The Titen Turbo screw anchor features an innovative Torque Reduction Channel to trap drilling dust where it can't obstruct thread action, significantly reducing binding, stripping, and snapping without compromising strength. The patented reverse thread design enables smooth driving with less torque while providing superior holding power. The Torque Reduction Channel also allows more space for dust to help prevent anchors from bottoming out in smaller-diameter screw holes. The Titen Turbo screw anchors feature a serrated leading edge to cut into concrete or masonry, and a pointed tip for fast, easy installation in wood-to-concrete and wood-to-wood anchoring applications.

Features

Mechanical Anchors

- Patented Torque Reduction Channel that displaces dust where it can't obstruct the thread action, reducing the likelihood of binding in the hole
- Available with either a hex head or, for a flush profile, a 6-lobe-drive countersunk flat head or trim head
- 6-lobe drive provides positive bit engagement resulting in easy installations and long bit life
- 6-lobe bit included in packaging for countersunk flat head and trim-head version
- Superior tension load performance
- Matched-tolerance bit not required; use a standard ANSI drill bit for installation
- Serrated screw point for fast starts when fastening wood
- Designed for installation with an impact driver or cordless drill. Installation using the Titen Turbo Installation Tool is recommended.
- Use in dry interior environments only
- Code listed in accordance with ICC-ES AC193 for uncracked concrete and ICC-ES AC106 for masonry applications without cleaning dust from predrilled holes

Codes: IAPMO UES ER-712 (uncracked concrete)

(City of LA Supplement within ER-712); IAPMO UES ER-716 (masonry) (City of LA Supplement within ER-716); FL16230 (concrete and masonry)

Material: Carbon steel

Coating: Zinc plating with baked-on ceramic coating

- Caution: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Steps must be taken to prevent inadvertent sustained loads above the listed allowable loads. Overtightening and bending moments can initiate cracks detrimental to the hardened screw's performance. Use the Simpson Strong-Tie Titen installation tool kit as it has a bit that is designed to reduce the potential for overtightening the screw.
 - **Caution:** Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with the base material and will reduce the anchor's load capacity.

Installation Sequence

Versatile Applications

Sliding door track installation

Window frames

Furring strips

Screw

US Patent

11.002.305

Titen Turbo Flat Head Screw US Patent 11.002.305

D Titen Turb I Trim-Head Screw US Patent 11.002.305

6-lobe drive

Size	Size (in.) Head Style Model No.	Model	Drill Bit Diameter	Quantity	
(in.)		No.	(in.)	Pack	Carton
³ ⁄16 X 1 ¹ ⁄4		TNT18114H		100	1,600
³ ⁄16 Х 1 ³ ⁄4		TNT18134H		100	500
³ ⁄16 X 2 ¹ ⁄4	1/." boy	TNT18214H	- 5⁄32	100	500
³ ⁄16 X 2 ³ ⁄4	1⁄4" hex	TNT18234H		100	500
³ ⁄16 X 3 ¹ ⁄4		TNT18314H		100	400
³ ⁄16 X 3 ³ ⁄4		TNT18334H		100	400
³ ⁄16 X 1 ¹ ⁄4		TNT18114TF	- 5/32	100	1,600
³ ⁄16 Х 1 ³ ⁄4		TNT18134TF		100	500
³ ⁄16 X 2 ¹ ⁄4	T25	TNT18214TF		100	500
³ ⁄16 X 2 ³ ⁄4	6-lobe flat	TNT18234TF		100	500
³ ⁄16 X 3 ¹ ⁄4		TNT18314TF		100	400
³∕16 X 3¾		TNT18334TF		100	400

Blue Titen Turbo Product Data (3/16" diameter)

Blue Titen Turbo Product Data (1/4" diameter)

Size	Hood Chilo	Head Style Model	Drill Bit Diameter	Quantity	
(in.)		No.	(in.)	Pack	Carton
1⁄4 x 1 1⁄4		TNT25114H		100	1,600
1⁄4 x 1 3⁄4		TNT25134H		100	500
1/4 X 2 1/4		TNT25214H		100	500
1/4 x 23/4		TNT25234H		100	500
1⁄4 x 31⁄4	5⁄16" hex	TNT25314H	∛16	100	400
1⁄4 x 3¾		TNT25334H		100	400
1⁄4 x 4		TNT25400H		100	400
1⁄4 x 5		TNT25500H		100	400
1⁄4 x 6		TNT25600H		100	400
1⁄4 x 1 1⁄4		TNT25114TF		100	1,600
1⁄4 x 1 3⁄4		TNT25134TF		100	500
1/4 x 21/4		TNT25214TF		100	500
1/4 x 23/4	T30 6-lobe flat	TNT25234TF	3⁄16	100	500
1⁄4 x 31⁄4		TNT25314TF		100	400
1⁄4 x 3¾		TNT25334TF		100	400
1⁄4 x 4		TNT25400TF]	100	400

SIMPSON **Strong-Tie**

White Titen Turbo Product Data (6-Lobe Flat Head)

Size Head Style		Model Drill Bit Diamete		Quantity		
(in.)	neau Style	No.	(in.)	Pack	Carton	
³ ⁄16 Х 1 ¼		TNTW18114TF		100	1,600	
³ ⁄16 Х 1 ¾		TNTW18134TF		100	500	
³ ⁄16 X 2 ¹ ⁄4	T25	TNTW18214TF	5/	100	500	
³∕16 X 2³⁄4	6-lobe flat	TNTW18234TF	5/32	100	500	
³ ⁄16 X З ¼		TNTW18314TF		100	400	
³ ⁄16 X 3¾		TNTW18334TF		100	400	
1⁄4 x 1 1⁄4		TNTW25114TF		100	1,600	
1⁄4 x 1 3⁄4		TNTW25134TF		100	500	
1⁄4 x 21⁄4	Т30	TNTW25214TF	3/	100	500	
1⁄4 x 23⁄4	6-lobe flat	TNTW25234TF	3⁄16	100	500	
1⁄4 x 31⁄4		TNTW25314TF		100	400	
1⁄4 x 33⁄4		TNTW25334TF		100	400	

Silver Titen Turbo Product Data (6-Lobe Flat Head)

Size (in.)	Head Style	Model No.	Drill Bit Diameter (in.)	Quantity
³ ⁄16 х 1 ¾	T25 6-lobe flat	TNTS18134TFB		1,000
³ ⁄16 Х 2¾		TNTS18234TFB	5/32	1,000
³ ⁄16 Х З¾	-	TNTS18334TFB		1,000
1⁄4 x 23⁄4	Т30	TNTS25234TFB	3⁄16	1,000
1⁄4 x 31⁄4	6-lobe flat	TNTS25314TFB	716	1,000

White Titen Turbo Trim Head Product Data (6-Lobe)

	Size Model Drill Bit Diameter Dia size	Bit Size	Quantity			
	(in.)	No.	(in.)	(in.)	Вох	Carton
1	1⁄4 x 23⁄4	TNTW25234TTR	3⁄16	T25	100	500
(1⁄4 x 31⁄4	TNTW25314TTR			100	400
\$	1⁄4 x 23⁄4	TNTW25234TTRB			1,000	_
1	1⁄4 x 31⁄4	TNTW25314TTRB			1,000	_

Bronze Titen Turbo Trim Head Product Data (6-Lobe)

	Size	Model	Drill Bit Diameter (in.) Bit	Dia Cina	Quantity	
	(in.)	No.		Bit Size	Вох	Carton
	1⁄4 x 23⁄4	TNTB25234TTR	3⁄16	T25	100	500
ø	1⁄4 x 31⁄4	TNTB25314TTR			100	400
1	1⁄4 x 23⁄4	TNTB25234TTRB			1,000	—
	1⁄4 x 31⁄4	TNTB25314TTRB			1,000	—

FEFEFEFEFEFE

128

Mechanical Anchors

Strong-Tie

Titen Turbo Screw Anchor – Installation Tool

Six-piece kit includes:

- 6-lobe bit socket
- T25 and T30 bits
- ¼" and ½6" hex sockets
- Canvas storage bag

Titen Turbo Installation Tool

Model	Quantity				
No.	Clamshell	Carton			
TNTINSTALLKIT	1	4			

Titen Turbo Screw Anchor Installation Kit

Titen Turbo Screw Anchor - Drill Bits

Size	Model	Use	Use With		ntity
(in.)	No.	Screw	Length	Box	Carton
5⁄32 X 3 ½	MDB15312	³∕16" diameter	To 1 ¾	12	48
5⁄32 X 4 1⁄2	MDB15412		To 3 ¼		
5⁄32 X 5 ½	MDB15512		To 4		
3⁄16 X 3 ½	MDB18312	1⁄4" diameter	To 1 3⁄4	12	48
³ ⁄16 X 4 ½	MDB18412		To 3 1⁄4		
³ ⁄16 X 5 ½	MDB18512		To 4		

Titen Turbo Screw Anchor — SDS-plus $^{\circ}$ Drill Bits

Size (in.)	Model No.	For Screw Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)
5∕32 X 6	MDPL01506H	3/16	3 1/8	6
5∕32 X 7	MDPL01507H	9/16	4 1⁄8	7
³∕16 X 5	MDPL01805H		23⁄8	5
³ ⁄16 Х б	MDPL01806H	1⁄4	3 1/8	6
³∕16 X 7	MDPL01807H		4 1⁄8	7

Titen drivers are sold individually.

Titen Turbo Screw Drill Bit/Driver - Bulk Packs*

Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	For Screw Diameter (in.)	Model No.
5/32	41⁄8	7	3⁄16	MDPL01507H-R25
3⁄16	41⁄8	7	1⁄4	MDPL01807H-R25

*SDS-plus shank.

Mechanical Anchors

Straight Shank Drill Bit

Drill Bit

Titen Turbo Installation Information and Additional Data¹

Characteristic	Symbol Units	Units	Nominal Anchor Diameter (in.)				
			3∕16	1⁄4			
Installation Information							
Drill Bit Diameter	d	in.	5/32	3⁄16			
Minimum Baseplate Clearance Hole Diameter	d _c	in.	1⁄4	5⁄16			
Minimum Hole Depth	h _{hole}	in.	21⁄4	21⁄4			
Embedment Depth	h _{nom}	in.	13⁄4	13⁄4			
Effective Embedment Depth	h _{ef}	in.	1.25	1.20			
Critical Edge Distance	C _{ac}	in.	3	3			
Minimum Edge Distance	C _{min}	in.	1 3⁄4	1 3⁄4			
Minimum Spacing	S _{min}	in.	1	2			
Minimum Concrete Thickness	h _{min}	in.	31⁄4	31⁄4			
	Additional Da	ita					
Yield Strength	f _{ya}	psi	100,000				
Tensile Strength	f _{uta}	psi	125,000				
Minimum Tensile and Shear Stress Area	A _{se}	in. ²	0.0131	0.0211			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

SIMPSON

Strong-Tie

LW

Titen Turbo[™] Concrete and Masonry Screw Anchor

SIMPSON

Strong-Tie

LW

Titen Turbo Tension Strength Design Data¹

Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)				
			3⁄16	1⁄4			
Anchor Category	1, 2 or 3		-	1			
Embedment Depth	h _{nom}	in.	1 3⁄4	1¾			
Steel Strength in Tension							
Tension Resistance of Steel	N _{sa}	lb.	1,640	2,640			
Strength Reduction Factor — Steel Failure ²	ф _{sa}	—	0.65				
Cond	crete Breakout Strength	in Tension					
Effective Embedment Depth	h _{ef}	in.	1.25	1.20			
Critical Edge Distance	C _{ac}	in.	3	3			
Effectiveness Factor — Uncracked Concrete	k _{uncr}	—	2	4			
Modification Factor	$\Psi_{c,N}$	_	1.	.0			
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}		0.65				
Pullout Strength in Tension							
Pullout Resistance Uncracked Concrete (f' $_{\rm C}$ = 2,500 psi) $^{\rm 5}$	N _{p,uncr}	lb.	1,515	1,515			
Strength Reduction Factor — Pullout Failure ⁴	$\phi_{ ho}$	_	0.65				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

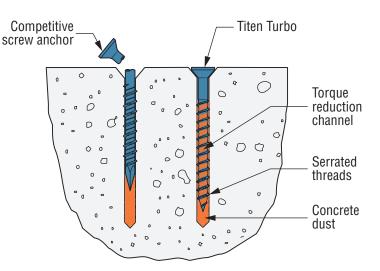
2. The tabulated value of φ_{sa} applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *φ* must be determined in accordance with ACI 318-11 Section D.4.4.

3. The tabulated value of φ_{cb} applies when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-19 Section 17.5.3, ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

4. The tabulated value of φ_p applies when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-19 Section 17.5.3, ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

5. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'c/2500)^{0.23} for ¼" screw anchors. No increase in the characteristic pullout resistance for greater compressive strengths is permitted for ¾" screw anchors.

Titen Turbo Shear Strength Design Data Into Concrete¹


Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)				
	Symbol	Units	³ ⁄16	1⁄4			
Anchor Category	1, 2 or 3	—	-	1			
Embedment Depth	h _{nom}	in.	1 3⁄4	1 3⁄4			
Steel Strength in Shear							
Shear Resistance of Steel	V _{sa}	lb.	475	720			
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_	0.602				
Concrete Breakout Strength in Shear							
Outside Diameter	d _a	in.	0.129	0.164			
Load Bearing Length of Anchor in Shear	l _e	in.	1.25	1.20			
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_	0.703				
Concrete Pryout Strength in Shear							
Coefficient for Pryout Strength	k _{cp}	_	1.0				
Strength Reduction Factor — Concrete Pryout Failure	ϕ_{cp}	_	0.703				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The tabulated value of \u03c8_{sa} applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 and ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \u03c9 must be determined in accordance with ACI 318-11 Section D.4.4.

3. The tabulated values of ϕ_{CD} and ϕ_{CD} apply when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012 and 2009 IBC, ACI 318-19, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-19 Section 17.5.3, ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

Torque Reduction Channel to trap drilling dust where it can't obstruct thread action.

Patented Torque Reduction Channel Displaces Dust for Trouble-Free Installation SIMPSON

LW

Strong-

IBC

Titen Turbo[™] Concrete and Masonry Screw Anchor

Allowable Tension Load for Titen Turbo Screw Anchor Installed in Face of Grouted CMU^{1,2,3}

Anchor Diameter	Embedment Depth		Allowable Load		
(in.)	(in.)	Spacing	Edge	End	(lb.)⁴
3⁄16	2	3	37⁄8	37⁄8	267
3⁄16	2	3	1 1/2	37⁄8	267
1⁄4	2	4	37⁄8	37⁄8	393
1⁄4	2	4	1 1⁄2	37⁄8	343

1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having

reached a minimum f'm of 1,500 psi at time of installation.

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.

3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen Turbo Screw Anchor Installed in Face of Grouted CMU^{1,2,3}

Anchor Diameter	Embedment Depth	Min	imum Dimens (in.)	ions	Direction of Loading	Allowable Load
(in.)	(in.)	Spacing	Edge	End		(lb.)⁴
3⁄16	2	3	31%	31⁄8	Toward edge, parallel to wall end	218
3⁄16	2	3	1½	31⁄8	Toward wall end, parallel to wall edge	218
1⁄4	2	4	31%	31⁄8	Toward edge, parallel to wall end	342
1⁄4	2	4	1½	31⁄8	Toward wall end, parallel to wall edge	283

1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls

having reached a minimum f'm of 1,500 psi at time of installation.

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.

3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Tension Load for Titen Turbo Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

IBC

IBC

Anchor Diameter	Embedment Depth	Minimum Dimensions (in.)			Allowable Load	
(in.)	(in.)	Spacing	Edge	End	(lb.) ⁴	
3⁄16	1 1⁄4	3	37⁄8	37⁄8	117	
1⁄4	1 1⁄4	4	37⁄8	37⁄8	117	

1. The tabulates values are for screw anchors installed in minimum 8"-wide hollow masonry walls having reached a minimum

f'm of 1,500 psi at time of installation.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

2. Embedment is the thickness of the face shell.

3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen Turbo Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

Anchor Diameter	Embedment Depth	Mi	nimum Dimensic (in.)	ons	Direction of	Allowable Load
(in.)	(in.)	Spacing	Edge	End	Loading	(lb.) ⁴
3⁄16	1 1⁄4	3	31/8	37⁄8	Toward edge, parallel to wall end	164
1⁄4	11⁄4	4	37⁄8	37⁄8	Toward edge, parallel to wall end	190

1. The tabulates values are for screw anchors installed in minimum 8"-wide hollow masonry walls having reached a minimum

f'm of 1,500 psi at time of installation.

2. Embedment is the thickness of the face shell.

3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Strong-Tie