

Ideal for general doweling and threaded rod applications

Introducing Simpson Strong-Tie[®] ET-3G epoxy anchoring adhesive, the latest addition to our line of adhesive anchoring solutions. ET-3G is ideal for general rebar doweling and threaded rod applications.

ET-3G is code listed for cracked and uncracked concrete and engineered to meet the vast majority of general doweling needs for commercial, residential and infrastructure projects. It has a long working time -50 min at 70°F (21°C), and can be applied in dry or damp conditions. With an in-service temperature range of -40° F (-40° C) to 150°F (65°C), ET-3G is suitable for most geographic areas.

Easy to install, it has a simple hole-cleaning procedure that requires no power brushing, saving time and effort at the jobsite. ET-3G is made in the USA, widely available, and backed by expert service and support.

Features

- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete and masonry
- Ideal for general doweling and threaded rod applications
- Two-year shelf life for unopened cartridges stored between 45°F (7°C) and 90°F (32°C)

Test Criteria

ET-3G has been tested in accordance with ICC-ES AC308, AC58, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

Concrete — ICC-ES ESR-5334 (including post-installed rebar connections, City of LA and Florida Building Code); FL15730.

Masonry - ICC-ES ESR pending.

ASTM C881 and AASHTO M235 - Types I/IV and II/V, Grade 3, Class C.

UL Certification - CDPH Standard Method v1.2.

NSF/ANSI/CAN 61 (216 in.2/ 1,000 gal.)

For DOT Approvals - see **strongtie.com**, Resource Center, choose Code Report Finder

ET-3G Cure Schedule

Base Materia	l Temperature	Gel Time Cure Time			
°F	°C	(minutes)	(hr.)		
50	10	100	72		
60	16	75	48		
70	21	50	24		
90	32	30	24		
110	43	18	24		

For water-saturated concrete, the cure times must be doubled.

Product Information

Mix Batio/Type	1·1 epoxy
	1.1 ероху
Mixed Color	Teal
Base Materials	Concrete and masonry — cracked and uncracked
Base Material Conditions	Dry, water-saturated
Anchor Type	Threaded rod or rebar
Substrate Installation Temperature	50°F (10°C) to 110°F (43°C)
In-Service Temperature Range	-40°F (-40°C) to 150°F (65°C)
Storage Temperature	45°F (7°C) to 90°F (32°C)
Shelf Life	24 months
Volatile Organic Compound (VOC)	3 g/L
Chemical Resistance	See strongtie.com
Manufactured in the USA using globa	al materials

ET-3G Applications and Packaging

Foundation/Road Extension

Key Applications

- Section Enlargement
- Concrete Roadway Splicing
- General Rebar Doweling
- Misplaced Rebar
- Foundation Repair

- Anchoring of Nonstructural Components
- Ornamental Iron and Railing
- Highway Barriers
- Anchoring and Doweling into Masonry

Section Enlargement

Hollow CMU Install with Opti-Mesh Screen

Rebar Wall Extension

ET-3G Cartridge System

	Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing Nozzle ³
ø	ET3G10 ⁴	8.5	Single	12	CDT10S	
ø	ET3G22-N ⁴	22	Side-by-Side	8	EDT22S, EDTA22P, EDTA22CKT	EMN22I
ø	ET3G56	56	Side-by-Side	6	EDTA56P	

1. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.

2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.

3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions.

Modification or improper use of mixing nozzle may impair ET-3G adhesive performance.

4. One EMN22I mixing nozzle and one nozzle extension are supplied with each cartridge.

5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

Carton

Quantity

25

25

25

25

mannan

Nylon Brush - Standard Embedment

Model No.	Hole Diameter (in.)	Anchor Diameter (in.)	Rebar Size	Usable Length (in.)	Carton Quantity
ETB4	3⁄8 — 7⁄16	1⁄4 — 5⁄16	_	7	24
ETB6	1/2 - 3/4	3⁄8 — 5⁄8	#3 – #5	15	24
ETB8	¹³ / ₁₆ - ⁷ / ₈	3⁄4	#6	15	24
ETB8L	¹³ / ₁₆ — ⁷ / ₈	3⁄4	#6	23	24
ETB10	1 – 1 1/8	7∕8 — 1	#7 – #8	28	24
ETB12	1 ¾6 – 1 ⅔	1 1⁄4	#10	33	24

1. All standard nylon brushes are one-piece which includes a twisted wire handle.

Nylon Brush – Rebar/Deep Embedments

Model No.	Hole Diameter (in.)	Rebar Size	Usable Length (in.)	Carton Quantity
ETB6R	1/2 - 3/4	#3 – #5	6	25
ETB8R	7/8	#6	6	25
ETB10R	1 – 1 1/8	#7 – #8	8	25
ETB12R	1 3⁄8	#10	8	25
ETB14R	1 3⁄4	#11	7	25
ETBR-EXT	T-handle and exte	351⁄4	25	

1. ETBR-EXT is required for use with all sizes of rebar nylon brushes.

2. To obtain total usable length, add the usable length for each part used.

Steel Adhesive-Anchoring Screen Tubes

Actual Screen Size

0.D./Length (in.)

³¹/₃₂ x 8

³¹/₃₂ x 13

³¹/₃₂ x 17 ³¹/₃₂ x 21

Screen Tube Screen tubes are for use in unreinforced brick masonry applications.

ETS Carbon Steel Screen

Tubes for ET-3G

Model

No.

ETS758

ETS7513

ETS7517

ETS7521

3. Brushes are used when rebar is installed to replace cast-in-place bar

for lap splices and development length.

Hole Size

(in.)

1

For

Rod Diameter

(in.)

3⁄4

Opti-Mesh Adhesive-Anchoring Screen Tubes

For Rod Diameter (in.)	Hole Size (in.)	Length (in.)	EWSP Model No. for ET-3G™	Carton Quantity	
		31⁄2	EWS373P	150	
3⁄8	9⁄16	6	EWS376P	150	
		10	EWS3710P	100	
			EWS503P	100	
1/2	3⁄4	6	EWS506P	100	
		10	EWS5010P	50	
		31⁄2	EWS623P	50	
5⁄8	7⁄8	6	EWS626P	50	
		10	EWS6210P	25	
34	1	8	EWS758P	25	
74		13	FWS7513P	25	

Plastic Screen Tube

For use in base materials that are hollow or contain voids

Adhesive Piston Plug Delivery System

For consistent dispensing of anchoring adhesives in any installation orientation, the Simpson Strong-Tie[®] Adhesive Piston Plug Delivery System offers you an easy-to-use, more reliable and less time-consuming means to dispense adhesive into drilled holes for threaded rod and rebar dowel installations at overhead, upwardly inclined and horizontal orientations.

The matched tolerance design between the piston plug and drilled hole virtually eliminates the formation of voids and air pockets during adhesive dispensing.

Adhesive Piston Plug Family

Piston Plug Delivery System Mixing

Mixing Nozzle with Delivery System

ET-3G Typical Properties

	Dronorty	Class C	Test
	Property	(>60°F)	Method
Consistency		Non-sag	ASTM C881
	Hardened to Hardened Concrete, 2-Day Cure ¹	2,600 psi	
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	2,900 psi	ASTM C882
	Fresh to Hardened Concrete, 14-Day Cure ²	2,000 psi	
Compressive Yield Strength, 7-Day Cure ¹		13,000 psi	ASTM D695
Compressive Modulus, 7-Day Cure ¹		580,000 psi	ASTM D695
Heat Deflection Temperature, 7-Da	ay Cure ²	132°F (56°C)	ASTM D648
Glass Transition Temperature, 7-D	ay Cure ²	124°F (51°C)	ASTM E1356
Decomposition Temperature, 24-H	lour Cure ²	500°F (260°C)	ASTM E2550
Water Absorption, 24-Hours, 7-Da	ay Cure ²	0.15%	ASTM D570
Shore D Hardness, 24-Hour Cure ²		84	ASTM D2240
Linear Coefficient of Shrinkage, 7-	Day Cure ²	0.002 in./in.	ASTM D2566
Coefficient of Thermal Expansion ²		2.4 x 10 ⁻⁵ in./in.°F	ASTM C531

1. Material and curing conditions: $60^{\circ} \pm 2^{\circ}$ F.

2. Material and curing conditions: $73^{\circ} \pm 2^{\circ}$ F.

ET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹ IBC III III III III

Characteristic		Sumbol	Unito	Nominal Anchor Diameter (in.) / Rebar Size						
Gharacteristic		Symbol	Units	3% / #3	½ / #4	5% / #5	3⁄4 / #6	7∕8 / #7	1 / #8	1¼/#10
Installation Information										
Drill Bit Diameter		d _{hole}	in.	1⁄2	5⁄8	3⁄4	7⁄8	1	11/8	1%
Maximum Tightening Torque	T _{inst}	ftlb.	10	20	30	45	60	80	125	
Dermitted Embedment Denth Dence	Minimum	h _{ef}	in.	23⁄8	2¾	31⁄8	31⁄2	3¾	4	5
Fernitted Embedment Depth hange	Maximum	h _{ef}	in.	71⁄2	10	121⁄2	15	171⁄2	20	25
Minimum Concrete Thickness		h _{min}	in.				$h_{ef} + 5d_{hole}$			
Critical Edge Distance ²		C _{ac}	in.				See footnote 2			
Minimum Edge Distance		C _{min}	in. 1¾				2¾			
Minimum Anchor Spacing		S _{min}	in.		3					

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. $c_{ac} = h_{ef} (\tau_{k,uncr}/1, 160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{el} \times f'_c)^{0.5} / (\pi \times d_{hole}))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

Software and Web Application Technology

For innovative, cost-effective product and design recommendations for any project, please visit our Software and Web Applications page at **strongtie.com/softwareandwebapplications/category**.

Anchor Designer[™]

(AD)

Perform anchorage design in accordance with the strength design provision

of ACI 318 or CSA A23.3 for cracked and uncracked concrete conditions.

ge or Vor

Easily estimate how much adhesive you will need for your project, including threaded rod and rebar

doweling and crack injection.

Rebar Development Length Calulator (RDLC)

Calculate ACI 318

tension and compression development lengths for designing post-installed rebar in concrete conditions.

Threaded Rod

ET-3G Tension Strength Design Data for Threaded Rod^{1,11}

Tension Resistance of Steel — Types 304 and 316 Stainless

Characterictic	Symbol	Unite						
Gharacteristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4		
Steel Str	ength in Te	ension						
Minimum Tensile Stress Area	A _{se}	in ²	0.078	0.142	0.226	0.334		
Tension Resistance of Steel — ASTM F1554, Grade 36			4,525	8,235	13,110	19,370		
Tension Resistance of Steel — ASTM A193, Grade B7			9,750	17,750	28,250	41,750		
Tension Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	N _{sa}	lb.	8,580	15,620	24,860	36,740		

	(ASTM A193, Grade B8 and B8M)	to Stainless			4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor — Steel Failure		φ	—				0.75 ⁷			
	Concrete Brea	kout Strength ir	n Tension (2,500 p	si ≤ f' _c ≤ 8	,000 psi) ¹⁰					
Effectiveness Fa	actor — Uncracked Concrete		<i>k</i> _{uncr}					24			
Effectiveness Factor — Cracked Concrete		<i>k</i> _{cr}	_				17				
Strength Reduc	tion Factor — Breakout Failure		φ	_				0.657			
	Bond S	trength in Tensi	on (2,500 p	osi ≤ f' _C	≤ 8,000 ps	si) ¹⁰					
	Characteristic Bond Strength ⁵		$ au_{k,\mathit{uncr}}$	psi	739	1,116	1,049	951	876	782	614
Uncracked Concrete ^{2,3,4}	Permitted Embedment Denth Pange	Minimum	h _{ef}	in	2%	2¾	31⁄8	3½	3¾	4	5
	rennitieu Embeument Deptit nange	Maximum			71⁄2	10	121⁄2	15	17½	20	25
Characteristic Bond Strength ^{5,8,9}		$ au_{k,cr}$	psi	571	495	431	377	351	342	342	
Cracked Concrete ^{2,3,4}	Permitted Embedment Denth Pange	Minimum	b	in	3	4	5	6	7	8	10
	Permitted Embedment Deptil Range	Maximum	11 _{ef}	111.	71⁄2	10	121⁄2	15	17½	20	25
	Bond Strength in Tension —	Bond Strength	Reduction	Factors	for Contir	nuous Spe	cial Inspec	tion			
Strength Reduc	tion Factor — Dry Concrete		$oldsymbol{\phi}_{dry,\;ci}$	_				0.657			
Strength Reduc	tion Factor — Water-Saturated Concrete — $h_{\text{ef}} \leq 12$	d _a	$\phi_{{\scriptscriptstyle sat,ci}}$	—	0.5	55 ⁷			0.457		
Additional Facto	or for Water-Saturated Concrete — $h_{\text{ef}} \leq 12d_{a}$		K _{sat,ci} 6	—			1			0.8	34
Strength Reduc	tion Factor — Water-Saturated Concrete — $h_{ef} > 12$	2d _a	$\phi_{{\scriptscriptstyle sat,ci}}$	_				0.457			
Additional Facto	or for Water-Saturated Concrete — $h_{ef} > 12d_a$		K _{sat,ci} 6	_	0.57						
	Bond Strength in Tension –	– Bond Strengtl	n Reductio	n Facto	rs for Peri	odic Speci	al Inspecti	on			
Strength Reduc	tion Factor — Dry Concrete		$\phi_{ m dry,pi}$	_				0.557			

Strength Reduction Factor — Dry Concrete	$\phi_{\scriptscriptstyle dry,pi}$	—	0.557				
Strength Reduction Factor — Water-Saturated Concrete — $h_{\text{ef}} \leq 12 d_{a}$	$\phi_{\scriptscriptstyle sat,pi}$	—	0.457				
Additional Factor for Water-Saturated Concrete — $h_{ef} \le 12d_a$	K _{sat,pi} 6	—	1	0.93	0.71		
Strength Reduction Factor — Water-Saturated Concrete — $h_{ef} > 12d_a$	$\phi_{\scriptscriptstyle{sat,pi}}$			0.457			
Additional Factor for Water-Saturated Concrete — $h_{ef} > 12d_a$	K _{sat,pi} 6		0.48				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range: Maximum short-term temperature = 150°F, Maximum long-term temperature = 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term temperatures are roughly constant over significant periods of time.

5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.

6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat}.

The tabulated value of ϕ applies when the load combinations from the IBC[®] or ACI 318 are used and the requirements of ACI 318-19 17.5.3, 7 ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

8. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7/8" anchors must be multiplied by α_{N,seis} = 0.80.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by $\alpha_{Nses} = 0.92$.

10. The values of f', used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f', used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

11. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

SIMPS

Strong-1

0.969

56,200

121,125

106,590

1

0.606

35,150

75,750

66,660

IBC

0.462

26,795

57,750

50,820

Nominal Anchor Diameter (in.)

SIMPSON Strong-Tie

ET-3G Tension St	T-3G Tension Strength Design Data for Rebar ^{1,9}							IBC	<u> 19</u>		LW
	Characteristic		Sumbol	Unito				Rebar Size	;		
			Symbol	UTIILS	#3	#4	#5	#6	#7	#8	#10
		Ste	el Strength in 1	Tension							
	Minimum Tensile Stress Area		A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Rebar	Tension Resistance of Steel — R (ASTM A615 Grade 60)	ebar	N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700
	Strength Reduction Factor — Ste	eel Failure	φ					0.657			
	Concrete Br	eakout Stren	gth in Tension	(2,500 psi	≤ f'c ≤ 8,0	00 psi) ⁸					
Effectiveness Factor — Uncra	acked Concrete		K _{uncr}					24			
Effectiveness Factor — Crack	ked Concrete		K _{cr}					17			
Strength Reduction Factor —	Breakout Failure		φ	_				0.657			
	Bond	Strength in	Tension (2,500	$psi \leq f'_C \leq$	8,000 psi)	8					
	Characteristic Bond Strength ⁵		$\mathbf{ au}_{k,uncr}$	psi	886	696	693	697	700	693	691
Uncracked Concrete ^{2,3,4}	Permitted Embedment	Minimum	hot	in.	2¾	2¾	31⁄8	31⁄2	3¾	4	5
	Depth Range	Maximum			71⁄2	10	12½	15	17½	20	25
	Characteristic Bond Strength ⁵		$ au_{k,cr}$	psi	361	588	541	502	453	396	264
Cracked Concrete ^{2,3,4}	Permitted Embedment	Minimum	h.,	in	3	4	5	6	7	8	10
	Depth Range	Maximum	Tet		71⁄2	10	121⁄2	15	17½	20	25
	Bond Strength in Tension -	— Bond Stre	ngth Reductior	Factors fo	r Continu	ous Specia	al Inspect	on			
Strength Reduction Factor —	Dry Concrete		$\phi_{dry,ci}$	_				0.657			
Strength Reduction Factor —	Water-Saturated Concrete $-h_{ef} \le 12$	2d _a	$\phi_{\mathit{sat,ci}}$	_	0.	55 ⁷			0.457		
Additional Factor for Water-Sa	aturated Concrete – $h_{\text{ef}} \leq 12d_{a}$		K _{sat,ci} 6	_			1			0.	84
Strength Reduction Factor —	Water-Saturated Concrete – h _{ef} > 1	2d _a	$\phi_{\mathit{sat,ci}}$					0.457			
Additional Factor for Water-Sa	aturated Concrete $-h_{ef} > 12d_a$		K _{sat,ci} 6	_				0.57			
	Bond Strength in Tensior	n — Bond Str	ength Reductio	on Factors	for Period	ic Special	Inspectio	n			
Strength Reduction Factor —	Dry Concrete		$\phi_{dry,pi}$	_				0.557			
Strength Reduction Factor —	Water-Saturated Concrete – $h_{ef} \le 12$	2d _a	$\phi_{sat,pi}$			0.457					
Additional Factor for Water-Sa	aturated Concrete – $h_{ef} \leq 12d_a$		K _{sat,pi} б			1 0.93 0.71			71		
Strength Reduction Factor —	Water-Saturated Concrete $-h_{ef} > 1$	2d _a	$\phi_{sat,pi}$					0.457			
Additional Factor for Water-Sa	aturated Concrete $-h_{ef} > 12d_a$		$K_{sat,pl}^{\beta}$	_				0.48			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range: Maximum short-term temperature = 150°F, Maximum long-term temperature = 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term temperatures are roughly constant over significant periods of time.

5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.

6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .

7. The tabulated value of ϕ applies when the load combinations from the IBC[®] or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

8. The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'_c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

9. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

Strong-I

ET-3G Shear Strength Design Data for Threaded Rod¹

IBC			LW
-----	--	--	----

Characteristic		Symbol	Unite	Nominal Anchor Diameter (in.)						
		Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	11⁄4
Steel Strength in Shear								·		
	Minimum Shear Stress Area	Ase	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675
Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)		V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955
Threaded	Shear Resistance of Steel — Types 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140
Rou	Reduction for Seismic Shear — ASTM F1554, Grade 36	$\alpha_{V,seis}^{3}$	3	0.87	0.78	0.68 0.6				0.65
	Reduction for Seismic Shear — ASTM A193, Grade B7			0.87	0.78	0.68 0				0.65
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)			0.69	0.82	0.75 0.83			0.83	0.72
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M)			0.69	0.82	0.75 0.83			0.83	0.72
	Strength Reduction Factor — Steel Failure	φ		0.65 ²						
	Concrete Bi	eakout S	trength i	n Shear						
Outside D	iameter of Anchor	d _o	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load Bearing Length of Anchor in Shear		le	in.	Min. of h_{ef} and 8 times anchor diameter						
Strength Reduction Factor — Breakout Failure			_	0.702						
Concrete Pryout Strength in Shear										
Coefficier	t for Pryout Strength	k _{cp}			1	.0 for $h_{ef} < 2$	2.50"; 2.0 f	or $h_{ef} \ge 2.5$	0"	
Strength I	Reduction Factor — Pryout Failure	φ		0.702						

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC[®] or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vsals} for the corresponding anchor steel type.

ET-3G Shear Strength Design Data for Rebar¹

Characteristic		Symbol	Units	Rebar Size						
				#3	#4	#5	#6	#7	#8	#10
Steel Strength in Shear										
	Minimum Shear Stress Area	A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Dobor	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420
Rebar	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	$lpha_{V,seis}{}^3$	—	0.85	0.88	0.	84	0.	77	0.59
	Strength Reduction Factor — Steel Failure	φ	—	0.602						
	Concrete Breakout Strength in Shear									
Outsid	e Diameter of Anchor	d _o	in.	0.375 0.5 0.625 0.75 0.875 1 1.			1.25			
Load-E	Bearing Length of Anchor in Shear	ℓ_e	in.	. Min. of h_{ef} and 8 times anchor diameter						
Strength Reduction Factor — Breakout Failure		φ	—	0.702						
Concrete Pryout Strength in Shear										
Coeffic	Coefficient for Pryout Strength k_{cp} -1.0 for $h_{el} < 2.50$ "; 2.0 for $h_{el} \ge 2.50$ "									
Streng	th Reduction Factor — Pryout Failure	φ	_	0.70 ²						

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of \$\phi\$ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3,

ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

 The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by a_{V,sais}.

ET-3G Development Length for Rebar Dowels

	D	Clear Cover	Development Length, in. (mm)								
Rebar Size	Diameter (in.)	in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete				
#3 (9.5)	1⁄2	1 ½ (38)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)				
#4 (12.7)	5⁄8	1½ (38)	14.4 (366)	14 (356)	12 (305)	12 (305)	12 (305)				
#5 (15.9)	3⁄4	1½ (38)	18 (457)	17 (432)	14.2 (361)	12 (305)	12 (305)				
#6 (19.1)	7⁄8	1 ½ (38)	21.6 (549)	20 (508)	17.1 (434)	14 (356)	13 (330)				
#7 (22.2)	1	3 (76)	31.5 (800)	29 (737)	25 (635)	21 (533)	18 (457)				
#8 (25.4)	1 1⁄8	3 (76)	36 (914)	33 (838)	28.5 (724)	24 (610)	21 (533)				
#9 (28.7)	1 %	3 (76)	40.5 (1,029)	38 (965)	32 (813)	27 (686)	23 (584)				
#10 (32.3)	1 3⁄8	3 (76)	45 (1,143)	42 (1,067)	35.6 (904)	30 (762)	26 (660)				
#11 (35.8)	1 3⁄4	3 (76)	51 (1,295)	47 (1,194)	41 (1,041)	33 (838)	29 (737)				

1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 12, as applicable. The value of f'c used to calculate development lengths shall not exceed 2,500 psi in SDC C through F.

2. Rebar is assumed to be ASTM A615 Grade 60 or A706 (fy = 60,000 psi). For rebar with a higher yield strength, multiply tabulated values by f_{y} / 60,000 psi.

3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

4. Tabulated values assume bottom cover of less than 12" cast below rebars ($\Psi_{t} = 1.0$).

5. Uncoated rebar must be used.

6. The value of K_t is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 318-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

ET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Face of Wall

|--|

Installation Information	Cumbol	Unito	Nominal Rod Diameter / Rebar Size						
instantion information	Symbol	Units	3%" / #3	1⁄2" / #4	5%" / #5	³ ⁄4" / #6			
Drill Bit Diameter — Threaded Rod	d _o	in.	7⁄16	9⁄16	11/16	7⁄8			
Drill Bit Diameter — Rebar	d _o	in.	1/2	5⁄8	3⁄4	7⁄8			
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3	3			

ET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Top of Wall

Installation Information	Symbol	Unito	Nominal Rod Diameter / Rebar Size					
Instantion mornation	Symbol	Units	½" / #4	5%" / # 5	7⁄8"			
Drill Bit Diameter — Threaded Rod	d _o	in.	9⁄16	11/16	1			
Drill Bit Diameter — Rebar	d _o	in.	5/8	3⁄4	—			
Minimum Embedment Depth	h _{ef min}	in.	3	3	3			

ET-3G Epoxy Anchor Installation Information — Ungrouted CMU Construction

Installation Information	Symbol	Unito	Nominal Rod Diameter				
Instantion mornation	Symbol	Units	3⁄8"	1⁄2"	5⁄8"		
Drill Bit Diameter	d _o	in.	9⁄16	3⁄4	7/8		
Embedment Depth	h _{ef,min}	in.	31⁄2	31⁄2	31⁄2		

Please see the ET-3G product page at **strongtie.com** and ICC-ES ESR Report for load data.

This flier is effective until December 31, 2025, and reflects information available as of July 1, 2023. This information is updated periodically and should not be relied upon after December 31, 2025. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2023 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

IBC

IBC