Large Diameter Tapcon (LDT) Self-threading

SPECIFIED FOR ANCHORAGE INTO CONCRETE

The LDT anchor is a high performance anchor that cuts its own threads into concrete.

Anchor bodies are made of hardened carbon steel and zinc plated. Grade 5

The anchors shall have a finished hex washer head with anti-rotation serrations to prevent anchor back-out. The head of the anchor is stamped with a length identification code for easy inspection.

The anchor shall be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

LDT $3 / 8^{\prime \prime}$ and $1 / \mathbf{2}^{\prime \prime}$ are available with EnvireX coating

1,000 hours salt spray ASTM B117. Approved for use in ACQ and MCQ lumber*
*Excessive content of copper in the ACQ and MCQ lumber may affect the anchor finish.

LENGTH INDICATION CODE*

CODE	LENGTH OF ANCHOR In. (mm)	
A	$1-1 / 2<2$	$(38.1<50.8)$
B	$2<2-1 / 2$	$(50.8<63.5)$
C	$2-1 / 2<3$	$(63.5<76.2)$
D	$3<3-1 / 2$	$(76.2<88.9)$
E	$3-1 / 4<4$	$(88.9<101.6)$
F	$4<4-1 / 2$	$(101.6<114.3)$
G	$4-1 / 2<5$	$(114.3<127.0)$
H	$5<5-1 / 2$	$(127.0<139.7)$

* Located on top of anchor for easy inspection.

INSTALLATION STEPS

Installation Steps for Concrete, Lightweight Concrete and Metal Deck

1. Using the proper size carbide bit (see chart) drill a pilot hole at least $1^{\prime \prime}$ deeper than anchor embedment.

2. Using an electric impact wrench, or socket wrench (hand install) insert anchor into hole and tighten anchor until fully seated. (see chart for socket size) (do not over tighten).

Installation Steps for Hollow or Grout-Filled CMU

 ($3 / 8^{\prime \prime}$ and $1 / 2^{\prime \prime}$ diameter)

1. Using a $5 / 16^{\prime \prime}$ (for $3 / 8^{\prime \prime}$ LDT) or $7 / 16^{\prime \prime}$ (for $1 / 2^{\prime \prime}$ LDT) carbide tipped bit, drill a pilot hole at least $1^{\prime \prime}$ deeper than anchor embedment.

2. Using a socket wrench insert anchor into hole and hand tighten (only) anchor until fully seated. ($9 / 16^{\prime \prime}$ socket for $3 / 8^{\prime \prime}$ and $3 / 4^{\prime \prime}$ socket for $1 / 2^{\prime \prime}$) (do not over tighten).

LDT's can be installed by hand or with an impact wrench Installation by hand-is easy, simply using a socket wrench

Installation by impact wrench-is recommended for faster installations or for high volume projects. Installation with impact wrench-is not recommended for hollow block.

Selection Chart

LDT Size	ANSI Standard Drill Bit Diameter	(A) Anchor Head (Socket Size) Diameter	Washer Diameter	(B) Minimum Embedment	(C) Hole Depth	USE IN		
						Concrete	CMU	
							Hollow	Grout-filled
LDT 3/8"	5/16"	9/16"	13/16"	1-1/2"	2-1/2"	YES	YES	YES
LDT 1/2"	7/16"	3/4"	$1^{\prime \prime}$	2-1/2"	$3-1 / 2^{\prime \prime}$	YES	NO	YES
LDT 5/8"	$1 / 2^{\prime \prime}$	13/16"	1-3/16"	2-3/4"	$3-3 / 4^{\prime \prime}$	YES	NO	YES
LDT 3/4"	5/8"	15/16"	1-5/16"	$3-1 / 4^{\prime \prime}$	4-1/4"	YES	NO	YES

(C) See catalog for effective lengths and length indication code.

Submittal Information

PERFORMANCE TABLES

LDT Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete

$\begin{aligned} & \text { ANCHOR } \\ & \text { DIA. } \\ & \text { In. }(\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { EMBEDMENT } \\ & \text { DEPTH } \\ & \mathrm{In.}(\mathrm{~mm}) \\ & \hline \end{aligned}$	$\mathrm{f}^{\prime} \mathrm{C}=2000 \mathrm{PSI}(13.8 \mathrm{MPa})$				$\mathrm{f}^{\prime} \mathrm{C}=3000 \mathrm{PSI}$ (20.7 MPa)				$\mathrm{f}^{\prime} \mathrm{C}=4000 \mathrm{PSI}(27.6 \mathrm{MPa})$			
		TENSION Lbs. (kN)		$\begin{aligned} & \hline \text { SHEAR } \\ & \text { Lbs. (kN) } \end{aligned}$		TENSION Lbs. (kN)		$\begin{gathered} \text { SHEAR } \\ \text { Lbs. (kN) } \end{gathered}$		TENSION Lbs. (kN)		$\begin{aligned} & \hline \text { SHEAR } \\ & \text { Lbs. (kN) } \end{aligned}$	
3/8 (9.5)	1-1/2 (38.1)	1,336	(5.9)	2,108	(9.4)	1,652	(7.3)	2,764	(12.3)	1,968	(8.8)	3,416	(15.2)
	2 (50.8)	1,492	(6.6)	3,036	(13.5)	2,024	(9.0)	3,228	(14.4)	2,552	(11.4)	3,420	(15.2)
	2-1/2 (63.5)	3,732	(16.6)	3,312	(14.7)	3,748	(16.7)	3,364	(15.0)	3,760	(16.7)	3,424	(15.2)
	3-1/2 (88.9)	5,396	(24.0)	3,312	(14.7)	6,624	(29.5)	3,368	(15.0)	7,852	(34.9)	3,428	(15.2)
1/2 (12.7)	2 (50.8)	3,580	(15.9)	5,644	(25.1)	3,908	(17.4)	6,512	(29.0)	4,236	(18.8)	7,380	(32.8)
	3-1/2 (88.9)	7,252	(32.3)	6,436	(28.6)	8,044	(35.8)	7,288	(32.4)	8,836	(39.3)	8,140	(36.2)
	4-1/2 (114.3)	10,176	(45.3)	7,384	(32.8)	10,332	(46.0)	7,968	(35.4)	10,488	(46.7)	8,552	(38.0)
5/8 (15.9)	2-3/4 (69.9)	5,276	(23.5)	8,656	(38.5)	6,560	(29.2)	11,064	(49.2)	7,844	(34.8)	13,476	(59.9)
	3-1/2 (88.9)	7,972	(35.5)	10,224	(45.5)	9,848	(43.8)	12,144	(54.0)	11,724	(52.2)	14,060	(62.5)
	4-1/2 (114.3)	11,568	(51.5)	12,316	(54.8)	13,432	(59.8)	13,580	(60.4)	16,892	(75.1)	14,840	(66.0)
3/4 (19.1)	3-1/4 (82.6)	6,876	(30.6)	7,140	(31.8)	9,756	(43.4)	10,728	(47.7)	12,636	(56.2)	14,316	(63.6)
	4-1/2 (114.3)	10,304	(45.8)	13,120	(58.4)	14,424	(64.2)	16,868	(75.0)	18,540	(82.5)	20,612	(91.7)
	5-1/2 (139.7)	13,048	(58.0)	17,908	(79.7)	18,156	(80.8)	21,718	(96.9)	23,268	(130.5)	25,652	(114.1)

LDT Anchors
 Allowable Tension and Shear Values* (Lbs/kN) in Concrete Carbon and Stainless Steel

	$\begin{aligned} & \text { EMBEDMENT } \\ & \text { DEPTH } \\ & \text { In. }(\mathrm{mm}) \\ & \hline \end{aligned}$	$\mathrm{f}^{\prime} \mathrm{C}=2000$ PSI (13.8 MPa)				$\mathrm{f}^{\prime} \mathrm{c}=3000 \mathrm{PSI}$ (20.7 MPa)				$\mathrm{f}^{\prime} \mathrm{C}=4000 \mathrm{PSI}$ (27.6 MPa)			
		$\begin{aligned} & \text { TENSION } \\ & \text { Lbs. (kN) } \end{aligned}$		$\begin{aligned} & \text { SHEAR } \\ & \text { Lbs. (kN) } \end{aligned}$		$\begin{aligned} & \hline \text { TENSION } \\ & \text { Lbs. (kN) } \end{aligned}$		$\begin{gathered} \text { SHEAR } \\ \text { Lbs. (kN) } \end{gathered}$		$\begin{aligned} & \hline \text { TENSION } \\ & \text { Lbs. (kN) } \end{aligned}$		$\begin{gathered} \text { SHEAR } \\ \text { Lbs. (kN) } \end{gathered}$	
3/8 (9.5)	1-1/2 (38.1)	334	(1.5)	527	(2.3)	413	(1.8)	691	(3.1)	492	(2.1)	854	(3.8)
	2 (50.8)	373	(1.7)	759	(3.4)	506	(2.2)	807	(3.6)	638	(2.8)	855	(3.8)
	2-1/2 (63.5)	933	(4.2)	828	(3.7)	937	(4.2)	841	(3.7)	940	(4.2)	856	(3.8)
	3-1/2 (88.9)	1,349	(6.0)	828	(3.7)	1,656	(7.4)	842	(3.7)	1,963	(8.7)	857	(3.8)
1/2 (12.7)	2 (50.8)	895	(4.0)	1,411	(6.3)	977	(4.3)	1,628	(7.2)	1,059	(4.7)	1,845	(8.2)
	3-1/2 (88.9)	1,813	(8.0)	1,609	(7.2)	2,011	(8.9)	1,822	(8.1)	2,209	(9.8)	2,035	(9.0)
	4-1/2 (114.3)	2,544	(11.3)	1,846	(8.2)	2,583	(11.5)	1,992	(8.9)	2,622	(11.7)	2,138	(9.5)
5/8 (15.9)	2-3/4 (69.9)	1,319	(5.9)	2,164	(9.7)	1,640	(7.3)	2,766	(12.3)	1,961	(8.7)	3,369	(15.0)
	3-1/2 (88.9)	1,993	(8.9)	2,556	(11.4)	2,462	(10.9)	3,036	(13.5)	2,931	(13.0)	3,515	(15.6)
	4-1/2 (114.3)	2,892	(12.9)	3,079	(13.7)	3,358	(14.9)	3,395	(15.1)	4,223	(18.8)	3,710	(16.5)
3/4 (19.1)	3-1/4 (82.6)	1,719	(7.6)	1,785	(7.9)	2,439	(10.8)	2,682	(11.9)	3,159	(14.0)	3,579	(15.9)
	4-1/2 (114.3)	2,576	(11.5)	3,280	(14.6)	3,606	(16.0)	4,217	(18.7)	4,635	(20.6)	5,153	(22.9)
	5-1/2 (139.7)	3,262	(14.5)	4,477	(19.9)	4,539	(20.2)	5,445	(24.2)	5,817	(25.9)	6,413	(28.5)

* Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)

LDT Anchors Carbon and Stainless Steel

Recommended Edge \& Spacing Requirements for Tension Loads*

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)		EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		LOAD FACTOR APPLIED AT MIN. EDGE DISTANCE 1-3/4 Inches (44 mm)	SPACING DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76 mm)
3/8 (9.5)	1-1/2	(38.1)	2	(50.8)	70\%	6	(152.4)	44\%
	2	(50.8)	2	(50.8)	70\%	6	(152.4)	44\%
	2-1/2	(63.5)	3	(76.2)	70\%	6	(152.4)	44\%
	3-1/2	(88.9)	4	(101.6)	70\%	6	(152.4)	44\%
1/2 (12.7)	2	(50.8)	2-1/4	(57.2)	65\%	8	(203.2)	27\%
	3-1/2	(88.9)	3	(76.2)	65\%	8	(203.2)	27\%
	4-1/2	(114.3)	4	(101.6)	65\%	8	(203.2)	27\%

${ }^{*}$ Edge and spacing distance shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.
For $5 / \mathbf{8}^{\prime \prime}$ and $\mathbf{3 / 4 \prime \prime}$ LDT Anchors, the critical edge distance for these anchors is 10 times the anchor diameter. The edge distance of these anchors may be reduced to $1-3 / 4^{\prime \prime}$ provided a 0.65 load factor is used for tension loads, a 0.15 load factor is used for shear loads applied perpendicular to the edge, or a 0.60 load factor is used for shear loads applied parallel to the edge. Linear interpolation may be used for intermediate edge distances.

Submittal Information

PERFORMANCE TABLES
LDT Anchors Recommended Edge \& Spacing Requirements for Shear Loads*
LDT Anciors Carbon and Stainless Steel

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)		EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		LOAD FACTOR APPLIED AT MIN. EDGE DISTANCE 1-3/4 Inches (44 mm)	SPAC REQUI MAX.	dSTANCE O OBTAIN ING LOAD m)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76 mm)
3/8 (9.5)	1-1/2	(38.1)	3	(76.2)	25\%	6	(152.4)	57\%
	2	(50.8)	4	(101.6)	25\%	6	(152.4)	57\%
	2-1/2	(63.5)	5	(127.0)	25\%	6	(152.4)	57\%
	3-1/2	(88.9)	5	(127.0)	25\%	6	(152.4)	57\%
1/2 (12.7)	2	(50.8)	5	(127.0)	25\%	8	(203.2)	60\%
	3-1/2	(88.9)	5	(127.0)	25\%	8	(203.2)	60\%
	4-1/2	(114.3)	5-1/2	(139.7)	25\%	8	(203.2)	60\%

* Edge and spacing distances shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

LDT Anchors
 Ultimate Tension Load (Lbs/kN) in Concrete Block (anchors should be installed by hand in hollow block)

| ANCHOR DIA.
 In. (mm) | EMBEDMENT
 DEPTH
 In. $(\mathbf{m m})$ | HOLLOW CONCRETE BLOCK | | | GROUT FILLED CONCRETE BLOCK | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

LDT Anchors	Allowable Tension and Shear* (Lbs/kN) in Concrete Block (anchors should be installed by hand in hollow block)						
ANCHOR DIA. In. (mm)	$\begin{gathered} \text { EMBEDMENT } \\ \text { DEPTH } \\ \text { In. }(\mathrm{mm}) \end{gathered}$	HOLLOW CONCRETE BLOCK		GROUT FILLED CONCRETE BLOCK			
		$\begin{aligned} & \text { TENSION } \\ & \text { Lbs. (kN) } \end{aligned}$	$\begin{gathered} \text { SHEAR } \\ \text { Lbs. (kN) } \end{gathered}$	$\begin{aligned} & \text { TENSION } \\ & \text { Lbs. (kN) } \end{aligned}$		$\begin{aligned} & \text { SHEAR } \\ & \text { Lbs. (kN) } \end{aligned}$	
3/8 (9.5)	1-1/2 (38.1)	229 (1.0)	794 (3.5)	398	(1.8)	975	(4.3)
1/2 (12.7)	2-1/2 (63.5)	N/A	N/A	1,481	(6.6)	1,670	(7.4)

*Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)

IDT Anchors Anchoring Overhead in 3000 PSI Lightweight Concrete On Metal Deck

ANCHOR In. (mm)	DRILL HOLE DIAMETER		EMBEDMENT In. (mm) Lbs. (kN)		3000PSI (20.7 MPa) CONCRETE						
			ULTIMATE TENSION LOAD	Lbs. (kN)	ALLOWABLE WORKING LOAD						
3/8" LDT	5/1	(7.9)			1-1/2	(38.1)	Upper Flute	2,889	(12.9)	722	(3.2)
			Lower Flute	1,862			(8.3)	465	(2.1)		

