Plaster Resource Manual
Smooth Appearance with Consistent Performance

Gold Bond® plaster products are created to deliver exceptional beauty and durability.

With decades of experience, we’re proud to offer one of the industry’s most complete lines of gypsum plaster products. Gold Bond gypsum plaster products provide excellent solutions for some of your most demanding requirements. From one and two-coat veneer plaster systems to conventional plaster base coat and finish options, our plaster products create high-quality surfaces enhancing the overall durability of your walls and ceilings.

CONVENTIONAL PLASTER ... 4
 Gypsum Plaster Base & Metal Lath ... 5
 Basecoat Plasters ... 6
 Finish Plasters ... 8
 Moulding Plaster .. 8
 Plaster Application Procedures ... 9
 Problems & Solutions ... 11

VENeer PLASTER ... 16
 Gypsum Plaster Base ... 17
 One Coat Veneer Plaster .. 18
 Two Coat Veneer Plaster .. 19
 Plaster Application Procedures ... 24
 Problems & Solutions ... 28

GLOSSARY ... 33
Conventional Plaster

Conventional lath and plaster systems have long been considered the industry standard in wall and ceiling construction.

Ideal for both residential and commercial applications, conventional plaster systems provide smooth, high quality wall surfaces, regardless of framing alignment.

Conventional plaster delivers exceptional beauty and durability for interior partitions and ceilings. Conventional plaster systems are also commonly used as the material for radiant heating systems in ceilings.

When used with expanded metal lath, conventional plasters create a mechanical bond for maximum strength and durability. Moulding plasters are excellent for sculpting, casting decorative objects, and historic restoration.

GENERAL USES
Gypsum plaster systems are suitable for all interior plastering except areas directly exposed to free water or severe moisture. Lath and plaster is not recommended for exterior applications such as carports, soffits and open porches. Gypsum plasters are non-combustible and act to prevent passage of intense heat from fire for extended periods. For specific fire resistance ratings, visit goldbondbuilding.com.

ADVANTAGES
- Provides a smooth, high quality surface.
- Requires no joint taping and finishing.
- Resists nail pops better than gypsum wallboard.
- Enhances overall wall strength.
- High impact and abrasion resistance.

SELECTING PLASTER BASES
Gold Bond Building Products, LLC manufactures the most common types of gypsum base plaster and finishing plaster.

These products perform well in appearance, structural ability, sound isolation and fire endurance ratings, allowing architects to design virtually any number of interior ceilings and partitions.

PERFORMANCE
The relative performance of gypsum and metal lath varies depending on the type of construction. When plaster on metal lath forms a membrane, as in a suspended ceiling or hollow partition, it's more subject to cracking than plaster on gypsum lath.

RECOMMENDATIONS
- Control joints should be installed in ceilings without perimeter relief or a maximum distance between joints of 30' with a maximum undivided area of 900 sq. ft. With perimeter relief, the maximum distance between joints is 50' with a maximum undivided area of 2500 sq. ft. On side walls, control joints should be installed every 30'.
- Where dissimilar plaster bases adjoin, use strip-metal lath with 15 lb. felt paper between the metal lath and underlying base.
- Carefully inspect all lath and furring before plastering to ensure adherence to job specifications and good practice standards.
- Select from the specifications that accompany the description of each system.

PRODUCT SHELF LIFE

<table>
<thead>
<tr>
<th>Product</th>
<th>Storage/Shelf Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Way Hardwall</td>
<td>6 months</td>
</tr>
<tr>
<td>Gypsolite Plaster</td>
<td>6 months</td>
</tr>
<tr>
<td>Gauging Plaster</td>
<td>3 months</td>
</tr>
<tr>
<td>Moulding Plaster</td>
<td>3 months</td>
</tr>
</tbody>
</table>
Gold Bond® Kal-Kore® Plaster Base is a tapered-edge gypsum plaster base with 100% recycled absorptive face paper surface designed to permit rapid trowel application of Gypsumite Plaster or Two-Way Hardwall Plaster. Use Kal-Kore® Fire-Shield® Plaster Base in specific fire-rated assemblies. For speed of installation, GridMarX® guide marks are printed on the paper surface.

ADVANTAGES

- Provides a smooth and durable base for plaster over which paint may be applied.
- Provides the appearance and surface of conventional plaster at a lower cost.
- Can be used on walls and ceilings. Can install 5/8 in. Kal-Kore on ceilings with 24 in. (610 mm) o.c. framing at right angles to framing members.
- Fire-resistant material with a gypsum core will not support combustion or transmit temperatures greatly in excess of 212°F (100°C) until completely calcined, a slow process.
- Expansion and contraction under normal atmospheric changes are negligible.
- Achieves UL GREENGUARD Gold Certification for low chemical emissions into indoor air during product usage. For more information visit: ul.com/gg.

TECHNICAL DATA

Kal-Kore is available in two basic types: Regular and Fire-Shield. Type X Kal-Kore is 4” wide and is supplied in 8’ through 16’ lengths. Thicknesses are as follows:

- **Regular:** 1/2”
- **Fire-Shield:** 1/2” Fire-Shield C, 5/8” Fire-Shield, 5/8” Fire-Shield C, produced to meet ASTM C1395.

Note: Installation of gypsum lath and metal lath shall be in accordance with ASTM C841. Do not use 3/8” Kal-Kore Plaster Base with conventional basecoat plasters.

FASTENERS FOR ATTACHING KAL-KORE

<table>
<thead>
<tr>
<th>Framing</th>
<th>Kal-Kore Thickness</th>
<th>Fastener</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Studs & Furring</td>
<td>1/2” (12.7 mm)</td>
<td>Type S Screws</td>
</tr>
<tr>
<td>Wood Framing</td>
<td>1/2” (12.7 mm)</td>
<td>Type W Screws</td>
</tr>
<tr>
<td>Wood Framing</td>
<td>5/8” (15.9 mm)</td>
<td>1-1/4” (31.8 mm) annular or 5d box nails</td>
</tr>
<tr>
<td>Wood Framing</td>
<td>1/2” (12.7 mm)</td>
<td>1-1/4” (31.8 mm) annular or 5d box nails</td>
</tr>
<tr>
<td>Wood Framing</td>
<td>5/8” (15.9 mm)</td>
<td>1-3/8” (34.9 mm) annular or 6d box nails</td>
</tr>
</tbody>
</table>

5” o.c. max

SINGLE-LAYER APPLICATION

<table>
<thead>
<tr>
<th>Type of Framing or Furring</th>
<th>Kal-Kore Thickness</th>
<th>Maximum Spacing on center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>1/2” (12.7 mm)</td>
<td>24” (610 mm)</td>
</tr>
<tr>
<td>Wood</td>
<td>5/8” (15.9 mm)</td>
<td>24” (610 mm)</td>
</tr>
<tr>
<td>Metal</td>
<td>1/2” (12.7 mm)</td>
<td>16” (406 mm)</td>
</tr>
<tr>
<td>Metal</td>
<td>5/8” (15.9 mm)</td>
<td>24” (610 mm)</td>
</tr>
</tbody>
</table>

Bound edge must be at right angles to ceiling joists.
Two-Way Hardwall Gypsum Plaster
High strength basecoat plaster

Gold Bond® Two-Way Hardwall Plaster is a basecoat gypsum neat plaster which requires the onsite addition of an aggregate and water to produce working qualities. When properly proportioned with aggregate, Two-Way Hardwall Plaster forms a hard, durable base for the finish coats of another gypsum plaster. Complies with ASTM C28.

Use Two-Way Hardwall Plaster with sand or expanded lightweight aggregate conforming to ASTM C35. It is mechanically mixed at the jobsite. Apply it by hand or use it through pump/spray plastering machines.

Two-Way Hardwall Plaster consists of unaggregated gypsum plaster and contains no asbestos.

AGGREGATE PROPORTION/ESTIMATED COVERAGE

<table>
<thead>
<tr>
<th>Approximate Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging</td>
</tr>
<tr>
<td>Bag: 49.5 lb. (22.5 kg)</td>
</tr>
<tr>
<td>Gypsum Plaster Base Applications</td>
</tr>
<tr>
<td>- Approx. Coverage per Bag: 40 – 50 sq. ft. (3.7 – 4.6 m²)</td>
</tr>
<tr>
<td>- Applied Thickness: 7/16 in. (11.1 mm)</td>
</tr>
<tr>
<td>- Aggregate Proportion: Sanded 1:2-1/2</td>
</tr>
<tr>
<td>Metal Lath Applications</td>
</tr>
<tr>
<td>- Approx. Coverage per Bag: 20 – 26 sq. ft. (1.9 – 2.4 m²)</td>
</tr>
<tr>
<td>- Applied Thickness: 7/16 in. (11.3 mm)</td>
</tr>
<tr>
<td>- Aggregate Proportion: Sanded 1:2-1/2</td>
</tr>
<tr>
<td>Brick, Clay Tile, Concrete Block Applications</td>
</tr>
<tr>
<td>- Approx. Coverage per Bag: 40 – 50 sq. ft. (3.7 – 4.6 m²)</td>
</tr>
<tr>
<td>- Applied Thickness: 9/16 in. (14.3 mm)</td>
</tr>
<tr>
<td>- Aggregate Proportion: Sanded 1:3</td>
</tr>
<tr>
<td>Approx. Set Time</td>
</tr>
<tr>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Measured from face to lath.

Note: Sanded 1:2-1/2 means 1 part plaster to 2-1/2 parts sand by weight.

WEIGHT COMPARISON OF BASECOAT PLASTERS

<table>
<thead>
<tr>
<th>Dry Set Mortar Weight</th>
<th>Sanded 1:3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight lbs. per cu. ft. (kg/m³)</td>
<td>120 (1922)</td>
</tr>
<tr>
<td>Lbs./yd³ (kg/m³) 3/8” (9.5mm) thick</td>
<td>34 (18)</td>
</tr>
<tr>
<td>Lbs./yd³ (kg/m³) 1/2” (12.7mm) thick</td>
<td>45 (24)</td>
</tr>
<tr>
<td>Lbs./yd³ (kg/m³) 5/8” (15.9mm) thick</td>
<td>56 (30)</td>
</tr>
<tr>
<td>Lbs./yd³ (kg/m³) 3/4” (19.0mm) thick</td>
<td>67 (36)</td>
</tr>
</tbody>
</table>

Wet Mortar Weight

| Weight lbs. per cu. ft. (kg/m³) | 140 (2243) |

Specification Reference

ASTM Designation C28, "Gypsum Plasters"

ADVANTAGES

- Set-stabilized and adjusted for market requirements and seasonal changes. When mixed with sand or other aggregates, it has uniform working qualities and excellent spread.
- When properly proportioned with aggregate, Two-Way Hardwall Plaster forms a hard, durable base for the finish coat and provides increased resistance to minor structural movements and impacts.
- Fire resistant: Two-Way Hardwall Plaster is essentially mineral in composition and will not support combustion.

PHYSICAL PROPERTIES OF TWO-WAY HARDWALL GYPSUM PLASTER

<table>
<thead>
<tr>
<th>Plaster Properties</th>
<th>Gypsumite Regular</th>
<th>Gypsumite Plaster to Sand by Weight</th>
<th>Gypsumite Plaster and Vermiculite</th>
<th>Gypsumite Plaster and Perlite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix</td>
<td>Mill Mix</td>
<td>1:1</td>
<td>1:2</td>
<td>1:3</td>
</tr>
<tr>
<td>Approximate Compressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Strength lbs. per sq. in. (kPa)</td>
<td>900 (6201)</td>
<td>1600 (11024)</td>
<td>1150 (7923)</td>
<td>750 (5168)</td>
</tr>
<tr>
<td>Approximate Tensile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Strength lbs. per sq. in. (kPa)</td>
<td>160 (1102)</td>
<td>250 (1722)</td>
<td>190 (1309)</td>
<td>120 (827)</td>
</tr>
</tbody>
</table>

- Gypsumite Regular 100 lbs (45.4 kg) 2 cu. ft. (0.06 m³)
- Masonry 100 lbs (45.4 kg) 3 cu. ft. (0.08 m³)
- Gypsumite Plaster and Vermiculite 100 lbs (45.4 kg) 2 cu. ft. (0.06 m³)
- Masonry 100 lbs (45.4 kg) 3 cu. ft. (0.08 m³)
- Gypsumite Plaster and Perlite 100 lbs (45.4 kg) 2 cu. ft. (0.06 m³)
- Masonry 100 lbs (45.4 kg) 3 cu. ft. (0.08 m³)
Gypsolite® Plaster
Lightweight Basecoat Plaster

Gold Bond® Gypsolite® Plaster is a lightweight gypsum basecoat plaster mixed at the plant with correctly sized and proportioned perlite aggregate, requiring only the addition of water on the job.

BASIC USES

Gypsolite Plaster is designed for interior use in trowel application over gypsum or metal lath as described in ASTM C842.

- Gold Bond® Kal-Kote® Smooth Finish Plaster
- Gold Bond® Kal-Kote® Texture Finish Plaster
- Gold Bond® Uni-Kal® Veneer Plaster
- Gold Bond® X-KALibur® Extended Set Veneer Plaster
- Gold Bond® Super-White Gauging Plaster Quick Set
- Gold Bond® Super-White Gauging Plaster Slow Set

ADVANTAGES

- Gypsolite Plaster assures uniformity through exact proportioning and thorough mixing of graded perlite and gypsum plaster at the mill. Gypsolite provides a uniform base for the finish coat.
- Gypsolite Plaster weighs less than half as much as sanded gypsum plaster, thus reducing the dead-load on framing as well as job-site handling costs.
- With a “k” factor of 1.5, Gypsolite Plaster provides about 1-1/2 times the insulating value of sanded plaster.
- Gypsolite has excellent fire-resistive qualities and generally provides fire ratings higher than sanded plaster.

ESTIMATED COVERAGE

<table>
<thead>
<tr>
<th>Packaging</th>
<th>Approximate Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag</td>
<td>49.5 lb. (22.5 kg)</td>
</tr>
</tbody>
</table>

Gypsum Plaster Base Applications
- Approx. Coverage per Bag: 32 – 35 sq. ft. (3.0 – 3.5 m²)
- Applied Thickness: 7/16 in. (11.1 mm)

Metal Lath Applications
- Approx. Coverage per Bag: 16 – 19 sq. ft. (1.5 – 1.8 m²)
- Applied Thickness: 9/16 in. (14.3 mm)

Approx. Set Time: 2-1/2 Hours

Measured from face to lath.

Specification Reference
ASTM Designation C28, “Gypsum Plasters”

TECHNICAL DATA

<table>
<thead>
<tr>
<th>Plaster Properties</th>
<th>Mill Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength, ASTM C472</td>
<td>900 lbf / sq. in. (6,201 kPa)</td>
</tr>
<tr>
<td>Tensile Strength, ASTM C472</td>
<td>160 lbf / sq. in. (1,102 kPa)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortar Thickness / Weight</th>
<th>Mill Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8” (9.5 mm)</td>
<td>14 lbf / sq. yd. (8 kg / m²)</td>
</tr>
<tr>
<td>Tensile Strength, ASTM C472</td>
<td>160 lbf / sq. in. (1,102 kPa)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortar Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryset Mortar</td>
</tr>
<tr>
<td>Wet Mortar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approximate Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging</td>
</tr>
</tbody>
</table>

Gypsum Plaster Base Applications
- Approx. Coverage per Bag: 32 – 35 sq. ft. (3.0 – 3.5 m²)
- Applied Thickness: 7/16 in. (11.1 mm)

Metal Lath Applications
- Approx. Coverage per Bag: 16 – 19 sq. ft. (1.5 – 1.8 m²)
- Applied Thickness: 9/16 in. (14.3 mm)

Approx. Set Time: 2-1/2 Hours

* Measured from face of lath.
Super-White Gauging Plasters
Applied as a Finish Coat to Gypsum Basecoat Plaster

Gold Bond® Super-White Gauging Plaster Slow Set and Gold Bond® Super-White Gauging Plaster Quick Set are designed for interior smooth trowel application over a gypsum plaster basecoat. It is specially ground, calcined gypsum, which readily mixes with water and lime putty. Proper proportioning is essential since gauging adds strength and hardness to the finish surface by reinforcing the plastic non-setting lime against shrinkage and cracking.

Complies with ASTM C28.

BASIC USES
A finish coat of gypsum gauging plaster and finish lime, job mixed 2 parts hydrated lime to 1 part plaster by weight, is designed for interior smooth trowel application over a gypsum plaster basecoat.

Smooth finish plasters should be applied at a thickness of not more than 1/16” (1.6 mm). Texture finishes should be applied at a thickness of not more than 1/8” (3.2 mm).

ADVANTAGES
- Readily mixes with water and lime putty.
- Adds strength and hardness to the finished surface.

Super-White Moulding Plaster
Ornamental Gypsum Plaster

Gold Bond® Super-White Moulding Plaster is a very white, finely ground gypsum, primarily used for all kinds of ornamental plaster work. Because of its low expansion, excellent strength and hardness, it is especially adaptable for casting in rubber, gelatin and other types of moulds.

Complies with ASTM C59.

BASIC USES
For casting purposes, only water is added. For run-in-place ornamental work, such as cornices, the moulding plaster is used with lime putty, mixed 2 parts lime to 1 part moulding plaster by weight.

ADVANTAGES
- Low expansion with excellent strength and hardness.
- Used for all kinds of ornamental plasterwork.
- Adaptable for casting in rubber, gelatin and other types of moulds.
Basecoat Plaster Application

Two-Coat Work
Apply first coat with firm pressure to form a good bond on the gypsum plaster base or masonry base, then immediately double back (without cross-raking first coat) using material of same proportion to build proper basecoat thickness. Straighten to a true surface (without applying water) to receive the second (finish) coat.

Leave surface sufficiently rough and porous to provide suitable bond of the finish coat.

Three-Coat Work
Used for metal lath or direct masonry bases and are performed in discrete steps.

Scratch (first) coat: Apply with sufficient material and pressure to obtain good bond over solid bases or form full keys through metal lath. Provide suitable material thickness for scratching (raking) to obtain good mechanical keying of the brown coat.

Brown (second) coat: Apply after the scratch (first) coat has set hard and is still damp. Apply to give mass and surface as for double-back in two-coat work.

Finish (third) coat: Application over a partially dry basecoat is preferred. See page 10 for detailed information on finish coat procedures.
Finish Coat Plaster Application

General (Basecoat Condition)
Application over a partially dry basecoat is preferred if basecoat is thoroughly dry, wet with even application of water to a semi-dry condition. Avoid excess water. Do not apply finish to basecoats having free water on the surface.

Smooth Troweled Finishes
Scratch in tightly over the basecoat, covering the surface completely, then double back immediately with material from the same gauge, filling out to a true, even surface with total thickness of not more than 1/16”.
Allow finish to “draw” (lose moisture to basecoat and ambient air) and firm up – then trowel it well to compact and close the surface under the edge of the trowel. Dash water on the surface for lubrication and development of soft material along trowel’s edge to fill surface depressions or other blemishes.
When finish plaster setting action is underway, a second (final) water troweling can be done with strong pressure to obtain a polished surface, if desired.

Texture Finishes
Apply finish as above to a true, even surface with total thickness not more than 1/8”.
Allow finish to “draw” (lose moisture to basecoat and ambient air). Then begin floating, texturing or skip troweling to achieve desired texture. Additions of clean, graded silica may be required to achieve desired texture.

Drying
Allow conventional plaster systems to dry 30 days minimum under ambient conditions prior to final decoration. Variances in humidity or poor drying conditions may affect the drying process.

Painting Plaster
Various job conditions, such as suction differences, wet or only partially dry walls, and reactions between paint and lime, have caused unsatisfactory paint finishes, particularly on new construction.
Alkali-resistant primers specifically formulated for use over new plaster will permit decorating with oil- or latex-type paints.
Quality paint products should be used and paint manufacturer’s recommendations followed. Finished plaster should be painted or covered to conceal possible discoloration. The paint system should be suitable for use over plaster surfaces that contain lime, which as high pH of 10-13.
It is essential that plaster be sound and completely dry before painting. Conventional plaster may require 30 to 60 days to fully dry.
High build, heavy duty and special purpose coatings such as Epoxy are not recommended over veneer or job gauged lime putty finishes.
Conventional Plaster
Problems and Solutions

Plaster problems are rarely caused by a gypsum plaster product deficiency. In general, most conventional plaster construction problems can be classified into one of the following categories:

- Cracks*
- Surface defects, blemishes, stains
- Weak or soft plaster
- Bond failure
- Finish coat problems
- Working qualities and setting action
- Painting plaster
- Incorrect or improper lathing or substrate
- Dirty mixing equipment
- Environmental job conditions
- Poor or improper plastering practices and workmanship

The cause(s) of these generally are the result of:

- Conditions relating to plaster set
- Poor quality or incorrect proportioning of aggregate
- Structural movement
- Improper mixing, application or thickness of basecoat or finish

*Conventional plaster, although not considered to be a structural member, is not delicate construction and can endure considerable abuse without cracking. However, cracks can occur when excessive external forces caused by structural or component movement over which the plaster is applied are transmitted to the plaster or by extreme environmental changes.

CRACKS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CONSTRUCTION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected Vertical And Horizontal Cracks Occurring At Somewhat Regular Intervals. Usually In A Stepped Or Grid Pattern</td>
<td>Plaster applied over gypsum or metal lath.</td>
<td>1. Plaster too thin. 2. Weak plaster (too much or improper aggregate). 3. Lath improperly applied.</td>
<td>Properly install lath; use properly sized and proportioned aggregate and apply plaster to the required thickness.</td>
<td>1. Apply another coat of plaster to proper thickness. 2. Remove defective plaster work and replace with property proportioned plaster. 3. Check Lathing Specifications; remove and reapply lath properly and replaster;</td>
</tr>
<tr>
<td>Cracks Around And Over Openings Such As Doors Or Windows</td>
<td>Plaster over masonry, cement block, gypsum tile or gypsum, wood or other sheet lath.</td>
<td>1. Poor construction of lintel, door bucks improperly constructed or installed. 2. Plaster too thin. 3. Failure to use reinforcing. 4. Expansion of wood or metal framing. 5. Weak plaster, too much aggregate.</td>
<td>Follow proper construction installation practices.</td>
<td>1. Patch cracked areas. 2. Apply coat of plaster to proper thickness. 3. Remove plaster and provide expanded metal reinforcement and replaster. 4. Remove plaster, provide control joints, replaster. 5. No correction – remove and replaster.</td>
</tr>
<tr>
<td>Random Cracks In Wall Or Ceiling. Generally Running Full Length Of Wall Or Width Of Ceiling. May Adjoin Other Cracks And Are Generally Widely Spaced</td>
<td>Plaster over any substrate. Structural movement.</td>
<td>Use a properly designed and installed construction such as a suspended or floating plaster system.</td>
<td>Repair cracks. Large Cracks: Remove plaster about 6” on each side of the crack down to the substrate. Place a strip of metal lath in the cleared area, wet with water and replaster. Small Cracks: Open the crack slightly, wet and fill flush with a setting type joint compound.</td>
<td></td>
</tr>
</tbody>
</table>
CRACKS (CONTINUES)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CONSTRUCTION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracks Not Due To Any Of The Previously Mentioned Causes And Are Not The Result Of Structural Movement</td>
<td>1. Plaster over metal or gypsum lath. 2. Plaster over metal or gypsum lath on steel framing.</td>
<td>1. a. Metal lath too light. b. Metal lath not lapped or properly tied. c. Thermal shock. 2. a. Improper spacing of framing members. b. Thermal shock.</td>
<td>Follow proper construction practices.</td>
<td>1. a/b. Remove lath and plaster, apply proper weight lath and replaster. c. Patch cracks. 2. a. Remove plaster, properly space framing and replaster. b. Patch plaster.</td>
</tr>
</tbody>
</table>

SURFACE DEFECTS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CONSTRUCTION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzzy (Efflorescence) On Surface, White Or Colored, Is Water Soluble And Can Be Removed By Brushing</td>
<td>Basecoat or finish coat over masonry or concrete substrate.</td>
<td>Efflorescence – water soluble salts are deposited on the surface of the plaster as the masonry or concrete dries.</td>
<td>Fur wall away from the masonry or concrete prior to plastering.</td>
<td>Eliminate the source of moisture</td>
</tr>
<tr>
<td>Streaky Discoloration</td>
<td>Lime putty finishes gauged with gauging plaster or Keene’s cement.</td>
<td>1. Use of too much water while traveling. 2. Improperly/poorly mixed lime and gauging material. 3. Dirty tools, water, or mixing equipment. 4. Efflorescence.</td>
<td>1. Use proper amount of water while traveling. 2. Thoroughly mix the lime and gauging. 3. Use only clean tools, mixing equipment and water. 4. See prevention for Fuzzy surface.</td>
<td>1. Paint plastered surfaces with a good quality paint. 2. Paint plastered surfaces with a good quality paint. 3. Paint plastered surfaces with a good quality paint. 4. See correction for Fuzzy surface.</td>
</tr>
<tr>
<td>Streaked Finish, Joinings Showing, Dirty Areas</td>
<td>Finish plaster over any substrate.</td>
<td>1. Too much water used while traveling. 2. Use of dirty water during traveling.</td>
<td>Use only the proper amount of clean water during traveling.</td>
<td>Prime and paint surface with a good quality paint as recommended by the paint manufacturer.</td>
</tr>
<tr>
<td>Blisters On Finish Coat (Entrapped air between finish and substrate)</td>
<td>Gauged lime putty or mill mixed gypsum plaster trowel finishes.</td>
<td>1. Basecoat too green (wet). 2. Insufficient suction. 3. Too much water used while traveling. 4. Insufficient gauging. 5. Traveling before sufficient take-up.</td>
<td>1. Allow basecoat to dry sufficiently to develop proper suction. 2. Allow basecoat to dry sufficiently to develop proper suction. 3. Dash water on surface sparingly during traveling. 4. Use proper proportions of lime putty and gauging. 5. Allow plaster to take-up sufficiently before traveling.</td>
<td>Remove blistered finish and replaster.</td>
</tr>
<tr>
<td>Projections On Surface Which Fall Out Leaving Craters Or Pits. May Have Fina Cracks Radiating From The Center</td>
<td>Finish or basecoat plasters containing lime.</td>
<td>Unskilled lime or foreign matter in the plaster which hydrates and expands after application.</td>
<td>Use Type S hydrated lime or properly soak lime to insure proper hydration.</td>
<td>Remove the core of the crater or pits and patch with finish plaster or ready mix joint compound.</td>
</tr>
</tbody>
</table>
WEAK OR SOFT PLASTER

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CONSTRUCTION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft, White, Chalky Surface</td>
<td>Basecoat over any plaster base.</td>
<td>Usually occurring during dry, hot weather. Too much ventilation has removed water from the plaster before it has set. Called “dry-out”.</td>
<td>Screen openings to minimize drafts during dry, hot weather and spray the surfaces and floors with water during the setting period.</td>
<td>Spray dry out areas with water or a solution of alum (1 lb. alum per 3 gallons of water).</td>
</tr>
</tbody>
</table>
| Soft, Dark, Damp Plaster Surface | Basecoat over any substrate. | 1. DAMP WEATHER - too little ventilation during damp weather; water remaining in plaster too long after set has occurred. "Sweat-Out";
2. FREEZING WEATHER CONDITIONS – FROZEN PLASTER | 1. Maintain proper heating and ventilating prior to, during, and after plastering.
2. Maintain minimum 55°F prior to; during, and after plastering and provide adequate ventilation until plaster is dry. | 1. Dry plaster by ventilating and heating. If condition has existed for too long it cannot be corrected. Plaster must be removed and replastered.
2. Close building, heat building until plaster sets and continue heating and ventilating after set. |
| Weak, Soft Plaster, Due To Improperly Proportioned Aggregate | Gypsum basecoat over any plaster base. | 1. Too fine or poor aggregate gradation.
2. Too much aggregate. | Use only aggregate meeting ASTM specification. Properly proportion aggregate and plaster. | No correction – remove the plaster and replaster. |

BOND FAILURE OF BASECOAT

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CONSTRUCTION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
</table>
| Separation Of Basecoat From Gypsum Lath | Basecoat over gypsum lath. | 1. Too much or improper aggregate used.
2. Frozen plaster. | 1. Use only proper and ASTM-specified plaster/aggregate proportions.
2. Maintain a minimum temperature of 55°F in the building prior to, during and after application and provide adequate ventilation. | No correction – remove the plaster and replaster. |
| Separation Of Basecoat From Metal Lath | Basecoat over metal lath. | 1. Too much or improper aggregate.
2. Frozen plaster.
3. Scratch coat too thin. | 1. Use only proper and ASTM-specified plaster/ aggregate proportions.
2. Maintain a minimum temperature of 55°F in the building prior to, during and after application and provide adequate ventilation. | No correction – remove the plaster and replaster. |
| Separation Of Basecoat From Unit Masonry | Basecoat over unit masonry. | 1. Excessive suction of the masonry base.
2. Masonry base has a non-absorbent or glazed surface.
3. Efflorescence present on the masonry base. | 1. Dampen the masonry to reduce suction.
2. Roughen the masonry surface to provide a key for the plaster.
3. Eliminate the source of moisture causing the efflorescence; fur away from the masonry surface and apply lath over the furring. | No correction – remove the plaster and replaster. |
| Separation Of Gypsum Plaster From Monolithic Concrete Surface | Basecoat over monolithic concrete. | Concrete bonding agent not applied. | Apply plaster bonding agent per ASTM specification – before application of plaster. | No correction – remove the plaster and replaster. |
| Brown Coat plaster Separating From Scratch Coat Plaster | Three-coat plaster work. | 1. Weak scratch coat plaster.
2. Failure to provide adequate mechanical keying to scratch coat. | 1. See preventive actions under weak, soft plaster.
2. Do not over trowel scratch coat; rake or broom scratch coat to provide mechanical keying. | No correction – remove the plaster and replaster. |
Finish Coat Problems

<table>
<thead>
<tr>
<th>Condition</th>
<th>Construction</th>
<th>Probable Cause</th>
<th>Preventative Action</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauged Lime Putty Finish Coat Separating From Brown Coat Plaster</td>
<td>Gauged lime finish over basecoat.</td>
<td>1. Brown coat too weak, too smooth, too wet (too little suction) or too dry (too much suction). 2. Finish applied improperly. 3. Incomplete hydration of finish lime.</td>
<td>1. Make sure brown coat is properly prepared to receive finish. 2. Apply finish taking precautions to follow recommended practices. 3. Use only Type S hydrated lime and mix according to recommendations.</td>
<td>1. No correction – remove finish coat, correct condition of brown coat and replaster. 2. No correction – remove finish coat and replaster. 3. No correction – remove finish coat and replaster.</td>
</tr>
<tr>
<td>Gypsum Sand Float Or Trowel Finish Separating From Brown Coat</td>
<td>Gauged sand finish over basecoat.</td>
<td>1. Brown coat too weak. 2. Brown coat too dry. 3. Brown coat too smooth.</td>
<td>Make certain that the brown coat is sound, not overly dry and has adequate roughness to provide keying to the finish.</td>
<td>1. No correction – remove finish, correct brown coat condition and replaster. 2. No correction – remove finish, spray brown coat with water to reduce suction and replaster. 3. No correction – remove finish, roughen brown coat to provide adequate keying and replaster.</td>
</tr>
<tr>
<td>Finish Coat Weak, Soft</td>
<td>Gauged finish over basecoat.</td>
<td>1. Insufficient gauging plaster used. 2. Retempered finish coat. 3. Inadequate or insufficient traveling of the finish.</td>
<td>1. Use proper proportions of gauging to lime putty. 2. Do not retemper plaster that has started to set. 3. Lime putty finishes must be troweled sufficiently to densify the finish and develop proper strength.</td>
<td>No correction – remove the plaster and replaster.</td>
</tr>
<tr>
<td>Lime/Gauging Finish – Tough, Short Working Or Lumpy Lime Putty</td>
<td>Gauged lime finish over basecoat.</td>
<td>1. Old material, warehoused too long or improperly. 2. Lime improperly mixed or soaked. 3. Low temperatures.</td>
<td>1. Use only fresh lime which has been properly warehoused. 2. Mix and/or soak lime according to supplier’s recommendations. 3. Maintain proper temperature above 85°F prior to, during and after plastering.</td>
<td>There is no correction for these occurrences.</td>
</tr>
<tr>
<td>Set Not Uniform</td>
<td>Gauged finish over basecoat.</td>
<td>1. Improper gauging plaster used. 2. Temperature conditions too hot or cold.</td>
<td>1. Use either Quick or Slow set gauging in the proper proportions. 2. Maintain proper temperature above 85°F prior to, during and after plastering.</td>
<td>There is no correction for these occurrences.</td>
</tr>
<tr>
<td>Finish Coat Works Hard</td>
<td>Gauged finish over basecoat.</td>
<td>1. Basecoat plaster too dry. 2. Finish coat mixed too stiff.</td>
<td>Follow good plastering practices.</td>
<td>1. Apply finish coat over green base or spray the dry base lightly with water before finishing. 2. Use correct amount of water when mixing finish coat.</td>
</tr>
</tbody>
</table>

Andrew Jackson’s Hermitage
Nashville, Tennessee
WORKING QUALITIES

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CONSTRUCTION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
</table>
| Slow Plaster Sets — Not Set After Five Or Six Hours | Basecoat plaster over any substrate. | 1. Retarding action of aggregate.
2. Retarding action of water being used.
3. Old plaster set lengthened due to aging. | Use only proper plaster aggregate, potable water and fresh plaster. | 1. Obtain good sand and water or accelerate mixes.
2. Obtain good sand and water or accelerate mixes.
3. Replace with fresh plaster or accelerate mixes. |
| Plaster Sets Too Quickly To Be Darnied Or Sets In Mortar Box Or On The Board | Basecoat plaster over any substrate. | 1. Tools and mixing equipment not free of set plaster.
2. Dirty or contaminated sand or water.
3. Plaster too old or became wet in storage or on the job site.
4. Plaster being mixed too long. | Keep tools and mixing equipment clean, use only potable water and clean sand for mixing. Use fresh plaster which has been stored properly. Follow good plastering practices. | 1. Judiciously use retarder to slow setting, clean equipment and obtain clean water and sand.
2. Judiciously use retarder to slow setting, clean equipment and obtain clean water and sand.
3. Judiciously use retarder to slow setting, clean equipment and obtain clean water and sand.
4. Reduce plaster mixing time. |
| Plaster Works Hard Or Short, Will Not Spread, Will Not Carry Proper Amount Of Aggregate | Basecoat plaster over any substrate. | 1. Plaster is old or stored under poor conditions.
2. Too much or improper aggregate being used. | Use only fresh, properly stored plaster. | 1. Blend equal parts of fresh and old plaster.
2. Use proper aggregate at proper proportions. |
Veneer Plaster

High resistance to cracking, abrasion and impact.

Veneer plaster systems consist of a 4” wide gypsum plastering base with a special, highly absorptive paper surface that is covered with thinly troweled, special purpose plasters. Two basic types of veneer plaster are available: Uni-Kal® and X-KALibur®, which are one-coat plaster system products; and Kal-Kote®, a two-coat plaster system. The gypsum plaster base, Kal-Kore®, is erected in the same manner for both systems. Both veneer plaster systems can be specified for virtually all types of partition and ceiling constructions including wood or steel framing or furring and masonry. For both residential and commercial buildings, either type of veneer plaster system produces a wall more nail-pop resistant than drywall.

FEATURES/BENEFITS
The advantages of veneer plaster over other commonly used partition and ceiling systems include:

- Rapid installation which reduces overall construction time.
- Appearance and surface of conventional plaster at lower cost.
- High resistance to cracking, nail-popping, impact and abrasion failure.
- Mill-mixed plaster components help assure uniform installation performance and finished job quality.

ONE-COAT SYSTEMS
(Uni-Kal®/X-KALibur®)

- Requires only one plastering material on the job.
- Slightly lower in-place cost than two-coat system.
- Can be applied directly to concrete block.
- X-KALibur is formulated to have extended set characteristics beyond the traditional Uni-Kal setting time.

TWO-COAT SYSTEMS
(Kal-Kote®)

- Kal-Kote system may be used for plaster-embedded electric radiant heating cable systems.
- Kal-Kote Basecoat is a high strength basecoat plaster.
- Greater crack resistance than one-coat systems.
- Can be applied directly to concrete block.

LIMITATIONS
- Not recommended for exterior use or where subject to weathering, direct water contact or temperature exceeding 125°F (52°C) for extended periods of time.
- When Uni-Kal/X-KALibur will be applied, do not install Kal-Kore too far in advance of plastering since Uni-Kal/X-KALibur bond can be adversely affected if face of Kal-Kore has become faded from light. If Kal-Kore has been faded, apply Kal-Kote Base Plaster or a plaster bonding agent to obtain good bond.
- Veneer plasters are designed for trowel application and are not suitable for conveyance or application by conventional plastering machines.
- Compared to conventional plasters, veneer plaster systems are more subject to beading (ridging) and cracking at the joints under rapid drying conditions such as those caused by low humidity, high temperature and/or high draft exposure.
- Veneer plaster systems provide a base over which paints or other finishes should be applied.
- Do not use a polyethylene vapor retarder unless structure is ventilated adequately during application of veneer plasters.
- A bonding agent must be applied to monolithic concrete prior to application of veneer plaster systems.
- Do not sand finished plaster.

PRODUCT SHELF LIFE

<table>
<thead>
<tr>
<th>Product</th>
<th>Storage/Shelf Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-KALibur</td>
<td>12 months</td>
</tr>
<tr>
<td>Kal-Kote Basecoat</td>
<td>12 months</td>
</tr>
<tr>
<td>Uni-Kal</td>
<td>12 months</td>
</tr>
<tr>
<td>Kal-Kote Smooth</td>
<td>12 months</td>
</tr>
<tr>
<td>Kal-Kote Texture</td>
<td>12 months</td>
</tr>
</tbody>
</table>
Gold Bond® Kal-Kore® Plaster Base is a tapered-edge gypsum plaster base with 100% recycled absorptive face paper designed to permit rapid trowel application and strong bond of Kal-Kote® Basecoat Plaster, Uni-Kal® and X-KALibur® veneer plasters. Long edges of the panels are tapered to allow joints to be reinforced and concealed with mesh tape and Kal-Kote® Basecoat Plaster, Uni-Kal® or X-KALibur® veneer plasters. Use Kal-Kore® Fire-Shield® Plaster Base in specific fire-rated assemblies. For speed of installation, GridMarX® guide marks are printed on the paper surface.

ADVANTAGES
- Provides a smooth and durable base for plaster over which paint may be applied.
- Can be used on walls and ceilings. Can install 5/8 in. Kal-Kore on ceilings with 24 in. (610 mm) o.c. framing at right angles to framing members.
- Fire-resistant material with a gypsum core will not support combustion or transmit temperatures greatly in excess of 212°F (100°C) until completely calcined, a slow process.
- Expansion and contraction under normal atmospheric changes are negligible.
- Achieves UL GREENGUARD Gold Certification for low chemical emissions into indoor air during product usage. For more information visit: ul.com/gg.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Size</th>
<th>Thickness</th>
<th>Edge</th>
<th>Pcs./Bdl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4" x 8" (1,219 mm x 2,438 mm)</td>
<td>3/8" (9.5 mm)</td>
<td>Tapered</td>
<td>2</td>
</tr>
<tr>
<td>4" x 8' 1/2 (1,219 mm x 2,438 mm, 3,657 mm)</td>
<td>1/2" (12.7 mm)</td>
<td>Tapered</td>
<td>2</td>
</tr>
<tr>
<td>4" x 8' 1/2 (1,219 mm x 2,438 mm, 3,657 mm)</td>
<td>5/8" (15.9 mm)</td>
<td>FSK & FSK-C</td>
<td>2</td>
</tr>
</tbody>
</table>

FASTENERS FOR ATTACHING KAL-KORE

<table>
<thead>
<tr>
<th>Framing</th>
<th>Kal-Kore</th>
<th>Fastener</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw</td>
<td>1/2" (12.7 mm)</td>
<td>Type 5 Screws</td>
</tr>
<tr>
<td>Studs & Furring</td>
<td>5/8" (15.9 mm)</td>
<td>1 1/2" (32 mm)</td>
</tr>
<tr>
<td>Wood Framing</td>
<td>3/8" (9.5 mm)</td>
<td>1 1/4" (31.8 mm)</td>
</tr>
<tr>
<td></td>
<td>1/2" (12.7 mm)</td>
<td>1 1/4" (31.8 mm)</td>
</tr>
<tr>
<td></td>
<td>5/8" (15.9 mm)</td>
<td>1 3/8" (34.9 mm)</td>
</tr>
</tbody>
</table>

Alternate. On walls or ceilings, 1-1/4" (31.8 mm) Type W screws are spaced 12" (305 mm) o.c.

SPACING OR FRAMING OR FURRING

<table>
<thead>
<tr>
<th>Type of Framing or Furring</th>
<th>Kal-Kore Thickness</th>
<th>Maximum Spacing on center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>3/8" (9.5 mm)</td>
<td>16" (406 mm)*</td>
</tr>
<tr>
<td></td>
<td>1/2" (12.7 mm)</td>
<td>24" (610 mm)**</td>
</tr>
<tr>
<td></td>
<td>5/8" (15.9 mm)</td>
<td>24" (610 mm)</td>
</tr>
<tr>
<td>Metal</td>
<td>3/8" (9.5 mm)</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>1/2" (12.7 mm)</td>
<td>16" (406 mm)</td>
</tr>
<tr>
<td></td>
<td>5/8" (15.9 mm)</td>
<td>24" (610 mm)</td>
</tr>
</tbody>
</table>

N.A. – Not Approved
* For walls only, bound edge must be at right angles to framing.
** Bound edge must be at right angles to joists 16" (406 mm) maximum spacing for bound edge of Kal-Kore parallel to joists.
*** On ceilings, screw furring channel 7/8" (22.2 mm) depth shall span 48" (1219 mm) maximum. Resilient furring channel 1/2" (12.7 mm) depth shall span 24" (610 mm) maximum. For greater spans, 1 1/2" (41.3 mm) Screw Studs may be used as Ceiling Furring Channels provided they are secured with flanges up (open side up) at spans not to exceed 6' (1829 mm) at 12" (305 mm) spacing, 5 5/6" (1476 mm) at 16" (406 mm) spacing and 5 15/24" (1524 mm) at 24" (610 mm) spacing.

Note: Veneer plaster systems are to be installed with a maximum deflection of L/240.
Gold Bond® Kal-Kote® Basecoat Plaster is specially-designed high-strength basecoat plaster for application 1/16” minimum thickness over Kal-Kore® Plaster Base, masonry, or monolithic concrete that has been treated with a bonding agent. The strength of Kal-Kote Basecoat Plaster is substantially greater than that exhibited by typical sanded basecoat plaster.

Kal-Kote Basecoat is a high strength basecoat plaster for application over Kal-Kore. This system offers four finish options: Kal-Kote® Smooth, Kal-Kote® Texture, Uni-Kal® and X-KALibur®.

Complies with ASTM C587.

ADVANTAGES

- Rapid installation reduces overall construction time.
- Appearance and surface of conventional plaster at lower cost than regular plastering.
- High resistance to cracking, nail-popping, impact and abrasion failure.
- Mill-mixed plaster components help assure uniform installation performance and finished job quality.
- May be used for plaster-embedded electric radiant heating cable systems.

FIRE RESISTANCE

Kal-Kote Basecoat & Finishes: Fire ratings equivalent to those of drywall systems can be obtained by applying the corresponding Kal-Kore type and thickness over the same framing member size and spacing, with the same fasteners and 1/8” of Kal-Kote plasters.

Bag Weight
49.5 lbs. (22.5 kg)

Water Ratio
6-8 qts. (5.7-7.6 L) per bag

Coverage
Approx. 93-106 sq. ft. (8.6-9.8 m²) per bag
Applied thickness 1/16”

One Coat to Level Over Masonry
50-63 sq. ft.
Kal-Kote® Smooth Finish Plaster
Durable Finish for Two-Coat Plaster Systems

Kal-Kote® Smooth Finish Plaster is designed to provide a white smooth trowel finish using conventional plastering techniques. Apply not exceeding 1/16” over Kal-Kote® Basecoat Plaster.

Requires the addition of water only. It may also be used as a finish for conventional basecoat plasters. Small amounts of commercial retarder may be cautiously used to slow the setting time when used over conventional basecoat plasters.

Kal-Kote Smooth is a veneer finish coat that bonds directly to Kal-Kote Basecoat.

Complies with ASTM C587.

ADVANTAGES
- Rapid installation reduces overall construction time.
- Appearance and surface of conventional plaster at lower cost than regular plastering.
- High resistance to cracking, nail-popping, impact, and abrasion failure.
- Mill-mixed plaster components help assure uniform installation performance and finished job quality.
- Kal-Kote System may be used for plaster-embedded electric radiant heating cable systems.
- Greater crack resistance than one-coat systems.

Bag Weight
49.5 lbs. (22.5 kg)

Water Ratio
18-20 qts. (17-18.9 L) per bag

Coverage
Approx. 145-160 sq. ft. (13-15 m²) per bag
Applied thickness 1/16”
Kal-Kote® Texture Finish Plaster

Textured Finish for Two-Coat Plaster Systems

Gold Bond® Kal-Kote® Texture Finish Plaster is designed to provide a variety of decorative surfaces using common plastering techniques. Applied as a 1/16" finish coat over Kal-Kote Basecoat Plaster. It requires the addition of water only. It can also be used as a finish coat over conventional basecoat plaster. Complies with ASTM C587.

ADVANTAGES
- Rapid installation reduces overall construction time.
- Decorative texture finish.
- Uniform installation performance and finished job quality.
- High resistance to cracking, nail-popping, impact, and abrasion failure.
- Mill-mixed plaster components help assure uniform installation performance and finished job quality.
- Kal-Kote system may be used for plaster-embedded electric radiant heating cable systems.

Bag Weight
49.5 lbs. (22.5 kg)

Water Ratio
11-12 qts. (10.4-11.4 L) per bag

Coverage
Approx. 145-160 sq. ft. (13-15 m²) per bag
Applied thickness 1/16"
Uni-Kal® Veneer Plaster

One-Coat Smooth Veneer Plaster

Gold Bond® Uni-Kal® Veneer Plaster is a mill-mixed veneer finish plaster for smooth and textured troweled applications. It consists of specially ground, calcined gypsum, requiring the addition of water. Texturing grade silica sand may be added for textured finish.

Use as a one-coat application over gypsum plaster base. A finish coat of Uni-Kal® Veneer Plaster may be used for interior smooth and textured trowel application over a gypsum plaster basecoat or as a one-coat application over gypsum plaster base.

Complies with ASTM C587.

ADVANTAGES

- Appearance and surface of conventional plaster at a lower cost than regular plastering.
- High resistance to cracking, nail-popping, impact, and abrasion failure.
- Requires only one plastering material on the job.
- Mill-mixed plaster components help assure uniform installation performance and finished job quality.
- Rapid installation which reduces overall construction time.

FIRE RESISTANCE

Fire ratings equivalent to those of drywall systems can be obtained by applying the corresponding Kal-Kore type and thickness over the same framing member size and spacing with the same fasteners and 3/32” of Uni-Kal.

Bag Weight
49.5 lbs. (22.5 kg)

Water Ratio
13-15 qts. (12.3-14.2 L) per bag

Coverage
Approx. 135-150 sq. ft. (12-14 m²) per bag
Applied thickness 3/32”

One Coat to Level Over Masonry
70 - 80 sq. ft.
X-KALibur® Extended Set Veneer Plaster

One-Coat Smooth Veneer Plaster

Gold Bond® X-KALibur® Extended Set Veneer Plaster is a mill-mixed veneer finish plaster for smooth troweled applications where an extended setting time is desirable. It consists of specially ground, calcined gypsum, requiring the addition of water. Texturing grade silica sand may be added for textured finish.

Use as a one-coat application over gypsum plaster base. A finish coat of X-KALibur may be used for interior smooth and textured trowel application over a gypsum plaster basecoat or as a one-coat application over gypsum plaster base.

Complies with ASTM C587.

ADVANTAGES

- Formulated to have extended set characteristics beyond traditional setting times.
- Provides a durable, abrasion-resistant surface for further decoration.
- Mill-mixed plaster components help assure uniform installation performance and finished job quality.
- High resistance to cracking, nail-popping, impact and abrasion failure.

FIRE RESISTANCE

Fire ratings equivalent to those of drywall systems can be obtained by applying the corresponding Kal-Kore type and thickness over the same framing member size and spacing with the same fasteners and 3/32” of X-KALibur.

Bag Weight
49.5 lbs. (22.5 kg)

Water Ratio
13-15 qts. (12.3-14.2 L) per bag

Coverage
Approx. 135-150 sq. ft. (12-14 m²) per bag
Applied thickness 3/32”

Gold Bond conventional plaster products were used in the restoration of the Cathedral of the Incarnation in Nashville, Tennessee.
Recommendations

Veneer Plaster for Metal and Wood Framing

1. **Wood Studs or Joists.** Wood members shall meet the minimum requirements of local building codes. Framing shall not exceed spacing shown on page 17. Most partition fire ratings require that Kal-Kore be applied vertically. When such ratings are not required, horizontal application may be used to minimize joints. For ceilings, application at right angles to framing is preferred.

2. **Metal Studs.** Align floor and ceiling tracks to assure plumb partition. Secure track with appropriate fasteners at a maximum of 24" o.c. Position studs in track on specified centers by rotating into place for a friction fit. Secure studs located adjacent to wall and window frames, partition intersections and corners by self-drilling sheet metal screws through both flanges of studs and tracks or by use of screw stud clinching tool. Apply Kal-Kore vertically for most fire ratings. When ratings are not required, horizontal application may be used to minimize joints.

3. **Masonry Wall Furring with Screw Furring Channel.** Attach furring channel vertically spaced not to exceed spacing shown on page 17. Fasten each channel with concrete slab nails or appropriate fasteners through channel flanges into the masonry or concrete. Fasteners shall be spaced on alternate flanges not over 24" o.c. Apply Kal-Kore vertically or horizontally in maximum lengths to minimize end joints.

4. **Furred Ceilings with Bar Joists.** Attach regular furring channel 16" o.c. to bar joists spaced up to 4" o.c. Wire tie Furring Channel to joists or use 1/1-2" Drywall Furring Channel Clip for 1-1/2" carrying channel. Apply Kal-Kore with paper bound edges at right angles to the furring channel.

Kal-Kore Application

Note: Application shall conform to ASTM C644.

1. Cut and position Kal-Kore accurately. Bring all joint edges together but do not force into place. Position all end joints over framing members. To avoid ridging, minimize gaps between adjacent panels.

2. Minimize the number of end joints by using maximum practical lengths with proper positioning.

3. Stagger joints so that they occur on different framing members and will not be directly opposite one another on partitions. Avoid joining Kal-Kore at corners of doors, window frames, and other openings, unless control joints are used.

4. Fasten Kal-Kore to framing members with face out, using the proper type and spacing of fasteners shown under types of fasteners.

5. Draw Kal-Kore tight to framing. Drive fasteners straight and dimple the surface without breaking the paper face.

Veneer Cornerbead Application

Install veneer cornerbead using appropriate fasteners spaced 12" apart.

Control Joint Application

Install control joints at 30’ max. spacing on walls and 50’ max. spacing in either direction on ceilings with perimeter relief, ceilings without perimeter relief control joint space 30’ max. Apply the control joint with staples spaced 6” along each side of the flanges.

Treatment of Kal-Kore Joints

Pre-treat all joints and fasteners in Kal-Kote and Uni-Kal Plaster Systems with Kal-Kote Base Plaster, Uni-Kal, X-KALLibur or setting compound.

Low humidity, high temperatures and rapidly circulating air can cause cracking of plaster and joint beading when Kal-Kore is applied to metal framing. To minimize this during these conditions, joints may be pre-treated using paper tape. Three acceptable methods of treating Kal-Kore joints are:

Drywall Paper Tape Treatment Method

1. Trowel Kal-Kote Basecoat Plaster, Uni-Kal or X-KALLibur over joint line filling the channel formed by the tapered edges of the Kal-Kore board in an even fashion.

2. Center drywall paper tape over the joint line and embed the tape into the soft plaster using a trowel and level the joint. Tape the full length of the joint.

3. Allow the treated joints to set prior to general plaster application.

Setting Compound and Paper Tape Treatment Method

1. Mix setting compound per instructions on package. Do not contaminate the compound with other materials, dirty water or previous mixes. Do not retemper.

2. Apply the setting compound to the joint by hand or machine tool. The drywall paper tape must be centered over the joint line and embedded into the soft compound. Do not overtrowel to a slick surface. Leave the surface rough to provide mechanical keying of the plaster.

3. Allow the treated joints to set and dry prior to general plastering.

Kal-Mesh® Veneer Plaster Tape Treatment Method

Do not use self-adhering mesh.

1. Center and secure Kal-Mesh over all joints and interior angles with 1/4" or 5/16" staples.

2. Position staples a maximum of 24" apart as follows:

 A. Joints: at alternate edges for the run from end to end and directly opposite one another at either end.

 B. Angles: along ceiling edge only for wall-to-ceiling angles. Along one edge for wall-to-wall angles.

3. After the first staples are placed at the end of a joint or angle, pull unaltered Kal-Mesh as stapling proceeds to assure that it will lie flat against the Kal-Kore.

4. Pre-treat all joints and Kal-beads with Kal-Kote, Uni-Kal or X-KALLibur Plaster. Tightly trowel over joint line in both directions to prevent voids, feathering to a maximum width of about 6”.

5. Allow the treated joints to set prior to general plaster application.
Plastering

Note: Application shall conform to ASTM C843.

The same general job conditions used in good conventional plastering practice should be maintained. However, because veneer plaster coats are thin, particular action must be taken to guard against dryouts (primarily avoiding direct exposure to concentrated sources of heat and drafts.)

Special attention should also be given to temperature conditions under which the system is installed. Both “in-place” and application performance of individual veneer system components will be greatly enhanced if all construction areas and materials are at a suitable temperature equilibrium before, during and after installations.

During cold weather, maintain a temperature 55°F (13°C) to 70°F (21°C) before, during and after installation of all system components until building is occupied.

Mixing Equipment: Mixing should be done with a high-speed mechanical mixer. A paddle-type agitator fitted to a 500–600 RPM heavy duty, 1/2” electric drill and a clean, smooth-sided drum of convenient size are recommended for rapid, efficient mixing of all Kal-Kote plaster types.

Procedure

1. Put all but 1 to 2 quarts of the proper water volume in a suitable mixing drum.

Note: Starting with an insufficient amount of mixing water will seriously degrade mixing and application performance.

2. Add plaster and allow to soak for about 1 minute or add plaster as mixer is turning, then mix until uniformly wetted.

3. Add remaining water and mix sufficiently to obtain desired lump free material fluidity.

 A. Mixing periods greater than 5 minutes will not be required if proper equipment and procedure are used.

 B. Mix no more than two bags per batch to avoid mixing too far in advance of application.

 C. Caution is advised against mixing more than two successive batches without thorough equipment cleanup to avoid undue set acceleration.

 D. Avoid the practice of mixing partial bags since this leads to difficulty in maintaining uniform material qualities.

Job Setting Adjustment

1. Basecoat and Finish Plasters: Small amounts of commercial retarder or commercial gypsum type accelerator may be cautiously used to adjust setting time when extreme conditions demand. When commercial retarder or accelerator is used, add to mixing water directly, or in previously prepared water solution form to obtain the most uniform effect.

2. Never use gauging or moulding plasters in place of commercial accelerator since they can adversely affect working qualities.

Kal-Kote Application Over Kal-Kore

Basecoat Over Kal-Kore

1. Tightly scratch material into previously treated joints and cornerbeads, then immediately scratch-in tightly over the wall and/or ceiling area.

2. Double back over the area just troweled with material from the same batch bringing total thickness up to 1/16” minimum.

3. When plaster has “taken up,” eliminate excessive trowel marks and fill all surface voids and imperfections to obtain a reasonably uniform surface. Do not over-trowel to a slick surface. Roughen the unset basecoat plaster surface with a serrated darby or lightly wire rake to provide mechanical keying for the finish plaster when necessary.

Smooth Finish Over Basecoat

1. Apply only over properly prepared Kal-Kote Basecoat. Scratch-in tightly, then double back with material from the same batch immediately to create a uniform coat not exceeding 1/16” in average thickness.

2. Remove trowel marks, “cat faces,” and other major surface imperfections by “drawing-up” or “laying down” the surface with light trowel pressure when plaster has stiffened. Use water sparingly if needed, but do not over-trowel or over-water because this aggravates any normal tendency for blistering when working over low suction bases. Such blistering will be eliminated by the final water-troweling operations.

3. Water-trowel to densify and polish the surface to the desired degree when plaster has set, eliminating any blistering if present. Never use a felt “blister brush” as a substitute for water troweling.

4. Uni-Kal and X-KALibur plaster may be substituted for Kal-Kote Smooth Finish.

Texture Finish Over Basecoat

1. Apply only over properly prepared Kal-Kote Basecoat. Scratch-in tightly, then double back with material from the same batch immediately to create a uniform coat not exceeding 1/16” (1.6 mm) in average thickness.

2. When plaster has stiffened, float its surface to the desired finish. Do not float the surface of plaster, which has already set. For texturing with Uni-Kal and X-KALibur, add up to equal parts of clean, graded silica sand.
Uni-Kal or X-KALibur Application over Kal-Kore

1. Tightly scratch material into previously treated joints and cornerbeads, then immediately scratch-in tightly over the wall and/or ceiling area.

2. Double back over the area just troweled with material from the same batch bringing total thickness up to 3/32” maximum.

3. Begin finish troweling at time of initial set, using water sparingly. Final troweling must be accomplished before complete set takes place, as evidenced by darkening of the surface.

Note: Uni-Kal or X-KALibur may be applied to produce a textured finish.

A. When Uni-Kal or X-KALibur is mixed, add up to but not exceeding 50 lbs. of silica sand, texturing grade, per 50 lb. bag of plaster.

B. The sanded Uni-Kal or X-KALibur mix should be scratched-in tightly over the plastering base. Immediately double back over the area just troweled with material from the same batch.

C. When plaster is well taken up, float to the desired texture finish.

Veneer Plasters Direct to Bond-Coated Monolithic Concrete

Description

The Kal-Kote system, consisting of a basecoat plaster and a finish coat plaster. Uni-Kal or X-KALibur may be applied directly to monolithic concrete treated with a bonding agent.

Limitations

1. Surface to be plastered shall be treated with a bonding agent applied according to manufacturer’s directions. The performance of this system is the sole responsibility of the bonding agent manufacturer.

2. Concrete should be aged at least one month prior to plastering.

3. Kal-Kote Smooth or Texture Finishes are not designed for direct application to concrete, but must first have Kal-Kote Base Plaster applied to fill and level surface.

4. Do not apply system to the interior side of exterior walls below grade. To use above grade these walls shall be kept dry and shall have been properly waterproofed on the exterior side to prevent water penetration.

Painting Plaster

High build, heavy duty and special purpose coatings such as Epoxy are not recommended over veneer or job gauged lime putty finishes.

In all cases, the paint manufacturer should be consulted and approve paint system suitability for use with gypsum/lime finish plaster.

Kal-Kote Base Application Over Bonding Agent

1. First straighten any major surface irregularities, such as holes, ridges, wavy sections, etc. Scratch plaster in tightly by trowel and fill out to any adjacent level area.

2. After the straightening material has set, trowel in a tight scratch coat over the entire area to be plastered; then immediately double back with material from the same batch to minimum thickness of 1/16” or as required to achieve a level surface. Use a rod or feather edge if needed.

3. When plaster has “taken up”, eliminate excessive trowel marks and fill all surface voids and imperfections to obtain a reasonably uniform surface. Do not trowel to a slick surface. Roughen the unset basecoat plaster surface with a serrated carver or lightly wire rake to provide mechanical keying for the finish plaster when necessary.

Smooth or Textured Finishes

Apply finishes to the Kal-Kote plaster as outlined under the regular Kal-Kote system as described on page 25.

Uni-Kal or X-KALibur Application over Bonding Agent

1. First straighten any major surface irregularities such as holes, ridges, wavy sections, etc. Scratch plaster in tightly by trowel and fill out to any adjacent level area.

2. Allow the straightening material to set.

3. Tightly scratch material in over the wall and/or ceiling area. This application should be about 1/16” thick. Double back over the area just troweled with material from the same batch bringing total thickness up to 3/32” minimum.

4. Begin finish troweling at time of initial set, using water sparingly. Final troweling must be accomplished before complete set takes place, as evidenced by darkening of the surface.
Veneer Plasters Direct to Unit Masonry

Description
The Kal-Kote system, consisting of a basecoat plaster and a finish coat plaster, Uni-Kal or X-KALibur, and the one-coat system, may be applied direct to masonry surfaces providing the following recommendations are followed.

Recommendations
1. Surface must be free from dirt, grease, oil, mold, parting agents, or any material which will prevent plaster adhesion.
2. When erecting masonry, strike joints flush. If masonry has recessed joints, fill joints flush to masonry surface with basecoat plaster, Uni-Kal or X-KALibur and allow to set.

Exterior Corners
Install corner bead with adhesive at least 4 and preferably 16 hours before plastering. Apply a continuous bead of adhesive approximately 1/4"x 1/4" along the inside of both cornerbead flanges. Press the bead firmly over the corner so that adhesive is in continuous contact with masonry surface. Align bead and allow to stand undisturbed at least 4 hours.

Kal-Kote Application
Note: Application shall conform to ASTM C 843.
Proceed with the full field of the wall by scratching-in tightly, then double back immediately with material from the same batch to a minimum thickness of 1/16" over the block surface, or as required to level. Kal-Kote finishes should be kept as thin as possible and applied as described on page 25.

Uni-Kal or X-KALibur Application
Caution:
Since Uni-Kal or X-KALibur is a one-coat material system, exercise care in leveling the wall to compensate for the uneven suction.
Proceed with full field of the wall by scratching-in tightly, then double back immediately with same batch of material to a minimum thickness of 3/32" over the block surface.
Veneer Plaster Problems and Solutions

Veneer plaster problems are generally related to job conditions or abuses and marginal or improper plastering techniques or practices and infrequently to a product quality deficiency.

The prime job conditions initiating problems are:

- Improper material storage and handling.
- Poor or improper plastering practices and techniques.
- Adverse or extreme environmental conditions.
- Improper or deficient substrate or accepting plasters.
- Gypsum base application deficiencies.
- Structural and framing irregularities and deficiencies.
- Fastening deficiencies.
- Structural movement.

Some of the problems associated with veneer plaster construction have the same cause – prevention – correction characteristics as drywall. These main common conditions are:

Attention to good plastering practices and procedures will minimize or eliminate job site problems and call-backs.

IN-PLACE CONDITIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Cracking</td>
<td>1. Wrong type of reinforcing mesh tape was used. 2. No reinforcing mesh was used, or improperly positioned over joint. 3. Joint not pretreated prior to general plastering. 4. Rapid drying conditions. 5. Expansion/contraction. 6. Thermal shock. 7. Structural movement.</td>
<td>1. Use proper type of mesh and recommended joint installation procedures. DO NOT USE SELFSTICK (PRESSURE SENSITIVE) MESH. 2. Use proper type of mesh and recommended joint installation procedures. DO NOT USE SELFSTICK (PRESSURE SENSITIVE) MESH. 3. Use proper type of mesh and recommended joint installation procedures. DO NOT USE SELFSTICK (PRESSURE SENSITIVE) MESH. 4. Avoid hot, low humidity air, high draft exposure. 5. Install control joints as required. 6. Avoid extreme and rapid temperature differentials (thermal shock). 7. Avoid jointing plaster base at corners of openings, stagger joints on opposite side of partition.</td>
<td>Large Cracks: Scrub crack and apply drywall tape and setting type joint compound. Small Cracks: Fill and feather out area with ready mixed joint compound.</td>
</tr>
<tr>
<td>Random Or Map Cracking</td>
<td>Concentrated stresses caused by differential shrinkage or expansion between plaster and substrate or between individual plaster coats – thermal shock.</td>
<td>Maintain minimum 55°F [13°C] conditions prior to, during and after plastering.</td>
<td>Fill and feather area with ready mixed joint compound.</td>
</tr>
<tr>
<td>Mud Cracking (Craze, Shrinkage, Alligator)</td>
<td>Rapid drying or too thin plaster application.</td>
<td>Avoid rapid drying conditions, apply plaster at recommended thickness.</td>
<td>Apply ready mixed joint compound.</td>
</tr>
<tr>
<td>Dry-out</td>
<td>1. Rapid drying conditions. 2. Thin plaster application. 3. Excessive job addition or retarder.</td>
<td>1. Avoid rapid drying conditions. 2. Apply plaster at recommended thickness. 3. Avoid job additions of retarder.</td>
<td>General or large area “dry-outs” – remove plaster, vacuum or wipe down surface, apply bonding agent and replaster. Small areas – spray surface with water or alum solution to set plaster. Repair area with ready mixed joint compound for an acceptable surface.</td>
</tr>
<tr>
<td>Nail Pops</td>
<td>1. Nail or screw heads puncturing face paper. 2. Nails or screws not securely driven, loose or improper type. 3. Framing members out of alignment or lumber shrinkage. 4. Plaster base not applied tight against framing members.</td>
<td>Follow recommended veneer plaster base application procedures.</td>
<td>Remove plaster around fastener and seat it properly and drive an additional fastener about 1-1/2” away from the popped fastener. Patch with plaster or ready mixed joint compound.</td>
</tr>
</tbody>
</table>
IN-PLACE CONDITIONS (CONT.)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
</table>
| Joint Ridging Or Beading | 1. Large gaps between adjacent plaster base boards.
2. Improper/insufficient number/location of fasteners.
3. Gypsum base board edges damaged.
4. Wrong type or no reinforcing mesh used.
5. Joints not pre-treated prior to general plastering.
6. Rapid drying conditions. | 1. Apply undamaged plaster base board according to recommended procedures using proper fastening.
2. Apply undamaged plaster base board according to recommended procedures using proper fastening.
3. Apply undamaged plaster base board according to recommended procedures using proper fastening.
4. Use recommended reinforcing mesh or paper tape and pretreat joints prior to general plastering.
5. Use recommended reinforcing mesh or paper tape and pretreat joints prior to general plastering.
6. Avoid rapid drying conditions. | Sand the ridge or bead and apply ready mixed compound and feather out areas. |
| Rusting/Staining Of Finish | Use of improper fasteners or metal trim. | Use only recommended fasteners and trim. | Prime affected area with a primer/sealer and redecorate. |
| Photographing Or Ghosting Of Joint Line | 1. Differential in base plaster suction between joint and field.
2. Too thin a coat of base plaster overall, resulting in a very thin covering over mesh.
3. Partially dry base plaster, moisture content differential greater between joint and field. | Apply basecoat plaster to full thickness, following recommended procedures. | Prime affected area with a primer/sealer and redecorate. |
| Joint Shadowing Caused By Depression Or Ridging | Gypsum veneer base gapped causing a depression or ridge at the joint line. | Follow recommended veneer base and plaster application procedures. | Fill depression with joint compound or sand ridges flush with field, skim coat with joint compound and redecorate. |
| Bond Failure | **Product Related Causes:**
1. Use of pressure sensitive mesh—reduces plaster substrate contact.
2. Setting or “drying” type joint compounds used to treat joints. | The best advice for preventing veneer plaster problems is to strictly follow the manufacturer’s recommendations and adhere to proper plastering practices. | Remove all loose or marginally bonded plaster, brush the surface thoroughly to remove dust (vacuuming is recommended), apply a quality bonding agent per manufacturer’s recommendations and replaster. |
| | **Job Condition Causes:**
1. “Dry-out” or “partial dry-out” – plaster loses water prior to complete setting or hydration.
2. Using plaster which has been exposed to the atmosphere, open bags or improper storage.
3. Freezing of plaster before setting has occurred.
4. Application of plaster over frost on substrate.
5. Excessively rapid thermal changes.
6. Excessive thermal differences between the face and back of the plaster base. | | |
| | **Application Practice Causes:**
1. Application of lime containing plaster over light faced veneer base.
2. Use of retempered plaster; remixing with additional water plaster which has “buckled-up” (stiffened) or started to set and rendered it workable again.
3. Excessive delay in applying plaster after mixing – application near or into the initial setting action. | | |
IN-PLACE CONDITIONS (CONT.)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probable Cause</th>
<th>Preventative Action</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond Failure (Cont.)</td>
<td>4. Excessive use of retarder to slow setting, so partial dry-out occurs.</td>
<td>The best advice for preventing veneer plaster problems is to strictly follow the</td>
<td>Remove all loose or marginally bonded plaster, brush the surface thoroughly to remove dust. (vacuuming is recommended) and followed by a quality bonding agent per manufacturer's recommendations and replaster.</td>
</tr>
<tr>
<td></td>
<td>5. Adulteration of the plaster on the job site by addition of substances other</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>than clean graded silica sand or excessive use of sand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Application of plaster over improper substrate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Application of plaster over contaminated substrate, dust, dirt, oil, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Application of plaster over substrate with excessively high suction – too</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high absorptivity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Application of plaster over substrate with inadequate absorptivity – too</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low suction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. “Laying-on” or “buttering-on” plaster without adequate trowel pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to provide mechanical keying to the substrate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Inadequate or insufficient finish troweling.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Basecoat plaster troweled too smooth – reduces mechanical keying of finish</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to the base plaster.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Finish plaster applied over basecoat plaster too thick, and not tightly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>troweled into the base plaster.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. One coat finish applied too thin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLASTER APPLICATION CONDITIONS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probable Cause</th>
<th>Preventative Action</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard (Set) Lumps In Package</td>
<td>Plaster bags became wet during transit or storage.</td>
<td>Protect plaster from water during transit and storage.</td>
<td>1. Screen out hard lumps before mixing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Discard plaster.</td>
</tr>
<tr>
<td>Set Time Variable Within</td>
<td>1. Improper mixing equipment.</td>
<td>1. Use recommended mixing equipment.</td>
<td>See Prevention.</td>
</tr>
<tr>
<td>The Same Job Mixed Batch</td>
<td>2. Insufficient water used at the start of mixing.</td>
<td>2. Add all but about 1 quart of the recommended amount of water to the mixer at</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Insufficient mixing time.</td>
<td>start.</td>
<td></td>
</tr>
<tr>
<td>Set Time Variable From</td>
<td>1. Dirty equipment.</td>
<td>1. Use only clean equipment.</td>
<td>See Prevention.</td>
</tr>
<tr>
<td>Batch To Batch</td>
<td>2. No or improper equipment clean-out procedures.</td>
<td>2. Follow recommended equipment clean-out procedures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Partial bag mixed.</td>
<td>3. Use only full bags.</td>
<td></td>
</tr>
<tr>
<td>Slow Set Plaster</td>
<td>1. Temperature below 40°F (4°C) or in excess of 100°F (38°C).</td>
<td>1. Avoid extremes of air, plaster and mix water temperature.</td>
<td>1. During cold weather maintain temperature between 50°F and 70°F before, during and after plastering. Avoid adding of retarder. Cautiously use accelerator to speed up setting action.</td>
</tr>
<tr>
<td></td>
<td>2. Job addition of retarder.</td>
<td>2. Avoid job addition of retarder.</td>
<td>2. Same as above</td>
</tr>
<tr>
<td></td>
<td>3. Use of old, improperly stored plaster or plaster from open bags which have</td>
<td>3. Use only properly stored plaster from unopened bags, less than a year old.</td>
<td>3. Replace material.</td>
</tr>
<tr>
<td></td>
<td>been exposed to air.</td>
<td>4. Use only full bags.</td>
<td>4. Use only full bags.</td>
</tr>
<tr>
<td></td>
<td>4. Partial bag mixed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PLASTER APPLICATION CONDITIONS (CONT.)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Set</td>
<td>1. Dirty equipment. 2. Excessive mixing. 3. Contaminated mixing water. 4. Plaster has become wet or contaminated prior to mixing. 5. Excessive use of accelerator. 6. Excessively low air/plaster mix water temperatures below 40°F (4°C). 7. Partial bag mixed.</td>
<td>1. Follow recommended clean-out procedures. 2. Do not exceed 5 minutes mixing time. 3. Use only potable water. 4. Use only properly stored, uncontaminated plaster. 5. Maintain construction areas and materials above 55°F prior to, during and after plastering. 6. Avoid job additions of accelerator. 7. Use only full bag.</td>
<td>1. Follow good recommended plastering practices. 2. Follow good recommended plastering practices. 3. Follow good recommended plastering practices. 4. Follow good recommended plastering practices. 5. Follow good recommended plastering practices. 6. Cautiously use retarder to slow set time. 7. Use only full bag.</td>
</tr>
<tr>
<td>Spreading Qualities Vary Within Batch</td>
<td>1. Improper mixing equipment/ mixing action. 2. Insufficient water used at start of mixing. 3. Insufficient mixing time. 4. Aggregate separation.</td>
<td>Use recommended mixing equipment, water ratio and procedure.</td>
<td>See Prevention.</td>
</tr>
<tr>
<td>Spreading Qualities Vary From Batch To Batch</td>
<td>1. Inconsistent mixing. 2. Using part or open bags exposed to air. 3. Old or improperly stored plaster. 4. Variable aggregate.</td>
<td>1. Follow recommended mixing procedures. 2. Use only full, unopened bags, which have been properly stored. 3. Same as above. 4. Replace aggregate and/or plaster.</td>
<td>See Prevention.</td>
</tr>
<tr>
<td>Smooth Or Texture Finish Desired, Not Obtained</td>
<td>1. Surface of unset plaster being worked at wrong time, too stiff or too soft. 2. Suction of substrate too high or too low. 3. Surface of plaster being worked after plaster has set. 4. Intermixing material from different manufacturers.</td>
<td>1. Adjust finishing sequence to meet plaster condition. 2. Gypsum Base: Adjust plaster working time sequence to compensate for high or low suction. Basecoat Plaster: Apply finish over ‘green’ moderately dry basecoat or dampen dry basecoat. 3. Follow recommended smooth or texturing procedures. 4. Use only materials from single producer to ensure compatibility.</td>
<td>See Prevention.</td>
</tr>
<tr>
<td>Blistering Of Smooth Finish</td>
<td>A common condition, especially over “green” basecoat plaster, less over gypsum veneer base. 1. Application of water onto the plaster surface with troweling before sufficient stiffening (“take-up”) has occurred. 2. Aggravated by cold plastering surfaces.</td>
<td>1. Reduce trowel pressure during “double-back” and “draw-up” operation. Use water sparingly and only after adequate plaster “take-up” has developed or initial setting action has occurred. 2. Maintain recommended working area temperature.</td>
<td>Eliminate blisters with strong trowel pressure during final water troweling operation, when plaster is firm and/or setting action in progress.</td>
</tr>
<tr>
<td>Fuzzing Or Ragging Of Smooth Finish Surface</td>
<td>1. Finish plaster surface lacks sufficient water for adequate trowel lubrication or slip during “draw-up” operation. 2. Job-gauged finish components not uniformly blended, causing localized dry spots due to uneven water retention. 3. Excessive trowel pressure, trowel at wrong angle to the surface or timing wrong for troweling.</td>
<td>1. Wet trowel or sparingly apply water on plaster surface during “draw-up”. Avoid starting “drawup” too long after “take-up”. 2. Be sure job-gauged finish components are uniformly and thoroughly blended. 3. Decrease trowel angle to surface, ease up on trowel pressure or start troweling sequence sooner.</td>
<td>See Prevention.</td>
</tr>
<tr>
<td>Peeling And Tearing Of Smooth Finish During Application</td>
<td>1. “Double-back” coat of finish troweled over “scratch” coat which has stiffened excessively or set. 2. Trowel pressure during “draw-up” too strong for stiffness and thickness of finish.</td>
<td>1. “Scratch” and “double-back” with finish from the same batch, minimizing time between coats. 2. Use only light, even trowel pressure when “draw-up”.</td>
<td>See Prevention.</td>
</tr>
</tbody>
</table>
DECORATING PROBLEMS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>PREVENTATIVE ACTION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
</table>
| Paint Peeling/Blisters | 1. Plaster not completely dry.
2. Wrong type of paint used.
3. Plaster surface chalky.
4. Plaster surface contaminated, grease, soot.
5. Plaster became wet after decoration was completed. | 1. Allow sufficient drying time before painting; consideration to environmental conditions is imperative.
2. Use only paint specifically recommended by the paint manufacturer for use over new or freshly plastered surfaces.
3. Finish plaster per recommended practices, leave plaster surface under trowel, do not brush finish.
4. Examine plaster surface for signs of contamination prior to painting.
5. Make sure areas are weather tight before plastering and printing. | 1. Remove all peeling/blistening paint, allow sufficient drying time. Prime and redecorate.
2. Remove all peeling/blistening paint, allow sufficient drying time. Prime and redecorate.
3. Remove all peeling paint, and brush surface to remove chalkiness. Apply primer recommended by paint manufacturer for chalky plaster surfaces. |
| Joint Shadowing | Depression or ridge at the joint line. | See “Joint Shadowing Caused By Depression Or Ridging.” | See “Joint Shadowing Caused By Depression Or Ridging.” |
| Paint “Stringing” or “Roping” During Roll Application | 1. Wrong type of paint.
2. Solids content of paint too high.
3. Fast drying conditions.
4. Plaster surface dusty. | 1. Use proper type of paint for plaster surfaces.
2. Dilute paint per manufacturer’s recommendations.
3. Reduce drying conditions.
4. Make sure plaster is dust free. | 1. Stop painting.
2. Check preventative measures and make necessary corrections.
3. Allow painted area to dry and repair by either sanding the affected area or skimming with joint compound to a smooth surface and repaint.
4. Brush the surface thoroughly to remove dust. |

Painting Plaster

Various job conditions such as suction differences, wet or only partially dry walls, and reactions between paint and lime may cause unsatisfactory paint finishes, particularly on new construction.

Alkali-resistant primers specifically formulated for use over new plaster will permit decorating with oil or latex type paints.

Quality paint products should be used and manufacturers’ recommendations followed. Finished plaster should be painted or covered to conceal possible discoloration. The paint system should be suitable for use over plaster surfaces that contain lime.

It is essential that plaster be sound and completely dry before painting. Conventional plaster may require 30 to 60 days to fully dry.

High build, heavy duty and special purpose coatings such as Epoxy are not recommended over veneer or job gauged lime putty finishes.

In all cases, the paint manufacturer should be consulted and approve paint system suitability for use with gypsum/lime finish plaster.
Glossary of Terms

Accelerator A substance used to shorten or speed up the setting action (time) of the plaster.
Admixture A substance other than water, or aggregate added to the plaster to alter its properties.
Aggregate An inert material used as a filler or texturing aid.
Anhydrite An anhydrous form of gypsum.
Basecoat A plaster coat applied over a substrate prior to application of the finish coat.
Blistering Bulging or separation of the wet finish plaster coat away from the base.
Bond Adhesion between plaster coats or between plaster and substrate produced by mechanical and chemical properties of the plaster, or intermediate bonding agents applied prior to plastering.
Bonding Agent An adhesive substance applied to a substrate to provide a medium for plaster bond.
Brown Out A darkening of the exposed plaster surface indicating setting action is complete.
Buck-Up A premature stiffening of plaster mortar shortly after mixing. Usually indicates a plaster deficiency or an adverse reaction to a job addition of aggregate.
Calcine To drive off water of crystallization by heating.
Calcined Gypsum Gypsum with 1-1/2 molecules of combined water removed – also called plaster, stucco, hemihydrate, semihydrate.
Cat Face A blemish or rough depression in the finish coat plaster.
Chemical Bond Bond produced by the formation and subsequent interlocking of gypsum crystals during the setting process.
Coat A thickness, covering, or layer of plaster applied in a single operation.
Consistency An amount of water required to bring a unit weight of dry plaster to a workable fluidity.
Craze Cracks Fine random fissures or cracks in the plaster surface caused by plaster shrinkage due to loss of water before setting.
Dolomite A type of lime or limestone containing calcium with up to 50% magnesium as the hydroxide or carbonate.
Double-Up Plaster placement characterized by application of material from the same mixed batch in successive operations without setting or drying allowed between coats – double-back, laid-off, or two-coat work.
Draw-Up The troweling process after the applied finish plaster has “taken up”, whereby surface irregularities are filled and leveled with or without the use of fresh plaster on the tools.
Dry-Out A condition where some or all of the water necessary for plaster hydration is lost by evaporation or excessive suction.
Efflorescence A white, fleecy surface deposit of salts.
Fat Soft usable plaster accumulated on trowel during finishing operation, often used to fill in small imperfections.
Finish Coat The last layer of plaster applied – smooth or texture.
Finishing Brushes Brushes used to dash water onto the surface of finish plaster during smooth troweling.
Float Tool or procedure used to straighten and level the finish coat surface to correct surface irregularities produced by other tools and to impart a distinctive surface texture.
Float Finish A finish coat texture derived primarily from aggregate particles in the plaster.
Gauging Gypsum plaster added to lime putty to provide and control set.
Green Newly applied plaster that has set but not completely dried out.
Hawk Tool used by plasterers to hold and carry plaster mortar, in conjunction with troweling.
Hemihydrate Calcined gypsum.
High Calcium Lime The oxide or hydroxide derived from limestone, which is principally calcium carbonate. The product contains less than 5% magnesium oxide or hydroxide.
Glossary of Terms (Continued)

Hydrate Term used to denote hydrated lime.
Hydrated Lime Quicklime (oxide) which has been hydrated to yield the hydroxide, a dry powder.
Joining The juncture of two separate plaster applications on a common surface.
Landplaster Ground natural gypsum.
Lay Down The troweling process after the applied finish plaster has “taken up”, whereby surface irregularities are filled and leveled with or without the use of fresh plaster on the tools.
Lean Mixture High aggregate to plaster ratio; often exhibits poor working qualities.
Light Weight Aggregate Expanded perlite or vermiculite.
Lime Oxides or hydroxides of calcium or calcium and magnesium.
Lime Putty A thick paste obtained by “slaking” quicklime or soaking and mixing hydrated lime with a minimum of water.
Mechanical Bond Physical keying of plaster to substrate.
Mill Mixed Plasters requiring only water addition on the job site.
Mortar A material used in plastic state which can be troweled and hardens after placement.
Mud Cracks Fine random cracks in the plaster surface caused by plaster shrinkage due to loss of water (dry-out) before setting.
Perlite A siliceous volcanic glass — expanded by heating into a lightweight plaster aggregate.
Plaster Bond Adhesion between plaster coats or between plaster and a plaster substrate produced by a mechanical and chemical interlocking of plaster with the substrate.
Purity The percentage of calcium sulfate dihydrate contained in a fully hydrated gypsum plaster.
Relative Humidity The ratio of the amount of water vapor actually present in the air to the greatest amount possible at the same temperature, expressed as a percentage.
Retarder A material added to plaster which will lengthen the setting time.
Retemper The mixing of additional water with plaster which has begun to stiffen or set so as to render it workable again.
Sand A washed and size-graded, granular natural material (aggregate) added to veneer plasters to aid float texturing of the plaster.
Scratch And Double Plaster application characterized by a tight application of plaster against the substrate and immediately followed by a second application of plaster from the same batch of mixed plaster.
Setting Time The elapsed time after mixing with water for the plaster to harden or hydrate.
Sweeten The troweling process after the applied finish plaster has “taken up”, whereby surface irregularities are filled and leveled with or without the use of fresh plaster on the tools.
Take-Up A normal stiffening of the applied plaster resulting from the removal of water from the plaster by absorption (suction) into the substrate.
Trowel Finish Denotes a smooth finish surface produced by troweling.
Veneer Plaster A specially manufactured gypsum plaster which provides strength, hardness and abrasion resistance and is capable of thin application over designated substances.
Veneer Plaster Base A gypsum board with special paper facing designed to provide water absorption for rapid veneer plaster application and finishing.
Workability The ease and speed with which plaster mortar can be applied and finished.
National Gypsum Company

National Gypsum Company is the exclusive service provider of reliable, high-performance building products manufactured by its affiliate companies and marketed under the Gold Bond®, ProForm®, and PermaBASE® brands. The strategic network of Gold Bond, ProForm, and PermaBASE manufacturing facilities located throughout major metropolitan hubs in North America allows us to provide the best in customer service so we can keep your fast-paced projects moving forward.

SUSTAINABILITY

Our brands create products that contribute to sustainable design by providing healthy indoor air quality; moisture, mold and mildew management; durability; optimal acoustics; life safety and increased space functionality. No matter how you define sustainability, we offer the most comprehensive set of value-added solutions in the industry.

TRUSTED PARTNER

The National Gypsum name has been synonymous with high-quality, innovative products and exceptional customer service since 1925. Our technical experts at 1-800-NATIONAL® are always a phone call away to answer any type of product or specification question.

We are Building Products for a Better Future® - one project at a time.

LIMITED WARRANTY AND REMEDIES

Products manufactured by Gold Bond Building Products, LLC (“Seller”) are warranted by Seller to its customers to be free from defects in materials and workmanship at the time of shipment. Additional or different express limited warranties, limitations and exclusions may apply to specific Seller products. Current warranty information on such products for both commercial and residential applications is available at goldbondbuilding.com. THIS EXPRESS WARRANTY IS THE ONLY WARRANTY APPLICABLE TO SUCH PRODUCTS, AND IS IN LIEU OF AND EXCLUDES ALL OTHER EXPRESS ORAL OR WRITTEN WARRANTIES AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Seller will not be liable for any incidental, indirect or consequential losses, damages or expenses. The customer’s exclusive remedy for any type of claim or action for defective products will be limited to the replacement of the products (in the form originally shipped) or, at Seller’s option, to a payment or credit not greater than the original purchase price of the products.

Seller will not be liable for products claimed to be defective where the defect resulted from causes not within Seller’s control, or which arose or occurred after shipment, including but not limited to accidents, misuse, mishandling, improper installation, contamination or adulteration by other materials or goods, or abnormal conditions of temperature, moisture, dirt or corrosive matter.

Any claim that products sold by Seller were defective or otherwise did not conform to the contract of sale is waived unless the customer submits it in writing to National Gypsum Services Company (d/b/a National Gypsum Company) authorized sales agent and service provider to Seller, within thirty (30) days from the date the customer discovered or should have discovered the defect or non-conformance. No legal action or proceeding complaining of goods sold by Seller may be brought by the customer more than one year after the date the customer discovered or should have discovered the defect or problem of which it complains.
Technical Information
Visit goldbondbuilding.com or call National Gypsum Company Construction Services: 1-800-NATIONAL (628-4662).

Customer Service

Atlantic Area
(800) 237-9167
atlanticareacsrs@nationalgypsum.com

Central Area
(800) 252-1065
centralareacsrs@nationalgypsum.com

Gulf Area
(800) 343-4893
gulfareacsrs@nationalgypsum.com

Midwest Area
(800) 323-1447
midwestareacsrs@nationalgypsum.com

Northeast Area
(800) 253-3161
northeastareacsrs@nationalgypsum.com

Southeast Area
(800) 548-9394
southeastareacsrs@nationalgypsum.com

Southwest Area
(800) 548-9396
southwestareacsrs@nationalgypsum.com

Western Area
(800) 824-4227
westernareacsrs@nationalgypsum.com