\begin{aligned} & 8,275 \\ & (36.8) \end{aligned}$	$\begin{aligned} & 8,425 \\ & (37.5) \end{aligned}$	$\begin{aligned} & \hline 8,670 \\ & (38.6) \end{aligned}$	$\begin{gathered} 15,975 \\ (71.1) \end{gathered}$	$\begin{gathered} 16,545 \\ (73.6) \end{gathered}$	$\begin{gathered} 16,850 \\ (75.0) \end{gathered}$	$\begin{gathered} 17,345 \\ (77.1) \end{gathered}$
	$\begin{gathered} \hline 9-13 / 16 \\ (250) \end{gathered}$	$\begin{gathered} 13,950 \\ (62.0) \end{gathered}$	$\begin{gathered} 14,265 \\ (63.4) \\ \hline \end{gathered}$	$\begin{gathered} 14,525 \\ (64.6) \end{gathered}$	$\begin{gathered} \hline 14,950 \\ (66.5) \end{gathered}$	$\begin{aligned} & 27,900 \\ & (124.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,530 \\ & (126.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,055 \\ & (129.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,900 \\ & (133.0) \end{aligned}$
	$\begin{gathered} 12-5 / 8 \\ (320) \end{gathered}$	$\begin{gathered} 17,855 \\ (79.4) \end{gathered}$	$\begin{gathered} \hline 18,260 \\ (81.2) \end{gathered}$	$\begin{gathered} 18,595 \\ (82.7) \end{gathered}$	$\begin{gathered} 19,135 \\ (85.1) \end{gathered}$	$\begin{aligned} & 35,710 \\ & (158.8) \end{aligned}$	$\begin{aligned} & 36,515 \\ & (162.4) \end{aligned}$	$\begin{aligned} & 37,190 \\ & (165.4) \end{aligned}$	$\begin{aligned} & 38,275 \\ & (170.2) \end{aligned}$
20M	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} 12,940 \\ (57.6) \end{gathered}$	$\begin{gathered} 14,035 \\ (62.4) \end{gathered}$	$\begin{gathered} 14,295 \\ (63.6) \end{gathered}$	$\begin{gathered} 14,710 \\ (65.4) \end{gathered}$	$\begin{aligned} & 25,875 \\ & (115.1) \end{aligned}$	$\begin{aligned} & 28,070 \\ & (124.9) \end{aligned}$	$\begin{aligned} & 28,590 \\ & (127.2) \end{aligned}$	$\begin{aligned} & 29,420 \\ & (130.9) \end{aligned}$
	$\begin{gathered} 14 \\ (355) \end{gathered}$	$\begin{aligned} & 24,365 \\ & (108.4) \end{aligned}$	$\begin{aligned} & 24,915 \\ & (110.8) \end{aligned}$	$\begin{aligned} & 25,370 \\ & (112.9) \end{aligned}$	$\begin{aligned} & 26,110 \\ & (116.2) \end{aligned}$	$\begin{aligned} & 48,725 \\ & (216.7) \end{aligned}$	$\begin{aligned} & 49,825 \\ & (221.6) \end{aligned}$	$\begin{aligned} & 50,745 \\ & (225.7) \end{aligned}$	$\begin{aligned} & 52,225 \\ & (232.3) \end{aligned}$
	$\begin{gathered} 15-3 / 8 \\ (390) \\ \hline \end{gathered}$	$\begin{aligned} & 26,765 \\ & (119.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,370 \\ & (121.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,875 \\ & (124.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,685 \\ & (127.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 53,530 \\ & (238.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 54,740 \\ & (243.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 55,745 \\ & (248.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,375 \\ & (255.2) \\ & \hline \end{aligned}$
25M	$\begin{gathered} \hline 9-1 / 16 \\ (230) \end{gathered}$	$\begin{gathered} 15,650 \\ (69.6) \end{gathered}$	$\begin{gathered} 16,000 \\ (71.2) \end{gathered}$	$\begin{gathered} 16,295 \\ (72.5) \end{gathered}$	$\begin{gathered} 16,770 \\ (74.6) \end{gathered}$	$\begin{aligned} & \hline 31,295 \\ & (139.2) \end{aligned}$	$\begin{aligned} & 32,005 \\ & (142.4) \end{aligned}$	$\begin{aligned} & 32,590 \\ & (145.0) \end{aligned}$	$\begin{aligned} & 33,545 \\ & (149.2) \end{aligned}$
	$\begin{gathered} 15-15 / 16 \\ (405) \end{gathered}$	$\begin{aligned} & 27,555 \\ & (122.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,175 \\ & (125.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,695 \\ & (127.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,530 \\ & (131.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 55,110 \\ & (245.1) \end{aligned}$	$\begin{aligned} & 56,355 \\ & (250.7) \end{aligned}$	$\begin{aligned} & 57,390 \\ & (255.3) \end{aligned}$	$\begin{aligned} & 59,065 \\ & (262.7) \end{aligned}$
	$\begin{gathered} \hline 19-13 / 16 \\ (504) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 34,290 \\ & (152.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35,065 \\ & (156.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35,710 \\ & (158.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36,750 \\ & (163.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68,580 \\ & (305.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70,130 \\ & (311.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 71,420 \\ & (317.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 73,505 \\ & (327.0) \\ & \hline \end{aligned}$
30M	$\begin{gathered} \hline 10-1 / 4 \\ (260) \\ \hline \end{gathered}$	$\begin{gathered} 19,180 \\ (85.3) \\ \hline \end{gathered}$	$\begin{gathered} 21,440 \\ (95.4) \\ \hline \end{gathered}$	$\begin{gathered} 22,115 \\ (98.4) \\ \hline \end{gathered}$	$\begin{aligned} & 22,765 \\ & (101.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 38,355 \\ & (170.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 42,885 \\ & (190.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 44,235 \\ & (196.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,525 \\ & (202.5) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 17-15 / 16 \\ (455) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 37,165 \\ & (165.3) \end{aligned}$	$\begin{aligned} & \hline 38,005 \\ & (169.1) \end{aligned}$	$\begin{aligned} & \hline 38,705 \\ & (172.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39,835 \\ & (177.2) \end{aligned}$	$\begin{aligned} & \hline 74,335 \\ & (330.7) \end{aligned}$	$\begin{aligned} & \hline 76,010 \\ & (338.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 77,410 \\ & (344.3) \end{aligned}$	$\begin{aligned} & \hline 79,670 \\ & (354.4) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 23-9 / 16 \\ (598) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 48,850 \\ & (217.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 49,950 \\ & (222.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 50,870 \\ & (226.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 52,355 \\ & (232.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 97,695 \\ & (434.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 99,900 \\ & (444.4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 101,740 \\ (452.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 104,710 \\ (465.8) \end{gathered}$

1 See Section 3.1.8 for explanation on development of load values.
2 See Section 3.1.8 to convert design strength value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables $71-80$ as necessary to the above values. Compare to the steel values in table 66. The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. For temperature range B : Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 . For temperature range C : Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 . Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.
7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_{a} as follows: For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For all-lightweight, $\lambda_{\mathrm{a}}=0.45$.
9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: 10 M to $20 \mathrm{M}-\alpha_{\text {seis }}=0.60,25 \mathrm{M}-\alpha_{\text {seis }}=0.64,30 \mathrm{M}-\alpha_{\text {seis }}=0.73$
See section 3.1.8 for additional information on seismic applications.

Table 71 - Load adjustment factors for 10M rebar in uncracked concrete ${ }^{1,2,3}$
-*

10M uncracked concrete			Spacing factor in tension $f_{A N}$			$\begin{aligned} & \text { Edge distance factor } \\ & \text { in tension } \\ & f_{\mathrm{RN}} \\ & \hline \end{aligned}$			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			Toward edgef_{RV}	\|	To and away from edge f_{RV}																		
	Embedment in.	$\begin{aligned} & \text { t } \mathrm{h}_{\mathrm{ef}} \\ & (\mathrm{~mm}) \end{aligned}$				$\begin{aligned} & 4-1 / 2 \\ & (115) \end{aligned}$	$\begin{gathered} \hline 7-1 / 16 \\ (180) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 8-7 / 8 \\ (226) \\ \hline \end{array}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (115) \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 7-1 / 16 \\ (180) \\ \hline \end{array}$	$\begin{aligned} & \hline 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (115) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 7-1 / 16 \\ (180) \\ \hline \end{array}$	$\begin{aligned} & 8-8 / 9 \\ & (226) \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (115) \end{aligned}$	$\begin{array}{\|c\|} \hline 7-1 / 16 \\ (180) \end{array}$	$\begin{aligned} & \hline 8-7 / 8 \\ & (226) \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (115) \end{aligned}$	$\begin{gathered} \hline 7-1 / 16 \\ (180) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 8-7 / 8 \\ (226) \\ \hline \end{array}$	$\begin{aligned} & 4-1 / 2 \\ & (115) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 7-1 / 16 \\ (180) \\ \hline \end{array}$	$\begin{aligned} & \hline 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$
$\widehat{\square}$	1-3/4	(44)	n/a	n/a	n/a				0.25	0.15	0.12	n/a	n/a	n/a	0.06	0.04	0.03	0.12	0.08	0.06	n/a	n/a	n/a
है	2-3/16	(55)	0.58	0.55	0.54	0.27	0.17	0.13	0.53	0.52	0.52	0.09	0.05	0.04	0.17	0.11	0.09	n/a	n/a	n/a			
\pm	3	(76)	0.61	0.57	0.56	0.31	0.20	0.15	0.54	0.53	0.53	0.14	0.09	0.07	0.28	0.18	0.14	n/a	n/a	n/a			
	4	(102)	0.65	0.59	0.57	0.37	0.23	0.18	0.56	0.54	0.54	0.22	0.14	0.11	0.40	0.28	0.22	n/a	n/a	n/a			
0	5	(127)	0.68	0.62	0.59	0.44	0.27	0.21	0.57	0.56	0.55	0.30	0.19	0.15	0.46	0.35	0.31	n/a	n/a	n/a			
$\stackrel{\square}{\circ}$	5-11/16	(145)	0.71	0.63	0.61	0.49	0.30	0.24	0.59	0.56	0.55	0.37	0.23	0.19	0.51	0.37	0.33	0.58	n/a	n/a			
.	6	(152)	0.72	0.64	0.61	0.51	0.32	0.25	0.59	0.57	0.56	0.40	0.25	0.20	0.53	0.38	0.34	0.60	n/a	n/a			
$\stackrel{+}{\ddagger}$	7	(178)	0.76	0.66	0.63	0.60	0.37	0.29	0.60	0.58	0.57	0.50	0.32	0.25	0.60	0.42	0.36	0.65	n/a	n/a			
\%	8	(203)	0.79	0.69	0.65	0.68	0.42	0.33	0.62	0.59	0.58	0.61	0.39	0.31	0.68	0.46	0.39	0.69	n/a	n/a			
O	8-1/4	(210)	0.80	0.69	0.65	0.71	0.44	0.35	0.62	0.59	0.58	0.64	0.41	0.33	0.71	0.47	0.40	0.70	0.61	n/a			
\bigcirc	9	(229)	0.83	0.71	0.67	0.77	0.48	0.38	0.63	0.60	0.59	0.73	0.47	0.37	0.77	0.50	0.42	0.73	0.63	n/a			
О	10-1/16	(256)	0.87	0.74	0.69	0.86	0.53	0.42	0.65	0.61	0.60	0.86	0.55	0.44	0.86	0.54	0.45	0.78	0.67	0.62			
$\stackrel{\bigcirc}{0}$	11	(279)	0.90	0.76	0.71	0.94	0.58	0.46	0.66	0.62	0.61	0.98	0.63	0.50	0.94	0.58	0.48	0.81	0.70	0.65			
,	12	(305)	0.94	0.78	0.72	1.00	0.64	0.50	0.68	0.63	0.61	1.00	0.72	0.57	1.00	0.64	0.51	0.85	0.73	0.68			
\%	14	(356)	1.00	0.83	0.76		0.74	0.59	0.71	0.66	0.63		0.90	0.72		0.74	0.59	0.92	0.79	0.73			
\%	16	(406)		0.88	0.80		0.85	0.67	0.74	0.68	0.65		1.00	0.88		0.85	0.67	0.98	0.84	0.78			
$\stackrel{\square}{\square}$	18	(457)		0.92	0.84		0.96	0.75	0.77	0.70	0.67			1.00		0.96	0.75	1.00	0.89	0.83			
क	24	(610)		1.00	0.95		1.00	1.00	0.86	0.77	0.73					1.00	1.00		1.00	0.96			
-	30	(762)			1.00				0.95	0.83	0.79									1.00			
$\stackrel{0}{0}$	36	(914)							1.00	0.90	0.84												
の	>48	(1219)								1.00	0.96												

Table 72 - Load adjustment factors for 10M rebar in cracked concrete ${ }^{1,2,3}$

10M cracked concrete			Spacing factor in tension $f_{A N}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			$\begin{gathered} \frac{\perp}{\text { Toward edge }} \\ f_{\mathrm{RV}} \end{gathered}$	\|	To and away from edge f_{RV}																		
	Embedment in.	$\begin{aligned} & t \mathrm{~h}_{\mathrm{ef}} \\ & (\mathrm{~mm}) \end{aligned}$				$\begin{aligned} & 4-1 / 2 \\ & (115) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7-1 / 16 \\ (180) \end{gathered}$	$\begin{aligned} & 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (115) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7-1 / 16 \\ (180) \\ \hline \end{gathered}$	$\begin{aligned} & 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (115) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 7-1 / 16 \\ (180) \\ \hline \end{array}$	$\begin{aligned} & 8-8 / 9 \\ & (226) \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (115) \\ & \hline \end{aligned}$	$\begin{gathered} 7-1 / 16 \\ (180) \end{gathered}$	$\begin{aligned} & 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & (115) \end{aligned}$	$\begin{array}{\|c\|} \hline 7-1 / 16 \\ (180) \end{array}$	$\begin{aligned} & 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-1 / 2 \\ & (115) \end{aligned}$	$\begin{gathered} \hline 7-1 / 16 \\ (180) \\ \hline \end{gathered}$	$\begin{aligned} & 8-7 / 8 \\ & (226) \\ & \hline \end{aligned}$
$\widehat{\square}$	1-3/4	(44)	n/a	n/a	n/a				0.49	0.44	0.42	n/a	n/a	n/a	0.06	0.04	0.03	0.13	0.08	0.07	n/a	n/a	n/a
है	2-3/16	(55)	0.58	0.55	0.54	0.52	0.46	0.43	0.53	0.52	0.52	0.09	0.06	0.05	0.18	0.11	0.09	n/a	n/a	n/a			
.	3	(76)	0.61	0.57	0.56	0.60	0.50	0.47	0.55	0.53	0.53	0.15	0.09	0.07	0.29	0.19	0.15	n/a	n/a	n/a			
'	4	(102)	0.65	0.59	0.57	0.70	0.56	0.51	0.56	0.55	0.54	0.22	0.14	0.11	0.45	0.29	0.23	n/a	n/a	n/a			
¢	5	(127)	0.68	0.62	0.59	0.80	0.62	0.56	0.58	0.56	0.55	0.31	0.20	0.16	0.62	0.40	0.32	n/a	n/a	n/a			
¢	5-11/16	(145)	0.71	0.63	0.61	0.88	0.66	0.59	0.59	0.56	0.56	0.38	0.24	0.19	0.76	0.49	0.39	0.59	n/a	n/a			
.	6	(152)	0.72	0.64	0.61	0.91	0.68	0.61	0.59	0.57	0.56	0.41	0.26	0.21	0.82	0.52	0.42	0.61	n/a	n/a			
ᄃ	7	(178)	0.76	0.66	0.63	1.00	0.74	0.65	0.61	0.58	0.57	0.52	0.33	0.26	1.00	0.66	0.53	0.66	n/a	n/a			
\%	8	(203)	0.79	0.69	0.65		0.81	0.70	0.62	0.59	0.58	0.63	0.40	0.32		0.81	0.64	0.70	n/a	n/a			
-	8-1/4	(210)	0.80	0.69	0.65		0.83	0.72	0.63	0.59	0.58	0.66	0.42	0.34		0.83	0.68	0.71	0.61	n/a			
$\stackrel{\square}{0}$	9	(229)	0.83	0.71	0.67		0.88	0.76	0.64	0.60	0.59	0.75	0.48	0.38		0.88	0.76	0.74	0.64	n/a			
0°	10-1/16	(256)	0.87	0.74	0.69		0.96	0.81	0.65	0.61	0.60	0.89	0.57	0.46		0.96	0.81	0.79	0.68	0.63			
O	11	(279)	0.90	0.76	0.71		1.00	0.86	0.67	0.63	0.61	1.00	0.65	0.52		1.00	0.86	0.82	0.71	0.66			
ก	12	(305)	0.94	0.78	0.72			0.92	0.68	0.64	0.62		0.74	0.59			0.92	0.86	0.74	0.69			
$\stackrel{\circ}{0}$	14	(356)	1.00	0.83	0.76			1.00	0.71	0.66	0.64		0.94	0.74			1.00	0.93	0.80	0.74			
\%	16	(406)		0.88	0.80				0.75	0.68	0.66		1.00	0.91				0.99	0.85	0.79			
${ }^{\circ}$	18	(457)		0.92	0.84				0.78	0.70	0.68			1.00				1.00	0.91	0.84			
¢	24	(610)		1.00	0.95				0.87	0.77	0.73								1.00	0.97			
-	30	(762)			1.00				0.96	0.84	0.79									1.00			
Ỡ	36	(914)							1.00	0.91	0.85												
の	>48	(1219)								1.00	0.97												

[^12]2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.
4 Spacing factor reduction in shear applicable when $c<3^{*} h_{\text {ef }} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} h_{\text {ef }}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 73 - Load adjustment factors for 15M rebar in uncracked concrete ${ }^{1,2,3}$

15M uncracked concrete		Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
		Toward edgef_{RV}	```\| To and away from edge f```																			
	mbedment $^{h_{\text {ef }}}$ in. (mm)				$\begin{gathered} 5-11 / 16 \\ (145) \end{gathered}$	$\begin{array}{c\|} \hline 9-13 / 16 \\ (250) \end{array}$	$\begin{gathered} \hline 12-5 / 8 \\ (320) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5-11 / 16 \\ (145) \end{gathered}$	$\begin{gathered} \hline 9-13 / 16 \\ (250) \end{gathered}$	$\begin{gathered} \hline 12-5 / 8 \\ (320) \\ \hline \end{gathered}$	$\begin{gathered} 5-11 / 16 \\ (145) \end{gathered}$	$\begin{gathered} \hline 9-13 / 16 \\ (250) \end{gathered}$	$\begin{array}{\|c\|} \hline 12-5 / 8 \\ (320) \\ \hline \end{array}$	$\begin{gathered} \hline 5-11 / 16 \\ (145) \end{gathered}$	$\begin{gathered} 9-13 / 16 \\ (250) \end{gathered}$	$\begin{gathered} \hline 12-5 / 8 \\ (320) \end{gathered}$	$\begin{gathered} \hline 5-11 / 16 \\ (145) \end{gathered}$	$\begin{gathered} 9-13 / 16 \\ (250) \end{gathered}$	$\begin{gathered} \hline 12-5 / 8 \\ (320) \\ \hline \end{gathered}$	$\begin{gathered} 5-11 / 16 \\ (145) \end{gathered}$	$\begin{gathered} \hline 9-13 / 16 \\ (250) \end{gathered}$	$\begin{gathered} \hline 12-5 / 8 \\ (320) \end{gathered}$
	1-3/4 (44)	n/a	n/a	n/a				0.25	0.14	0.11	n/a	n/a	n/a	0.04	0.02	0.02	0.08	0.05	0.04	n/a	n/a	n/a
है	$3-1 / 8 \quad(80)$	0.59	0.55	0.54	0.31	0.17	0.13	0.54	0.53	0.52	0.10	0.06	0.05	0.20	0.12	0.09	n/a	n/a	n/a			
\pm	4 (102)	0.62	0.57	0.55	0.35	0.19	0.15	0.55	0.53	0.53	0.14	0.08	0.07	0.29	0.17	0.13	n/a	n/a	n/a			
	5 (127)	0.65	0.58	0.57	0.39	0.22	0.17	0.56	0.54	0.53	0.20	0.12	0.09	0.40	0.23	0.18	n/a	n/a	n/a			
	6 (152)	0.68	0.60	0.58	0.44	0.25	0.19	0.57	0.55	0.54	0.27	0.15	0.12	0.45	0.31	0.24	n/a	n/a	n/a			
-	7 (178)	0.70	0.62	0.59	0.49	0.27	0.21	0.58	0.56	0.55	0.33	0.19	0.15	0.50	0.35	0.30	n/a	n/a	n/a			
.	7-1/4 (184)	0.71	0.62	0.60	0.50	0.28	0.22	0.58	0.56	0.55	0.35	0.20	0.16	0.51	0.35	0.31	0.58	n/a	n/a			
$\stackrel{\square}{ \pm}$	8 (203)	0.73	0.64	0.61	0.54	0.30	0.24	0.59	0.56	0.55	0.41	0.24	0.18	0.55	0.37	0.33	0.61	n/a	n/a			
$\stackrel{0}{0}$	9 (229)	0.76	0.65	0.62	0.61	0.34	0.26	0.60	0.57	0.56	0.49	0.28	0.22	0.61	0.40	0.35	0.64	n/a	n/a			
	10 (254)	0.79	0.67	0.63	0.68	0.38	0.29	0.61	0.58	0.57	0.57	0.33	0.26	0.68	0.43	0.37	0.68	n/a	n/a			
	11-3/8 (289)	0.83	0.69	0.65	0.77	0.43	0.33	0.63	0.59	0.58	0.69	0.40	0.31	0.77	0.46	0.39	0.72	0.60	n/a			
${ }_{0}^{0}$	12 (305)	0.85	0.70	0.66	0.81	0.46	0.35	0.64	0.60	0.58	0.75	0.43	0.34	0.81	0.48	0.40	0.74	0.62	n/a			
¢	14-1/8 (359)	0.91	0.74	0.69	0.96	0.54	0.42	0.66	0.61	0.60	0.96	0.55	0.43	0.96	0.54	0.45	0.81	0.67	0.62			
+	16 (406)	0.97	0.77	0.71	1.00	0.61	0.47	0.68	0.63	0.61	1.00	0.67	0.52	1.00	0.61	0.49	0.86	0.71	0.66			
-	18 (457)	1.00	0.80	0.74		0.68	0.53	0.71	0.64	0.62		0.80	0.62		0.68	0.54	0.91	0.76	0.70			
8	20 (508)		0.84	0.76		0.76	0.59	0.73	0.66	0.63		0.93	0.73		0.76	0.59	0.96	0.80	0.73			
$\stackrel{\square}{\triangle}$	22 (559)		0.87	0.79		0.84	0.65	0.75	0.67	0.65		1.00	0.84		0.84	0.65	1.00	0.84	0.77			
©	24 (610)		0.91	0.82		0.91	0.71	0.78	0.69	0.66			0.96		0.91	0.71		0.87	0.80			
¢	30 (762)		1.00	0.90		1.00	0.88	0.84	0.74	0.70			1.00		1.00	0.88		0.98	0.90			
\%	36 (914)			0.98			1.00	0.91	0.79	0.74						1.00		1.00	0.99			
の	> 48 (1219)			1.00				1.00	0.88	0.82									1.00			

Table 74 - Load adjustment factors for 15 M rebar in cracked concrete ${ }^{1,2,3}$

15M cracked concrete			Spacing factor in tension $f_{A N}$			$\begin{aligned} & \text { Edge distance factor } \\ & \text { in tension } \\ & f_{\mathrm{RN}} \\ & \hline \end{aligned}$			Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			$\begin{gathered} \frac{\perp}{\text { Toward edge }} \\ f_{\mathrm{RV}} \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																		
	mbedmen in.	$h_{\text {ef }}$ (mm)				$\begin{array}{\|c\|} \hline 5-11 / 16 \\ (145) \\ \hline \end{array}$	$\begin{gathered} \hline 9-13 / 16 \\ (250) \end{gathered}$	$\begin{gathered} \hline 12-5 / 8 \\ (320) \end{gathered}$	$\begin{array}{\|c\|} \hline 5-11 / 16 \\ (145) \\ \hline \end{array}$	$\begin{gathered} \hline 9-13 / 16 \\ (250) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12-5 / 8 \\ (320) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5-11 / 16 \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9-13 / 16 \\ (250) \\ \hline \end{array}$	$\begin{gathered} \hline 12-5 / 8 \\ (320) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5-11 / 16 \\ (145) \end{array}$	$\begin{gathered} 9-13 / 16 \\ (250) \end{gathered}$	$\begin{array}{\|c\|} \hline 12-5 / 8 \\ (320) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5-11 / 16 \\ (145) \\ \hline \end{array}$	$\begin{gathered} \hline 9-13 / 16 \\ (250) \end{gathered}$	$\begin{array}{\|c\|} \hline 12-5 / 8 \\ (320) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5-11 / 16 \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9-13 / 16 \\ (250) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12-5 / 8 \\ (320) \\ \hline \end{array}$
	1-3/4	(44)	n/a	n/a	n/a				0.46	0.41	0.40	n/a	n/a	n/a	0.04	0.02	0.02	0.09	0.05	0.04	n/a	n/a	n/a
है	3-1/8	(80)	0.59	0.55	0.54	0.55	0.46	0.44	0.54	0.53	0.52	0.10	0.06	0.05	0.21	0.12	0.09	n/a	n/a	n/a			
\pm	4	(102)	0.62	0.57	0.55	0.62	0.50	0.46	0.55	0.53	0.53	0.15	0.09	0.07	0.30	0.17	0.13	n/a	n/a	n/a			
	5	(127)	0.65	0.58	0.57	0.69	0.54	0.49	0.56	0.54	0.53	0.21	0.12	0.09	0.41	0.24	0.19	n/a	n/a	n/a			
$\stackrel{\square}{0}$	6	(152)	0.68	0.60	0.58	0.77	0.58	0.52	0.57	0.55	0.54	0.27	0.16	0.12	0.54	0.31	0.25	n/a	n/a	n/a			
$\stackrel{\square}{\circ}$	7	(178)	0.70	0.62	0.59	0.86	0.62	0.56	0.58	0.56	0.55	0.34	0.20	0.15	0.68	0.40	0.31	n/a	n/a	n/a			
-	7-1/4	(184)	0.71	0.62	0.60	0.88	0.63	0.56	0.58	0.56	0.55	0.36	0.21	0.16	0.72	0.42	0.33	0.58	n/a	n/a			
$\stackrel{5}{5}$	8	(203)	0.73	0.64	0.61	0.95	0.66	0.59	0.59	0.56	0.55	0.42	0.24	0.19	0.84	0.48	0.38	0.61	n/a	n/a			
-	9	(229)	0.76	0.65	0.62	1.00	0.71	0.62	0.60	0.57	0.56	0.50	0.29	0.23	1.00	0.58	0.45	0.65	n/a	n/a			
¢	10	(254)	0.79	0.67	0.63		0.76	0.66	0.62	0.58	0.57	0.58	0.34	0.26		0.68	0.53	0.68	n/a	n/a			
\bigcirc	11-3/8	(289)	0.83	0.69	0.65		0.82	0.71	0.63	0.59	0.58	0.71	0.41	0.32		0.82	0.64	0.73	0.61	n/a			
О	12	(305)	0.85	0.70	0.66		0.86	0.73	0.64	0.60	0.58	0.77	0.44	0.35		0.86	0.70	0.75	0.62	n/a			
$\stackrel{\text { ® }}{ }$	14-1/8	(359)	0.91	0.74	0.69		0.97	0.81	0.66	0.61	0.60	0.98	0.57	0.44		0.97	0.81	0.81	0.68	0.62			
¢	16	(406)	0.97	0.77	0.71		1.00	0.88	0.69	0.63	0.61	1.00	0.69	0.54		1.00	0.88	0.86	0.72	0.66			
$\stackrel{\square}{0}$	18	(457)	1.00	0.80	0.74			0.96	0.71	0.65	0.62		0.82	0.64			0.96	0.92	0.76	0.70			
8	20	(508)		0.84	0.76			1.00	0.73	0.66	0.64		0.96	0.75			1.00	0.96	0.80	0.74			
${ }^{\circ}$	22	(559)		0.87	0.79				0.76	0.68	0.65		1.00	0.86				1.00	0.84	0.78			
©	24	(610)		0.91	0.82				0.78	0.69	0.66			0.98					0.88	0.81			
-	30	(762)		1.00	0.90				0.85	0.74	0.71			1.00					0.99	0.91			
\%	36	(914)			0.98				0.92	0.79	0.75								1.00	0.99			
©	> 48	(1219)			1.00				1.00	0.89	0.83									1.00			

1 Linear interpolation not permitted.
2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\text {ef }} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{Hv}, is applicable when edge distance, $\mathrm{c}<3^{*} h_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{Hv}}=1.0$.

Table 75 - Load adjustment factors for 20M rebar in uncracked concrete ${ }^{1,2,3}$
-

20M uncracked concrete			Spacing factor in tension $f_{\text {AN }}$ \qquad			```Edge distance factor in tension \(f_{\text {RN }}\)```			$\begin{aligned} & \text { Spacing factor } \\ & \text { in shear } \\ & f_{A V} \\ & \hline \end{aligned}$			Edge distance in shear						```Concrete thickness factor in shear \({ }^{5}\) \(f_{\mathrm{HV}}\)```					
			Toward edgef_{RV}	\|	To and away from edge $f_{\text {RV }}$																		
	edmen in.	$\begin{aligned} & \hline \mathrm{h}_{\mathrm{ef}} \\ & (\mathrm{~mm}) \end{aligned}$				$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} 14 \\ (355) \end{gathered}$	$\begin{gathered} 15-3 / 8 \\ (390) \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} 14 \\ (355) \end{gathered}$	$\begin{gathered} \hline 15-3 / 8 \\ (390) \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} 14 \\ (355) \end{gathered}$	$\begin{array}{\|c\|} \hline 15-3 / 8 \\ (390) \end{array}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{gathered} \hline 14 \\ (355) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15-3 / 8 \\ (390) \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} \hline 14 \\ (355) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15-3 / 8 \\ (390) \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \end{aligned}$	$\begin{gathered} 14 \\ (355) \end{gathered}$	$\begin{gathered} \hline 15-3 / 8 \\ (390) \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.21	0.11	0.10	n/a	n/a	n/a	0.03	0.01	0.01	0.06	0.03	0.03	n/a	n/a	n/a
\widehat{E}	3-7/8	(98)	0.58	0.55	0.54	0.27	0.15	0.13	0.53	0.52	0.52	0.09	0.05	0.04	0.18	0.10	0.09	n/a	n/a	n/a			
,	4	(102)	0.58	0.55	0.54	0.27	0.15	0.13	0.53	0.52	0.52	0.10	0.05	0.05	0.19	0.10	0.09	n/a	n/a	n/a			
	5	(127)	0.61	0.56	0.55	0.30	0.17	0.15	0.54	0.53	0.53	0.13	0.07	0.07	0.27	0.14	0.13	n/a	n/a	n/a			
E	6	(152)	0.63	0.57	0.57	0.34	0.18	0.17	0.55	0.53	0.53	0.17	0.09	0.09	0.35	0.19	0.17	n/a	n/a	n/a			
¢	7	(178)	0.65	0.58	0.58	0.37	0.20	0.18	0.56	0.54	0.54	0.22	0.12	0.11	0.41	0.24	0.22	n/a	n/a	n/a			
¢	8	(203)	0.67	0.60	0.59	0.41	0.22	0.20	0.57	0.55	0.54	0.27	0.15	0.13	0.44	0.29	0.26	n/a	n/a	n/a			
¢	9	(229)	0.69	0.61	0.60	0.45	0.24	0.22	0.58	0.55	0.55	0.32	0.17	0.16	0.47	0.33	0.32	n/a	n/a	n/a			
$\stackrel{0}{4}$	10	(254)	0.71	0.62	0.61	0.49	0.27	0.24	0.59	0.56	0.55	0.38	0.20	0.18	0.51	0.35	0.33	0.59	n/a	n/a			
	11	(279)	0.73	0.63	0.62	0.54	0.29	0.27	0.60	0.56	0.56	0.43	0.23	0.21	0.55	0.37	0.35	0.62	n/a	n/a			
0	12	(305)	0.75	0.64	0.63	0.59	0.32	0.29	0.60	0.57	0.56	0.49	0.27	0.24	0.59	0.38	0.36	0.65	n/a	n/a			
$\stackrel{\text { coser }}{ }$	14	(356)	0.80	0.67	0.65	0.69	0.37	0.34	0.62	0.58	0.58	0.62	0.34	0.31	0.69	0.42	0.40	0.70	n/a	n/a			
©	16	(406)	0.84	0.69	0.67	0.78	0.43	0.39	0.64	0.59	0.59	0.76	0.41	0.37	0.78	0.46	0.43	0.74	0.61	n/a			
T	18	(457)	0.88	0.71	0.70	0.88	0.48	0.44	0.66	0.60	0.60	0.91	0.49	0.45	0.88	0.50	0.46	0.79	0.64	0.62			
$\frac{0}{0}$	20	(508)	0.92	0.74	0.72	0.98	0.53	0.48	0.67	0.62	0.61	1.00	0.57	0.52	0.98	0.54	0.50	0.83	0.68	0.66			
\%	22	(559)	0.97	0.76	0.74	1.00	0.59	0.53	0.69	0.63	0.62		0.66	0.60	1.00	0.59	0.54	0.87	0.71	0.69			
$\frac{8}{8}$	24	(610)	1.00	0.79	0.76		0.64	0.58	0.71	0.64	0.63		0.76	0.69		0.64	0.58	0.91	0.74	0.72			
¢	26	(660)		0.81	0.78		0.69	0.63	0.73	0.65	0.64		0.85	0.78		0.69	0.63	0.95	0.77	0.75			
\bigcirc	28	(711)		0.83	0.80		0.75	0.68	0.74	0.66	0.65		0.95	0.87		0.75	0.68	0.99	0.80	0.78			
-	30	(762)		0.86	0.83		0.80	0.73	0.76	0.67	0.66		1.00	0.96		0.80	0.73	1.00	0.83	0.81			
○	36	(914)		0.93	0.89		0.96	0.87	0.81	0.71	0.69			1.00		0.96	0.87		0.91	0.88			
	> 48	(1219)		1.00	1.00		1.00	1.00	0.92	0.78	0.76					1.00	1.00		1.00	1.00			

Table 76 - Load adjustment factors for 20M rebar in cracked concrete ${ }^{1,2,3}$

20M cracked concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			Toward edge $f_{\text {RV }}$	\|	To and away from edge $f_{\text {RV }}$																		
	bedme in.	$\begin{aligned} & \mathrm{h}_{\mathrm{ef}} \\ & (\mathrm{~mm}) \end{aligned}$				$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{gathered} 14 \\ (355) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 15-3 / 8 \\ (390) \end{array}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{gathered} 14 \\ (355) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15-3 / 8 \\ (390) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{gathered} 14 \\ (355) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15-3 / 8 \\ (390) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{gathered} 14 \\ (355) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15-3 / 8 \\ (390) \end{gathered}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{gathered} \hline 14 \\ (355) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 15-3 / 8 \\ (390) \end{array}$	$\begin{array}{\|l\|} \hline 7-7 / 8 \\ (200) \\ \hline \end{array}$	$\begin{gathered} 14 \\ (355) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15-3 / 8 \\ (390) \\ \hline \end{gathered}$
	1-3/4	(44)	n/a	n/a	n/a				0.43	0.39	0.39	n/a	n/a	n/a	0.03	0.02	0.01	0.06	0.03	0.03	n/a	n/a	n/a
\widehat{E}	3-7/8	(98)	0.58	0.55	0.54	0.53	0.45	0.44	0.53	0.52	0.52	0.09	0.05	0.05	0.18	0.10	0.09	n/a	n/a	n/a			
,	4	(102)	0.58	0.55	0.54	0.54	0.45	0.44	0.54	0.52	0.52	0.10	0.05	0.05	0.19	0.10	0.10	n/a	n/a	n/a			
$\stackrel{\square}{\square}$	5	(127)	0.61	0.56	0.55	0.59	0.48	0.47	0.54	0.53	0.53	0.14	0.07	0.07	0.27	0.15	0.13	n/a	n/a	n/a			
E	6	(152)	0.63	0.57	0.57	0.64	0.51	0.49	0.55	0.53	0.53	0.18	0.10	0.09	0.36	0.19	0.17	n/a	n/a	n/a			
\%	7	(178)	0.65	0.58	0.58	0.70	0.53	0.52	0.56	0.54	0.54	0.22	0.12	0.11	0.45	0.24	0.22	n/a	n/a	n/a			
$\stackrel{5}{5}$	8	(203)	0.67	0.60	0.59	0.76	0.56	0.54	0.57	0.55	0.54	0.27	0.15	0.13	0.55	0.30	0.27	n/a	n/a	n/a			
-	9	(229)	0.69	0.61	0.60	0.82	0.59	0.57	0.58	0.55	0.55	0.33	0.18	0.16	0.65	0.35	0.32	n/a	n/a	n/a			
$\stackrel{\square}{ \pm}$	10	(254)	0.71	0.62	0.61	0.88	0.62	0.60	0.59	0.56	0.55	0.38	0.21	0.19	0.77	0.41	0.38	0.59	n/a	n/a			
-	11	(279)	0.73	0.63	0.62	0.95	0.65	0.62	0.60	0.56	0.56	0.44	0.24	0.22	0.88	0.48	0.43	0.62	n/a	n/a			
0	12	(305)	0.75	0.64	0.63	1.00	0.69	0.65	0.61	0.57	0.57	0.50	0.27	0.25	1.00	0.54	0.49	0.65	n/a	n/a			
\cdots	14	(356)	0.80	0.67	0.65		0.75	0.71	0.62	0.58	0.58	0.64	0.34	0.31		0.68	0.62	0.70	n/a	n/a			
\pm	16	(406)	0.84	0.69	0.67		0.82	0.77	0.64	0.59	0.59	0.77	0.42	0.38		0.82	0.76	0.75	0.61	n/a			
డ	18	(457)	0.88	0.71	0.70		0.89	0.83	0.66	0.60	0.60	0.93	0.50	0.45		0.89	0.83	0.80	0.65	0.63			
$\frac{0}{0}$	20	(508)	0.92	0.74	0.72		0.96	0.90	0.68	0.62	0.61	1.00	0.58	0.53		0.96	0.90	0.84	0.68	0.66			
¢	22	(559)	0.97	0.76	0.74		1.00	0.96	0.69	0.63	0.62		0.67	0.61		1.00	0.96	0.88	0.72	0.69			
$\frac{8}{8}$	24	(610)	1.00	0.79	0.76			1.00	0.71	0.64	0.63		0.77	0.70			1.00	0.92	0.75	0.72			
¢	26	(660)		0.81	0.78				0.73	0.65	0.64		0.87	0.79				0.96	0.78	0.75			
\bigcirc	28	(711)		0.83	0.80				0.75	0.66	0.65		0.97	0.88				0.99	0.81	0.78			
-	30	(762)		0.86	0.83				0.76	0.67	0.66		1.00	0.98				1.00	0.84	0.81			
$\stackrel{\circ}{\circ}$	36	(914)		0.93	0.89				0.82	0.71	0.70			1.00					0.92	0.89			
	> 48	(1219)		1.00	1.00				0.92	0.78	0.76								1.00	1.00			

[^13]2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HW} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{Hv}}=1.0$.

Table 77 - Load adjustment factors for 25M rebar in uncracked concrete ${ }^{1,2,3}$

25M uncracked concrete			Spacing factor in tension $f_{\text {AN }}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			$\begin{gathered} \stackrel{\perp}{\text { Toward edge }} \\ f_{\mathrm{RV}} \\ \hline \end{gathered}$	\|	To and away from edge $f_{\text {RV }}$																		
	medme in.	$h_{\text {ef }}$ (mm)				$\begin{gathered} \hline 9-1 / 16 \\ (230) \end{gathered}$	$\begin{array}{\|c\|} \hline 15-15 / 16 \\ (405) \end{array}$	$\begin{array}{\|c\|} \hline 19-13 / 16 \\ (504) \end{array}$	$\begin{gathered} \hline 9-1 / 16 \\ (230) \end{gathered}$	$\begin{array}{\|c\|} \hline 15-15 / 16 \\ (405) \end{array}$	$\begin{gathered} 19-13 / 16 \\ (504) \end{gathered}$	$\begin{gathered} 9-1 / 16 \\ (230) \end{gathered}$	$\begin{gathered} 15-15 / 16 \\ (405) \end{gathered}$	$\begin{gathered} 19-13 / 16 \\ (504) \end{gathered}$	$\begin{gathered} \hline 9-1 / 16 \\ (230) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15-15 / 16 \\ (405) \end{array}$	$\begin{gathered} 19-13 / 16 \\ (504) \end{gathered}$	$\begin{aligned} & 9-1 / 16 \\ & (230) \end{aligned}$	$\begin{gathered} 15-15 / 16 \\ (405) \end{gathered}$	$\begin{gathered} 19-13 / 16 \\ (504) \end{gathered}$	$\begin{gathered} \hline 9-1 / 16 \\ (230) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15-15 / 16 \\ (405) \end{array}$	$\begin{array}{\|c\|} \hline 19-13 / 16 \\ (504) \\ \hline \end{array}$
$\widehat{\square}$	1-3/4	(44)	n/a	n/a	n/a				0.22	0.12	0.10	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.02	n/a	n/a	n/a
E	5	(127)	0.59	0.55	0.54	0.30	0.17	0.13	0.54	0.52	0.52	0.11	0.05	0.04	0.22	0.10	0.08	n/a	n/a	n/a			
\pm	6	(152)	0.61	0.56	0.55	0.33	0.18	0.14	0.55	0.53	0.52	0.14	0.06	0.05	0.28	0.13	0.10	n/a	n/a	n/a			
	7	(178)	0.63	0.57	0.56	0.36	0.20	0.16	0.55	0.53	0.53	0.18	0.08	0.06	0.36	0.16	0.13	n/a	n/a	n/a			
	8	(203)	0.65	0.58	0.57	0.39	0.21	0.17	0.56	0.54	0.53	0.22	0.10	0.08	0.41	0.20	0.16	n/a	n/a	n/a			
	9	(229)	0.67	0.59	0.58	0.42	0.23	0.18	0.57	0.54	0.53	0.26	0.12	0.09	0.44	0.24	0.19	n/a	n/a	n/a			
¢	10	(254)	0.68	0.60	0.58	0.45	0.25	0.20	0.58	0.54	0.54	0.30	0.14	0.11	0.47	0.28	0.22	n/a	n/a	n/a			
$\stackrel{\text { F }}{\ddagger}$	11-9/16	(294)	0.71	0.62	0.60	0.50	0.28	0.22	0.59	0.55	0.54	0.38	0.17	0.14	0.52	0.34	0.28	0.59	n/a	n/a			
	12	(305)	0.72	0.63	0.60	0.52	0.28	0.23	0.59	0.55	0.55	0.40	0.18	0.15	0.53	0.36	0.29	0.60	n/a	n/a			
$\stackrel{0}{0}$	14	(356)	0.76	0.65	0.62	0.60	0.33	0.26	0.61	0.56	0.55	0.50	0.23	0.18	0.60	0.39	0.34	0.65	n/a	n/a			
\bigcirc	16	(406)	0.79	0.67	0.63	0.69	0.38	0.30	0.62	0.57	0.56	0.62	0.28	0.22	0.69	0.42	0.37	0.69	n/a	n/a			
\bigcirc	18	(457)	0.83	0.69	0.65	0.77	0.42	0.34	0.64	0.58	0.57	0.74	0.33	0.27	0.77	0.46	0.39	0.74	n/a	n/a			
-	18-7/16	(469)	0.84	0.69	0.66	0.79	0.43	0.35	0.64	0.58	0.57	0.76	0.35	0.28	0.79	0.46	0.40	0.75	0.57	n/a			
\%	20	(508)	0.87	0.71	0.67	0.86	0.47	0.37	0.65	0.59	0.58	0.86	0.39	0.31	0.86	0.49	0.42	0.78	0.60	n/a			
\%	22-3/8	(568)	0.91	0.73	0.69	0.96	0.53	0.42	0.67	0.60	0.59	1.00	0.46	0.37	0.96	0.53	0.45	0.82	0.63	0.59			
\%	24	(610)	0.94	0.75	0.70	1.00	0.56	0.45	0.68	0.61	0.59		0.51	0.41	1.00	0.56	0.47	0.85	0.65	0.61			
$\stackrel{\square}{0}$	26	(660)	0.98	0.77	0.72		0.61	0.49	0.70	0.62	0.60		0.58	0.46		0.61	0.50	0.89	0.68	0.63			
\bigcirc	28	(711)	1.00	0.79	0.74		0.66	0.52	0.71	0.62	0.61		0.65	0.52		0.66	0.53	0.92	0.71	0.66			
.	30	(762)		0.81	0.75		0.71	0.56	0.73	0.63	0.62		0.72	0.58		0.71	0.56	0.95	0.73	0.68			
\%	36	(914)		0.88	0.80		0.85	0.67	0.77	0.66	0.64		0.94	0.76		0.85	0.67	1.00	0.80	0.74			
の	> 48	(1219)		1.00	0.90		1.00	0.90	0.86	0.71	0.68		1.00	1.00		1.00	0.90		0.92	0.86			

Table 78 - Load adjustment factors for 25M rebar in cracked concrete ${ }^{1,2,3}$

25M cracked concrete			Spacing factor in tension $f_{A N}$			Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ f_{AV}			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$$f_{\mathrm{HV}}$					
			$\begin{gathered} \stackrel{\perp}{\text { Toward edge }} \\ f_{\mathrm{Rv}} \\ \hline \end{gathered}$	\\| To and away from edge $f_{\text {RV }}$																			
	edment					9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16
	in.	(mm)	(230)	(405)	(504)				(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)
	1-3/4	(44)	n/a	n/a	n/a	0.42	0.39	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.05	0.03	0.02	n/a	n/a	n/a			
है	5	(127)	0.59	0.55	0.54	0.55	0.46	0.44	0.54	0.53	0.52	0.11	0.06	0.05	0.23	0.13	0.10	n/a	n/a	n/a			
,	6	(152)	0.61	0.56	0.55	0.60	0.48	0.46	0.55	0.53	0.53	0.15	0.08	0.07	0.30	0.17	0.14	n/a	n/a	n/a			
	7	(178)	0.63	0.57	0.56	0.65	0.51	0.48	0.55	0.54	0.53	0.19	0.11	0.09	0.38	0.21	0.17	n/a	n/a	n/a			
$\stackrel{5}{0}$	8	(203)	0.65	0.58	0.57	0.70	0.53	0.50	0.56	0.54	0.54	0.23	0.13	0.11	0.46	0.26	0.21	n/a	n/a	n/a			
$\stackrel{\square}{8}$	9	(229)	0.67	0.59	0.58	0.75	0.56	0.51	0.57	0.55	0.54	0.27	0.16	0.13	0.55	0.31	0.25	n/a	n/a	n/a			
는	10	(254)	0.68	0.60	0.58	0.80	0.59	0.53	0.58	0.55	0.55	0.32	0.18	0.15	0.64	0.37	0.29	n/a	n/a	n/a			
	11-9/16	(294)	0.71	0.62	0.60	0.89	0.63	0.57	0.59	0.56	0.55	0.40	0.23	0.18	0.80	0.46	0.37	0.60	n/a	n/a			
$\stackrel{\square}{0}$	12	(305)	0.72	0.63	0.60	0.91	0.64	0.58	0.59	0.56	0.56	0.42	0.24	0.19	0.85	0.48	0.39	0.61	n/a	n/a			
${ }_{0}$	14	(356)	0.76	0.65	0.62	1.00	0.69	0.62	0.61	0.58	0.56	0.53	0.30	0.24	1.00	0.61	0.49	0.66	n/a	n/a			
-	16	(406)	0.79	0.67	0.63		0.75	0.66	0.63	0.59	0.57	0.65	0.37	0.30		0.74	0.59	0.71	n/a	n/a			
О్ర	18	(457)	0.83	0.69	0.65		0.81	0.71	0.64	0.60	0.58	0.78	0.44	0.35		0.81	0.71	0.75	n/a	n/a			
-	18-7/16	(469)	0.84	0.69	0.66		0.83	0.72	0.64	0.60	0.59	0.81	0.46	0.37		0.83	0.72	0.76	0.63	n/a			
帯	20	(508)	0.87	0.71	0.67		0.87	0.75	0.66	0.61	0.59	0.91	0.52	0.42		0.87	0.75	0.79	0.66	n/a			
$\stackrel{\square}{0}$	22-3/8	(568)	0.91	0.73	0.69		0.95	0.81	0.68	0.62	0.60	1.00	0.61	0.49		0.95	0.81	0.84	0.69	0.64			
8	24	(610)	0.94	0.75	0.70		1.00	0.85	0.69	0.63	0.61		0.68	0.55		1.00	0.85	0.87	0.72	0.67			
$\stackrel{\square}{\square}$	26	(660)	0.98	0.77	0.72			0.90	0.70	0.64	0.62		0.77	0.62			0.90	0.90	0.75	0.69			
©	28	(711)	1.00	0.79	0.74			0.95	0.72	0.65	0.63		0.86	0.69			0.95	0.94	0.78	0.72			
-	30	(762)		0.81	0.75			1.00	0.73	0.66	0.64		0.95	0.76			1.00	0.97	0.80	0.75			
O్రు	36	(914)		0.88	0.80				0.78	0.69	0.67		1.00	1.00				1.00	0.88	0.82			
	>48	(1219)		1.00	0.90				0.88	0.76	0.72								1.00	0.94			

1 Linear interpolation not permitted.
2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} . f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{H} is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\mathrm{ef}}$, then $f_{\mathrm{HV}}=1.0$.

Table 79 - Load adjustment factors for 30M rebar in uncracked concrete ${ }^{1,2,3}$
**

30M uncracked concrete			Spacing factor in tension $f_{A N}$			\qquad Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ $f_{A V}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			Toward edgef_{RV}	$\begin{aligned} & \text { ॥ To and away } \\ & \text { from edge } \\ & f_{\mathrm{Rv}} \\ & \hline \end{aligned}$																			
	edme in.	$h_{\text {ef }}$ (mm)				$\begin{gathered} \hline 10-1 / 4 \\ (260) \end{gathered}$	$\begin{gathered} \hline 17-15 / 16 \\ (455) \end{gathered}$	$\begin{gathered} \hline 23-9 / 16 \\ (598) \end{gathered}$	$\begin{aligned} & 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 17-15 / 16 \\ (455) \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 23-9 / 16 \\ (598) \\ \hline \end{array}$	$\begin{gathered} \hline 10-1 / 4 \\ (260) \end{gathered}$	$\begin{gathered} 17-15 / 16 \\ (455) \end{gathered}$	$\begin{gathered} 23-9 / 16 \\ (598) \end{gathered}$	$\begin{aligned} & \hline 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 17-15 / 16 \\ (455) \end{array}$	$\begin{gathered} 23-9 / 16 \\ (598) \end{gathered}$	$\begin{aligned} & \hline 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\begin{gathered} 17-15 / 16 \\ (455) \end{gathered}$	$\begin{gathered} \hline 23-9 / 16 \\ (598) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 17-15 / 16 \\ (455) \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 23-9 / 16 \\ (598) \end{array}$
	1-3/4	(44)	n/a	n/a	n/a				0.23	0.13	0.09	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.01	n/a	n/a	n/a
-	5-7/8	(150)	0.60	0.55	0.54	0.33	0.18	0.13	0.54	0.52	0.52	0.12	0.05	0.04	0.23	0.10	0.07	n/a	n/a	n/a			
	6	(152)	0.60	0.56	0.54	0.33	0.18	0.13	0.54	0.52	0.52	0.12	0.05	0.04	0.24	0.10	0.07	n/a	n/a	n/a			
	7	(178)	0.61	0.57	0.55	0.36	0.19	0.14	0.55	0.53	0.52	0.15	0.06	0.05	0.30	0.13	0.09	n/a	n/a	n/a			
ลิ	8	(203)	0.63	0.57	0.56	0.38	0.20	0.15	0.55	0.53	0.52	0.18	0.08	0.06	0.36	0.16	0.11	n/a	n/a	n/a			
$\%_{0}$	9	(229)	0.65	0.58	0.56	0.41	0.22	0.16	0.56	0.53	0.53	0.22	0.09	0.07	0.42	0.19	0.13	n/a	n/a	n/a			
	10	(254)	0.66	0.59	0.57	0.44	0.23	0.18	0.57	0.54	0.53	0.25	0.11	0.08	0.45	0.22	0.16	n/a	n/a	n/a			
\pm	11	(279)	0.68	0.60	0.58	0.46	0.25	0.19	0.57	0.54	0.53	0.29	0.13	0.09	0.47	0.25	0.18	n/a	n/a	n/a			
$\stackrel{0}{0}$	12	(305)	0.70	0.61	0.58	0.49	0.26	0.20	0.58	0.55	0.54	0.33	0.14	0.10	0.50	0.29	0.21	n/a	n/a	n/a			
$\stackrel{\square}{0}$	13-1/4	(337)	0.72	0.62	0.59	0.53	0.28	0.21	0.59	0.55	0.54	0.39	0.17	0.12	0.54	0.33	0.24	0.60	n/a	n/a			
\bigcirc	14	(356)	0.73	0.63	0.60	0.55	0.30	0.22	0.59	0.55	0.54	0.42	0.18	0.13	0.56	0.36	0.26	0.61	n/a	n/a			
${ }^{\circ}$	16	(406)	0.76	0.65	0.61	0.63	0.34	0.25	0.61	0.56	0.55	0.51	0.22	0.16	0.63	0.40	0.32	0.65	n/a	n/a			
$\frac{0}{0}$	18	(457)	0.79	0.67	0.63	0.71	0.38	0.28	0.62	0.57	0.56	0.61	0.26	0.19	0.71	0.42	0.36	0.69	n/a	n/a			
¢	20	(508)	0.83	0.69	0.64	0.79	0.42	0.32	0.63	0.58	0.56	0.72	0.31	0.22	0.79	0.45	0.38	0.73	n/a	n/a			
-	20-7/8	(531)	0.84	0.69	0.65	0.82	0.44	0.33	0.64	0.58	0.56	0.77	0.33	0.24	0.82	0.47	0.39	0.75	n/a	n/a			
8	22	(559)	0.86	0.70	0.66	0.87	0.46	0.35	0.65	0.58	0.57	0.83	0.36	0.26	0.87	0.49	0.40	0.77	0.58	n/a			
8	24	(610)	0.89	0.72	0.67	0.94	0.50	0.38	0.66	0.59	0.57	0.94	0.41	0.29	0.94	0.52	0.42	0.80	0.61	n/a			
¢	26-9/16	(675)	0.93	0.75	0.69	1.00	0.56	0.42	0.68	0.60	0.58	1.00	0.47	0.34	1.00	0.56	0.45	0.84	0.64	0.57			
O	28	(711)	0.96	0.76	0.70		0.59	0.44	0.69	0.61	0.59		0.51	0.37		0.59	0.47	0.86	0.65	0.59			
-	30	(762)	0.99	0.78	0.71		0.63	0.47	0.70	0.61	0.59		0.57	0.41		0.63	0.49	0.89	0.68	0.61			
ம)	36	(914)	1.00	0.83	0.75		0.76	0.57	0.74	0.64	0.61		0.75	0.54		0.76	0.57	0.98	0.74	0.66			
	>48	(1219)		0.95	0.84		1.00	0.76	0.82	0.68	0.65		1.00	0.83		1.00	0.76	1.00	0.86	0.77			

Table 80 - Load adjustment factors for 30M rebar in cracked concrete ${ }^{1,2,3}$

30M cracked concrete			Spacing factor in tension $f_{A N}$			\qquad Edge distance factor in tension $f_{\text {RN }}$			Spacing factor in shear ${ }^{4}$ $f_{\text {AV }}$			Edge distance in shear						Concrete thickness factor in shear ${ }^{5}$ f_{HV}					
			$\begin{gathered} \stackrel{\perp}{\text { Toward edge }} \\ f_{\mathrm{Rv}} \\ \hline \end{gathered}$	```\|	To and away from edge \(f_{\text {Rv }}\)```																		
	bedmen in.	$\begin{aligned} & \mathrm{th}_{\mathrm{ef}} \\ & (\mathrm{~mm}) \end{aligned}$				$\begin{gathered} \hline 10-1 / 4 \\ (260) \end{gathered}$	$\begin{gathered} \hline 17-15 / 16 \\ (455) \end{gathered}$	$\begin{gathered} \hline 23-9 / 16 \\ (598) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 17-15 / 16 \\ (455) \end{array}$	$\begin{array}{\|c\|} \hline 23-9 / 16 \\ (598) \end{array}$	$\begin{aligned} & \hline 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 17-15 / 16 \\ (455) \end{array}$	$\begin{array}{\|c\|} \hline 23-9 / 16 \\ (598) \end{array}$	$\begin{aligned} & 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 17-15 / 16 \\ (455) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 23-9 / 16 \\ (598) \end{array}$	$\begin{aligned} & \hline 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 17-15 / 16 \\ (455) \end{array}$	$\begin{array}{\|c\|} \hline 23-9 / 16 \\ (598) \\ \hline \end{array}$	$\begin{aligned} & \hline 10-1 / 4 \\ & (260) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 17-15 / 16 \\ (455) \end{array}$	$\begin{array}{\|c\|} \hline 23-9 / 16 \\ (598) \\ \hline \end{array}$
	1-3/4	(44)	n/a	n/a	n/a				0.41	0.38	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.02	n/a	n/a	n/a
¢	5-7/8	(150)	0.60	0.55	0.54	0.56	0.47	0.44	0.54	0.53	0.52	0.12	0.06	0.05	0.23	0.12	0.09	n/a	n/a	n/a			
	6	(152)	0.60	0.56	0.54	0.57	0.47	0.44	0.54	0.53	0.52	0.12	0.06	0.05	0.24	0.13	0.10	n/a	n/a	n/a			
	7	(178)	0.61	0.57	0.55	0.61	0.49	0.46	0.55	0.53	0.53	0.15	0.08	0.06	0.30	0.16	0.12	n/a	n/a	n/a			
Ė	8	(203)	0.63	0.57	0.56	0.65	0.51	0.47	0.55	0.54	0.53	0.19	0.10	0.07	0.37	0.19	0.15	n/a	n/a	n/a			
	9	(229)	0.65	0.58	0.56	0.69	0.53	0.49	0.56	0.54	0.53	0.22	0.12	0.09	0.44	0.23	0.18	n/a	n/a	n/a			
	10	(254)	0.66	0.59	0.57	0.74	0.56	0.50	0.57	0.54	0.54	0.26	0.14	0.10	0.52	0.27	0.21	n/a	n/a	n/a			
年	11	(279)	0.68	0.60	0.58	0.79	0.58	0.52	0.57	0.55	0.54	0.30	0.16	0.12	0.60	0.31	0.24	n/a	n/a	n/a			
$\stackrel{\otimes}{0}$	12	(305)	0.70	0.61	0.58	0.83	0.60	0.54	0.58	0.55	0.54	0.34	0.18	0.14	0.68	0.36	0.27	n/a	n/a	n/a			
O	13-1/4	(337)	0.72	0.62	0.59	0.89	0.63	0.56	0.59	0.56	0.55	0.40	0.21	0.16	0.79	0.41	0.32	0.60	n/a	n/a			
0	14	(356)	0.73	0.63	0.60	0.93	0.65	0.57	0.59	0.56	0.55	0.43	0.22	0.17	0.86	0.45	0.34	0.62	n/a	n/a			
0	16	(406)	0.76	0.65	0.61	1.00	0.70	0.61	0.61	0.57	0.56	0.52	0.27	0.21	1.00	0.55	0.42	0.66	n/a	n/a			
$\stackrel{0}{0}$	18	(457)	0.79	0.67	0.63		0.75	0.64	0.62	0.58	0.57	0.62	0.33	0.25		0.65	0.50	0.70	n/a	n/a			
ธ	20	(508)	0.83	0.69	0.64		0.81	0.68	0.64	0.59	0.57	0.73	0.38	0.29		0.77	0.58	0.74	n/a	n/a			
$\stackrel{\text { \% }}{0}$	20-7/8	(531)	0.84	0.69	0.65		0.83	0.70	0.64	0.59	0.58	0.78	0.41	0.31		0.82	0.62	0.75	n/a	n/a			
${ }^{8}$	22	(559)	0.86	0.70	0.66		0.86	0.72	0.65	0.60	0.58	0.84	0.44	0.34		0.86	0.67	0.77	0.62	n/a			
8	24	(610)	0.89	0.72	0.67		0.92	0.76	0.66	0.61	0.59	0.96	0.50	0.38		0.92	0.76	0.81	0.65	n/a			
$\stackrel{\square}{\square}$	26-9/16	(675)	0.93	0.75	0.69		0.99	0.81	0.68	0.62	0.60	1.00	0.59	0.45		0.99	0.81	0.85	0.68	0.62			
O	28	(711)	0.96	0.76	0.70		1.00	0.84	0.69	0.62	0.60		0.63	0.48		1.00	0.84	0.87	0.70	0.64			
-	30	(762)	0.99	0.78	0.71			0.88	0.70	0.63	0.61		0.70	0.54			0.88	0.90	0.73	0.66			
ค)	36	(914)	1.00	0.83	0.75			1.00	0.74	0.66	0.63		0.93	0.70			1.00	0.99	0.80	0.73			
	> 48	(1219)		0.95	0.84				0.82	0.71	0.68		1.00	1.00				1.00	0.92	0.84			

[^14]2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.
3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.
To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.
4 Spacing factor reduction in shear applicable when $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}} f_{\mathrm{AV}}$ is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} \mathrm{~h}_{\mathrm{ef}}$, then $f_{\mathrm{AV}}=f_{\mathrm{AN}}$.
5 Concrete thickness reduction factor in shear, f_{HV}, is applicable when edge distance, $\mathrm{c}<3^{*} \mathrm{~h}_{\mathrm{ef}}$. If $\mathrm{c} \geq 3^{*} h_{\text {ef }}$ then $f_{\mathrm{HV}}=1.0$.

HIT-HY 200 Adhesive with Hilti HAS Threaded Rod

Table 81 - Steel factored resistance for Hilti HAS threaded rods for use with CSA A23.3-14 Annex D

	$\begin{aligned} & \text { HAS-V-36 / HAS-V-36 HDG } \\ & \text { ASTM F1554 Gr. } 36^{4,6} \end{aligned}$			HAS-E-55 / HAS-E-55 HDG ASTM F1554 Gr. 554,5,6			HAS-B-105 / HAS-B-105 HDG ASTM A193 B7 and ASTM F 1554 Gr. $105^{4,6}$			HAS-R stainless steel ASTM F593 (3/8-in to 1 -in) ${ }^{5}$ ASTM A193 (1-1/8-in to $2-\mathrm{in})^{4}$		
Nominal anchor diameter in.	Tensile ${ }^{1}$ $\Phi \mathrm{N}_{\mathrm{sa}}$ lb (kN)	$\begin{gathered} S h e a r^{2} \\ \Phi V_{\text {sar }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{3}$ $\Phi V_{\text {sar.ea }}$ lb (kN)	Tensile ${ }^{1}$ $\Phi \mathrm{N}_{\mathrm{s}}$ lb (kN)	$\begin{gathered} \text { Shear² }^{2} \\ \Phi V_{\text {sar }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{3}$ $\Phi V_{\text {sareeq }}$ lb (kN)	Tensile ${ }^{1}$ $\Phi \mathrm{N}_{\text {sar }}$ lb (kN)	$\begin{aligned} & \text { Shear }^{2} \\ & \Phi V_{\text {sar }} \\ & \mathrm{lb}(\mathrm{kN}) \end{aligned}$	Seismic Shear ${ }^{3}$ $\Phi \mathrm{V}_{\text {sarea }}$ lb (kN)	Tensile ${ }^{1}$ $\Phi \mathrm{N}_{\text {sar }}$ lb (kN)	$\begin{gathered} \text { Shear² }^{2} \\ \Phi V_{\text {sar }} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	Seismic Shear ${ }^{3}$ $\Phi V_{\text {sarea }}$ lb (kN)
3/8	$\begin{aligned} & \hline 3,055 \\ & (13.6) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,720 \\ (7.7) \end{gathered}$	$\begin{gathered} \hline 1,030 \\ (4.6) \end{gathered}$	$\begin{aligned} & 3,955 \\ & (17.6) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2,225 \\ (9.9) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1,560 \\ & (6.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,570 \\ & (29.2) \end{aligned}$	$\begin{aligned} & \hline 3,695 \\ & (16.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,585 \\ & (11.5) \end{aligned}$	$\begin{aligned} & 4,610 \\ & (20.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,570 \\ & (11.4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,800 \\ (8.0) \end{gathered}$
1/2	$\begin{aligned} & 5,595 \\ & (24.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,150 \\ & (14.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,890 \\ & (8.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,240 \\ & (32.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,070 \\ & (18.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,850 \\ & (12.7) \end{aligned}$	$\begin{gathered} 12,035 \\ (53.5) \\ \hline \end{gathered}$	$\begin{aligned} & 6,765 \\ & (30.1) \end{aligned}$	$\begin{aligned} & 4,735 \\ & (21.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,445 \\ & (37.6) \end{aligned}$	$\begin{aligned} & 4,705 \\ & (20.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,295 \\ & (14.7) \\ & \hline \end{aligned}$
5/8	$\begin{aligned} & \hline 8,915 \\ & (39.7) \end{aligned}$	$\begin{aligned} & 5,015 \\ & (22.3) \end{aligned}$	$\begin{aligned} & \hline 3,010 \\ & (13.4) \end{aligned}$	$\begin{gathered} \hline 11,525 \\ (51.3) \end{gathered}$	$\begin{aligned} & \hline 6,485 \\ & (28.8) \end{aligned}$	$\begin{aligned} & 4,540 \\ & (20.2) \end{aligned}$	$\begin{gathered} 19,160 \\ (85.2) \end{gathered}$	$\begin{gathered} 10,780 \\ (48.0) \end{gathered}$	$\begin{aligned} & \hline 7,545 \\ & (33.6) \end{aligned}$	$\begin{gathered} 13,445 \\ (59.8) \end{gathered}$	$\begin{aligned} & \hline 7,490 \\ & (33.3) \end{aligned}$	$\begin{aligned} & 5,245 \\ & (23.3) \end{aligned}$
3/4	$\begin{gathered} 13,190 \\ (58.7) \end{gathered}$	$\begin{aligned} & 7,420 \\ & (33.0) \end{aligned}$	$\begin{aligned} & 4,450 \\ & (19.8) \end{aligned}$	$\begin{gathered} 17,060 \\ (75.9) \end{gathered}$	$\begin{aligned} & 9,600 \\ & (42.7) \end{aligned}$	$\begin{aligned} & 6,720 \\ & (29.9) \end{aligned}$	$\begin{aligned} & 28,365 \\ & (126.2) \end{aligned}$	$\begin{gathered} 15,955 \\ (71.0) \end{gathered}$	$\begin{gathered} 11,170 \\ (49.7) \end{gathered}$	$\begin{gathered} 16,920 \\ (75.3) \end{gathered}$	$\begin{aligned} & 9,425 \\ & (41.9) \end{aligned}$	$\begin{aligned} & 6,600 \\ & (29.4) \end{aligned}$
7/8	$\begin{gathered} 18,210 \\ (81.0) \end{gathered}$	$\begin{gathered} 10,245 \\ (45.6) \end{gathered}$	$\begin{aligned} & \hline 6,145 \\ & (27.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 23,550 \\ & (104.8) \end{aligned}$	$\begin{gathered} 13,245 \\ (58.9) \end{gathered}$	$\begin{aligned} & 9,270 \\ & (41.2) \end{aligned}$	$\begin{aligned} & 39,150 \\ & (174.1) \end{aligned}$	$\begin{gathered} 22,020 \\ (97.9) \end{gathered}$	$\begin{gathered} 15,415 \\ (68.6) \end{gathered}$	$\begin{aligned} & 23,350 \\ & (103.9) \end{aligned}$	$\begin{gathered} 13,010 \\ (57.9) \end{gathered}$	$\begin{aligned} & 9,105 \\ & (40.5) \end{aligned}$
1	$\begin{aligned} & \hline 23,890 \\ & (106.3) \end{aligned}$	$\begin{gathered} \hline 13,440 \\ (59.8) \end{gathered}$	$\begin{aligned} & \hline 8,065 \\ & (35.9) \end{aligned}$	$\begin{aligned} & \hline 30,890 \\ & (137.4) \end{aligned}$	$\begin{gathered} \hline 17,380 \\ (77.3) \end{gathered}$	$\begin{gathered} 12,165 \\ (54.1) \end{gathered}$	$\begin{aligned} & \hline 51,360 \\ & (228.5) \end{aligned}$	$\begin{aligned} & \hline 28,890 \\ & (128.5) \end{aligned}$	$\begin{gathered} \hline 20,225 \\ (90.0) \end{gathered}$	$\begin{aligned} & \hline 30,635 \\ & (136.3) \end{aligned}$	$\begin{gathered} \hline 17,065 \\ (75.9) \end{gathered}$	$\begin{gathered} \hline 11,945 \\ (53.1) \end{gathered}$
1-1/4	$\begin{aligned} & \hline 38,225 \\ & (170.0) \end{aligned}$	$\begin{gathered} \hline 21,500 \\ (95.6) \end{gathered}$	$\begin{gathered} \hline 12,900 \\ (57.4) \end{gathered}$	$\begin{aligned} & \hline 49,425 \\ & (219.9) \end{aligned}$	$\begin{aligned} & \hline 27,800 \\ & (123.7) \end{aligned}$	$\begin{gathered} \hline 19,460 \\ (86.6) \end{gathered}$	$\begin{aligned} & \hline 82,175 \\ & (365.5) \end{aligned}$	$\begin{aligned} & \hline 46,220 \\ & (205.6) \end{aligned}$	$\begin{aligned} & \hline 32,355 \\ & (143.9) \end{aligned}$	$\begin{aligned} & \hline 37,565 \\ & (167.1) \end{aligned}$	$\begin{gathered} \hline 21,130 \\ (94.0) \end{gathered}$	$\begin{gathered} \hline 12,680 \\ (56.4) \end{gathered}$

1 Tensile $=A_{\text {se, }} \phi f_{\text {uta }} R$ as noted in CSA A23.3-14 Eq. D.2.
2 Shear $=A_{\text {se, }, ~}^{\text {se, }} \Phi 0.60 f_{\text {uta }} R$ as noted in CSA A23.3-14 Eq. D.31.
3 Seismic Shear $=\alpha_{v, \text { seis }} V_{\text {sar }}$: Reduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3
4 HAS-V, HAS-E (3/8-in to 1-1/4-in), HAS-B, and HAS-R (Class 1; 1-1/4-in) threaded rods are considered ductile steel elements (including HDG rods).
5 HAS-R (CW1 and CW2; 3/8-in to $1-\mathrm{in}$) threaded rods are considered brittle steel elements.
$663 / 8$-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Table 82 - Hilti HIT-HY 200 design information with Hilti HAS threaded rods in hammer drilled holes in accordance with CSA A23.3-14 Annex D ${ }^{1}$

Design parameter		Symbol	Units	Nominal rod diameter (in.)							Ref A23.3-14	
		3/8		1/2	5/8	3/4	7/8	1	1-1/4			
Nominal anchor Diameter			d_{a}	mm	9.5	12.7	15.9	19.1	22.2	25.4	31.8	
Effective minimum embedment ${ }^{2}$		$\mathrm{hef}_{\text {emin }}$	mm	60	70	79	89	89	102	127		
Effective maximum embedment ${ }^{2}$		heftmax	mm	191	254	318	381	445	508	635		
Minimum concrete thickness ${ }^{2}$		$\mathrm{h}_{\text {min }}$	mm	$\mathrm{h}_{\text {ef }}+30$		$\mathrm{h}_{\text {ef }}+2 \mathrm{~d}_{0}$						
Critical edge distance		$\mathrm{c}_{\text {ac }}$		$2 h_{\text {ef }}$								
Minimum edge distance		$\mathrm{C}_{\text {min }}$	mm	45	45	50^{3}	55^{3}	60^{3}	70^{3}	80^{3}		
Minimum anchor spacing		$\mathrm{s}_{\text {min }}$	mm	48	64	79	95	111	127	159		
Coeff. for factored conc. breakout resistance, uncracked concrete		$\mathrm{k}_{\mathrm{c}, \text { uncr }}{ }^{4}$	-	10							D.6.2.2	
Coeff. for factored conc. breakout resistance, cracked concrete		$\mathrm{k}_{\mathrm{c}, \mathrm{cr}}{ }^{4}$	-	7							D.6.2.2	
Concrete material resistance factor		$\phi_{\text {c }}$	-	0.65							8.4.2	
Resistance modification factor for tension and shear, concrete failure modes, Condition B^{5}		$\mathrm{R}_{\text {conc }}$	-	1.00								
	Characteristic bond stress in cracked concrete ${ }^{7}$	$\tau_{\text {cr }}$	$\begin{gathered} \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \hline 1,045 \\ & (7.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,135 \\ & (7.7) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,170 \\ (8.2) \\ \hline \end{gathered}$	$\begin{aligned} & 1,260 \\ & (8.4) \\ & \hline \end{aligned}$	$\begin{gathered} 1,290 \\ (8.6) \\ \hline \end{gathered}$	$\begin{gathered} 1,325 \\ (8.7) \\ \hline \end{gathered}$	$\begin{gathered} 1,380 \\ (9.1) \\ \hline \end{gathered}$	D.6.5.2	
	Characteristic bond stress in uncracked concrete ${ }^{7}$	$\tau_{\text {uncr }}$	$\begin{gathered} \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & 2,220 \\ & (15.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,220 \\ & (15.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,220 \\ & (15.3) \end{aligned}$	D.6.5.2					
	Characteristic bond stress in cracked concrete ${ }^{7}$	$\tau_{\text {cr }}$	$\begin{gathered} \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & 1,045 \\ & (7.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,135 \\ & (7.7) \\ & \hline \end{aligned}$	$\begin{gathered} 1,170 \\ (8.2) \\ \hline \end{gathered}$	$\begin{aligned} & 1,260 \\ & (8.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,290 \\ & (8.6) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,325 \\ (8.7) \\ \hline \end{gathered}$	$\begin{gathered} 1,380 \\ (9.1) \\ \hline \end{gathered}$	D.6.5.2	
	Characteristic bond stress in uncracked concrete ${ }^{7}$	$\tau_{\text {uncr }}$	$\begin{gathered} \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & 2,220 \\ & (15.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,220 \\ & (15.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,220 \\ & (15.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,220 \\ & (15.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,220 \\ & (15.3) \end{aligned}$	$\begin{aligned} & 2,220 \\ & (15.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,220 \\ & (15.3) \\ & \hline \end{aligned}$	D.6.5.2	
	Characteristic bond stress in cracked concrete ${ }^{7}$	$\tau_{\text {cr }}$	$\begin{gathered} \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \hline 885 \\ & (6.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 930 \\ & (6.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 960 \\ & (6.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,035 \\ & (6.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,055 \\ & (7.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,085 \\ & (7.1) \\ & \hline \end{aligned}$	$\begin{gathered} 1,130 \\ (7.4) \\ \hline \end{gathered}$	D.6.5.2	
	Characteristic bond stress in uncracked concrete ${ }^{7}$	$\tau_{\text {uncr }}$	$\begin{gathered} \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \hline 1,820 \\ & (12.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,820 \\ & (12.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,820 \\ & (12.6) \end{aligned}$	$\begin{aligned} & 1,820 \\ & (12.6) \end{aligned}$	$\begin{aligned} & 1,820 \\ & (12.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,820 \\ & (12.6) \end{aligned}$	$\begin{aligned} & 1,820 \\ & (12.6) \end{aligned}$	D.6.5.2	
Reduction for seismic tension		$\alpha_{N, \text { seis }}$	-	0.88	0.99		1.0		0.95	0.99		
	Resistance modification factor tension \& shear, bond failure dry concrete	Anchor category	-	1							D.5.3 (c)	
		$\mathrm{R}_{\text {dry }}$	-	1.00								
	Resistance modification factor tension \& shear, bond failure water-saturated concrete	Anchor category	-	1							D.5.3 (c)	
		$\mathrm{R}_{\text {ws }}$	-	1.00								

1 Design information in this table is taken from ELC-3187, dated April 2019, tables 8 and 10 for use with CSA A23.3-14 Annex D.
2 See figure 10 of this section.
3 Minimum edge distance may be reduced to $45 \mathrm{~mm} \leq \mathrm{c}_{\mathrm{ai}}<5 \mathrm{~d}$ provided $\mathrm{T}_{\text {inst }}$ is reduced. See ELC-3187 Installation Torque Subject to Edge Distance section.
4 For all design cases, $\psi_{\mathrm{c}, \mathrm{N}}=1.0$. The appropriate coefficient for breakout resistance for cracked concrete ($\mathrm{k}_{\mathrm{c}, \mathrm{r}}$) or uncracked concrete ($\mathrm{k}_{\mathrm{c}, \mathrm{uncr}}$) must be used.
5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.
6 Temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
7 Bond strength values corresponding to concrete compressive strength $f^{\prime}{ }_{c}=2,500 \mathrm{psi}(17.2 \mathrm{MPa})$. For concrete compressive strength, $f^{\prime}{ }_{\mathrm{c}}$, between $2,500 \mathrm{psi}$ $(17.2 \mathrm{MPa})$ and $8,000 \mathrm{psi}(55.2 \mathrm{MPa})$, the tabulated characteristic bond strength may be increased by a factor of $\left(f_{c}^{\prime} / 2,500\right)^{0.1}$ [for SI: ($\left.\left.f_{c}^{\prime} / 17.2\right)^{0.1}\right]$.

Table 83 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for threaded rod in uncracked concrete ${ }^{1,2,3,4,5,6,7,7,8,9}$

Nominal anchor diameter in.	Effective embedment in. (mm)	Tension - N_{r}				Shear - V_{r}			
		$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{(3,625 \mathrm{psi})}^{\prime}=25 \mathrm{MPa} \\ (\mathrm{~b}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3,060 \\ & (13.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,425 \\ & (15.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,750 \\ & (16.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,330 \\ & (19.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,060 \\ & (13.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,425 \\ & (15.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,750 \\ & (16.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,330 \\ & (19.3) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 5,185 \\ & (23.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,800 \\ & (25.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,065 \\ & (27.0) \end{aligned}$	$\begin{aligned} & 6,245 \\ & (27.8) \\ & \hline \end{aligned}$	$\begin{gathered} 10,375 \\ (46.1) \\ \hline \end{gathered}$	$\begin{gathered} 11,600 \\ (51.6) \\ \hline \end{gathered}$	$\begin{gathered} 12,135 \\ (54.0) \\ \hline \end{gathered}$	$\begin{gathered} 12,490 \\ (55.6) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,770 \\ & (34.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,945 \\ & (35.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,090 \\ & (36.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,325 \\ & (37.0) \\ & \hline \end{aligned}$	$\begin{gathered} 15,535 \\ (69.1) \\ \hline \end{gathered}$	$\begin{gathered} 15,885 \\ (70.7) \\ \hline \end{gathered}$	$\begin{gathered} 16,180 \\ (72.0) \\ \hline \end{gathered}$	$\begin{gathered} 16,650 \\ (74.1) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,945 \\ & (57.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,240 \\ & (58.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,485 \\ & (60.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,875 \\ & (61.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 25,895 \\ (115.2) \\ \hline \end{array}$	$\begin{aligned} & 26,480 \\ & (117.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,965 \\ & (119.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,755 \\ & (123.5) \\ & \hline \end{aligned}$
1/2	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 3,815 \\ & (17.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,265 \\ & (19.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,670 \\ & (20.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,395 \\ & (24.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,630 \\ & (33.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,530 \\ & (37.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,345 \\ & (41.6) \\ & \hline \end{aligned}$	$\begin{gathered} 10,790 \\ (48.0) \\ \hline \end{gathered}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,985 \\ & (35.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,930 \\ & (39.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,780 \\ & (43.5) \\ & \hline \end{aligned}$	$\begin{gathered} 11,100 \\ (49.4) \\ \hline \end{gathered}$	$\begin{gathered} 15,970 \\ (71.0) \\ \hline \end{gathered}$	$\begin{gathered} 17,855 \\ (79.4) \\ \hline \end{gathered}$	$\begin{gathered} 19,560 \\ (87.0) \\ \hline \end{gathered}$	$\begin{gathered} 22,200 \\ (98.8) \\ \hline \end{gathered}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 12,295 \\ (54.7) \\ \hline \end{gathered}$	$\begin{aligned} & 13,745 \\ & (61.1) \\ & \hline \end{aligned}$	$\begin{gathered} 14,380 \\ (64.0) \\ \hline \end{gathered}$	$\begin{aligned} & 14,800 \\ & (65.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 24,590 \\ & (109.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,490 \\ & (122.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,765 \\ & (127.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,605 \\ & (131.7) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & 23,015 \\ & (102.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 23,535 \\ & (104.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 23,970 \\ & (106.6) \\ & \hline \end{aligned}$	$\begin{array}{r} 24,670 \\ (109.7) \\ \hline \end{array}$	$\begin{aligned} & 46,035 \\ & (204.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 47,075 \\ & (209.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 47,940 \\ & (213.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,340 \\ & (219.5) \\ & \hline \end{aligned}$
5/8	$\begin{gathered} \hline 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4,620 \\ & (20.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,165 \\ & (23.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5,660 \\ & (25.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,535 \\ & (29.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,245 \\ & (41.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 10,335 \\ & (46.0) \end{aligned}$	$\begin{gathered} 11,320 \\ (50.4) \\ \hline \end{gathered}$	$\begin{gathered} 13,070 \\ (58.1) \\ \hline \end{gathered}$
	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{gathered} 11,160 \\ (49.6) \\ \hline \end{gathered}$	$\begin{aligned} & 12,480 \\ & (55.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,670 \\ & (60.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 15,785 \\ & (70.2) \\ & \hline \end{aligned}$	$\begin{gathered} 22,320 \\ (99.3) \\ \hline \end{gathered}$	$\begin{aligned} & 24,955 \\ & (111.0) \end{aligned}$	$\begin{aligned} & 27,335 \\ & (121.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,565 \\ & (140.4) \end{aligned}$
	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} 17,185 \\ (76.4) \\ \hline \end{gathered}$	$\begin{aligned} & 19,210 \\ & (85.5) \\ & \hline \end{aligned}$	$\begin{gathered} 21,045 \\ (93.6) \\ \hline \end{gathered}$	$\begin{aligned} & 23,125 \\ & (102.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,365 \\ & (152.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 38,420 \\ & (170.9) \end{aligned}$	$\begin{aligned} & 42,090 \\ & (187.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 46,255 \\ & (205.8) \end{aligned}$
	$\begin{gathered} \hline 12-1 / 2 \\ (318) \\ \hline \end{gathered}$	$\begin{aligned} & 35,965 \\ & (160.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 36,775 \\ & (163.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,450 \\ & (166.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38,545 \\ & (171.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 71,930 \\ & (320.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 73,550 \\ & (327.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 74,905 \\ & (333.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 77,090 \\ & (342.9) \\ & \hline \end{aligned}$
3/4	$\begin{gathered} \hline 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5,480 \\ & (24.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,125 \\ & (27.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,710 \\ & (29.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,745 \\ & (34.5) \\ & \hline \end{aligned}$	$\begin{gathered} 10,955 \\ (48.7) \\ \hline \end{gathered}$	$\begin{gathered} 12,250 \\ (54.5) \\ \hline \end{gathered}$	$\begin{aligned} & 13,420 \\ & (59.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 15,495 \\ & (68.9) \\ & \hline \end{aligned}$
	$\begin{aligned} & \hline 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 14,670 \\ & (65.3) \\ & \hline \end{aligned}$	$\begin{gathered} 16,400 \\ (73.0) \\ \hline \end{gathered}$	$\begin{gathered} 17,970 \\ (79.9) \\ \hline \end{gathered}$	$\begin{gathered} 20,745 \\ (92.3) \\ \hline \end{gathered}$	$\begin{aligned} & 29,340 \\ & (130.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,805 \\ & (145.9) \end{aligned}$	$\begin{aligned} & 35,935 \\ & (159.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 41,495 \\ & (184.6) \end{aligned}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{aligned} & 22,585 \\ & (100.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 25,255 \\ & (112.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,665 \\ & (123.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,945 \\ & (142.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 45,175 \\ & (200.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 50,505 \\ & (224.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 55,325 \\ & (246.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 63,885 \\ & (284.2) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 48,600 \\ & (216.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 52,955 \\ & (235.6) \\ & \hline \end{aligned}$	$\begin{array}{r} 53,930 \\ (239.9) \\ \hline \end{array}$	$\begin{aligned} & 55,505 \\ & (246.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 97,200 \\ & (432.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 105,915 \\ & (471.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 107,865 \\ & (479.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 111,010 \\ & (493.8) \\ & \hline \end{aligned}$
7/8	$\begin{gathered} \hline 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5,480 \\ & (24.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,125 \\ & (27.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,710 \\ & (29.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,745 \\ & (34.5) \\ & \hline \end{aligned}$	$\begin{gathered} 10,955 \\ (48.7) \\ \hline \end{gathered}$	$\begin{aligned} & 12,250 \\ & (54.5) \\ & \hline \end{aligned}$	$\begin{gathered} 13,420 \\ (59.7) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 15,495 \\ & (68.9) \\ & \hline \end{aligned}$
	$\begin{aligned} & 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 18,485 \\ & (82.2) \\ & \hline \end{aligned}$	$\begin{gathered} 20,670 \\ (91.9) \\ \hline \end{gathered}$	$\begin{aligned} & 22,640 \\ & (100.7) \end{aligned}$	$\begin{aligned} & 26,145 \\ & (116.3) \end{aligned}$	$\begin{aligned} & \hline 36,975 \\ & (164.5) \end{aligned}$	$\begin{aligned} & 41,340 \\ & (183.9) \end{aligned}$	$\begin{aligned} & \hline 45,285 \\ & (201.4) \end{aligned}$	$\begin{aligned} & 52,290 \\ & (232.6) \end{aligned}$
	$\begin{gathered} \hline 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{aligned} & 28,465 \\ & (126.6) \end{aligned}$	$\begin{aligned} & 31,820 \\ & (141.6) \end{aligned}$	$\begin{aligned} & 34,860 \\ & (155.1) \end{aligned}$	$\begin{aligned} & \hline 40,255 \\ & (179.1) \end{aligned}$	$\begin{aligned} & 56,925 \\ & (253.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 63,645 \\ & (283.1) \end{aligned}$	$\begin{aligned} & 69,720 \\ & (310.1) \end{aligned}$	$\begin{aligned} & 80,505 \\ & (358.1) \end{aligned}$
	$\begin{aligned} & \hline 17-1 / 2 \\ & (445) \\ & \hline \end{aligned}$	$\begin{aligned} & 61,240 \\ & (272.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68,470 \\ & (304.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 73,405 \\ & (326.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 75,550 \\ & (336.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 122,485 \\ & (544.8) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 136,940 \\ (609.1) \\ \hline \end{array}$	$\begin{aligned} & \hline 146,815 \\ & (653.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 151,100 \\ & (672.1) \\ & \hline \end{aligned}$
1	$\begin{gathered} \hline 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6,690 \\ & (29.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,480 \\ & (33.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,195 \\ & (36.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,465 \\ & (42.1) \\ & \hline \end{aligned}$	$\begin{gathered} 13,385 \\ (59.5) \\ \hline \end{gathered}$	$\begin{gathered} 14,965 \\ (66.6) \\ \hline \end{gathered}$	$\begin{gathered} 16,395 \\ (72.9) \\ \hline \end{gathered}$	$\begin{gathered} 18,930 \\ (84.2) \\ \hline \end{gathered}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{aligned} & 22,585 \\ & (100.5) \end{aligned}$	$\begin{aligned} & 25,255 \\ & (112.3) \end{aligned}$	$\begin{aligned} & 27,665 \\ & (123.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,945 \\ & (142.1) \end{aligned}$	$\begin{aligned} & \hline 45,175 \\ & (200.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 50,505 \\ & (224.7) \end{aligned}$	$\begin{aligned} & 55,325 \\ & (246.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 63,885 \\ & (284.2) \end{aligned}$
	$\begin{gathered} \hline 12 \\ (305) \\ \hline \end{gathered}$	$\begin{aligned} & 34,775 \\ & (154.7) \end{aligned}$	$\begin{aligned} & 38,880 \\ & (172.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 42,590 \\ & (189.5) \end{aligned}$	$\begin{aligned} & 49,180 \\ & (218.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 69,550 \\ & (309.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 77,760 \\ & \text { (345.9) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 85,180 \\ & (378.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 98,360 \\ & (437.5) \\ & \hline \end{aligned}$
	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$	$\begin{aligned} & 74,825 \\ & (332.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 83,655 \\ & (372.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 91,640 \\ & (407.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 98,675 \\ & (438.9) \\ & \hline \end{aligned}$	$\begin{gathered} 149,650 \\ (665.7) \\ \hline \end{gathered}$	$\begin{array}{r} 167,310 \\ (744.2) \\ \hline \end{array}$	$\begin{array}{r} 183,280 \\ (815.3) \\ \hline \end{array}$	$\begin{aligned} & 197,355 \\ & (877.9) \\ & \hline \end{aligned}$
1-1/4	$\begin{gathered} \hline 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 9,355 \\ & (41.6) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10,455 \\ (46.5) \\ \hline \end{gathered}$	$\begin{aligned} & 11,455 \\ & (51.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13,225 \\ & (58.8) \\ & \hline \end{aligned}$	$\begin{gathered} 18,705 \\ (83.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20,915 \\ (93.0) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 22,910 \\ & (101.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26,455 \\ & (117.7) \\ & \hline \end{aligned}$
	$\begin{gathered} \hline 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{aligned} & 31,565 \\ & (140.4) \end{aligned}$	$\begin{aligned} & 35,290 \\ & (157.0) \end{aligned}$	$\begin{aligned} & 38,660 \\ & (172.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 44,640 \\ & (198.6) \end{aligned}$	$\begin{aligned} & 63,135 \\ & (280.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 70,585 \\ & (314.0) \end{aligned}$	$\begin{aligned} & \hline 77,320 \\ & (343.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 89,285 \\ & (397.1) \end{aligned}$
	$\begin{gathered} \hline 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 48,600 \\ & (216.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 54,335 \\ & (241.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 59,520 \\ & (264.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 68,730 \\ & (305.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 97,200 \\ & (432.4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 108,670 \\ (483.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 119,045 \\ (529.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 137,460 \\ (611.4) \\ \hline \end{gathered}$
	$\begin{gathered} \hline 25 \\ (635) \\ \hline \end{gathered}$	$\begin{gathered} 104,570 \\ (465.1) \\ \hline \end{gathered}$	$\begin{aligned} & 116,910 \\ & (520.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 128,070 \\ & (569.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 147,885 \\ & (657.8) \\ & \hline \end{aligned}$	$\begin{gathered} 209,140 \\ (930.3) \\ \hline \end{gathered}$	$\begin{aligned} & 233,825 \\ & (1040.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 256,140 \\ (1139.4) \\ \hline \end{array}$	$\begin{aligned} & 295,765 \\ & (1315.6) \\ & \hline \end{aligned}$

1 See Section 3.1.8 for explanation on development of load values.
2 See Section 3.1.8 to convert design strength value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables $42-55$ as necessary to the above values. Compare to the steel values in table 81 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85 .
7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_{a} as follows:
For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$.
For all-lightweight, $\lambda_{a}=0.45$
9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 84 - Hilti HIT-HY 200 adhesive factored resistance with concrete / bond failure for threaded rod in cracked concrete ${ }^{1,2,3,4,5,6,7,8,9}$

Nominal anchor diameter in.	Effective embedment in. (mm)	Tension - N_{r}				Shear - V ${ }_{\text {r }}$			
		$\begin{gathered} f_{\mathrm{c}}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=20 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}^{\prime}=20 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$\begin{gathered} 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 1,930 \\ (8.6) \\ \hline \end{gathered}$	$\begin{gathered} 1,975 \\ (8.8) \\ \hline \end{gathered}$	$\begin{gathered} 2,010 \\ (8.9) \end{gathered}$	$\begin{gathered} 2,070 \\ (9.2) \\ \hline \end{gathered}$	$\begin{gathered} 1,930 \\ (8.6) \\ \hline \end{gathered}$	$\begin{gathered} 1,975 \\ (8.8) \\ \hline \end{gathered}$	$\begin{gathered} 2,010 \\ (8.9) \\ \hline \end{gathered}$	$\begin{gathered} 2,070 \\ (9.2) \\ \hline \end{gathered}$
	$\begin{gathered} \hline 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 2,745 \\ & (12.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,805 \\ & (12.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,855 \\ & (12.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 2,940 \\ (13.1) \\ \hline \end{array}$	$\begin{aligned} & 5,485 \\ & (24.4) \end{aligned}$	$\begin{aligned} & 5,610 \\ & (24.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,710 \\ & (25.4) \end{aligned}$	$\begin{aligned} & 5,880 \\ & (26.1) \\ & \hline \end{aligned}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,655 \\ & (16.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,740 \\ & (16.6) \end{aligned}$	$\begin{array}{r} 3,810 \\ (16.9) \\ \hline \end{array}$	$\begin{aligned} & 3,920 \\ & (17.4) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,315 \\ (32.5) \\ \hline \end{array}$	$\begin{array}{r} 7,480 \\ (33.3) \\ \hline \end{array}$	$\begin{array}{r} 7,615 \\ (33.9) \\ \hline \end{array}$	$\begin{array}{r} 7,840 \\ (34.9) \\ \hline \end{array}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{r} 6,095 \\ (27.1) \\ \hline \end{array}$	$\begin{aligned} & 6,230 \\ & (27.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,345 \\ & (28.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,530 \\ & (29.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,190 \\ & (54.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,465 \\ & (55.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,695 \\ & (56.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,065 \\ & (58.1) \\ & \hline \end{aligned}$
1/2	$\begin{gathered} 2-3 / 4 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & 2,670 \\ & (11.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 2,985 \\ (13.3) \\ \hline \end{array}$	$\begin{aligned} & 3,270 \\ & (14.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,470 \\ & (15.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,340 \\ & (23.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,970 \\ & (26.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,540 \\ & (29.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 6,935 \\ (30.9) \\ \hline \end{array}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \end{aligned}$	$\begin{aligned} & 5,295 \\ & (23.6) \end{aligned}$	$\begin{aligned} & 5,415 \\ & (24.1) \end{aligned}$	$\begin{aligned} & 5,515 \\ & (24.5) \end{aligned}$	$\begin{aligned} & 5,675 \\ & (25.2) \end{aligned}$	$\begin{gathered} 10,590 \\ (47.1) \end{gathered}$	$\begin{gathered} 10,830 \\ (48.2) \end{gathered}$	$\begin{gathered} 11,030 \\ (49.1) \end{gathered}$	$\begin{gathered} 11,350 \\ (50.5) \end{gathered}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{aligned} & 7,060 \\ & (31.4) \end{aligned}$	$\begin{aligned} & 7,220 \\ & (32.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,355 \\ & (32.7) \end{aligned}$	$\begin{aligned} & 7,565 \\ & (33.7) \end{aligned}$	$\begin{gathered} 14,120 \\ (62.8) \\ \hline \end{gathered}$	$\begin{gathered} 14,440 \\ (64.2) \end{gathered}$	$\begin{gathered} 14,705 \\ (65.4) \end{gathered}$	$\begin{gathered} 15,135 \\ (67.3) \end{gathered}$
	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{gathered} 11,770 \\ (52.3) \\ \hline \end{gathered}$	$\begin{aligned} & 12,035 \\ & (53.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,255 \\ & (54.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,610 \\ & (56.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 23,535 \\ (104.7) \\ \hline \end{array}$	$\begin{array}{r} 24,065 \\ (107.1) \\ \hline \end{array}$	$\begin{aligned} & 24,510 \\ & (109.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 25,225 \\ & (112.2) \\ & \hline \end{aligned}$
5/8	$\begin{gathered} 3-1 / 8 \\ (79) \\ \hline \end{gathered}$	$\begin{aligned} & 3,235 \\ & (14.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,615 \\ & (16.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,960 \\ & (17.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 4,575 \\ & (20.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,470 \\ & (28.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,235 \\ & (32.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,925 \\ & (35.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,150 \\ & (40.7) \\ & \hline \end{aligned}$
	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,810 \\ & (34.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,720 \\ & (38.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,880 \\ & (39.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,140 \\ & (40.7) \\ & \hline \end{aligned}$	$\begin{gathered} 15,625 \\ (69.5) \\ \hline \end{gathered}$	$\begin{gathered} 17,445 \\ (77.6) \\ \hline \end{gathered}$	$\begin{gathered} 17,765 \\ (79.0) \\ \hline \end{gathered}$	$\begin{gathered} 18,285 \\ (81.3) \\ \hline \end{gathered}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{gathered} 11,370 \\ (50.6) \\ \hline \end{gathered}$	$\begin{gathered} 11,630 \\ (51.7) \\ \hline \end{gathered}$	$\begin{aligned} & 11,845 \\ & (52.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,190 \\ & (54.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 22,745 \\ & (101.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 23,260 \\ & (103.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 23,685 \\ & (105.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 24,375 \\ & (108.4) \\ & \hline \end{aligned}$
	$\begin{aligned} & \begin{array}{l} 12-1 / 2 \\ (318) \\ \hline \end{array}{ }^{2} 1 \end{aligned}$	$\begin{array}{r} 18,955 \\ (84.3) \\ \hline \end{array}$	$\begin{array}{r} 19,380 \\ (86.2) \\ \hline \end{array}$	$\begin{array}{r} 19,740 \\ (87.8) \\ \hline \end{array}$	$\begin{gathered} 20,315 \\ (90.4) \\ \hline \end{gathered}$	$\begin{aligned} & 37,910 \\ & (168.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 38,765 \\ & (172.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 39,475 \\ & (175.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 40,630 \\ & (180.7) \\ & \hline \end{aligned}$
3/4	$\begin{gathered} 3-1 / 2 \\ (89) \end{gathered}$	$\begin{aligned} & 3,835 \\ & (17.1) \end{aligned}$	$\begin{aligned} & 4,285 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 4,695 \\ & (20.9) \end{aligned}$	$\begin{aligned} & 5,425 \\ & (24.1) \end{aligned}$	$\begin{aligned} & 7,670 \\ & (34.1) \end{aligned}$	$\begin{aligned} & 8,575 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 9,390 \\ & (41.8) \end{aligned}$	$\begin{gathered} 10,845 \\ (48.2) \end{gathered}$
	$\begin{aligned} & 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{gathered} 10,270 \\ (45.7) \\ \hline \end{gathered}$	$\begin{gathered} 11,480 \\ (51.1) \\ \hline \end{gathered}$	$\begin{array}{r} 12,575 \\ (55.9) \\ \hline \end{array}$	$\begin{gathered} 14,175 \\ (63.1) \\ \hline \end{gathered}$	$\begin{gathered} 20,540 \\ (91.4) \\ \hline \end{gathered}$	$\begin{aligned} & 22,965 \\ & (102.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 25,155 \\ & (111.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,355 \\ & (126.1) \\ & \hline \end{aligned}$
	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} 15,810 \\ (70.3) \\ \hline \end{gathered}$	$\begin{gathered} 17,675 \\ (78.6) \\ \hline \end{gathered}$	$\begin{gathered} 18,365 \\ (81.7) \\ \hline \end{gathered}$	$\begin{gathered} 18,900 \\ (84.1) \\ \hline \end{gathered}$	$\begin{aligned} & 31,620 \\ & (140.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 35,355 \\ & (157.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 36,730 \\ & (163.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 37,805 \\ & (168.2) \\ & \hline \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{array}{r} 29,395 \\ (130.7) \\ \hline \end{array}$	$\begin{aligned} & 30,055 \\ & (133.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 30,610 \\ (136.2) \\ \hline \end{array}$	$\begin{aligned} & 31,505 \\ & (140.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 58,785 \\ & (261.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 60,115 \\ & (267.4) \end{aligned}$	$\begin{aligned} & 61,220 \\ & (272.3) \end{aligned}$	$\begin{aligned} & 63,005 \\ & (280.3) \end{aligned}$
7/8	$\begin{gathered} 3-1 / 2 \\ (89) \\ \hline \end{gathered}$	$\begin{aligned} & 3,835 \\ & (17.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 4,285 \\ (19.1) \\ \hline \end{array}$	$\begin{aligned} & 4,695 \\ & (20.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,425 \\ & (24.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,670 \\ (34.1) \\ \hline \end{array}$	$\begin{aligned} & 8,575 \\ & (38.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,390 \\ & (41.8) \\ & \hline \end{aligned}$	$\begin{gathered} 10,845 \\ (48.2) \\ \hline \end{gathered}$
	$\begin{aligned} & 7-7 / 8 \\ & (200) \\ & \hline \end{aligned}$	$\begin{gathered} 12,940 \\ (57.6) \\ \hline \end{gathered}$	$\begin{gathered} 14,470 \\ (64.4) \\ \hline \end{gathered}$	$\begin{gathered} 15,850 \\ (70.5) \\ \hline \end{gathered}$	$\begin{gathered} 18,300 \\ (81.4) \\ \hline \end{gathered}$	$\begin{aligned} & 25,880 \\ & (115.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 28,935 \\ & (128.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,700 \\ & (141.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 36,605 \\ & (162.8) \\ & \hline \end{aligned}$
	$\begin{gathered} 10-1 / 2 \\ (267) \\ \hline \end{gathered}$	$\begin{gathered} 19,925 \\ (88.6) \\ \hline \end{gathered}$	$\begin{gathered} 22,275 \\ (99.1) \\ \hline \end{gathered}$	$\begin{aligned} & 24,400 \\ & (108.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,340 \\ & (117.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 39,850 \\ & (177.3) \end{aligned}$	$\begin{aligned} & 44,550 \\ & (198.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 48,805 \\ & (217.1) \end{aligned}$	$\begin{aligned} & 52,680 \\ & (234.3) \end{aligned}$
	$\begin{gathered} 17-1 / 2 \\ (445) \\ \hline \end{gathered}$	$\begin{array}{r} 40,960 \\ (182.2) \\ \hline \end{array}$	$\begin{array}{r} 41,885 \\ (186.3) \\ \hline \end{array}$	$\begin{array}{r} 42,655 \\ (189.7) \\ \hline \end{array}$	$\begin{array}{r} 43,900 \\ (195.3) \\ \hline \end{array}$	$\begin{aligned} & 81,920 \\ & (364.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 83,770 \\ & (372.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 85,310 \\ & (379.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 87,800 \\ & (390.6) \\ & \hline \end{aligned}$
1	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & 4,685 \\ & (20.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,240 \\ & (23.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,740 \\ & (25.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,625 \\ & (29.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,370 \\ & (41.7) \\ & \hline \end{aligned}$	$\begin{gathered} 10,475 \\ (46.6) \\ \hline \end{gathered}$	$\begin{gathered} 11,475 \\ (51.0) \\ \hline \end{gathered}$	$\begin{aligned} & 13,250 \\ & (58.9) \\ & \hline \end{aligned}$
	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{aligned} & 15,810 \\ & (70.3) \\ & \hline \end{aligned}$	$\begin{gathered} 17,675 \\ (78.6) \\ \hline \end{gathered}$	$\begin{gathered} 19,365 \\ (86.1) \\ \hline \end{gathered}$	$\begin{gathered} 22,360 \\ (99.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 31,620 \\ & (140.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35,355 \\ & (157.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 38,730 \\ & (172.3) \end{aligned}$	$\begin{aligned} & 44,720 \\ & (198.9) \\ & \hline \end{aligned}$
	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{aligned} & 24,340 \\ & (108.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,215 \\ & (121.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 29,815 \\ & (132.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 34,425 \\ & (153.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 48,685 \\ & (216.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 54,430 \\ & (242.1) \end{aligned}$	$\begin{aligned} & 59,625 \\ & (265.2) \end{aligned}$	$\begin{aligned} & 68,850 \\ & (306.3) \\ & \hline \end{aligned}$
	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$	$\begin{aligned} & 52,375 \\ & (233.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 56,190 \\ & (249.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 57,225 \\ & (254.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 58,895 \\ & (262.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 104,755 \\ & (466.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 112,380 \\ & (499.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 114,450 \\ & (509.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 117,790 \\ & (524.0) \\ & \hline \end{aligned}$
1-1/4	$\begin{gathered} \hline 5 \\ (127) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6,545 \\ & (29.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,320 \\ & (32.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,020 \\ & (35.7) \end{aligned}$	$\begin{aligned} & 9,260 \\ & (41.2) \end{aligned}$	$\begin{gathered} 13,095 \\ (58.2) \\ \hline \end{gathered}$	$\begin{gathered} 14,640 \\ (65.1) \\ \hline \end{gathered}$	$\begin{gathered} 16,035 \\ (71.3) \\ \hline \end{gathered}$	$\begin{gathered} 18,520 \\ (82.4) \\ \hline \end{gathered}$
	$\begin{gathered} 11-1 / 4 \\ (286) \\ \hline \end{gathered}$	$\begin{gathered} 22,095 \\ (98.3) \\ \hline \end{gathered}$	$\begin{aligned} & 24,705 \\ & (109.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 27,060 \\ & (120.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 31,250 \\ & (139.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 44,195 \\ & (196.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 49,410 \\ & (219.8) \end{aligned}$	$\begin{aligned} & 54,125 \\ & (240.8) \end{aligned}$	$\begin{aligned} & 62,500 \\ & (278.0) \\ & \hline \end{aligned}$
	$\begin{gathered} 15 \\ (381) \\ \hline \end{gathered}$	$\begin{aligned} & 34,020 \\ & (151.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 38,035 \\ & (169.2) \\ & \hline \end{aligned}$	$\begin{array}{r} 41,665 \\ (185.3) \\ \hline \end{array}$	$\begin{aligned} & 48,110 \\ & (214.0) \end{aligned}$	$\begin{aligned} & 68,040 \\ & (302.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 76,070 \\ (338.4) \\ \hline \end{array}$	$\begin{aligned} & 83,330 \\ & (370.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 96,220 \\ & (428.0) \\ & \hline \end{aligned}$
	$\begin{gathered} 25 \\ (635) \\ \hline \end{gathered}$	$\begin{aligned} & 73,200 \\ & (325.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 81,840 \\ & (364.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 89,650 \\ & (398.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 95,845 \\ & (426.3) \\ & \hline \end{aligned}$	$\begin{gathered} 146,395 \\ (651.2) \\ \hline \end{gathered}$	$\begin{aligned} & 163,675 \\ & (728.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 179,300 \\ & (797.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 191,685 \\ & (852.7) \\ & \hline \end{aligned}$

1 See Section 3.1.8 for explanation on development of load values.
2 See Section 3.1.8 to convert design strength value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables $42-55$ as necessary to the above values. Compare to the steel values in table 81 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85 .
7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by la as follows: For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For alllightweight, $\lambda_{a}=0.45$.
9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: $3 / 8$-in diameter $-\alpha_{\text {seis }}=0.66,1 / 2-\mathrm{in}, 5 / 8-\mathrm{in}$, and $1-1 / 4-\mathrm{in}$ diameter $-\alpha_{\text {seis }}=0.74,3 / 4-\mathrm{in}$ and $7 / 8$-in diameter $-\alpha_{\text {seis }}=0.75$
See section 3.1.8 for additional information on seismic applications.

HIT-HY 200 Adhesive with Hilti HIS-N and HIS-RN internally threaded inserts

adow
Table 85 - Steel factored resistance for steel bolt/cap screw for Hilti HIS-N and HIS-RN internally threaded inserts ${ }^{1,2,3}$

	ASTM A193 B7			ASTM A193 Grade B8M Stainless Steel		
Thread size	$\begin{aligned} & \text { Tensile }^{4} \mathrm{~N}_{\text {sar }} \\ & \mathrm{lb}(\mathrm{kN}) \end{aligned}$	$\begin{aligned} & \text { Shear } \mathrm{V}_{\text {sar }} \\ & \mathrm{lb}(\mathrm{kN}) \end{aligned}$	Seismic Shear ${ }^{6} \mathrm{~V}_{\text {sar,eq }}$ $\mathrm{lb}(\mathrm{kN})$	$\begin{aligned} & \text { Tensile }^{4} \mathrm{~N}_{\text {sar }} \\ & \mathrm{lb}(\mathrm{kN}) \end{aligned}$	$\begin{aligned} & \text { Shear }^{5} V_{\text {sar }} \\ & \mathrm{lb}(\mathrm{kN}) \end{aligned}$	Seismic Shear ${ }^{6} \mathrm{~V}_{\text {sar,eq }}$ $\mathrm{lb}(\mathrm{kN})$
3/8-16 UNC	$\begin{aligned} & 5,765 \\ & (25.6) \end{aligned}$	$\begin{aligned} & 3,215 \\ & (14.3) \end{aligned}$	$\begin{aligned} & 2,250 \\ & (10.0) \end{aligned}$	$\begin{aligned} & 5,070 \\ & (22.6) \end{aligned}$	$\begin{aligned} & 2,825 \\ & (12.6) \end{aligned}$	$\begin{gathered} 1,975 \\ (8.8) \end{gathered}$
1/2-13 UNC	$\begin{aligned} & 9,635 \\ & (42.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,880 \\ (26.2) \\ \hline \end{array}$	$\begin{array}{r} 4,115 \\ (18.3) \\ \hline \end{array}$	$\begin{aligned} & 9,290 \\ & (41.3) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,175 \\ (23.0) \\ \hline \end{array}$	$\begin{array}{r} 3,620 \\ (16.1) \\ \hline \end{array}$
5/8-11 UNC	$\begin{gathered} 16,020 \\ (71.3) \\ \hline \end{gathered}$	$\begin{aligned} & 9,365 \\ & (41.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,555 \\ & (29.2) \\ & \hline \end{aligned}$	$\begin{gathered} 14,790 \\ (65.8) \\ \hline \end{gathered}$	$\begin{aligned} & 8,240 \\ & (36.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,770 \\ & (25.7) \\ & \hline \end{aligned}$
3/4-10 UNC	$\begin{gathered} 16,280 \\ (72.4) \end{gathered}$	$\begin{gathered} 13,860 \\ (61.7) \end{gathered}$	$\begin{aligned} & 9,700 \\ & (43.1) \\ & \hline \end{aligned}$	$\begin{gathered} 21,895 \\ (97.4) \\ \hline \end{gathered}$	$\begin{gathered} 12,195 \\ (54.2) \end{gathered}$	$\begin{aligned} & 8,535 \\ & (38.0) \\ & \hline \end{aligned}$

1 See Section 3.1.8 to convert design strength value to ASD value.
2 Hilti HIS-N and HIS-RN inserts with steel bolts are considered brittle steel elements.
3 Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.
4 Tensile $=A_{\text {se, }} \phi_{s} f_{u t a} R$ as noted in CSA A23.3-14 Annex D.
5 Shear $=A_{\text {se, } V} \Phi_{s} 0.60 f_{\text {uta }} R$ as noted in CSA A23.3-14 Annex D. For 3/8-in diameter insert, shear $=A_{\text {se, }} \Phi_{s} 0.50 f_{\text {uta }} R$.
6 Seismic Shear $=\alpha_{V, \text { seis }} \vee_{\text {sar }}$: Reduction factor for seismic shear only. See section 3.1.8 for additional information on seismic applications.
Table 86 - Hilti HIT-HY 200 design information with Hilti HIS-N and HIS-RN internally threaded inserts in hammer drilled holes in accordance with CSA A23.3-14 Annex D ${ }^{1}$

Design parameter		Symbol	Units	Nominal bolt/cap screw diameter (in.)				$\begin{array}{\|c\|} \hline \text { Ref } \\ \text { A23.3-14 } \\ \hline \end{array}$	
		3/8		1/2	5/8	3/4			
HIS insert outside diameter			D	mm	16.5	20.5	25.4	27.6	
Effective embedment ${ }^{2}$		$\mathrm{h}_{\text {ef }}$	mm	110	125	170	205		
Minimum concrete thickness ${ }^{2}$		$\mathrm{h}_{\text {min }}$	mm	150	170	230	270		
Critical edge distance		$\mathrm{Cac}_{\text {a }}$	-	$2 \mathrm{~h}_{\text {ef }}$					
Minimum edge distance		$\mathrm{C}_{\text {min }}$	mm	83	102	127	140		
Minimum anchor spacing		$\mathrm{S}_{\text {min }}$	mm	83	102	127	140		
Coeff. for factored concrete breakout resistance, uncracked concrete		$\mathrm{k}_{\mathrm{c} \text {,uncr }}{ }^{3}$	-					D.6.2.2	
Coeff. for factored concrete breakout resistance, cracked concrete		$\mathrm{k}_{\mathrm{c}, \mathrm{cr}}{ }^{3}$	-					D.6.2.2	
Concrete material resistance factor		$\phi_{\text {c }}$	-					8.4.2	
Resistance modification factor for tension and shear, concrete failure modes, Condition B ${ }^{4}$		$\mathrm{R}_{\text {conc }}$	-	1.00				D.5.3 (c)	
	Characteristic pullout resistance in cracked concrete ${ }^{6}$	$\tau_{\text {cr }}$	$\begin{gathered} \hline \mathrm{psi} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 870 \\ & (6.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 890 \\ & (6.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 910 \\ & (6.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 920 \\ & (6.3) \\ & \hline \end{aligned}$	D.6.5.2	
	Characteristic pullout resistance in uncracked concrete ${ }^{6}$	$\tau_{\text {uncr }}$	$\begin{array}{\|c\|} \hline \mathrm{psi} \\ (\mathrm{MPa}) \end{array}$	$\begin{aligned} & 1,950 \\ & (13.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,950 \\ & (13.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,950 \\ & (13.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,950 \\ & (13.4) \\ & \hline \end{aligned}$	D.6.5.2	
	Characteristic pullout resistance in cracked concrete ${ }^{6}$	$\tau_{\text {cr }}$	$\begin{gathered} \hline \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \hline 870 \\ & (6.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 890 \\ & (6.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 910 \\ & (6.3) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 92 \\ (0.6) \\ \hline \end{gathered}$	D.6.5.2	
	Characteristic pullout resistance in uncracked concrete ${ }^{6}$	$\tau_{\text {uncr }}$	$\begin{gathered} \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{array}{r} 1,950 \\ (13.4) \\ \hline \end{array}$	$\begin{aligned} & 1,950 \\ & (13.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,950 \\ & (13.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,950 \\ & (13.4) \\ & \hline \end{aligned}$	D.6.5.2	
	Characteristic pullout resistance in cracked concrete ${ }^{6}$	$\tau_{\text {cr }}$	$\begin{gathered} \hline \mathrm{psi} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \hline 715 \\ & (4.9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 730 \\ (5.0) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 750 \\ & (5.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 755 \\ & (5.2) \\ & \hline \end{aligned}$	D.6.5.2	
	Characteristic pullout resistance in uncracked concrete ${ }^{6}$	$\tau_{\text {uncr }}$	$\begin{gathered} \mathrm{psi} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & 1,600 \\ & (11.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,600 \\ & (11.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,600 \\ & (11.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,600 \\ & (11.0) \\ & \hline \end{aligned}$	D.6.5.2	
Reduction for seismic tension		$\alpha_{N, \text { seis }}$	-	0.92					
	Resistance modification factor tension and shear, pullout failure dry concrete	Anch cat	-	1				D.5.3 (c)	
		$\mathrm{R}_{\mathrm{dr} y}$	-	1.00					
	Resistance modification factor tension and shear, pullout failure water-saturated concrete	Anch cat	-	1				D.5.3 (c)	
		$\mathrm{R}_{\text {ws }}$	-	1.0					

1 Design information in this table is taken from ELC-3187, dated April 2019, tables 19 and 20, for use with CSA A23.3-14 Annex D.
2 See figure 13 of this section.
3 For all design cases, $\psi_{c, \mathrm{~N}}=1.0$. The appropriate coefficient for breakout resistance for cracked concrete $\left(\mathrm{k}_{\mathrm{c}, \mathrm{cr}}\right)$ or uncracked concrete ($\mathrm{k}_{\mathrm{c}, \text { uncr }}$) must be used.
4 For use with the load combinations of CSA A23.3-14 chapter 8 . Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.
5 Temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
Temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
Temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$.
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Bond strength values corresponding to concrete compressive strength $f^{\prime}{ }_{c}=2,500 \mathrm{psi}(17.2 \mathrm{MPa})$. For concrete compressive strength, $f^{\prime}{ }_{c}$, between $2,500 \mathrm{psi}$ (17.2 MPa) and $8,000 \mathrm{psi}(55.2 \mathrm{MPa})$, the tabulated characteristic bond strength may be increased by a factor of ($\left.f_{\mathrm{c}}{ }_{\mathrm{c}} / 2,500\right)^{0.1}$ [for SI: ($\left.f^{\prime}{ }_{\mathrm{c}} / 17.2\right)^{0.1}$].

Table 87 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete ${ }^{1,2,3,4,5,6,7,8,9}$

Thread size	Effective embedment in. (mm)	Tension - N_{r}				Shear - V ${ }_{\text {r }}$			
		$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{(3,625 \mathrm{psi})}^{\prime}=25 \mathrm{MPa} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{(}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{(}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8-16 UNC	$\begin{aligned} & \hline 4-3 / 8 \\ & (110) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,540 \\ & (33.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,430 \\ & (37.5) \end{aligned}$	$\begin{aligned} & 9,235 \\ & (41.1) \end{aligned}$	$\begin{gathered} 10,660 \\ (47.4) \end{gathered}$	$\begin{gathered} \hline 15,080 \\ (67.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16,860 \\ (75.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 18,470 \\ (82.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21,325 \\ (94.9) \end{gathered}$
1/2-13 UNC	$\begin{gathered} 5 \\ (125) \\ \hline \end{gathered}$	$\begin{aligned} & 9,135 \\ & (40.6) \end{aligned}$	$\begin{gathered} \hline 10,210 \\ (45.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11,185 \\ (49.8) \\ \hline \end{gathered}$	$\begin{gathered} 12,915 \\ (57.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 18,265 \\ (81.3) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 20,420 \\ (90.8) \\ \hline \end{array}$	$\begin{gathered} \hline 22,370 \\ (99.5) \\ \hline \end{gathered}$	$\begin{aligned} & 25,830 \\ & (114.9) \end{aligned}$
5/8-11 UNC	$\begin{aligned} & \hline 6-3 / 4 \\ & (170) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 14,485 \\ (64.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16,195 \\ (72.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17,740 \\ (78.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20,485 \\ (91.1) \end{gathered}$	$\begin{aligned} & \hline 28,970 \\ & (128.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,390 \\ & (144.1) \end{aligned}$	$\begin{aligned} & 35,480 \\ & (157.8) \end{aligned}$	$\begin{aligned} & 40,970 \\ & (182.2) \end{aligned}$
3/4-10 UNC	$\begin{aligned} & 8-1 / 8 \\ & (205) \end{aligned}$	$\begin{gathered} 19,180 \\ (85.3) \end{gathered}$	$\begin{gathered} 21,445 \\ (95.4) \end{gathered}$	$\begin{aligned} & 23,490 \\ & (104.5) \end{aligned}$	$\begin{aligned} & 27,125 \\ & (120.7) \end{aligned}$	$\begin{aligned} & 38,360 \\ & (170.6) \end{aligned}$	$\begin{aligned} & 42,890 \\ & (190.8) \end{aligned}$	$\begin{aligned} & 46,985 \\ & (209.0) \end{aligned}$	$\begin{aligned} & 54,255 \\ & (241.3) \end{aligned}$

Table 88 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete ${ }^{1,2,3,4,5,6,7,8,9}$

Thread size	Effective embedment in. (mm)	Tension - N_{r}				Shear - V_{r}			
		$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{(}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=20 \mathrm{MPa} \\ (2,900 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=25 \mathrm{MPa} \\ (3,625 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=30 \mathrm{MPa} \\ (4,350 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=40 \mathrm{MPa} \\ (5,800 \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8-16 UNC	$\begin{aligned} & 4-3 / 8 \\ & (110) \end{aligned}$	$\begin{aligned} & 5,235 \\ & (23.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,595 \\ & (24.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,910 \\ & (26.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,445 \\ & (28.7) \end{aligned}$	$\begin{gathered} \hline 10,470 \\ (46.6) \\ \hline \end{gathered}$	$\begin{gathered} 11,190 \\ (49.8) \end{gathered}$	$\begin{gathered} 11,820 \\ (52.6) \\ \hline \end{gathered}$	$\begin{gathered} 12,885 \\ (57.3) \\ \hline \end{gathered}$
1/2-13 UNC	$\begin{gathered} \hline 5 \\ (125) \\ \hline \end{gathered}$	$\begin{aligned} & 6,395 \\ & (28.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,150 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 7,830 \\ & (34.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,040 \\ & (40.2) \end{aligned}$	$\begin{gathered} \hline 12,785 \\ (56.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14,295 \\ (63.6) \end{gathered}$	$\begin{gathered} \hline 15,660 \\ (69.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 18,080 \\ (80.4) \\ \hline \end{gathered}$
5/8-11 UNC	$\begin{aligned} & \hline 6-3 / 4 \\ & (170) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10,140 \\ (45.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11,335 \\ (50.4) \\ \hline \end{gathered}$	$\begin{gathered} 12,420 \\ (55.2) \\ \hline \end{gathered}$	$\begin{gathered} 14,340 \\ (63.8) \end{gathered}$	$\begin{gathered} \hline 20,280 \\ (90.2) \\ \hline \end{gathered}$	$\begin{aligned} & 22,675 \\ & (100.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24,835 \\ & (110.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28,680 \\ & (127.6) \\ & \hline \end{aligned}$
3/4-10 UNC	$\begin{aligned} & \hline 8-1 / 8 \\ & (205) \\ & \hline \end{aligned}$	$\begin{gathered} 13,425 \\ (59.7) \end{gathered}$	$\begin{gathered} \hline 15,010 \\ (66.8) \\ \hline \end{gathered}$	$\begin{gathered} 16,445 \\ (73.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 18,990 \\ (84.5) \\ \hline \end{gathered}$	$\begin{aligned} & 26,855 \\ & (119.5) \end{aligned}$	$\begin{aligned} & \hline 30,025 \\ & (133.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32,890 \\ & (146.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,975 \\ & (168.9) \\ & \hline \end{aligned}$

1 See Section 3.1.8 for explanation on development of load values.
2 See Section 3.1.8 to convert design strength value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables 60-61 as necessary to the above values. Compare to the steel values in table 85. The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$.
For temperature range B : Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ multiply above values by 0.92 .
For temperature range C: Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above values by 0.78 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength value by 0.85 .
7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_{a} as follows:
For sand-lightweight, $\lambda_{\mathrm{a}}=0.51$. For all-lightweight, $\lambda_{\mathrm{a}}=0.45$.
9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors:
For all insert diameters $-\alpha_{\text {seis }}=0.69$
See section 3.1.8 for additional information on seismic applications.

POST-INSTALLED REBAR DESIGN IN CONCRETE PER ACI 318

Development and splicing of post-installed reinforcement

Calculations for post-installed rebar for typical development lengths may be done according to ACI 318-14 Chapter 25 (formerly ACI 318-11 Chapter 12) and CSA A23.3-14 Chapter 12 for adhesive anchors tested and approved in accordance with AC 308. This section contains tables for the data provided in ICC Evaluation Services ESR-3187. Refer to section 3.1.14 and the Hilti North America Post-Installed Reinforcing Bar Guide for the design method.

Table 89 - Calculated tension development and Class B splice lengths for Grade 60 bars in walls, slabs, columns, and footings per ACI 318-14 Chapter 25 for Hilti HIT-HY 200 - SDC A and B only ${ }^{3,4,5,6,7}$

	System		$\frac{\mathrm{c}_{\mathrm{b}}+\mathrm{K}_{\mathrm{tr}}}{\mathrm{~d}_{\mathrm{b}}}$	Minimum edge dist. in. ${ }^{1}$	Minimum spacing in. ${ }^{2}$	$f^{\prime}{ }_{\mathrm{c}}=2,500 \mathrm{psi}$		$f^{\prime}{ }_{\mathrm{c}}=3,000 \mathrm{psi}$		$f_{c}^{\prime}=4,000 \mathrm{psi}$		$\mathrm{f}_{\mathrm{c}}{ }^{\prime}=6,000 \mathrm{psi}$	
Rebar size						$\begin{aligned} & \ell_{d} \\ & \text { in. } \end{aligned}$	Class B splice in.	$\begin{aligned} & \ell_{d} \\ & \text { in. } \end{aligned}$	Class B splice in.	$\begin{aligned} & \ell_{d}{ }^{\mathrm{d}} \\ & \text { in. } \end{aligned}$	Class B splice in.	$\begin{aligned} & \ell_{d} \\ & \text { in. } \end{aligned}$	Class B splice in.
\#3	0	0	2.5	2-1/4	2	12	14	12	13	12	12	12	12
\#4	©	-		2-3/4	2-1/2	14	19	13	17	12	15	12	12
\#5	©	0		3	3-1/4	18	23	16	21	14	18	12	15
\#6	\square	0		3-3/4	3-3/4	22	28	20	26	17	22	14	18
\#7	\square	0		4-1/2	4-1/2	32	41	29	37	25	32	20	26
\#8	\square	0		5	5	36	47	33	43	28	37	23	30
\#9	\square	0		5-1/4	5-3/4	41	53	37	48	32	42	26	34
\#10	\square	0		5-3/4	6-1/2	46	59	42	54	36	47	30	38

- Applicable for use with special installation provisions and installation temperature restrictions to account for short gel time with deep embedment depth. See the Instruction For Use (IFU), packaged with the product for special installation parameters.
- Not recommended due to limited gel time of adhesive.

1 Edge distances are determined using the minimum cover specified by ESR-3187 with an additional 6% of the development length per suggestions for drilling without an aid per Hilti Post-Installed Reinforcing Bar Guide Section 3.3. Smaller edge distances may be possible, for which development and splice lengths may need to be recalculated. For further information on required cover see ACI 318-14, Sec. 20.6.1.3; see Sec. 2.2 for determination of c_{b}.
2 Spacing values represent those producing $c_{b}=5 d_{b}$ rounded up to the nearest $1 / 4 \mathrm{in}$. Smaller spacing values may be possible, for which development and splice lengths may need to be recalculated. For further information on required spacing see $\mathrm{ACl} 318-14 \mathrm{Sec} .25 .2$; see Sec. 2.2 for determination of c_{b}.
$3 \psi_{t}=1.0$ See ACl 318-14, Sec. 25.4.2.4.
$4 \psi_{\mathrm{e}}=1.0$ for non-epoxy coated bars. See ACI 318-14, Sec. 25.4.2.4.
$5 \psi_{\text {s }}=0.8$ for \#6 bars and smaller bars, 1.0 for \#7 and larger bars. See ACI 318-14, Sec. 25.4.2.4.
6 Values are for normal weight concrete. For sand-lightweight concrete, multiply development and splice lengths by 1.18 , for all-lightweight concrete multiply development and splice lengths by 1.33. See ACI 318-14 Sec. 19.2.4.
7 Development and splice length values are for static design. Seismic design development and splice lengths can be found in ACI 318-14 18.8.5 for special moment frames and ACl 318-14 18.10.2.3 for special structural walls. For further information about reinforcement in seismic design, see ACl 318-14 Ch. 18.
8 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples.

Table 90 - Suggested embedment, edge distance, and spacing (see figure below) to develop 125% of f_{y} in Grade 60 bars based on ACI 318-14 Chapter 17 - SDC A and B only ${ }^{1,2,3,4,5,6,7}$

Rebar size	$f^{\prime}{ }_{\mathrm{c}}=2,500 \mathrm{psi}$				$f^{\prime}{ }_{\mathrm{c}}=3,000 \mathrm{psi}$				$f^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}$				$f^{\prime}{ }_{\mathrm{c}}=6,000 \mathrm{psi}$			
	Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.		$\begin{array}{\|c\|} \text { Min. } \\ \text { spacing } \\ \mathrm{s}_{\text {min }} \\ \text { in. } \end{array}$	Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.		$\underset{\text { Min. }}{\text { spacing }} \begin{gathered} \mathrm{s}_{\text {min }} \\ \text { in. } \end{gathered}$	Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.		$\begin{array}{\|c\|} \text { Min. } \\ \text { spacing } \\ \mathrm{s}_{\text {min }} \\ \text { in. } \end{array}$	Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.		Min. spacing $\mathrm{S}_{\text {min }}$ in.
		Cond. I	Cond. II													
\#3	7	18	8	15	7	18	7	14	7	18	7	13	7	17	6	11
\#4	10	25	11	22	10	25	11	21	9	24	10	19	9	24	9	17
\#5	12	31	15	29	12	31	14	28	12	30	13	25	11	29	11	22
\#6	14	37	19	37	14	36	18	35	14	36	16	32	13	35	14	28
\#7	17	43	23	45	16	42	22	43	16	41	20	39	15	40	17	34
\#8	19	49	27	54	19	49	26	51	18	48	23	47	18	47	21	41
\#9	21	55	32	63	21	54	30	60	20	54	27	54	20	52	24	48
\#10	25	65	37	74	24	62	35	70	23	60	32	64	22	59	28	56

1 For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.
$2 \mathrm{~h}_{\mathrm{ef}}$ is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Additional reductions per $\mathrm{ACl} 318-14,17.3 .1 .2$ for sustained loading conditions are not included and as such these suggested embedments are not intended for sustained tension load applications. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the unbolded and bolded tabulated hef values by 0.80 and 0.86 , respectively. Reduction factors for non-sustained loading and no bar overstrength may be combined.
$3 \mathrm{c}_{\mathrm{a}}$ and s are the minimum edge distance and bar spacing (from bar centerline) associated with the tabulated embedments. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
4 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
5 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of $130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ and long-term temperature of $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Bond stresses are for static (non-seismic) loading conditions.
6 Values are for normal weight concrete. For lightweight concrete contact Hilti.
7 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Table 91 - Suggested embedment and edge distance (see figure below) based on ACl 318-14 Chapter 17 to develop 125\% of f_{y} in Grade 60 wall/column starter bars in a linear array with bar spacing $=\mathbf{2 4}$ inches - SDC A and B only ${ }^{1,2,3,4,5,6}$

Rebar	Linear spacing s in.	$f_{\text {c }}^{\prime}=2,500 \mathrm{psi}$			$f_{\text {c }}^{\prime}=3,000 \mathrm{psi}$			$f_{\text {c }}^{\prime}=4,000 \mathrm{psi}$			$f^{\prime}{ }_{\mathrm{c}}=6,000 \mathrm{psi}$		
		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text {, min }} \\ & \text { in. } \end{aligned}$		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text { amin }} \\ & \text { in. } \end{aligned}$		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text { min }} \\ & \mathrm{in} . \end{aligned}$	
			Cond. I	Cond. II									
\#3	24	7	18	8	7	18	7	7	18	7	7	17	6
\#4		10	25	12	10	25	11	9	24	10	9	24	9
\#5		13	33	19	12	31	17	12	30	15	11	29	12
\#6		21	55	32	19	49	28	15	40	23	13	35	18
\#7		32	83	47	28	75	42	23	62	35	18	48	26

$1 \mathrm{~h}_{\mathrm{ef}}$ is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1 .14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated $\mathrm{h}_{\text {ef }}$ values by 0.86 .
$2 \mathrm{c}_{\mathrm{a}}$ is the minimum edge distance (from bar centerline) associated with the tabulated embedments and $\mathrm{s}=24 \mathrm{in}$. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 12 and 13 assuming dry concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of $130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ and long-term temperature of $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Bond stresses are for static (non-seismic) loading conditions.
5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for detailed explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Table 92 - Suggested embedment and edge distance (see figure below) based on ACI 318-14 Chapter 17 to develop 125\% of f_{y} in Grade 60 wall/column starter bars in a linear array with bar spacing = 18 inches - SDC A and B only $1,2,3,4,5,6$

Rebar size	Linear spacing s in.	$f_{\text {c }}^{\prime}=2,500 \mathrm{psi}$			$f_{\text {c }}^{\prime}=3,000 \mathrm{psi}$			$f^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}$			$f_{\text {c }}^{\prime}=6,000 \mathrm{psi}$		
		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ in.	
			Cond. I	Cond. II									
\#3	18	7	18	8	7	18	7	7	18	7	7	17	6
\#4		10	25	14	10	25	13	9	24	12	9	24	10
\#5		18	47	27	16	41	24	13	34	19	11	29	15

$1 \mathrm{~h}_{\text {ef }}$ is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated $\mathrm{h}_{\text {ef }}$ values by 0.86 .
$2 \mathrm{c}_{\mathrm{a}}$ is the minimum edge distance (from bar centerline) associated with the tabulated embedments and $\mathrm{s}=18 \mathrm{in}$. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of $130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ and long-term temperature of $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Bond stresses are for static (non-seismic) loading conditions.
5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for detailed explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Illustration of Table 92 dimensions

Table 93 - Suggested embedment and edge distance (see figure below) based on ACI 318-14 Chapter 17 to develop 125\% of f_{y} in Grade 60 wall/column starter bars in a linear array with bar spacing = 12 inches - SDC A and B only $1,2,3,4,5,6$

Rebar size	Linear spacing s in.	$f^{\prime}{ }_{\mathrm{c}}=2,500 \mathrm{psi}$			$f^{\prime}{ }_{\mathrm{c}}=3,000 \mathrm{psi}$			$f_{\text {c }}^{\prime}=4,000 \mathrm{psi}$			$f^{\prime}{ }_{\mathrm{c}}=6,000 \mathrm{psi}$		
		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist$\mathrm{c}_{\mathrm{a}, \text { min }}$in.		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text { amin }} \\ & \mathrm{in} . \end{aligned}$		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a}, \text { min }} \\ & \mathrm{in} . \end{aligned}$		Effective embed. $h_{\text {ef }}$ in.	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text { amin }} \\ & \text { in. } \end{aligned}$	
			Cond. I	Cond. II									
\#3		7	18	10	7	18	9	7	18	8	7	17	7
\#4		-	-	-	13	35	20	11	29	16	9	24	13

$1 \mathrm{~h}_{\text {ef }}$ is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1 .14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated $\mathrm{h}_{\text {ef }}$ values by 0.86 .
$2 \mathrm{c}_{\mathrm{a}}$ is the minimum edge distance (from bar centerline) associated with the tabulated embedments and $\mathrm{s}=12 \mathrm{in}$. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of $130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ and long-term temperature of $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Bond stresses are for static (non-seismic) loading conditions.
5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Illustration of Table 93 dimensions

Table 94 - Calculated tension development and splice lengths for Canadian 400 MPa bars in walls, slabs, columns, and footings per CSA A23.3-14 for Hilti HIT-HY 200 - non-seismic design only ${ }^{3,4,5,5,7,8}$

	System		$\mathrm{d}_{\mathrm{cs}}+\mathrm{K}_{\text {tr }}$	Minimum edge dist. mm ${ }^{1}$	Minimum spacing mm^{2}	$f^{\prime}{ }_{\mathrm{c}}=20 \mathrm{MPa}$		$f^{\prime}{ }_{\mathrm{c}}=25 \mathrm{MPa}$		$f^{\prime}{ }_{\mathrm{c}}=30 \mathrm{MPa}$		$f^{\prime}{ }_{\mathrm{c}}=40 \mathrm{MPa}$	
Rebar size						$\begin{gathered} \ell_{d} \\ \mathrm{~mm} \end{gathered}$	Class B splice mm	$\begin{gathered} \ell_{d} \\ \mathrm{~mm} \end{gathered}$	Class B splice mm	$\begin{gathered} \ell_{d} \\ \mathrm{~mm} \end{gathered}$	Class B splice mm	$\begin{gathered} \ell_{d} \\ \mathrm{~mm} \end{gathered}$	Class B splice mm
10M	0	0	$2.5 \mathrm{~d}_{\mathrm{b}}$	60	50	300	380	300	340	300	310	300	300
15M	0	-		70	75	410	540	370	480	340	440	300	380
20M	0	©		80	100	510	660	450	590	410	540	360	460
25M	\square	©		120	125	820	1,060	730	950	670	870	580	750
30M	\square	0		130	150	960	1,250	860	1,120	790	1,020	680	890

- Applicable for use with special installation provisions and installation temperature restrictions to account for short gel time with deep embedment depth. See Instructions for Use (IFU) for special installation parameters.
Not recommended due to limited gel time of adhesive.
1 Edge distances are determined using the minimum cover specified by ESR-3187 with an additional 6% of the development length per suggestions for drilling without an aid per Hilti Post-Installed Reinforcing Bar Guide Section 3.3. Smaller edge distances may be possible, for which development and splice lengths may need to be recalculated. For further information on required cover see CSA A23.1-14 Table 17; see Sec. 3.2 for determination of $d_{c s}$.
2 Spacing values represent those producing $c_{b} 5 d_{b}$. Smaller spacing values may be possible, for which development and splice lengths may need to be recalculated. For further information on required spacing see CSA A23.1 Sec. 6.6.5.2; see Sec. 3.2 for determination of $d_{c s}$.
$3 k_{1}$ and k_{2} as defined by CSA A23.3-14 12.2.4 (a) and (b), are taken as 1.0 for post-installed reinforcing bars. For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.
$4 \mathrm{k}_{4}=0.8$ for 20M bars and smaller bars, 1.0 for 25M and larger bars. See CSA A23.3-14 12.2.4 (d)
$5 \mathrm{~K}_{\mathrm{tr}}$ is assumed to equal zero.
6 Values are for normal weight concrete. For lightweight concrete, multiply development and splice lengths by 1.3.
7 Development and splice length values are for static design. For tension development and splice lengths of bars in joints, see CSA A23.3-14 21.3.3.5. For further information about reinforcement in seismic design, see CSA A23.3-14 Ch. 21.
8 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples.

Table 95 - Suggested embedment, edge distance, and spacing (see figure below) to develop 125% of f_{y} in Canadian 400 MPa bars based on CSA A23.3-14 Annex D - non-seismic design only ${ }^{1,2,3,4,5,6,7}$

Rebar size	$f^{\prime}{ }_{\text {c }}=20 \mathrm{MPa}$				$f_{\text {c }}^{\prime}=25 \mathrm{MPa}$				$f^{\prime}{ }_{\text {c }}=30 \mathrm{MPa}$				$f^{\prime}{ }_{\text {c }}=40 \mathrm{MPa}$			
	Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text {, min }} \\ & \mathrm{mm} \end{aligned}$		$\begin{gathered} \text { Min. } \\ \text { spacing } \\ \mathrm{s}_{\text {min }} \\ \mathrm{mm} \end{gathered}$	Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a}, \text { min }} \end{aligned}$		Min. spacing $\mathrm{S}_{\text {min }}$ mm	Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text {, min }} \\ & \mathrm{mm} \end{aligned}$		Min. spacing $\mathrm{S}_{\text {min }}$ mm	Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a}, \text { min }} \\ & \mathrm{mm} \end{aligned}$		Min. spacing $\mathrm{S}_{\text {min }}$ mm
		Cond. I	Cond. II													
10M	200	520	220	440	200	510	200	400	200	510	190	380	190	500	180	350
15M	280	740	350	690	280	730	320	640	270	720	300	600	270	710	280	550
20M	350	910	450	900	340	890	420	840	330	880	400	790	320	870	360	720
25M	450	1,170	630	1,260	440	1,150	590	1,170	430	1,140	560	1,110	420	1,120	500	1,000
30M	530	1,390	790	1,580	520	1,360	740	1,470	510	1,350	690	1,380	490	1,320	630	1,260

1 For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.
$2 h_{\text {ef }}$ is the calculated bar embedment uncracked based on bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Additional reductions per ACI 318-14 17.3.1.2 for sustained loading conditions are not included and as such these suggested embedments are not intended for sustained tension load applications. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the unbolded and bolded tabulated $h_{\text {ef }}$ values by 0.80 and 0.86 , respectively.
$3 \mathrm{c}_{\mathrm{a}}$ and s are the minimum edge distance and bar spacing (from bar centerline) associated with the tabulated embedments. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
4 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
5 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 20 and 21 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of $130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ and long-term temperature of $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Bond stresses are for static (non-seismic) loading conditions.
6 Values are for normal weight concrete. For lightweight concrete contact Hilti.
7 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Table 96 - Suggested embedment and edge distance (see figure below) based on CSA A23.3-14 Annex D to develop 125% of f_{y} in Canadian 400 MPa wall/column starter bars in a linear array with bar spacing $\mathbf{=} \mathbf{6 0 0}$ millimeters -non-seismic design only ${ }^{1,2,3,4,5,6}$

Rebar size	Linear spacing s mm	$f^{\prime}{ }_{\mathrm{c}}=20 \mathrm{MPa}$			$f^{\prime}{ }_{\mathrm{c}}=25 \mathrm{MPa}$			$f_{\text {c }}^{\prime}=30 \mathrm{MPa}$			$f^{\prime}{ }_{\mathrm{c}}=40 \mathrm{MPa}$		
		Effective embed.$\begin{gathered} \mathrm{h}_{\text {ef }} \\ \mathrm{mm} \end{gathered}$	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text {, min }} \\ & \mathrm{mm} \end{aligned}$		Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist $\mathrm{c}_{\text {a,min }}$mm		Effective embed.$\mathrm{h}_{\mathrm{ef}}$$\mathrm{mm}$	Minimum edge dist $\mathrm{c}_{\mathrm{a}, \text { min }}$ mm		Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text {, min }} \\ & \mathrm{mm} \end{aligned}$	
			Cond. I	Cond. II									
10M	600	200	520	220	200	510	200	200	510	190	190	500	180
15M		280	740	420	280	730	350	270	720	300	270	710	280
20M		510	1,340	760	430	1,150	650	380	1,010	570	320	870	460

$1 \mathrm{~h}_{\text {ef }}$ is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1 .14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated h_{ef} values by 0.86 .
$2 \mathrm{c}_{\mathrm{a}}$ is the minimum edge distance (from bar centerline) associated with the tabulated embedments and $\mathrm{s}=600 \mathrm{~mm}$. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of $130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ and long-term temperature of $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Bond stresses are for static (non-seismic) loading conditions.
5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Table 97 - Suggested embedment and edge distance (see figure below) based on CSA A23.3-14 Annex D to develop 125% of f_{y} in Canadian 400 MPa wall/column starter bars in a linear array with bar spacing = 450 millimeters -non-seismic design only ${ }^{1,2,3,4,5,6}$

Rebar size	Linear spacing s mm	$f^{\prime}{ }_{\mathrm{c}}=20 \mathrm{MPa}$			$f^{\prime}{ }_{\mathrm{c}}=25 \mathrm{MPa}$			$f^{\prime}{ }_{\mathrm{c}}=30 \mathrm{MPa}$			$f^{\prime}{ }_{\mathrm{c}}=40 \mathrm{MPa}$		
		Effective embed. $\mathrm{h}_{\text {ef }}$mm	Minimum edge dist $\mathrm{C}_{\mathrm{a}, \text { min }}$ mm		Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a}, \text { min }} \\ & \mathrm{mm} \end{aligned}$		Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\mathrm{C}_{\mathrm{a} \text {, min }}$$\mathrm{mm}$		Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\mathrm{C}_{\mathrm{a}, \text {,min }}$$\mathrm{mm}$	
			Cond. I	Cond. II									
10M		200	520	220	200	510	200	200	510	190	190	500	180
15M	450	390	1,040	590	340	890	500	300	790	440	270	710	360

$1 \mathrm{~h}_{\text {ef }}$ is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1 .14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated h_{ef} values by 0.86 .
$2 \mathrm{c}_{\mathrm{a}}$ is the minimum edge distance (from bar centerline) associated with the tabulated embedments and $\mathrm{s}=450 \mathrm{~mm}$. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of $130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ and long-term temperature of $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Bond stresses are for static (non-seismic) loading conditions.
5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Table 98 - Suggested embedment and edge distance (see figure below) based on CSA A23.3-14 Annex D to develop 125% of f_{y} in Canadian 400 MPa wall/column starter bars in a linear array with bar spacing = 300 millimeters -non-seismic design only ${ }^{1,2,3,4,5,6}$

Rebar size	Linear spacing s mm	$f_{\text {c }}^{\prime}=20 \mathrm{MPa}$			$f_{c}^{\prime}=25 \mathrm{MPa}$			$f^{\prime}{ }_{\mathrm{c}}=30 \mathrm{MPa}$			$f^{\prime}{ }_{\mathrm{c}}=40 \mathrm{MPa}$		
		Effective embed. $h_{\text {ef }}$mm	Minimum edge dist $\mathrm{c}_{\mathrm{a}, \text { min }}$ mm		Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist $\mathrm{c}_{\text {a,min }}$mm		Effective embed. $h_{\text {ef }}$ mm	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text {, min }} \\ & \mathrm{mm} \end{aligned}$		Effective embed. $\mathrm{h}_{\text {ef }}$mm mm	Minimum edge dist$\begin{aligned} & \mathrm{c}_{\mathrm{a} \text {, min }} \\ & \mathrm{mm} \end{aligned}$	
			Cond. I	Cond. II									
10M	300	240	610	350	200	520	300	200	510	260	190	500	210

$1 \mathrm{~h}_{\text {ef }}$ is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended.
The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated hef values by 0.86 .
$2 \mathrm{c}_{\mathrm{a}}$ is the minimum edge distance (from bar centerline) associated with the tabulated embedments and $\mathrm{s}=300 \mathrm{~mm}$. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of $130^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ and long-term temperature of $110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$. Bond stresses are for static (non-seismic) loading conditions.
5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Illustration of Table 98 dimensions

DESIGN DATA IN MASONRY

Hilti HIT-HY 200 adhesive in grout-filled CMU with Hilti HAS threaded rod, Deformed Reinforcing Bar (Rebar), and Hilti HIT-Z(-R) anchor rods

Figure 9 - Hilti HAS threaded rod installation conditions

		Grout	ed con	mas				mmer drilli ped drill TE-CD Bit	with carbide -YD Hollow
Table 99 - Hilti HIT-HY 200 allowable adhesive bond tension loads for threaded rods, HIT-Z(-R) anchor rods, and reinforcing bars in the face of grout-filled concrete masonry walls ${ }^{1,2,3,4,5,6,7,8}$									
Nominal anchor diameter in.		Effective embedment in. $(\mathrm{mm})^{11}$	Tension lb (kN)	Spacing ${ }^{9}$			Edge distance ${ }^{10}$		
	Rebar Size			Critical S_{cr} in. (mm)	Minimum $\mathrm{s}_{\text {min }}$ in. (mm)	Load Reduction Factor @ $\mathrm{S}_{\text {min }}{ }^{6,12}$	Critical C_{c} in. (mm)	Minimum $\mathrm{C}_{\text {min }}$ in. (mm)	Load Reduction Factor @ $\mathrm{c}_{\text {min }}{ }^{12}$
3/8	No. 3	3 3/8 (86)	$\begin{array}{r} 960 \\ (4.3) \\ \hline \end{array}$	$\begin{array}{r} 13.5 \\ (343) \\ \hline \end{array}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	0.60	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	0.58
1/2	No. 4	4 1/2 (114)	$\begin{gathered} \hline 1,520 \\ (6.8) \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ (457) \end{gathered}$		0.60	$\begin{gathered} 20 \\ (508) \end{gathered}$		0.70
5/8	No. 5	5 5/8 (143)	1,810 (8.1)	$\begin{aligned} & 22.5 \\ & (572) \end{aligned}$		0.50	$\begin{gathered} 20 \\ (508) \end{gathered}$		0.82
3/4	No. 6	6 3/4 (171)	$\begin{gathered} 2,215 \\ (9.9) \end{gathered}$	$\begin{gathered} 27 \\ (686) \end{gathered}$		0.50	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$		0.68

Table 100 - Hilti HIT-HY 200 allowable adhesive bond shear loads for threaded rods, HIT-Z(-R) anchor rods, and reinforcing bars in the face of grout-filled concrete masonry wall ${ }^{1,2,3,4,5,6,7,8}$

Nominal anchor diameter in.	Rebar Size	Effective embedment in. $(\mathrm{mm})^{11}$	Shear lb (kN)	Spacing ${ }^{9}$			Edge distance ${ }^{10}$			
				Critical	Minimum		Critical	Minimum	Load Reduction Factor @ cmin^{12}	
				in. (mm)	in. (mm)	Factor @ $\mathrm{S}_{\text {min }}{ }^{6,12}$	in. (mm)	in. (mm)	Load \perp to edge	Load II edge
3/8	No. 3	3 3/8 (86)	$\begin{aligned} & 825 \\ & (3.7) \end{aligned}$	$\begin{array}{r} 13.5 \\ (343) \end{array}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	0.56	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	0.60	0.72
1/2	No. 4	$\begin{aligned} & 41 / 2 \\ & (114) \\ & \hline \end{aligned}$	1,240 (5.5)	$\begin{gathered} 18 \\ (457) \end{gathered}$		0.50	$\begin{gathered} 12 \\ (305) \end{gathered}$		0.44	0.85
5/8	No. 5	5 5/8 (143)	$\begin{gathered} 2,120 \\ (9.4) \\ \hline \end{gathered}$	$\begin{array}{r} 22.5 \\ (572) \\ \hline \end{array}$		0.50	$\begin{gathered} 20 \\ (508) \end{gathered}$		0.22	0.71
3/4	No. 6	$\begin{array}{r} 63 / 4 \\ (171) \\ \hline \end{array}$	$\begin{aligned} & 2,480 \\ & (11.0) \\ & \hline \end{aligned}$	$\begin{gathered} 27 \\ (686) \\ \hline \end{gathered}$		0.50	$\begin{gathered} 20 \\ (508) \end{gathered}$		0.19	0.71

1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units shall be lightweight, medium-weight or heavy-weight conforming to ASTM C90. Allowable loads are calculated using a safety factor of 5.
2 Anchors may be installed in any location in the face of the masonry wall including cell, web, and mortar joints. Anchors are limited to one per masonry cell.
3 Linear interpolation of load values between minimum spacing ($\mathrm{s}_{\text {min }}$) and critical spacing (s_{cr}) and between minimum edge distance ($\mathrm{c}_{\text {min }}$) and critical edge distance $\left(\mathrm{C}_{\mathrm{c}}\right)$ is permitted.
4 Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth. EXCEPTION: the $5 / 8$-inch- and the $3 / 4$-inch diameter anchors (No. 5 and No. 6 bars) may be installed in minimum nominally 8 -inch thick concrete masonry.
5 When using the basic load combinations in accordance with IBC Section 1605.3.1, tabulated allowable loads must not be increased for seismic or wind loading When using the alternative basic load combinations in IBC Section 1605.3.2 that include seismic or wind loads, tabulated allowable loads may be increased by $33-1 / 3$ percent, or the alternative basic load combinations may be reduced by a factor of 0.75 .
6 Allowable loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in tables 102 and 103.
7 Tabulated allowable loads shall be adjusted for increased base material temperatures in accordance with figure 14.
8 For combined loading: $\left(T_{\text {applied }} / T_{\text {allowable }}\right)+\left(\mathrm{V}_{\text {applied }} / \mathrm{V}_{\text {allowable }}\right) \leq 1$
9 The critical spacing, $s_{c r}$, is the anchor spacing where full load values may be used. The minimum spacing, $s_{\text {min }}$, is the minimum anchor spacing for which values are available and installation is recommended. Spacing is measured from the center of one anchor to the center of an adjacent anchor.
10 The critical edge distance, $c_{c r}$, is the edge distance where full load values may be used. The minimum edge distance, $c_{\text {min }}$, is the minimum edge distance for which values are available and installation is recommended. Edge distance is measured from the center of the anchor to the closest edge.
11 Embedment depth is measured from the outside face of the concrete masonry unit.
12 Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered. Load values for anchors installed at less than s_{cr} and c_{cr} must be multiplied by the appropriate load reduction factor based on actual edge distance (c) and spacing (s).

Table 101 - Hilti HIT-HY 200 allowable adhesive bond loads for threaded rods and reinforcing bars in the top of grout-filled concrete masonry walls ${ }^{1,2,3,4,5,6}$

Nominal anchor diameter or rebar size	Effective embedment in. (mm)	Edge distance in. $(\mathrm{mm})^{7,8}$	Minimum end distance in. (mm)	Tension lb (kN)	Shear load lb (kN) ${ }^{9}$	
					Load parallel to edge of masonry wall	Load perpendicular to edge of masonry wall
1/2"	$\begin{gathered} 4-1 / 2 \\ (114) \end{gathered}$	$13 / 4$ (44)	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{aligned} & 685 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 775 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 285 \\ & (1.3) \\ & \hline \end{aligned}$
		$\begin{gathered} 4 \\ (102) \end{gathered}$		$\begin{aligned} & 880 \\ & (3.9) \\ & \hline \end{aligned}$	$1,156$ (5.1)	$\begin{aligned} & 480 \\ & (2.1) \end{aligned}$
5/8"	$\begin{gathered} 5-5 / 8 \\ (143) \end{gathered}$	$13 / 4$ (44)		$\begin{aligned} & 830 \\ & (3.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 890 \\ & (4.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 315 \\ (1.4) \\ \hline \end{array}$
		$\begin{gathered} 4 \\ (102) \end{gathered}$		$\begin{aligned} & 980 \\ & (4.4) \\ & \hline \end{aligned}$	$1,315$ (5.8)	$\begin{aligned} & \hline 625 \\ & (2.8) \\ & \hline \end{aligned}$
\#4	$\begin{gathered} 4-1 / 2 \\ (114) \end{gathered}$	$13 / 4$ (44)		$\begin{array}{r} 770 \\ (3.4) \\ \hline \end{array}$	$\begin{aligned} & \hline 605 \\ & (2.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 235 \\ & (1.0) \\ & \hline \end{aligned}$
\#5	$5-5 / 8$ (143)			$\begin{aligned} & \hline 795 \\ & (3.5) \end{aligned}$	$\begin{aligned} & \hline 720 \\ & (3.2) \end{aligned}$	$\begin{aligned} & \hline 295 \\ & (1.3) \end{aligned}$

1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units shall be lightweight, medium-weight or heavy-weight conforming to ASTM C90. Allowable loads are calculated using a safety factor of 5 .
2 When using the basic load combinations in accordance with IBC Section 1605.3.1 or the alternative basic load combinations in IBC Section 1605.3.2. Tabulated allowable loads must not be increased for seismic or wind loading.
3 One anchor shall be permitted to be installed in each concrete block.
4 Anchors are not permitted to be installed in a head joint, flange or web of the concrete masonry unit.
5 Allowable loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in tables 102 and 103.
6 Tabulated allowable loads shall be adjusted for increased base material temperatures in accordance with figure 14.
7 For combined loading: $\left(T_{\text {applied }} / T_{\text {allowable }}\right)+\left(V_{\text {applied }} / V_{\text {allowable }}\right) \leq 1$
8 The tabulated edge distance is measured from the anchor centerline to the edge of the concrete block. See figure below.
9 Linear interpolation of load values between the two tabulated edge distances is permitted.

Hilti HIT-HY 200 specifications for HAS threaded rod in grout-filled masonry walls

Edge and end distances for threaded rods and reinforcing bars installed in the top of grout-filled CMU

Table 102 - Hilti HIT-HY 200 allowable tension and shear values for threaded rods based on steel strength ${ }^{1,2,3}$

	Tension lb (kN)						Shear Ib (kN)					
Anchor diameter in.	ISO 898 class 5.8	$\begin{gathered} \text { ASTM } \\ \text { A36 } \end{gathered}$	$\begin{aligned} & \text { ASTM } \\ & \text { A307 } \end{aligned}$	$\begin{gathered} \text { ASTM } \\ \text { A193 } \\ \text { B7 } \end{gathered}$	$\begin{gathered} \text { ASTM } \\ \text { F593 CW } \\ (316 / 304) \end{gathered}$	HIT-(Z(-R)	ISO 898 class 5.8	$\begin{gathered} \text { ASTM } \\ \text { A36 } \end{gathered}$	$\begin{aligned} & \text { ASTM } \\ & \text { A307 } \end{aligned}$	$\begin{gathered} \text { ASTM } \\ \text { A193 } \\ \text { B7 } \end{gathered}$	$\begin{gathered} \text { ASTM } \\ \text { F593 CW } \\ (316 / 304) \end{gathered}$	HIT-(Z(-R)
3/8	$\begin{aligned} & \hline 2,640 \\ & (11.7) \end{aligned}$	$\begin{gathered} 2,115 \\ (9.4) \\ \hline \end{gathered}$	$\begin{gathered} 2,185 \\ (9.7) \\ \hline \end{gathered}$	$\begin{aligned} & 4,555 \\ & (20.3) \end{aligned}$	$\begin{aligned} & 3,645 \\ & (16.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,430 \\ & (15.3) \end{aligned}$	$\begin{aligned} & \hline 1,360 \\ & (6.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,090 \\ & (4.8) \end{aligned}$	$\begin{gathered} 1,125 \\ (5.0) \end{gathered}$	$\begin{aligned} & 2,345 \\ & (10.4) \end{aligned}$	$\begin{aligned} & \hline 1,875 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 1,770 \\ & (7.9) \\ & \hline \end{aligned}$
1/2	$\begin{aligned} & 4,700 \\ & (20.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,755 \\ & (16.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,885 \\ & (17.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,100 \\ & (36.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,480 \\ & (28.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,100 \\ & (27.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,420 \\ & (10.8) \end{aligned}$	$\begin{gathered} 1,935 \\ (8.6) \\ \hline \end{gathered}$	$\begin{gathered} 2,000 \\ (8.9) \\ \hline \end{gathered}$	$\begin{aligned} & 4,170 \\ & (18.5) \end{aligned}$	$\begin{aligned} & 3,335 \\ & (14.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,145 \\ & (14.0) \\ & \hline \end{aligned}$
5/8	$\begin{array}{r} 7,340 \\ (32.6) \\ \hline \end{array}$	$\begin{array}{r} 5,870 \\ (26.1) \\ \hline \end{array}$	$\begin{aligned} & 6,075 \\ & (27.0) \end{aligned}$	$\begin{gathered} 12,655 \\ (56.3) \\ \hline \end{gathered}$	$\begin{aligned} & 10,125 \\ & (45.0) \end{aligned}$	$\begin{aligned} & 9,535 \\ & (42.4) \end{aligned}$	$\begin{aligned} & 3,780 \\ & (16.8) \end{aligned}$	$\begin{aligned} & 3,025 \\ & (13.5) \end{aligned}$	$\begin{aligned} & 3,130 \\ & (13.9) \end{aligned}$	$\begin{aligned} & 6,520 \\ & (29.0) \end{aligned}$	$\begin{aligned} & 5,215 \\ & (23.2) \end{aligned}$	$\begin{array}{r} 4,915 \\ (21.9) \\ \hline \end{array}$
3/4	$\begin{gathered} 10,570 \\ (47.0) \end{gathered}$	$\begin{aligned} & 8,455 \\ & (37.6) \end{aligned}$	$\begin{aligned} & 8,750 \\ & (38.9) \end{aligned}$	$\begin{gathered} 18,225 \\ (81.1) \end{gathered}$	$\begin{gathered} 12,390 \\ (55.1) \end{gathered}$	$\begin{gathered} 13,735 \\ (61.1) \end{gathered}$	$\begin{array}{r} 5,445 \\ (24.2) \\ \hline \end{array}$	$\begin{aligned} & 4,355 \\ & (19.4) \end{aligned}$	$\begin{aligned} & 4,505 \\ & (20.0) \end{aligned}$	$\begin{aligned} & 9,390 \\ & (41.8) \end{aligned}$	$\begin{array}{r} 6,385 \\ (28.4) \\ \hline \end{array}$	$\begin{aligned} & 7,075 \\ & (31.5) \end{aligned}$

Table 103 - Hilti HIT-HY 200 allowable tension and shear values for reinforcing bars based on steel strength ${ }^{1,2,3}$

Rebar size	Tension lb (kN)	Shear lb (kN)
	ASTM A615, GRADE 60	ASTM A615, GRADE 60
$\#$	3,270	1,685
	(14.5)	(7.5)
$\# 4$	5,940	3,060
	(26.4)	(13.6)
$\# 5$	9,205	4,745
	(40.9)	(21.1)
$\# 6$	13,070	6,730
	(58.1)	(29.9)

1 Allowable load used in the design must be the lesser of bond values and tabulated steel values.
2 The allowable tension and shear values for threaded rods to resist short term loads, such as wind or seismic, must be calculated in accordance with the appropriate IBC Sections.
2 Allowable steel loads are based on tension and shear stresses equal to $0.33 \times$ Fu and $0.17 \times \mathrm{Fu}$, respectively.

Table 104 - Hilti HIT-HY 200 allowable adhesive bond tension loads for HIS-N inserts in the face of grout-filled concrete masonry walls ${ }^{1,2,3,4,5,6,7,8}$

Thread size in.	Effective embedment in. $(\mathrm{mm})^{11}$	Tension lb (kN)	Spacing ${ }^{9}$			Edge Distance ${ }^{10}$		
				Minimum $\mathrm{S}_{\text {min }}$ in. (mm)	Load Reduction Factor @ $\mathrm{S}_{\text {min }}{ }^{6.12}$	$\begin{gathered} \text { Critical } \\ c_{\text {cr }} \\ \text { in. }(\mathrm{mm}) \end{gathered}$	Minimum $\mathrm{C}_{\text {min }}$ in. (mm)	Load Reduction Factor @ $\mathrm{c}_{\text {min }}{ }^{12}$
3/8-16 UNC	$\begin{aligned} & 43 / 8 \\ & (111) \end{aligned}$	$\begin{gathered} 1,355 \\ (6.0) \end{gathered}$	$\begin{gathered} 17 \\ (432) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	0.68	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	0.81
1/2-13 UNC	$\begin{gathered} 5 \\ (127) \end{gathered}$	$\begin{aligned} & \hline 1,640 \\ & (7.3) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$		0.68	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$		0.74

1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units shall be lightweight, medium-weight or heavy-weight conforming to ASTM C90. Allowable loads are calculated using a safety factor of 5 .
2 Anchors may be installed in any location in the face of the masonry wall including cell, web, and mortar joints. Anchors are limited to one per masonry cell.
3 Linear interpolation of load values between minimum spacing ($\mathrm{s}_{\text {min }}$) and critical spacing (s_{cr}) and between minimum edge distance ($\mathrm{c}_{\text {min }}$) and critical edge distance (c_{cr}) is permitted.
4 Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth.
5 When using the basic load combinations in accordance with IBC Section 1605.3.1, tabulated allowable loads must not be increased for seismic or wind loading When using the alternative basic load combinations in IBC Section 1605.3.2 that include seismic or wind loads, tabulated allowable loads may be increased by $33-1 / 3$ percent, or the alternative basic load combinations may be reduced by a factor of 0.75 .
6 Allowable loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in tables 102 and 103.
7 Tabulated allowable loads shall be adjusted for increased base material temperatures in accordance with figure 14.
8 For combined loading: $\left(T_{\text {applied }} / T_{\text {allowable }}\right)+\left(\mathrm{V}_{\text {applied }} / \mathrm{V}_{\text {allowable }}\right) \leq 1$
9 The critical spacing, s_{cr}, is the anchor spacing where full load values may be used. The minimum spacing, $\mathrm{s}_{\text {min }}$, is the minimum anchor spacing for which values are available and installation is recommended. Spacing is measured from the center of one anchor to the center of an adjacent anchor.
10 The critical edge distance, c_{cr}, is the edge distance where full load values may be used. The minimum edge distance, $\mathrm{c}_{\text {min }}$, is the minimum edge distance for which values are available and installation is recommended. Edge distance is measured from the center of the anchor to the closest edge.
11 Embedment depth is measured from the outside face of the concrete masonry unit.
12 Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered. Load values for anchors installed at less than s_{cr} and c_{cr} must be multiplied by the appropriate load reduction factor based on actual edge distance (c) and spacing (s).

Hilti HIT-HY 200 specifications for HIS-N inserts in grout-filled masonry walls

Allowable anchor installation locations in the face of grout-filled concrete block

Table 105 - Hilti HIT-HY 200 allowable adhesive bond shear loads for HIS-N inserts in the face of grout-filled concrete masonry walls ${ }^{1,2,3,4,5,6,7,8}$

Thread size in.	Effective embedment in. $(\mathrm{mm})^{11}$	Shear lb (kN)	Spacing ${ }^{9}$			Edge Distance ${ }^{10}$			
			Critical$s_{c r}$in. $(m m)$	Minimum $\mathrm{s}_{\text {min }}$ in. (mm)	Load Reduction Factor @ $\mathrm{S}_{\text {min }}{ }^{6.12}$	Critical$c_{c r}$in. $(m m)$		Load Reduction Factor @ $\mathrm{c}_{\text {min }}{ }^{12}$	
								Load perpendicular to edge	Load parallel to edge
3/8-16 UNC	$\begin{aligned} & 43 / 8 \\ & (111) \end{aligned}$	$\begin{aligned} & 1,045 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 17.0 \\ & (432) \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	0.56	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	0.65	1.00
1/2-13 UNC	$\begin{gathered} 5 \\ (127) \\ \hline \end{gathered}$	$\begin{gathered} 1,730 \\ (7.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ (508) \\ \hline \end{gathered}$		0.50	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$		0.36	0.91

1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units shall be lightweight, medium-weight or heavy-weight conforming to ASTM C90. Allowable loads are calculated using a safety factor of 5.
2 Anchors may be installed in any location in the face of the masonry wall including cell, web, and mortar joints. Anchors are limited to one per masonry cell.
3 Linear interpolation of load values between minimum spacing ($\mathrm{s}_{\text {min }}$) and critical spacing (s_{cr}) and between minimum edge distance ($\mathrm{c}_{\text {min }}$) and critical edge distance $\left(\mathrm{C}_{\mathrm{c})}\right)$ is permitted.
4 Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth.
5 When using the basic load combinations in accordance with IBC Section 1605.3.1, tabulated allowable loads must not be increased for seismic or wind loading When using the alternative basic load combinations in IBC Section 1605.3.2 that include seismic or wind loads, tabulated allowable loads may be increased by $33-1 / 3$ percent, or the alternative basic load combinations may be reduced by a factor of 0.75.
6 Allowable loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in tables 102 and 103.
7 Tabulated allowable loads shall be adjusted for increased base material temperatures in accordance with figure 14.
8 For combined loading: $\left(T_{\text {applied }} / T_{\text {allowable }}\right)+\left(V_{\text {applied }} / V_{\text {allowable }}\right) \leq 1$
9 The critical spacing, s_{cr}, is the anchor spacing where full load values may be used. The minimum spacing, $\mathrm{s}_{\text {min }}$, is the minimum anchor spacing for which values are available and installation is recommended. Spacing is measured from the center of one anchor to the center of an adjacent anchor.
10 The critical edge distance, c_{cr}, is the edge distance where full load values may be used. The minimum edge distance, $\mathrm{c}_{\text {min }}$, is the minimum edge distance for which values are available and installation is recommended. Edge distance is measured from the center of the anchor to the closest edge.
11 Embedment depth is measured from the outside face of the concrete masonry unit.
12 Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered. Load values for anchors installed at less than s_{cr} and c_{cr} must be multiplied by the appropriate load reduction factor based on actual edge distance (c) and spacing (s).

Figure 14 - Influence of in-service temperature on bond strength ${ }^{1}$

INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

MATERIAL SPECIFICATIONS

Figure 15 - Hilti HIT-HY 200 adhesive cure time and working time (approx.)

\square HIT-HY 200-A					
	H		ammem 0 गापापापय		
$\left[{ }^{\circ} \mathrm{C}\right]$		$t_{\text {work }}$	$(\square)^{2}$	$t_{\text {work }}$	(7$)^{5} t_{\text {cure }}$
-10...-5	14... 23	1.5 h	7 h	-	-
-4... 0	24... 32	50 min	4 h	-	-
1... 5	33.. 41	25 min	2 h	-	-
6... 10	42... 50	15 min	1.25 h	15 min	1.25 h
11... 20	51... 68	7 min	45 min	7 min	45 min
21... 30	69... 86	4 min	30 min	4 min	30 min
31... 40	87... 104	3 min	30 min	3 min	30 min

\square HIT-HY 200-R					
$\left.{ }^{\circ} \mathrm{C}\right]$		$t_{\text {work }}$	$(\square)^{\circ} t_{\text {cure }}$		(D) $t_{\text {cure }}$
-10...-5	14... 23	3 h	20 h	-	-
-4... 0	24... 32	2 h	8 h	-	-
1... 5	33... 41	1 h	4 h	-	-
6... 10	42... 50	40 min	2.5 h	40 min	2.5 h
11... 20	51... 68	15 min	1.5 h	15 min	1.5 h
21... 30	69... 86	9 min	1 h	9 min	1 h
$31 . . .40$	87... 104	6 min	1 h	6 min	1 h

1 It is permitted to install Hilti HIT-HY 200 with HIT-Z anchor rod down to $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ provided the drilled hole has the drilling dust fully removed. This can be done with Hilti TE-CD or TE-YD hollow drill bit or with cleaning procedures used with standard threaded rod.

Resistance of cured Hilti HIT-HY 200 to chemicals

Chemical		Behavior
Acetic acid	10%	+
Acetone	5%	\bullet
Ammonia		+
Benzyl alcohol	10%	\bullet
Hydrochloric acid	10%	+
Chlorinated lime	10%	+
Citric acid		+
Concrete plasticizer		+
De-icing salt (Calcium chloride)		+
Demineralized water		+
Diesel fuel		+
Drilling dust suspension		+
pH 13.2	96%	-
Ethanol	10%	+
Ethylacetate		+
Formic acid		+
Formwork oil	\bullet	
Gasoline	10%	\bullet
Glycole	10%	+
Hydrogen peroxide		+
Lactic acid	\bullet	
Maschinery oil	10%	\bullet
Methylethylketon	10%	+
Nitric acid		+
Phosphoric acid		+
Potassium Hydroxide		
pH 13.2		+
Sea water	10%	+
Sewage sludge		+
Sodium carbonate 10\%	10%	+
Sodium hypochlorite 2\%	2%	+
Sulphuric acid	10%	+
Toluene	30%	+
Xylene		\bullet
Keyr non		+

Key: - non-resistant

+ resistant
- limited resistance

Samples of the HIT-HY 200 adhesive were immersed in the various chemical compounds for up to one year. At the end of the test period, the samples were analyzed. Any samples showing no visible damage and having less than a 25% reduction in bending (flexural) strength were classified as "Resistant." Samples that had slight damage, such as small cracks, chips, etc. or reduction in bending strength of 25% or more were classified as "Limited Resistance" (i.e. exposed for 48 hours or less until chemical is cleaned up). Samples that were heavily damaged or destroyed were classified as "Non-Resistant."
Note: In actual use, the majority of the adhesive is encased in the base material, leaving very little surface area exposed.

ORDERING INFORMATION

HIT-Z anchor rod

Description	Bit dia. (in.)	Min. embed. (in.)	Qty
HIT-Z 3/8 x 3-3/8	7/16	2-3/8	40
HIT-Z 3/8 4 3/8	7/16	2-3/8	40
HIT-Z 3/8 $51 / 8$	7/16	2-3/8	40
HIT-Z 3/8 x 6 3/8	7/16	2-3/8	40
HIT-Z 1/2 $\times 1$ 1/2	9/16	2-3/4	20
HIT-Z 1/2 $\times 1$ 1/2	9/16	2-3/4	20
HIT-Z 1/2 $\times 8$	9/16	2-3/4	20
HIT-Z 5/8 $\times 6$	3/4	3-3/4	12
HIT-Z 5/8 $\times 8$	3/4	3-3/4	12
HIT-Z 5/8 x 9 1/2	3/4	3-3/4	12
HIT-Z 3/4 x 6-1/2	7/8	4	6
HIT-Z 3/4 x $81 / 2$	7/8	4	6
HIT-Z 3/4 $\times 9314$	7/8	4	6

HIT-HY 200-A

HIT-HY 200-R

HIT-HY 200-A (accelerated working time)

Description	Package contents	Qty
HIT-HY 200-A (11.1 fl oz/330 ml)	Includes (1) foil pack with (1) mixer and 3/8 filler tube per pack	1
HIT-HY 200-A Master Carton ($11.1 \mathrm{fl} \mathrm{oz/330} \mathrm{ml)}$	Includes (1) master carton containing (25) foil packs with (1) mixer and 3/8 filler tube per pack	25
HIT-HY 200-A Combo (11.1 fl oz/330 ml)	Includes (1) master carton containing (25) foil packs with (1) mixer and $3 / 8$ filler tube per pack and (1) HDM 500 Manual Dispenser	25
HIT-HY 200-A Master Carton (16.9 fl oz/500 ml)	Includes (1) master carton containing (20) foil packs with (1) mixer and 3/8 filler tube per pack	20
HIT-HY 200-A Combo (16.9 fl oz/500 ml)	Includes (2) master cartons containing (20) foil packs each with (1) mixer and $3 / 8$ filler tube per pack and (1) HDM 500 Manual Dispenser	40
HIT-RE-M Static Mixer	For use with HIT-HY 200-A cartridges	1
HIT-HY 200-R (regular working time)		
Description	Package contents	Qty
HIT-HY 200-R (11.1 fl oz/330 ml)	Includes (1) foil pack with (1) mixer and 3/8 filler tube per pack	1
HIT-HY 200-R Master Carton ($11.1 \mathrm{fl} \mathrm{oz/330} \mathrm{ml)}$	Includes (1) master carton containing (25) foil packs with (1) mixer and 3/8 filler tube per pack	25
HIT-HY 200-R Combo (11.1 fl oz/330 ml)	Includes (1) master carton containing (25) foil packs with (1) mixer and $3 / 8$ filler tube per pack and (1) HDM 500 manual dispenser	25
HIT-HY 200-R Master Carton (16.9 fl oz/500 ml)	Includes (1) master carton containing (20) foil packs with (1) mixer and 3/8 filler tube per pack	20
HIT-HY 200-R Combo (16.9 fl oz/500 ml)	Includes (2) master cartons containing (20) foil packs each with (1) mixer and $3 / 8$ filler tube per pack and (1) HDM 500 manual dispenser	40
HIT-RE-M Static Mixer	For use with HIT-HY 200-R cartridges	1
TE-CD Hollow Drill Bits		
Order Description	Working len	gth (in.)
Hollow Drill Bit TE-CD 1/2-13		8
Hollow Drill Bit TE-CD 9/16-14		9-1/2
Hollow Drill Bit TE-CD 5/8-14		9-1/2
Hollow Drill Bit TE-CD 3/4-14		9-1/2
Hollow Drill Bit TE-CD 16-A (Replacement collar)		
TE-YD Hollow Drill Bits		
Order Description	Working Length (in.)	
Hollow Drill Bit TE-YD 3/4-24		15-1/2
Hollow Drill Bit TE-YD 7/8-24		15-1/2
Hollow Drill Bit TE-YD 1-24		15-1/2
Hollow Drill Bit TE-YD 1 1/8-24		15-1/2
Hollow Drill Bit TE-YD 25-A (Replacement collar)		

For ordering information on anchor rods and inserts, dispensers, hole cleaning equipment and other accessories, see section 3.2.9.
Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.2.2 HILTI HIT-HY 200
Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458

[^0]: Install using (2) washers. See Figure 3.

[^1]: 2 For shaded cells, drilling dust must be removed from drilled hole to justify minimum concrete thickness.

[^2]: 1 Linear interpolation not permitted.

[^3]: 1 See Section 3.1.8 to convert design strength value to ASD value.
 2 ASTM A706 Grade 60 rebar are considered ductile steel elements. ASTM A615 Grade 40 and 60 rebar are considered brittle steel elements.
 3 Tensile $=\phi \mathrm{A}_{\text {se, } \mathrm{N}} \mathrm{f}_{\mathrm{uta}}$ as noted in ACl 318-14 Chapter 17.
 4 Shear $=\phi 0.60 \mathrm{~A}_{\text {se, } \mathrm{N}} \mathrm{f}_{\text {uta }}$ as noted in ACl 318-14 Chapter 17.
 5 Seismic Shear $=\alpha_{\mathrm{V}, \text { seis }} \phi \mathrm{V}_{\mathrm{sa}}$: Reduction for seismic shear only.
 See section 3.1.8 for additional information on seismic applications.

[^4]: 1 Linear interpolation not permitted．

[^5]: 1 Linear interpolation not permitted.

[^6]: 1 Linear interpolation not permitted.

[^7]: 1 Linear interpolation not permitted.

[^8]: 1 Linear interpolation not permitted.

[^9]: 1 Linear interpolation not permitted

[^10]: 1 Linear interpolation not permitted

[^11]: 1 See section 3.1.8 to convert design strength value to ASD value.
 2 HIT-Z and HIT-Z-R anchor rods are considered brittle steel elements.
 3 Tensile $=A_{\text {se, }} \Phi_{\mathrm{s}} \mathrm{f}_{\text {uta }} R$ as noted in CSA A23.3-14 Annex D.
 4 Shear values determined by static shear tests with $V_{s a r} \leq A_{s e, V} \phi_{s} 0.60 f_{\text {uta }} R$ as noted in CSA A23.3-14 Annex D.
 5 Seismic Shear $=\alpha_{\mathrm{V}, \text { seis }} \mathrm{V}_{\text {sar }}$: Reduction factor for seismic shear only. See section 3.1.8 for additional information on seismic applications.

[^12]: 1 Linear interpolation not permitted.

[^13]: 1 Linear interpolation not permitted.

[^14]: 1 Linear interpolation not permitted.

