AT-3G[™] High-Strength Hybrid Acrylic Adhesive

AT-3G is a hybrid, acrylic-based adhesive for anchoring threaded rod and rebar into cracked and uncracked concrete. Ideal for cold weather and wet concrete applications, AT-3G dispenses easily and offers a fast curing time for same-day bolt up.

Features

- Excellent for use in cold weather conditions or applications where fast cure is required
- Recognized per ICC-ES AC308 for threaded rod and rebar anchoring, along with post-installed rebar development and splice length design provisions
- Conventional blow-brush-blow hole cleaning technique using a wire brush no power brushing required

Product Information

Mix Ratio/Type	10:1 hybrid acrylic
Mixed Color	Gray
Base Materials	Concrete — cracked and uncracked
Base Material Conditions	Dry, water-saturated, water-filled hole
Anchor Type	Threaded rod or rebar
Substrate Installation Temperature	23°F (–5°C) to 104°F (40°C)
In-Service Temperature Range	–40°F (–40°C) to 320°F (160°C)
Storage Temperature	41°F (5°C) and 77°F (25°C)
Shelf Life	18 months
Volatile Organic Compound (VOC)	41 g/L

Test Criteria

AT-3G has been tested in accordance with ICC-ES AC308, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

 Concrete — ICC-ES ESR-5026 (including post-installed rebar connections, City of LA and Florida Building Code), Florida FL15730.
ASTM C881 and AASHTO M235 — Types I/IV and II/V, Grade 3, Class B & C.
UL Certification — CDPH Standard Method v1.2.
NSF/ANSI/CAN 61 (216 in.² / 1,000 gal.).

Installation Instructions

Installation instructions are located at the following locations: pp. 48–51; product packaging; or **strongtie.com/at3g**.

• Hole cleaning brushes are located on p. 52.

AT-3G Adhesive Cartridge System

	Model No.	Capacity Ounces (cubic in.)	Cartridge Type	Carton Qty.	Dispensing Tool	Mixing Nozzle
\$	AT3G10 ⁴	9.5 (16.9)	Coaxial	6	CDT10S	AMN19Q
1	AT3G30 ⁴	28 (50.5)	Side-by-side	5	ADT30S, ADTA30P or ADTA30CKT	AIVINT9Q

1. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.

2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.

3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions.

Modification or improper use of mixing nozzle may impair AT-3G adhesive performance. 4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.

5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

SIMP

Strong-Tie

AT-3G Adhesive

AT-3G[™] High-Strength Hybrid Acrylic Adhesive

SIMPSON

Strong-Tie

AT-3G Cure Schedule

Base Mater	ial Temperature	Gel Time	Cure Time
°F	٥°	(minutes)	(hr.)
23	-5	50	5
32	0	25	31⁄2
41	5	15	2
50	10	10	1
59	15	6	40 min.
68	20	3	30 min.
86	30	2	30 min.
104	40	2	30 min.

1. For water-saturated concrete, the cure times must be doubled.

- Cartridge temperature must be between 41°F (5°C) and 104°F (40°C) at the time of installation.
- For installation in temperatures below 23°F (-5°C), see p. 241 (Supplemental Section) for more information.

AT-3G Typical Properties

	Property	Class A (35°–40°F)	Class B (40°–60°F)	Class C (>60°F)	Test Method
Consistency		Non-sag	Non-sag	Non-sag	ASTM C881
Rand Strangth Clant Chaor	Hardened-to-Hardened Concrete, 2-Day Cure ¹	2,800 psi	2,800 psi	2,820 psi	ASTM C882
Bond Strength, Slant Shear	Hardened-to-Hardened Concrete, 14-Day Cure ¹	3,200 psi	3,100 psi	3,250 psi	ASTIVI COOZ
Compressive Yield Strength, 7	² -Day Cure ²	10,300 psi	13,400 psi	15,000 psi	ASTM D695
Compressive Modulus, 7-Day	1,400,000 psi	1,550,000 psi	1,650,000 psi	ASTM D695	
Heat Deflection Temperature,		ASTM D648			
Glass Transition Temperature,	7-Day Cure ³		ASTM E1640		
Decomposition Temperature,	24-Hour Cure ³		ASTM E2550		
Water Absorption, 24 Hours, 7	7-Day Cure ³		ASTM D570		
Shore D Hardness, 24-Hour C		ASTM D2240			
Linear Coefficient of Shrinkag		ASTM D2566			
Coefficient of Thermal Expans	ion ³		ASTM C531		

1. Material and curing conditions: Class A at 35° \pm 2°F, Class B at 40° \pm 2°F, Class C at 60° \pm 2°F.

2. Material and curing conditions: Class A at 0° \pm 2°F, Class B at 40° \pm 2°F, Class C at 60° \pm 2°F.

3. Material and curing conditions: 73° \pm 2°F.

AT-3G Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. $c_{ac} = h_{ef} (\tau_{k,uncr}/1, 160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f_c')^{0.5}/(\pi \times d_a))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

*See p. 14 for an explanation of the load table icons.

LW

IBC

Lastanas

AT-3G[™] Design Information — Concrete

Strong-Tie

SIMPSON

AT-3G Tension Strength Design Data for Thread	ded Rod ^{1,8}
---	------------------------

				Nominal Rod Diameter (in.)						
Charac	steristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	11⁄4
	Steel Stren	gth in Tens	ion	1		1	1		1	
Minimum Tensile Stress Area		A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Tension Resistance of Steel — ASTM F1	554, Grade 36			4,495	8,230	13,110	19,400	26,780	35,130	56,210
Tension Resistance of Steel — ASTM F1554, Grade 55				5,815	10,645	16,950	25,090	34,630	45,430	72,685
Tension Resistance of Steel — ASTM A19	93, Grade B7 and ASTM F1554, Grade 105			9,685	17,735	28,250	41,810	57,710	75,710	121,135
Tension Resistance of Steel — ASTM A449		N _{sa}	lb.	9,300	17,030	27,120	40,140	55,405	72,685	101,755
Tension Resistance of Steel — ASTM F59	93 CW (Types 304 and 316 Stainless Steel)]		7,750	17,190	22,600	28,430	39,245	51,485	82,370
Tension Resistance of Steel — ASTM A19 (Types 304 and 316 Stainless Steel)			7,365	13,480	21,470	31,780	43,860	57,540	92,065	
Strength Reduction Factor for Tension —	Steel Failure	φ	_				0.756			
	Concrete Breakout Strength in Te	ension (2,5	00 psi	$\leq f'_{C} \leq 8,$	000 psi)					
Effectiveness Factor for Cracked Concrete	9	K _{C,C}					17			
Effectiveness Factor for Uncracked Concr	ete	k _{c,uncr}		24						
Strength Reduction Factor — Concrete B	trength Reduction Factor — Concrete Breakout Failure in Tension						0.656			
	Bond Strength in Tension	(2,500 psi	≤ f' _C ≤	8,000 psi)7	ì				
Minimum Embedment		h _{ef,min}	in.	23⁄8	2¾	31⁄8	31⁄2	31⁄2	4	5
Maximum Embedment		h _{ef,max}	in.	7½	10	12½	15	17½	20	25
Temperature Range A ^{2,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,600	2,415	2,260	2,140	2,055	2,000	1,990
	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{\textit{k,cr}}$	psi	1,040	1,040	1,110	1,220	1,210	1,205	1,145
Temperature Range B ^{3,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,265	2,100	1,970	1,865	1,785	1,740	1,730
Tomporatoro Hango D	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	905	905	965	1,060	1,055	1,050	995
Temperature Range C ^{4,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	1,630	1,515	1,420	1,345	1,290	1,255	1,250
iomperatore nange o	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	650	655	695	765	760	755	720
Anchor Category Dry Concrete — — — 1										
Strength Reduction Factor	Dry Concrete	ϕ_{dry}		- 0.65 ⁶						
Anchor Category	Water-Saturated Concrete		_	- 2						
Strength Reduction Factor	Water-Saturated Concrete	$\phi_{\scriptscriptstyle WS}$	_	- 0.55 ⁶						
Anchor Category	Water-Filled Hole			— 3						
Strength Reduction FactorWater-Filled Hole $\phi_{\rm Wf}$ — 0.45^6										
Reduction Factor for Seismic Tension		$\alpha_{N,seis}$ ¹⁰					0.95			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 176°F, Maximum long-term temperature = 122°F.

3. Temperature Range B: Maximum short-term temperature = 248°F, Maximum long-term temperature = 161°F.

4. Temperature Range C: Maximum short-term temperature = 320°F, Maximum long-term temperature = 212°F.

5. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

6. The tabulated value of φ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.

7. Bond strength values shown are for normal-weight concrete having a compressive strength of $f'_c = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of ($f'_c/2,500$)^{0.10}.

8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

 Characteristic bond strength values are for sustained loads, including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23% for Temperature Range C.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by a_{N,seis}.

AT-3G[™] Design Information — Concrete

SIMPS

IBC LW AT-3G Tension Strength Design Data for Rebar^{1,8} **Rebar Size** Characteristic Symbol Units #3 #4 #5 #6 #7 #8 #9 Steel Strength in Tension 1.00 Minimum Tensile Stress Area in.2 0.11 0.20 0.31 0.44 0.60 0.79 A_{se} Tension Resistance of Steel - ASTM A615 Grade 60 9,900 18,000 27,900 39,600 54,000 71,100 90,000 Tension Resistance of Steel — ASTM A706 Grade 60 8,800 16,000 24,800 35,200 48,000 63,200 80,000 N_{sa} lb. Tension Resistance of Steel — ASTM A615 Grade 40 6,600 12,000 18,600 26,400 Sizes not available Strength Reduction Factor for Tension — Steel Failure φ 0.656 ASTM A615 Grades 40 and 60 φ 0.756 Strength Reduction Factor for Tension — Steel Failure — ASTM A706 Concrete Breakout Strength in Tension (2,500 psi \leq f¹_C \leq 8,000 psi) Effectiveness Factor for Cracked Concrete 17 k_{c,cr} ____ 24 Effectiveness Factor for Uncracked Concrete k_{c,uncr} Strength Reduction Factor — Concrete Breakout Failure in Tension φ 0.65^{6} Bond Strength in Tension (2,500 psi \leq f¹_c \leq 8,000 psi)⁷ 31⁄8 31⁄2 3½ 4 41/2 Minimum Embedment in $2\frac{3}{8}$ 23/4 h_{ef,min} Maximum Embedment 71/2 10 121/2 15 171/2 20 221/2 h_{ef,max} in Characteristic Bond Strength $\tau_{k,uncr}$ psi 2,200 2,100 2,030 1,970 1,920 1,880 1,845 in Uncracked Concrete9 Temperature Range A^{2,5} Characteristic Bond Strength $\tau_{k,cr}$ psi 1,090 1,055 1,130 1,170 1,175 1,155 1,140 in Cracked Concrete⁹ Characteristic Bond Strength 1,915 1,765 1,670 $\tau_{k.uncr}$ psi 1,830 1,715 1,635 1.615 in Uncracked Concrete⁹ Temperature Range B^{3,5} Characteristic Bond Strength $\tau_{k,cr}$ psi 945 915 980 1,015 1,020 1,005 995 in Cracked Concrete9 Characteristic Bond Strength $\tau_{k,uncr}$ psi 1,380 1,315 1,270 1,235 1205 1,180 1,155 in Uncracked Concrete Temperature Range C4,5 Characteristic Bond Strength $\tau_{k,cr}$ psi 680 660 705 735 735 725 715 in Cracked Concrete⁹ Anchor Category Drv Concrete 1 ϕ_{dry} 0.656 Strength Reduction Factor Dry Concrete 2 Anchor Category Water-Saturated Concrete ____ Strength Reduction Factor Water-Saturated Concrete ϕ_{WS} 0.55^{6} Anchor Category Water-Filled Hole 3 $\phi_{\scriptscriptstyle Wf}$ Water-Filled Hole 0.456 Strength Reduction Factor ____ Reduction Factor for Seismic Tension 0.95 0.95 1.00 1.00 1.00 1.00 1.00 $\alpha_{N,seis}$ 10

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 176°F, Maximum long-term temperature = 122°F.

3. Temperature Range B: Maximum short-term temperature = 248°F, Maximum long-term temperature = 161°F.

4. Temperature Range C: Maximum short-term temperature = 320°F, Maximum long-term temperature = 212°F.

5. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

6. The tabulated value of φ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

7. Bond strength values shown are for normal-weight concrete having a compressive strength of f^r_c = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.10}$.

8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable,

9. Characteristic bond strength values are for sustained loads, including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23% for Temperature Range C.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by a_{N,seis}.

Strong-Tie **Adhesive** Anchors

AT-3G[™] Design Information — Concrete

AT-3G Shear Strength Design Data for Threaded Rod¹

Ichors	
e Ar	
esive	
Adhe	

Characteristic	Symbol	Units	Nominal Rod Diameter (in.)							
Characteristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼	
Steel Strength in Shear										
Minimum Shear Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Shear Resistance of Steel — ASTM F1554, Grade 36			2,695	4,940	7,860	11,640	16,070	21,080	33,725	
Shear Resistance of Steel — ASTM F1554, Grade 55			3,490	6,385	10,170	15,055	20,780	27,260	43,610	
Shear Resistance of Steel — ASTM A193, Grade B7 and ASTM F1554, Grade 105			5,810	10,640	16,950	25,085	34,625	45,425	72,680	
Shear Resistance of Steel — ASTM A449	V _{sa}	lb.	5,580	10,220	16,270	24,085	33,240	43,610	61,055	
Shear Resistance of Steel — ASTM F593 CW (Types 304 and 316 Stainless Steel)				4,650	8,515	13,560	17,060	23,545	30,890	49,425
Shear Resistance of Steel — ASTM A193, Grade B8/B8M, Class 2B (Types 304 and 316 Stainless Steel)			4,420	8,090	12,880	19,070	26,320	34,525	55,240	
Reduction Factor for Seismic Shear	$lpha_{V,seis}{}^{3}$	—				0.65		~		
Strength Reduction Factor for Shear — Steel Failure	φ	—				0.65 ²				
C	oncrete Brea	akout Streng	gth in Shea	r						
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	le	in.	Minimum of <i>h_{ef}</i> and 8x anchor diameter							
Strength Reduction Factor for Shear — Breakout Failure	φ	—	0.70 ²							
Concrete Pryout Strength in Shear										
Load-Bearing Length of Anchor in Shear	k _{cp}	in.	1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "							
Strength Reduction Factor for Shear — Breakout Failure	φ					0.70 ²				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by a_{V,seis} for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/at3g.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie[®] Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

IBC

SIMPSO Strong-Tie

AT-3G Shear Strength Design Data for Rebar¹

AT-3G[™] Design Information — Concrete

AT-3G Shear Strength Design Data for Rebar ¹						I	BC		
Characteristic	Symbol	Units	Nominal Rod Diameter (in.)						
GIALGUEISUC		Units	#3	#4	#5	#6	#7	#8	#9
	Steel Stre	ngth in S	hear						
Minimum Shear Stress Area	Ase	in.2	0.11	0.20	0.31	0.44	0.60	0.79	1.00
Shear Resistance of Steel — ASTM A615 Grade 60			5,940	10,800	16,740	23,760	32,400	42,660	54,000
Shear Resistance of Steel — ASTM A706 Grade 60	Vsa	lb.	5,280	9,600	14,880	21,120	28,800	37,920	48,000
Shear Resistance of Steel — ASTM A615 Grade 40		3,960 7,200 11,160 15,840				Size	Sizes not available		
Reduction Factor for Seismic Shear	$\alpha_{V,seis}{}^{3}$	-				0.65			
Strength Reduction Factor for Shear — Steel Failure — ASTM A615 Grades 40 and 60	φ					0.60 ²			
Strength Reduction Factor for Shear — Steel Failure — ASTM A706	φ					0.65 ²			
Conc	rete Breako	ut Streng	gth in Shea	ır					
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-Bearing Length of Anchor in Shear	le	in.	Minimum of <i>h_{ef}</i> and 8x anchor diameter						
Strength Reduction Factor for Shear — Breakout Failure	φ	_	0.70 ²						
Con	crete Pryou	t Strengt	h in Shear						
Load-Bearing Length of Anchor in Shear	k _{cp}	in.	1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "						
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ²			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$ for the corresponding anchor steel type.

AI-3G Develop	oment Length f	or Rebar Dowe	els				
Rebar	Drill Bit	Clear Cover		De	n.)		
Size	Diameter (in.)		f' _c = 2,500 psi Concrete	f' _c = 3,000 psi Concrete	f' _c = 4,000 psi Concrete	f' _c = 6,000 psi Concrete	f' _c = 8,000 psi Concrete
#3	1/2	13⁄16	12	12	12	12	12
#4	5⁄8	13⁄16	14.4	14	12	12	12
#5	3⁄4	13⁄16	18	17	14.2	12	12
#6	7⁄8	13⁄16	21.6	20	17.1	14	13
#7	1	1%16	31.5	29	25	21	18
#8	11/8	1%16	36	33	28.5	24	21
#9	13⁄8	1%16	40.5	38	32	27	23

-----. . . oth fay Dala

1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in

Seismic Design Category C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

2. Rebar is assumed to be ASTM A615 Grade 60 or A706 (fv = 60,000 psi). For rebar with a higher yield strength, multiply tabulated values by fv/60,000 psi. 3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33. Tabulated values assume bottom cover less that 12" cast below rebars ($\Psi_1 = 1.0$).

Uncoated rebar must be used.

5. The value of K_{tr} is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 318-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-19 / ACI 318-14.