ET-3G[™] Epoxy Adhesive

ET-3G Cure Schedule

Base Materia	Base Material Temperature		Cure Time
°F	°C	(minutes)	(hr.)
50	10	100	72
60	16	75	48
70	21	50	24
90	32	30	24
110	43	18	24

For water-saturated concrete, the cure times must be doubled.

ET-3G Typical Properties

	Property	Class C	Test	
	Topoly	(>60°F)	Method	
Consistency		Non-sag	ASTM C881	
	Hardened to Hardened Concrete, 2-Day Cure ¹	2,600 psi		
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	2,900 psi	ASTM C882	
	Fresh to Hardened Concrete, 14-Day Cure ²	2,000 psi		
Compressive Yield Strength, 7-	Day Cure ¹	13,000 psi	ASTM D695	
Compressive Modulus, 7-Day C	Cure ¹	580,000 psi	ASTM D695	
Heat Deflection Temperature, 7	-Day Cure ²	132°F (56°C)	ASTM D648	
Glass Transition Temperature, 7	'-Day Cure ²	124°F (51°C)	ASTM E1356	
Decomposition Temperature, 24	4-Hour Cure ²	500°F (260°C)	ASTM E2550	
Water Absorption, 24-Hours, 7-	Day Cure ²	0.15%	ASTM D570	
Shore D Hardness, 24-Hour Cu	re ²	84	ASTM D2240	
Linear Coefficient of Shrinkage, 7-Day Cure ²		0.002 in./in.	ASTM D2566	
Coefficient of Thermal Expansion	n ²	2.4 x 10 ⁻⁵ in./in.°F	ASTM C531	

1. Material and curing conditions: $60^{\circ} \pm 2^{\circ}$ F.

2. Material and curing conditions: 73° \pm 2°F.

ET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹

Characteristic		Cumbol	Units		N	ominal Ancho	or Diameter (i	n.) / Rebar S	ize	
Characteristic		Symbol	Units	3% / #3	1⁄2 / #4	5% / #5	3⁄4 / #6	7⁄8 / #7	1 / #8	1¼/#10
			Instal	lation Inform	ation					
Drill Bit Diameter		d _{hole}	in.	1⁄2	5⁄8	3⁄4	7⁄8	1	1 1/8	1%
Maximum Tightening Torque		T _{inst}	ftlb.	10	20	30	45	60	80	125
Permitted Embedment Depth Range	Minimum	h _{ef}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5
remined Empedinent Depth hange	Maximum	h _{ef}	in.	71⁄2	10	12½	15	17½	20	25
Minimum Concrete Thickness		h _{min}	in.				h _{ef} +5d _{hole}			
Critical Edge Distance ²	Critical Edge Distance ² c_{ac} in. See footnote 2									
Minimum Edge Distance		C _{min}	in.			1	3⁄4			23⁄4
Minimum Anchor Spacing		S _{min}	in.				3			6

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. $c_{ac} = h_{ef} (\tau_{k,uncr}/1, 160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ heta f}] \le 2.4$

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr}$ (($h_{ef} \times f_{c}^{-}$)^{0.5}/($\pi \times d_{hole}$))

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

ET-3G[™] Design Information — Concrete

ET-3G Tensi	on Strength Design Data for Thre	aded Rod ¹	,11					IBC			
			0. makeste	Heiter			Nominal A	nchor Dia	meter (in.)	
	Characteristic		Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼
		Steel St	rength in T	ension							
	Minimum Tensile Stress Area		Ase	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel — ASTM F1554, G	rade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel — ASTM A193, Gr	ade B7			9,750	17,750	28,250	41,750	57,750	75,750	121,125
Threaded Rod	Threaded Rod Tension Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6) Tension Resistance of Steel — Types 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)		N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
					4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor — Steel Failure		φ	—				0.75 ⁷			
Concrete Breakout Strength in Tension (2,500 psi \leq f' _c \leq 8,000 psi) ¹⁰											
Effectiveness Fa	actor — Uncracked Concrete		k _{uncr}	—				24			
Effectiveness Fa	actor — Cracked Concrete		k _{cr}	—				17			
Strength Reduc	tion Factor — Breakout Failure		φ	—	0.657						
	Bond St	rength in Tensi	on (2,500 j	osi≤f'c	≤ 8,000 p	si) ¹⁰					
	Characteristic Bond Strength ⁵		$ au_{k,uncr}$	psi			See stror	ngtie.com	for values		
Uncracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	23⁄8	2¾	31⁄8	3½	3¾	4	5
	r ennitted Embedment Deptin hänge	Maximum	Tier		7½	10	12½	15	17½	20	25
	Characteristic Bond Strength ^{5,8,9}		τ _{k,cr}	psi		See strongtie.com for values					
Cracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	3	4	5	6	7	8	10
	r ennitted Embedment Deptin hänge	Maximum	Tet		7½	10	12½	15	17½	20	25
	Bond Strength in Tension —	Bond Strength	Reduction	Factors	s for Conti	nuous Sp	ecial Insp	ection			
Strength Reduc	tion Factor — Dry Concrete		$\phi_{dry,\ ci}$	—	0.657						
Strength Reduc	tion Factor — Water-Saturated Concrete — $h_{ef} \leq$	12d _a	$\phi_{sat,ci}$	—	0.5	55 ⁷			0.457		
Additional Facto	or for Water-Saturated Concrete — $h_{ef} \le 12d_a$		K _{sat,ci} 6	—			1			0.	84
Strength Reduc	tion Factor — Water-Saturated Concrete — h_{ef} >	12d _a	¢sat,ci	—				0.457			
Additional Facto	or for Water-Saturated Concrete — $h_{ef} > 12d_a$		k _{sat,ci} 6	—				0.57			
	Bond Strength in Tension –	- Bond Strengt	h Reductio	n Facto	rs for Per	iodic Spec	cial Inspec	tion			
Strength Reduc	Strength Reduction Factor — Dry Concrete							0.557			
Strength Reduc	tion Factor — Water-Saturated Concrete — $h_{ef} \leq$	12d _a	$\phi_{sat,pi}$	—				0.457			
Additional Facto	or for Water-Saturated Concrete — $h_{ef} \le 12d_a$		K _{sat,pi} 6	—		1		0.93		0.	71
Strength Reduc	tion Factor — Water-Saturated Concrete — h_{ef} >	12d _a	$\phi_{sat,pi}$	—				0.457			
Additional Facto	or for Water-Saturated Concrete — $h_{ef} > 12d_a$		K _{sat,pi} 6	—				0.48			
1. The informati	on presented in this table is to be used in conju	nction with the	design crit	eria of A	ACI 318-1	9, ACI 318	3-14 and /	ACI 318-1	1.		

2. Temperature Range: Maximum short-term temperature = 150°F, Maximum long-term temperature = 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term temperatures are roughly constant over significant periods of time.

5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.

6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat}.

7. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

8. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7%" anchors must be multiplied by $\alpha_{N,seis} = 0.80$.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by $\alpha_{N.seis} = 0.92$. 10. The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'_c used for calculation purposes

must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

11. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

36

SIMPSOI

Strong-

SIMPSO Strong-Tie

ET-3G[™] Design Information — Concrete

T-3G Tension Stren	gth Design Data for Reb	0ar ^{1,9}						IBC			LW
			O	11				Rebar Siz	e		
	Characteristic		Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Stee	el Strength in	Tension							
	Minimum Tensile Stress Area		A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Rebar	Tension Resistance of Steel — I (ASTM A615 Grade 60)	Rebar	N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700
Strength Reduction Factor — Steel Failure			φ					0.657			
	Concrete Bre	eakout Stren	gth in Tension	(2,500 psi	$\leq f_{C}^{i} \leq 8,$	000 psi) ⁸					
Effectiveness Factor — Unc	racked Concrete		k _{uncr}					24			
Effectiveness Factor — Crac		<i>k</i> _{cr}					17				
Strength Reduction Factor –		φ					0.657				
	Bond	Strength in 1	Tension (2,500	$psi \leq f'_C \leq$	8,000 ps	i) ⁸					
	Characteristic Bond Strength ⁵		τ _{k,uncr}	psi			See stror	ngtie.com	for values		
Uncracked Concrete ^{2,3,4}	Permitted Embedment	Minimum			2%	2¾	31⁄8	31⁄2	3¾	4	5
	Depth Range	Maximum	h _{ef}	in.	71⁄2	10	12½	15	17½	20	25
	Characteristic Bond Strength ⁵		τ _{k,cr}	psi	See strongtie.com for values						
Cracked Concrete ^{2,3,4}	Permitted Embedment	Minimum	h	in	3	4	5	6	7	8	10
	Depth Range	Maximum	h _{ef}	in.	71⁄2	10	12½	15	17½	20	25
	Bond Strength in Tension –	– Bond Strer	ngth Reduction	n Factors fo	or Continu	lous Spec	ial Inspec	tion			
Strength Reduction Factor -	– Dry Concrete		φ _{dry,ci}	_				0.657			
Strength Reduction Factor -	– Water-Saturated Concrete – h _{ef} ≤	≤ 12d _a	∮sat,ci		0.	55 ⁷			0.457		
Additional Factor for Water-S	Saturated Concrete – $h_{ef} \le 12d_a$		K _{sat,ci} ⁶	_			1			0.	84
Strength Reduction Factor -	– Water-Saturated Concrete – h _{ef} >	> 12d _a	φsat,ci	_				0.457			
Additional Factor for Water-S	Saturated Concrete $-h_{ef} > 12d_a$		K _{sat,ci} ⁶	—				0.57			
	Bond Strength in Tension	- Bond Str	ength Reduction	on Factors	for Perio	dic Specia	al Inspecti	ion			
Strength Reduction Factor -	– Dry Concrete		фdry,pi	_				0.55 ⁷			
Strength Reduction Factor — Water-Saturated Concrete – $h_{ef} \leq 12 d_a$			ф _{sat,pi}	_				0.457			
Additional Factor for Water-S	Saturated Concrete – $h_{ef} \le 12d_a$		K _{sat,pl} 6			1		0.93		0.	71
Strength Reduction Factor -	– Water-Saturated Concrete – h _{ef} >	> 12d _a	фsat,pi	_				0.457			
Additional Factor for Water-S	Saturated Concrete $-h_{ef} > 12d_a$		K _{sat,pl} 6	_				0.48			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range: Maximum short-term temperature = 150°F, Maximum long-term temperature = 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term temperatures are roughly constant over significant periods of time.

5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.

6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

7. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3. ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

8. The values of f'c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

9. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

ET-3G[™] Design Information — Concrete

ET-3G Shear Strength Design Data for Threaded Rod¹

	Ohann atariatia	Cumbal	Units	Nominal Anchor Diameter (in.)							
	Characteristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼	
	Steel	Strength	in Shea	ır							
	Minimum Shear Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720	
Shear Resistance of Steel — ASTM A193, Grade B7				4,875	10,650	16,950	25,050	34,650	45,450	72,675	
Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)		V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955	
Threaded Bod	Shear Resistance of Steel — Types 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140	
Rod Reduction for Seismic Shear — ASTM F1554, Grade 36				0.87	0.78		0.	68		0.65	
	Reduction for Seismic Shear — ASTM A193, Grade B7			0.87	0.78		0.	68		0.65	
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)	$\alpha_{V,seis}{}^{3}$	—	0.69	0.82		0.75		0.83	0.72	
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M)			0.69	0.82 0.75			0.83	0.72		
	Strength Reduction Factor — Steel Failure	φ	—				0.65 ²				
	Concrete Br	eakout S	trength i	in Shear							
Outside D	liameter of Anchor	d _o	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load Bea	Load Bearing Length of Anchor in Shear				Mir	n. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter		
Strength I	Strength Reduction Factor — Breakout Failure						0.70 ²				
	Concrete P	ryout Str	ength in	Shear							
Coefficier	t for Pryout Strength	k _{cp}	_		1.(D for <i>h_{ef} < 2</i>	2.50"; 2.0	for $h_{ef} \ge 2.5$	50"		
Strength I	Reduction Factor — Pryout Failure	φ	_				0.70 ²				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of *φ* applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of *φ*.

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$ for the corresponding anchor steel type. SIMPSON

Strong-Ine

LW

IBC

∎ द्यीव्य - Concrete

SIMPSON Strong-Tie

ET 3G Shoar Strongth Dosign Data for Pohar¹

ET-3G[™] Design Information -

EI-3G	-1-3G Shear Strength Design Data for Rebari									
	Characteristic	Cumbol	Units	Rebar Size						
	Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Steel Streng	gth in Shea	r						
	Minimum Shear Stress Area	A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Dobor	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420
nebai	Rebar Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)		—	0.85 0.88 0.84 0.77					0.59	
	Strength Reduction Factor — Steel Failure	ϕ	—				0.60 ²			
	Concre	te Breakout	Strength i	n Shear						
Outsid	e Diameter of Anchor	d _o	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-E	Bearing Length of Anchor in Shear	le	in.		Mir	n. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter	
Streng	th Reduction Factor — Breakout Failure	φ	—				0.70 ²			
	Concrete Pryout Strength in Shear									
Coeffic	sient for Pryout Strength	k _{cp}	_		1.() for $h_{ef} < 2$	2.50"; 2.0	for $h_{ef} \ge 2$.	50"	
Streng	th Reduction Factor — Pryout Failure	φ	—				0.70 ²			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of $\phi.$

 The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by a_{V,Seis}.

For additional load tables, visit **strongtie.com/et3g**.

Adhesive Cartridge Estimator

Simpson Strong-Tie[®] Adhesive Cartirdge Estimator software will help you easily estimate how much adhesive you will need for your project, including threaded rod and rebar doweling, and crack injection.

ET-3G[™] Design Information — Concrete

ET-3G Development Length for Rebar Dowels

		Clear Cover		Dev	elopment Length, in. (I	mm)	
Rebar Size	Dar Diameter		f' _c = 2,500 psi (17.2 MPa) Concrete	(17.2 MPa) (20.7 MPa) (27.6 MPa)		f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete
#3	1/2	1 ½	12	12	12	12	12
(9.5)		(38)	(305)	(305)	(305)	(305)	(305)
#4	5⁄8	1½	14.4	14	12	12	12
(12.7)		(38)	(366)	(356)	(305)	(305)	(305)
#5	3⁄4	1 ½	18	17	14.2	12	12
(15.9)		(38)	(457)	(432)	(361)	(305)	(305)
#6	7⁄8	1½	21.6	20	17.1	14	13
(19.1)		(38)	(549)	(508)	(434)	(356)	(330)
#7	1	3	31.5	29	25	21	18
(22.2)		(76)	(800)	(737)	(635)	(533)	(457)
#8	1 1⁄8	3	36	33	28.5	24	21
(25.4)		(76)	(914)	(838)	(724)	(610)	(533)
#9	1 3⁄8	3	40.5	38	32	27	23
(28.7)		(76)	(1,029)	(965)	(813)	(686)	(584)
#10	1 3⁄8	3	45	42	35.6	30	26
(32.3)		(76)	(1,143)	(1,067)	(904)	(762)	(660)
#11	1¾	3	51	47	41	33	29
(35.8)		(76)	(1,295)	(1,194)	(1,041)	(838)	(737)

 Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 12, as applicable. The value of f¹_c used to calculate development lengths shall not exceed 2,500 psi in SDC C through F.

2. Rebar is assumed to be ASTM A615 Grade 60 or A706 (f_y = 60,000 psi). For rebar with a higher yield strength, multiply tabulated values by f_y / 60,000 psi.

3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

4. Tabulated values assume bottom cover of less than 12" cast below rebars (Ψ_t = 1.0).

5. Uncoated rebar must be used.

6. The value of Ktr is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 318-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-19 / ACI 318-14.

Splice Information				Existing cast-in-place reinforcing bar	
Lap Splice Application		Splice Class 🔞		Existing concrete	-New concrete
No	~	Class A	\oslash		Post-installed
Concrete Informatior	n			Development length	- reinforcing bar
Concrete Type 🔞		Concrete Compressive St	rength, ${f'}_{\rm c}$ (psi) 🔞		
NWC	~	2,500	~	Existing concrete	New concrete
Rebar Information				Development length	Post-installed reinforcing bar
Rebar Coating 🖗		Rebar Spacing (Center-to-			
Uncoated / Zinc coated	~	8	in		
Minimum Clear Cover, C_{\min} 🕲					
3	in				
Seismic Design Cate	gory				
Seismic Design Category @				ර RESTART	CALCULATE

SIMPSON

Strong-Tie

LW

IBC

ET-3G[™] Design Information -- Masonry

ET-3G Epoxy Anchor Installation Information -Fully Grouted CMU Construction - Face of Wall

Installation Information	Symbol	Units	No	ze		
instanation mormation	Symbol	UIIIts	¾" / #3	1⁄2" / #4	5%" / # 5	3⁄4" / #6
Drill Bit Diameter — Threaded Rod	do	in.	7⁄16	9⁄16	11/16	7⁄8
Drill Bit Diameter — Rebar	do	in.	1/2	5⁄8	3/4	7⁄8
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3	3

ET-3G Epoxy Anchor Installation Information -Fully Grouted CMU Construction - Top of Wall

Installation Information	Cumbol	Units	Nomina	l Rod Diameter / Rel	oar Size
Instanation mormation	Symbol	Units	1⁄2" / #4	5%" / #5	7⁄8''
Drill Bit Diameter — Threaded Rod	do	in.	9⁄16	11/16	1
Drill Bit Diameter — Rebar	do	in.	5%	3⁄4	—
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3

ET-3G Epoxy Anchor Installation Information -Ungrouted CMU Construction

Installation Information	Cumbol	Units	Nominal Rod Diameter					
Installation Information	Symbol	UIIIIIS	3⁄8"	1⁄2"	5⁄8"			
Drill Bit Diameter	d _o	in.	9⁄16	3⁄4	7⁄8			
Embedment Depth	h _{ef,min}	in.	31⁄2	31⁄2	31⁄2			

Please see the ET-3G product page at strongtie.com and

IBC

IBC

ICC-ES ESR Report for load data.

SIMPSON

Strong-Tie