A high-strength screw anchor for use in cracked and uncracked concrete, as well as uncracked masonry. The Titen HD offers low installation torque and outstanding performance. The Titen HD screw anchor is designed for a wide variety of applications such as sill plates, ledgers, post bases, seating, and other holdown applications. The screw anchor is easy to remove when used in temporary applications such as bracing and formwork, or when a fixture needs to be relocated.

Features

- Tested in accordance with $\mathrm{ACI} 355.2, \mathrm{AC} 193$ and AC 106
- Qualified for static, wind and seismic loading conditions
- Thread design undercuts to efficiently transfer the load to the base material
- Standard fractional sizes
- Specialized heat-treating process creates tip hardness for better cutting without compromising the ductility
- No special drill bit required - designed to install using standard-sized ANSI tolerance drill bits
- Hex-washer head requires no separate washer, unless required by code, and provides a clean installed appearance
- Removable - ideal for temporary anchoring (e.g. formwork, bracing) or applications where fixtures may need to be moved
- Use in dry interior environments only

Codes: ICC-ES ESR-2713 (concrete);
ICC-ES ESR-1056 (masonry);
City of LA Supplement within ESR-2713 (concrete);
City of LA Supplement within ESR-1056 (masonry);
Florida FL15730 (concrete and masonry);
FM 3017082, 3035761 and 3043442;
Multiple DOT listings
Material: Carbon steel
Coating: Zinc plated

Installation

$!$
Holes in steel fixtures to be mounted should match the diameter specified in the table below.
Use a Titen HD screw anchor one time only - installing the anchor multiple
times may result in excessive thread wear and reduce load capacity.
$!$ Do not use impact wrenches to install into hollow CMU.
1 Caution: Oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity.

1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth plus minimum hole depth overdrill (see table below) to allow the thread tapping dust to settle, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping.
2. Insert the anchor through the fixture and into the hole.
3. Tighten the anchor into the base material until the hex-washer head contacts the fixture.

Additional Installation Information

Titen HD Diameter (in.)	Wrench Size (in.)	Recommended Stee Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
$1 / 4$	$3 / 8$	$3 / 8$ to $7 / 16$	$1 / 8$
$3 / 8$	$9 / 16$	$1 / 2$ to $9 / 16$	$1 / 4$
$1 / 2$	$3 / 4$	$5 / 8$ to $11 / 16$	$1 / 2$
$5 / 8$	$15 / 16$	$3 / 4$ to $13 / 16$	$1 / 2$
$3 / 4$	$11 / 8$	$7 / 8$ to $15 / 16$	$1 / 2$

[^0]

Serrated teeth on the tip of the Titen HD screw anchor facilitate cutting and reduce installation torque.

Countersunk Head Style

The countersunk head style is for applications that require a flush-mount profile. Countersinking also leaves a cleaner surface appearance for exposed through-set applications. The anchor head's 6 -lobe drive eases installation and is less prone to stripping than traditional recessed anchor heads.

Features

- Available in many standard lengths in $1 / 4$ " and $3 / 8^{\prime \prime}$ diameters
- Driver bit included in each box

Codes: ICC-ES ESR-2713 (concrete);
ICC-ES ESR-1056 (masonry);
City of LA Supplement within ESR-2713 (concrete); City of LA Supplement within ESR-1056 (masonry); Florida FL15730 (concrete and masonry)

Material: Carbon steel
Coating: Zinc plated

Additional Installation Information

Titen HD Diameter (in.)	Bit Size	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
$1 / 4$	$T 30$	$3 / 8$ to $7 / 16$	$1 / 8$
$3 / 8$	$T 50$	$1 / 2$ to 916	$1 / 4$

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.

Titen HD Countersunk Head Style

6-lobe drive

$1 / 4^{1 "}$

Washer-Head Head Style

The washer-head design is commonly used where a minimal head profile is necessary. The model is offered in sizes suitable for use in sill plate applications, and the washer head's low installed profile means modular wall and floor systems can be installed on top with no need for notching the wall framing to accommodate the anchor. The anchor's 6-lobe drive eases driving and seating without stripping.

Features

- Available in many standard lengths in $1 / 2^{\prime \prime}$ and $5 / 8^{\prime \prime}$ diameters
- Driver bit included in each box

Codes: ICC-ES ESR-2713 (concrete);
City of LA Supplement within ESR-2713 (concrete)
Florida FL15730 (concrete)
Material: Carbon steel
Coating: Zinc plated

Additional Installation Information

Titen HD Diameter (in.)	Bit Size	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
$1 / 2$	T50	$3 / 4$ to ${ }^{11 / 16}$	$1 / 2$
$5 / 8$	T60	$15 / 16$ to $13 / 16$	$1 / 2$

> Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.

Minimum overdrill. See table.

Titen HD Anchor Product Data - Hex Washer Head - Zinc Plated ${ }^{1}$

Size (in.)	Model No.	Thread Length (in.)	Drill Bit Diameter (in.)	Wrench Size (in.)	Quantity	
					Box	Carton
$1 / 4 \times 17 / 8$	THDB25178H	$11 / 2$	$1 / 4$	$3 / 8$	100	500
$1 / 4 \times 23 / 4$	THDB25234H	23/8	$1 / 4$	$3 / 8$	50	250
$1 / 4 \times 3$	THDB25300H	25/8	$1 / 4$	$3 / 8$	50	250
$1 / 4 \times 31 / 2$	THDB25312H	$31 / 8$	$1 / 4$	$3 / 8$	50	250
$1 / 4 \times 4$	THDB25400H	35\%	$1 / 4$	$3 / 8$	50	250
$3 / 8 \times 13 / 4$	THD37134 ${ }^{2,3}$	$11 / 4$	$3 / 8$	9/16	50	250
$3 / 8 \times 21 / 2$	THD37212H ${ }^{2,3}$	2	$3 / 8$	9/16	50	200
$3 / 8 \times 3$	THD37300H	$21 / 2$	3/8	9/16	50	200
$3 / 8 \times 4$	THD37400H	$31 / 2$	$3 / 8$	9/16	50	200
$3 / 8 \times 5$	THD37500H	$41 / 2$	3/8	9/16	50	100
$3 / 8 \times 6$	THD37600H	$51 / 2$	$3 / 8$	9/16	50	100
$1 / 2 \times 3$	THD50300H2,4	$21 / 2$	1/2	$3 / 4$	25	100
$1 / 2 \times 4$	THD50400H	$31 / 2$	1/2	$3 / 4$	20	80
$1 / 2 \times 5$	THD50500H	$41 / 2$	1/2	$3 / 4$	20	80
$1 / 2 \times 6$	THD50600H	$51 / 2$	1/2	$3 / 4$	20	80
$1 / 2 \times 61 / 2$	THD50612H	$51 / 2$	1/2	$3 / 4$	20	40
$1 / 2 \times 8$	THD50800H	$51 / 2$	1/2	$3 / 4$	20	40
$1 / 2 \times 12$	THD501200H	$51 / 2$	1/2	$3 / 4$	5	20
$1 / 2 \times 13$	THD501300H	$51 / 2$	1/2	$3 / 4$	5	20
$1 / 2 \times 14$	THD501400H	$51 / 2$	1/2	$3 / 4$	5	20
$1 / 2 \times 15$	THD501500H	$51 / 2$	1/2	$3 / 4$	5	20
$5 / 8 \times 4$	THDB62400H2,4	$31 / 2$	5/8	15/16	10	40
$5 / 8 \times 5$	THDB62500H	$41 / 2$	5/8	15/16	10	40
$5 / 8 \times 6$	THDB62600H	$51 / 2$	5/8	15/16	10	40
$5 / 8 \times 61 / 2$	THDB62612H	$51 / 2$	5/8	15/16	10	40
$5 / 8 \times 8$	THDB62800H	$51 / 2$	5/8	15/16	10	20
$5 / 8 \times 10$	THDB62100H	$51 / 2$	5/8	15/16	10	20
$3 / 4 \times 4$	THD75400H ${ }^{2,5}$	$31 / 2$	$3 / 4$	$11 / 8$	10	40
$3 / 4 \times 5$	THD75500H	$41 / 2$	$3 / 4$	$11 / 8$	5	20
$3 / 4 \times 6$	THDT75600H	$41 / 2$	$3 / 4$	$11 / 8$	5	20
$3 / 4 \times 7$	THD75700H	$51 / 2$	$3 / 4$	$11 / 8$	5	10
$3 / 4 \times 81 / 2$	THD75812H	$51 / 2$	$3 / 4$	$11 / 8$	5	10
$3 / 4 \times 10$	THD75100H	$51 / 2$	$3 / 4$	$11 / 8$	5	10

1. Length of anchor is measured from underside of head to end of anchor.
2. These models do not meet minimum embedment depth requirements for strength design.
3. Installation torque shall not exceed 25 ft .-lb. using a manual torque wrench or maximum torque rating of 100 ft .-lb. when installed with impact wrench.
4. Installation torque shall not exceed 50 ft .-lb. using a manual torque wrench or maximum torque rating of 100 ft .-lb. when installed with impact wrench.
5. Installation torque shall not exceed 50 ft .-lb. using a manual torque wrench or maximum torque rating of 135 ft . -lb. when installed with impact wrench.

Titen HD Anchor Product Data - Countersunk - Zinc Plated

| Size
 (in.) | Model
 No. | Thread
 Length
 (in.) | Drill Bit
 Diameter
 (in.) | Bit
 Size | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

\dagger This model does not meet minimum embedment depth requirements for strength design and require maximum installation torque of 25 ft . lb . using a torque wrench, driver drill or cordless $1 / 4 "$ impact driver with a maximum permitted torque rating of 100 ft .-lb.

1. Length of anchor is measured from top of head to bottom of anchor.

Titen HD Anchor Product Data - Washer Head - Zinc Plated

Size (in.)	Model No.	Thread Length (in.)	Drill Bit Diameter (in.)	Bit Size	Quantity	

1. Length of anchor is measured from underside of head to bottom of anchor.

Hex Head Mechanically Galvanized

The Titen HD heavy-duty screw anchor is a mechanically galvanized high-strength screw anchor for use in cracked and uncracked concrete, as well as uncracked masonry. Its proprietary heat treatment and ASTM B695 Class 65 mechanically galvanized coating make it ideal for both interior and exterior anchoring applications.

The Titen HD screw anchor is designed for a wide variety of applications such as sill plates, ledgers, post bases, seating, and other holdown applications. The screw anchor is easy to remove for use in temporary applications such as bracing and formwork, or when a fixture needs to be relocated.

Features

- Thread design undercuts to efficiently transfer the load to the base material
- Standard fractional sizes, hole size equals anchor size
- Specialized heat-treating process creates tip hardness for better cutting without compromising ductility
- Hex washer head requires no separate washer, unless required by code
- Fully and easily removable
- Code listed for exterior applications

Codes: ICC-ES ESR-2713 (concrete);
ICC-ES ESR-1056 (masonry);
City of LA Supplement within ESR-2713 (concrete); City of LA Supplement within ESR-1056 (masonry); Florida FL15730 (concrete and masonry);
FM 3017082, 3035761 and 3043442;
Multiple DOT listings
Material: Carbon steel
Coating: Mechanically galvanized
Additional Installation Information

Serrated teeth on the tip of the Titen HD screw anchor facilitates cutting and reduces installation torque.

Titen HD Diameter (in.)	Wrench Size (in.)	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
$3 / 8$	$9 / 16$	$1 / 2$ to $9 / 16$	$1 / 4$
$1 / 2$	$3 / 4$	$5 / 8$ to $11 / 16$	$1 / 2$
$5 / 8$	$15 / 16$	$3 / 4$ to $13 / 16$	$1 / 2$
$3 / 4$	$11 / 8$	$7 / 8$ to $15 / 16$	$1 / 2$

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or cold-formed steel members.

Installation Sequence

Titen HD Anchor Product Data - Mechanically Galvanized

Size (in.)	Model No.	Thread Length (in.)	Drill Bit Diameter (in.)	Wrench Size (in.)	Quantity	
					Box	Carton
$3 / 8 \times 3$	THD37300HMG	$21 / 2$	3/8	9/16	50	200
$3 / 8 \times 4$	THD37400HMG	$31 / 2$			50	200
$3 / 8 \times 5$	THD37500HMG	$41 / 2$			50	100
$3 / 8 \times 6$	THD37600HMG	$51 / 2$			50	100
$1 / 2 \times 4$	THD50400HMG	$31 / 2$	1/2	$3 / 4$	20	80
$1 / 2 \times 5$	THD50500HMG	$41 / 2$			20	80
$1 / 2 \times 6$	THD50600HMG	$51 / 2$			20	80
$1 / 2 \times 61 / 2$	THD50612HMG	$51 / 2$			20	40
$1 / 2 \times 8$	THD50800HMG	$51 / 2$			20	40
$1 / 2 \times 12$	THD501200HMG	$51 / 2$			5	20
$5 / 8 \times 5$	THDB62500HMG	$41 / 2$	5/8	15/16	10	40
$5 / 8 \times 6$	THDB62600HMG	$51 / 2$			10	40
$5 / 8 \times 61 / 2$	THDB62612HMG	$51 / 2$			10	40
$5 / 8 \times 8$	THDB62800HMG	$51 / 2$			10	20
$5 / 8 \times 10$	THDB62100HMG	$51 / 2$			10	20
$3 / 4 \times 5$	THD75500HMG	$41 / 2$	$3 / 4$	$11 / 8$	5	20
$3 / 4 \times 6$	THDT75600HMG	41/2			5	20
$3 / 4 \times 81 / 2$	THD75812HMG	$51 / 2$			5	10
$3 / 4 \times 10$	THD75100HMG	$51 / 2$			5	10

Mechanical galvanizing meets ASTM B695, Class 65, Type 1.
Visit strongtie.com/info for corrosion information.

Titen HD Installation Information and Additional Data ${ }^{1}$
IBC 膡 *

Characteristic	Symbol	Units	Nominal Anchor Diameter, d_{a} (in.)										
			1/4		$3 / 8$		1/2		5/8		$3 / 4$		
Installation Information													
Drill Bit Diameter	$d_{\text {bit }}$	in.	$1 / 4$		3/8		1/2		5/8		$3 / 4$		
Baseplate Clearance Hole Diameter	d_{c}	in.	3/8		$1 / 2$		5/8		$3 / 4$		7/8		
Maximum Installation Torque	$T_{\text {inst,max }}$	ft.-lbf	24^{2}		50^{2}		65^{2}		100^{2}		150^{2}		
Maximum Impact Wrench Torque Rating	$T_{\text {impact,max }}$	ft.-lbf	125^{3}		150^{3}		340^{3}		340^{3}		$385{ }^{3}$		
Minimum Hole Depth	$h_{\text {hole }}$	in.	$13 / 4$	25/8	$23 / 4$	$31 / 2$	$33 / 4$	$41 / 2$	$41 / 2$	6	$41 / 2$	6	63/4
Nominal Embedment Depth	$h_{\text {nom }}$	in.	15/8	$21 / 2$	$21 / 2$	3114	$31 / 4$	4	4	$51 / 2$	4	$51 / 2$	$61 / 4$
Critical Edge Distance	$C_{a c}$	in.	3	6	$2^{11 / 16}$	35/8	39/16	4112	$41 / 2$	63/8	6	63/8	75/16
Minimum Edge Distance	$C_{\text {min }}$	in.	$11 / 2$		$13 / 4$								
Minimum Spacing	$S_{\text {min }}$	in.	$11 / 2$		3						$23 / 4$	3	
Minimum Concrete Thickness	$h_{\text {min }}$	in.	$31 / 4$	$31 / 2$	4	5	5	61/4	6	$81 / 2$	6	$83 / 4$	10
Additional Data													
Anchor Category	Category	-	1										
Yield Strength	$f_{y a}$	psi	100,000		97,000								
Tensile Strength	$f_{\text {uta }}$	psi	125,000		110,000								
Minimum Tensile and Shear Stress Area	$A_{s e}$	in^{2}	0.042		0.099		0.183		0.276		0.414		
Axial Stiffness in Service Load Range Uncracked Concrete	$\beta_{\text {uncr }}$	lb./in.	202,000		672,000								
Axial Stiffness in Service Load Range Cracked Concrete	$\beta_{c r}$	lb./in.	173,000		345,000								

1. The information presented in this table is to be used in conjunction with the design criteria of ACl 318 -19 Chapter 17, ACl 318-14 Chapter 17 and ACI 318-11 Appendix D.
2. $T_{\text {inst,max }}$ is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench.
3. $T_{\text {impact,max }}$ is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.

Titen HD Shear Strength Design Data ${ }^{1}$

Characteristic	Symbol	Unit	Nominal Anchor Diameter， $\mathrm{d}_{\mathrm{a}}(\mathrm{in}$.										
			1／4		3／8		1／2		5／8		$3 / 4$		
Nominal Embedment Depth	$h_{\text {nom }}$	in．	15／8	21／2	$21 / 2$	$31 / 4$	$31 / 4$	4	4	$51 / 2$	4	$51 / 2$	$61 / 4$

Steel Strength in Shear（ACI 318－19 17．7．1，ACI 318－14 17．5．1 or ACI 318－11 Section D．6．1）													
Shear Resistance of Steel	$V_{s a}$	lb ．									14，950		
Strength Reduction Factor－Steel Failure ${ }^{2}$	$\phi_{\text {sa }}$	－	0.60										
Concrete Breakout Strength in Shear（ACI 318－19 17．7．2 ACI 318－14 17．5．2 or ACI 318－11 Section D．6．2）													
Outside Diameter	d_{a}	in．	0.25		0.375		0.500		0.625		0.750		
Load Bearing Length of Anchor in Shear	ℓ_{e}	in．	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	2.94	4.22	4.86
Strength Reduction Factor－Concrete Breakout Failure ${ }^{2}$	$\phi_{c b}$	－						0.70					

Concrete Pryout Strength in Shear（ACI 318－19 17．7．3，ACI 318－14 17．5．3 or ACI 318－11 Section D．6．3）

Coefficient for Pryout Strength	$k_{c p}$	lb.	1.0	2.0
Strength Reduction Factor — Concrete Pryout Failure ${ }^{2}$	$\phi_{c p}$	-	0.70	

Steel Strength in Shear for Seismic Applications（ACI 318－19 17．10．3，ACI 318－14 17．2．3．3 or ACI 318－11 Section D．3．3．3）							
Shear Resistance for Seismic Loads	$V_{e q}$	lb ．	1，695	2，855	4，790	8，000	9，350
Strength Reduction Factor－Steel Failure ${ }^{2}$	$\phi_{\text {eq }}$	－	0.60				

1．The information presented in this table is to be used in conjunction with the design criteria of ACl 318 －19 Chapter 17， ACl 318 －14 Chapter 17 and ACl 318－11 Appendix D，except as modified below．
2．The strength reduction factor applies when the load combinations from the IBC or ACl 318 are used and the requirements of $\mathrm{ACI} 318-19$ 17．5．3， ACl 318－14 17．3．3 or ACl 318 －11 D．4．3，as applicable，are met．If the load combinations of $\mathrm{ACl} 318-11$ Appendix C are used，the appropriate strength reduction factor must be determined in accordance with ACl 318－11 D．4．4．

Titen HD Tension and Shear Strength Design Data for the Soffit of Normal－Weight or Sand－Lightweight Concrete over Steel Deck ${ }^{1,6,7}$

Characteristic	Symbol	Units	Nominal Anchor Diameter， d_{a}（in．）									
			Lower Flute						Upper Flute			
			Figure 2		Figure 1				Figure 2		Figure 1	
			1／4		3／8		1／2		$1 / 4$		3／8	1／2
Nominal Embedment Depth	$h_{\text {nom }}$	in．	15／8	$21 / 2$	17／8	$21 / 2$	2	$31 / 2$	15／8	$21 / 2$	17／8	2
Effective Embedment Depth	$h_{\text {ef }}$	in．	1.19	1.94	1.23	1.77	1.29	2.56	1.19	1.94	1.23	1.29
Pullout Resistance，concrete on steel deck（cracked）${ }^{2,3,4}$	$N_{p, \text { deck，cr }}$	lb．	420	535	375	870	905	2，040	655	1，195	500	1，700
Pullout Resistance，concrete on steel deck（uncracked）${ }^{\text {2，3，4 }}$	$N_{\text {p，deck，uncr }}$	lb．	995	1，275	825	1，905	1，295	2，910	1，555	2，850	1，095	2，430
Steel Strength in Shear，concrete on steel deck ${ }^{5}$	$V_{\text {sa，deck }}$	lb．	1，335	1，745	2，240	2，395	2，435	4，430	2，010	2，420	4，180	7，145
Steel Strength in Shear，Seismic	$V_{\text {sa，deck，eq }}$	lb ．	870	1，135	1，434	1，533	1，565	2，846	1，305	1，575	2，676	4，591

1．The information presented in this table is to be used in conjunction with the design criteria of ACl 318 －19 Chapter 17， ACl 318 －14 Chapter 17 and ACl 318－11 Appendix D ，except as modified below．
2．Concrete compressive strength shall be 3,000 psi minimum．The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by $\left(f_{c, \text { specified }}^{\prime} / 3,000\right)^{0.5}$ ．
3．For anchors installed in the soffit of sand－lightweight or normal－weight concrete over steel deck floor and roof assemblies， as shown in Figure 1 and Figure 2，calculation of the concrete breakout strength may be omitted．
4．In accordance with ACl 318 －19 Section 17．6．3．2．1， ACl 318 －14 Section 17．4．3．2 or ACl 318－11 Section D．5．3．2，the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand－lightweight or normal－weight concrete over steel deck floor and roof assemblies $N_{p, \text { deck，cr }}$ shall be substituted for $N_{p, c r}$ ．Where analysis indicates no cracking at service loads，the normal pullout strength in uncracked concrete $N_{p, \text { deck，uncr }}$ shall be substituted for $N_{p, \text { uncr }}$ ．
5．In accordance with ACl 318 －19 Section 17．7．1．2（c）， ACl 318 －14 Section 17．5．1．2（c）or ACl 318 －11 Section D．6．1．2（c），the shear strength for anchors installed in the soffit of sand－lightweight or normal－weight concrete over steel deck floor and roof assemblies $V_{\text {sa，deck }}$ and $V_{\text {sa，deck，eq }}$ shall be substituted for $V_{\text {sa }}$ ．
6．Minimum edge distance to edge of panel is $2 h_{e f}$ ．
7．The minimum anchor spacing along the flute must be the greater of $3 h_{e f}$ ，or 1.5 times the flute width．

Titen HD Anchor Tension and Shear Strength Design Data in the Topside of Normal-Weight Concrete or Sand-Lightweight Concrete over Steel Deck¹,2,3,4

IBC $\rightarrow \rightarrow{ }^{4}$

Design Information	Symbol	Units	Nominal Anchor Diameter, d_{a} (in.)			
			Figure 3			
			$1 / 4$	$3 / 8$	1/2	
Nominal Embedment Depth	$h_{\text {nom }}$	in.	15/8	$21 / 2$	3114	4
Effective Embedment Depth	$h_{\text {ef }}$	in.	1.19	1.77	2.35	2.99
Minimum Concrete Thickness ${ }^{5}$	$h_{\text {min,deck }}$	in.	21/2	$31 / 4$	$41 / 2$	$41 / 2$
Critical Edge Distance	$C_{\text {ac, deck,top }}$	in.	$33 / 4$	$71 / 4$	9	9
Minimum Edge Distance	$C_{\text {min,deck,top }}$	in.	$31 / 2$	3	$21 / 2$	$21 / 2$
Minimum Spacing	$S_{\text {min,deck,top }}$	in.	$31 / 2$	3	3	3

1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figure 3, the nominal concrete breakout strength of a single anchor or group of anchors in shear, $V_{c b}$ or $V_{c b g}$, respectively, must be calculated in accordance with ACI 318-19 Section 17.7.2, ACl 318-14 Section 17.5.2 or ACl 318-11 Section D.6.2, using the actual member thickness, $h_{\text {min }, \text { deck, }}$, in the determination of $A_{v c}$.
2. Design capacity shall be based on calculations according to values in the tables featured on pp. 69 and 70.
3. Minimum flute depth (distance from top of flute to bottom of flute) is $1 \frac{1}{2} 2^{\prime \prime}$ (see Figure 3).
4. Steel deck thickness shall be minimum 20 gauge.
5. Minimum concrete thickness ($h_{\text {min, deck }}$) refers to concrete thickness above upper flute (see Figure 3).

Figure 1. Installation of $3 / 8$ "- and $1 / 2$ "-Diameter Anchors in the Soffit of Concrete over Steel Deck

Figure 2. Installation of $1 / 4$ "-Diameter Anchors in the Soffit of Concrete over Steel Deck

Figure 3. Installation of $1 / 4$ "- and $3 / 8$ "-Diameter Anchors in the Topside of Concrete over Steel Deck

Titen HD Allowable Tension and Shear Loads in
8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

Size in. (mm)	Drill Bit Diameter in.	Minimum Embedment Depth in. (mm)	Critical Edge Distance $\mathrm{C}_{\text {crit }}$ in. (mm)	Minimum Edge Distance $\mathrm{C}_{\mathrm{min}}$ in. (mm)	Critical Spacing Distance in. (mm)	Values for 8" Lightweight, Medium-Weight or Normal-Weight Grout-Filled CMU			
						Tension Load		Shear Load	
						Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
Anchor Installed in the Face of the CMU Wall (See Figure 4)									
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$1 / 4$	$\begin{aligned} & 21 / 2 \\ & (64) \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & 11 / 4 \\ & (32) \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{gathered} 2,050 \\ (9.1) \end{gathered}$	$\begin{aligned} & 410 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 2,500 \\ & (11.1) \end{aligned}$	$\begin{aligned} & 500 \\ & (2.2) \end{aligned}$
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	3/8	$\begin{aligned} & 23 / 4 \\ & (70) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{gathered} 6 \\ (152) \end{gathered}$	$\begin{aligned} & 2,390 \\ & (10.6) \end{aligned}$	$\begin{aligned} & 480 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 4,340 \\ & (19.3) \end{aligned}$	$\begin{aligned} & 870 \\ & (3.9) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	1/2	$\begin{aligned} & 31 / 2 \\ & (89) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{aligned} & 3,440 \\ & (15.3) \end{aligned}$	$\begin{aligned} & 690 \\ & (3.1) \end{aligned}$	$\begin{aligned} & 6,920 \\ & (30.8) \end{aligned}$	$\begin{aligned} & 1,385 \\ & (6.2) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	5/8	$\begin{gathered} 41 / 2 \\ (114) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 5,300 \\ & (23.6) \end{aligned}$	$\begin{gathered} 1,060 \\ (4.7) \end{gathered}$	$\begin{gathered} 10,420 \\ (46.4) \end{gathered}$	$\begin{gathered} 2,085 \\ (9.3) \end{gathered}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$3 / 4$	$\begin{gathered} 51 / 2 \\ (140) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{aligned} & 7,990 \\ & (35.5) \end{aligned}$	$\begin{aligned} & 1,600 \\ & (7.1) \end{aligned}$	$\begin{gathered} 15,000 \\ (66.7) \end{gathered}$	$\begin{aligned} & 3,000 \\ & (13.3) \end{aligned}$

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
2. Values for 8 "-wide, lightweight, medium-weight and normal-weight concrete masonry units.
3. The masonry units must be fully grouted.
4. The minimum specified compressive strength of masonry, $f^{\prime} m$, at 28 days is 1,500 psi.
5. Embedment depth is measured from the outside face of the concrete masonry unit.
6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
7. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 78-79.

Figure 4. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU

Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

$\begin{aligned} & \text { Size } \\ & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	Drill Bit Diameter in.	Embedment Depth ${ }^{4}$ in. (mm)	Minimum Edge Distance in. (mm)	8" Hollow CMU Loads Based on CMU Strength			
				Tension Load		Shear Load	
				Ultimate lb. (kN)	Allowable lb. (kN)	Ulitimate lb. (kN)	Allowable lb. (kN)
Anchor Installed in Face Shell (See Figure 5)							
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	$3 / 8$	$\begin{aligned} & 13 / 4 \\ & (45) \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & 720 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 145 \\ & (0.6) \end{aligned}$	$\begin{gathered} 1,240 \\ (5.5) \end{gathered}$	$\begin{aligned} & 250 \\ & (1.1) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	1/2	$\begin{aligned} & 13 / 4 \\ & (45) \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & 760 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 150 \\ & (0.7) \end{aligned}$	$\begin{aligned} & 1,240 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 250 \\ & (1.1) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	5/8	$\begin{aligned} & 13 / 4 \\ & (45) \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & 800 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 160 \\ & (0.7) \end{aligned}$	$\begin{gathered} 1,240 \\ (5.5) \end{gathered}$	$\begin{aligned} & 250 \\ & (1.1) \end{aligned}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$3 / 4$	$\begin{aligned} & 13 / 4 \\ & (45) \end{aligned}$	$\begin{gathered} 4 \\ (102) \end{gathered}$	$\begin{aligned} & 880 \\ & (3.9) \end{aligned}$	$\begin{aligned} & 175 \\ & (0.8) \end{aligned}$	$\begin{gathered} 1,240 \\ (5.5) \end{gathered}$	$\begin{gathered} 250 \\ (1.1) \end{gathered}$

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Note: No installation within $45 / 8^{\prime \prime}$ of bed joint of hollow masonry block wall.
2. Values for 8 "-wide, lightweight, medium-weight and normal-weight concrete masonry units.
3. The minimum specified compressive strength of masonry, $\mathrm{f}^{\prime} \mathrm{m}$, at 28 days is $1,500 \mathrm{psi}$.
4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional $1 / 2$ "- through $11 / 4$ "-thick face shell.
5. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
6. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
7. Do not use impact wrenches to install in hollow CMU.
8. Set drill to rotation-only mode when drilling into hollow CMU.
9. The tabulated allowable loads are based on one anchor installed in a single cell.
10. Distance from centerline of anchor to head joint shall be a minimum of $45 / 8^{\prime \prime}$.

Figure 5

Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

$\begin{gathered} \text { Size } \\ \text { in. } \\ (\mathrm{mm}) \end{gathered}$	Drill Bit Diameter in.	Embed. Depth in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Critical Spacing Distance in. (mm)	$8^{\prime \prime}$ Grout-Filled CMU Allowable Loads Based on CMU Strength, $\mathrm{f}^{\prime} m=1,500 \mathrm{psi}$					
						Tension		Shear Perpendicular to Edge		Shear Parallel to Edge	
						Ultimate lb. (kN)	Allowable lb. (kN)	Ulitimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 6)											
$\begin{gathered} 1 / 2 \\ (12.7) \\ \hline \end{gathered}$	1/2	$\begin{gathered} 41 / 2 \\ (114) \\ \hline \end{gathered}$	$\begin{aligned} & 13 / 4 \\ & (45) \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{aligned} & 2,860 \\ & (12.7) \end{aligned}$	$\begin{array}{r} 570 \\ (2.5) \end{array}$	$\begin{aligned} & 800 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 160 \\ & (0.7) \end{aligned}$	$\begin{aligned} & 2,920 \\ & (13.0) \end{aligned}$	$\begin{aligned} & 585 \\ & (2.6) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \\ \hline \end{gathered}$	5/8	$\begin{gathered} 41 / 2 \\ (114) \\ \hline \end{gathered}$	$\begin{aligned} & 13 / 4 \\ & (45) \end{aligned}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 2,860 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 570 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 800 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 160 \\ & (0.7) \end{aligned}$	$\begin{aligned} & 3,380 \\ & (15.0) \end{aligned}$	$\begin{aligned} & 675 \\ & (3.0) \end{aligned}$

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
2. Values are for 8 "-wide, lightweight, medium-weight and normal-weight concrete masonry units.
3. The masonry units must be fully grouted.
4. The minimum specified compressive strength of masonry, f^{\prime}, at 28 days is $1,500 \mathrm{psi}$.
5. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
6. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

Figure 6.
Anchor Installed in Top of Wall at 13/4" Edge Distance

Titen HD Allowable Tension and Shear Loads in 8" Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

$\begin{gathered} \text { Size } \\ \text { in. } \\ \text { (mm) } \end{gathered}$	Drill Bit Diameter in.	$\begin{aligned} & \text { Embed. } \\ & \text { Depth } \\ & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	Minimum Edge Distance in. (mm)	Minimun End Distance in. (mm)	Critical Spacing Distance in. (mm)	8" Grout-Filled CMU Allowable Loads Based on CMU Strength, $\mathrm{f}^{\prime} m=2,000 \mathrm{psi}$					
						Tension		Shear Perpendicular to Edge		Shear Parallel to Edge	
						Ultimate lo. (kN)	Allowable 1b. (kN)	Ultimate lb. (kN)	Allowable 1b. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
Anchor Installed in Cell Opening (Top of Wall) (See Figure 7)											
$\begin{gathered} 1 / 2 \\ (12.7) \\ \hline \end{gathered}$	1/2	$\begin{gathered} 4^{1 / 2 / 2} \\ (114) \end{gathered}$	$\begin{gathered} 3 \\ (76) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{aligned} & 5,800 \\ & (25.8) \end{aligned}$	$\begin{aligned} & 1,160 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 2,750 \\ & (12.2) \end{aligned}$	$\begin{aligned} & 550 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 7,500 \\ & (33.4) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (6.7) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	5/8										

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
2. Values are for 8 "-wide, medium-weight and normal-weight concrete masonry units.
3. The masonry units must be fully grouted.
4. The minimum specified compressive strength of masonry, $\mathrm{f}^{\prime} m$, at 28 days is $2,000 \mathrm{psi}$.
5. Allowable loads are not permitted to be increased for short-term loading due to wind or seismic forces.
6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
7. Loads are based on anchor installed in grout-filled cell opening in the top of wall.

Figure 7.
Anchor Installed in Top of Wall at 3" Edge Distance

Titen HD Allowable Tension and Shear Loads in End of 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Wall

$\begin{aligned} & \text { Size } \\ & \text { (in.) } \end{aligned}$	Drill Bit Diameter (in.)	Embedment Depth (in.)	Minimum Edge Distance (in.)	MinimumEnd Distance (in.)	Minimum Spacing (in.)	Allowable Loads		
						Tension (lbf)	Shear Vertical (bf)	Shear Horizontal (bti)
$1 / 4$	$1 / 4$	23/8	$313 / 16$	13/4	4	310	215	375
3/8	3/8	23/8	$313 / 16$	13/4	6	335	215	375

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
2. Values are for $8^{\prime \prime}$-wide, lightweight, medium-weight and normal-weight concrete masonry units.
3. The masonry units must be fully grouted.
4. The minimum specified compressive strength of masonry, $\mathrm{f}^{\prime} m$, at 28 days is $2,000 \mathrm{psi}$.
5. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
6. Minimum edge and end distances are measured from anchor centerline to the edge and end of the CMU masonry wall, respectively. Refer to Figure 8 below.

Figure 8.
Anchor Installed in End of Grout-Filled CMU Wall

Titen HD Allowable Tension and Shear Loads in End of 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU Wall

Size (in.)	Drill Bit Diameter (in.)	Embedment Depth (in.)	$\begin{aligned} & \text { Minimum } \\ & \text { Edge Distance } \\ & \text { (in.) } \end{aligned}$	Minimum End Distance (in.)	Minimum Spacing (in.)	Allowable Loads		
						Tension (bf)	Shear Vertical (lof)	Shear Horizontal (lbf)
$1 / 4$	$1 / 4$	23/8	$3^{13 / 16}$	$13 / 4$	4	130	105	120
$3 / 8$	$3 / 8$	$23 / 8$	$3^{13 / 16}$	$13 / 4$	6	130	115	125

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
. Values for 8 "-wide, lightweight, medium-weight and normal-weight concrete masonry units.
2. The minimum specified compressive strength of masonry, $\mathrm{f}^{\prime} m$, at 28 days is $2,000 \mathrm{psi}$.
3. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional $11 / 8^{\prime \prime}$ - through $11 / 4$ "thick face shell.
4. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
5. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
6. Do not use impact wrenches to install in hollow CMU.
7. Set drill to rotation-only mode when drilling into hollow CMU.
8. Minimum edge and end distances are measured from anchor centerline to the edge and end of the CMU masonry wall, respectively. Refer to Figure 9 below.
9. Anchors must be installed a minimum of $1 \frac{1}{2} /{ }^{\prime \prime}$ from centerlie of bed joints. See Figure 9 for prohibited anchor installation locations.

Figure 9.
Anchor Installed in End of Hollow CMU Wall

Titen HD Allowable Tension Loads for 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete

$\begin{aligned} & \text { Size } \\ & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	Drill Bit Diameter (in.)	Minimum Embedment Depth in. (mm)	Minimum Edge Distance in. (mm)	Critical Spacing in. (mm)	8" Concrete-Filled CMU Chair Block Allowable Tension Loads Based on CMU Strength	
					Ulitimate lb. (kN)	Allowable lb. (kN)
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	3/8	$\begin{aligned} & 23 / 8 \\ & (60) \end{aligned}$	$\begin{aligned} & 13 / 4 \\ & (44) \end{aligned}$	$\begin{gathered} 91 / 2 \\ (241) \end{gathered}$	$\begin{aligned} & 3,175 \\ & (14.1) \end{aligned}$	$\begin{aligned} & 635 \\ & (2.8) \end{aligned}$
		$\begin{aligned} & 33 / 8 \\ & (86) \end{aligned}$	$\begin{aligned} & 13 / 4 \\ & (44) \end{aligned}$	$\begin{aligned} & 131 / 2 \\ & (343) \end{aligned}$	$\begin{aligned} & 5,175 \\ & (23.0) \end{aligned}$	$\begin{gathered} 1,035 \\ (4.6) \end{gathered}$
		$\begin{gathered} 5 \\ (127) \end{gathered}$	$\begin{aligned} & 21 / 4 \\ & (57) \end{aligned}$	$\begin{gathered} 20 \\ (508) \end{gathered}$	$\begin{gathered} 10,584 \\ (47.1) \end{gathered}$	$\begin{gathered} 2,115 \\ (9.4) \end{gathered}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	1/2	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{aligned} & 21 / 4 \\ & (57) \end{aligned}$	$\begin{gathered} 32 \\ (813) \end{gathered}$	$\begin{gathered} 13,722 \\ (61.0) \end{gathered}$	$\begin{aligned} & 2,754 \\ & (12.2) \end{aligned}$
		$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 21 / 4 \\ & (57) \end{aligned}$	$\begin{gathered} 40 \\ (1016) \end{gathered}$	$\begin{gathered} 16,630 \\ (74.0) \end{gathered}$	$\begin{aligned} & 3,325 \\ & (14.8) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	5/8	$\begin{gathered} 51 / 2 \\ (140) \end{gathered}$	$\begin{aligned} & 13 / 4 \\ & (44) \end{aligned}$	$\begin{gathered} 22 \\ (559) \end{gathered}$	$\begin{aligned} & 9,025 \\ & (40.1) \end{aligned}$	$\begin{gathered} 1,805 \\ (8.1) \end{gathered}$

[^1]

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

1. The following tables are for reduced edge distance and spacing.
2. Locate the anchor size to be used for either a tension and/or shear load application.
3. Locate the embedment (E) at which the anchor is to be installed.
4. Locate the edge distance ($c_{\text {act }}$) or spacing $\left(s_{a c t}\right)$ at which the anchor is to be installed.
5. The load adjustment factor $\left(f_{c}\right.$ or $\left.f_{S}\right)$ is the intersection of the row and column.
6. Multiply the allowable load by the applicable load adjustment factor.
7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Tension (f_{c})

$\begin{aligned} & c_{\text {act }} \\ & \text { (in.) } \end{aligned}$	Dia.	$1 / 4$	3/8	1/2	5/8	$3 / 4$
	E	2112	23/4	$31 / 2$	$41 / 2$	$51 / 2$
	$c_{c r}$	4	12	12	12	12
	$c_{\text {min }}$	1.25	4	4	4	4
	$\mathrm{f}_{\text {cmin }}$	0.77	1.00	1.00	0.83	0.66
1.25		0.77				
2		0.83				
3		0.92				
4		1.00	1.00	1.00	0.83	0.66
6		1.00	1.00	1.00	0.87	0.75
8		1.00	1.00	1.00	0.92	0.83
10		1.00	1.00	1.00	0.96	0.92
12		1.00	1.00	1.00	1.00	1.00

See footnotes below.
Edge Distance Shear (f_{c}) Shear Load Parallel to Edge or End

Cact (in.)	Dia.	$1 / 4$	3/8	1/2	5/8	$3 / 4$
	E	$21 / 2$	$23 / 4$	$31 / 2$	$41 / 2$	51/2
	$c_{c r}$	4	12	12	12	12
	$c_{\text {min }}$	1.25	4	4	4	4
	$\mathrm{f}_{\text {cmin }}$	0.58	0.77	0.48	0.46	0.44
1.25		0.58				
2		0.69				
3		0.85				
4		1.00	0.77	0.48	0.46	0.44
6		1.00	0.83	0.61	0.60	0.58
8		1.00	0.89	0.74	0.73	0.72
10		1.00	0.94	0.87	0.87	0.86
12		1.00	1.00	1.00	1.00	1.00

See footnotes below.
Edge Distance Shear (f_{c})
Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)

Cact (in.)	Dia.	$1 / 4$	3/8	1/2	5/8	$3 / 4$
	E	2112	$23 / 4$	$31 / 2$	$41 / 2$	$51 / 2$
	$c_{c r}$	4	12	12	12	12
	$c_{\text {min }}$	1.25	4	4	4	4
	$\mathrm{f}_{\text {cmin }}$	0.71	0.58	0.38	0.30	0.21
1.25		0.71				
2		0.79				
3		0.89				
4		1.00	0.58	0.38	0.30	0.21
6		1.00	0.69	0.54	0.48	0.41
8		1.00	0.79	0.69	0.65	0.61
10		1.00	0.90	0.85	0.83	0.80
12		1.00	1.00	1.00	1.00	1.00

1. $E=$ embedment depth (inches).
2. $c_{\text {act }}=$ actual end or edge distance at which anchor is installed (inches).
3. $c_{c r}=$ critical end or edge distance for 100% load (inches).
4. $c_{\text {min }}=$ minimum end or edge distance for reduced load (inches).
5. $f_{C}=$ adjustment factor for allowable load at actual end or edge distance.
6. $f_{c c r}=$ adjustment factor for allowable load at critical end or edge distance. $f_{c c r}$ is always $=1.00$.
7. $\mathrm{f}_{\text {cmin }}=$ adjustment factor for allowable load at minimum end or edge distance.
8. $f_{c}=f_{c \text { min }}+\left[\left(1-f_{c \text { min }}\right)\left(c_{\text {act }}-c_{\text {min }}\right) /\left(c_{c r}-c_{\text {min }}\right)\right]$.

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads (cont.)

How to use these charts:

1. The following tables are for reduced edge distance and spacing.
2. Locate the anchor size to be used for either a tension and/or shear load application.
3. Locate the embedment (E) at which the anchor is to be installed.
4. Locate the edge distance ($c_{\text {act }}$) or spacing ($s_{\text {act }}$) at which the anchor is to be installed.
5. The load adjustment factor $\left(\mathrm{f}_{C}\right.$ or f_{s}) is the intersection of the row and column.
6. Multiply the allowable load by the applicable load adjustment factor.
7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Shear (f_{c})
Shear Load Perpendicular to Edge or End (Directed Away from Edge or End)

Spacing Tension (f_{s})				IBC		
$\begin{aligned} & \text { Sact } \\ & \text { (in.) } \end{aligned}$	Dia.	1/4	3/8	1/2	5/8	$3 / 4$
	E	$21 / 2$	$23 / 4$	$31 / 2$	$41 / 2$	$51 / 2$
	$s_{c r}$	4	6	8	10	12
	$s_{\text {min }}$	2	3	4	5	6
	$\mathrm{f}_{\text {smin }}$	0.66	0.87	0.69	0.59	0.50
2		0.66				
3		0.83	0.87			
4		1.00	0.91	0.69		
5			0.96	0.77	0.59	
6			1.00	0.85	0.67	0.50
8				1.00	0.84	0.67
10					1.00	0.83
12						1.00

Spacing Shear (f_{s})

$\begin{aligned} & \text { Sact } \\ & \text { (in.) } \end{aligned}$	Dia.	$1 / 4$	$3 / 8$	1/2	5/8	$3 / 4$
	E	$21 / 2$	$23 / 4$	$31 / 2$	$41 / 2$	$51 / 2$
	$S_{c r}$	4	6	8	10	12
	$s_{\text {min }}$	2	3	4	5	6
	$\mathrm{f}_{\text {smin }}$	0.87	0.62	0.62	0.62	0.62
2		0.87				
3		0.93	0.62			
4		1.00	0.75	0.62		
5			0.87	0.72	0.62	
6			1.00	0.81	0.70	0.62
8				1.00	0.85	0.75
10					1.00	0.87
12						1.00

1. $E=$ embedment depth (inches).
2. $s_{\text {act }}=$ actual spacing distance at which anchors are installed (inches).
3. $s_{c r}=$ critical spacing distance for 100% load (inches).
4. $s_{\text {min }}=$ minimum spacing distance for reduced load (inches).
5. $\mathrm{f}_{S}=$ adjustment factor for allowable load at actual spacing distance.
6. $f_{\text {scr }}=$ adjustment factor for allowable load at critical spacing distance. $f_{\text {scr }}$ is always $=1.00$.
7. $\mathrm{f}_{\text {smin }}=$ adjustment factor for allowable load at minimum spacing distance.
8. $\mathrm{f}_{s}=\mathrm{f}_{\text {smin }}+\left[\left(1-\mathrm{f}_{\text {smin }}\right)\left(s_{\text {act }}-s_{\text {min }}\right) /\left(s_{c r}-s_{\text {min }}\right)\right]$.

[^0]: Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.

[^1]: 1. The tabulated allowable loads are based on a safety factor of 5.0.
 2. Values are for 8 "-wide concrete masonry units (CMU) filled with concrete, with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.
 3. Center \#5 rebar in CMU cell and concrete slab as shown in the illustration below.
