
Titen HD (THD) has been qualified per ACI 355.2 and AC193. In order to design the Titen HD in accordance with ACI 318 Chapter 17, the design information is published in the Simpson Strong-Tie Catalog for Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry and in ICC-ES ESR-2713 (Titen HD Carbon Steel) or IAPMO ER-493 (Titen HD Stainless Steel). In addition, the design values are included in the Simpson Strong-Tie Anchor Designer Software; it is strongly encouraged that the designer utilizes this software when designing concrete anchorage solutions.

To provide the designer quick reference tables, Simpson Strong-Tie has provided the tables contained within this Technical Engineering Bulletin. The tables provide either a Design Strength level capacity or an Allowable Tension Load capacity. The footnotes of each table further explain how the Design Strength capacities were calculated and what factors were used to calculate the Allowable Load capacities. For additional information, please refer to Anchor Designer software and/or contact Simpson Strong-Tie.

This technical engineering bulletin also provides strength design values for %" and %" diameter carbon steel Titen HD anchors that have been reused in temporary applications; see pages 19 – 23. In order for carbon steel Titen HD

to be reused and the reduced design values to be applicable, Titen HD anchor

must be checked and pass Titen HD Thread Gauge prior to each reuse.

Titen HD

Table of Contents

Steel

Titen HD

Icons and Nomenclature
Titen HD® Carbon Steel Tension Design Strength in Normal-Weight Concrete
Titen HD® Carbon Steel Allowable Tension Loads in Normal-Weight Concrete
Static Load
Wind Load
Seismic Load
Titen HD [®] Carbon Steel Tension Design Strength in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies
Titen HD [®] Carbon Steel Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies
Static Load
Wind Load
Seismic Load
Titen HD [®] Carbon Steel Tension Design Strengths in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies

© 2023 Simpson Strong-Tie Company Inc. TEB-A-THD23

Titen HD® Carbon Steel Allowable Tension Loads in Topside of Normal-Weight Concrete-Filled
Profile Steel Deck Assemblies
Static Load
Wind Load
Seismic Load
Tension and Shear Strength Design Data for Titen HD® Carbon Steel in 4-inch Thick Uncracked Concrete11
Tension and Shear Design Strengths and Allowable Loads for Titen HD [®] Carbon Steel in 4-inch Thick Uncracked Normal-Weight Concrete
Shear Strength Design Data for 1/4-inch and 3/8-inch-diameter Titen HD® Carbon Steel with 1-inch Nominal Embedment Depth
Shear Design Strengths and Allowable Loads for ¼-inch and ¾-inch-diameter Titen HD® Carbon Steel with 1-inch Nominal Embedment Depth
Titen HD [®] Stainless Steel Tension Design Strengths in Normal-Weight Concrete
Titen HD® Stainless Steel Allowable Tension Loads in Normal-Weight Concrete
Static Load
Wind Load
Seismic Load
Titen HD [®] Stainless Steel Tension Design Strengths in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies
Titen HD [®] Stainless Steel Allowable Tension Loads in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies
Static Load
Wind Load
Seismic Load
Titen HD® Thread Gauge
Reused Titen HD [®] Carbon Steel Installation Parameters and Strength Design Data for Temporary Applications
Reused Titen HD [®] Carbon Steel Design Strengths in Normal-Weight Uncracked Concrete for Temporary Applications
Reused Titen HD [®] Carbon Steel Allowable Loads in Normal-Weight Uncracked Concrete for Temporary Applications
Dead Load
Wind Load

Icons and Nomenclature

In order to facilitate easier identification of performance data, the following icon system has been incorporated into the sections of the technical bulletin with multiple load tables. These icons will appear in the heading of the table to promote easier visual identification of the type of load, insert type and substrate addressed in the table. Icons are intended for quick identification. All specific information regarding suitability should be read from the table itself.

Normal-Weight Concrete

Normal-Weight/ Lightweight Concrete over Metal Deck

Tension Load

Shear Load

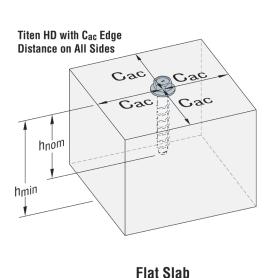
Valid for International Building Code

C _{ac}	Critical Edge Distance
C _{ac,deck,top}	Critical Edge Distance (Topside of Concrete-Filled Profile Steel Deck Assemblies)
C _{min}	Minimum Edge Distance
C _{min,deck,top}	Minimum Edge Distance (Topside of Concrete-Filled Profile Steel Deck Assemblies)
f' _c	Concrete Compressive Strength
h _{nom}	Nominal Embedment Depth
h _{min}	Minimum Concrete Thickness
$h_{\text{min,deck}}$	Minimum Concrete Thickness (Topside of Concrete-Filled Profile Steel Deck Assemblies)

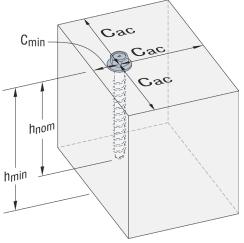
							Te	ension Desig	n Strength (Ib	.)			
		Min. Concrete Thickness	Critical Edge Distance	Minimum Edge Distance	Edg	e Distances	= c _{ac} on all si	des	Edge Distances = c_{min} on one side and c_{ac} on three sides				
(111.)	Depth (in.)	h _{min} (in.)	c _{ac} (in.)	c _{min} (in.)	SDC	A-B	SDC	C-F	SDC	A-B	SDC	C-F	
			()	()	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1/	1 5⁄8	3¼	3	1 1⁄2	1,265	715	950	540	660	630	495	470	
1⁄4	21⁄2	31⁄2	6	1 1⁄2	2,110	1,240	1,580	930	660	965	495	725	
3/8	21⁄2	4	2 ¹¹ /16	1 3⁄4	1,755	805	1,315	600	1,350	805	1,015	600	
98	31⁄4	5	3%	1 3⁄4	2,900	1,755	2,175	1,315	1,810	1,290	1,360	970	
1/	31⁄4	5	3%16	1 3⁄4	2,810	1,990	2,105	1,495	1,765	1,265	1,325	950	
1⁄2	4	6¼	41⁄2	1 3⁄4	4,035	2,855	3,025	2,140	2,285	1,620	1,710	1,220	
5/	4	6	41⁄2	1 3⁄4	3,990	1,975	2,995	1,480	2,250	1,610	1,690	1,210	
5⁄8	51⁄2	81⁄2	6%	1 3⁄4	6,375	3,620	4,780	2,715	3,390	2,405	2,540	1,805	
24	5½	8¾	6%	1 3⁄4	6,760	3,945	5,070	2,960	3,355	2,395	2,515	1,795	
3⁄4	6¼	10	75⁄16	13⁄4	8,355	4,675	6,265	3,510	3,990	2,835	2,990	2,125	

1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-19 Chapter 17.

2. Tabulated values are for a single anchor with no influence of another anchor.


3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-19 Section 5.3.


The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.

When designing and longes in SDC C-F, the designer shall consider the ductility requirements of ACI 316-19 Section 17.10.
Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.

8. The Designer of Record is responsible for the foundation design.

Titen HD with C_{min} Edge Distance on One Side and C_{ac} on Three Sides

Flat Slab

IBC

Titen HD® Carbon Steel Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) — Static Load

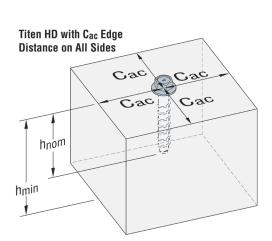
				Minimum Edge Distance c _{min} (in.)		Allowable Ten	sion Load (lb.)	
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)			= c _{ac} on all sides	$\begin{array}{l} \mbox{Edge Distances} = c_{min} \mbox{ on one side} \\ \mbox{ and } c_{ac} \mbox{ on three sides} \end{array}$	
					Uncracked	Cracked	Uncracked	Cracked
1/4	1%	31⁄4	3	11/2	905	510	470	450
74	21/2	31⁄2	6	11/2	1,505	885	470	690
3/8	21/2	4	211/16	13⁄4	1,255	575	965	575
78	31⁄4	5	35%	13⁄4	2,070	1,255	1,295	920
1/2	31⁄4	5	3%16	13⁄4	2,005	1,420	1,260	905
72	4	61⁄4	41⁄2	13⁄4	2,880	2,040	1,630	1,155
5/8	4	6	41/2	13⁄4	2,850	1,410	1,605	1,150
78	51⁄2	81⁄2	63⁄8	13⁄4	4,555	2,585	2,420	1,720
3/4	51⁄2	8¾	6%	13⁄4	4,830	2,820	2,395	1,710
94	6¼	10	75⁄16	13⁄4	5,970	3,340	2,850	2,025

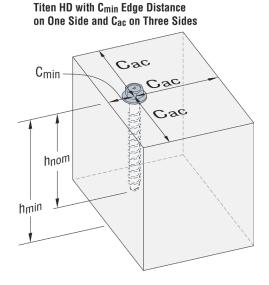
See footnotes and graphics on page 6.

Titen HD® Carbon Steel Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) — Wind Load

		Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)		Allowable Tension Load (lb.)							
Anchor Dia. (in.)	Nominal Embed. Depth (in.)			Minimum Edge Distance c _{min} (in.)	Edge Distances	= c _{ac} on all sides	Edge Distances = c_{min} on one side and c_{ac} on three sides					
					Uncracked	Cracked	Uncracked	Cracked				
1/	1 5⁄8	31⁄4	3	11/2	760	430	395	380				
1/4	21/2	31/2	6	1½	1,265	745	395	580				
2/	21/2	4	211/16	1 3⁄4	1,055	485	810	485				
3/8	31⁄4	5	3%	1 3⁄4	1,740	1,055	1,085	775				
1/	31⁄4	5	3%16	1 3⁄4	1,685	1,195	1,060	760				
1/2	4	61⁄4	41/2	1 3⁄4	2,420	1,715	1,370	970				
5/	4	6	41/2	1 3⁄4	2,395	1,185	1,350	965				
5/8	51/2	81⁄2	63⁄8	13⁄4	3,825	2,170	2,035	1,445				
2/	51⁄2	83⁄4	63⁄8	1¾	4,055	2,365	2,015	1,435				
3⁄4	61⁄4	10	75/16	13⁄4	5,015	2,805	2,395	1,700				

See footnotes and graphics on page 6.


Titen HD® Carbon Steel Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) — Seismic Load


							A	Allowable Ter	ision Load (lb.)			
Anchor Dia.		Min. Concrete Thickness	Critical Edge Distance	Minimum Edge Distance C _{min} (in.)	Edg	e Distances	= c _{ac} on all si	des	Edge Distances = c_{min} on one side and c_{ac} on three sides				
(in.)	Depth (in.)	h _{min} (in.)	c _{ac} (in.)		SDC A-B		SDC C-F		SDC	A-B	SDC C-F		
		()			Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1/	1%	3¼	3	1½	885	500	665	380	460	440	345	330	
1⁄4	21⁄2	31⁄2	6	1 1⁄2	1,475	870	1,105	650	460	675	345	510	
3/8	21⁄2	4	2 ¹¹ /16	1 3⁄4	1,230	565	920	420	945	565	710	420	
%8	31⁄4	5	3%	1 3⁄4	2,030	1,230	1,525	920	1,265	905	950	680	
1/2	31⁄4	5	3%16	1 3⁄4	1,965	1,395	1,475	1,045	1,235	885	930	665	
72	4	61⁄4	41⁄2	1 3⁄4	2,825	2,000	2,120	1,500	1,600	1,135	1,195	855	
5/8	4	6	41⁄2	1 3⁄4	2,795	1,385	2,095	1,035	1,575	1,125	1,185	845	
7/8	51⁄2	81⁄2	6%	1 3⁄4	4,465	2,535	3,345	1,900	2,375	1,685	1,780	1,265	
3/	51⁄2	8¾	6%	1 3⁄4	4,730	2,760	3,550	2,070	2,350	1,675	1,760	1,255	
3⁄4	61⁄4	10	7 5⁄16	1 3⁄4	5,850	3,275	4,385	2,455	2,795	1,985	2,095	1,490	

See footnotes and graphics on page 6.

- 1. Static allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.
- 2. Wind allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.
- 3. Seismic allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.
- 4. Tabulated values are for a single anchor with no influence of another anchor.
- 5. Interpolation between embedment depths is not permitted.
- 6. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 7. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.
- 8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.
- 9. The Designer of Record is responsible for the foundation design.

Flat Slab

Titen HD[®] Carbon Steel Tension Design Strength in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3,000 psi)

				Tension Design Strength (lb.)										
Anchor Dia.	Nominal	Minimum End Distance c _{min}		Lowei	r Flute		Upper Flute							
(in.) (in.)	Embed. Depth (in.)	(in.)	SDC	A-B	SDC C-F		SDC	A-B	SDC C-F					
			Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked				
1/4	1%	21/2	645	275	485	205	1,010	425	760	320				
74	21⁄2	4	830	350	620	260	1,855	775	1,390	585				
3/8	17⁄8	21⁄2	535	245	400	185	710	325	535	245				
98	21⁄2	35%	1,240	565	930	425	—	—	—	—				
1/2	2	25⁄8	840	590	630	440	1,580	1,105	1,185	830				
/2	31⁄2	51⁄4	1,890	1,325	1,420	995	—	—	—	_				

SIMPSON

Strong-Tie

IBC

IBC 1

Titen HD[®] Carbon Steel Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3,000 psi) — Static Load

	Nominal Embed.	Minimum End	Allowable Tension Load (lb.)							
Anchor Dia. (in.)	Depth	Distance c _{min}	Lowe	r Flute	Upper Flute					
	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked				
1/4	1 %	21/2	460	195	720	305				
/4	21/2	4	595	250	1,325	555				
3/8	1 1/8	21/2	380	175	505	230				
98	21/2	3%	885	405	—	—				
1/2	2	2%	600	420	1,130	790				
/2	31⁄2	51⁄4	1,350	945		_				

Titen HD[®] Carbon Steel Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000 \text{ psi}$) — Wind Load

			s = 0,000 psi =	WING LOOG							
	Nominal Embed.	Minimum End	Allowable Tension Load (lb.)								
Anchor Dia. (in.)	Depth	Distance c _{min}	Lowei	r Flute	Upper Flute						
, <i>,</i>	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked					
1/4	1 5%	21⁄2	385	165	605	255					
74	21⁄2	4	500	210	1,115	465					
3/8	1 1 1/8	21/2	320	145	425	195					
98	21⁄2	35%	745	340	_	—					
1/2	2	25%	505	355	950	665					
72	31⁄2	51⁄4	1,135	795	_	—					

1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-19 Chapter 17.

2. Static allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

3. Wind allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = \%.6 = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

4. Tabulated values are for a single anchor with no influence of another anchor.

5. Interpolation between embedment depths is not permitted.

6. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-19 Section 5.3.

7. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

8. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.

9. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.

10. Installation must comply with Figures 1 and 2 on page 8.

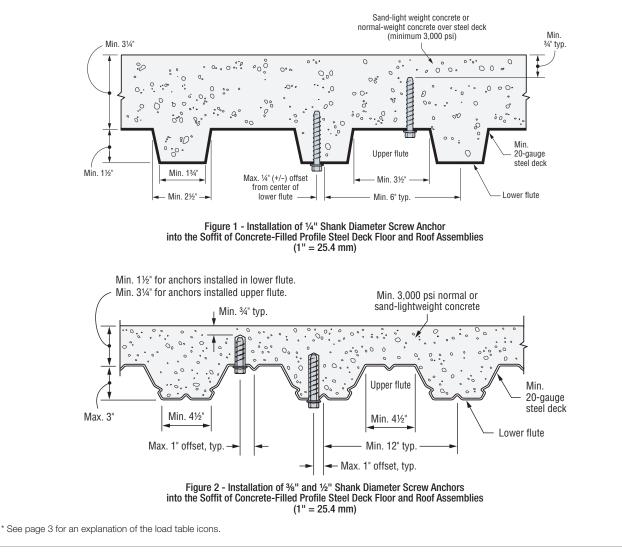
IBC

Titen HD[®] Carbon Steel Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000 \text{ psi}$) — Seismic Load

			Allowable Tension Load (lb.)										
Anchor Dia.	Nominal Embed. Depth (in.)	Minimum End Distance		Lowe	r Flute		Upper Flute						
(in.)		c _{min} (in.)	SDC	A-B	SDC	C-F	SDC	A-B	SDC C-F				
			Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked			
1/4	1%	21/2	450	195	340	145	705	300	530	225			
74	21⁄2	4	580	245	435	180	1,300	545	975	410			
3/8	1 7⁄8	21⁄2	375	170	280	130	495	230	375	170			
78	21⁄2	35%8	870	395	650	300	—	—	—	—			
1/2 -	2	25⁄8	590	415	440	310	1,105	775	830	580			
	31⁄2	51⁄4	1,325	930	995	695	_	_	_	—			

1. Seismic allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = \%$.7 = 1.43. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.


3. Interpolation between embedment depths is not permitted.

4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.

7. Installation must comply with Figures 1 and 2.

TECHNICAL ENGINEERING BULLETIN

Titen HD® Design Information — Concrete

IBC

Titen HD[®] Carbon Steel Tension Design Strengths in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 2,500 \text{ psi}$)

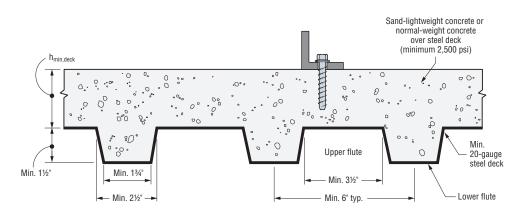
					Tension Design Strength (lb.)										
Anchor Dia. Ember (in.) Dep	Nominal Embed. Depth	Min. Concrete Thickness	Critical Edge Distance C _{ac,deck,top} (in.)	Distance c _{min,deck,top} (in.)	Edge Di	stances = o	C _{ac,deck,top} on a	ll sides	$\begin{array}{l} \mbox{Edge Distances} = c_{\mbox{min,deck,top}} \mbox{ on one side} \\ \mbox{ and } c_{\mbox{ac,deck,top}} \mbox{ on three sides} \end{array}$			one side es			
	(in.)	h _{min,deck} (in.)			SDC	SDC A-B		SDC C-F		A-B	SDC C-F				
		, , , , , , , , , , , , , , , , , , ,			Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked			
1⁄4	1%	21⁄2	3¾	31⁄2	1,265	715	950	540	1,180	715	885	540			
3⁄8	21⁄2	31⁄4	71⁄4	3	1,755	805	1,315	600	760	805	570	600			
1/2	31⁄4	41⁄2	9	21⁄2	2,810	1,990	2,105	1,495	860	1,555	645	1,165			
72	4	41⁄2	9	21⁄2	4,035	2,855	3,025	2,140	1,355	1,930	1,020	1,445			

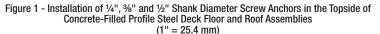
1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-19 Chapter 17.

2. Tabulated values are for a single anchor with no infuence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-19 Section 5.3.


5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-


level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination. 6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.

8. For installation in topside of sand-lightweight concrete-filled profile steel deck assemblies, tabulated values must be multiplied by 0.68.

9. Installation must comply with Figure 1.

Titen HD[®] Carbon Steel Allowable Tension Loads in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies ($f_c = 2,500 \text{ psi}$) — Static Load

		Min. Concrete	Critical Edge	Minimum Edge	Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Thickness h _{min,deck} (in.)	Distance C _{ac,deck,top} (in.)	Distance C _{min,deck,top} (in.)	Edge Distances = c _{ac,deck,top} on all sides		$\label{eq:EdgeDistances} \left \begin{array}{c} \text{Edge Distances} = c_{\text{min,deck,top}} \text{ o} \\ \text{one side and } c_{\text{ac,deck,top}} \text{ on three s} \end{array} \right $				
		()	(11.)		Uncracked	Cracked	Uncracked	Cracked			
1⁄4	1 5⁄8	21⁄2	3¾	31⁄2	905	510	845	510			
3⁄8	21⁄2	31⁄4	71⁄4	3	1,255	575	545	575			
1/2	31⁄4	41⁄2	9	21⁄2	2,005	1,420	615	1,110			
/2	4	41⁄2	9	21⁄2	2,880	2,040	970	1,380			

Titen HD[®] Carbon Steel Allowable Tension Loads in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 2,500 \text{ psi}$) — Wind Load

		Min. Concrete	Critical Edge	Minimum Edge -	Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Thickness h _{min,deck}	Distance C _{ac,deck,top}	Distance C _{min,deck,top}	Edge Distances = $c_{ac,deck,top}$ o all sides		Edge Distances one side and $c_{ac,dec}$	= c _{min,deck,top} on _{sk,top} on three sides			
		(in.)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked			
1⁄4	1%	21⁄2	3¾	31⁄2	760	430	710	430			
3⁄8	21⁄2	31⁄4	71⁄4	3	1,055	485	455	485			
1/2	31⁄4	41⁄2	9	21⁄2	1,685	1,195	515	935			
72	4	41⁄2	9	21⁄2	2,420	1,715	815	1,160			

Titen HD[®] Carbon Steel Allowable Tension Loads in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 2,500 \text{ psi}$) — Seismic Load

					Tension Design Strength (lb.)									
Anchor Dia.	Nominal Embed.	Min. Concrete Thickness	Critical Edge Distance C _{ac,deck,top} (in.)	Minimum Edge Distance C _{min,deck,top} (in.)	Edge Di	stances = 0	C _{ac,deck,top} on a	II sides	Edge Dis ar	stances = c ad $c_{ac,deck,top}$	m _{in,deck,top} on one side on three sides			
(111.)	(in.) Depth (in.) (in.)						SDC A-B		SDC C-F		SDC A-B		SDC C-F	
		(,	()	(,	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked		
1⁄4	1%	21⁄2	3¾	31⁄2	885	500	665	380	825	500	620	380		
3⁄8	21⁄2	31⁄4	71⁄4	3	1,230	565	920	420	530	565	400	420		
1/2	31⁄4	4 1/2	9	21⁄2	1,965	1,395	1,475	1,045	600	1,090	450	815		
72	4	4 1⁄2	9	21⁄2	2,825	2,000	2,120	1,500	950	1,350	715	1,010		

1. Static allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 19 using a conversion factor of $\alpha = 1.4$.

The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Wind allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 19 using a conversion factor of $\alpha = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

3. Seismic allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 19 using a conversion factor of $\alpha = \frac{1}{2}$. The conversion factor α is based on the load combination assuming 100% seismic load.

4. Tabulated values are for a single anchor with no infuence of another anchor.

5. Interpolation between embedment depths is not permitted.

6. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

7. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.

8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.

For installation in topside of sand-lightweight concrete-filled profile steel deck assemblies, tabulated values must be multiplied by 0.68.
Installation must comply with Figure 1 on page 9.

IBC

SIMPSON

Strong-

IBC 🚺 ன*

Tension and Shear Strength Design Data for Titen HD® Carbon Steel in 4-inch Thick Uncracked Concrete^{2,3,4,5,6}

Characteristic	Symbol	Unit	½-inch-diameter Titen HD
Installat	ion Information		
Nominal Diameter	da	in	1/2
Drill Bit Diameter	d _{bit}	in	1/2
Installation Torque	T _{inst}	ft-lbf	65
Maximum Impact Wrench Torque Rating	T _{impact,max}	ft-lbf	150
Minimum Hole Depth	h _{hole}	in	21/2
Nominal Embedment	h _{nom}	in	21⁄4
Effective Embedment	h _{ef}	in	1 1/2
Minimum Concrete Thickness	h _{min}	in	4
Critical Edge Distance	C _{cr}	in	6
Minimum Edge Distance	C _{min}	in	21/2
Minimum Spacing	S _{min}	in	4
Characteristic Tens	ion Strength Design	Values	
Anchor Category	1, 2 or 3	-	1
Tension Resistance of Steel	N _{sa}	lbf	20,130
Strength Reduction Factor – Tension Steel Failure	ϕ_{sa}	-	0.65
Effectiveness Factor – Uncracked Concrete	k _{uncr}	-	24
Modification Factor	$\Psi_{c,N}$	-	1.0
Strength Reduction Factor – Concrete Breakout Failure in Tension	ϕ_{cb}	-	0.65
Pullout Resistance – Uncracked Concrete	N _{p,uncr}	lbf	N/A ¹
Characteristic She	ar Strength Design	Values	
Anchor Category	1, 2 or 3	-	1
Shear Resistance of Steel	V _{sa}	lbf	6,445
Strength Reduction Factor – Shear Steel Failure	ϕ_{sa}	-	0.60
Load Bearing Length of Anchor in Shear	I _e	in	1.50
Strength Reduction Factor – Concrete Breakout Failure in Shear	ϕ_{cb}	-	0.70
Coefficient for Pryout Strength	K _{cp}	-	1.0
Strength Reduction Factor – Concrete Pryout Failure	ϕ_{cb}	-	0.70

1. Pullout strength is not reported since concrete breakout controls.

2. Refer to ICC-ES ESR-2713 for additional information on use and installation.

3. The characteristic data values summarizes results from an accredited 3rd party Independent Testing and Evaluation Agency. Testing was performed in accordance with ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements, AC193 Table 4.1 test numbers 1, 12 and 13 in order to establish basic anchor performance in uncracked concrete.

4. Use of the anchor in cracked concrete and/or seismic application is outside the scope of this table.

5. The data in this table may be used to calculate anchor design strength in accordance with ACI 318-19 Chapter 17.

6. The data in this table is outside the scope of the ICC-ES Evaluation Report ESR-2713 for Titen HD.

Tension and Shear Design Strengths and Allowable Loads for Titen HD[®] Carbon Steel in 4-inch Thick Uncracked Normal-Weight Concrete (f'_c = 2,500 psi)

Load	Anchor Dia.	Emped.	Min. Concrete Thickness h _{min}			ds when Edg on all si	ge Distance = ides (lb.)	= C _{ac}	Loads when Edge Distance = $2\frac{1}{2}$ on one side and c_{ac} on three sides (lb.)				
Directio	rection (in.) Depth (in.) (in.)	(in.)	CD Loval	ASD Level: Dead Load	ASD Level: Live Load	ASD Level: Wind Load	SD Level		ASD Level: Live Load				
Tension	1/-	21/4	4	G	1,435	1,195	895	860	595	500	375	360	
Shear	near 1/2 2 1/4 4		0	1,545	1,285	965	925	645	535	400	385		

1. Tension and shear design strengths (SD level) are based on the strength design provisions of ACI 318-19 Chapter 17.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Strength reduction factor, $\phi,$ is based on using a load combination from ACI 318-19 Section 5.3.

4. Concrete to remain uncracked for the life of the anchorage.

5. Seismic application is outside the scope of this table.

6. Allowable level load values are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = 1.2$ for dead load, 1.6 for live load and $\frac{1}{6} = 1.67$ for wind load.

Shear Strength Design Data for 1/8-inch and 3/8-inch-diameter Titen HD® Carbon Steel with 1-inch Nominal Embedment Depth

Characteristic	Symbol	Unit	¼-inch-diameter Titen HD	‰-inch-diameter Titen HD
Installation	Information			
Nominal Diameter	da	in	1⁄4	3⁄8
Drill Bit Diameter	d _{bit}	in	1⁄4	3⁄8
Minimum Hole Depth	h _{hole}	in	1	1
Nominal Embedment	h _{nom}	in	1	1
Effective Embedment	h _{ef}	in	0.663	0.492
Minimum Concrete Thickness	h _{min}	in	31⁄4	4
Critical Edge Distance	C _{Cr}	in	3	211/16
Minimum Edge Distance	C _{min}	in	1.33	0.98
Minimum Spacing	S _{min}	in	2.66	1.97
Characteristic Shear	Strength Design \	/alues		
Shear Resistance of Steel in Uncracked Concrete	V _{sa,uncr}	lbf	1,045	1,075
Shear Resistance of Steel in Cracked Concrete	V _{sa,cr}	lbf	705	345
Strength Reduction Factor – Shear Steel Failure	ϕ_{sa}	-	0	.6
Load Bearing Length of Anchor in Shear	l _e	in	0.663	0.492
Strength Reduction Factor – Concrete Breakout Failure in Shear	ϕ_{cb}	-	0.	45
Effectiveness Factor - Uncracked Concrete	Kuncr	-	2	24
Effectiveness Factor - Cracked Concrete	k _{cr}	-	1	7
Coefficient for Pryout Strength	K _{cp}	-		1
Strength Reduction Factor – Concrete Pryout Failure	ϕ_{cp}	-	0.	45

1. The characteristic data values summarizes results from IAS accredited laboratory. Testing was performed in accordance with ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements, AC193 Appendix A5 for shallow embedded anchors in uncracked and cracked concrete.

2. Use of the anchor in seismic application is outside the scope of this table.

3. The data in this table is limited to dry, interior, non-structural applications.

4. The data in this table may be used to calculate anchor design shear strength in accordance with ACI 318-19 Chapter 17.

5. The data in this table is outside the scope of the ICC-ES Evaluation Report ESR-2713 for Titen HD.

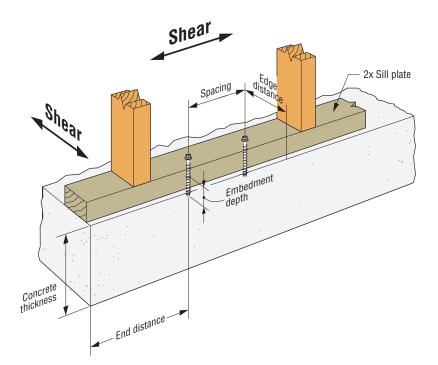
TECHNICAL ENGINEERING BULLETIN

Titen HD® Design Information — Concrete

IBC

[]

Shear Design Strengths and Allowable Loads for ¼-inch and ¾-inch-diameter Titen HD® Carbon Steel with 1-inch Nominal Embedment Depth


A 100 A	hau	Nom. Emb.	Conc.	Educ/End	0		Uncracked	d Concrete			Cracked	Concrete	
And Dia.	Dia (in) Donth	Thick. h _{min} (in.)	Edge/End Dist. C _{min} (in.)	Spacing S _{min} (in.)	SD Level		ASD Level: Live Load	ASD Level: Wind Load	SD Level		ASD Level: Live Load	ASD Level: Wind Load	
1	/4	1	3¼	23⁄4	51⁄2	265	220	165	155	205	170	125	100
	4	1	574	12	3	200	.05 220	105	155	205	170	120	100
3	4	1	4	23⁄4	51⁄2	185	155	115	110	130	105	80	75
9	3⁄8 1	4	12	3	100	100	110	110	130	105	00	75	

1. Shear design strengths are based on the strength design provisions of ACI 318-19 Chapter 17.

2. Tabulated values are for single anchor with no influence of another anchor.

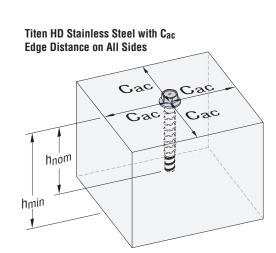
3. Tabulated values are for anchor to concrete connection based on minimum concrete thickness, minimum edge distance and minimum spacing listed. The capacity of fixture must be evaluated separately.

- 4. Seismic application is outside the scope of this table.
- 5. Tabulated values are limited to dry, interior, non-structural applications.
- 6. Concrete shall be normal weight concrete.
- 7. Concrete strength shall be greater than or equal to $f'_c = 2,500$ psi.
- 8. Allowable level load values are calculated by using a conversion factor $\alpha = 1.2$ for dead load, 1.6 for live load and $\frac{1}{6.6} = 1.67$ for wind load.
- 9. The figure below illustrates 2x sill plate application. Tabulated values may be used to attach other types of fixtures. Height of the fixture shall not exceed thickness of 2x sill plate (1 ½ inches).

Titen HD [®] Stainless Steel Tension Design Strengths in Normal-Weight Concrete (f' _c = 2,500 psi)													
							Ter	nsion Desig	n Strength (I	b.)			
Anchor Dia.	Nominal Embed.	Min. Concrete Thickness	Critical Edge Distance	Minimum Edge Distance	Edge Distances = c_{ac} on all sides				Edge		= c _{min} on one side three sides		
(in.)	Depth (in.)	h _{min} (in.)	c _{ac} (in.)	C _{min} (in.)	SDC	A-B	SDC	C-F	SDC	A-B	SDC	C-F	
		()	()	()	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1/4	21⁄8	31⁄2	3	1½	775	315	580	235	410	315	310	235	
'/4	3	43%	3	1 1/2	1,525	550	1,145	415	975	550	730	415	
3/8	21⁄2	4	41⁄2	13⁄4	1,455	1,090	1,090	815	590	985	445	740	
78	31⁄4	5	51⁄2	13⁄4	2,275	1,570	1,705	1,175	865	1,105	650	825	
1/2	31⁄4	5	6	13⁄4	2,225	1,295	1,670	975	750	1,015	560	760	
/2	4	61⁄4	5¾	13⁄4	3,085	2,185	2,310	1,640	1,240	1,345	930	1,010	
5/8	4	6	6	1¾	2,485	1,940	1,860	1,455	1,015	1,245	760	930	
78	51⁄2	81⁄2	6%	1¾	5,305	3,760	3,980	2,820	2,370	1,985	1,775	1,490	
3/.	51⁄2	83⁄4	6¾	1¾	5,720	3,600	4,290	2,700	2,370	1,925	1,775	1,440	
3⁄4	6¼	10	73⁄8	1¾	7,365	5,730	5,525	4,295	3,115	2,885	2,335	2,160	

1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-19 Chapter 17.

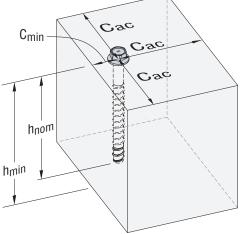
2. Tabulated values are for a single anchor with no infuence of another anchor.


3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-19 Section 5.3.

 The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strengthlevel seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.

When designing and longes in SDC C-F, the designer shall consider the ductility requirements of ACI 316-19 Section 17.10.
Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.


8. The Designer of Record is responsible for the foundation design.

Flat Slab

Titen HD Stainless Steel with Cmin Edge Distance

Flat Slab

Titen HD[®] Stainless Steel Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Static Load

					Allowable Tension Load (lb.)					
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)		= c _{ac} on all sides	$\begin{array}{l} \mbox{Edge Distances} = c_{min} \mbox{ on one side} \\ \mbox{ and } c_{ac} \mbox{ on three sides} \end{array}$			
					Uncracked	Cracked	Uncracked	Cracked		
1/4	21⁄8	31⁄2	3	1½	555	225	295	225		
74	3	43⁄8	3	1½	1,090	395	695	395		
3/8	21⁄2	4	41⁄2	13⁄4	1,040	780	420	705		
78	31⁄4	5	5½	13⁄4	1,625	1,120	620	790		
1/2	31⁄4	5	6	13⁄4	1,590	925	535	725		
72	4	61⁄4	5¾	13⁄4	2,205	1,560	885	960		
5/8	4	6	6	13⁄4	1,775	1,385	725	890		
78	51⁄2	81⁄2	6%	13⁄4	3,790	2,685	1,695	1,420		
3/4	51⁄2	8¾	6¾	13⁄4	4,085	2,570	1,695	1,375		
74	61⁄4	10	7%	1 3⁄4	5,260	4,095	2,225	2,060		

See footnotes and graphics on page 16.

Titen HD® Stainless Steel Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) - Wind Load

					Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Edge Distances	= c _{ac} on all sides	$\begin{tabular}{ c c } Edge Distances = c_{min} \ on \ one \ sides \\ and \ c_{ac} \ on \ three \ sides \end{tabular}$				
					Uncracked	Cracked	Uncracked	Cracked			
1/4	21/8	31⁄2	3	1 1/2	465	190	245	190			
1/4	3	43⁄8	3	1 1/2	915	330	585	330			
3/8	21/2	4	41/2	13⁄4	875	655	355	590			
78	31⁄4	5	51⁄2	13⁄4	1,365	940	520	665			
1/2	31⁄4	5	6	13⁄4	1,335	775	450	610			
72	4	6¼	5¾	13⁄4	1,850	1,310	745	805			
5/8	4	6	6	13⁄4	1,490	1,165	610	745			
78	51⁄2	81⁄2	63⁄8	13⁄4	3,185	2,255	1,420	1,190			
3/4	51⁄2	83⁄4	6¾	13⁄4	3,430	2,160	1,420	1,155			
9/4	61⁄4	10	73⁄8	1 3⁄4	4,420	3,440	1,870	1,730			

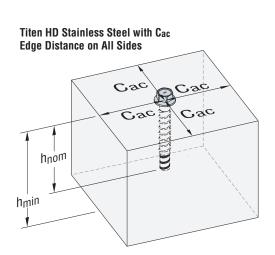
See footnotes and graphics on page 16.

Titen HD $^{\circ}$ Stainless Steel Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Seismic Load

				Minimum Edge Distance C _{min, deck, top} (in.)	Tension Design Strength (lb.)									
Anchor Dia.	Nominal Embed. Depth	Min. Concrete Thickness			Edge	Distances	= c _{ac} on all s	ides	Edge Distances = c_{min} on one side and c_{ac} on three sides					
(in.)	(in.)	h _{min,deck} (in.)	C _{ac,deck,top} (in.)		SDC A-B		SDC	SDC C-F		A-B	SDC C-F			
		()			Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked		
1/4	21⁄8	31⁄2	3	1½	545	220	405	165	285	220	215	165		
74	3	43⁄8	3	11⁄2	1,070	385	800	290	685	385	510	290		
3/8	21⁄2	4	41⁄2	13⁄4	1,020	765	765	570	415	690	310	520		
98	31⁄4	5	51⁄2	13⁄4	1,595	1,100	1,195	825	605	775	455	580		
1/2	31⁄4	5	6	1¾	1,560	905	1,170	685	525	710	390	530		
72	4	61⁄4	5¾	13⁄4	2,160	1,530	1,615	1,150	870	940	650	705		
5/8	4	6	6	1 3⁄4	1,740	1,360	1,300	1,020	710	870	530	650		
78	51⁄2	81⁄2	6¾	1¾	3,715	2,630	2,785	1,975	1,660	1,390	1,245	1,045		
3/4	51⁄2	83⁄4	6¾	1¾	4,005	2,520	3,005	1,890	1,660	1,350	1,245	1,010		
74	6¼	10	73⁄8	1¾	5,155	4,010	3,865	3,005	2,180	2,020	1,635	1,510		

See footnotes and graphics on page 16.

* See page 3 for an explanation of the load table icons.



IBC

- 1. Static allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.
- 2. Wind allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.
- 3. Seismic allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = \%.7 = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.
- 4. Tabulated values are for a single anchor with no influence of another anchor.
- 5. Interpolation between embedment depths is not permitted.
- 6. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 7. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.
- 8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.
- 9. The Designer of Record is responsible for the foundation design.

Titen HD Stainless Steel with Cmin Edge Distance

TECHNICAL ENGINEERING BULLETIN

Titen HD® Design Information — Concrete

IBC

Titen HD[®] Stainless Steel Tension Design Strengths in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 2,500 \text{ psi}$)

				Edge	Tension Design Strength (lb.)									
Anchor Dia.	(in.) Depth	Min. Concrete Thickness have see			Edge Distances = c _{ac,deck,top} on all sides			ll sides	Edge Dis an	stances = $c_{ac,deck,top}$	c _{min,deck,top} on c on three side	one side es		
(111.)	(in.)	h _{min,deck} (in.)	C _{ac,deck,top} (in.)	C _{min,deck,top} (in.)	SDC	A-B	SDC	SDC C-F		A-B	SDC C-F			
		(,	()	(,	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked		
1⁄4	21⁄8	21⁄2	3	1½	775	315	580	235	410	315	310	235		
3⁄8	21⁄2	31⁄4	41⁄2	1¾	1,455	1,090	1,090	815	590	985	445	740		
1/2	31⁄4	3¾	71⁄2	1¾	2,225	1,295	1,670	975	600	1,015	450	760		

1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-19 Chapter 17.

2. Tabulated values are for a single anchor with no infuence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-19 Section 5.3.

5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strengthlevel seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.

Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.
For installation in topside of sand-lightweight concrete-filled profile steel deck assemblies, tabulated values must be multiplied by 0.68.

9. Installation must comply with Figure 1.

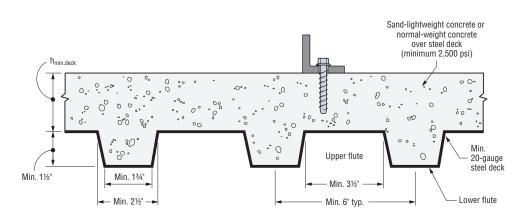


Figure 1 - Installation of 1/4", 3/4" and 1/2" Shank Diameter Screw Anchors in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies (1" = 25.4 mm)

Titen HD[®] Stainless Steel Allowable Tension Loads in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 2,500 \text{ psi}$) — Static Load

			Min. Concrete	Critical Edge	Minimum Edge	Allowable Tension Load (lb.)				
	Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Thickness h _{min,deck}	Distance C _{ac,deck,top}	Distance C _{min,deck,top} (in.)	Edge Distances all s	$s = c_{ac,deck,top}$ on ides	$\label{eq:EdgeDistances} \begin{array}{c} \mbox{EdgeDistances} = \mbox{c}_{\mbox{min,deck,top}} \mbox{ on } \\ \mbox{one side and } \mbox{c}_{\mbox{ac,deck,top}} \mbox{ on three sides} \end{array}$		
			(in.)	(in.)		Uncracked	Cracked	Uncracked	Cracked	
	1⁄4	21/8	21⁄2	3	11/2	555	225	295	225	
	3⁄8	21⁄2	31⁄4	41/2	13⁄4	1,040	780	420	705	
	1/2	31⁄4	3¾	71⁄2	1 3⁄4	1,590	925	430	725	

Titen HD[®] Stainless Steel Allowable Tension Loads in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies ($f_c = 2,500 \text{ psi}$) — Wind Load

		Min. Concrete	Critical Edge	Minimum Edge		Allowable Ten	sion Load (lb.)		
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Thickness h _{min,deck}	Distance C _{ac,deck,top}	Distance C _{min,deck,top}	tance Edge Distances = $c_{ac,deck,top}$ on deck,top all sides		$\label{eq:EdgeDistances} \left[\begin{array}{c} \text{Edge Distances} = c_{\text{min,deck,top}} \text{ on} \\ \text{one side and } c_{\text{ac,deck,top}} \text{ on three sides} \end{array} \right]$		
		(in.)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked	
1⁄4	21⁄8	21⁄2	3	1 1⁄2	465	190	245	190	
3⁄8	21⁄2	31⁄4	41/2	13⁄4	875	655	355	590	
1/2	31⁄4	3¾	71⁄2	13⁄4	1,335	775	360	610	

Titen HD[®] Stainless Steel Allowable Tension Loads in Topside of Normal-Weight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 2,500 \text{ psi}$) — Seismic Load

					Tension Design Strength (lb.)								
Anchor Dia.	Nominal Embed. Depth	Min. Concrete Thickness	Critical Edge Distance	Minimum Edge Distance	Edge Di	stances = (C _{ac,deck,top} on a	ll sides			c _{min,deck,top} on c on three side		
(in.)	(in.)		h _{min,deck} c _{ac,deck,top} (in.)	C _{min,deck,top}	SDC A-B		SDC C-F		SDC A-B		SDC C-F		
		(,	(,		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1⁄4	21⁄8	21⁄2	3	1 1/2	545	220	405	165	285	220	215	165	
3⁄8	21⁄2	31⁄4	41⁄2	1 3⁄4	1,020	765	765	570	415	690	310	520	
1/2	31⁄4	3¾	71⁄2	13⁄4	1,560	905	1,170	685	420	710	315	530	

1. Static allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Wind allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = \%.6 = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

3. Seismic allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = \frac{1}{2}$. The conversion factor α is based on the load combination assuming 100% seismic load.

4. Tabulated values are for a single anchor with no infuence of another anchor.

5. Interpolation between embedment depths is not permitted.

6. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

7. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-19 Section 17.10.

8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-19 Section 17.10.5.4.

9. For installation in topside of sand-lightweight concrete-filled profile steel deck assemblies, tabulated values must be multiplied by 0.68.

10. Installation must comply with Figure 1 on page 17.

```
* See page 3 for an explanation of the load table icons.
```

SIMPSON

Strong-Tie

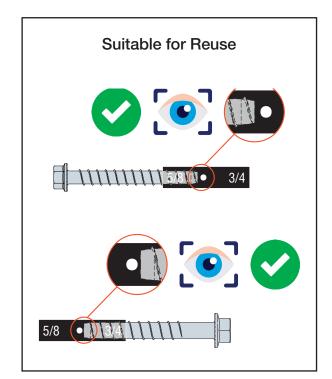
IBC

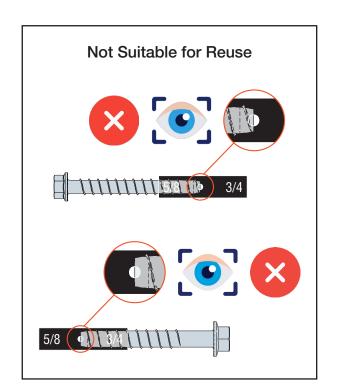
IBC

IBC

Titen HD® Thread Gauge

The Titen HD Thread Gauge allows users to check thread wear on previously installed carbon steel THD anchors to determine suitability for reuse in temporary applications. The dual-sided design can gauge both 5%" and 34" diameter carbon steel Titen HD anchors. The gauge is designed for a quick and easy check to assess if a THD anchor can be used again.


To use, insert the THD anchor into the appropriate end of the gauge. If any part of the anchor passes through the witness hole in the center of the gauge, it is not suitable to be used again. If the THD anchor does not pass into the witness hole, it can be used. If you see any part of the THD anchor when you look through the witness hole, you must discard the THD anchor immediately. Do not reuse the THD anchor if any part of the anchor is visible in the witness hole.



SIMPSON

Strong-Tie

See pages 20-23 for reused Titen HD design data.

Note: 5%" diameter Titen HD must be inserted on the side of Titen HD Thread Gauge marked with 5%.

Similarly, ¾" diameter Titen HD must be inserted on the side of Titen HD Thread Gauge marked with ¾.

Reused Titen HD® Technical Information

Reused Titen HD® Carbon Steel Installation Parameters and Strength Design Data for Temporary Applications^{1,6}

Characteristic	Cumhal	Units		Nominal Anchor Diameter (in.)				
Characteristic	Symbol	Units	5,	/ 8	3⁄4			
	Installation	Parameters						
Drill Bit Diameter	d _{bit}	in.	5	/8	:	3/4		
Baseplate Clearance Hole Diameter	d _h	in.	3,	/4		7/8		
Maximum Installation Torque ²	T _{inst,max}	ft-lbf	10	00	1	50		
Maximum Impact Wrench Torque Rating ³	T _{impact,max}	ft-lbf	34	10	3	85		
Minimum Hole Depth	h _{hole}	in.	41⁄2	6	41/2	63⁄4		
Nominal Embedment Depth	h _{nom}	in.	4	51⁄2	4	61⁄4		
Effective Embedment Depth	h _{ef}	in.	2.97	4.24	2.94	4.86		
Critical Edge Distance	C _{ac}	in.	4 1/2	63⁄8	6	75⁄16		
Minimum Edge Distance	C _{min}	in.	1:	3/4	1	3⁄4		
Minimum Spacing	S _{min}	in.	3	}	23⁄4	3		
Minimum Concrete Thickness	h _{min}	in.	6	81⁄2	6	10		
Wrench Size	-	in.	15	/16	1	1⁄8		
	Steel Streng	th in Tension						
Tension Resistance of Steel	N _{sa}	lb.	30,	360	45,540			
Strength Reduction Factor – Steel Failure ⁴	ф _{sa}	-		0.0	.65			
C	Concrete Breakout	Strength in Tensio	n					
Effectiveness Factor – Uncracked Concrete	kuncr	-	2	4	2	24		
Modification Factor	Ψc,N	-		1.	.0			
Strength Reduction Factor – Concrete Breakout Failure ⁴	φ _{cb}	-		0.0	65			
	Pullout Stren	gth in Tension						
Pullout Resistance – Uncracked Concrete (f' _c = 2,500 psi)	N _{p,uncr}	lb.	4,7405	9,010 ⁵	5,4955	9,400		
Strength Reduction Factor – Concrete Pullout Failure ⁴	φ _p	-		0.0	65			
	Steel Stren	gth in Shear						
Shear Resistance of Steel	V _{sa}	lb.	10,0	000	13,	150		
Strength Reduction Factor – Steel Failure ⁴	ф _{sa}	-		0.0	60			
1	Concrete Breakou	t Strength in Shea	r					
Outside Diameter	d _a	in.	0.6	25	0.7	750		
Load Bearing Length of Anchor in Shear	l e	in.	2.97	4.24	2.94	4.86		
Strength Reduction Factor – Concrete Breakout Failure ⁴	φ _{cb}	-		0.1	70			
	Concrete Pryout	Strength in Shear						
Coefficient for Pryout Strength	k _{cp}	-		2.	.0			
Strength Reduction Factor – Concrete Pryout Failure ⁴	φ _{cp}	-		0.1	70			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 and ACI 318-11 Appendix D.

2. Tirstmax is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench. Exceeding the maximum torque can reduce its holding capacity.

3. T_{impact,max} is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.

4. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

5. Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (f⁺_{c.specified} / 2,500)^{0.5}.

6. Installation parameters are for reused Titen HD that have passed a check using the Simpson Strong-Tie® Titen HD Thread Gauge.

Reused Titen HD® Technical Information

IBC

Reused Titen HD[®] Carbon Steel Design Strengths in Normal-Weight Uncracked Concrete for Temporary Applications^{3,4,6,7,8,9,10}

	Nominal	Critical				Des	ign Strength	(lb.)				
Anchor Dia. (in.)	Embed. Depth	Edge Distance	t	f' _c = 2,500 psi			f' _c = 4,000 psi		f' _c = 6,000		psi	
()	(in.)	C _{ac} (in.)	Tension ϕN_n	Shear ϕV_n	60-degree⁵	Tension ϕN_n	Shear ϕV_n	60-degree⁵	Tension ϕN_n	Shear ϕV_n	60-degree⁵	
					S	ingle-use1						
			IMI	PORTANT: thes	e values are h	higher as com	pared to a reu	sed anchor				
5/8	4	41⁄2	3,990	3,335	3,270	5,050	4,215	4,135	6,185	5,165	5,065	
78	51⁄2	6%	6,375	6,000	5,475	8,065	6,000	6,290	9,880	6,000	7,020	
3/4	4	6	4,425	4,685	3,970	5,595	5,925	5,015	6,855	7,255	6,145	
94	61⁄4	75⁄16	8,355	8,145	7,270	10,565	10,105	9,130	12,940	10,105	10,310	
			Reused	after passing a	a check with the	e Simpson Stror	g-Tie® Titen Hl	C Thread Gauge	9 ²			
			IMPOI	RTANT: these	alues are red	uced as comp	ared to a sing	le-use anchor				
5/8	4	4 1/2	3,080	3,335	2,785	3,895	4,215	3,520	4,775	5,165	4,315	
78	51⁄2	6%	5,855	6,000	5,190	7,410	6,000	5,995	9,070	6,000	6,710	
3/4	4	6	3,570	4,685	3,435	4,520	5,925	4,350	5,535	7,255	5,325	
9/4	61⁄4	75⁄16	6,110	7,890	5,850	7,725	7,890	6,840	9,465	7,890	7,750	

1. Tabulated values are based on the characteristic ultimate values obtained from testing a Simpson Strong-Tie® Titen HD anchor installed for the first time in concrete.

2. Tabulated values are based on the characteristic ultimate values obtained from testing a Simpson Strong-Tie[®] Titen HD anchor meeting the minimum thread outside diameter requirement as checked with the Simpson Strong-Tie[®] Titen HD Thread Gauge.

3. For lightweight concrete, multiply design strength by λ_a as follows: for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$.

4. Design strength in 2,500 psi, 4,000 psi and 6,000 psi concrete are based on test data and calculations according to ACI 318-19 Chapter 17.

5. 60-degree loads are calculated for a pinned connection where the load acts 60 degrees from a line parallel to the concrete surface using the interaction equation between tension and shear failure with the tabulated tension and shear design strength.

6. Tabulated values are for single anchor with no influence of another anchor.

7. Tabulated values are based on an anchor placed at critical edge distance from one concrete edge. See Figure 1 below.

8. Interpolation between embedment depth is not permitted.

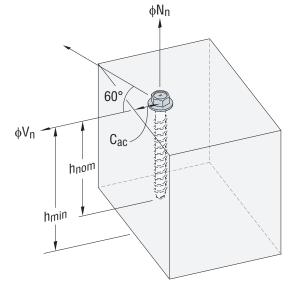
9. The Designer of Record is responsible for the foundation design.

10. For anchor subjected to both tension and shear loads, it shall be designed to satisfy following:

- For $N_a/\phi N_n \leq 0.2,$ the full design strength in shear is permitted.

- For $V_a/\phi V_n \le 0.2$, the full design strength in tension is permitted.

- For all other cases: $N_a/\phi N_n + V_a/\phi V_n \le 1.2$.


where:

N_a = Applied tension load

 ϕN_n = Tension design strength from table

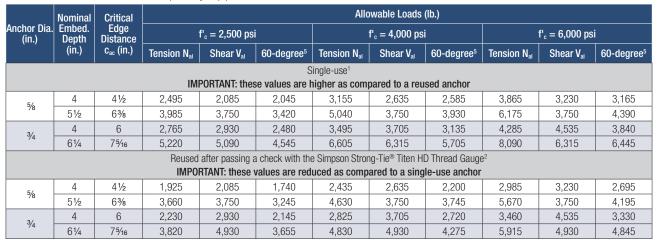
V_a = Applied shear load

 $\varphi V_{\text{n}} =$ Shear design strength from table

Reused Titen HD® Technical Information

t tales

IBC


IBC

Reused Titen HD[®] Carbon Steel Allowable Loads in Normal-Weight Uncracked Concrete for Temporary Applications - Dead Load^{3,4,6,7,8,9,10,11}

	Nominal	Critical				Allo	wable Loads	(lb.)			
Anchor Dia. (in.)	Embed. Depth	Edge Distance	1	f' _c = 2,500 psi	i	1	f' _c = 4,000 ps			f' _c = 6,000 psi	
()	(in.)	C _{ac} (in.)	Tension N _{al}	Shear V _{al}	60-degree⁵	Tension N _{al}	Shear V _{al}	60-degree⁵	Tension N _{al}	Shear V_{al}	60-degree⁵
					S	ingle-use ¹					
			IMI	PORTANT: thes	e values are h	ligher as com	pared to a reu	sed anchor			
5/8	4	41⁄2	3,325	2,780	2,725	4,210	3,515	3,445	5,155	4,305	4,220
9/8	51⁄2	6%	5,315	5,000	4,565	6,720	5,000	5,240	8,235	5,000	5,850
3/4	4	6	3,690	3,905	3,310	4,665	4,940	4,180	5,715	6,045	5,120
9/4	61⁄4	75⁄16	6,965	6,790	6,060	8,805	8,420	7,610	10,785	8,420	8,590
			Reused	after passing a	a check with the	e Simpson Stror	ıg-Tie® Titen Hl	D Thread Gauge	²		
			IMPOI	RTANT: these	alues are red	uced as comp	ared to a sing	le-use anchor			
5/8	4	41⁄2	2,565	2,780	2,320	3,245	3,515	2,935	3,980	4,305	3,595
9/8	51⁄2	6%	4,880	5,000	4,325	6,175	5,000	4,995	7,560	5,000	5,590
2/	4	6	2,975	3,905	2,865	3,765	4,940	3,625	4,615	6,045	4,440
3⁄4	61⁄4	75⁄16	5,090	6,575	4,875	6,440	6,575	5,700	7,890	6,575	6,460

See footnotes on page 23.

Reused Titen HD[®] Carbon Steel Allowable Loads in Normal-Weight Uncracked Concrete for Temporary Applications - Wind Load^{3,4,6,7,8,9,10,11}

See footnotes on page 23.

TECHNICAL ENGINEERING BULLETIN

Reused Titen HD® Technical Information

- 1. Tabulated allowable loads are for a Simpson Strong-Tie® Titen HD anchor installed for the first time in concrete.
- 2. Tabulated allowable loads are for a Simpson Strong-Tie® Titen HD anchor meeting the minimum thread outside diameter requirement as checked with the Simpson Strong-Tie® Thread Gauge.
- 3. For lightweight concrete, multiply allowable loads by λ_a as follows: for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$.
- 4. Allowable loads in 2,500 psi, 4,000 psi and 6,000 psi concrete are based on test data and calculations according to ACI 318-19 Chapter 17.
- 5. 60-degree loads are calculated for a pinned connection where the load acts 60 degrees from a line parallel to the concrete surface using the interaction equation between tension and shear failure with the tabulated allowable tension and shear loads.

6. Tabulated values are for single anchor with no influence of another anchor.

7. Tabulated values are based on an anchor placed at critical edge distance from one concrete edge. See Figure 2 below.

8. Interpolation between embedment depth is not permitted.

9. The Designer of Record is responsible for the foundation design.

10. Allowable loads are calculated based on design strength values using a conversion factors as follows:

$$T_{al} = \frac{\varphi N_n}{\alpha}$$
$$V_{al} = \frac{\varphi V_n}{\alpha}$$

where:

and

 $T_{al} =$ Allowable tension load

 $V_{al} =$ Allowable shear load

 α = Conversion factor calculated as a weighted average of the load factors for the controlling load combination For example:

 α = 1.2 for load combination of 1.2D assuming 100% dead load

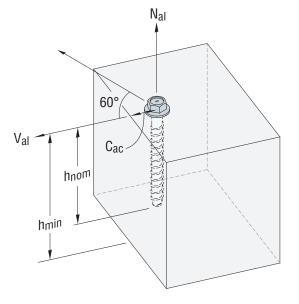
 α = 1.6 for load combination of 1.6W assuming 100% wind load

11. For anchor subjected to both tension and shear loads, it shall be designed to satisfy following:

- For $N_a/N_a \le 0.2$, the full allowable load in shear is permitted.

- For $V_a/V_{al} \le 0.2$, the full allowable load in tension is permitted.

- For all other cases: $N_a\!/N_{al}$ + $V_a\!/V_{al}$ \leq 1.2.


where:

 $N_a = Applied ASD$ tension load

N_{al} = Allowable tension load from table

 $V_a = Applied ASD$ shear load

 V_{al} = Allowable shear load from table

This technical bulletin is effective until June 30, 2025, and reflects information available as of June 1, 2023. This information is updated periodically and should not be relied upon after June 30, 2025; contact Simpson Strong-Tie for current information and limited warranty or see **strongtie.com**.

(800) 999-5099 strongtie.com

© 2023 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

TEB-A-THD23 6/23 exp. 6/25