LA F ORCE CACHÉE

CONCRETE FORMING SYSTEMS

LIGHT DUTY FORMING MEDIUM \& HEAVY DUTY FORMING

	DIAGRAMS	∞	Form Brace Aligner.. 27
	Snap-Ty System... 7		Plyhole Patch. .27
	Quick Strip System... 8		Scaffold Bracket... 28
	Lagstud/Euro Rod System................................ 10		Rod Clamp.. 29
	Lagstud System... 12		Pencil Rod.. 29
	LIGHT DUTY	\%e	Pencil Rod Tightening Wrench.......................... 29
	SNAP-TY		CAM-LOCK FORMING SYSTEM
	Snap -Ty.. 16		Cam-Lock Self Centering D-Cone Ty.................... 30
	Plastic Cone Snap-Ty (PC)................................ 17		Cam-Lock Stiff-Back Cam................................ 31
	Plastic Washer Snap-Ty (PW)............................. 18		Cam-Lock Bracket... 31
	Panel-Ty.. 18		Cam-Lock Handrail Post.................................. 31
	No Washer Snap-Ty (NW)................................. 19		Cam-Lock Scaffold Bracket............................. 32
	No Spreader Form-Ty (NS)............................... 19		QUICK STRIP TY SYSTEM
	Fascia Snap-Ty... 20		Quick Strip Ty... 34
	Riser Support... 20	8 Cb	Quick Strip Corner Hinges................................ 35
	Snap-Ty I-Beam Ty (blind wall).......................... 21		Waler Bar.. 35
+		11.	Quick Strip Form Panel Construction................... 36
	SNAP-TY ACCESSORIES	-	Residential Ty... 37
	Pressed Steel Ty Wedge..................................... 24	DTII	Residential Ty Accessories.................................. 37
	Type H Ty-Wedge... 24		STEEL PLY FORMING SYSTEM
3	A-Bracket.. 24	-	X-Flat Ty... 38
	Snap-Ty Wrench... 24	-	Stacking Ty.. 38
\%	Waler Bracket Forming System......................... 25		Spreader Cleat... 38
-	Single Waler Bracket...................................... 25		FLATWORK
8	Strong Back Bracket....................................... 25		K-Form PVC Form.. 39
\square	Plastic Snap-Ty Plug.. 26	-	Pin Pocket.. 39
	Plastic Space-Ty ${ }^{\text {TM }}$ Plug...................................... 26		Form Stake.. 39

Table of Contents

	MEDIUM/HEAVY DUTY		TYLOOP
	TYSCRU	\downarrow	Tyloop (2-strut)... 60
\cdots	Continuous Threaded Lagstud............................... 42	$!$	Flared 2-Strut Tyloop (TL2F).................................. 60
-	Lagstud Bolt... 43	9	Flared 4-Strut Tyloop (TL4)................................ 61
-	Tyscru.. 44	1	Heavy 4-Strut Offset Flared Tyloop (TL4-H).............. 61
\square	Standard Tyscru.. 47	\geqslant	Flared 6-Strut Tyloop.. 62
\square	Cone-Ty Tyscru.. 47	1	Tyback Tyloop.. 63
-	Waterseal Tyscru.. 48	-	Coil Length... 63
-	Adjustable Tyscru... 48		SINGLE SIDED FORMING SYSTEM
\cdots	Heavy Tyscru (4-Strut and 6-Strut)........................ 49	1	Single End Welding Tyscru................................... 64
寿	Ty-Anchor (2-Strut and 4-Strut).......................... 50	\bigcirc	Bent Single End Welding Tyscru............................. 64
	TYSCRU ACCESSORIES		Toggle Ty... 65
	Ty-Frame.. 52		Angle Ty-Bracket.. 66
\%	Tybow Anchor (2-strut, 4-strut and 6-strut)............ 53	1	T4 Lag Ty.. 67
0	Lagnut.. 54	$\underline{\square}$	Rock Anchor... 67
-1	Handle Lagnut.. 54	\triangle	AR Rock Anchor Assembly.................................. 67
-88	Coil Nuts.. 55	E	Drop-In Anchor.. 68
0	Wing Nut.. 55	5	Formsavers ${ }^{\text {™ }}$... 69
\cdots	Flat Washer.. 56	\square	Welding Lagnut... 70
\bigcirc	Batter Washer... 57		Taper-Ty System... 71
	Lag Thread Coupler... 57	(2)	Tilt Washer.. 72
\square	Plastic Cone-Tight Tycone................................... 58		She Bolt.. 73
6	Plastic Set Back Tyscru Plug................................ 58	\bigcirc	High Tensile Inside Rod...................................... 74
\downarrow	Cone Removal Wrench (T-Shape and L-Shape)........ 59		Crimped Anchor... 75
D	Lag Wrench.. 59		Dummy She-Bolt... 76
d.	Plastic Coil Setting Plug...................................... 59	\bigcirc	Bowlag Anchor... 76
		\square	Heavy Hex Rod Coupler..................................... 77

Table of Contents

0	Hex Nut． \qquad .77 Euro Rod． \qquad .78 Euro Rod Accessories． \qquad .78 FORMING ACCESSORIES	6	Curb Clamp． . .93
			Corner Clamp．．． 93
			Barrier Wall Control Joint．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 94
			Expanded Metal Form．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 94
	Hook Anchor Bolt．．． 82		APPENDIX
	Wall Plate Anchor．． 82		General Guidelines and Conditions．．．．．．．．．．．．．．．．．．．．．．．． 96
	Pig Tail Anchor Bolt．． 83		Induced Tension Loads．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 100
1	Post Holders．． 83	－	Induced Shear Loads．． 100
穹	AR Anchor Sleeve．．． 84	$\left(\frac{t_{4}}{i_{i}}\right)^{5}$	Combined Shear and Tension Loads．．．．．．．．．．．．．．．．．．．．． 100
	AR Form Tubes．．． 85		Stripping of Snap－Tys and guidelines for break back．．．． 101
	AR Handyform．．． 85	$\underset{\substack{\text { Pumpei } \\ \text { memem }}}{ }$	Concrete lateral pressures for wall form design－PUMPED． 102
	AR Nails．． 85	®uxar	Concrete lateral pressures for wall form design－BUCKET．． 103
\cdots	AR Concrete Nails．． 85		Maximum lateral pressure for design of COLUMN FORMS． 104
$\begin{aligned} & \text { 會 } \end{aligned}$	Falsework Support Bracket．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 86	\％esmex	Maximum lateral pressure for design of WALL FORMS．．．．． 105
	Guardrail Base．． 87		Lateral Pressure．． 106
	AR Anti－Impalement Rebar Cap．．．．．．．．．．．．．．．．．．．．．．．．．．． 87		LightFormwork．． 107
	Linden Chairs．．． 88		Medium Formwork．． 108
	（SB）Slab Bolster．． 89	可雨期	Heavy Formwork．．． 109
	（PSB）Slab Bolster and All Plastic Continuous High Chair．．． 89	$=$	Approximate safe working loads \＆ultimate capacities
	（CHC）Continuous High Chair．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 89		calculated for various concrete strengths．．．．．．．．．．．．．． 110
σ	Tie Wire．． 90		Conversion tables．．． 112
	Tie Wire Twister．．． 90		GENERAL INFORMATION．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 116
	PVC－Single Chamfer．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 90		
\％	Formwork Pry Bar．． 91		
	Plastic Form Spreader．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 91		
8	Rich－Cote Form Release－Summer \＆Winter Grade．．．． 92		
	Form Sprayer．．． 92		

Snap-Ty System

Snap-Ty

AR Snap-Tys are fabricated to fit either prefabricated panels or built-in-place forms. They are specifically designed for quick, easy and accurate erection of light formwork. End sizes can be as short as $32 \mathrm{~mm}\left(11 / 4^{\prime \prime}\right)$ for Steel Washer Snap-Tys or as long as you need them to fit a special condition. Snap-Tys can be fabricated for any required wall thickness up to $6 \mathrm{~m}\left(19^{\prime}-6^{\prime \prime}\right)$ in length. Spreader washers are precisely located to give exact wall thicknesses. Break points are located at specified distances back from the wall face to permit clean stripping without spalling. All standard Tys are manufactured pily point minimum wall thicknesses. For exposed concrete or where a longer set back is required, the AR Space-Ty ${ }^{T M}$ is suggested.
Snap-Tys are stocked in 120 mm or $211 \mathrm{~mm}\left(43 / 4^{\prime \prime}\right.$ or $\left.81 / 2^{\prime \prime}\right)$ ends for standard wall hicknesses.

$0 \mathrm{kN}(2,250 \mathrm{lbs})$ Snap-Tys re available in stainless OTE: For Ty removal a reak back guidelines Alease see page 101 of the

Refer to Lateral Pressur page 102 and typical Light Formwork on page 107 of the Appendix.

APPROXIMATE SAF
WORKING LOAD
10kN (2,250 LBS)
2:1 Safety Factor

o order, please specify the following informat	
Pla	
Type	Heavy Duty 3M
End .. $120 \mathrm{~mm}\left(434^{\prime \prime}\right)$	
Wall ... 450 mm (18")	
End .. $120 \mathrm{~mm}\left(434^{\prime \prime}\right)$	
Quantity	

Set back Taper Inside to outside

 25 mm (1") 10 mm to $25 \mathrm{~mm}\left(3 / 8^{\prime \prime}\right.$ to $\left.1^{\prime \prime}\right)$

For architectural design, insert the Plastic Snap-Ty Plug once form work has been removed.

Plastic Washer Snap-Ty (PW)

The AR Plastic Washer Snap-Ty and Heavy Duty Plastic Washer Snap-Ty are equipped with a plastic washer, provide for a 3 mm to 5 mm (1/8" to $3 / 16^{\prime \prime}$) break back less than the Plastic Washer Thickness and are manufactured for specified wall thicknesses. The Hex Head allows the Ty end to be broken back prior to removal of the forms, allowing for ease of stripping. Available in stainless steel. Also available in water seal.

To order, please specify the following information
 XAMPLE

Name Plastic Washer Snap-Ty (PW)
Type Standard 2.25M
End $210 \mathrm{~mm}\left(8^{21 / 4} 4^{\prime \prime}\right)$

End $120 \mathrm{~mm}\left(8^{\left.1 / 4{ }^{\prime \prime}\right)}\right.$ Break back (standard) $3 \mathrm{~mm}\left(1 /{ }^{\circ}\right)$
Strength $10 \mathrm{kN}(2,250 \mathrm{lbs})$ Quantity (pkg of 100).

STANDARD 2.25M

 APPROXIMATE SAFE WORKING LOAD 10kN (2,250 LBS 2:1 Safety Factor HEAVY DUTY 3M APPROXIMATE SAFE WORKING LOAD $13.5 \mathrm{kN}(3,000$ LBS 2:1 Safety Factor

Plastic Washer break back is 3 mm to 5 mm (1/8" to $3 / 16^{\prime \prime}$ " less than the plastic washer thickness.

NTE: For Ty removal and break back guideline please see page 101 of the Appendix.

No Washer Snap-Ty (NW)

The AR No Washer Snap-Ty and Heavy Duty No Washer Snap-Ty have hex headed ends. These Snap-Tys are equipped with a $13 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ break back and are manufactured for specified wall thicknesses. Available in stainless steel. Also available in water seal

To order, please specify the following information
EXAMPLE
Name No Washer Snap-Ty (NW)
Type Standard 2.25M
End 210 mm (81/4")
Wall 200 mm (8")
End 210 mm (81/4)
Break back 13mm (1/2")
Strength10.0 kN (2,250 lbs)
Quantity (lots of 100) 200

STANDARD 2.25M
APPROXIMATE SAFE
WORKING LOAD 10kN (2,250 LBS) 2:1 Safety Factor

HEAVY DUTY 3M APPROXIMATE SAFE WORKING LOAD 13.5 kN (3,000 LBS) 2:1 Safety Factor

NTE: For Ty removal and break back guidelines lease see page 101 of the Appendix

The AR No Spreader Form-Ty and Heavy Duty No Spreader Form-Ty are plain rods with a hex headed end. These Snap-Tys are usually withdrawn from the wall or cut off after use. Can be equipped with a break back as a special order. Available in stainless steel.

STANDARD 2.25M APPROXIMATE SAFE WORKING LOAD 10kN (2,250 LBS) 2:1 Safety Factor HEAVY DUTY 3M APPROXIMATE SAFE WORKING LOAD 13.5 kN (3,000 LBS 2:1 Safety Factor
 APPROXIMATE SAFE WORKING LOAD 10kN (2,250 LBS 2:1 Safety Factor

To order, please specify
the following information
EXAMPLE
 Length $100 \mathrm{~mm}\left(4^{\prime \prime}\right)$ SWL is based on an approximate 2:1 Factor of of Safety

No Spreader Form-Ty (NS)

0

NOTE: When equipped with break hack please see page 101 of the Appendix for Ty removal and break page 101 of the
back guidelines.

Fascia Snap-Ty

The AR Fascia Snap-Ty is available for securing light outside spandre beam forms to structural steel beams in the manner shown. Also available in water seal.

Riser Support

The AR Riser Support provides a simple solution to support bulk heads for concrete stairs. It comes equipped with flat washers and a chisel point at both ends. Also available in water seal.

Snap-Ty I-Beam Ty (blind wall)

AR Snap-Ty I-Beam Tys are manufactured to fit around the I-Beam flange to support the formwork. A standard break back of $25 \mathrm{~mm}\left(1^{\prime \prime}\right)$ is provided.

NOTE: Tolerance for wire bends will be calculated by AR. A $6 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)$ tolerance may be added to the $B \& C$ dimension if desired for $T y$ placement.

APPROXIMATE SAFE WORKING LOAD 6.7kN (1,500 LBS) 2:1 Safety Factor

```
To order, please specify the following information
    EXAMPLE
Name .................. Snap-Ty l-Beam Ty (blind wall)
Total Ty length
Sum of:
" \(A\) " (as required)
Dimension "B" (beam height)
Dimension "C" "(beam width)
Dimension "B" (beam height)
Dimension " " (as required)
Quantity
... 200
Refer to General Guidelines and Conditions on page 96 and Lateral Pressure Design Information beginning on page 102
``` of the Appendix.


\section*{Space-Ty \({ }^{\text {TM }}\)}

\section*{BREAK BACK ASSURED}

The Space-Ty \({ }^{\text {TM }}\) re-bar locating device protects the break point during the concrete placement assuring a positive break and easy removal of the Ty end.

IMPROVED WATER SEAL
The plastic locating device is securely moulded to the Snap-Ty, effectively breaking the wire surface continuity, reducing the possibility of water seepage.

FIXED RE-BAR LOCATING DEVICE
Designed to accept and lock in place 10M, 15M, or 20M (\#4, \#5 or \#6) re-bar into the correct position, preventing any movement during the concrete placement.
REMOVABLE PLASTIC CONE
The Removable Plastic Cone provides for an architectural recess in the concrete which can be sealed using the AR Plastic Set Back Tyscru Plug or by using standard grouting practices.

GUARANTEES CONCRETE COVER
The re-bar locating device guarantees the concrete cover as outlined in CSA -A23-3-M90. The Space-TyT rebar locating device complies with the Recommended Practice for Concrete Formwork as outlined in Architectural Concrete (ACI 347-95).

NOTE: Space-Tyswh have a guaranteed standard \(40 \mathrm{~mm}\left(1 / 1 /{ }^{\prime \prime}\right)\) set back. A 50 \(\mathrm{mm}\left(2^{\prime \prime}\right)\) set back is avaiable on special order. Refer to Lateral Pressure Design

The Space-Ty \({ }^{\text {TM }}\)

\section*{SPACE-TY \({ }^{T M}\) ASSEMBLY}

The Space-Ty \({ }^{\top \mathrm{M}}\) combines all essential features for light concrete forming. The Space-Ty \({ }^{\text {TM }}\) re-bar locating device securely locks the rebar at a correct distance from the face of the form and eliminates the need for spacers.

Minimum end length of \(120 \mathrm{~mm}\left(4^{33} 4^{\prime \prime}\right)\). Standard sizes stocked in \(120 \mathrm{~mm}\left(434^{\prime \prime}\right)\) or \(211 \mathrm{~mm}\left(814^{\prime \prime}\right)\) ends.
FORM TY SPECIFICATIONS
Internal form ties shall be so arranged that when the forms are removed, no metal shall be within 40 mm or 50 mm (\(11 / 2^{\prime \prime}\) or \(2^{\prime \prime}\)) of any exposed surface as outlined in CSA-A23-3-M90 or ACI 347-95 Use Space-Tys \({ }^{\text {TM }}\) or approved equal and seal the tie holes with PVC plugs. The light grey plugs complement the adjacent concrete
\begin{tabular}{|c|}
\hline order, please specify the following inform \\
\hline EXAMPLE \\
\hline ame \\
\hline End 211 mm (81/4") \\
\hline Wall .. 300 mm (8") \\
\hline End ... 211 mm \\
\hline "C" dir \\
\hline 40 mm or \(50 \mathrm{~mm}\left(11 / 2{ }^{\prime \prime}\right.\) or \(\left.2^{\prime \prime}\right)40 \mathrm{~mm}\left(11 / 2^{\prime \prime}\right)\) \\
\hline Quantity (pkg of 5 \\
\hline
\end{tabular}

\section*{REAK BACK TY}

To facilitate the stripping of forms, the Space-Ty \({ }^{\top T M}\) can be broken back prior to form removal. Using a Space-Ty \({ }^{\text {TM }}\) wrench or standard \(13 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)\) socket wrench, twist and remove the Ty end. NOTE: For Ty removal and break back guidelines please see page 101 of the Appendix. Refer to Lateral
Pressure Design information on page 102 and typical Light orrmwork on page 107 of the Appendix.

\section*{SNAP-TY ACCESSORIES}

\section*{Pressed Steel Ty Wedge}

The AR Pressed Steel Ty Wedge is designed to slip over the head of a standard or heavy duty Snap-Ty to safely secure the waler system in place. Caution should be used when used with hex head Space-Ty \({ }^{\text {TM }}\) or Snap-Ty products.
To order, please specify the following information
EXAMPE
Nameessed Steel Ty-Wedge Quantity.
.Pressed Steel Ty-Wedge

\section*{Type H Ty-Wedge}

AR Type H Ty Wedges are manufactured from a malleable cast iron material designed to slip over the head of a standard or heavy duty Snap-Ty. The Type H-Ty Wedge provides for long term durability, performance and bearing area to ensure proper load distribution on to the waler system.

\section*{APPROXIMATE SAFE} WORKING LOAD
13.5 kN (3,000 LBS)

2:1 Safety Factor

APPROXIMATE SAFE

WORKING LOAD \(13.5 \mathrm{kN}(3,000\) LBS) 2:1 Safety Factor
EXAMPLE
Name
... Type H Ty-Wedge

\section*{A-Bracket \\ A-Bracket}

The AR A-Bracket is used to hold a horizontal waler bar, or a vertical stud with any type of wall form. The built-in slot allows the bracket to slip over 4-3/4" L\&W snapties, and can be installed before or after waler bars have been positioned. The swivel bracket allows the snaptie end to lock-in and tightens on the \(2 \times 4\) waler. The swivel bracket allows for \(5 / 8\) " of adjustment to compensate for lumber variations.

\section*{Snap-Ty Wrench}

The AR Snap-Ty Wrench is designed to fit tight again the wall and facilitate the Snap-Ty break back once the concrete has cured. The angle of the Snap-Ty Wrench will prevent scraping of knuckles during the end removal. After the form has been removed, place the Snap-Ty Wrench on the Ty. Keep the Snap-Ty Wrench against the concrete, bend the Ty towards the concrete surface. Rotate the wrench using a cranking motion to break the Ty back within the concrete wall.

\footnotetext{
To order, please specify the following information
EXAMPLE
Name
Snap-Ty Wrench
Quantity .
}

\section*{Waler Bracket Forming System}

The AR Waler Bracket is a proven method to form light weight walls and foundations. The basic unit of this system is the bracket with a moving wedge which provides the most effective type lock for the Snap-Ty. The basic components are the Waler Bracket and Snap-Tys, with plywood panels and loose \(38 \mathrm{~mm} \times 89 \mathrm{~mm}\) (standard 2x4 walers). No nailing is needed. Erection and stripping are made fast and simple and materials last longer. The Waler Bracket Forming System will save up to \(50 \%\) of the forming cost.

\section*{Single Waler Bracket}

The AR Waler Bracket is designed to be used with any AR Short-End Snap-Ty. The durable bracket can be used with both horizontal walers and vertical studs for any type of wall form; round, curved, battered, beam and/or columns. The Single Waler Bracket is fabricated from heavy gauge steel which is plated to resist corrosion for improved durability and reuse.
```

To order, please specify the following information
EXAMPLE
Name .... ... Single Waler Bracket

```

APPROXIMATE SAFE WORKING LOAD 12 kN (2,700 LBS)
2:1 Safety Factor

\section*{Strong Back}

The AR Form Aligner Clamp is designed for use with a single \(38 \mathrm{~mm} \times 89 \mathrm{~mm}\left(2^{\prime \prime} \times 4\right.\) ") strong back for either vertical or horizontal form alignment. The Form Aligner Clamp can be installed afte erection of the forms and is not limited by form-ty spacing. Sturdy, galvanized construction
reduces maintenance ana replacement and speeay installation reauces forming costs

\footnotetext{
To order, please specify the following information
EXAMPLE
Name
Quantity
Strong Back
... 200
}

\section*{Plastic Snap-Ty Plug}

AR Plastic Snap-Ty Plugs are designed to provide an economical means of sealing Snap-Ty Cone holes, eliminating the need for grouting. The Plastic Snap-Ty Plug provides an architectural design in concrete walls and should be installed with a commercial grade adhesive material. Available in a standard grey colour. Other colours are available on special orders based on minimum quantities.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{To order, please specify the following information} \\
\hline EXAMPLE & \\
\hline Name & Plastic Snap-Ty Plug \\
\hline nity & \\
\hline
\end{tabular}

Plastic Snap-Ty Plug provides a recess of Plastic Snap-Ty Plug provid.
approximately \(\left.5 \mathrm{~mm}(1 / 4)^{\prime}\right)\).

\section*{Plastic Space-Ty \({ }^{\text {TM }}\) Plug}

AR Plastic Space-Ty \({ }^{\top M}\) Plugs are designed to fit securely in the cone hole of a AR Space-TT \({ }^{\top}\) M once the Ty break back is simple and economical means of sealing Space-Ty \({ }^{\text {TM }}\) holes providing an providing an architectural design.

> To order, please specify the following information EXAMPLE Name Colour. Plastic Space-Ty \({ }^{\text {TM }}\) Plug Quantity \begin{tabular}{l} light gray \\ \hline.... \\ 200 \end{tabular}

Note: Do not use Plastic Snap-Ty
Plugs with AR Space-TysTI.

\section*{Form Brace Aligner}

The AR Form Brace Aligner is designed to assist in accurately positioning and plumbing vertical
forms. The heavy \(25 \mathrm{~mm}(1\) ") open style turnbuckle provides for fast, easy adjustments. The Form Brace Aligner is equipped with a bent nailing plate and holes. Manufactured from first quality materials for durability and repeat use. The Approximate Safe Working Loads of the aligner are limited by the field fastening and staking method. The Form Brace Aligner splicer unit provides for \(90 \mathrm{~mm}\left(31 / 2^{\prime \prime}\right)\) total adjustment. The overall maximum length is 1,040 \(\mathrm{mm}\left(41^{\prime \prime}\right)\) with a minimum length of \(950 \mathrm{~mm}\left(371 / 2^{\prime \prime}\right)\). Also available in adjustable.

\section*{To order, please specify the following information \\ EXAMPLE \\ Name ...
Quantity}

NOTE: Not designed for wind loads.
Refer to General Guidelines and Conditions on page 96 and Lateral Pressure Design Information beginning on page 102 of the Appendix.

\section*{Plyhole Patch}

The AR Plyhole Patch is designed to facilitate Ty hole repairs in wood formwork. Manufactured from 26 gauge galvanized steel, the \(60 \mathrm{~mm}\left(2^{1 / 4} \mathbf{4}^{3}\right)\) diameter patch comes complete with its own fastening system. The self contained barbs eliminates the requirement for nails. Also available in plastic.
To order, please specify the following information
EXAMPLE
Name....................................Plyhole Patch
Quantity (lots of 1,000)................... 1,000

\section*{Rod Clamp}

\section*{Scaffold Bracket}

The AR Scaffold Bracket (TSB) meets most local code requirements and is suitable for most formwork systems. The Brackets are adjustable to fit vertical or horizontal wales and/or strongbacks by simply adjusting the pins position in the vertica horizontal members. The AR Scaff ur) can and is also easily adapted to custom prefabricated forms

Consult your AR Area Sales Representative or the

APPROXIMATE SAFE WORKING LOAD 4.5 kN (1,000 LBS 4:1 Safety Factor

AR Rod Clamps are malleable castings for plain or deformed re-bar ty systems. The Rod is clamped by a set screw and nut arrangement which tightens the grip as the load is applied. The clamp housing may be used indefinitely. The only wearing element is the relatively inexpensive nut and screw which can be replaced at will. The Rod Clamps are supplied with nail holes to simplify the attachment operation on the walers Once the Ty rod is tightened and secured, bending the rod behind the clamp at \(90^{\circ}\) wil provide an additional measure of safety.
\begin{tabular}{|c|c|}
\hline To order, please specify the following information & Diameter \\
\hline EXAMPL & \(6 \mathrm{~mm}\left(1 / 4{ }^{\prime \prime}\right)\) \\
\hline Name Rod Clamp & 10 mm (3/8") \\
\hline Rod Diameter \(6 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)\) & \(13 \mathrm{~mm}\left(1 / 2{ }^{\prime \prime}\right)\) \\
\hline Quantity 200 & \\
\hline
\end{tabular}

\section*{Pencil Rod}

The AR Pencil Rod System is an economical forming system, used mainly for battered walls and foundations where the use of the AR Snap-ty is not feasible. Available in \(1 / 4^{\prime \prime}\) diameter, cut to \(10^{\prime}\) or \(20^{\prime}\) lengths. Use where a clean breakback is not necessary. For use with the AR Rod Clamp and AR Tightening Wrench.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ Diameter } & \multicolumn{2}{c}{} \\
\hline mm & (in) & KN & (bs) \\
\hline 6 & \(1 / 4^{\prime \prime}\) & \(10^{\prime}\) & 1,125 \\
6 & \(1 / 4^{\prime \prime}\) & \(20^{\prime}\) & 1,125 \\
\hline
\end{tabular}

\section*{Pencil Rod Tightening Wrench}

The AR Tightening Wrench is placed over a smooth or deformed rod behind a rod clamp and is used to draw the assembly tight, allowing the clamp to be properly tightened. The Tightening Wrench is available in \(1 / 4^{\prime \prime}, 3 / 8^{\prime \prime}\) and \(1 / 2^{\prime \prime}\) sizes.

```

To order, please specify
the following informatio
EXAMPLE
Name ....... Tightening Wrench
Size ................... $13 \mathrm{~mm}(1 / 2)^{2}$

```

2:1 Safety Factor
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Diameter} & \multirow[b]{2}{*}{kN} & \multirow[b]{2}{*}{(bs)} \\
\hline mm & (in) & & \\
\hline 6 mm & (1/4) & 5 kN & (1,125 lbs) \\
\hline 10 mm & (3/8") & 10 kN & (2,200 lbs) \\
\hline 13 mm & (1/2) & 15 kN & (3,750 lbs) \\
\hline
\end{tabular}

Caution: Do not use the Tightening Wrench for straightening forms or or pulling smooth rods from set concrete.

\section*{Cam-Lock Forming System}

The AR Cam-Lock Forming System takes advantage of inexpensive forming materials, S4S \(2 \times 4 \mathrm{~s}\) with \(4^{\prime} \times 8^{\prime} \times{ }^{3}{ }^{3}{ }^{14}\) or \(2^{\prime} \times 8^{\prime} \times 3^{3} 4^{\prime \prime}\) plywood sheets. When used for built-in-place forming, no ribbing or special hardware attached to the panels is necessary. The use of stiffbacks and walers is cut in half. Walers may be used either vertically or horizontally, but field tests have proved the latter method to be easier and faster.

The Cam-Lock Bracket holds the \(2 \times 4\) waler in place by locking to the loop-end ty through caming pressure. Further rigidity of the form may be obtained through use of the Cam-Lock Stiff-Back Cam which connects to the ears on the back of the Cam-Lock Bracket, locking either a \(2 \times 4\) or \(2 \times 6\) in place with the same caming principle. This also assures perfect alignment of the form from top to bottom and enhances the system's adaptability to extremely high, close tolerance work.
The extreme rigidity of Cam-Lock Forming System makes it adaptable to all types of construction, and this same rigidity, coupled with the Cam-Lock Scaffold Bracket, makes it especially desirable for high wall forming. Economy of the system is realized in labour costs through the simplicity of the system as well as the increased man-hour production that result from easier handling of the light weight plywood lumber is used further savings are derived from lower material costs.

\section*{Cam-Lock Self Centering D-Cone Ty}

The AR Cam-Lock Self Centering D-Cone Ty features a high density polyethylene Cone Washer. This Cone Washer will not absorb moisture or stick to the concrete, preventing break back problems. A smooth, uniform hole results after break back, allowing easier grouting and faster, better finishing. The standard \(25 \mathrm{~mm}\left(1^{\prime \prime}\right)\) D-Cone comes with a 25 mm (\(1^{\prime \prime}\)) break back. Self-centering tapered cones require a dril hole size of 21 mm (13/16").
\begin{tabular}{|c|}
\hline To order, please specify the following information \\
\hline EXAMPLE \\
\hline Name Cam-Lok Self Centering D-Cone Ty \\
\hline Quantity 200 \\
\hline
\end{tabular}

APPROXIMATE SAFE
WORKING LOAD
10 kN (2,250 LBS)
2:1 Safety Factor

\section*{Cam-Lock Stiff-Back Cam}

The AR Cam-Lock Stiff-Back Cam is used in combination with the Cam-Lock Bracket to support the \(2 \times 4\) strong-backs to the form, providing additional strength and form alignment. Also available as a \(2 \times 6\) stiff-back as a special order.
To order, please specify the following information
EXAMPLE
Name...............................-LockStiff-Back Cam
Quantity....................................... 200

APPROXIMATE SAFE
WORKING LOAD
10 kN (2,250 LBS)
2:1 Safety Factor
Refer to General Guidelines and Conditions on page 96 and Lateral
Pressure Design Information beginning on page 102 of the Appendix.

\section*{Cam-Lock Bracket}

The AR Cam-Lock Bracket accomplishes many purposes in one accessory. It is a support for normal S4S, \(2 \times 4\) walers. It has dual-ears for the support of the Cam-Lock Scaffold Bracket and the Cam-Lock for the support of the Cam-Lock Scaffold Bracket and the Cam-Lock Stiff-Back Cam. The forged cam finger grips the Ty loop securing it
firmly to the form panel. The malleable cast bracket is designed with additional strength provided for at the points of strain. The Cam-Lock Bracket may be used with either horizontal or vertical walers. Cam-Lock Brackets may be used as a built-in-place forming system or attached to the plywood when used for gang forming.

APPROXIMATE SAFE WORKING LOAD 10 kN (2,250 LBS) 2:1 Safety Factor

\section*{Cam-Lock Handrail Post}

The AR Cam-Lock Handrail Posts are required with the use of all Cam Lock Scaffold Brackets. A \(1,065 \mathrm{~mm}\) (42") guard post with toeplate, mid-rail and top rail must be used. This requirement can easily and economically be met with the use of the Cam-Lock Handrail Post.

\footnotetext{
To order, please specify the following information
EXAMPLE
Name
Quantity Cam-Lock Handrail Post
}

\section*{Cam-Lock Scaffold Bracket}

The AR Cam-Lock Scaffold Bracket is constructed of sturdy heavy gauge pressed steel. Extra rigidity is obtained by spot welded corner gusset plate and tubular riveted bracing. Hanger arms attach to the Cam-Lock Bracket ears in the same manner as the Cam-Lock Stiff Back Cam. Secure, firm attachment in seconds is accomplished without bolts, nuts or nails. It is quickly adaptable for use with \(2 \times 6\) Stiff-Back by removal and repositioning of hanger arms. All new Scaffold Brackets are factory tested to \(3,000 \mathrm{lbs}\).
To order, please specify
the following information
EXAMPLE
Nameam-Lok Scaffold Bracket
Quantity................................ 200

\section*{APPROXIMATE SAFE} WORKING LOAD
11 kN (2,500 LBS)
2:1 Safety Factor

\section*{DON'Ts}

Never use the Scaffold Bracket with a short \(2 \times 4\). Always use full length \(2 \times 4\) s that extend to a solid base.
Never use the Scaffold Bracket with only one scaffold plank. Always use two approved \(2 \times 12\) scaffold planks side by side. DOs
The vertical \(2 \times 4\) stiff-back must always extend to a solid base - the concrete footing, a floor slab or to ompacted soil.
The Scaffold Bracket must be attached to the second cam-lock form. Never attach the Scaffold Bracket to the top row of cam-lock brackets and form ties.
below the Scaffold Brackets.
A second \(2 \times 4\) stiff-back cam must be attached directly below the Scaffold Bracket.
Add an additional stiff-back cam at the bottom of the vertical \(2 \times 4\) stiff-back to stabilize it.
Scaffold Brackets are to be used on 6 ' centers along the form with two \(2 \times 12^{\prime \prime}\) scaffold planks.
A 42 " guardrail with a \(2 \times 4\) toeplate, mid-rail and top rail must also be used.
Since we cannot anticipate every problem that may arise on the job in conjunction with the use of our product, we urge you to work safely and refer to your manuals for proper construction of concrete wall forming and scaffolding procedures

Not to be used above \(6.0 \mathrm{~m}\left(20^{\prime}-0^{\prime \prime}\right)\). Any scaffolding above six metres (twenty feet) should be checked with local provincial code requirements.

NOTE: Drill \(13 / 16^{4}\) Ty holes.

\section*{Ty spacing for regular forming}

\section*{Quick Strip Ty System}

The AR Quick Strip Ty System is designed to provide a true, smooth wall for light forming applications. The AR Quick Strip Tys are designed to be simply inserted through pre-manufactured slots in \(20 \mathrm{~mm}\left(3 / 4^{\prime \prime}\right)\) plywood form panels. They are secured in place by using a waler bar, which allows for quick form erection as well as efficient form stripping operations.

\section*{Quick Strip Ty}

AR Quick Strip Tys are available for wal thicknesses ranging from 100 mm to 750 mm (4" to 30") and are from 100 mm to 750 mm and bracing requirements.
To order, please specify the following information
EXAMPLE
Name ...ck Strip Ty
Length wall thickness
Quantity 550

APPROXIMATE SAFE
WORKING LOAD
\(5 \mathrm{kN}(1,150\) LBS)
2:1 Safety Factor

\section*{Quick Strip Corner Hinges}

AR Quick Strip Corner Hinges provide an alternative method to achieving corner details. Hinges are secured to the Form Ply by using a simple carriage bolt. The hinges allow for a \(15 \mathrm{~mm}\left(5 / 8^{\prime \prime}\right)\) smooth rod or rebar to pass through, holding the forming securely in place. The corner hinges are designed to work for both inside and outside corners

\section*{To order, please specify \\ the following information}

EXAMPLE
Name..... ... Corner Hinges

\section*{Waler Bar}

The AR Quick Strip Ty Waler Bar is used to secure the Quick Strip Tys and form panels in place. The Waler Bar overlaps the adjacent edge of the form ply to increase the wall stability when pouring concrete. The Waler Bars are \(6 \mathrm{~mm} \times 20 \mathrm{~mm} \times 2,400 \mathrm{~mm}\left(1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \times 8^{\prime}\right)\) and are mad from high quality carbon steel with milled edges for smooth installation
```

    To order, please specity
    the follov
    EXAMPL
Name ...

```


\section*{Quick Strip Form Panel Construction}

Form panels are easily built. Rout \(1 / 4 " \times 1\) " ty slots in \(3 / 4\) " plywood. A template out of \(1 / 4\) plywood \(6 \times 7\) cut-outs centered over the location where the ty slots are to be cut. A 6 " \(\times 6\) " \(\times 1 / 4\) " block fastened to the face of an electric router using a \(1 / 4^{\prime \prime}\) carbide bit will cut the ty slots the required size, \(1 / 4^{\prime \prime} \times 1\) ". If desired, \(4 \times 8\) outside panels may be used

TE: AR Quick Strip Tys can be used without plywood panels, if plywood panels, if
desired. Tys can be desired. Tys can be
slipped between common board and steel bars set vertically, eliminating most of the nailing and walering required.

Please consult your local AR Technical Representative or our Technical Department for Ty spacing.

Corners are made from 3/4" plywood, and hinges supplied by AR. Corner shown is the standard 2 and works best on most jobs. Corners are connected by inserting a \(5 / 8\) " rod through the hinges.

\section*{Residential Ty}

The AR Residential Ty is designed for modular forming systems utilizing 1-1/8" plywood. Crimped wires are designed to be secured in place by clips on the outside of the form and then are snapped off after the stripping of the forms using a break off tool. Available in standard sizes of \(8^{\prime \prime}-10^{\prime \prime}, 12^{\prime \prime}-14^{\prime \prime}, 16^{\prime \prime}, 18\) \(20^{\prime \prime}, 22^{\prime \prime}\) and 24 ". Additional sizes available on request.
\begin{tabular}{|c|c}
\hline Wall Thickness & Box Qty \\
\hline \(8^{\prime \prime}\) & \\
\hline \(9^{\prime \prime}\) & \\
\hline \(10^{\prime \prime}\) & 250 \\
\(12^{\prime \prime}\) & \\
\hline \(13^{\prime \prime}\) & \\
\hline \(144^{\prime \prime}\) & \\
\hline \(16^{\prime \prime}\) & \\
\hline \(18^{\prime \prime}\) & 100 \\
\hline \(20^{\prime \prime}\) & \\
\hline \(22^{\prime \prime}\) & \\
\hline 24 & \\
\hline
\end{tabular}

\section*{Residential Ty Accessories}

AR offers the supporting accessories used in 1-1/8" plywood modular forming. Standard \(6^{\prime \prime}\) latch, top waler and tie breaker tool, along with other accessories are available.

\section*{Steel Ply Forming System}

\section*{X-Flat Ty}

The AR X-Flat Ty is designed to be used with modular form systems. Used in conjunction with a wedge bolt, it creates a secure form tie. The AR X-Flat Ty comes with a standard \(1 / 4^{\prime \prime}\) set back. Available for \(8 ", 10 "\) and 12 " wall sizes, additional wall sizes available on request.
\begin{tabular}{c|c}
\hline Wall Size & SWL (lbs) \\
\hline \(8^{\prime \prime}\) & 3,000 \\
\hline \(10^{\prime \prime}\) & 3,000 \\
\hline 12 " & 3,000
\end{tabular}

APPROXIMATE SAFE WORKING LOAD 2:1 Safety Factor

Stacking Ty

The AR Stacking Ty, also referred to as "Snapie Ty", is used in ligh duty \(1-1 / 8^{\prime \prime}\) plywood forming systems. Available in \(5-5 / 8^{\prime \prime}\) to 12 " sizes. Additional sizes available on request.

\begin{tabular}{|c|c|c|c|}
\hline Plywood Size & Size & SWL (Ibs) & Box Qty \\
\hline \multirow{8}{*}{1-1/8"} & 5-5/8" & \multirow{8}{*}{1,500} & \multirow{8}{*}{100} \\
\hline & \(6^{\prime \prime}\) & & \\
\hline & 7-5/8" & & \\
\hline & 8" & & \\
\hline & \(9 "\) & & \\
\hline & 10" & & \\
\hline & 11-5/8" & & \\
\hline & \(12^{\prime \prime}\) & & \\
\hline
\end{tabular}

APPROXIMATE SAFE WORKING LOAD 2:1 Safety Factor

\section*{Spreader Cleat}
\(\leftrightarrow_{\text {PLYWOOD }}\)

The AR Spreader Cleat is used to spread and hold the top and bottom of forms during concrete pour. The nail holes can be used to secure the cleats to the form. Available in \(6^{\prime \prime}-12^{\prime \prime}\) standard sizes, for use with \(3 / 4\) and \(1-1 / 8^{\prime \prime}\) plywood systems. Additional sizes available on request.

\begin{tabular}{l|l|l|l}
\hline Plywood Size & Size & SWL (lbs) & Box Qty \\
\hline
\end{tabular}

1-1/8"
\begin{tabular}{|c|}
\hline \(5-5 / 8^{\prime \prime}\) \\
\hline \(6^{\prime \prime}\) \\
\hline \(7-5 / 8^{\prime \prime}\) \\
\hline \(8^{\prime \prime}\) \\
\hline \(9{ }^{\prime \prime}\) \\
\hline \(100^{\prime \prime}\) \\
\hline \(11-5 / 8^{\prime \prime}\) \\
\(12 "\) \\
\hline
\end{tabular}

1,500
100

\section*{Flatwork}

\section*{K-Form PVC Form}

K-FORM is a lightweight PVC cast in place formwork, replacing steel and wood forms where control joints are needed. The predrilled 1" holes on the vertical wall allow for locating dowel bars, and the holes on the horizontal surface are used for anchoring and the holes on the horizontal surface are used for anchorin
with mortar. This all-in-one screed rail system is easy to use and is designed to save time and labour on the job site. Once concrete is cured, they can be left in place, no need to remove and clean. K-Forms are available in 2 ", 4 " and 6 " heights and standard \(8^{\prime}\) length. Custom sizes and length can be requested.

\section*{Pin Pocket}

The AR Pin Pocket, also referred to as "curb clamp", is a strong and durable clamp used for securing pins and forming stakes to the wood form. Coated with black pain for corrosion protection. Available 40 pieces per box.

\section*{Form Stake}

AR Form Stakes are manufactured from high quality steel with a sharp point to minimize rock deflection. Form Stakes are available in \(20 \mathrm{~mm}\left(3 / 4{ }^{4 \prime}\right)\) and \(22 \mathrm{~mm}\left(7 / 8^{\prime \prime}\right)\) diameters and in standard lengths of \(450 \mathrm{~mm}, 600 \mathrm{~mm}\), 750 mm and \(900 \mathrm{~mm}\left(18^{\prime \prime}, 24\right.\) ", 30 " and 36 "). The Form Stake is equipped with spiral-patterned nail holes for use as form pins.
```

To order, please specify
the following information
EXAMPLE
Name ........................ Form Stake
Diameter
Length ...
$$
\begin{array} { r } { . . . 2 4 " } \\ { + 4 } \\ { \hline } \end{array}
$$

```

\section*{Continuous Threaded Lagstud}

The Acrow-Richmond Lagstud is perhaps the most versatile of all the members of the AR Tyscru family. This versatile product can be used in combination with the complete line of Tyscru products. Continuous Threaded Lagstud is available in both mild steel and high tensile in 3 m (\(10^{\prime}\)) and \(3.6 \mathrm{~m}\left(12^{\prime}\right)\) lengths respectively. Field cutting may be accomplished with bolt cutters or carborundum blades.
The Lagstud is particularly adaptable in combination with Tyscrus to make adjustable Tys, embedded in concrete or rock as an adjustable anchorage for the Tyscru, or in combination with Handle Lagnuts as an emergency lagstud bolt.
 WORKING LOAD 2:1 Safety Factor
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Diameter in (mm)} & \multicolumn{4}{|c|}{Mild Steel} & \multicolumn{4}{|c|}{High Tensile Steel} \\
\hline & Ultimate lbs & & Safe Working lbs & ing Loads (kN) & Ultimate lbs & Loads (kN) & Safe Working lbs & \begin{tabular}{l}
Loads \\
(kN)
\end{tabular} \\
\hline 1/2 (13) & 15,000 & (70) & 7,000 & (33) & 18,000 & (80) & 9,000 & (40) \\
\hline 3/4 (20) & & & & & 36,000 & (160) & 18,000 & (80) \\
\hline 1 (25) & 50,000 & (220) & 25,000 & (110) & 75,000 & (335) & 37,500 & (165) \\
\hline 11/4 (32) & 74,000 & (330) & 37,000 & (165) & 120,000 & (530) & 49,000* & (216)* \\
\hline \(11 / 2\) (38) & Contac & the AR & De & ent for & & & & \\
\hline
\end{tabular}

When using 32 mm (11/4") High Tensile Lagstud, use double nuts to obtain full capacity of Rod, \(265 \mathrm{kN}(60,000 \mathrm{lbs})\).
LAGSTUD FOR EMBEDDED ANCHORS
\begin{tabular}{|c|c|c|c|c|}
\hline Diameter & \multicolumn{2}{|l|}{Approx. Safe Working Loads @ 2:1} & \multicolumn{2}{|l|}{Embedment "H"} \\
\hline in (mm) & lbs & (kN) & \[
\underset{\text { in }}{1,000 \mathrm{psi}} \underset{(\mathrm{~mm})}{(6.9 \mathrm{MPa})}
\] & \[
\underset{\text { in }}{2,000} \underset{(\mathrm{~mm})}{(13.8 \mathrm{MPa})}
\] \\
\hline 1/2 (13) & 4,500 & (20) & 16 (408) & 12 (304) \\
\hline 1/2 (13) & 6,750 & (30) & 20 (508) & 15 (378) \\
\hline 3/4 (20) & 9,000 & (40) & 24 (609) & 18 (458) \\
\hline 1 (25) & 13,500 & (60) & 32 (816) & 24 (609) \\
\hline 1 (25) & 18,000 & (80) & 40 (1,020) & 30 (760) \\
\hline \(11 / 4\) (32) & 27,000 & (120) & 40 (1,020) & 30 (760) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline To order, please specify the following information \\
\hline EXAMPLE \\
\hline Name Continuous Threaded Lagstud \\
\hline Type \\
\hline Diameter \(13 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)\) \\
\hline Length \(3.6 \mathrm{~m}\left(12^{\prime}\right)\) \\
\hline Grade of Steel High Tensile \\
\hline antity \\
\hline
\end{tabular}

\section*{Continuous Threaded Lagstud}

Lagstud Bolt

AR Lagstud Bolts are threaded for the coil of an AR Tyscru or insert. Available in \(1 / 2^{",}, 3 / 4\) ", 1 " and \(11 / 4^{" \prime}(13 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}\) and 32 mm) diameters and lengths as required in 2" (50 mm) increments. All Lagstud Bolts have a hexagon nut welded to it as an integral head, and should be used with a running nut, handle lagnut or wingnut as shown.

APPROXIMATE SAF WORKING LOAD 2:1 Safety Factor
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Diameter \\
in (mm)
\end{tabular}} & \multicolumn{2}{|l|}{Mild Steel} & \multicolumn{2}{|l|}{High Tensile} \\
\hline & lbs & (kN) & lbs & (kN) \\
\hline 1/2 (13) & 7,000 & (33) & 9,000 & (40) \\
\hline 3/4 (20) & N/A & N/A & 18,000 & (80) \\
\hline 1 (25) & 25,000 & (110) & 37,500 & (165) \\
\hline \(11 / 4 \quad\) (32) & 37,500 & (165) & 49,000* & \\
\hline \(11 / 2\) (38) & \multicolumn{4}{|l|}{Contact the NCA Technical Department for details.} \\
\hline
\end{tabular} be sed with running nut, handle lagnut or wing nut

BACK

\section*{Tyscru}

The AR Tyscru is an extra strong, resistance welded Ty designed to take the abuse encountered in medium and heavy concrete construction. An extremely simple Ty, capable of many combinations and uses in the field, it may be used with or without Tycones or combined with Continuous Threaded Lagstud to form an Adjustable Tyscru

Determining your Tyscru Requiremen
Tyscru: The Tyscru length is determined by subtracting each set back requirement from the wall thickness at the tie location. Lagstud or lagstud bolt length is determined by adding the form thickness to the set back on one sid plus the Tyscru coil length plus \(13 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)\). Lagstud or Lagstud Bolt are furnished standard in even \(50 \mathrm{~mm}\left(2^{\prime \prime}\right)\) lengths. Select the next higher full unit over actual length determined. For extreme adjustment requirements 25 mm to 50 mm (1 " to \(2^{\prime \prime}\)) may be added.
Wall Thickness: Distance between the form facings at the Tyscru location
Set Back: Required distance of Ty metal from the finished concrete face with or without the use of Tycones. Set back may be required at one or both faces, usually both. Total set back is the sum of set backs from both wal faces. When Tycones are used, their length is equal to the required set back.

Form Thickness: Distance measured between the finished concrete surface to the outside face of the flat washer includes plywood sheeting material, studs, wales and washer.

Coil Penetration: Distance the Lagstud should penetrate the Tyscru coil length plus \(13 \mathrm{~mm}\left(1 / 22^{\prime \prime}\right)\).
General instructions: For extreme penetration or extended concrete curing requirements, the Lagstud or Lagstud Bolt is normally greased to facilitate removal. To break the bond and permit easy removal, it is a good practice to turn the lagstud or lagstud bolt a quarter to one-half turn, in and out, eight to twelve hours after the concrete has been poured.

Tyscru

\section*{Battered Wall Form}

Plumb Wall Form

\footnotetext{
Refer to
}

\section*{Tyscru}

\({ }^{2}\) *Aviable as as special order.
SWL is based on an anproximate \(2: 1\) F Factor of Satety
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Minimum Sizes of Tyscrus} \\
\hline Description
Tyscru Diameter & \multicolumn{2}{|l|}{Standard} & \multicolumn{2}{|l|}{Cone-Tight} & \multicolumn{2}{|l|}{Standard Waterseal} & \multicolumn{2}{|l|}{Cone-Tight Waterseal} \\
\hline 13 mm (\(/ 2 / 2\)) T2-4.5M & 100 mm & (4") & 100 mm & (4") & 150 mm & (6") & 150 mm & (6") \\
\hline \(13 \mathrm{~mm} \mathrm{(1/2)}{ }^{\text {(2) }}\) T2-6.7M & 100 mm & (4") & 100 mm & (4") & 150 mm & (6") & 150 mm & (6") \\
\hline \(20 \mathrm{~mm} \mathrm{(3/4)}{ }^{\text {(2)-7.6M }}\) & 100 mm & (4") & 150 mm & (6") & 150 mm & (6") & 200 mm & (8") \\
\hline \(20 \mathrm{~mm} \mathrm{(34)}{ }^{\text {a }}\) T2-9M & 100 mm & (4") & 150 mm & (6") & 150 mm & (6") & 200 mm & (8") \\
\hline 25 mm (1") T2-13.5M & 150 mm & (6") & 150 mm & (6") & 200 mm & (8") & 200 mm & (8") \\
\hline 25 mm (1") T4-18M & 150 mm & (6") & 150 mm & (6") & 200 mm & (8") & 200 mm & (8") \\
\hline \(20 \mathrm{~mm} \mathrm{(344)}{ }^{\text {(4-4-8M }}\) & 150 mm & (6") & 150 mm & (6") & 200 mm & (8") & 200 mm & (8") \\
\hline 25 mm (1") T4-27M & 150 mm & (6") & 150 mm & (6") & 250 mm & (10") & 300 mm & (12") \\
\hline 25 mm (1") T4-37M & 200 mm & (8") & 150 mm & (6") & 250 mm & (10") & 300 mm & (12") \\
\hline 32 mm (114") T4-27M & 150 mm & (6") & 150 mm & (6") & 250 mm & (10") & 300 mm & (12") \\
\hline \(32 \mathrm{~mm}(11 / 4)\) T4-37M & 200 mm & (8") & 200 mm & (8") & 250 mm & (10") & 300 mm & (12") \\
\hline
\end{tabular}

The minimum Lagstud Bolt length required is equal to the sum of the flat washer, waler studs, form ply
set \(b\)
set back and the coil length plus \(13 \mathrm{~mm}\left(1 / \Sigma^{\prime \prime}\right)\).

\section*{Standard Tyscru}

The AR Standard 2-Strut Tyscru is available in 13 mm , 20 mm and \(25 \mathrm{~mm}\left(1 / 2^{\prime \prime}, 3 / 4\right.\) and \(\left.1^{\prime \prime}\right)\) nominal diameters and may be fabricated to required length to the nearest \(3 \mathrm{~mm}(1 / 8)\)). The AR Standard 4-Strut Tyscru is available in 20 mm , 25 mm and \(32 \mathrm{~mm}\left(3 / 4^{\prime \prime}, 1^{\prime \prime}\right.\) and \(\left.11 / 4^{\prime \prime}\right)\) nominal diameters and may be fabricated to required length to the nearest \(3 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right)\).
```

To order, please specity
EXAMPLE

```
Name
\(\qquad\) Standard Tyscru Type
Nominal Diameter. 2-strut 4.5 M
\(13 \mathrm{~mm}(1 / 2)\) Tyscru length \(560 \mathrm{~mm}\left(22^{\prime \prime}\right)\) Strength \(20 \mathrm{kN}(4,500 \mathrm{lbs}\).) Quantity.

APPROXIMATE SAFE WORKING LOAD see table on page 51 2:1 Safety Factor

\section*{Cone-Tight Tyscru}

The AR Cone-Tight Tyscru has the same capacities as the Standard 2-Strut and 4-Strut Tyscru and is available in 13 mm \(20 \mathrm{~mm}, 25 \mathrm{~mm}\) and \(32 \mathrm{~mm}\left(1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}, 1\right.\) " and \(11 / 4\) ") nominal diameters in a minimum length of \(100 \mathrm{~mm}\left(4^{\prime \prime}\right)\). Cone-Tight Tycones are readily attached to the protruding coils. For coil protrusion lengths see table below.

\footnotetext{
Refer to the Appendix for General Guidelines on page 96, Lateral Pressure information on page 102
}
and typical Medium and Heavy Formwork beginning on page 108 . See page 51 for approximate safe working load System Chart.

\section*{Waterseal Tyscru}

The AR Waterseal Tyscru has the same capacity as the standard 2-Strut and 4-Strut Tyscru. The Waterseal Tyscru is available as standard or cone tight in \(13 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}\) and \(32 \mathrm{~mm}(1 / 2 "\) ", \(3 / 4\) ", 1 " and \(1^{1 / 4}\) ") nominal diameters in a minimum length of 100 mm (4) for a Cone-Tight Tyscru and \(150 \mathrm{~mm}\left(6^{\prime \prime}\right)\) for a Waterseal Tyscru. AR uses a unique manufacturing process to fuse a water stop plastic washer to each wire strut. The plastic washer will break the surface continuity and prevent seepage of water along the struts.

\section*{Adjustable Tyscru}

> APPROXIMATE SAFE WORKING LOAD
\begin{tabular}{l}
To order, please specify the following information \\
EXAMPLE
\end{tabular}
\begin{tabular}{rl}
WORKING LOAD
\end{tabular}
Name ..erseal Tyscru
see table on page 42

The AR Adjustable Tyscru, consisting of two Tyscrus (cone tight one end) and one Continuous Threaded Lagstud, is available in \(13 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}\) and 32 mm diameters (\(1 / 22^{1 "}, 3 / 4\) ", \(1^{1 "}\) and \(11 / 4\) ") diameters.

Heavy Tyscru (4-Strut and 6-Strut)

The AR 6-Strut Heavy Tyscru is available in 32 mm and \(38 \mathrm{~mm}\left(11 / 4\right.\) " and \(\left.11 / 2^{\prime \prime}\right)\) nominal diameter and may be fabricated to required lengths to the nearest \(3 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right)\). The AR 6-Strut Heavy Tyscru is available as a standard or water seal Tyscru for both diameters. A 32 mm (\(11 / 4^{\prime \prime}\)) Cone Tight 6 -strut Heavy Tyscru is also available.

APPROXIMATE SAFE
WORKING LOAD
see table on page 51
2:1 Safety Factor

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{4-STRUT} \\
\hline \multirow[t]{2}{*}{Diameter} & \multirow[b]{2}{*}{Type} & \multicolumn{2}{|l|}{Safe} \\
\hline & & kN & (lbs) \\
\hline *13 mm (1/2") & 9 M & 40 kN & (9,000 lss) \\
\hline 20 mm (34) & 18 M & 80 kN & (18,000 lbs) \\
\hline 25 mm (1") & 18 M & 80 kN & (18,000 lbs) \\
\hline 25 mm (1) & 27 M & 120 kN & (27,000 lbs) \\
\hline 25 mm (1) & 37 M & 165 kN & (37,000 lbs) \\
\hline 32 mm (\(11 / 4 \mathrm{c}\) & 27M & 120 kN & (27,000 lbs) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{6-STRUT} \\
\hline Diam & & Load \\
\hline mm (in) & kN & (lbs \\
\hline 32 mm (11/4") & 200 kN & (45,000 lbs) \\
\hline \(38 \mathrm{~mm}(11 / 2)\) & 245 kN & (55,000 lbs \\
\hline
\end{tabular}

\section*{Ty-Anchor (2-Strut and 4-Strut)}

The AR Ty-Anchor is probably the most common re-anchorage device used. It has been the workhorse of the industry and well proven through the years. It is well suited to use even in the very low strength concretes. See the appendix for estimated working and ultimate load ratings in various concrete strengths.

> APPROXIMATE SAFE
> WORKING LOAD
> see table on page 51
> 2:1 Safety Factor
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{To order, please specify the following information} \\
\hline EXAMPLE & \\
\hline Name & Ty-Anchor \\
\hline Type & 2-Strut \\
\hline Diameter . & 25 mm (1") \\
\hline Length & . 300 mm (12") \\
\hline Quantity & 200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Diameter & Strut & Length "L" & Set back "S" & IT & \({ }^{\text {a }}\) & c* \\
\hline 25 mm (19) & 2 & 300 mm (12") & & \(185 \mathrm{~mm}\left(7 / 44^{\prime \prime}\right)\) & \(165 \mathrm{~mm}\left(62^{1 / 2}\right)\) & \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) \\
\hline \(32 \mathrm{~mm}\left(11 / 4{ }^{\text {" }}\right.\)) & 2 or 4 & 380 mm (15") & & 195 mm (734") & 175 mm (7") & \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) \\
\hline \(32 \mathrm{~mm}(11 / 4)^{\prime \prime}\) & 2 or 4 & \(450 \mathrm{~mm}(171 / 2)\) & \(100 \mathrm{~mm}\left(4^{\prime \prime}\right)\) & \(195 \mathrm{~mm}\left(734^{\prime \prime}\right)\) & \(175 \mathrm{~mm}\left(7^{\prime \prime}\right)\) & \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) \\
\hline \(32 \mathrm{~mm}\left(11 / 4{ }^{\text {a }}\right.\)) & 2 or 4 & 500 mm (20") & & 195 mm (7344) & 175 mm (7゙) & \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) \\
\hline \(38 \mathrm{~mm}(11 / 2)\) & 2 or 6 & \(600 \mathrm{~mm}\left(24{ }^{\text {") }}\right.\) & & \(215 \mathrm{~mm}(8 / 2 / 2)\) & \(190 \mathrm{~mm}\left(7 / 2 /{ }^{\prime \prime}\right)\) & \(25 \mathrm{~mm}\left(1{ }^{\text {(1) }}\right.\) \\
\hline \multicolumn{7}{|l|}{*Set back can be increased for greater strength. *Clearance between setting bolt and final bor} \\
\hline
\end{tabular}

Safe Working Load

\footnotetext{
Refer to the Appendix for General Guidelines on page 96, Lateral Pressure information on page 102
}
APPROXIMATE ULTIMATE CAPACITIES

\section*{Ty-Frame}

The AR Standard Ty-frame consists of four coil welded to a truss-like arrangement of wire struts with a leg at the front face extending down to the soffit, for support of the riser form. Ty-frames are designed for the individual riser and seat bracket condition.

The AR Alternate Ty-frame may be supplied in its alternate form, at our discretion, if job conditions warrant. This alternate form consists of a series of Tyloops, or Tyloops and Tyscru, welded to a strong vertical support member.

The AR Fill Type Ty-frame is made to fit the job condition where the riser is poured on fill. Usually manufactured in multiple units to support 2,3 , or 4 seat brackets with one unit.

The AR Sloping Slab Ty-frame consists of Tyscrus welded together in exact positions to support the riser form.
```

To order, please specify
the following information
EXAMPLE
Name ....................alternate Ty-Frame
Supply a sketch or complete details of
risers and seat bracket
Quantity

```


Tybow Anchor (2-strut, 4-strut and 6-strut)

The AR Tybow Anchor combines the advantages of the Tyscru coil with the efficiency of the bow shaped continuous threaded struts to make a highly effective anchorage device. Used with lagstud bolts or He-Bolts, the Ty-Bow is applicable even in the lowest concrete strengths. See the appendix for estimated working and ultimate load ratings in various concrete strengths.

APPROXIMATE SAFE WORKING LOADS
2:1 Safety Factor
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Anchor } \\
& \text { Type }
\end{aligned}
\] & Diameter & Length "L" & Set back "S" & IT & \({ }^{\text {a }}\) & \({ }^{\text {c* }}\) & Safe V & \begin{tabular}{l}
Working Load \\
(lbs)
\end{tabular} \\
\hline 2-Strut & \(20 \mathrm{~mm}, 25 \mathrm{~mm}, 32 \mathrm{~mm}\) \(\left(34^{\prime \prime}, 1^{\prime \prime}, 11^{\prime \prime}\right)\) & 450 mm (18) & \multirow{3}{*}{\(100 \mathrm{~mm}\left(4^{\prime \prime}\right)\)} & \(195 \mathrm{~mm}\left(7344^{\prime \prime}\right)\) & 175 mm (7") & \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) & 67 kN & (15,000 lbs) \\
\hline 4-Strut & \[
\begin{aligned}
& 25 \mathrm{~mm}, 32 \mathrm{~mm} \\
& \left(1^{\prime \prime}, 114^{\prime \prime}\right)
\end{aligned}
\] & \[
\begin{aligned}
& 450 \mathrm{~mm}\left(18^{\prime \prime}\right) \\
& 610 \mathrm{~mm}\left(24 / 8^{\prime \prime}\right)
\end{aligned}
\] & & \(222 \mathrm{~mm}(83 / 8)^{\prime \prime}\) & \(190 \mathrm{~mm}(77 / 2)\) & \(32 \mathrm{~mm}(114 \mathrm{4})\) & 134 kN & (30,000 lbs) \\
\hline 6 -Strut & \(38 \mathrm{~mm}(11 / 2)\) & 600 mm (24") & & \(230 \mathrm{~mm}\left(9^{\prime \prime}\right)\) & \(190 \mathrm{~mm}\left(7 / 2^{\prime \prime}\right)\) & \(38 \mathrm{~mm}\left(11 / 2{ }^{\prime \prime}\right)\) & 200 kN & (45,000 lbs) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{To order, please specify the following information} \\
\hline EXAMPLE & \\
\hline Name & .. Tybow Anchor \\
\hline Type & .. 2-Strut \\
\hline Diameter..... & .. \(32 \mathrm{~mm}(1114\) ") \\
\hline Length & 450 mm (18") \\
\hline Quantity & 20 \\
\hline
\end{tabular}

\section*{Lagnut}

AR Lagnuts are manufactured with Lag thread and are available in \(1 / 2^{\prime \prime}\) through \(11 / 2^{\prime \prime}\) (13 mm through 38 mm) diameters. Warning: when utilizing Lagnuts on through-Ty applications, such as Continuous Threaded Lagstud, double nuts are required to develop ultimate loads for \(11 / 4\) " (32 mm) applications. For all other applications, AR Lagnuts are designed to develop the full published ultimate load of AR Lagstud.
APPROXIMATE SAFE WORKING LOADS

To order, please specify the following information
EXAMPLE
Name ...e..")
Diameter
Quantity... 200
"When using \(11 / 4 "(32 \mathrm{~mm})\) High Tensiel Lagstud, use double nuts to obtain full capacity of Rod, \(60,000 \mathrm{lbs}(265 \mathrm{kN})\)

\section*{Handle Lagnut}

AR Handle Lagnuts are made of hex nuts welded to substantial wire loops Available in \(1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}, 1^{\prime \prime}\) and \(11 / 4^{\prime \prime}(13 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}\) and 32 mm) diameters with lag thread. The handle eliminates the need for using a wrench and makes installation and/or stripping fast and simple.

APPROXIMATE SAFE WORKING LOADS
2:1 Safety Factor
\begin{tabular}{|c|c|c|c|}
\hline Bolt Diameter in (mm) & Threads per inch (TPI) & Handle length from nut centre in (mm) & Safe Working Load
lbs (kN) \\
\hline 1/2 (13) & 6 & (125) & 9,000 (40) \\
\hline 3/4 (20) & \(41 / 2\) & \(4^{7 / 8} \quad(120)\) & 18,000 (80) \\
\hline 1 (25) & \(31 / 2\) & \(51 / 2 \quad\) (140) & 37,500 (167) \\
\hline 11/4 (32) & \(31 / 2\) & \(83 / 8\) (210) & 57,500 (256) \\
\hline \(11 / 2\) (38) & \multicolumn{3}{|l|}{Contact the AR Technical Department for details.} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{7}{*}{MPLE} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Coil Nuts}

AR Coil Nuts Two standard coil nuts of each size equal the strength of one heavy duty tall coil nut of the same size.

APPROXIMATE SAFE WORKING LOADS 2:1 Safety Factor
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
D \\
Size
\end{tabular} & \begin{tabular}{c}
H \\
Size
\end{tabular} & \begin{tabular}{c}
AC \\
Across Flats
\end{tabular} & \begin{tabular}{c}
Box \\
Oty
\end{tabular} & \begin{tabular}{c}
Weight per 100pcs \\
lbs
\end{tabular} & \begin{tabular}{c}
APPROXIMATE SAFE \\
WORIING LOAD \\
lbs
\end{tabular} \\
\hline \(1 / 2^{\text {" }}\) & 0.484 & 0.863 & 500 & 6.2 & 6,000 \\
\hline \(5 / 8^{\text {" Finished }}\) & 0.547 & 0.930 & 500 & 11.4 & 8,000 \\
\hline \(3 / 4\) " inished & 0.641 & 1.107 & 500 & 11.4 & 9,000 \\
\hline \(3 / 4^{4}\) Heavy & 0.734 & 1.231 & 250 & 17.8 & 9,000 \\
\hline \(7 / 8^{\prime \prime}\) & 0.859 & 1.416 & 250 & 27.6 & 16,000 \\
\hline 1 " \(^{\prime \prime}\) & 0.984 & 1.600 & 150 & 15.0 & 18,000 \\
\hline \(1-1 / 4^{\prime \prime}\) & 1.219 & 2.123 & 70 & 75.2 & 27,000 \\
\hline \(1-1 / 2^{\prime \prime}\) & 1.469 & 2.682 & 40 & 122.6 & 40,000 \\
\hline
\end{tabular}

\section*{Wing Nut}

AR Wing Nuts are manufactured with a lag thread and are used with AR She-Bolts or Taper-Tys. Fabricated in 20 mm 25 mm and \(32 \mathrm{~mm}\left(3 / 4^{\prime \prime}, 1^{\prime \prime}\right.\) and \(\left.11 / 4^{\prime \prime}\right)\) diameters.

Wing Nut -
\begin{tabular}{cc|cc}
\hline \multicolumn{2}{c|}{ Size } & \multicolumn{2}{c}{ Ultimate Tensile Load } \\
in & \(\mathbf{(m m)}\) & lbs & (kN) \\
\hline \(3 / 4\) & \((20)\) & 40,000 & \((178)\) \\
\hline 1 & \((25)\) & 82,000 & \((365)\) \\
\hline \(1^{1 / 4}\) & \((32)\) & 115,000 & \((512)\) \\
& & & \\
\hline
\end{tabular}

To order, please specity
the following information
the following information
EXAMPLE Quantity ... Wing Nut \(25 \mathrm{~mm}\left(1^{\prime \prime}\right)\)

\section*{Flat Washer}

AR Flat Washers are made from flat steel plate. For optimization, AR Washers are square. For best results the washer should be placed so that its length runs parallel to the walers and the gap or space spanned by the washer should not exceed the physical bolt diameter plus \(1 / 4^{\prime \prime}(6 \mathrm{~mm})\).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Bolt } \\
& \text { Size }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Plate Diameter } \\
& (\mathrm{mm})
\end{aligned}
\]} & \multicolumn{10}{|c|}{distance between waler} \\
\hline & & 25 mm & 32 mm & 35 mm & 45 mm & 50 mm & 57 mm & 63 mm & 70 mm & 75 mm & 82 mm \\
\hline 13 & \(95 \times 95 \times 6\) & 30 kN & 16 kN & 11 kN & 8.5 kN & 7.1 kN & & 4.9 kN & & & \\
\hline 20 & \(125 \times 125 \times 10\) & & 111 kN & 62 kN & 40 kN & 31 kN & 25 kN & & 18 kN & & \\
\hline 20 & \(150 \times 150 \times 13\) & & 266 kN & 146 kN & 98 kN & 71 kN & 60 kN & & 43 kN & & \\
\hline 25 & \(125 \times 125 \times 10\) & & & 169 kN & 169 kN & 106 kN & 80 kN & 62 kN & & 45 kN & \\
\hline 25 & \(150 \times 150 \times 13\) & & & 169 kN & 169 kN & 106 kN & 80 kN & 62 kN & & 45 kN & \\
\hline 32 & \(150 \times 150 \times 13\) & & & & 165 kN & 165 kN & 120 kN & 85 kN & 66 kN & & 45 kN \\
\hline 32 & \(200 \times 200 \times 19\) & & & & 555 kN & 555 kN & 405 kN & 290 kN & 220 kN & & 155 kN \\
\hline 38 & \multicolumn{11}{|l|}{Contact AR Technical Department for details.} \\
\hline
\end{tabular}

\section*{Batter Washer}

AR Batter Washers are designed to hold a lagstud at any angle up to 45 without need for wedging. Nail holes are provided for attaching the washers to the walers or strongbacks. Multiple lumber grips on the underside preven slippage when the washers are not nailed. Available for all lagstud sizes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Diameter} & \multicolumn{2}{|l|}{Washer Dimensions} & \multicolumn{2}{|l|}{Washer Height} \\
\hline mm & (in) & mm & (in) & mm & (in) \\
\hline 13 mm & (1/2") & 89 mm x 89 mm & (31/2" \(\times 31 / 2\) ") & 25 mm & (1) \\
\hline 22 mm & (1/8") & \(125 \mathrm{~mm} \times 140 \mathrm{~mm}\) & (\(5^{\prime \prime} \times 5\) 5/2") & 36 mm & (17/6") \\
\hline 25 mm & (1) & \(165 \mathrm{~mm} \times 165 \mathrm{~mm}\) & (\(\left.61 / 2^{\prime \prime} \times 6 \times 1 / 2^{\prime \prime}\right)\) & 41 mm & (15/8") \\
\hline 29 mm & \(\left(1^{1 / 8} 8^{\prime \prime}\right)\) & \(165 \mathrm{~mm} \times 165 \mathrm{~mm}\) & (\(\left.61 / 2^{\prime \prime} \times 6 \times 1 / 2^{\prime \prime}\right)\) & 39 mm & (19/6") \\
\hline 35 mm & \(\left(1^{13 / 8}{ }^{1 /}\right.\) & \(170 \mathrm{~mm} \times 170 \mathrm{~mm}\) & (634" \(\times 634^{\prime \prime}\)) & 45 mm & (1344) \\
\hline 38 mm & (11/2) & \(175 \mathrm{~mm} \times 175 \mathrm{~mm}\) & (7" \(\times\) 7") & 45 mm & (1384) \\
\hline 41 mm & (\({ }^{15 / 8}{ }^{\prime \prime}\) & \(175 \mathrm{~mm} \times 175 \mathrm{~mm}\) & (7" \(\times 7\) ") & 45 mm & (134) \\
\hline
\end{tabular}

Lag Thread Coupler

AR Lag Thread Couplers are used to couple two Lag Rods of the same diameter. The Lag Thread Coupler is used with lag thread systems and is manufactured with a positive stop.
\[
\begin{aligned}
& \text { APPROXIMATE SAFE } \\
& \text { WORKING LOADS 2:1 }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rod Diameter & Outside Diameter & Overall Length & Type & kN & (lbs) \\
\hline \(13 \mathrm{~mm}(1 / 2)\) & \(20 \mathrm{~mm} \mathrm{(34)}\) & 50 mm (2") & 9 M & 40 kN & 9,000 lbs \\
\hline \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) & \(30 \mathrm{~mm}(11 / 8)\) & 75 mm (3") & 18M & 80 kN & 18,000 lbs \\
\hline 25 mm (1") & \(38 \mathrm{~mm}(11 / 2)\) & \(100 \mathrm{~mm}\left(4^{\prime \prime}\right)\) & 37.5M & 167 kN & \(37,500 \mathrm{lbs}\) \\
\hline
\end{tabular}

\footnotetext{
To order, please specity
EXAMPLE
Name
Rod diameter ... Lag Thread Coupler

Quantity .
}

\section*{Plastic Cone-Tight Tycone}

AR Plastic Cone-Tight Tycones are designed to engage the protruding coil of a Cone-Tight Tyscru. Actual lengths are greater than the set back requirement. See accompanying chart for dimensions.

Washer
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Tyscru Diameter} & \multicolumn{2}{|l|}{Set back} & \multicolumn{2}{|l|}{Nominal Diameter and Depth} & \multicolumn{2}{|l|}{Taper} \\
\hline mm & (in) & mm & (in) & mm & (in) & mm & (in) \\
\hline 13 mm & (1/2") & 25 mm & (1") & \(13 \mathrm{~mm} \times 35 \mathrm{~mm}\) & (1/2" \(\times 138^{3 \prime}\)) & & \\
\hline 13 mm & (12") & 38 mm & (11/2) & \(13 \mathrm{~mm} \times 48 \mathrm{~mm}\) & \(\left(1 / 2 " \times 17{ }^{\prime \prime}{ }^{\prime \prime}\right.\) & 25 mm to 32 mm & (4" to 11/4") \\
\hline 13 mm & (1/2) & 50 mm & (2") & \(13 \mathrm{~mm} \times 60 \mathrm{~mm}\) & (1/2" \(\times 238^{3 \prime}\)) & & \\
\hline 20 mm & (34") & 25 mm & (1) & \(20 \mathrm{~mm} \times 38 \mathrm{~mm}\) & (34" \(\times 1112^{\prime \prime}\)) & 38 mm to 45 mm & \((17 / 16\) to 111/6") \\
\hline 20 mm & (34") & 50 mm & (2") & \(20 \mathrm{~mm} \times 61 \mathrm{~mm}\) & (34" \({ }^{1} \times 1{ }^{1 / 2}\) ") & & \\
\hline 20 mm & (34") & 75 mm & (3") & \(20 \mathrm{~mm} \times 89 \mathrm{~mm}\) & (34" \({ }^{\prime \prime} \times 1{ }^{1 / 2}{ }^{\prime \prime}\) & & \\
\hline 25 mm & (11) & 25 mm & (1) & \(25 \mathrm{~mm} \times 38 \mathrm{~mm}\) & (1"x \(\times 1 / 2\) ") & & \\
\hline 25 mm & (11) & 50 mm & (2") & \(25 \mathrm{~mm} \times 61 \mathrm{~mm}\) & (1" \(\left.\times 22^{1 / 2}\right)\) & 48 mm to 54 mm & (\(17 / 8 \mathrm{l}\) " \(001188^{\prime \prime}\)) \\
\hline 25 mm & (11) & 75 mm & (3") & \(25 \mathrm{~mm} \times 89 \mathrm{~mm}\) & (1"x \({ }^{1 / 2}{ }^{\prime \prime}\)) & & \\
\hline 32 mm & (11/4) & 25 mm & (1") & \(32 \mathrm{~mm} \times 38 \mathrm{~mm}\) & \((11 / 4 " \times 11 / 2)\) & & \\
\hline 32 mm & (11/4) & 50 mm & (2") & \(32 \mathrm{~mm} \times 61 \mathrm{~mm}\) & \(\left(11 / 4 " \times 21 / 2^{\prime \prime}\right)\) & 57 mm to 61 mm & (21/4 \(102^{3 / 8} 8^{\prime \prime}\)) \\
\hline
\end{tabular}

\section*{Plastic Set Back Tyscru Plug}

AR Plastic Set Back Tyscru Plugs are designed to provide an easy and economical means of sealing \(13 \mathrm{~mm}, 20 \mathrm{~mm}\) and \(25 \mathrm{~mm}(1 / 2 ", 3 / 4\) " and 1 ") diameter Tycone holes at a required set back. While providing an interesting architectural effect The lastic Set Bur available on special order. The plugs may be used in exterior and/or interior applications. Additional sealing or caulking is optional.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Tyscru Plug Diameter}} & \multicolumn{2}{|l|}{Tycone Set Back} & \multicolumn{2}{|l|}{Approximate Recess} \\
\hline & & mm & (in) & mm & (in) \\
\hline \multirow{3}{*}{13 mm} & \multirow{3}{*}{(1/2")} & 25 mm & (1") & 13 mm & (1/2") \\
\hline & & 38 mm & (112") & 16 & (588) \\
\hline & & 50 mm & (2") & 20 mm & (34") \\
\hline \multirow[b]{2}{*}{20 mm} & \multirow[b]{2}{*}{\(\left.{ }^{3 / 4}{ }^{\prime \prime}\right)\)} & 25 mm & (1) & 16 mm & (5/8") \\
\hline & & 50 mm & (2") & 32 mm & (11/4) \\
\hline \multirow[b]{2}{*}{25 mm} & & 25 mm & (1) & 6 mm & (1/4") \\
\hline & (1) & 50 mm & (2") & 10 mm & (3/8") \\
\hline
\end{tabular}

\footnotetext{
To order, please specify
he following information
EXAMPLE
Name Plastic Set Back Tyscru Plug Nominal diameter \(13 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)\) Colour light gray Quantity
}
or the AR Technical Department for additional information.

To order, please specify the following information EXAMPLE
Name Plastic Cone-Tight Tycone Set back ... \(20 \mathrm{~mm}\left(3^{3} /{ }^{4}\right)\) Quantity. \(25 \mathrm{~mm}\left(\begin{array}{l}\text { (....... } \\ 200\end{array}\right.\)

\section*{Cone Removal Wrench (T-Shape and L-Shape)}

The AR Cone Removal Wrenches are designed to remove the plastic cones from Cone Tight Tyscrus. Available for 13 mm , \(20 \mathrm{~mm}, 25 \mathrm{~mm}\) and \(32 \mathrm{~mm}\left(1 / 2 ", 3 / 4\right.\) ", 1 " and \(11 / 4^{")}\)) diameter cones
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Wrench Type} & \multicolumn{2}{|l|}{Washer Dimensions} \\
\hline & mm & (in) \\
\hline T-Shape & \(13 \mathrm{~mm}, 20 \mathrm{~mm}\) & (1/2" \(\times^{3 / 4}{ }^{\text {" }}\)) \\
\hline L-Shape & \(25 \mathrm{~mm}, 32 \mathrm{~mm}\) & (1" \(\times 1 /{ }^{1 / 4}{ }^{\prime \prime}\) \\
\hline
\end{tabular}

The AR Lag Wrench is designed for tightening and removing of AR lag bolts when constructing the formwork assembly. The Lag Wrench solid \(25 \mathrm{~mm}(1\) ") diameter L-shape steel construction is equipped with a \(300 \mathrm{~mm}\left(12\right.\) ") round handle and a \(\left.140 \mathrm{~mm}\left(5^{1 / 2}\right)^{\prime \prime}\right) 90^{\circ}\) radius. The Lag Wrench is supplied as a complete unit: handle and socket. Available
```

To order, please specify
the following information
EXAMPLE
EXAMPLE
Name ..............................ag Wrench
Quantity

```

\section*{Plastic Coil Setting Plug}

The AR Lag Wrench is designed for tightening and removing of AR lag bolts when constructing the formwork assembly. The Lag Wrench solid 25 mm (1") diameter L-shape steel construction is equipped with a \(300 \mathrm{~mm}\left(12^{\prime \prime}\right)\) round handle and a \(140 \mathrm{~mm}(51 / 2)^{\prime \prime} 90^{\circ}\) radius. The Lag Wrench is supplied as a complete unit: handle and socket. Available for \(13 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}\) and \(32 \mathrm{~mm}(1 / 2 ", 3 / 4 ", 1\) " and \(11 / 4\) ") bolt size.

\section*{Lag Wrench}
```

To order, please specify
the following informatio
EXAMPLE
Name .................Cone Removal Wrench
Type .....................................T-Shape
Quantity
.......................

```

\section*{Tyloop (2-Strut)}

The AR Standard 2-Strut Tyloop (TL-2) is made of a single looped wire welded to a helix coil in 13 mm and \(20 \mathrm{~mm}(1 / 2 "\) and \(3 / 4\) ") nominal diameters. Suitable for light anchorage requirements or as emergency tie, tie down, corner tie, etc. Standard length is \(100 \mathrm{~mm}\left(4^{\prime \prime}\right)\) for \(13 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)\) diameter and \(150 \mathrm{~mm}\left(6^{\prime \prime}\right)\) for \(20 \mathrm{~mm}\left(3^{3} 4^{\prime \prime}\right)\) diameters. This unit may be fabricated in lengths to suit the job site requirements.
The AR Heavy 2-Strut Tyloop (TL-2-H) is made with heavier wire and are principally used as anchors for medium heavy construction. The standard length is \(150 \mathrm{~mm}(6)\)) for both \(13 \mathrm{~mm}\left(1 / 22^{\prime \prime}\right)\) and \(20 \mathrm{~mm}(3 / 4\) ") diameter. The Tyloop can also be fabricated in longer lengths.

To order, please specify
the following information
EXAMPLE

\section*{Flared 2-Strut Tyloop (TL2F)}

AR 2 Strut Flared Tyloops are made with the loop end flared for greater anchorage in the concrete. Standard lengths are 9" (230 mm) for \(1 / 2^{\prime \prime}(13 \mathrm{~mm})\) diameter and \(12^{\prime \prime}(305 \mathrm{~mm})\) for \(3 / 4^{\prime \prime}(20 \mathrm{~mm})\) diameter. Can be supplied in special lengths and flares to order. TO ORDER, give nominal diameter, by length, symbol and name. Example: - \(1 / 2^{\prime \prime} \times 9^{\prime \prime}\) \((13 \mathrm{~mm} \times 230 \mathrm{~mm}\)) TL2F 2 Strut Flared Tyloop.

\section*{Flared 4-Strut Tyloop (TL4)}

The AR Flared 4-Strut Tyloop is made with two looped wires welded to a helix coil Suitable for heavy form anchorage in mass concrete construction. The standard length is \(380 \mathrm{~mm}\left(1^{\prime \prime}\right)\) for \(25 \mathrm{~mm}\left(1^{\prime \prime}\right)\) and \(32 \mathrm{~mm}\left(1^{\left.1 / 4^{\prime \prime}\right)}\right.\) diameters with struts flaring to 75 mm (\(3^{\prime \prime}\)) diameters. The standard flare unit is supplied unless special size or shaped flares are requested.

\begin{tabular}{c|c}
\multicolumn{2}{c}{ Sizes } \\
\hline \multicolumn{1}{c}{ inch } & \((\mathbf{m m})\) \\
\hline \(1 /\) " \(^{\prime \prime}-6^{\prime \prime}\) & \((13-150)\) \\
\(3 / 4^{\prime \prime}-9^{\prime \prime}\) & \((20-225)\) \\
\(1 "-12^{\prime \prime}\) & \((25-300)\) \\
\(11 / 4^{\prime \prime}-15^{\prime \prime}\) & \((32-380)\)
\end{tabular}

\section*{Heavy 4-Strut Offset Flared Tyloop (TL4-H)}

The AR Offset Flared 4-Strut Tyloop is made of two looped wires welded to a helix coil The loops are flared and offset so that the center of anchorage is below the center line of the coil to distribute the load well into the concrete and still keep the coil at or near the top of the pour or other boundary restrictions.

APPROXIMATE SAFE WORKING LOADS 4:1
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{APPROXIMATE WORKING LOADS FOR TYLOOPS} \\
\hline \multirow[b]{2}{*}{Size and Type} & \multirow[b]{2}{*}{*As Tie
lbs (kN)} & \multicolumn{2}{|l|}{As an Anchor**} \\
\hline & & Tension lbs (kN) & Shear** \\
\hline TL2 \(1 / 2^{\prime \prime} \times 4\) " Standard Tyloop (\(13 \times 100\)) & 1,900 (8.5) & 1,125 (5.0) & 750 (3.5) \\
\hline TL2 \(3 / 4\) " \(\times 6\) " Standard Tyloop (\(20 \times 150\)) & 3,900 (17.5) & 2,250 (10.0) & 1,500 (7.0) \\
\hline TL2-H 3/4" \(\times 6\) " Heavy Tyloop (\(20 \times 150\)) & 5,200 (23.0) & 2,625 (12.5) & 1,875 (8.3) \\
\hline TL2F \(1 / 2 " \times 9\) " Flared Tyloop (\(13 \times 230\)) & - & 2,250 (10.0) & 750 (3.5) \\
\hline TL2F \(3 / 4 " \times 12^{\prime \prime}\) Flared Tyloop (\(20 \times 305\)) & - & 3,375 (15.0) & 1,875 (8.3) \\
\hline TL4F \(1^{\prime \prime} \times 15^{\prime \prime}\) Flared 4-Strut (\(25 \times 380\)) & - & 6,000 (26.5) & 3,375 (15.0) \\
\hline TL4F \(11 / 4 \times 1{ }^{\prime \prime}\) " Flared 4-Strut (\(32 \times 380\)) & - & 6,750 (30.0) & 4,500 (20.0) \\
\hline
\end{tabular}

\section*{Flared 6-Strut Tyloop}

The AR Flared 6-Strut Tyloop is made with three wires welded to a helix coil The three loops are flared to provide greater anchorage in concrete.

\section*{STANDARD}

APPROXIMATE SAFE
WORKING LOAD \(207 \mathrm{kN}(46,500 \mathrm{lbs})\) 2:1 Safety Factor

\section*{HEAVY}

APPROXIMATE SAFE WORKING LOAD 275 kN (61,800 lbs) 2:1 Safety Factor

Edge condition limitations will govern.
Contact the AR Technical Department for further details.
Other configurations and designs are available.

\section*{Tyback Tyloop}

The AR Tyback Tyloop is fabricated with two looped wires welded to a helix coil. The Tyback Tyloop is specially designed to tie into existing reinforcing bars to form bulkheads and for dam construction. Available as a \(20 \mathrm{~mm} \times 215 \mathrm{~mm}\left(3 / 4 \times 8 \frac{112}{2}\right)\) standard size, the AR Tyback Tyloop can be custom fabricated to meet job site conditions
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{To order, please specify the following information} \\
\hline \multicolumn{2}{|l|}{EXAMPLE} \\
\hline Name & . Tyback Tyloop \\
\hline Diameter & \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) \\
\hline Quantity & \\
\hline
\end{tabular}

APPROXIMATE SAFE WORKING LOAD 80 kN (18,000 lbs) 2:1 Safety Factor

\section*{Coil Length}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Double Looped Flared Tyloop} \\
\hline Diameter & Ultimate Strength & Coil Length Including Penetration \\
\hline 25 mm (1") & \(267 \mathrm{kN} \mathrm{(60,000} \mathrm{lbs)}\) & \(75 \mathrm{~mm} \mathrm{(3")}\) \\
\hline \(32 \mathrm{~mm}(114 / 4)\) & 267 kN (\(60,000 \mathrm{lbs}\)) & \(75 \mathrm{~mm} \mathrm{(3)}\) \\
\hline \multicolumn{3}{|c|}{Tybow Anchor} \\
\hline Diameter & Ultimate Strength & Coil Length Including Penetration \\
\hline 32 mm (11/4") & \(80 \mathrm{kN} \mathrm{(18,000} \mathrm{lbs)}\) & 75 mm (\(3^{\prime \prime}\)) \\
\hline 38 mm (11/2) & \(160 \mathrm{kN} \mathrm{(36,000} \mathrm{lbs)}\) & \(75 \mathrm{~mm}\left(3^{\prime \prime}\right)\) \\
\hline
\end{tabular}
Refer to the Approximate Safe Working Loads and Ultimate Capacities calculated for various concrete strengths table on pages 51 and 112 of the Appendix.

\section*{Single End Welding Tyscru}

The AR Single End Welding Tyscru is made with 2 struts welded to a coil at one end only, leaving the open end available for field welding, particularly suitable for heavy and special applications. Available in \(13 \mathrm{~mm}, 20 \mathrm{~mm}\) and \(25 \mathrm{~mm}\left(1 / 2^{n}, 3 / 4^{\prime \prime}\right.\) and \(\left.1^{\prime \prime}\right)\) diameters.
EXAMPLE
\begin{tabular}{|c|}
\hline Single End Welding Tyscru \\
\hline Nominal Diameter 20 mm (1/2") \\
\hline Overall length 100 mm (4") \\
\hline \\
\hline
\end{tabular} \(\ldots ~ 200\)

APPROXIMATE SAFE WORKING LOADS Diameter Length Safe Working Load Weld Length
 \(13 \mathrm{~mm}(/ / 2)\) \(25 \mathrm{~mm}(11) \quad 250 \mathrm{~mm}\left(10^{\prime \prime}\right) \quad 00.0 \mathrm{~N}(13500 \mathrm{ls}) 50 \mathrm{~mm}\) VITE: Diameter of rebar will influence Single End Welding Tyscru strenoth.

APPROXIMATE SAFE WORKING LOAD
2:1 Safety Factor

\section*{Bent Single End Welding Tyscru}

The AR Bent Single End Welding Tyscru is made with 2 struts welded to a coil at one end. The other end of the 2 struts is bent a \(90^{\circ}\) in opposite directions away from the coil. This allows for field welding onto sheet piling and H -Pile construction. Available in 13 welding onto sheet piling and H-Pile construction. Available in 13 fabricated to the required lengths.
\begin{tabular}{|c|}
\hline To order, please specify the following information \\
\hline EXAMPLE \\
\hline \multirow[t]{2}{*}{Name Bent Single End Welding Tyscru
Nominal Diameter
\(13 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)\)} \\
\hline \\
\hline Length (L) \(100 \mathrm{~mm}\left(4^{\prime \prime}\right)\) \\
\hline Leg depth 25 mm (1") \\
\hline Quantity ... 200 \\
\hline SWL is based on an approximate 2:1 Factor of Safety \\
\hline
\end{tabular}

APPROXIMATE SAFE WORKING LOAD 2:1 Safety Facto

Toggle Ty

AR Toggle Tys are used to anchor a facing formwork, back to steel or wood sheet piling and require a \(35 \mathrm{~mm}(13 / 8\) ") diameter hole through the sheathing to permit entry of the toggle. Toggle plate sizes are shown below.

APPROXIMATE SAFE
WORKING LOADS 2:1
\begin{tabular}{|c|}
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
To order, please specify the following information \\
EXAMPLE
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} & \multirow[b]{2}{*}{Safe Load} & \multicolumn{2}{|r|}{TOGGLE SIZE} \\
\hline & & Steel Sheating & Wood Sheating \\
\hline \(13 \mathrm{~mm}(1 / 2 \mathrm{~L}\)) Standard 2.25M & \(10 \mathrm{kN}(2,250 \mathrm{lbs})\) & \(5 \mathrm{~mm} \times 32 \mathrm{~mm} \mathrm{x} 75 \mathrm{~mm}\left(3 / 16^{\prime \prime} \times 11 / 4^{\prime \prime} \times 3\right.\) 3 \()\) & \(10 \mathrm{~mm} \times 25 \mathrm{~mm} \times 115 \mathrm{~mm}\left(3^{3 / 8} \times 1 \mathrm{l} \times \mathrm{x}^{1 / 2} 2^{\prime \prime}\right)\) \\
\hline \(13 \mathrm{~mm}(1 / 2 /)\) Heary 3.75 m & \(17 \mathrm{kN}(3,750 \mathrm{lbs})\) & \(6 \mathrm{~mm} \mathrm{\times 32} \mathrm{~mm} \times 75 \mathrm{~mm}\left(1 / 4 " \times 11 / 4^{\prime \prime} \times 3^{\prime \prime}\right)\) & \(10 \mathrm{~mm} \times 25 \mathrm{~mm} \times 115 \mathrm{~mm}\left(3 / 8^{\prime \prime} \times 1 \mathrm{x} \times 4 / 2^{\prime \prime}\right)\) \\
\hline
\end{tabular}

Refer to the Appendix for General Guidelines on page 96 , Lateral Pressure information on nage 102
and typical Medium and Heavy Formwork beginning on page 108 . See page 51 for approximate safe working load System Chart.

\section*{Angle Ty-Bracket}

The AR Angle Ty-Bracket is designed to tie single-sided forming to stee piles, metal beams, etc. Brackets are available from 13 mm to 25 mm \(\left(1 / 2^{\prime \prime}\right.\) to \(\left.1^{\prime \prime}\right)\) diameters as identified in the table below, with lag thread or can be special ordered with NC thread.
The AR Angle Ty-Bracket allows a full \(90^{\circ}\) of pivot of the form-tie and will exceed the tensile capacity of the form-tie when correctly installed by a certified licensed welder

APPROXIMATE SAF
WORKING LOAD
2:1 Safety Facto

Warning: To ensure proper engagement (final installation) the Form-tie must extend beyond the swivel pin a minimum of \(13 \mathrm{~mm}(1 / 2 / 1)\). An easy way to accomplish this is to line up the swivel pin and the Formtie in position A and thread the Form-tie through the swivel pin until it contacts the metal piling.

APPROXIMATE SAFE WORKING LOADS
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Form Tie Diameter mm (in)} & \multirow[t]{2}{*}{Dim. "L"} & \multicolumn{2}{|r|}{Bracket SWL kN (lbs.)} \\
\hline & & Position A & Position \\
\hline \(13 \mathrm{~mm}(1 / 2)\) & \(115 \mathrm{~mm}(4 / 21 / 2)\) & \(40 \mathrm{kN}(9,000 \mathrm{lbs})\) & \(28 \mathrm{kN}(6,300 \mathrm{lbs})\) \\
\hline \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) & \(115 \mathrm{~mm}(41 / 2)\) & \(80 \mathrm{kN}(18,000 \mathrm{lbs})\) & \(56 \mathrm{kN}(12,50 \mathrm{lbs})\) \\
\hline 25 mm (1) & \(152 \mathrm{~mm}\left(\mathrm{~b}^{\prime \prime}\right)\) & \(140 \mathrm{kN}(31,500 \mathrm{lbs})\) & \(98 \mathrm{kN}(22,000 \mathrm{ll}\) \\
\hline
\end{tabular}

\footnotetext{
-
}

Refer to the Appendix for General Guidelines on page 96, Lateral Pressurintormation on page 102 and typical Medium and Heavy Formwork beginning on page 108 . See page 51 for approximate safe working load System Chart.

\section*{T4 Lag Ty}

The AR T4 Lag Ty is designed to be welded on structural members for single sided forming. The AR Lag ty consists of a \(20 \mathrm{~mm}\left(3_{4}\right)\) diameter coil with a \(75 \mathrm{~mm}\left(3^{\prime \prime}\right)\) mild steel lag stud fabricated together with a typical 4-strut configuration

APPROXIMATE SAFE
WORKING LOAD
80 kN (18,000 lbs)
2:1 Safety Factor
```

To order, please specify
the following information
the following information
EXAMPLE
Name ....
Quantity

```

NOTE: Field welding to structural members shoul be performed by a certified licensed welder.

\section*{Rock Anchor}

AR Rock Anchors are used for anchoring with AR Lagstud or NC Rod in form tying and anchoring of concrete facings to rock excavation. Available in \(13 \mathrm{~mm}, 20 \mathrm{~mm}\) and \(25 \mathrm{~mm}\left(1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}\right.\) and \(\left.1^{\prime \prime}\right)\) diameters.

APPROXIMATE SAFE WORKING LOADS 2:1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Diameter} & \multicolumn{2}{|l|}{Drill Hole Diameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Hole Depth (minimum) \\
\(\mathrm{mm} \quad\) (in)
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Safe Working Load* } \\
& \text { kN } \\
& \text { (lbs) }
\end{aligned}
\]} \\
\hline 13 mm & (1/2) & 35 mm & \(\left(13 / 8{ }^{\text {" }}\right.\)) & 150 mm & (6") & 20 kN & (4,500 lbs) \\
\hline 20 mm & (34") & 45 mm & (134") & 200 mm & (8") & 40 kN & (9,000 lbs) \\
\hline 25 mm & (1") & 45 mm & (1344) & 250 mm & (10") & 80 kN & (18,000 lbs) \\
\hline
\end{tabular}

\section*{AR Rock Anchor Assembly}

Transition couplers give the AR mechanical cone shell anchors the ability to be used with lagstud or National Course thread, for single sided forming applications.
Refer to AR's Rock Anchoring and Bolt System catalogue for
technical information or consult the AR Technical Departmen
on page 96, Lateral Pressure information on page 102
and typical Medium and Heavy Formwork beginning on page 108. See page 51 for approximate safe working load System Chart.

\section*{Drop-In Anchor}

The lag thread AR Drop-in Anchor features an internally threaded all-stee shell, with an preassembled expansion cone insert. The Drop-In Anchors are designed to work as part of the forming system, matched to the thread of AR Lagstuds or Lagbolts. The Drop-In Anchors are made from carbon steel and electroplated galvanized for corrosion protection. The Drop-in Anchor is used for any application requiring anchorage in solid concrete
or homogeneous igneous rock. Ideal for lagging, AR Drop-In Anchors are also effective for hanging bolting or anchoring application with AR Tylags, Lagstud Bolts or Lagstud. Not recommended for uncured concrete (less than 7 days old), lightweight concrete or masonry block or brick.
\begin{tabular}{|c|c|c|c|c|}
\hline Anchor & Drill Bit & Thread & Thread Length & Anchor Length (Minimum Depth of Embedment) \\
\hline NCA \(\frac{1 / 2 L T}{}\) & \(5 / 81\) & 1/2" - 6 lagthread & \(20 \mathrm{~mm} \mathrm{(} \mathrm{\% ")}\) & 50 mm (2") \\
\hline NCA 34LT & \(1{ }^{1 \prime}\) & 3/4" - 4/1/2 lagtread & \(35 \mathrm{~mm}\left(1^{1 / 8} 8^{\prime \prime}\right)\) & \(80 \mathrm{~mm}\left(3^{3 / 16)}\right.\) \\
\hline
\end{tabular}

\section*{Ultimate Shear and Tension Values (kN//bs) in Concrete}
\begin{tabular}{l|l}
\hline Anchor & \\
\hline & fc \\
NCA \(1 / \mathrm{LT}\) & \\
NCA \(3 / \mathrm{LLT}\) &
\end{tabular}
\begin{tabular}{|cc|c}
\multicolumn{2}{|c|}{ Tension } & Shear \\
\hline \(\mathrm{f}^{\mathrm{f}} \mathrm{C}=15 \mathrm{MPa}(2,200 \mathrm{psi})\) & \(\mathrm{f}^{\prime} \mathrm{C}=30 \mathrm{MPa}(4,400 \mathrm{psi})\) & \(\mathrm{ff}=15 \mathrm{MPa}(2,200 \mathrm{psi})\) \\
\hline \(15(3,300)\) & \(27(6,075)\) & \(20(4,500)\) \\
\(36(8,100)\) & \(49(11,000)\) & \(42(9,450)\)
\end{tabular}

AR suggests a minimum safety factor of 2:1. On site conditions such as, poor concrete pumping could increase the risk. If such site conditions exist, the user must increase the safety factor to compensate.
For anchoring situations not associated with forming, industry practice is to apply a safety actor of 4:1 minimum. For applications of greater risk a larger safety factor may be selected. Specifications subject to change without notice.

1. Drill hole for
expansion anchor

\section*{Formsavers \({ }^{\text {TM }}\)}

AR Formsaver \({ }^{\text {rm }}\) dowel bar assemblies provide continuity and structural integrity to reinforced concrete construction in segmental pour applications. The AR Formsaver is designed with our unique tapered thread system, factory installed thread protectors, and durable mounting plates for easy attachment to forms. The taper threaded design, like the complete family of couplers, provides load path continuity in tension, compression and stres reversal applications. AR Formsaver mechanical splices provide superior performance well beyond the yield strength of the reinforcing bar.

Non standard custom sizes
and lengths available

\section*{Welding Lagnut}
 applications or when necessary to secure formwork to steel members. AR welding lagnuts extra deep to allow for the welding operation and are only available in

Field-testing should be conducted to established actual approximate safe working loads.
\begin{tabular}{c|c|c|c}
\hline \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) & \(38 \mathrm{~mm}\left(1 / \mathrm{l}^{\prime \prime}\right)\) & \(80 \mathrm{kN}(18,00 \mathrm{lbs})\) & \(160 \mathrm{kN}(36,000 \mathrm{lbs})\)
\end{tabular}
WORKING LOAD
2:1 Safety Factor

\section*{Taper-Ty System}

The AR Taper-Ty System is used where specifications permit the complete removal of the form-tie from the concrete wall. Taper-Tys are available with lag thread and a variety of hardware. While the system is available in the standard diameters shown, variations of these sizes are available on special order. The complete system consists of one Taper Ty, with 2 square or flat washers and 2 nuts, either lag Hex Nuts, special Handle Lagnuts or Malleable Wing Nuts. The standard units are furnished with up to 750 mm of taper. Other taper lengths diameter end has a square wrench end The smaller diameter end has been designed with a special end for remo deinout wheifications are show on the detail dran
on the detail drawing
Not recommended where watertight walls are essential such as exterior walls, water reservoirs, treatment plants, etc. Use Waterseal Tyscrus instead.
\begin{tabular}{c|c|}
\hline \(\begin{array}{c}\text { Diameter } \\
\text { (large to small) }\end{array}\) & \begin{tabular}{c}
Safe Working Loads \\
2. \\
\hline
\end{tabular} Sate \(^{2}\).
\end{tabular}
 20 mm to \(23 \mathrm{~mm}\left(34^{10} 0 \mathrm{to} / \mathrm{s}^{2}\right) \quad 89 \mathrm{kN}(20,000 \mathrm{lbs}\). 25 mm to 20 mm (1" to \(\left.\frac{34}{} \mathrm{a}^{\prime \prime}\right) \quad 84 \mathrm{kN}(19,000 \mathrm{lbs}\).)
 38 mm to \(32 \mathrm{~mm}\left(1 / 1 / 2^{\prime \prime}\right.\) to \(11 / 4\) ") \(253 \mathrm{kN}(57,000 \mathrm{lbs}\)) Chart based on standard \(825 \mathrm{MPa}(120,000\) psi) material. Special order materials available on request.

APPROXIMATE SAFE
WORKING LOADS 2:1
\begin{tabular}{|c|}
\hline \multirow{10}{*}{} \\
\hline \\
\hline
\end{tabular}

\section*{Taper Ty Wall Sizing}
 \(953 \mathrm{~mm}\left(37 / /^{\prime \prime}\right) \quad 250 \mathrm{~mm}\left(10^{\prime \prime}\right) 150 \mathrm{~mm}\left(6^{\prime \prime}\right) 540 \mathrm{~mm}\left(2^{\left.211 / /^{\prime \prime}\right)} 5100 \mathrm{~mm}-405 \mathrm{~mm}\left(4^{\prime \prime}-16^{\prime \prime}\right)\right.\)
 \(\left.1,219 \mathrm{~mm}\left(48^{\prime \prime}\right)\left|250 \mathrm{~mm}\left(10^{\prime \prime}\right) 250 \mathrm{~mm}\left(10^{\prime \prime}\right)\right| 710 \mathrm{~mm}\left(28^{\prime \prime}\right)\right\rangle 300 \mathrm{~mm}-660 \mathrm{~mm}\left(12^{\prime \prime}-26^{\prime \prime}\right)\) *Based on standard forming materials (typical \(4 \times 4\) studs, walers, \({ }^{3 / 4}\) " form ply, plate washer and nut assembly)

Refer to the Appendix for General Guidelines on page 96 , Lateral Pressure information on page 102 and typical Medium and Heavy Formwork beginning on page 108 . See page 51 for Approximate Safe Workin typical Medium and
Load System Chart.

\section*{Flat Washer}

Refer to page 56

\section*{Tilt Washer}

The AR Tilt Washer is angularly adjustable up to \(45^{\circ}\) ，eliminating the need for wedging on battered walls or when tying across corners． Nail holes are provided for attaching the Tilt Washer to the waler or strongbacks．Available for 25 mm and 32 mm （ 1 ＂and \(11 / 4\)＂）diameter bolts with nail holes to permit nailing to wales if desired
\[
\begin{aligned}
& \text { Type } \\
& \text { mm (in) mm (in) }
\end{aligned}
\]

\section*{She-Bolt}

Nominal \(\quad\) Internal Thread Diameter
 \begin{tabular}{ll|ll|ll|l}
mm & (in) & kN & lbs & kN & lbs & kN \\
\hline 25 & lbs
\end{tabular} \begin{tabular}{ll|ll|ll}
25 mm & (11) & 40 & 9,000 & \(80^{*}\) & 18,000 \\
\hline 10
\end{tabular} 32 mm (11/4") 40 9000 \(80-18000\) \(\begin{array}{lllllllll}38 \mathrm{~mm}\left(11 / 2^{\prime \prime}\right) & 40 & 9,000 & 80 & 18,000 & 165^{*} & 37,500\end{array}\)

\section*{Crimped Anchor}

AR Crimped Anchors are used for form anchoring in mass concrete construction Manufactured in the diameter and lengths shown with either national coarse thread or lag thread.

APPROXIMATE SAFE WORKING LOAD 2:1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{To order, please specify the following information} \\
\hline \multicolumn{2}{|l|}{EXAMPLE} \\
\hline Name & Crimped Anchor \\
\hline Diameter & \(\left.\ldots13 \mathrm{~mm}(1 / 2)^{\prime \prime}\right)\) \\
\hline Length ... & 30 mm (12") \\
\hline Type of Thread & NC \\
\hline Quantity & \\
\hline
\end{tabular}

\section*{rimped Anchor Safe Working Load}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Crimped Anchor Safe Working Loads} \\
\hline Diameter & \multicolumn{2}{|l|}{Safe Working Load} & \multicolumn{2}{|r|}{Ultimate} \\
\hline \(13 \mathrm{~mm}\left(1 / 2{ }^{\text {/ }}\right.\)) & 40 kN & (9,000 ls) & 80 kN & (18,000 lbs) \\
\hline \(20 \mathrm{~mm}\left(3^{(4)}\right.\) & 80 kN & (18,000 lbs) & 160 & (36,000 lbs) \\
\hline 25 mm (1) & 165 kN & (37,500 lbs) & 330 kN & (75,000 lbs) \\
\hline
\end{tabular}

\section*{Approximately \(10^{\circ}\) \\ Approximately \(10^{\circ}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline To order, please specify the following information & \multicolumn{6}{|l|}{} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
EXAMPLE \\
Name \(\qquad\) High Tensile Inside Rod
\end{tabular}} & \multicolumn{6}{|c|}{\multirow[t]{3}{*}{APPROXIMATE SAFE WORKING LOAD 2:1}} \\
\hline & & & & & & \\
\hline Diameter \(13 \mathrm{~mm}\left(1 / 2{ }^{\prime \prime}\right)\) & & & & & & \\
\hline Length 600 mm (24") & \multicolumn{2}{|l|}{Diameter} & \multicolumn{2}{|l|}{Safe Working Load} & \multicolumn{2}{|l|}{Ultimate Tension} \\
\hline Crimped or non-crimped Crimped & mm & (in) & kN & (lbs) & kN & (lbs) \\
\hline Type Thread .. NC & 13 mm & (1/2") & 40 & 9,000 & 80 & 18,000 \\
\hline Length of Thread (each end) 75 mmm (3")
Quantity
200 & 20 mm & (34") & 80 & 18,000 & 160 & 36,000 \\
\hline Quantity ... 200 & 25 mm & (1") & 160 & 37,500 & 330 & 75,000 \\
\hline
\end{tabular}

APPROXIMATE SAFE WORKING LOAD 2:1

AR High Tensile Inside Rods are manufactured with either
National Coarse or lag thread. Inside Rods can be manufactured with crimps upon request. Rods up to 600 mm (24") long have 1 crimp. Rods over 600 mm (24") long have 3 crimps.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Thread Diameter & Thread Length & \multicolumn{2}{|l|}{Standard (0verall) Lengths} & Set back & Number of Crimps \\
\hline \(13 \mathrm{~mm}(1 / 2 \mathrm{~L})\) & \(32 \mathrm{~mm}\left(11 / 4{ }^{\text {a }}\right.\)) & \(450 \mathrm{~mm}, 600 \mathrm{~mm}, 750 \mathrm{~mm}\) & (18", 24", 30") & 102 mm (4") & \\
\hline \(16 \mathrm{~mm}\left(5 / 8{ }^{\text {" }}\right.\)) & \(38 \mathrm{~mm}(11 / 2)\) & \(600 \mathrm{~mm}, 750 \mathrm{~mm}, 900 \mathrm{~mm}\) & (24", \(\left.30^{\prime \prime}, 36{ }^{\prime \prime}\right)\) & \(102 \mathrm{~mm}\left(4^{\prime \prime}\right)\) & \\
\hline 20 mm (34") & \(45 \mathrm{~mm}\left(134^{\prime \prime}\right)\) & \(750 \mathrm{~mm}, 900 \mathrm{~mm}, 1,050 \mathrm{~mm}\) & (30", 36", 42") & \(102 \mathrm{~mm}\left(4^{\prime \prime}\right)\) & " to 36") 6 crimp \\
\hline 22 mm (1) & 50 mm (2") & \(900 \mathrm{~mm}, 1,050 \mathrm{~mm}\) & (36", 42") & \(102 \mathrm{~mm}\left(4^{\prime \prime}\right)\) & 900 mm (36") 9 crí \\
\hline \(25 \mathrm{~mm}(11 / 4)\) & mm & & & & \\
\hline
\end{tabular}

\section*{Bowlag Anchor}

AR Bowlag Anchors provide an effective and efficient She-Bolt reanchorage for cantilever and Ty back lift forms. The continuous lag thread and the bow shape provide good anchorage even in green concrete and consistently outperforms smooth crimped rods and/or pigtails. The lag thread engagement is quick to install or disconnect The bow shape prevents loosening during vibration and resists rotating or spinning during stripping.

\section*{Dummy She-Bolt}

AR Dummy She-Bolts are manufactured slightly oversize for easy re-entry of standard She-Bolt. Furnished in standard sizes for either National Coarse or lag thread High Tensile Inside Rods or Crimped Anchors.
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
EXAMPLE \\
Name \(\qquad\) Dummy She-Bolt Nominal Diameter Length \(\qquad\) \(500 \mathrm{~mm}(20\) ")
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

APPROXIMATE SAFE WORKING LOAD See table on page 74
Name Dummy She-Bolt Type of inside thread.. Quantity.

\section*{Heavy Hex Rod Coupler}

AR Heavy Hex Rod Couplers are used to couple two High Tensile Inside Rods of the same diameter. The Coupler is normally supplied with NC thread and is available with lag thread on request. Standard sizes are shown and other sizes are available on request.

APPROXIMATE SAFE
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
To order, please specify the following information EXAMPLE \\
Name. \(\qquad\) Heavy Hex Rod Coupler Nominal Rod Diameter \(\qquad\) \(13 \mathrm{~mm}\left(1 / 22^{\prime \prime}\right)\) \\
Quantity \(\qquad\) 200
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Rod Diameter & Overall Length & & (bs) \\
\hline mm (1/2") & mm (134") & kN & \\
\hline \(16 \mathrm{~mm}\left(5 / 8{ }^{\text {" }}\right.\)) & \(57 \mathrm{~mm}(21 / 4)\) & 67 kN & 15,000 lb \\
\hline \(20 \mathrm{~mm}\left(34^{\prime \prime}\right)\) & \(57 \mathrm{~mm}(21 / 4)\) & 80 kN & 18,000 lbs \\
\hline 22 mm (\(78 \mathrm{~s}^{\prime \prime}\)) & \(64 \mathrm{~mm}\left(2^{2} / 2^{\prime \prime}\right)\) & 135 kN & \(30,000 \mathrm{lb}\) \\
\hline 25 mm & 70 mm (\(2^{3 / 4}\) & & \\
\hline
\end{tabular}

\section*{Hex Nut}

AR Hex Nuts are manufactured with a UNC thread and are available from 13 mm to \(38 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right.\) to \(\left.11 / 2^{\prime \prime}\right)\) diameter.

```

APPROXIMATE SAFE
WORKING LOAD 2:1

To order, please specify the following information EXAMPLE   Name ... $\qquad$ Bowlag Anchor   Nominal Diameter $\qquad$ . 25 mm (1")   Length   Quantity $\qquad$ 900 mm (36") $\qquad$ 200

```


\section*{Euro Rod}

The AR Euro Rod is a high tensile form tie used in industrial formwork systems, lost anchoring solutions, special connections and applications for cast-in-place The rod has two flat sides in the thread pattern which provide a self-cleaning feature and allow a gripping surface for turning the bar without damaging the threads. Available in \(5 / 8^{\prime \prime}\) and \(7 / 8^{\prime \prime}\) bar diameters, in standard 19'-1" lengths. Additional sizes available on request.

APPROXIMATE SAFE
WORKING LOAD 2:1
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ Diameter } & SWL \\
\hline mm & (in) & kN & lbs. \\
\hline 15 & \(5 / 8^{\prime \prime}\) & 98 & 22,000 \\
20 & \(7 / 8^{\prime \prime}\) & 173 & 38,900 \\
\hline
\end{tabular}

\section*{Euro Rod Accessories}

\section*{Euro Rod Combo Plate}

APPROXIMATE SAFE WORKING LOAD 2:1
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Rod Diameter } & \multicolumn{2}{c|}{ Washer Size } & \\
\hline \(\mathbf{m m}\) & in & mm & in & SWL (lbs.) \\
\hline 15 & \(5 / 8^{\prime \prime}\) & \(120 \times 120\) & \(4-3 / 4^{\prime \prime}\) & 21,900 \\
\hline 22 & \(7 / 8^{\prime \prime}\) & \(120 \times 120\) & \(4-3 / 4^{\prime \prime}\) & 39,200 \\
\hline
\end{tabular}

Euro Rod Single Wing Nut
APPROXIMATE SAFE WORKING LOAD 2:1
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Diam} & \multicolumn{2}{|r|}{Size} & \\
\hline mm & in & mm & in & SWL (lbs.) \\
\hline 15 & 5/8" & 90x60 & 3-1/2"x2-3/8" & 21,900 \\
\hline 22 & 7/8" & \(90 \times 60\) & \(3-1 / 2^{\prime \prime} \times 2-3 / 8{ }^{\prime \prime}\) & 39,200 \\
\hline
\end{tabular}

\section*{Euro Rod Round Wing Nut}

APPROXIMATE SAFE WORKING LOAD 2:1
\begin{tabular}{c|c|c|c|c}
\multicolumn{2}{c|}{ Rod Diameter } & \multicolumn{2}{c|}{ Wing Nut Diameter } & \\
\hline mm & in & mm & in & SWL (lbs.) \\
\hline 15 & \(5 / 8^{\prime \prime}\) & 100 & \(4^{\prime \prime}\) & 21,900 \\
\hline 22 & \(7 / 8^{\prime \prime}\) & 100 & \(4^{\prime \prime}\) & 39,200 \\
\hline
\end{tabular}

\section*{Euro Rod Accessories}

Euro Rod Hex Couplers
APPROXIMATE SAFE WORKING LOAD 2:1
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rod Diameter} & \multicolumn{2}{|l|}{Coupler Length} & \\
\hline mm & in & mm & in & Box Qty \\
\hline 15 & 5/8" & 50 & \(2^{\prime \prime}\) & 75 \\
\hline 15 & 5/8" & 100 & \(4{ }^{\prime \prime}\) & 40 \\
\hline
\end{tabular}

\section*{Euro Rod Distance Cones}

APPROXIMATE SAFE WORKING LOAD 2:1
\[

\]

\section*{Hook Anchor Bolt}

The AR Hook Anchor Bolt is manufactured with either lag thread or national course threads and is typically supplied with a \(90^{\circ}\) radius. AR can supply custom bent bolts when provided with detailed specifications and drawings. AR can accommodate special orders in black, plated, hot dipped galvanized or stainless steel. Available in \(13 \mathrm{~mm}, 20 \mathrm{~mm}\), 25 mm and \(32 \mathrm{~mm}\left(1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}, 1\right.\) " and \(11 / 4\) ") diameter.
order, please specify the following information
EXAMPLE
Name..
Quantity...
\(25 \mathrm{~mm}(1)\)

\section*{Wall Plate Anchor}

AR Wall Plate Anchors are manufactured with Unified National Coarse (UNC) thread and are supplied complete with a nut and washer. AR can accommodate special orders in black plated, hot dipped galvanized or stainless steel. Avilabion diameter Custom orders available on request.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{To order, please specify the following information} \\
\hline EXAMPLE & \\
\hline \multicolumn{2}{|l|}{Name Wall Plate Anchor} \\
\hline \multicolumn{2}{|l|}{Diameter \(13 \mathrm{~mm}(1 / 2 / 1)\)} \\
\hline \multicolumn{2}{|l|}{Length 300 mm (12")} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Thread \(\qquad\) UNC Type of steel \(\qquad\) mild black steel}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Quantity .. 200} \\
\hline
\end{tabular}

The AR Pig Tail Anchor Bolt is manufactured with either la hread or national course threads. AR can accommodate special orders in black, plated or hot dipped galvanized. Available in \(13 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}\) and \(32 \mathrm{~mm}\left(1 / 2^{12}, 3 / 4\right.\) 1 " and \(11 / 4^{\prime \prime}\)) diameter.
```

To order, please specify the following information
EXAMPLE
Name ............................... Pig Tail Anchor Bolt

```
 Diameter
 Quantity .. 200

\section*{Post Holders}

The AR Post Holders are designed to attach wooden posts to concrete, made of heavy gauge steel and provide strength and stability to outdoor decks. All post holders are coated (black) for corrosion protection and are available in sizes: 4 " \(\times 4\) ", 4 " \(\times 6\) " and 6 " \(\times 6\) "
```

To order, please specify the following information
EXAMPLE
EXAMPL
Quantity
Post Holders

```


\section*{Anchor Sleeve}

AR Anchor Sleeves are a plastic void form made of high density polyethylene that is nonusting and non-conductive. They expedite the mounting of machinery and equipment, and are maintenance free and easy to use. When using the AR Anchor Sleeve, initial material and installation costs are greatly lowered, and all welding, pipe cutting, packing, bending, forming, cleaning and chipping out are eliminated.

To order, please specify
the following information
EXAMPLE
Name.............AR Anchor Sleeve
Anchor Bolt Diameter... 13 mm \(\left(1 /{ }^{\prime \prime}\right)\)
Quantity 200
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Material and Testing Data} \\
\hline Plastic: & High density polyethylene \\
\hline Density, gms/cc: & ASTM D 1505-68.956 \\
\hline Vicat softening point \({ }^{\circ}\left({ }^{(} \mathrm{C}\right)\) : & ASTM D 1525-70 256 \({ }^{\circ} \mathrm{F}\left(124^{\circ} \mathrm{C}\right)\) \\
\hline Britteness temp. \({ }^{\circ}\left({ }^{\circ} \mathrm{C}\right)\) : & ASTM D 746-70 -180 \({ }^{\circ}\left(-1199^{\circ} \mathrm{C}\right)\) \\
\hline Torch application: & Slow burn \\
\hline Compression test: & 12.7 kg (180 psi) per square inch \\
\hline
\end{tabular}

Preparatory Work: None
Limitations: The AR Anchor Sleeve is not recommended where high heat s used, such as inside an oven. Caution: When using the AR Anchor Sleeve outtoors or under freezing conditions, the prevent moisture penetration or filled with Antifreeze.
Installation: The bottom of the sleeve is passed over the top of the bolt until the threaded portion engages the selfhreading top of the sleeve. The sleeve is turned until the proper projection is into the concrete, with the top of the sleeve at foundation level. When the anchor bolt is ready for adjustment, the top of the sleeve is cut off and discarded. The bolt may now be adjusted within the sleeve. xpansion or non-shrinking grout is cas nto the sleeve around the boit whe done in a similar fashion.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Bolt Diameter mm (in) & Series & \[
\begin{aligned}
& \text { Sleeve Si }
\end{aligned}
\] & (in) & Litres of grout per shell & Cubic inches per shell & \# sleeves per carton & kgs (lbs) per bundle \\
\hline \(13 \mathrm{~mm} \mathrm{(1/2)}\) & AX & \(50 \mathrm{~mm} \times 130 \mathrm{~mm}\) & (2" \(\times 5^{\prime \prime}\)) & . 26 & 15.95 & 100 & 4 \\
\hline \(20 \mathrm{~mm} \mathrm{(34")}\) & AX & \(50 \mathrm{~mm} \times 130 \mathrm{~mm}\) & (2" \(\times 5^{\prime \prime}\)) & . 25 & 15. & 100 & 4 \\
\hline 16 m (5/8") & A & \(50 \mathrm{~mm} \times 180 \mathrm{~mm}\) & (2" \(\times\) 7 \({ }^{\text {") }}\) & . 35 & 21.41 & 100 & 5 \\
\hline 20 mm (34) & A & \(50 \mathrm{~mm} \times 180 \mathrm{~mm}\) & (2" \(\times 7\) ") & 34 & 20.5 & 100 & 5 \\
\hline 25 mm (1") & B & \(75 \mathrm{~mm} \times 255 \mathrm{~mm}\) & (3" \(\times 10\) ") & 1.06 & 65.80 & 50 & 6 \\
\hline 32 mm (11/4) & в & \(75 \mathrm{~mm} \times 255 \mathrm{~mm}\) & \(\left(3^{\prime \prime} \times 10{ }^{\prime \prime}\right)\) & 1.00 & 61.40 & 50 & 6 \\
\hline 38 mm (11/2) & c & \(100 \mathrm{~mm} \times 380 \mathrm{~mm}\) & \(\left(4^{\prime \prime} \times 15^{\prime \prime}\right)\) & 2.75 & 167.60 & 20 & 6 \\
\hline 42 mm (1344) & c & \(100 \mathrm{~mm} \times 380 \mathrm{~mm}\) & \(\left(4^{\prime \prime} \times 15{ }^{\text {" }}\right.\)) & 2.60 & 158.00 & 20 & 6 \\
\hline \(50 \mathrm{~mm} \mathrm{(2)}\) & D & \(100 \mathrm{~mm} \times 460 \mathrm{~mm}\) & (4" \(\times 18{ }^{\text {") }}\) & 2.90 & 176.76 & 20 & 7 \\
\hline \(57 \mathrm{~mm}(21 / 4)\) & D & \(100 \mathrm{~mm} \times 460 \mathrm{~mm}\) & \(\left(4^{\prime \prime} \times 188^{\prime \prime}\right)\) & 2.66 & 161.82 & 20 & 7 \\
\hline \(64 \mathrm{~mm}(21 / 2)\) & E & \(150 \mathrm{~mm} \times 610 \mathrm{~mm}\) & (6" \(\times 24\) ") & 9.50 & 575.28 & 10 & 8 \\
\hline 76 mm (3") & E & \(150 \mathrm{~mm} \times 610 \mathrm{~mm}\) & (6" \(\times 24\) ") & 8.80 & 523.44 & 10 & 8 \\
\hline \multicolumn{8}{|l|}{NOTE: Grout estimate based on . 46 cufft yield per 55 lb of non-corrosive grout.} \\
\hline STEP 1
See table for hole size in
template & & & & & & \begin{tabular}{l}
STEP 5 \\
Grout t
\(\square\) \\
Install equip
\end{tabular} & \\
\hline
\end{tabular}

\section*{AR Form Tubes}

AR concrete forming tubes are built to withstand the rigors of construction. Designed to hold the full hydrostatic pressure load of concrete in a single continuous pour, AR tubes have earned their mark as a "go to" standard for the most demanding construction projects. Shields against moistur and adverse weather conditions to help keep the elements from impacting your construction schedule. Manufactured with \(100 \%\) recycled paperboard. Available in diameters from 6 inches to 60 inches. Standard wall thickness to 12 feet, heavy wall thickness to over 30 feet

\section*{Handyform Tube}

AR Handyform tubes are built to be used in smaller projects by contractors and weekend warriors. Designed to hold the full hydrostatic pressure load of concrete weekend warriors. Designed to hold the full hydrostatic pressure load of corn
in a single continuous pour, AR tubes have earned their mark as a "go to" in a single continuous pour, AR tubes have earned their mark as a "go to" and adverse weather conditions to help keep the elements from impacting your construction schedule. Manufactured with \(100 \%\) recycled paperboard. Available in diameters from 10 inches to 36 inches, and length of 12 feet.

\section*{AR Nails}

AR Nails feature a round smooth shank which reduces wood splitting. Nails are available as common nails and duplex (double head) nails, commonly used for interior and exterior (double head) nails, commonly used for interior and exterior increments, 50 lb boxes. Nails conform to ASTM F1667 standard.

\section*{AR Concrete Nails}

AR Concrete Nails feature a round smooth shank which reduces wood splitting. Available in 2" and 3", 4.5 lb packs. Nails conform to ASTM F1667 standard.

GENERAL
ACCESSORIES

\section*{Falsework Support Bracket}

AR Falsework Support Brackets are used with \(32 \mathrm{~mm}\left(1 / 44^{\text {" }}\right.\)) AR Screw Anchors and Bolts to support pier cap forms. The use of Falsework Support Bracket eliminates posting or scaffolding which can be expensive and time consuming to erect. Brackets can be manufactured with 2, 4 or 6 holes.
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c}
Falsework Support \\
Bracket
\end{tabular} & \begin{tabular}{c}
Safe Working Load \\
kN (lbs)
\end{tabular} & \begin{tabular}{c}
Required \\
Screw Anchors
\end{tabular} \\
\hline 2 hole & \(89 \mathrm{kN}(20,000 \mathrm{lbs})\) & two \(32 \mathrm{~mm}(11 / 4\) ") diameter \\
4 hole & \(178 \mathrm{kN}(40,000 \mathrm{lbs})\) & four \(32 \mathrm{~mm}(11 / 4\) " \()\) diameter \\
6 hole & \(267 \mathrm{kN}(60,000 \mathrm{lbs})\) & six \(32 \mathrm{~mm}\left(11_{4}\right.\) ") diameter \\
\hline
\end{tabular}

APPROXIMATE SAFE WORKING LOAD
3:1 Safety Factor

\section*{To order, please specify the following information EXAMPLE \\ Name Falsework Support Bracket}

Quantity
Quantity

\section*{Determining total load}

To determine the total load to be supported by each falsework bracket, compute the total mass (weight of concrete) plus the liveload (weight of form and other temporary loads) and divide by the number of brackets to be used.

\section*{Example:}

The dimension of a concrete beam to be poured over two columns and supported by 4 brackets is as follows:
750 mm wide \(\times 1200 \mathrm{~mm}\) high \(\times 18500 \mathrm{~mm}\) long (30 " wide \(\times 48^{\prime \prime}\) high \(\times 740\) " long)

Therefore use 4 hole bracket with four 32 mm (\(11 / 4\) ") diameter Screw Anchors. NOTE: 1 kilogram \(=.00981\) kiloNewtons

\section*{Guardrail Base}

The single component AR Guardrail Base provides set back requirements. The solid galvanized steel construction is significantly stronger than typical wood fabrications and adds safety and reliability. The Guardrail Base is reusable and fast and simple to install on plywood or concrete surfaces.

Meets Load Requirements of Section 26.3 of the Ontario Health and Safety Act and Regulations for Construction Projects (ISBN 0-7778-9412-2 Rev 06/00), when assembled with other components to form guardrail system complying with the Act.
```

To order, please specify
the following information
EXAMPL
Name ........................................ardrail Base

```


\section*{AR Anti-Impalement Rebar Cap}

The AR Anti-Impalement rebar protection cap is a safety cap with a metal dome plate, used to prevent rebar from impaling workers in case of falls, The cap is OSHA compliant and is available for \#3 \((10 \mathrm{~mm})\) to \#8 rebar \((25 \mathrm{~mm}), 25\) pieces per box.

\section*{Reinforcing Bar Supports}

Reinforcing Bar Supports are used to support and space reinforcing steel. AR Bar Supports are manufactured according to specifications published by the Concrete Reinforcing Steel Institute. To eliminate rust spots or similar blemishes on the concrete surface specify AR's Plastic Bar Supports.

\section*{Linden Chairs}

Corrosion free All Plastic Linden Chairs are used in slabs for supporting all types of reinforcing steel. Excellent for supporting epoxy coated rebar in bridge deck construction, or where-ever a corrosion free support is required. The high sizes have an arch design for straddling lower mats of rebar. The chair is made of High Impact polypropylene and its design gives it the strength of steel. Linden chairs are strong yet light in weight and packaged in poly bags for convenience of carrying around job sites.

\section*{LINDEN CHAIRS SIZES AND PACKAGING WEIGHTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline inch & mm & PCS/BAG & LBS/MFT & CTN SKID & SKID OTY \\
\hline 1 & 25 & 500 & 30 & 40 & 20,000 \\
\hline 11/4 & 32 & 500 & 35 & 40 & 20,000 \\
\hline \(1^{1 / 2}\) & 40 & 250 & 46 & 40 & 10,000 \\
\hline \(1^{3 / 4}\) & 45 & 250 & 50 & 40 & 10,000 \\
\hline , & 50 & 250 & 62 & 40 & 10,000 \\
\hline 21/4 & 58 & 200 & 78 & 40 & 10,000 \\
\hline \(2^{1 / 2}\) & 63 & 200 & 82 & 40 & 8,000 \\
\hline 23/4 & 70 & 300 & 84 & 25 & 7,500 \\
\hline 3 & 75 & 300 & 85 & 25 & 7,500 \\
\hline \(3^{1 / 4}\) & 77 & 300 & 88 & 25 & 7,500 \\
\hline \(3^{1 / 2}\) & 85 & 300 & 90 & 25 & 7,500 \\
\hline \(3^{3 / 4}\) & 92 & 200 & 93 & 25 & 5,000 \\
\hline 4 & 100 & 200 & 95 & 25 & 5,000 \\
\hline \(4^{1 / 4}\) & 108 & 200 & 98 & 25 & 5,000 \\
\hline \(4^{1 / 2}\) & 110 & 200 & 112 & 25 & 5,000 \\
\hline 43/4 & 120 & 200 & 119 & 25 & 5,000 \\
\hline 5 & 125 & 200 & 120 & 25 & 5,000 \\
\hline \(51 / 4\) & 133 & 200 & 125 & 25 & 5,000 \\
\hline \(5^{1 / 2}\) & 140 & 200 & 130 & 25 & 5,000 \\
\hline 53/4 & 146 & 200 & 148 & 25 & 5,000 \\
\hline 6 & 150 & 100 & 155 & 25 & 2,500 \\
\hline \(6^{1 / 4}\) & 158 & 100 & 160 & 25 & 2,500 \\
\hline \(6^{1 / 2}\) & 165 & 100 & 177 & 25 & 2,500 \\
\hline \(63 / 4\) & 170 & 100 & 184 & 25 & 2,500 \\
\hline 7 & 175 & 100 & 195 & 25 & 2,500 \\
\hline 71/4 & 183 & 75 & 255 & 25 & 1,875 \\
\hline 71/2 & 190 & 75 & 310 & 25 & 1,875 \\
\hline 73/4 & 195 & 75 & 338 & 25 & 1,875 \\
\hline 8 & 200 & 75 & 343 & 25 & 1,875 \\
\hline \(8^{1 / 4}\) & 210 & 75 & 350 & 25 & 1,875 \\
\hline \(8^{1 / 2}\) & 215 & 50 & 365 & 25 & 1,250 \\
\hline \(8^{3 / 4}\) & 220 & 50 & 378 & 25 & 1,250 \\
\hline 9 & 228 & 50 & 400 & 25 & 1,250 \\
\hline \(91 / 4\) & 235 & 50 & 415 & 25 & 1,250 \\
\hline \(9^{1 / 2}\) & 240 & 50 & 424 & 25 & 1,250 \\
\hline 93/4 & 247 & 50 & 430 & 25 & 1,250 \\
\hline 10 & 254 & 50 & 440 & 25 & 1,250 \\
\hline
\end{tabular}

\section*{(SB) Slab Bolster}

Used for supporting lower slab steel from slab form. Corrugations spaced 1" (25 mm) on centres serve as guides for spacing bars. Legs are spaced \(5^{\prime \prime}(127 \mathrm{~mm})\) on centre. Stocked in \(3 / 4^{\prime \prime}, 1^{\prime \prime}, 11 / 2^{\prime \prime}, 2^{\prime \prime}(20,25,38\) and 50 mm) in heights in \(5^{\prime}(1525 \mathrm{~mm})\) lengths.

(PSB) Slab Bolster And All Plastic Continuous High Chair
AR Plastic Slab Bolster is used for supporting lower slab steel from slab form. Corrugations spaced 1 " (25 mm) on centres serve as guides for spacing bars. Legs are solid plastic \(4^{\prime \prime}(100 \mathrm{~mm})\) on centre. Supporting cross bar is made from high strength plastic coated steel. Corrosion-proof and lightweight for handling.

\section*{(CHC) Continuous High Chair}

Continuous High Chairs provide support for upper slab steel from slab form, eliminating carrier bars required with individual supports. Fabricated 1 paic (PCHC) St (SC) or with in heights from 2" to 12 " (50 mm to 300 mm) in \(1 / 4\) " (5 mm) increments and in 5 , (1525 mm) lengths with legs spaced at \(6^{\prime \prime}(150 \mathrm{~mm})\) o.c.

\section*{Tie Wire}

The AR Tie Wire is a fully annealed wire for use in general construction. It is packaged in Wire Loop Ties and Rolls designed to fit in standard reels. Available in 16 or 16.5 ga.
50 lbs . Coils
3.5 lbs. Coils

Wire Loop Tys
Coated \& Uncoated

\section*{Tie Wire Twister}

The AR Tie Wire Twister is offered in a compact size that allows the tool to be used in tight spaces. Safely and easily twists wire bar ties with a durable design.

\section*{PVC - Single Chamfer}

\section*{Formwork Pry Bar}

The AR Formwork Pry Bar is a heavy duty pry bar ideally suited for use by tilt-up erectors and form setters to strip forms and to "jockey" a panel into position or assist in removing forms. The Pry Bar is available with a \(75 \mathrm{~mm}\left(3^{\prime \prime}\right)\) blade widths.
```

To order, please specify the following information
EXAMPLE
Name ....
Namentity
Formwork Pry Bar

```

\section*{Plastic Form Spreader}

The AR Plastic Form Spreader eliminates the need of cutting and placing wood strips and reduces patching and grouting needs. The Form Spreader is corrosion free and 150 mm 200 mm 250 m . 300 mm \(150 \mathrm{~mm}, 200 \mathrm{~mm}, 250 \mathrm{~mm}\) and 300 mm (6", 8", 10" and 12").

To order, please specify the following information EXAMPLE
Name
.. Plastic Form Spreader

during Pour

SEtTING FORMWORK

\section*{Rich-Cote Form Release - Summer \& Winter Grade}

A premium liquid debonding agent developed especially for concrete. Through a chemical reaction, RICH-COTE \({ }^{\text {TM }}\) produces a smooth, white, flat concrete surface which is free of voids and will bond with paint, plaster, tiles and any other coating applied directly to the concrete. RICH-COTE \({ }^{\text {TM }}\) reacts positively with the alkalies in the concrete forming a water resistant barrier with the concrete that prevents it from binding to the forms.
RICH-COTE \({ }^{\text {TM }}\) waterproofs plywood forms preventing the alkalies in the concrete from being absorbed and rotting the wood. It is compatible with any pre-oiling done at the mill or any other substance previously used for treating forms. It will not wick out or wash off. Continued use makes forms completely waterproof and extends their life considerably. RICH-COTETM can be sprayed at sub-freezing temperatures. It will not stain and will reduce finishing time by 50\%. RICH-COTE" makes form stripping easier and faster. For the most effective and economical method of application use the AR Form Sprayer.

Drying Time:
1-2 hours - leaving a completely workable, non-slip surface.
Coverage:
12-18 square metres per litre on most forms.
18-25 square metres per litre on plastic coated and steel forms.

\section*{Form Sprayer}

The AR Form Sprayer is an industrial style Tri-Poxy coated metal unit with a capacity of 13.2 litres. The AR Form Sprayer comes complete with:
(24) heavy duty hos
-
hre poinclosures
threaded fitting for easy changing of hose, shut-off and nozzle
```

To order, please specify
the following information
EXAMPLE
Name...
... Form Sprayer

```


\section*{Curb Clamp}

AR Curb Clamps are strong and durable with special fast thread for adjustment up to 385 mm (15") for securing curb on gutter forms. Custom sizes are available on request.
```

To order, please specity
To order, please speciry
EXAMPLE
Name ...e.
.. Curb Clamp

```


\section*{Corner Clamp}

The AR Corner Clamp is fabricated of \(6 \mathrm{~mm} \times 95 \mathrm{~mm}\left(1 / 4^{\prime \prime} \times 33 / 4^{\prime \prime}\right)\) flat steel washer stock bent to form a wedge block with ample bearing flanges drilled for nailing to the wales. Its principal use is to provide bearing against the wales for the Tyholders on a diagonal corner tie. Most commonly used with Lag Rods
```

To order, please specify
the following informatio
EXAMPLE
Name ...
Quantity
Corner Clamp
Quantity
C........... 200

```


\section*{Barrier Wall Control Joint}

The AR Barrier Wall Control Joint is a pre-manufactured extruded PVC forming insert used in controlling the location of shrinkage cracks in concrete barrier walls. The Barrier Wall Control Joint is installed by mechanically attaching it to the edge of the concrete form at a predetermined joint spacing specified by the engineer. The spacing and location of the Barrier Wall Control Joint is calculated based on the concrete mass and length of wall cast. Comes as a 3 metre (\(10^{\prime}\)) length. Available in steel as a special order upon request.
NOTE: If properly installed may be reused a number of times. Referred in the OPSS904 specification as special provision 109525 .
\[
\begin{aligned}
& \begin{array}{l}
\text { To order, please specify } \\
\text { the following information } \\
\text { EXAMPLE } \\
\text { Name e...... Barrier Wall Control Joint } \\
\text { Quantity } 200
\end{array}
\end{aligned}
\]

\section*{Expanded Metal Form}

AR Expanded Metal Form is adaptable to site conditions for stay-in-place forming. Use in applications such as bulkheads, blind sided walls, grade beams and pile caps. Expanded Metal Form reduces labour costs in difficult forming applications. Supplied pre-galvanized for job site storage.

\section*{Expanded Metal Form sheet size}
\(685 \mathrm{~mm} \times 244 \mathrm{~mm}\left(27\right.\) " \(^{x}\) 8'-0")

Torder please specify the following information EXAMPLE
Namentity
Expanded Metal Form

\section*{General Guidelines and Conditions}

Approximate Safe Working Loads: The Approximate Safe Working Loads published in this brochure can only be obtained when AR products and accessories are used together. Products must be installed correctly to obtain the ull strength development as illustrated below.

Ensure that internal vibration has not caused Snap-Ty Wedges to bounce around, loosen or fall off t is important to properly position the Snap-Ty head and the wedge

The Ty Head must not be positioned lower than the midpoint of the wedge. The proper Ty Head the midpoint of the wedge slot, or higher

Walers spaced too far apart may cause crushing of the wales or bending of the wedge, causing the form to bulge outward. ncorrect wall thicknesses will result and cause the Ty Spreader Washers or Cones to become embedded in the concrete. Embedded Ty Washers or Cones will make it difficult to break back the Tys.

CORRECT

CORRECT

\section*{General Guidelines and Conditions}

Ty cones and metal washers are used to act as form spreaders only. The wedge should not be overtightened by any method. Attempting to draw-up warped wales with the wedge should not be attempted. Metal spreader washers will bend out of shape and plastic cones will break if over tightening is attempted, resulting in incorrect wall thickness

CORRECT

To achieve proper form structures, it is important that all form tys are installed and used properly.
Excessive loads will be transferred to adjacent tys and can result in form failure if tys and/or their required ardware are omitted.
Ensure that form tys are properly ligned. Increased loads placed n form tys because of ailure to occur Also reduced oad capacities can result from form tys damaged because of misalignment during installation.

CORRECT

ORRECT

\section*{General Guidelines and Conditions}

The maximum space between double walers should be \(13 \mathrm{~mm}(1 / 2\) ") more than the nominal diameter of a forming device being used e He-Bolts, Taper-Tys, She-Bolts and Lagstud Bolts.

CORRECT
Wales may be crushed or washers may bend if too much space is allowed between the walers. Too much space causes the form to move outward and will result in incorrect wall thickness and spreader cones becoming trapped in the concrete. Incorrect wall thicknes can also be caused from washers being deflected due to the increased ateral form pressure.

Lag stud bolts and other lag thread products must have proper lag penetration. A minimum of one diameter of the bolting device past he coil is the proper penetration. As an example, a lagstud bolt tha is \(25 \mathrm{~mm}\left(1^{\prime \prime}\right)\) in diameter should extend a minimum of \(25 \mathrm{~mm}(1\) ") past the coil. Form failure can result if threaded items are penetrated incorrectly. Excessive wear on the bolt's first few threads are caused from improper penetration and the entire bolt load is placed on a smaller portion f the coil welds. The coil welds can fail and cause form failure because of this increased load.

\section*{General Guidelines and Conditions}

Do not force tys into position. orcing the tys may damage the ty and result in form failure. Do not use incorrect length Tys and do not mix incorrect form Ty lengths with correct ones. Ty lengths with correct ones. lateral pressure to adjacent tys and may result in form failure. Do not use the form tys for climbing. mpact wrenches should not be used to tighten form tying devices Do not vibrate the concrete excessively or the concrete at the bottom of the form will stay in liquid state longer than should be expected. The liquid state will cause a higher than expected ateral form pressure and could cause a form failure

CORRECT

The recommended rate of placement should not be exceeded. If the concrete at the bottom of the form is still in liquid state do not continue to place concrete. Form failure may result. Working parts below the specified requirements should not be used with forming accessories.
Use accessories and hardware of proper length, diameter and capacity. If it is necessary to use a greater safety factor, the safe working load must be reduced accordingly.
Use caution when welding any forming system component. Material properties may be affected by welding and result in lower product performance. A good working knowledge of materials, heat treating and welding procedures is required before welding any forming accessory. National Concrete Accessories does not guarantee any product altered in any way after leaving the factory.

\section*{Induced Tension Loads}

\section*{Induced Tension Loads}

When tying at an angle be aware that an increase in the tension applied to an angled ty is increased. Sample angles and the corresponding multiplication factors for calculating the tension load on an angled ty are shown in the table.

\section*{Induced Shear Loads}

It is important to note the illustration showing ty downs placed at an angle and the shear loads produced. Total shear load may be many times greater than the shear load produced by the form weight alone.
When deciding which form ty system to use for a forming application, consider both the tension and the shear load.

\section*{Combined Shear and Tension Loads}

The equation shown should be
satisfied for form accessories
and inserts subjected to combined
shear and tension loading.
\(\left(\frac{\mathrm{f}_{\mathrm{t}}}{\mathrm{F}_{\mathrm{t}}}\right)^{\frac{5}{3}}+\left(\frac{\mathrm{f}_{\mathrm{v}}}{\mathrm{F}_{\mathrm{v}}}\right)^{\frac{5}{3}} \leqq 1.0\)

\section*{Where:}
\(\mathrm{t}_{\mathrm{t}}=\) induced tension load
\(F_{t}=\) insert tension Approximate Safe Working Load or bolt tension Approximate Safe Working Load, whichever is less
= induced shear load
\(F_{v}=\) insert shear Approximate Safe Working Load or bolt shear Approximate Safe Working Load, whichever is less

\section*{Stripping of Snap-Tys and guidelines for break back}

AR Snap-Ty break backs are manufactured to exacting standards hat ensure that they perform to load requirements while providing a consistent and reliable breaking point. However, many factors affect the performance of the break backs

Snap-Tys must not be bent during installation as the break back could be adversely affected.
For best results, Tys are not to be removed until concrete has gained sufficient strength to prevent the Ty upset from rotating typically 2 to 3 days. Attempting to break the Ty in green concrete may result in the Ty rotation in the concrete and make it difficult to break the Ty.
Only Space-Tys have a quaranteed break back
Other Snap-Ty products are designed to provide a consistent break back, but can be affected by the concrete, which could Products like the Stel Washer, No Washer and No Sprea Snap-Tys where the break back could be contained within the concrete require extra attention. With increased bond length AR cannot guarantee that the Ty will consistently provide the proper break back. For these products, this is especially important where break backs of over \(3 / 4^{\prime \prime}(20 \mathrm{~mm})\) are desired. A good quality release agent/grease (acceptable non-staining) applied between the break back and the face of formwork (grease wire to be embedded, that will be removed - do not grease head area) may facilitate more consistent results. On site tests should be conducted to identify if consistent results can be achieved with the concrete mix and Ty.
If the washer or cone is not free of the concrete, chip away the concrete using a hammer, screwdriver or drill to free the embedded components. Failure to free up the embedded components could result in the break back closer to the surface of the concrete instead of the desired break back location

Use of the AR Snap-Ty and Space-Ty wrenches will assist with consistency, reduce risk of injury and speed up removal see pages 22 and 23).

If in doubt, contact AR's technical department for assistance.

Space-Ty Wrench

Snap-Ty Wrench

\section*{Concrete lateral pressures for wall form design - PUMPED}
- Table conforms to CAN/CSA-S269.3-M92.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{PUMPED} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Rate of pour}} & \multicolumn{6}{|c|}{CONCRETE TEMPERATURE DURING POUR} \\
\hline & & \multicolumn{2}{|l|}{\(5^{\circ} \mathrm{C}\left(40^{\circ} \mathrm{F}\right)\)} & \multicolumn{2}{|l|}{\(10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)\)} & \multicolumn{2}{|l|}{\(15^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)\)} \\
\hline & & kPa & PSF & kPa & PSF & kPa & PSF \\
\hline 1 metre per hour & 3'0" per hour & 86 & 1810 & 72 & 1500 & 62 & 1290 \\
\hline 1.5 metre per hour & 4'0" per hour & 92 & 1900 & 77 & 1550 & 67 & 1325 \\
\hline 2 metres per hour & \(5^{\prime} 0\) " per hour & 99 & 1975 & 82 & 1625 & 71 & 1410 \\
\hline 2.5 metres per hour & 6'0" per hour & 106 & 2075 & 88 & 1680 & 76 & 1460 \\
\hline 3 metres per hour & 7'0" per hour & 112 & 2125 & 93 & 1760 & 81 & 1525 \\
\hline 3.5 metres per hour & \(88^{\prime \prime}{ }^{\text {" per hour }}\) & & 2250 & 132 & 1840 & 113 & 1590 \\
\hline 4 metres per hour & 9'0" per hour & & 2331 & 144 & 1910 & 128 & 1640 \\
\hline 4.5 metres per hour & 10'0" per hour & & 2425 & & 1975 & 144 & 1675 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Rate of pour}} & \multicolumn{6}{|c|}{CONCRETE TEMPERATURE DURING POUR} \\
\hline & & \multicolumn{2}{|l|}{\(20^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)\)} & \multicolumn{2}{|l|}{\(25^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)\)} & \multicolumn{2}{|l|}{\(30^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{F}\right)\)} \\
\hline & & kPa & PSF & kPa & PSF & kPa & PSF \\
\hline 1 metre per hour & 3'0" per hour & 48 & 1000 & 48 & 1000 & 48 & 1000 \\
\hline 1.5 metre per hour & 4'0' per hour & 58 & 1000 & 48 & 1000 & 48 & 1000 \\
\hline 2 metres per hour & 5'0" per hour & 63 & 1130 & 48 & 1000 & 48 & 1000 \\
\hline 2.5 metres per hour & \(6^{6} 0\) " per hour & 67 & 1290 & 51 & 1000 & 48 & 1000 \\
\hline 3 metres per hour & \(7{ }^{7} 0\) " per hour & 71 & 1350 & 63 & 1130 & 51 & 1000 \\
\hline 3.5 metres per hour & 8"0' per hour & 100 & 1400 & 88 & 1260 & 81 & 1000 \\
\hline 4 metres per hour & 9'0" per hour & 112 & 1440 & 101 & 1290 & 91 & 1000 \\
\hline 4.5 metres per hour & 10'0" per hour & 126 & 1460 & 112 & 1300 & 101 & 1000 \\
\hline
\end{tabular}

NOTES: The above table is controlled rate of pours (concrete using type 10 or 30 cement, with no admixtures, ie. superplasticizer) plus \(25 \%\) for pumped concrete.

\section*{Concrete lateral pressures for wall form design - BUCKET}
- Table conforms to CAN/CSA-S269.3-M92.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{BUCKET} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Rate of pour}} & \multicolumn{6}{|c|}{CONCRETE TEMPERATURE DURING POUR} \\
\hline & & \multicolumn{2}{|l|}{\(5^{\circ} \mathrm{C}\left(40^{\circ} \mathrm{F}\right)\)} & \multicolumn{2}{|l|}{\(10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)\)} & \multicolumn{2}{|l|}{\(15^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)\)} \\
\hline & & kPa & PSF & kPa & PSF & kPa & PSF \\
\hline 1 metre per hour & 3'0" per hour & 69 & 1450 & 58 & 1200 & 50 & 1030 \\
\hline 1.5 metre per hour & 4'0" per hour & 74 & 1520 & 62 & 1240 & 54 & 1060 \\
\hline 2 metres per hour & 5 5'0" per hour & 79 & 1580 & 66 & 1300 & 57 & 1130 \\
\hline 2.5 metres per hour & 6'0" per hour & 85 & 1660 & 71 & 1350 & 61 & 1170 \\
\hline 3 metres per hour & 7'0" per hour & 90 & 1700 & 75 & 1410 & 65 & 1220 \\
\hline 3.5 metres per hour & 8'0" per hour & 128 & 1800 & 106 & 1470 & 91 & 1270 \\
\hline 4 metres per hour & 9'0" per hour & 144 & 1870 & 120 & 1530 & 103 & 1310 \\
\hline 4.5 metres per hour & 10'0" per hour & & 1940 & 134 & 1580 & 115 & 1340 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Rate of pour} & & \multicolumn{6}{|c|}{CONCRETE TEMPERATURE DURING POUR} \\
\hline & & \multicolumn{2}{|l|}{\(20^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)\)} & \multicolumn{2}{|l|}{\(25^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)\)} & \multicolumn{2}{|l|}{\(30^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{F}\right)\)} \\
\hline & & kPa & PSF & kPa & PSF & kPa & PSF \\
\hline 1 metre per hour & \(3{ }^{\prime \prime} 0^{\prime \prime}\) per hour & 48 & 1000 & 48 & 1000 & 48 & 1000 \\
\hline 1.5 metre per hour & \(4^{\prime} 0^{\prime \prime}\) per hour & 48 & 1000 & 48 & 1000 & 48 & 1000 \\
\hline 2 metres per hour & \(5{ }^{\prime \prime} 0^{\prime \prime}\) per hour & 51 & 1000 & 48 & 1000 & 48 & 1000 \\
\hline 2.5 metres per hour & 6'0" per hour & 54 & 1030 & 48 & 1000 & 48 & 1000 \\
\hline 3 metres per hour & \(7{ }^{7} 0\) " per hour & 57 & 1080 & 51 & 1000 & 48 & 1000 \\
\hline 3.5 metres per hour & \(8{ }^{\prime \prime} 0^{\prime \prime}\) per hour & 80 & 1120 & 71 & 1010 & 65 & 1000 \\
\hline 4 metres per hour & 9'0" per hour & 90 & 1150 & 81 & 1030 & 73 & 1000 \\
\hline 4.5 metres per hour & 10'0" per hour & 101 & 1170 & 90 & 1040 & 81 & 1000 \\
\hline
\end{tabular}

NOTES: The above table is controlled rate of pours (concrete using type 10 or 30 cement, with no admixtures, ie. superplasticizer).

MAXIMUM PRESSURES

\section*{Maximum lateral pressure for design of COLUMN FORMS}
- Based on ACI Committee 347 pressure formula

Applies only for normal weight concrete made with type 1 cement, no admixtures or pozzolans, slump no more than 4 inches and vibration depth limited to 4 feet or less.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{P. maximum lateral pressure, pst, for temperature indicated.} \\
\hline Rate of placement & \(40^{\circ} \mathrm{F}\) & \(50^{\circ} \mathrm{F}\) & \(60^{\circ} \mathrm{F}\) & \(70^{\circ} \mathrm{F}\) & \(80^{\circ} \mathrm{F}\) & \(90^{\circ} \mathrm{F}\) \\
\hline 1 foot per hour & & & & & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{600 psf minimum governs}} \\
\hline 2 feet per hour & & & & & & \\
\hline 3 feet per hour & 825 & 690 & & & & \\
\hline 4 feet per hour & 1050 & 870 & 750 & 664 & & \\
\hline 5 feet per hour & 1275 & 1050 & 900 & 793 & 712 & 650 \\
\hline 6 feet per hour & 1500 & 1230 & 1050 & 921 & 825 & 750 \\
\hline 7 feet per hour & 1725 & 1410 & 1200 & 1050 & 938 & 850 \\
\hline 8 feet per hour & 1950 & 1590 & 1350 & 1178 & 1050 & 950 \\
\hline 9 feet per hour & 2175 & 1770 & 1500 & 1307 & 1163 & 1050 \\
\hline 10 feet per hour & 2400 & 1950 & 1650 & 1436 & 1275 & 1150 \\
\hline 12 foot per hour & 2850 & 2310 & 1950 & 1693 & 1500 & 1350 \\
\hline 14 feet per hour & & 2670 & 2250 & 1950 & 1725 & 1550 \\
\hline 16 feet per hour & & 3000 & 2550 & 2207 & 1950 & 1750 \\
\hline 18 feet per hour & & & 2850 & 2464 & 2175 & 1950 \\
\hline 20 feet per hour & & & 3000 & 2721 & 2400 & 2150 \\
\hline 22 feet per hour & & & & 2979 & 2625 & 2350 \\
\hline 24 feet per hour & & & & 3000 & 2850 & 2550 \\
\hline 26 feet per hour & & & & & 3000 & 2750 \\
\hline 28 feet per hour & & & & & & 2950 \\
\hline 30 feet per hour & & & & 3000 govern & naximum & 3000 \\
\hline
\end{tabular}

NOTE:- 2 m pressure is based on concrete weighing \(150 \mathrm{lb/ft}^{2}\)
Do not use design pressures in excess of 150 x height of fresh concrete in forms.

\section*{Maximum lateral pressure for design of WALL FORMS}
- Based on ACI Committee 347 pressure formula

Applies only for normal weight concrete made with type 1 cement, no admixtures or pozzolans, slump no more than 4 inches and vibration depth limited to 4 feet or less.

\section*{P. maximum lateral pressure, psf , for temperature indicated}

\section*{\(\begin{array}{llllll}\text { Rate of placement } & 40^{\circ} \mathrm{F} & 50^{\circ} \mathrm{F} & 60^{\circ} \mathrm{F} & 70^{\circ} \mathrm{F} & 80^{\circ} \mathrm{F}\end{array} \mathbf{9 0 ^ { \circ }} \mathrm{F}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{2 feet per hour} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{600 psf minimum governs}} \\
\hline 3 feet per hour & & 690 & & & & \\
\hline 4 feet per hour & 1050 & 870 & 750 & 664 & & \\
\hline 5 feet per hour & 1275 & 1050 & 900 & 793 & 712 & 650 \\
\hline 6 feet per hour & 1500 & 1230 & 1050 & 921 & 825 & 750 \\
\hline 7 feet per hour & 1725 & 1410 & 1200 & 1050 & 938 & 850 \\
\hline 8 feet per hour & 1795 & 1466 & 1246 & 1090 & 973 & 881 \\
\hline 9 feet per hour & 1865 & 1522 & 1293 & 1130 & 1008 & 912 \\
\hline 10 feet per hour & 1935 & 1578 & 1340 & 1170 & 1043 & 943 \\
\hline
\end{tabular}

NOTE:Form pressure is based on concrete weighing \(150 \mathrm{lb} / \mathrm{ft}^{2}\). Do not use design pressures in excess of 150 x height of fresh concrete in forms.
\begin{tabular}{|c|c|c|}
\hline & ACISpec & CAN/CSA-S269.3-M92 \\
\hline Wall up to 7 feet Wall between 7 and 10 feet & \[
\begin{aligned}
& 150=(9000 * \mathrm{R}) / \mathrm{T} \\
& 150+(43400 / T)=\left(2088^{* R}\right) / T
\end{aligned}
\] & \(150+(43400 / T)=(2088 * R) / T\) \\
\hline Maximum form pressure & 2000 PSF & 3000 PSF \\
\hline Miminum form pressure & 600 PSF & 1000 PSF \\
\hline Up to 4'-0" wall & 600/150 \(=4\) feet Full Liquid Head & Pour Full Liquid Head \\
\hline Comments & ACI formula for pour rate up to 7 feet/hour is more conservative Lower maximum form pressure Lower miminum form pressure & Higher form pressure between 0 to 7 feet/hour Higher maximum form pressure Higher minimum form pressure \\
\hline
\end{tabular}

\section*{Lateral Pressure}

Plastic concrete exerts the same pressure on
forms regardless of their width.

Increased Wall Height

As you increase the height of plastic concrete to the forms, the pressure will build at a rate of 150 PSF per foot of depth. This will be true
s long as all concrete remains in a plastic sta
Example: Ten feet of fluid or plastic concreter
bears on the botiom foot of forms with a
pressure of \(10 \times 150\) los/tt 3 or 1500 PSF

As Concrete Cures

Lateral pressure decreases from bottom as concrete cures.

\section*{Light Formwork}

\(3050 \mathrm{~mm}\left(10^{\prime}-0^{\prime \prime}\right)\) High Wall, Full Liquid Head
\(6100 \mathrm{~mm}\left(20^{\prime}-0^{\prime \prime}\right)\) High Wall, Controlled Rate of Pour
\begin{tabular}{lll}
\hline & N/A & NA \\
NA & \\
N/A \\
N/A & N/A \\
N & &
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline N/A & N/A & N \\
N/A & NA & N
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline \(6100 \mathrm{~mm}\left(20^{-}-0^{\prime \prime}\right)\) High Wall, Controlled Rate of Pour & N/A & N/A & N/A & N/A & 2 & \((6)\) & 3.5 & \((8)\) & 4.5 \\
\hline \(6100 \mathrm{~mm}\left(20^{\prime}-0^{\prime \prime}\right)\) High Wall, Full Liquid Head & N/A & N/A
\end{tabular}
\begin{tabular}{ll|l|l|l|l|}
\hline (6) & N/A & N/A & N/A & N/A
\end{tabular}

\section*{Medium Formwork}

Liud Head
Liquid Head \(3050 \mathrm{~mm}\left(10^{-}-0^{\prime \prime}\right)\) High Wall, Full Liquid Head \(6100 \mathrm{~mm}\left(20^{\prime}-0^{\prime \prime}\right)\) High Wall, Controlled Rate of Pour \(6100 \mathrm{~mm}\left(20^{\prime}-0^{\prime \prime}\right)\) High Wall, Full Liquid Head

\section*{Heavy Formwork}

LEGEND \(\mathbf{A}=19 \mathrm{~mm}\left(33^{4}\right)\)) plywood \(\mathbf{B}=38 \times 89(2 \times 4)\) studs @ \(200\left(8^{\prime \prime}\right)\) on centre \(\mathbf{C}=\) Two \(38 \times 89(2 \times 4)\) walers \(\mathbf{D}=\) Tywedge (sweg-H)
\(\mathbf{E}=\) Snap-ty or Space-TyTM \(\mathbf{F}=\) Footing \(\mathbf{G}=38 \times 89(2 \times 4)\) studs \(@ 150\left(6^{\prime \prime}\right)\) on centre \(\mathbf{H}=38 \times 89(2 \times 4)\) studs \(@ 100\left(4^{\prime \prime}\right)\) on centre
\(M=89 \times 89(4 \times 4)\) studs @ \(200\left(8^{\prime \prime}\right)\) on centre \(\mathbf{N}=89 \times 89(4 \times 4)\) studs @ 150 (6 ") on centre \(\mathbf{O}=\) Aluminum horizontal walers @ 254 (10 ") on cen
\(\mathbf{P}=\) Double strongbacks @ 1220 (4'-0") on centre \(\mathbf{Q}=\) Form-ty (refer to Laout Options in table above)

\section*{Chart - Maximum rise of concrete in forms in metres (feet) Per hour}

Liquid Head
\begin{tabular}{l|l|l|l|l|l|l|l|l|l}
\(5^{\circ} \mathrm{C}\) & \(\left(40^{\circ} \mathrm{F}\right.\) & \(10^{\circ} \mathrm{C}\) & \(\left(50^{\circ} \mathrm{F}\right)\) & \(15^{\circ} \mathrm{C}\) & (60 & \(20^{\circ} \mathrm{C}\) & \(\left(70^{\circ} \mathrm{F}\right)\) & \(25^{\circ} \mathrm{C}\) & \(\left(80^{\circ} \mathrm{F}\right)\) \\
\hline
\end{tabular}
\(6100 \mathrm{~mm}\left(20^{\prime}-0^{\prime \prime}\right)\) High Wall, Controlled Rate of Pour
\begin{tabular}{lll|l|l|l|l|l|}
\hline N/A & N/A & N/A & N/A & 2.5 & \((6)\) & 3.5 & \((8)\) \\
N/A & N/A & N/A & N/A & N & (10)
\end{tabular}

\section*{NOTES}
1) All lumber to be SPF, No. 2 grade or equal except for 4 " \(x 4\) "s and 2 " \(\times 4\) "
construction grade or equal.
2) Construction live load not to exceed 75 PSF (3.6 KPa) on deck \(.50 \mathrm{PSF}(2.4 \mathrm{KPa})\) on work plattorm 3) Contractor to verify with structural engineer the capacity of structure to sustain mosed loads
Wallform concrete pour design based ate of pour) unless indicated otherwise at rate of pour) unless indicate
pouring information below.
5) Wood design is based on CAN3-086-M84 Engineering Design in Wood (working stress 6) Formwork design based on CAN/ CSAS269.3- M92 concrete formwork Wational Standard of Canada. Tys are spaced for maximum concrete pressure of 1500 PSF at safe load values of Tys. Assumed pouring rate for "Portland Cement" concrete only at various
temperatures as indicated in above charts Estimated time of set for charts: 175 hours @ \(40^{\circ}\) to \(50^{\circ} \mathrm{F}, 125\) harts
\(70^{\circ} \mathrm{F} 15\) hours @ \(50^{\circ}\) to \(60^{\circ} \mathrm{F} 1\) hour @ \(70^{\circ}\) to \(80^{\circ} \mathrm{F}\)
Wallform and product design is based on he following assumptions.
Concrete is placed by bucket from top - Concrete pressures are full liquid head unless a maximum concrete pressure is specified above
- Concrete mix using type 10 or type 30 ements maximum slump of 100 mm (4") for ontrolled pours
Compliance with "Concrete Formwork

LOADS

Approximate Safe Working Loads \& Ultimate Capacities calculated for various concrete strengths
Approximate Safe Working Loads \& Ultimate Capacities calculated for various concrete strengths

\section*{CONVERSIONS}

\section*{CONVERSION CHART}

Area of rectangle \(=\) length \(\times\) width
Area of triangle \(=\) base \(\times 1 / 2\) altitude
Area of parallelogram \(=\) base \(\times\) altitude
Area of trapezoid \(=\) altitude \(\times 1 / 2\) the sum of parallel sides
Circumference of circle \(=\) diameter \(\times 3.1416\)
Diameter of circle \(=\) circumference \(\times 0.3183\)
Radius of a circle \(=\) circumference \(\times 0.159155\)
Area of a circle \(=\) square of diameter \(\times 0.7854\)
APPROXIMATE WEIGHT OF DRY MATERIALS
\begin{tabular}{lccc}
\hline Materials & \begin{tabular}{c}
Per \\
Cubic Metre
\end{tabular} & \begin{tabular}{c}
Per \\
Cubic Yard
\end{tabular} & \begin{tabular}{c}
Per \\
Cubic Foot
\end{tabular} \\
\hline Sand & 1600 kg & 2700 lbs. & 100 lbs. \\
Gravel & 1760 kg & 3000 lbs. & 110 lbs. \\
Crushed Stone & 1475 kg & 2500 lbs. & 92 lbs. \\
Slag & 1185 kg & 2000 lbs. & 74 lbs. \\
Cinders & 770 kg & 1300 lbs. & 48 lbs. \\
Limestone & 1715 kg & 2900 lbs. & 107 lbs. \\
Cement & 1505 kg & 2550 lbs. & 94 lbs. \\
Concrete: & & & \\
Cinder & \(1361-1762 \mathrm{~kg}\) & \(2300-3000 \mathrm{lbs}\). & \(85-110 \mathrm{lbs}\). \\
Gravel or Limestone & 2400 kg & 4050 lbs. & 150 lbs. \\
Trap Rock & 2485 kg & 4200 llbs & 155 lls. \\
Slag & 2240 kg & 3800 lbs. & 140 lbs.
\end{tabular}

\section*{CONCRETE ESTIMATOR}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{One Cubic Metre of Concrete Will Place} \\
\hline Thickness & \(\mathrm{m}^{2}\) & \(\mathrm{Ft}^{2}\) & Thickness & \(\mathrm{m}^{2}\) & \(\mathrm{Ft}^{2}\) & Thickness & \(\mathrm{m}^{2}\) & \(\mathrm{Ft}^{2}\) \\
\hline 25 mm (1") & 39.4 & 424 & 125 mm (\(5^{\prime \prime}\)) & 7.9 & 85 & 225 mm (9") & 4.4 & 47 \\
\hline 50 mm (2") & 19.7 & 212 & 150mm (6") & 6.5 & 70 & 250mm (10") & 3.9 & 42 \\
\hline 75 mm (3") & 13.1 & 141 & 175 mm (7") & 5.6 & 60 & 275 mm (11") & 3.6 & 38 \\
\hline 100 mm (4") & 9.8 & 106 & 200 mm (8") & 4.8 & 52 & 300 mm (12") & 3.2 & 35 \\
\hline
\end{tabular}

CONVERSIONS

\section*{METRIC CONVERION FACTORS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{APPROX. CONVERSION TO METRIC MEASURES} & \multicolumn{3}{|l|}{APPROX. CONVERSION FROM METRIC MEASURES} \\
\hline When You & Multiply & To & When You & Multiply & To \\
\hline Know & By & Find & Know & By & Find \\
\hline Length & & & Length & & \\
\hline inches & 2.5 & centimetres & centimetres & 0.4 & inches \\
\hline feet & 30.0 & centimetres & metres & 3.3 & feet \\
\hline yards & 0.9 & metres & metres & 1.1 & yards \\
\hline miles & 1.6 & kilometres & kilometres & 0.6 & miles \\
\hline \multicolumn{3}{|l|}{Area} & \multicolumn{3}{|l|}{Area} \\
\hline sq. inches & 6.5 & sq. centimetres & sq. centimetres & S 0.16 & sq. inches \\
\hline sq. feet & 0.09 & sq. metres & sq. metres & 10.76 & sq. feet \\
\hline sq. yards & 0.8 & sq. metres & sq. metres & 1.2 & sq. yards \\
\hline sq. miles & 2.6 & sq. kilometres & sq. kilometres & 0.4 & sq. miles \\
\hline acres & 0.4 & hectares & hectares & 2.5 & acres \\
\hline \multicolumn{3}{|l|}{Mass (weight)} & \multicolumn{3}{|l|}{Mass (weight)} \\
\hline ounces & 28.0 & grams & grams & 0.035 & ounces \\
\hline pounds & 0.45 & kilograms & kilograms & 2.2 & pounds \\
\hline short tons & 0.9 & metric ton & metric ton & 1.1 & short tons \\
\hline \multicolumn{3}{|l|}{Volume (U.S. measure)} & \multicolumn{3}{|l|}{Volume (U.S. measure)} \\
\hline cubic inches & 16.0 & millilitres & millilitres & 0.06 & cubic inches \\
\hline fluid ounces & 30.0 & millilitres & millilitres & 0.03 & fluid ounces \\
\hline cups & 0.24 & litres & litres & 0.036 & cups \\
\hline pints & 0.47 & litres & litres & 2.1 & pints \\
\hline quarts & 0.95 & litres & litres & 1.06 & quarts \\
\hline gallons & 3.8 & litres & litres & 0.26 & gallons \\
\hline cubic feet & 0.03 & cubic metres & cubic metres & 35.0 & cubic feet \\
\hline cubic yards & 0.76 & cubic metres & cubic metres & 1.3 & cubic yards \\
\hline \multicolumn{6}{|l|}{Pressure} \\
\hline p.s.f. & 47.8802 & Pa & Pa & 0.020885 & p.s.f. \\
\hline k.s.i. & 6.89475 & MPa & MPa & 0.145 & k.s.i. \\
\hline Kips & 4.44822 & & kN & 0.2248 & Kips \\
\hline \multicolumn{6}{|l|}{Torque} \\
\hline Foot-Pounds & 1.35581 & Nm & \(\mathrm{Nm} \quad 0\) & 0.73776 & Foot-Pounds \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Temperature (exact)
\[
{ }^{\circ} \mathrm{F}={ }^{\circ} \frac{\mathrm{C} \times 9}{5}+32
\]}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Temperature (exact)
\[
{ }^{\circ} \mathrm{C}=\frac{(\mathrm{OF}-32) \times 5}{9}
\]}} \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{CONVERSIONS}

\section*{CONVERSIONS}

Surface d'un rectangle \(=\) longueur \(\times\) largeur
Surface d'un triangle \(=\) base \(\times 1 / 2\) hauteur
Surface d'un parallélogramme \(=\) base \(\times\) hauteur
Surface d'un quadrilatère irrégulier \(=\) hauteur \(\times \mathrm{la} 1 / 2\) de la somme des côtés parallèles
Circonférence d'un cercle \(=\) diamètre \(\times 3.1416\)
Diamètre d'un cercle \(=\) circonférence \(\times 0.3183\)
Rayon d'un cercle \(=\) circonférence \(\times 0.159155\)
Surface d'un cercle \(=\) carré du diamètre \(\times 0.7854\)
POIDS APPROXIMATIF DES MATÉRIAUX SECS
\begin{tabular}{lccc}
\hline Matériaux & \begin{tabular}{c}
Par \\
mètre cube
\end{tabular} & \begin{tabular}{c}
Par \\
verge cube
\end{tabular} & \begin{tabular}{c}
Par \\
pied cube
\end{tabular} \\
\hline Sable & 1600 kg & 2700 lb & 100 lb \\
Gravier & 1760 kg & 3000 lb & 110 lb \\
Pierre concassee & 1475 kg & 2500 lb & 92 lb \\
Scories & 1185 kg & 2000 lb & 74 lb \\
Mâchefer & 770 kg & 1300 lb & 48 lb \\
Chaux & 1715 kg & 2900 lb & 107 lb \\
Ciment & 1505 kg & 2550 lb & 94 lb \\
Béton: & & & \\
mâchefer & \(1361-1762 \mathrm{~kg}\) & \(2300-3000 \mathrm{lb}\) & \(85-110 \mathrm{lb}\) \\
gravier ou chaux & 2400 kg & 4050 lb & 150 lb \\
basalte & 2485 kg & 420 lb & 155 lb \\
scories & 2240 kg & 3800 lb & 140 lb
\end{tabular}

\section*{ESTIMATION POUR BÉTON}

Un mètre cube de béton couvrira
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Epaisseur & \(\mathrm{m}^{2}\) & \(\mathrm{pi}^{2}\) & Épaisseur & \(\mathrm{m}^{2} \mathrm{pi}^{2}\) & Epaisseur & \(\mathrm{m}^{2}\) \\
\hline 25 mm (1 po) & 39.4 & 424 & 125 mm (5 po) & 7.985 & 225 mm (9 po) & 4.4 \\
\hline 50 mm (2 po) & 9.7 & 212 & 150 mm (6 po) & 6.570 & 250 mm (10 po) & 3.9 \\
\hline mm (3 po) & 13.1 & 141 & 175 mm (7 po) & & 275 mm (11 po) & 3.6 \\
\hline 00mm (4 po) & 9.8 & 106 & 200mm (8 po) & & 300 mm (12 po) & . 2 \\
\hline
\end{tabular}

CONVERSIONS
FACTEURS DE CONVERSIONS METRIQUES
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{CONVERSIONS APPROXIMATIVES JUSQU'AUX MESURES MÉTRIQUES} & \multicolumn{3}{|l|}{CONVERSIONS APPROXIMATIVES À PARTIR DES MESURES MÉTRIQUES} \\
\hline Si vous & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Mult. pour trouver par}} & \multirow[t]{4}{*}{Si vous connaissez Longueur les millimètres} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Mult. pour trouver par}} \\
\hline & & & & & \\
\hline Longueur & & & & & \\
\hline les pouces & 2.5 & les centimètres & & & les pouces \\
\hline les pieds & 30.0 & les centimètres & les centimètres & & les pouces \\
\hline les verges & 0.9 & les mètres & les mètres & 3.3 & les pieds \\
\hline les milles & 1.6 & les kilomètres & les mètres & 1.1 & les verges \\
\hline & & & les kilomètres & 0.6 & les milles \\
\hline Surface & & & Surface & & \\
\hline les pouces carrés & 6.5 & les centimètres carés & les centimètres carrés & rés 0.16 & les pouces carés \\
\hline les pieds carrés & 0.09 & les mètres carés & les mètres carrés & 10.76 & les pieds \\
\hline les verges carrés & 0.8 & les mètres carrés & les mètres carrés & 1.2 & les verges carrés \\
\hline les milles carrés & 2.6 & les kilomètres carés & les kiomètres carrés & és 0.4 & les milles carés \\
\hline les acres & 0.4 & les hectares & les hectares & 2.5 & les acres \\
\hline \multicolumn{2}{|l|}{Poids (masse)} & & \multicolumn{3}{|l|}{Poids (masse)} \\
\hline les onces & 28.0 & les grammes & les grammes & & les onces \\
\hline les lives & 0.45 & les kilogrammes & les kilogrammes & 2.2 & les lives \\
\hline les tonnes courtes & S 0.9 & les tonnes métriques & les tonnes métriques & ves 1.1 & les tonnes courtes \\
\hline \multicolumn{2}{|l|}{Volume} & & \multicolumn{3}{|l|}{Volume} \\
\hline les pouces cubes & 16.0 & les mililitres & les mililitres & & les pouces cubes \\
\hline les onces liquides & S 30.0 & les mililitres & les mililitres & & les onces liquides \\
\hline les tasses & 0.24 & les litres & les litres & & les tasses \\
\hline les chopines & 0.47 & les litres & les litres & 2.1 & les chopines \\
\hline les pintes & 0.95 & les litres & les litres & 1.06 & les pintes \\
\hline les gallon & 3.8 & les litres & les litres & 0.26 & les gallons \\
\hline les pieds cubes & 0.03 & les mètres cubes & les mètres cubes & 35.0 & les pieds cubes \\
\hline les verges cubes & 0.76 & les mètres cubes & les mètres cubes & 1.3 & les verges cubes \\
\hline \multicolumn{6}{|l|}{Pression} \\
\hline \(1 \mathrm{~b} / \mathrm{po}\) & 47,8802 & Pa & \(\mathrm{Pa} \quad 0,0\) & 0,020885 & \\
\hline \(\mathrm{k}_{\text {/po }}{ }^{2} \quad 6,8\) & 6,89475 & MPa & MPa & 0,145 & \(\mathrm{k} / \mathrm{po}{ }^{2}\) \\
\hline Kip \({ }^{2}\) 4, & 4,44822 & kN & kN & 0,2248 & kip \(^{2}\) \\
\hline \multicolumn{6}{|l|}{Torque} \\
\hline livre-pied 1. & 1.35581 & Nm & \(\mathrm{Nm} \quad 0\), & 0,73776 & live-pied \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Température (exacte)
\[
{ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \times 9+32
\]}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Température (exacte)
\[
\left.{ }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{F}-32\right) \times 5
\]}} \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Round Fibre Forming Tube - Pouring Rate}
\begin{tabular}{c|c|c}
\multicolumn{3}{c}{ SUGGESTED RATE OF POUR - PER HOUR } \\
\hline & Heavy Wall & Light Wall \\
\hline Up to 12" ID & \multicolumn{2}{|c}{ Pour at any convenient rate } \\
\hline Up to 24" ID & \(18 \mathrm{ft} / \mathrm{hour}\) & \(15 \mathrm{ft} / \mathrm{hour}\) \\
\hline Up to 36" ID & \(11 \mathrm{ft} / \mathrm{hour}\) & \(9 \mathrm{ft} / \mathrm{hour}\) \\
\hline Up to 42" ID & \(7 \mathrm{ft} / \mathrm{hour}\) & \(6 \mathrm{ft} / \mathrm{hour}\) \\
\hline Up to 48" ID & \(6 \mathrm{ft} / \mathrm{hour}\) & \(5 \mathrm{ft} / \mathrm{hour}\) \\
\hline
\end{tabular}

Slump should not exceed 6" - max. pour hight on light wall - 12 ft
\begin{tabular}{c|c}
\multicolumn{2}{c|}{ CONCRETE REQUIREMENTS } \\
\hline Tube Diameter & \begin{tabular}{c}
Cubic Yards Concrete per \\
Foot of Column Height
\end{tabular} \\
\hline 6 " & .0073 \\
\hline 8 " & .0129 \\
\hline \(10^{\prime \prime}\) & .0202 \\
\hline \(12^{\prime \prime}\) & .0291 \\
\hline \(14^{\prime \prime}\) & .0396 \\
\hline \(16^{\prime \prime}\) & .0571 \\
\hline \(18^{\prime \prime}\) & .0654 \\
\hline \(20^{\prime \prime}\) & .0808 \\
\hline \(22^{\prime \prime}\) & .0978 \\
\hline \(24 "\) & .1164 \\
\hline \(26^{\prime \prime}\) & .1368 \\
\hline \(28^{\prime \prime}\) & .1584 \\
\hline \(30 "\) & .1818 \\
\hline \(36^{\prime \prime}\) & .2618 \\
\hline \(48^{\prime \prime}\) & .4654 \\
\hline
\end{tabular}

For total concrete requirements per column:
take figure beside diameter of tube and multiply by column height.

Tube de Formation de Fibres Rondes - Taux de Coulée

TAUX DE DIFFUSION SUGGÉRÉ - PAR HEURE
\begin{tabular}{c|c|c}
\multicolumn{3}{c}{ TAUX DE DIFFUSION SUGGÉRÉ - PAR HEURE } \\
\hline & Murs Lourds & Murs Léger \\
\hline Jusqu'à 12" ID & \multicolumn{2}{|c}{ Verser à n'importe quel taux convenable } \\
\hline Jusqu'à 24" ID & 18 ft /heure & \(15 \mathrm{ft} / \mathrm{heure}\) \\
\hline Jusqu'à 36" ID & \(11 \mathrm{ft} / \mathrm{heure}\) & \(9 \mathrm{ft} / \mathrm{heure}\) \\
\hline Jusqu'à 42" ID & \(7 \mathrm{ft} / \mathrm{heure}\) & \(6 \mathrm{ft} / \mathrm{heure}\) \\
\hline Jusqu'à 48" ID & \(6 \mathrm{ft} /\) heure & \(5 \mathrm{ft} / \mathrm{heure}\) \\
\hline
\end{tabular}

La profondeur ne doit pas dépasser 6 "- max. verser la hauter sur un mur léger - 12 ft
\begin{tabular}{c|c}
\multicolumn{2}{|c}{ BÉTON EXIGENCES } \\
\hline Diamètre du Tube & \begin{tabular}{c}
Cubic Yards Béton par \\
ft de hauteur de colonne
\end{tabular} \\
\hline \(6 "\) & .0073 \\
\hline \(8^{\prime \prime}\) & .0129 \\
\hline \(10 "\) & .0202 \\
\hline \(12^{\prime \prime}\) & .0291 \\
\hline \(14^{\prime \prime}\) & .0396 \\
\hline \(16^{\prime \prime}\) & .0571 \\
\hline \(18^{\prime \prime}\) & .0654 \\
\hline \(20^{\prime \prime}\) & .0808 \\
\hline \(22^{\prime \prime}\) & .0978 \\
\hline \(24 "\) & .1164 \\
\hline \(26^{\prime \prime}\) & .1368 \\
\hline \(28 "\) & .1584 \\
\hline \(30 "\) & .1818 \\
\hline \(36^{\prime \prime}\) & .2618 \\
\hline \(48^{\prime \prime}\) & .4654 \\
\hline
\end{tabular}

Pour les besoins totaux en béton par colonne: Utiliser la figure à côté du diamètre du tube et multiplier par la hauteur de colonne.```

